WO1996016684A1 - Integrated low priming volume centrifugal pump and membrane oxygenator - Google Patents

Integrated low priming volume centrifugal pump and membrane oxygenator Download PDF

Info

Publication number
WO1996016684A1
WO1996016684A1 PCT/US1994/013763 US9413763W WO9616684A1 WO 1996016684 A1 WO1996016684 A1 WO 1996016684A1 US 9413763 W US9413763 W US 9413763W WO 9616684 A1 WO9616684 A1 WO 9616684A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
ring
mass transfer
fluid
transfer bed
Prior art date
Application number
PCT/US1994/013763
Other languages
French (fr)
Inventor
Wilfred Mathewson
Original Assignee
Baxter International Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baxter International Inc. filed Critical Baxter International Inc.
Priority to PCT/US1994/013763 priority Critical patent/WO1996016684A1/en
Publication of WO1996016684A1 publication Critical patent/WO1996016684A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1698Blood oxygenators with or without heat-exchangers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1621Constructional aspects thereof
    • A61M1/1623Disposition or location of membranes relative to fluids
    • A61M1/1625Dialyser of the outside perfusion type, i.e. blood flow outside hollow membrane fibres or tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/26Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes and internal elements which are moving
    • A61M1/262Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes and internal elements which are moving rotating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/26Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes and internal elements which are moving
    • A61M1/267Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes and internal elements which are moving used for pumping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3623Means for actively controlling temperature of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • A61M60/109Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems
    • A61M60/113Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems in other functional devices, e.g. dialysers or heart-lung machines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/226Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly radial components
    • A61M60/232Centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/30Medical purposes thereof other than the enhancement of the cardiac output
    • A61M60/36Medical purposes thereof other than the enhancement of the cardiac output for specific blood treatment; for specific therapy
    • A61M60/38Blood oxygenation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/408Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable
    • A61M60/411Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable generated by an electromotor
    • A61M60/416Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable generated by an electromotor transmitted directly by the motor rotor drive shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • B01D63/0232Manufacturing thereof using hollow fibers mats as precursor, e.g. wound or pleated mats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/025Bobbin units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/034Lumen open in more than two directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/24Specific pressurizing or depressurizing means

Definitions

  • U.S. Patent No. 3,841,837 discloses a blood oxygenator or dialyzer that achieves enhanced transfer through rotation of a cylindrically mounted membrane placed eccentrically inside a stator housing. Blood flows in the annular space between the rotor and the stator. Rotation causes a pumping action, thus causing pumping and oxygenation to occur simultaneously. All of these prior art devices have required relatively large amounts of fluid to prime the pump and oxygenator. There have also been difficulties with the safety and ease of use by the perfusionist. Furthermore, these devices can be quite costly to manufacture.
  • the low priming volume integrated centrifugal pump and membrane oxygenator of the present invention comprises housing 10 containing impeller 30 surrounded by mass transfer bed 40.
  • the top and bottom of the mass transfer bed 40 are sealed to the upper and lower internal faces of housing 10.
  • Fluid entering housing 10 through fluid inlet 12 is pumped by impeller 30 through mass transfer bed 40.
  • mass transfer bed 40 the fluid is oxygenated and the carbon dioxide is removed.
  • the fluid is then collected and discharged through a tapered exit manifold 14 located around the outer diameter of mass transfer bed 40.
  • impeller 30 has flow channels 32 that act to force the fluid through the mass transfer bed 40.
  • flow channels 32 deliver uniform radial flow to the mass transfer bed 40 in the course of its 360 degree rotation. This uniform radial flow enhances oxygenation by insuring that the mass transfer bed 40 is uniformly perfused with blood to be oxygenated.
  • the rotation of the impeller 30 insures true and uniform radial flow over the entire circumference and height of the mass transfer bed 40.
  • a local flow pulse is created followed by a quiescent period until the next flow channel 32 arrives. This pulse enhances mass transfer, in particular, oxygenation and carbon dioxide removal.
  • the flow channel volume of flow channels 32 is relatively small compared with the envelope of the impeller 30. This is in direct contrast to conventional radial impellers for centrifugal pumps. Conventional centrifugal pumps generally operate in a region of higher flow rates for a given required delivery pressure. Typical impellers have thin vanes with wide flow channels between the vanes to keep the flow channel volume as close to the maximum volume available as possible to create high flow rates. However, in extracorporeal cardiopulmonary support, relatively low flow and high pressure is required. Thus the impeller diameter and RPM requirements are dictated more by delivery pressure than flow demands.
  • the small flow channel volume of the present invention results in high fluid delivery pressures at adequate flow rates, and thus allows the priming volume to be reduced. Another effect of the small flow channel volume is reduced turbulence in the pumping portion of the integrated pump and oxygenator.
  • the volume of flow channels 32 should be of a size to permit relatively laminar flow of the fluid in the impeller 8
  • the flow channel volume is from about 5% to about 60% of the total envelope volume. More preferably the flow channel volume is less than 50% of the total envelope volume. Most preferably the flow channel volume is from about 5% to about 30% of the total envelope volume.
  • the flow channel volume can be altered by any means such as adjusting the size, shape and number of the flow channels.
  • Impeller 30 should be of a size sufficient to force the fluid through the mass transfer bed 40 and to return it to the patient without the need for an external pump. Preferably, the impeller 30 has a diameter of from about 2 inches to about 6 inches.
  • the pump, including impeller and housing can be made from any inert material that will not react with the blood or the oxygen.
  • the pump, impeller and housing may be molded from plastic materials such as polycarbonate and the like.
  • the mass transfer bed 40 has a gas inlet header 60 and gas inlet manifold 62 to allow the passage of a second fluid, the oxygen gas, into the lumens 46 of the fibers 38.
  • the second fluid exits the lumens 46 by means of gas outlet manifold 64 and gas outlet header 66, while maintaining separation of the second fluid from the first fluid.
  • Manifold partition 68 separates the gas inlet header 60 and gas inlet manifold 62 from gas outlet header 66 and gas outlet manifold 64.
  • the headers 60 and 66 are aligned at an angle to the fibers 38 of the mass transfer bed 40.
  • the mass transfer bed 40 is of a sufficient size to permit it to be sealed to the upper and lower internal faces of housing 10.
  • the mass transfer bed 40 has a radial thickness ranging from about 1/10 inch to about 1.5 inches.
  • the mass transfer bed 40 may be bonded 11
  • An engineering model of the integrated pump and membrane oxygenator of the present invention was constructed to test the fluid dynamics.
  • the inside of the housing was 6 inches in diameter and 1 1/2 inches high.
  • the impeller had 4 grooved flow channels and was powered by means of a drillpress motor.
  • the engineering model had a ring 17

Abstract

A low priming volume integrated centrifugal pump and membrane oxygenator comprising a housing (10) containing a mass transfer bed (40) comprising gas permeable hollow membrane fibers (38) placed circumferentially in a ring around an impeller (30). The mass transfer bed (40) is formed by a multiple wrap of a fiber ribbon (42) comprising at least two layers of fibers (38) bonded in precise orientation with fibers in alternate layers positioned in line with the opening between fibers in the layers above and below. Adhesion means ensure precise orientation of the fibers (38). Priming volume is further reduced by a small impeller flow channel volume.

Description

INTEGRATED LOW PRIMING VOLUME CENTRIFUGAL PUMP AND MEMBRANE OXYGENATOR
RELATED CASES This application is a continuation-in-part of U.S. Application Serial No. 07/765,307 filed on September 25, 1991.
FIELD OF THE INVENTION
The invention relates to extra corporeal device technology for the support of patients during open heart surgery and in emergency situations requiring extracorporeal cardiopulmonary support. In particular, the invention relates to new and useful improvements in apparatus for the pumping and oxygenation of blood to temporarily replace the cardiac and pulmonary functions of a patient.
BACKGROUND OF THE INVENTION
During open heart surgery and in some emergency cardiopulmonary situations, it is necessary to have some means for pumping the blood and some means for oxygenating the blood to replace or support the patient's cardiopulmonary functions. Mechanical substitutes for doing this can operate by taking blood from the patient's venous system and oxygenating it by dispersing it over one face of a membrane area and exposing the opposite face to an atmosphere of pure or nearly pure oxygen. After the blood absorbs oxygen in this environment, it is forced by means of a pump into the arterial system of the patient.
Prior art extracorporeal device technology has used individual devices for the functions of pumping blood and oxygenating blood. For example, a pump would be used in conjunction with an oxygenator. Typically, these devices are connected together in an extracorporeal tubing loop to receive venous blood from the patient and return arterial blood back to the patient. One of the problems with these types of devices, such as that shown in U.S. Patent No. 3,183,908, has been that large amounts of blood are required to prime the oxygenator, the pump, and the tubing between the oxygenator and the pump.
Some attempts have been made to incorporate the pumping and oxygenation functions in a single device. For example, U.S. Patent No. 3,841,837 discloses a blood oxygenator or dialyzer that achieves enhanced transfer through rotation of a cylindrically mounted membrane placed eccentrically inside a stator housing. Blood flows in the annular space between the rotor and the stator. Rotation causes a pumping action, thus causing pumping and oxygenation to occur simultaneously. All of these prior art devices have required relatively large amounts of fluid to prime the pump and oxygenator. There have also been difficulties with the safety and ease of use by the perfusionist. Furthermore, these devices can be quite costly to manufacture.
SUMMARY OF THE INVENTION The present invention is directed to a low priming volume integrated centrifugal pump and membrane oxygenator through which the blood is pumped then oxygenated. The integrated pump and oxygenator comprises a housing containing a mass transfer bed for oxygenating and an impeller for pumping. The fluid entering the housing is directed by the impeller through the mass transfer bed, which is in the form of a fiber membrane ring surrounding the impeller. A gap is located between the impeller and ring to insure safe rotation of the impeller. The size or extent of the gap will depend upon the amount of secondary flow desired to enhance oxygenation between the blood in the gap and the first fiber membrane layer or layers, while considering the added prime volume that occurs with increasing gap size.
The surface area requirements for mass transfer place some design conditions on the height and diameter of the fiber membrane ring, which in turn, influences the design of the matching impeller. This could produce an unacceptably high prime volume if the impeller were designed in the conventional manner with relatively thin vanes. This problem is overcome by use of an impeller with small volume flow channels in comparison with the total envelope volume of the impeller. The small impeller flow channel volume requires a greatly reduced priming volume and has the effect of reducing the amount of pump turbulence.
The mass transfer bed comprises a ring of gas permeable hollow fibers running circumferentially around the impeller. This ring can be formed in any manner. One preferred embodiment is to wind a singular fiber to form the ring. Another preferred embodiment is to create the fiber ring by using a multiple wrap of a preformed fiber ribbon. This fiber ribbon can be constructed from at least layer of fibers, or in yet another preferred embodiment, at least two layers of fibers bonded together in precise orientation in an arrangement where the fibers in alternate layers are positioned in line with the opening between fibers in the layers above or below. In a further embodiment, adhesive means can be used to achieve the precise orientation of the fibers in the ring.
The impeller may be of the same height as the mass transfer bed, or may have a height different from that of the mass transfer bed. Preferably, the impeller height is less than the height of the mass transfer bed. The impeller may also be positioned anywhere with respect to the height of the mass transfer bed, and may even be positioned outside the internal confines of the mass transfer bed but within the same integrated housing.
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic top plan view of the integrated centrifugal pump and membrane oxygenator of the present invention; Fig. 1A is a schematic top plan view of the integrated centrifugal pump and membrane oxygenator of Fig. 1 illustrating modifications thereto;
Fig. 2 is a sectional view taken on line 2-2 of Fig. 1;
Figs. 2A-2C are sectional views of the device of Fig. 1 illustrating three different positions of the centrifugal pump with respect to the position of the membrane oxygenator;
Fig. 3 is an enlarged sectional view of a portion of one embodiment of the fiber tape used to make the mass transfer bed shown in Fig. 1;
Fig. 4 is an enlarged sectional view of a portion of another embodiment of the fiber tape used to make the mass transfer bed shown in Fig. 1; and
Fig. 5 is a graph depicting the discharge pressure/flow rate performance of the integrated pump and oxygenator of the present invention compared to another known pump. DETAILED DESCRIPTION OF THE INVENTION
Referring to Figs. 1 and 2, the low priming volume integrated centrifugal pump and membrane oxygenator of the present invention comprises housing 10 containing impeller 30 surrounded by mass transfer bed 40. The top and bottom of the mass transfer bed 40 are sealed to the upper and lower internal faces of housing 10. Fluid entering housing 10 through fluid inlet 12 is pumped by impeller 30 through mass transfer bed 40. In mass transfer bed 40 the fluid is oxygenated and the carbon dioxide is removed. The fluid is then collected and discharged through a tapered exit manifold 14 located around the outer diameter of mass transfer bed 40.
The low priming volume of the integrated centrifugal pump and oxygenator of the present invention is a result of more than the mere housing integration of a pump and an oxygenator resulting from the reduction in the required manifolding and amount of tubing and connector priming volume. Priming volume is also reduced by other features of the present invention described below.
As shown in Fig. 1, impeller 30 has flow channels 32 that act to force the fluid through the mass transfer bed 40. As impeller 30 rotates, flow channels 32 deliver uniform radial flow to the mass transfer bed 40 in the course of its 360 degree rotation. This uniform radial flow enhances oxygenation by insuring that the mass transfer bed 40 is uniformly perfused with blood to be oxygenated. The rotation of the impeller 30 insures true and uniform radial flow over the entire circumference and height of the mass transfer bed 40. As the flow channel 32 passes a segment of the mass transfer bed 40, a local flow pulse is created followed by a quiescent period until the next flow channel 32 arrives. This pulse enhances mass transfer, in particular, oxygenation and carbon dioxide removal. Additionally, the rotation of impeller 30 causes fluid mixing to occur in the gap 20 between the outer diameter of the impeller 30 and the inner diameter of mass transfer bed 40. This fluid mixing has the effect of further enhancing mass transfer of the blood in the gap 20 and the first few layers of fibers 38 in mass transfer bed 40.
The flow channel volume of flow channels 32 is relatively small compared with the envelope of the impeller 30. This is in direct contrast to conventional radial impellers for centrifugal pumps. Conventional centrifugal pumps generally operate in a region of higher flow rates for a given required delivery pressure. Typical impellers have thin vanes with wide flow channels between the vanes to keep the flow channel volume as close to the maximum volume available as possible to create high flow rates. However, in extracorporeal cardiopulmonary support, relatively low flow and high pressure is required. Thus the impeller diameter and RPM requirements are dictated more by delivery pressure than flow demands. The small flow channel volume of the present invention results in high fluid delivery pressures at adequate flow rates, and thus allows the priming volume to be reduced. Another effect of the small flow channel volume is reduced turbulence in the pumping portion of the integrated pump and oxygenator. The volume of flow channels 32 should be of a size to permit relatively laminar flow of the fluid in the impeller 8
30 so as to control friction losses and to minimize blood damage. Preferably the flow channel volume is from about 5% to about 60% of the total envelope volume. More preferably the flow channel volume is less than 50% of the total envelope volume. Most preferably the flow channel volume is from about 5% to about 30% of the total envelope volume. The flow channel volume can be altered by any means such as adjusting the size, shape and number of the flow channels. Impeller 30 should be of a size sufficient to force the fluid through the mass transfer bed 40 and to return it to the patient without the need for an external pump. Preferably, the impeller 30 has a diameter of from about 2 inches to about 6 inches. The pump, including impeller and housing, can be made from any inert material that will not react with the blood or the oxygen. For example, the pump, impeller and housing may be molded from plastic materials such as polycarbonate and the like.
The mass transfer bed 40 of the integrated pump membrane oxygenator is where the oxygenation of the fluid takes place. The mass transfer bed 40 is preferably in the form of a ring of gas permeable, hollow fibers where the fibers run circumferentially around the ring. The mass transfer bed 40 can be constructed by any suitable means. The simplest construction is a plain winding of a singular fiber to form a fiber ring. Alternatively, a fiber mat, such as the commercially available Enka™ fiber mat, could be used. Preferably, the mass transfer bed 40 is formed from a multiple wrap of a preformed fiber ribbon 42 such as that depicted in Figs. 3 and 4. The fibers in the mass transfer bed 40 are held in position relative to one another by any suitable means such as adhesive points or filaments. The mass transfer bed 40 has a gas inlet header 60 and gas inlet manifold 62 to allow the passage of a second fluid, the oxygen gas, into the lumens 46 of the fibers 38. The second fluid exits the lumens 46 by means of gas outlet manifold 64 and gas outlet header 66, while maintaining separation of the second fluid from the first fluid. Manifold partition 68 separates the gas inlet header 60 and gas inlet manifold 62 from gas outlet header 66 and gas outlet manifold 64. The headers 60 and 66 are aligned at an angle to the fibers 38 of the mass transfer bed 40.
In contrast to the angled headers 60 and 66 of the embodiment of Fig. 1, the mass transfer bed 140 of Fig. 1A comprises gas inlet header 160 and gas outlet header 166 which are aligned substantially tangentially to the fibers 38 of the mass transfer bed 140. The gas inlet header 160 communicates with a gas inlet manifold 162, while the gas outlet header 166 communicates with a gas inlet manifold 164. A manifold partition 168 separates the gas inlet header 160 and gas inlet manifold 162 from gas outlet header 166 and gas outlet manifold 164.
The gas inlet and outlet headers 60, 66, 160 and 166 may be formed by any conventional means, and shall be described in connection with the headers of Fig. 1. In a preferred embodiment, the gas inlet and outlet headers are created by potting a region with a polyurethane, a modified UV curable urethane, epoxy, or hot melt adhesive. The center portion of the potted region is then removed to expose the lumens and allow passage of a second fluid through them. A manifold partition 68 is placed in the open center portion 10
to separate the gas inlet header 60 and gas inlet manifold 62 from the gas outlet header 66 and the gas outlet manifold 64. The gas inlet manifold 62 and the gas outlet manifold 64 communicate with appropriate inlet and outlet connectors in the housing 10. The header boundaries are selected for optimal flow and may range between tangential and radial .
The mass transfer bed 40 operates to oxygenate the first fluid, the patient's blood, by means of the lumen 46 of each fiber 38. The lumens 46 deliver the second fluid, the oxygenating gas, to the membrane wall 44 of the fiber 38. This membrane wall 44 is permeable to gas but not liquid. When liquid flows around the exterior of the fibers 38, the gas in the lumens 46 diffuse through membrane wall 44 into the liquid, thus resulting in oxygenation of the liquid. At the same time, carbon dioxide may be removed from the liquid by allowing the carbon dioxide in the liquid to diffuse through membrane wall 44 into lumens 46 where it exits the housing 10 by means of gas outlet manifold 64 with any unused oxygenating gas. The membrane wall 44 may be formed from any suitable material that permits the diffusion of oxygen and carbon dioxide while preventing the movement of liquid across the membrane. Some suitable materials include microporous polypropylene, polyethylene, silicone rubber and its derivatives.
The mass transfer bed 40 is of a sufficient size to permit it to be sealed to the upper and lower internal faces of housing 10. Preferably, the mass transfer bed 40 has a radial thickness ranging from about 1/10 inch to about 1.5 inches. The mass transfer bed 40 may be bonded 11
to the housing 10 using conventional materials such as polyurethane, epoxy and the like.
Fiber ribbon 42 that makes up mass transfer bed 40 is formed from at least one layer of fibers 38 bonded together to form a ribbon of the appropriate height. The fibers 38 depicted in Figs. 3 and 4 are formed as a double-layer fiber ribbon spaced in an alternating arrangement so that the fibers in alternate layers are positioned in line with the opening between fibers in the layers above or below. Figs. 3 and 4 show only a portion of the fiber ribbon 42. This arrangement results good mixing of the blood between the layers. This precise orientation of the fibers 38 in the fiber ribbon 42 is achieved by fixing the fiber position with an adhesion means. The adhesion means may be in the form of point attachments 48 as depicted in Fig. 3 or in the form of adhesive filament 49 as shown in Fig. 4. Preferably the lengthwise spacing pattern of these attachments 48 or filaments 49 is from about 0.050 inch to about 0.125 inch. Any conventional adhesive may be used such as an epoxy or a urethane (such as a polyurethane) or modified urethane cured by heat, catalyst or ultraviolet radiation, or by an ultraviolet adhesive. A hot melt adhesive may also be used. The use of such a precision orientation means allows optimum orientation of the fiber layers that simply cannot be achieved by use of single layer wraps.
As mentioned above, the fiber ribbon 42 of the present invention may have one or more layers of fibers. However, for the simplicity of illustration, the fiber ribbon 42 is depicted schematically as a double layer ribbon in Figs. 3 and 4. The fiber ribbon 42 may consist of multiple layers. 12
Preferably, the fibers 38 used to construct fiber ribbon 42 have an outside diameter of from about 200 microns to about 600 microns and an inside diameter of from about 150 microns to about 500 microns. More preferably, the fibers 38 would have a uniform spacing, t, between the fibers of from about 25 microns to about 100 microns.
The fiber ribbon 42, because of the uniformly thin spacing between fibers, requires a significantly smaller priming volume than other known fiber membrane oxygenators. The thin uniform spacing t between the fibers 38 also results in highly efficient oxygenation, thus requiring less membrane surface area and thus less prime volume.
The fiber ribbon 42 is wound into a ring of appropriate thickness to fit into the housing 10 while allowing free rotation of impeller 30. In one embodiment, the height of the fiber ring 40 is about the height of the impeller 30.
Most preferably, the impeller 30 and fiber ring 40 have a height ranging from about 1/4 inch to about 2 inches.
Those skilled in the art will appreciate that the mass transfer bed 40 can also be used independent of the integrated impeller 30. For example, the mass transfer bed 40 can be used in connection with an external pump device, including but not limited to a roller pump, a centrifugal pump, or an axial pump, which functions to pump fluid from outside the housing of the mass transfer bed 40 into such housing and through the fibers 38.
While the embodiment of Figs. 1 and 2 illustrates the mass transfer bed 40 and the impeller 30 as having substantially the same height, the height of the impeller 30 can also be varied with respect to the height of the mass transfer bed 40. The impeller 30 preferably has a 13
lesser height than the mass transfer bed 40. In a preferred embodiment, the height of the impeller is about 0.4 inches while the height of the mass transfer bed 40 ranges from 1.5 to 2 inches for an adult patient. Furthermore, the impeller 30 need not be positioned at the center of the height of the mass transfer bed 40. Referring to Fig. 2A, the impeller 30A is shown as being positioned about the center of the height of the mass transfer bed 40A. However, Fig. 2B illustrates an alternative embodiment in which the impeller 30B is positioned about the upper portion of the height of the mass transfer bed 40B. Along the same lines, Fig. 2C illustrates a further alternative embodiment in which the impeller 30C is positioned outside the internal confines of the lower portion of the mass transfer bed 40C, but within the same integrated housing IOC.
As shown in Figs. 1 and 2, there is a gap 20 located between the outer edge of the impeller 30 and the innermost portion of fiber ring 42. The gap 20 is an open area that during operation is filled with the fluid to be oxygenated. Proper selection and control of gap 20 can result in enhancing oxygenation in the innermost layer or layers of the fiber ring 42. This is due to a secondary or eddy flow (i.e., Taylor vortices) created in gap 20 by the tangential flow component created by impeller flow channel 32. Care must be taken to select a gap 20 of sufficient size to enhance oxygenation while making sure that gap 20 is not so large as to increase the priming volume required. Preferably gap 20 will be from about 0.010 inch to about 0.150 inches. 14
Preferably the gap 20 is a size that permits the creation of Taylor vortices in this region. Taylor vortices are a known hydrodynamic phenomena that appear in a viscous fluid when it is placed between an outer stationary cylinder and an inner rotating cylinder. As discussed by Schlichting in Boundarv-Laver Theory 7th Ed., McGraw-Hill, 1979, instabilities in fluid flow between concentric cylinders where only the inner cylinder is in motion were first investigated by Lord Rayleigh, who performed calculations based on the assumption that the fluid was non-viscous. Taylor, using a framework of linear theory and considering viscous fluids, found that when a certain Taylor's number was exceeded, axially circumferential vortices appear, which rotate in alternately opposite directions.
Taylor determined that there is a minimum condition for the establishment of such vortices, defined as the Taylor number (Ta) . The Taylor number is dependent upon a number of factors and is defined as
Figure imgf000015_0001
where is the gap size, is the radius of the inner rotating cylinder, is the kinematic viscosity of the fluid, and is the peripheral velocity of the inner rotating cylinder.
Taylor and others determined that turbulence would ensue if the Reynolds number (Ra) rose above about 1000. The Reynolds number is defined as
Ra = 15
where is the axial velocity. More particularly, those skilled in hydrodynamics will appreciate that a time average velocity profile of fluid flow will generate a smooth curve, but an instantaneous velocity profile is ery ragged. Thus, the Taylor vortices may be characterized as "main flow", but there will be a turbulent component of this, and as Ta rises, this instantaneous turbulent velocity will ultimately become more important. Taylor vortices first will develop when the gap is in the range of from 0.010 to 0.020 inches depending on the speed and diameter of the impeller and the viscosity of the fluid. The Taylor number increases with increasing gap dimension. As the gap increases beyond the desired range, the Taylor vortices will be replaced by turbulence which has the unwanted effect of increasing blood damage and increasing prime volume.
In operation, the blood fluid from the patient is directed with a cannula and tubing into flow inlet 12 of housing 10 so that the integrated pump and oxygenator is completely filled with fluid 40. No bubbles or air should be present. The fluid flows onto impeller 30, which is driven by drive shaft 18 causing the incoming fluid to flow radially through flow channels 32. Drive shaft 18 may be driven by any conventional means. For example, a variable speed motor can be connected to the drive shaft. Alternatively, a sealed pump could be used such as that constructed by embedding magnets in the impeller and driven by external magnets. The fluid from flow channels 32 is directed into gap 20 located between the outer edge of the impeller 30 and the innermost portion of mass transfer bed 40 creating a secondary or eddy flow by the tangential flow 16
component coming from the impeller flow channel 32. The net flow from impeller 30 is forced through mass transfer bed 40 where it comes in contact with the fibers 38. An oxygenating fluid is directed into gas inlet header 60 and gas inlet manifold 62 where it then enters lumens 46 of fibers 38. The fibers 38, which are made of a gas permeable material, allow oxygen to flow through the fiber membrane wall 44 and into the blood, thus oxygenating it. The remainder of the oxygenating fluid is removed at the gas outlet header 66 and the gas outlet manifold 64. Carbon dioxide may be removed by diffusing through the membrane wall 44 into lumen 46 where is removed through gas outlet header 66 and gas outlet manifold 64 with remaining oxygenating fluid. After the blood is oxygenated, it exits housing 10 at exit manifold 14 where it is then returned to the patient.
The incoming flow rate to the integrated pump and membrane oxygenator of the present invention is determined by the patient's requirements for oxygenation and pumping. Preferably, the flow rates would range from about 1/2 liter to about 8 liters per minute depending on patient size, with required discharge pressures not greater than about 500 mm Hg.
Utility of the invention is illustrated by the following specific examples.
An engineering model of the integrated pump and membrane oxygenator of the present invention was constructed to test the fluid dynamics. The inside of the housing was 6 inches in diameter and 1 1/2 inches high. The impeller had 4 grooved flow channels and was powered by means of a drillpress motor. The engineering model had a ring 17
constructed of screen material to simulate the fluid mechanics of a membrane bed. The screen material was about 1.5 inches high and 0.75 inches thick and was sealed against the upper and lower housing. Fluid was fed to the housing inlet from a reservoir. The fluid pressure was measured by bordon tube pressure gauge and the flow was measured by timing the delivery of a specific quantity of fluid (water). The results are shown in Fig. 5.
The integrated pump membrane oxygenator of the present invention can be used for partial cardiopulmonary support in emergency situations or for total bypass in the operating room. Where the integrated pump membrane oxygenator is used for partial cardiopulmonary support, it is not necessary to have a reservoir of heat exchanger. A small compliant section, which may be in the form of tubing, between the patient and the pump can be used to monitor the pressure of the fluid to control the speed of the pump motor as necessary. Modest heating and cooling of blood can be accomplished by heating and cooling of the gas supply to the oxygenator. For total support, such as in the operating room, it is preferable to have a reservoir and good heat exchanger. This may be in the form of a combination/modular unit to be put on top of the integrated pump membrane oxygenator when needed. Since this integration eliminates high pressure connections between pump and oxygenator, the safe use of extracorporeal circulation is greatly improved. Furthermore, the present invention eases the burden of the perfusionist through faster and easier setup, and easier priming and debubbling. And the cost benefit to the 18
manufacturer, over separate pump and oxygenator units, is significant.
While the preferred embodiments of my invention have here been shown and described, it is to be understood that I do not limit myself to the precise construction herein disclosed and that various changes and modifications may be made within the scope of the invention as defined in the appended claims.

Claims

19CLAIMS I claim:
1. A mass transfer bed comprising a ring of gas permeable, hollow fibers running circumferentially around said ring wherein said ring comprises a multiple wrap of fiber ribbon, said fiber ribbon comprising at least two layers of hollow fibers bonded together in an alternating arrangement with openings formed between adjacent fibers, wherein the fibers in alternate layers are positioned in line with the opening between fibers in the layers above or below.
.
2. The mass transfer bed of claim 1 wherein each of said hollow fibers comprises a lumen, the mass transfer bed further comprising; entry means communicating with said fibers for allowing the passage of a second fluid into the lumens of said hollow fibers; and exit means communicating with said fibers for allowing the second fluid to exit the lumens of said hollow fibers.
3. The mass transfer bed of claim 2 wherein said entry means comprises a first potted region comprising a gas inlet header and a gas inlet manifold, and said exit means comprises a second potted region comprising a gas outlet header and a gas outlet manifold.
4. The mass transfer bed of claim 3 further comprising a manifold partition which separates the first potted region and the second potted region. 20
5. The mass transfer bed of claim 1 wherein said fibers are bonded by a bonding agent selected from the group consisting of: epoxy, polyurethane, hot melt adhesive and ultraviolet adhesive.
6. The mass transfer bed of claim 3 wherein said headers are formed by a bonding agent selected from the group consisting of: epoxy, polyurethane, hot melt adhesive and ultraviolet adhesive.
7. A mass transfer bed comprising a ring of gas permeable, hollow fibers running circumferentially around said ring wherein said ring comprises a multiple wrap of fiber ribbon, said fiber ribbon comprising one layer of hollow fibers bonded together.
8. A mass transfer bed comprising a ring of gas permeable, hollow fibers running circumferentially around said ring wherein said ring comprises a multiple wrap of a singular fiber.
9. A fiber ribbon comprising at least two layers of fibers bonded in an alternating arrangement with openings formed between adjacent fibers, wherein the fibers in alternate layers are positioned in line with the opening between fibers in the layers above or below. 21
10. The fiber ribbon of claim 9 further comprising precision orientation means for positioning said fibers in said alternating arrangement.
11. The fiber ribbon of claim 10 wherein the precision orientation means comprises an adhesive bead or filament.
12. The fiber ribbon of claim 9 wherein said fibers are bonded by a bonding agent selected from the group consisting of: epoxy, polyurethane, hot melt adhesive and ultraviolet adhesive.
13. A method for making a mass transfer bed for a membrane oxygenator, said mass transfer bed comprising a ring of fibers having a means for a fluid to be oxygenated to flow on the exterior of the fibers and the oxygenating gas to flow in the interior of the fibers, said method comprising: forming a fiber ribbon comprising at least two layers of fibers bonded in an alternating arrangement with openings formed between adjacent fibers, wherein the fibers in alternate layers are positioned in line with the opening between fibers in the layers above or below; forming a fiber ring by making multiple wraps of said fiber ribbon in a ring shaped form; potting a portion of said fiber ring; removing a part of said potted portion so as to expose the interior of said fibers to allow passage of an oxygenating gas therethrough; and 22
installing a header means to separate the fluid to be oxygenated from the oxygenating gas.
14. A method for making a mass transfer bed for a membrane oxygenator, said mass transfer bed comprising a ring of fibers having a means for a fluid to be oxygenated to flow on the exterior of the fibers and the oxygenating gas to flow in the interior of the fibers, said method comprising: forming a fiber ribbon comprising one layer of fibers; forming a fiber ring by making multiple wraps of said fiber ribbon in a ring shaped form; potting a portion of said fiber ring; removing a part of said potted portion so as to expose the interior of said fibers to allow passage of an oxygenating gas therethrough; and installing a header means to separate the fluid to be oxygenated from the oxygenating gas.
15. A method for making a mass transfer bed for a membrane oxygenator, said mass transfer bed comprising a ring of fibers having a means for a fluid to be oxygenated to flow on the exterior of the fibers and the oxygenating gas to flow in the interior of the fibers, said method comprising: forming a fiber ring by making multiple wraps of a singular fiber in a ring shaped form; potting a portion of said fiber ring; removing a part of said potted portion so as to expose the interior of said fibers to allow passage of an oxygenating gas therethrough; and 23
installing a header means to separate the fluid to be oxygenated from the oxygenating gas.
16. A low priming volume integrated centrifugal pump and membrane oxygenator for pumping and oxygenating blood of a patient during open heart surgery or other emergency situations, said integrated pump and oxygenator comprising: a housing, said housing containing a first fluid inlet, a first fluid exit, a second fluid inlet and a second fluid exit; a pump impeller located in said housing, said impeller further comprising means for rotation; a mass transfer bed located in said housing and surrounding said impeller, said mass transfer bed comprising a ring of hollow gas permeable membrane fibers having a predetermined height and running circumferentially around said impeller; wherein a fluid to be oxygenated is introduced into said housing by means of said first fluid inlet, is pumped by said impeller through said mass transfer bed and exits said housing by means of said first fluid exit, and an oxygenating fluid is directed through said second fluid inlet into the center of said hollow gas permeable membrane fibers and exits through said second fluid exit; and wherein said impeller has a height which is less than the height of said ring of hollow gas permeable membrane fibers.
17. The integrated pump and oxygenator of claim 16, wherein said impeller is positioned within said ring of 24
hollow gas permeable membrane fibers at about the center of the height of said ring.
18. The integrated pump and oxygenator of claim 16, wherein said impeller is positioned within said ring of hollow gas permeable membrane fibers at about the upper portion of the height of said ring.
19. The integrated pump and oxygenator of claim 16, wherein said impeller has a height of about 0.4 inches.
20. The integrated pump and oxygenator of claim 16, wherein said ring of hollow gas permeable membrane fibers has a height ranging from 1.5 to 2.0 inches.
21. A low priming volume integrated centrifugal pump and membrane oxygenator for pumping and oxygenating blood of a patient during open heart surgery or other emergency situations, said integrated pump and oxygenator comprising: a housing, said housing containing a first fluid inlet, a first fluid exit, a second fluid inlet and a second fluid exit; a pump impeller located in said housing, said impeller further comprising means for rotation; a mass transfer bed located in said housing and surrounding said impeller, said mass transfer bed comprising a ring of hollow gas permeable membrane fibers having a predetermined height; wherein a fluid to be oxygenated is introduced into said housing by means of said first fluid inlet, is pumped by said impeller through said mass transfer bed and exits said 25
housing by means of said first fluid exit, and an oxygenating fluid is directed through said second fluid inlet into the center of said hollow gas permeable membrane fibers and exits through said second fluid exit; and wherein said impeller has a height which is less than the height of said ring of hollow gas permeable membrane fibers, and wherein said impeller is positioned within said housing but outside said ring of hollow gas permeable membrane fibers.
PCT/US1994/013763 1994-11-28 1994-11-28 Integrated low priming volume centrifugal pump and membrane oxygenator WO1996016684A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US1994/013763 WO1996016684A1 (en) 1994-11-28 1994-11-28 Integrated low priming volume centrifugal pump and membrane oxygenator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1994/013763 WO1996016684A1 (en) 1994-11-28 1994-11-28 Integrated low priming volume centrifugal pump and membrane oxygenator

Publications (1)

Publication Number Publication Date
WO1996016684A1 true WO1996016684A1 (en) 1996-06-06

Family

ID=22243339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1994/013763 WO1996016684A1 (en) 1994-11-28 1994-11-28 Integrated low priming volume centrifugal pump and membrane oxygenator

Country Status (1)

Country Link
WO (1) WO1996016684A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003018088A1 (en) * 2001-08-23 2003-03-06 Michigan Critical Care Consultants, Inc. Apparatus for exchanging gases in a liquid
WO2006118817A1 (en) 2005-04-21 2006-11-09 University Of Pittsburgh Of The Commonwealth System Of Higher Education Paracorporeal respiratory assist lung
US8585968B2 (en) 2006-04-21 2013-11-19 Scott W. Morley Method and system for purging moisture from an oxygenator
US10722631B2 (en) 2018-02-01 2020-07-28 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US11185677B2 (en) 2017-06-07 2021-11-30 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11511103B2 (en) 2017-11-13 2022-11-29 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
US11724089B2 (en) 2019-09-25 2023-08-15 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof
US11964145B2 (en) 2019-07-12 2024-04-23 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031012A (en) * 1975-09-17 1977-06-21 Gics Pharmaceuticals, Inc. Separatory apparatus
EP0187708A2 (en) * 1985-01-08 1986-07-16 Medtronic, Inc. Mass transfer device having a microporous, spirally wound hollow fiber membrane
US4906581A (en) * 1988-10-20 1990-03-06 Minntech Corporation Method of quality control for hollow fiber gas transfer cells
US5043140A (en) * 1989-05-26 1991-08-27 A. Jorrdan Medical, Inc. Blood oxygenator
WO1993005828A2 (en) * 1991-09-25 1993-04-01 Baxter International Inc. Integrated centrifugal pump and membrane oxygenator
WO1994002187A1 (en) * 1992-07-21 1994-02-03 Baxter International Inc. Centrifugal blood pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031012A (en) * 1975-09-17 1977-06-21 Gics Pharmaceuticals, Inc. Separatory apparatus
EP0187708A2 (en) * 1985-01-08 1986-07-16 Medtronic, Inc. Mass transfer device having a microporous, spirally wound hollow fiber membrane
US4906581A (en) * 1988-10-20 1990-03-06 Minntech Corporation Method of quality control for hollow fiber gas transfer cells
US5043140A (en) * 1989-05-26 1991-08-27 A. Jorrdan Medical, Inc. Blood oxygenator
WO1993005828A2 (en) * 1991-09-25 1993-04-01 Baxter International Inc. Integrated centrifugal pump and membrane oxygenator
WO1994002187A1 (en) * 1992-07-21 1994-02-03 Baxter International Inc. Centrifugal blood pump

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003018088A1 (en) * 2001-08-23 2003-03-06 Michigan Critical Care Consultants, Inc. Apparatus for exchanging gases in a liquid
WO2006118817A1 (en) 2005-04-21 2006-11-09 University Of Pittsburgh Of The Commonwealth System Of Higher Education Paracorporeal respiratory assist lung
EP2295133A1 (en) * 2005-04-21 2011-03-16 University of Pittsburgh of the Commonwealth System of Higher Education Paracorporeal respiratory assist lung
US7927544B2 (en) 2005-04-21 2011-04-19 Alung Technologies, Inc. Paracorporeal respiratory assist lung
AU2006242663B2 (en) * 2005-04-21 2012-01-19 Alung Technologies, Inc. Paracorporeal respiratory assist lung
US8585968B2 (en) 2006-04-21 2013-11-19 Scott W. Morley Method and system for purging moisture from an oxygenator
US11717670B2 (en) 2017-06-07 2023-08-08 Shifamed Holdings, LLP Intravascular fluid movement devices, systems, and methods of use
US11185677B2 (en) 2017-06-07 2021-11-30 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11511103B2 (en) 2017-11-13 2022-11-29 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11229784B2 (en) 2018-02-01 2022-01-25 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US10722631B2 (en) 2018-02-01 2020-07-28 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US11964145B2 (en) 2019-07-12 2024-04-23 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
US11724089B2 (en) 2019-09-25 2023-08-15 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof

Similar Documents

Publication Publication Date Title
US5263924A (en) Integrated low priming volume centrifugal pump and membrane oxygenator
US10258729B2 (en) Integrated centrifugal blood pump-oxygenator, an extracorporeal life support system and a method of de-bubbling and priming an extracorporeal life support system
US6454999B1 (en) Integrated blood pump and oxygenator system having extended blood flow path
JP5828170B2 (en) Radial design oxygenator with heat exchanger
US8545754B2 (en) Radial design oxygenator with heat exchanger
CN103381277B (en) Paracorporeal respiratory assist lung
US6503450B1 (en) Integrated blood oxygenator and pump system
US6368557B1 (en) Integrated blood oxygenator and pump system having means for reducing manifold flooding
US6379618B1 (en) Integrated blood oxygenator and pump system having means for reducing microbubble generation
US6224829B1 (en) Integrated blood oxygenator and pump system having means for reducing fiber breakage
US20100269342A1 (en) Method of making radial design oxygenator with heat exchanger
US5823987A (en) Compact membrane-type blood oxygenator with concentric heat exchanger
CA2241366C (en) Blood oxygenator with heat exchanger
US20100272606A1 (en) Radial flow oxygenator/heat exchanger
US20100272607A1 (en) Radial design oxygenator with heat exchanger and inlet mandrel
WO1994003266A9 (en) Improved mass and thermal transfer means for use in heart lung machines, dialyzers, and other applications
WO1996016684A1 (en) Integrated low priming volume centrifugal pump and membrane oxygenator
US5922202A (en) Inlet manifold for blood oxygenator apparatus
US20100272605A1 (en) Radial design oxygenator with heat exchanger and pump
WO2000038816A1 (en) Improved integrated blood oxygenator and pump system
CN101262931A (en) Paracorporeal respiratory assist lung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA