WO1996029294A1 - Method for producing high brightness, low abrasion calcined kaolin pigment - Google Patents

Method for producing high brightness, low abrasion calcined kaolin pigment Download PDF

Info

Publication number
WO1996029294A1
WO1996029294A1 PCT/US1996/003569 US9603569W WO9629294A1 WO 1996029294 A1 WO1996029294 A1 WO 1996029294A1 US 9603569 W US9603569 W US 9603569W WO 9629294 A1 WO9629294 A1 WO 9629294A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
kaolin
solids
less
calcined
Prior art date
Application number
PCT/US1996/003569
Other languages
French (fr)
Inventor
Randolph O. Smith
William H. Pope
Original Assignee
Ecc International Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecc International Inc. filed Critical Ecc International Inc.
Priority to AU54231/96A priority Critical patent/AU5423196A/en
Publication of WO1996029294A1 publication Critical patent/WO1996029294A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/42Clays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/62L* (lightness axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/63Optical properties, e.g. expressed in CIELAB-values a* (red-green axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/64Optical properties, e.g. expressed in CIELAB-values b* (yellow-blue axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • C01P2006/82Compositional purity water content
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above

Definitions

  • One of the further, very effective methods for removing titaniferrous impurities including iron oxide-stained titanium oxides is the froth flotation technique.
  • an aqueous suspension or slurry of the clay is formed, the pH of the slurry is raised to an alkaline value and a collector agent is added.
  • the slurry is then conditioned by agitating for a short period.
  • a frothing agent if necessary is added to the conditioned slurry, after which air is passed through the slurry in a froth flotation cell to effect separation of the impurities from the mineral.
  • the FIGURE is a flow diagram illustrating typical process steps conducted in practicing the present invention.
  • the underflow slurry is collected and its solids content reduced by the addition of dilution water to a level less than about 18% solids and preferably in the range of 5 to 15% solids by weight prior to passing the diluted underflow slurry into the second centrifuge stage.
  • the diluted underflow slurry from the first centrifuge means is subjected to a further fractionation into an overflow suspension and a product underflow suspension.
  • the centrifuge means used comprises the aforementioned internal recycle disc-nozzle type arrangement.
  • the underflow 40 is provided to an internal recycle path 42 enabling repassage through the centrifuge means.

Abstract

A process for preparing a high brightness, low abrasion calcined kaolin. A cretaceous crude (10) is wet beneficiated by subjecting same as an aqueous slurry to degritting, classification (20), magnetic separation (24) and scrub grinding (28). The slurry from the foregoing (30) is diluted to less than 15 % solids and subjected, while well dispersed, to a separation in a centrifuge to yield an underflow and an overflow fine fraction having less than 5 % solids and a P.S.D. such that at least 85 % by weight are of < 0.5 νm E.S.D. and at least 30 % by weight are of < 0.25 νm E.S.D. The overflow fine fraction slurry of dispersed kaolin is subjected to a partial filtration by passing same in cross flow relation to a microporous membrane (44) through which substantially none of the suspended kaolin particles pass, to raise the solids content of the slurry to at least 20 %. This slurry is combined with up to 90 % on a dry weight basis of a slurry of a fine particle size tertiary kaolin, and is then blended in a blending tank (49), flocculated and filtered (50) to yield a filter cake, which is redispersed (52), dried (54) and milled (56) to provide a calciner feed. The feed is calcined (58) at temperatures above the kaolin exotherm to yield a calcined product (62) having a brightness of at least 92 and an Einleiner Abrasion less than 24.

Description

METHOD FOR PRODUCING HIGH BRIGHTNESS, LOW ABRASION CALCINED KAOLIN PIGMENT
BACKGROUND OF THE INVENTION
This invention relates generally to calcined clay products, and more specifically relates to a calcined kaolin clay pigment and method of manufacture of same. The pigment produced by the method of the invention has a very low abrasion and very high brightness characteristics when used as a filler or a coating in paper products.
In the course of manufacturing paper and similar products, it is well known to incorporate quantities of inorganic materials into the fibrous web in order to improve the quality of the resulting product. The use of appropriate such fillers vastly improves the opacity and printability of certain types of light weight papers such as newsprint. This aspect of use of calcined kaolin clay pigments is discussed in some detail, for example, in Fanselow and Jacobs. U.S. Patent No. 3,586,523. Other aspects of the presently preferred commercial methods for manufacturing calcined kaolin pigments for use particularly as fillers in paper manufacture, are also set forth in the said Fanselow et al patent, as well as in additional United States patents such as McConnell et al. U.S. Patent No. 4.381.948.
The Fanselow et al and McConnell et al patents are indeed representative of the methodology widely employed in the kaolin industry in order to produce calcined kaolin clay pigments for use in paper manufacturing. Study of these patents will show that the objective of same, as is customary in the art, is to produce a fine particle size calcined kaolin clay pigment of relatively very high brightness, beginning with a crude kaolin which has a relatively very low brightness. A preferred crude feed material for use in processes such as are disclosed in the Fanselow and McConnell patents, is a highly discolored, so-called "gray" kaolin, which is referred to in the Fanselow patent as a "hard sedimentary kaolin clay." Thus, the gray crude which is used in the example of Fanselow has an initial brightness of 78, where the figure cited refers to the so-called G.E. scale. Procedures for measuring brightness as set forth in this application, and as is generally recognized in the industry, are in accord with TAPPI procedure T646os75. As a result of the beneficiation treatment set forth in the Fanselow et al patent, these brightnesses are considerably increased indeed to a very high whiteness. Claim 2 of the Fanselow et al patent thus recites a G.E. brightness within the range of 92% to 95%. Similarly, the McConnell et al patent describes a resultant pigment having a brightness of at least 93 as being the final output product from practice of the beneficiation methods set forth therein. A calcined kaolin pigment substantially produced in accordance with the McConnell et al patent is available commercially from ECC International Inc. of Atlanta, Georgia, under the trademark ALPHATEX®.
It may be noted that both the McConnell et al. and the Fanselow et al. patents are concerned with fully calcined kaolins as opposed to metakaolins. When an uncalcined kaolin is heated (i.e. calcined) to about 1098°F an endothermic reaction occurs. Essentially all of the water of hydration associated with the uncalcined kaolin crystals is eliminated and an essentially amorphous (as measured by X-ray diffraction) material referred to as "metakaolin" results. If the kaolin is heated to higher temperatures, further significant changes occur. The metakaolin undergoes an exothermic reaction (which typically occurs at about 1700° to 1800°F). Such material (i.e. which has been heated to at least the exotherm) is then referred to as a "fully calcined kaolin".
In the McConnell patent, it is emphasized that the crude used to produce the high brightness pigments preferably includes not more than 2% by weight of titanium expressed as TiO2. A principal reason for this is that clay minerals occurring in nature, including kaolin clays, frequently contain their discoloring contaminants in the form of iron and/or titanium-based impurities. The quantities of the titaniferrous impurities in sedimentary kaolins of Georgia are significant and are commonly present as iron oxide-stained titanium oxides. Irrespective of whether calcining is used, it has commonly been considered in the kaolin industry that it is paramount to refine the crude kaolins to bring the brightness characteristics of the resultant product to a level acceptable for various applications such as paper coating, or as mentioned, even for filling. Among the techniques which have been used in the past to remove the discoloring impurities, are the use of hydrosulfites for converting at least part of the iron-based impurities to soluble form, which may then be extracted from the clay. A further method which has come into increasing use in the kaolin industry involves the use of high intensity magnetic separation as described, for example, in such patents as Marston. U.S. Patent No. 3,627,678. This method is also useful in removing titaniferrous impurities in that although titania when pure has little magnetic attractability, the iron-stained titania which forms the basis (as mentioned) for the bulk of discolorants in many kaolins, may often be quite effectively removed by imposition of such a high intensity magnetic field.
One of the further, very effective methods for removing titaniferrous impurities including iron oxide-stained titanium oxides, is the froth flotation technique. Generally according to this method, an aqueous suspension or slurry of the clay is formed, the pH of the slurry is raised to an alkaline value and a collector agent is added. The slurry is then conditioned by agitating for a short period. A frothing agent if necessary is added to the conditioned slurry, after which air is passed through the slurry in a froth flotation cell to effect separation of the impurities from the mineral.
Further details regarding the use of froth flotation techniques for removing titanium- based impurities from kaolins may be found at numerous places in the prior art. including for example U.S. Patents Nos. 3,450,257 to E.K. Cundv. 4,518,491 to B.M. Bilimoria. and U.S. Patent No. 4,090,688 to Alan Nott. In the procedures set forth in these patents, the iron-stained titania contaminants are separated with the froth. Both the brightness characteristics of the given kaolin and the opacifying properties of same when incorporated as a filler in paper, may be quantitatively related to a property of the filler identified as the "scattering coefficient S". The said parameter, i.e., the scattering coefficient S of a given filler pigment, is a property well-known and extensively utilized in the paper technology art, and has been the subject of numerous technical papers and the like. The early exposition of such measurements was made by Kubelka and Munk. and is reported in Z. Tech Physik 12:539 (1931). Further citations to the applicable measurement techniques and detailed definitions of the said scattering coefficient are set forth at numerous places in the patent and technical literature. Reference may usefully be had in this connection, e.g. to U.S. Patents Nos. 4,026,726 and 4,028,173. In addition to the citations set forth in these patents, reference may further be had to Pulp and Paper Science Technology, Vol. 2 "Paper", Chapter 3, by H.C. Schwalbe (McGraw-Hill Book Company, New York).
One of the long-recognized concerns that arises where a kaolin clay is subjected to calcination is the increase in abrasiveness, which can result from the formation of various abrasive phases during the calcination process. Such abrasiveness is detrimental to the principal use of the pigments, since among other things, it effects rapid wear at portions of the paper making apparatus. The generation of abrasive phases is a particularly acute problem where the higher temperatures incident to full calcination are employed.
While processes such as are described in the McConnell et al and Fanselow et al patents are primarily based on use of feed kaolins which derive from the fine particle- sized tertiary crudes which are commonly referred to as "hard" kaolins, and while these have become the commercially preferable processes for production of high brightness calcined kaolins for use in paper manufacture, it has also long been known to produce calcined kaolins as well from cretaceous deposits of so-called "soft" kaolins. The general steps involved have included subjecting the crude kaolin to a beneficiation program including such steps as classification, bleaching and the like, and recovery of the beneficiated kaolin for use as feed in a calcining process. In general, however, these prior art techniques have not proved satisfactory for producing a calcined kaolin product which is the equal of or superior to the aforementioned products as produced from the tertiary crudes by the processes described in the patents alluded to. One of the explanations for the superiority of the tertiary-based product may be that the tertiary crudes have an extremely fine particle size, which is known to be a factor in reducing abrasiveness in the final calcined product. Heretofore it has not proved feasible to provide an extremely fine feed from a cretaceous crude in commercially acceptable quantities as would enable a commercially viable calcining process. Much less has such a feed been provided which as well was possessed of the other qualities necessary to produce an outstanding product when calcined, such as an acceptably low titania and iron content.
SUMMARY OF INVENTION
Now in accordance with the present invention, it has unexpectedly been found that calcined kaolin pigments of high opacifying properties and low abrasion, may be produced by a process which in one aspect utilizes a heretofore discarded, extremely fine kaolin fraction as a feed for calcination, and which nonetheless produces products which are equal or superior to those produced by the processes of the aforementioned 5,047,375 and 5,137,574 patents. In this aspect of the invention the normally discarded extremely dilute overflow fraction which is separated during the centrifugation steps of the process disclosed in U.S. patent No. 5,168,083, is processed to provide the feed for calcination.
Pursuant to the invention a high brightness, a low abrasion calcined kaolin product is prepared from a cretaceous kaolin crude by the steps of:
(a) wet beneficiating the cretaceous crude by subjecting same as an aqueous slurry to degritting, classification, magnetic separation, and scrub grinding; (b) diluting the slurry from step (a) to less than 15% solids and subjecting same while well dispersed to a separation in a centrifuge to yield an underflow and an overflow fine fraction having less than 5% solids and a P.S.D. such that at least 85% by weight are of < 0.5 μm E.S.D. and at least 30% by weight are of< 0.25 μm E.S.D.;
(c) subjecting the overflow fine fraction slurry of dispersed kaolin to a partial filtration by passing same in cross-flow relation to a microporous membrane through which substantially none of the suspended kaolin particles pass, to raise the solids content of the said slurry to at least 20%;
(d) combining said slurry with up to 90% dry weight to dry weight of a second slurry of a kaolin clay having a solids content of at least 20% and in which substantially all the kaolin particles have an E.S.D. of less than lμm;
(e) bleaching, flocculating and filtering the at least 20% solids combined slurry to yield a filter cake;
(f) redispersing, and drying and milling the filtered kaolin to provide a calciner feed; and
(g) calcining the feed at temperatures above the kaolin exotherm to yield a calcined product having a brightness of at least 92 and an Einleiner Abrasion of less than 24.0 mg wt loss.
The second slurry is preferably one formed by the process of the 4,381 ,948 patent, with the usually tertiary crude clay being wet beneficiated through the particle size separation step that is described in said patent. Before being blended with the first slurry the second slurry may also have been further beneficiated by high intensity magnetic separation. Preferably 10 to 50% of the first slurry will be blended with the second slurry — on a dry weight to dry weight basis. BRIEF DESCRIPTION OF DRAWING
In the drawing appended hereto:
The FIGURE is a flow diagram illustrating typical process steps conducted in practicing the present invention.
DESCRIPTION OF PREFERRED EMBODIMENT
Referring to the Figure, the flow diagram schematically illustrates a preferred embodiment of the process of the invention. The starting crude kaolin 10 is a cretaceous crude kaolin which preferably has a TiO2 content by weight in the range of from 1.3 to 2.0%, with 1.3 to 1.6% being preferable; and an iron content of between 0.3 and 0.8% expressed as Fe2O3. Organic content is typically very low, preferably being less than 0.5%. A typical particle size distribution ("PSD") of this crude kaolin is as follows: 93% < lOμm; 82% < 5μm; 51% < lμm; 36% < 0.5μm; and 17% < 0.25 μm. In each instance the percentage indicated represents the percent by weight of the crude kaolin which has an equivalent spherical diameter less than the size indicated.
The crude kaolin 10 to be processed is blunged with water, ammonium hydroxide, and a dispersant in a conventional manner in a commercially available blunging apparatus 12 to produce an aqueous slurry 13 of crude kaolin clay having a solids content in the range of from about 20 to 50% by weight solids. Slurry 13 is next degritted, as in conventional practice, to remove substantially all particles in excess of 44 μm (i.e. +325 mesh) equivalent spherical diameter (E.S.D.) Advantageously the degritting of the crude kaolin slurry is carried out by passing the slurry through a screening device 14, such as a sand box. The slurry may then optionally be subjected to a froth flotation process as at 16, utilizing conventional flotation reagents. This serves to remove various titaniferrous impurities as known in the art.
The purified output 18 from the flotation cells is then classified by means of a Bird centrifuge 20 to separate a coarse fraction comprising particles greater than about 5μm E.S.D. therefrom, which coarse fraction is discarded. As a result of the classification, the output 22 from the Bird centrifuge contains by weight about 92% by weight of less than 2μm E.S.D. particles. This output is passed to a magnetic separator 24 which may be of the high intensity magnetic separation type previously referenced in Marston. U.S. Patent No. 3,627,678. The magnetic separation removes additional titaniferous impurities, again as in known in the art, and the output 26 from the magnetic separation step is then subjected to scrub grinding at 28. Specifically the aqueous kaolin suspension exiting from the magnetic separator is passed through a wet media grinder, wherein the aqueous suspension is agitated in the presence of a grinding media, typically +325 mesh sand. The aqueous kaolin clay particles are subjected there to a scrubbing action which is sufficient to break up agglomerates of clay particles into individual particles, but which is insufficient to separate the clay platelets making up the individual particles. This is to say the scrub grinding does not exert enough energy upon the individual particles to delaminate the kaolin particles.
The output slurry 30 from the scrub grinding operation is dispersed to a relatively optimum level of dispersion by which is meant that the Brookfield viscosity of the aqueous slurry is brought to a substantially minimum value. The chemical dispersant mixed into the aqueous kaolin clay suspension most advantageously comprises sodium hexametaphosphate, although other known dispersants may also be employed. The slurry 30 is also diluted with water 29, including with heated water 31 at about 130° to 140° F, and is then passed at a resultant 80° to 120°F through a heat exchanger 32 which is provided with heated inputs from a boiler 33 at about 150° to 170° F. The slurry passing through the heat exchanger contains about 15% solids. The heated output slurry 34 from the heat exchanger at a temperature of about 110° to 140°F is then subjected to centrifuging at 36. The heating and use of a relatively optimum dispersion of slurry 34 is desired in order to assure effective defining at centrifuge means 36 of the clay suspension. This aspect of the present invention is discussed in more detail in U.S. Patent No. 5,168,083, the disclosure of which is incorporated herein by reference. Typically the amount of sodium hexametaphosphate to be added to ensure proper dispersion ranges from 0.5 to 5.0 lbs/ton of dry clay. The amount of water added before the slurry enters the heat exchanger 32 provides an input to centrifuge means 36 such that the solids content of slurry 34 is less than 18% by weight, and preferably is in the range of about 5 to 15% by weight.
In the centrifuge means 36 the aqueous kaolin feed suspension is subjected to centrifugation so as to fractionate the feed suspension into an overflow suspension 38 comprising the finer cut, and which contains a substantial portion of the colloidal material originally contained in the feed suspension. Conversely the underflow suspension 40 comprises the coarser cut and contains a colloidal particle size content substantially lower than the colloidal solids content in the feed suspension 34. In the prior art, as disclosed in said 5,168,083 patent, the object of the centrifuge operation is to yield as the underflow an aqueous kaolin suspension, which because of the removal of a substantial amount of the finer material therein, in particular the colloidal solids, has a much narrower particle size distribution and consequently exhibits better opacifying ability than the aqueous kaolin feed suspension. In such prior art this is the product sought to be produced — overflow suspension 38 has been considered to be a discardable by-product. In a preferable manner of carrying out the invention, and as is disclosed as one aspect of the aforementioned 5,168,083 patent, two stages of centrifliging may be used as centrifuge means 36. This is preferably achieved by utilizing a disc-nozzle type centrifuge equipped for internal recycle. Recycle disc¬ nozzle type centrifuges are commercially available from Dorr Oliver Incorporated of Stamford, Connecticut and Alfa-Laval, Inc. of Fort Lee, New Jersey. Where two stages are thus used, the initial kaolin suspension is fed into the first stage of the centrifuge and fractionated therein into an overflow suspension comprising a low solids slurry of finer kaolin particles and an underflow suspension comprising a higher solids slurry containing a substantially lower content of colloidal solids than the feed suspension. The underflow slurry is collected and its solids content reduced by the addition of dilution water to a level less than about 18% solids and preferably in the range of 5 to 15% solids by weight prior to passing the diluted underflow slurry into the second centrifuge stage. In the second centrifuge stage, the diluted underflow slurry from the first centrifuge means is subjected to a further fractionation into an overflow suspension and a product underflow suspension. In the showing of the appended Figure, it is illustratively assumed that the centrifuge means used comprises the aforementioned internal recycle disc-nozzle type arrangement. Here it is seen that the underflow 40 is provided to an internal recycle path 42 enabling repassage through the centrifuge means.
Normally the underflow, as in the 5,168,803 patent, is taken as product representing a highly defined (i.e. fines-removed) material. The overflow indicated at 38 is normally considered to be a product to be discarded as it has in the past. Pursuant to the invention, however, the overflow product at a very high state of dilution, typically being 4 to 5% solids, and consisting of high colloidal content materials, is further processed pursuant to the invention to provide a feed for use in calcining. Heretofore, such a highly dilute slurry has proved impractical for commercially utilizable filtration, which may in part explain why the said overflow material has heretofore been considered as material to be discarded. In accordance with the present invention, however, the very dilute 4 to 5% solids slurry is subjected to a membrane filtration in apparatus of the type disclosed in commonly assigned U.S. Patent No. 5,227,349. As thus disclosed therein a dispersed slurry of extremely fine kaolin, for example, one in which at least 90% by weight of the particles, are of less than 2 μm (and including high percentages of sub-'/i and sub- μm particles) may be filtered with virtually 100% effectiveness, in the sense that substantially no kaolin particles pass as permeate, by flowing the slurry generally parallel to and in contact with the surface of a microporous barrier while maintaining a pressure drop across the barrier in a direction transverse to the slurry flow. A gel permeation layer of kaolin is thereby formed overlying the surface of the microporous barrier, such layer and the underlying surface being substantially impervious to the passage of clay solids therethrough while being pervious to the passage of water molecules, ions and dissolved salts. Accordingly, the water molecules, ions and dissolved salts are caused to pass through the barrier, thereby increasing the concentration of the solids in the kaolin slurry. The microporous barrier may be formed from polymeric membranes, and can also be formed from sintered metals or the like as described in the aforementioned patent, the entire disclosure of which is hereby incorporated by reference.
The very dilute slurry 38 provided to the membrane filter 44 typically has a size distribution such that at least 85% by weight of the particles of same are of less than 0.5 μm E.S.D., and at least 30% by weight are of less than 0.25 μm E.S.D. The output slurry 46 from the membrane filter 44 is recovered at about 20 to 55% solids with 26% solids being typical. The permeate 31 is usefully recycled at about 130° to 140° F, as a source of dilution and preheating for the slurry to heat exchanger 32.
Slurry 46 is then blended with up to 90% on a dry weight to dry weight basis of a second slurry 47 in a blending tank 49 to form a combined slurry 51. The second slurry 47 is preferably one which has been formed by the process of the aforementioned 4,381,948 patent, whereby the crude (usually tertiary-derived) kaolin has been wet beneficiated through a centrifugal particle size separation so that substantially all particles in the slurry are less than lμm E.S.D. The solids content of the second slurry is at least 20% and is generally between 25 and 30% . As shown in the Figure the said slurry 47 may be subjected to a high intensity magnetic separation at 53 before being merged with the first slurry at tank 49. The typically 26% solids slurry 46 is then subjected to conventional bleaching and filtering operations at 50. Specifically, the slurry is flocced with sulfuric acid, then reductive bleached, then filtered in a conventional filter, as for example a rotary vacuum filter, and washed. The resulting filter cake, typically at 50 to 60% solids is redispersed at 52 with the aid of a dispersing agent, and is then subjected to spray drying 54, as for example in a spray tower. The resulting dried material is premilled at 56 and then calcined at 58. Calcination is carried out at temperatures above the kaolin exotherm, and can range as high as about 2050°F. However, the final feed from the premilling operation is sufficiently free of any discolorants as a result of the extensive beneficiation program aforementioned that effective calcining can usually be conducted at temperatures no higher than about 1950°F, and if no tertiary kaolin is blended, calcination at a temperature range of 1700° to 1800°F is usually effective. The calciner feed, as a result of the said process, is highly beneficiated and is unusually fine, whereby the resulting calcined product 62, following a final postmilling at 60 has a brightness of at least 92 and an Einleiner abrasion less than 24 mg wt loss.
Einleiner Abrasion is determined by a procedure similar to that described in U.S. Patent No. 5,011,534. The Sample to be tested is prepared, however, at 10% solids, and screen wear evaluated after 174,000 revolutions. The Einleiner Abrasion is reported in mg weight loss per 174,000 revolutions.
The invention is further illustrated by the following Examples which are to be deemed exemplary only of the present invention. Example 1
The process illustrated in the Figure was utilized in the processing of a crude cretaceous kaolin having the following initial characteristics:
ESP μm^ % Finer Than
10.00 92.5
7.00 87.3
5.00 81.6
3.00 71.6
2.00 63.6
1.00 51.2
0.75 45.2
0.50 35.6
0.35 25.7
0.25 16.9
The said crude cretaceous clay was blunged for 15 minutes using 10 lbs/ton of oleic acid; 0.3 lbs/ton of ammonium polyacrylate dispersant; 2.2 lbs/ton of sodium silicate; and 2 lbs/ton of sodium metasilicate, with the pH being adjusted to about 9.5 with sodium hydroxide. After being screened to the aforementioned +325 mesh, the slurry at a solids content of 26% was floated for 1.5 hours using conventional flotation agents and 8.8 lbs/ton of sodium silicate. Classification in the Bird centrifuge was conducted to a level of 98% less than 2 μm. The slurry at 25.6% solids was then subjected to a high intensity magnetic separation using a field intensity of 20 kilogauss and a fine steel wool matrix and a retention time of 2.0 minutes. Using an Alfa-Laval centrifuge of the type aforementioned, a 4 to 5% solids slurry was formed from the magnetic separator output, provided to the membrane filter, and (without blending with a tertiary kaolin) a 26% solids slurry recovered as output. The latter was subjected to the conventional operations of flocculation, reductive bleaching, and filtering on a rotary filter, with the filter cake being redispersed and spray dried. Premilling was conducted in a Bauer mill, with the product then being subject to calcination in a vertical calciner at a temperature of about 1900°F. The product from the calcining was then further milled in a series of horizontal mills as discussed in U.S. Patent No. 4,693,427. The properties of the calciner feed (i.e. from the premilling at 56) are shown in Table I where comparison is made to a tertiary clay- derived calciner feed prepared as in U.S. Patent No. 4,381,948:
Table I
Calciner Control Calciner Feed
Feed Product produced as in
Property of Invention U,S, Pat, No. 4.381,948
Brightness 88.2 81.4
TiO2 2.24 1.418
Fe2O3 0.38 0.859
PSD
-2 μm 98.7 98.0
-1 μm 97.8 95.9
-0.5 μm 89.4 85.0
-0.25 μm 52.7 51.9
Comparison of the aforementioned properties shows in Table I a considerable difference in the respective calciner feeds with respect to brightness. The calciner feed of the present invention is seen, however, to be very similar to the control feed, except that unlike the control feed, it is derived from a cretaceous kaolin.
Example 2
For purposes of further comparison, the final calcined products yielded by practice of the present invention in Example 1 , were compared with the calcined product yielded in the practice of the process substantially corresponding to that disclosed in said U.S. Patent No. 4,381,948 aforementioned. The calciner feed of the invention was as in Table I. In the control process, as also discussed, the feed material is derived from an extremely fine tertiary kaolin which is subjected to wet beneficiation treatment as discussed in said U.S. patent.
The resulting physical properties are compared in Table II below:
Table II
Physical Properties of Calcined Products
Calcined Control Calcined Product Product of produced as in
Property Invention U.S. Pat. No. 4.381.948
TiO2 0.09 1.04
Brightness 92.5 92.5
Calcination
Temperature (°F) 1900 2000
Einleiner Abrasion 24 24
Normalized
Scatter
(10% loading) 650 650
Porosity (cmVg) 1.10 1.14
Although lower calcining temperatures are used, the product of the invention is seen to have properties which are at least as good, if not superior to those of the control. Of particular interest is that by virtue of the lower calcination temperatures that can be used (while still achieving high brightness) the abrasion can in many instances be markedly reduced.
Example 3
A series of further calciner feed samples similar to the feed product of the invention in Table I, were calcined as in Example 2, but at calcination temperatures in the range of 1700° to 1800°F. The brightness target of at least 92 was achieved for all samples. Einleiner abrasions for all samples were below 10, being more specifically measured in the range of 7 to 9.
Example 4
A plant trial was run utilizing a vertical calciner to calcine at 1950°F blends of 75% of prior art feed products with 25% of the feed product of the invention. Two control calciner feeds similar to that in Table I were calcined to produce control samples 1 and 2. The beneficiated slurries used to produce the control samples, i.e. corresponding to slurry 47 in the Figure, were blended (as at tank 49) with the slurry 46 containing the cretaceous fines, and the blends were then processed and calcined as shown in the Figure. Two such composite samples from this test were evaluated in handsheets to compare their performance with use of the prior art product alone. Physical properties are given in Table III. It will be evident that the product of the invention has very similar characteristics to the calcined tertiary clay product of the prior art. as shown by the absence of change in measured characteristics that occur with the addition of the product of the invention.
Table III
Phvsical Properties of Calcined Samples
Blend 1 Blend 2
75% Control 75% Control
Sample 1 and Sample 2 and
Control Control 25% Product 25% Product
Sample 1 Sample 2 of Invention of Invention
Brightness 92.2 92.8 92.7 93.1
Residue 325 0.0076 0.004 0.0041 0.0048
Moisture 0.8 0.6 * * pH 6.7 5.4 5.9 6.9
TiO2 1.04 1.48 * *
Fe2O3 0.569 0.82 * *
Surface Area 23.8 18.3 * *
L 97.43 97.42 * * a O -0.62 * * b 2.19 2.07 * *
PSD
<10 μm 99 99 99 98.7
<2 μm 91 92 89.5 89
<1 μm 85 86 82.8 82
<.5 μm 58 57 53.6 51
<.25μm 1 1 12 9.3 9
Figure imgf000019_0001
The four samples the properties of which appear in Table III, were evaluated as fillers in handsheets. Several filler levels were evaluated, and the interpolated values of the sheet characteristics for 10% loading are given in Table IV. The addition of the product of the invention is again seen to have little or no significant effect on the sheet properties, again showing that the product of the invention is substantially equal in performance to the prior art product produced by calcination of a fine particle size tertiary crude. Table IV
Sheet Properties at 10% Filler Level
Sheet
% Sheet Scatter1 Printing Burst
Filler Brightness Cm7g Opacity2 Factor
Unfilled 83.3 298 69.5 36.9
Control
Sample 1 87.8 683 83.8 21.0
Control
Sample 2 88.1 676 83.6 20.2
Blend 1 87.9 665 83.4 20.9
Blend 2 88.0 664 83.5 20.0
1.2 See U.S. Patent No. 5,047,375
Example 6
A feed (Control Sample 4) similar to that used for Control Sample 1 was blended with 10%, 30% and 50% of the feed of the invention (Table I), and the blends calcined as in Example 2. The resultant calcined products (including a calcined further control Sample 3, similar to Control Sample 4) were then evaluated as fillers in handsheets as in Example 5. Sheet properties are shown in Table V. Sheet brightness increases as the level of addition of the feed product of the invention increases. (The calcined blends per se also showed increased pigment brightness, respectively being 93.3, 93.6 and 94.1 for the 10%, 30% and 50% blends respectively.) Light scatter did not change significantly as the level of addition of the feed product of the invention increased to 50%. Opacity does start to somewhat decrease because of the higher pigment brightness giving lower absorption coefficients. Table V
Sheet Properties 10% Filler
Material _____ι___ά Brightness Scatter Opacity
Control Sample 3 87.2 670 84.1
Control Sample 4 88.0 691 84.7
Product of Invention 87.8 686 84.5
10% Feed Product of Invention 90% Control Sample 4 88.1 694 84.6
30% Feed Product of Invention 70% Control Sample 4 88.2 691 84.3
50% Feed Product of Invention 50% Control Sample 4 88.4 682 84.1
While the present invention has been set forth in terms of specific embodiments thereof, it will be understood in view of the instant disclosure, that numerous variations upon the invention are now enabled to those skilled in the art, which variations yet reside within the scope of the present teaching. Accordingly, the invention is to be broadly construed and limited only by the scope and spirit of the claims now appended hereto.

Claims

WHAT IS CLAIMED IS:
1. A process for preparing a high brightness, low abrasion calcined kaolin, comprising:
(a) wet beneficiating a cretaceous crude by subjecting same as an aqueous slurry to degritting, classification, magnetic separation, and scrub grinding;
(b) diluting the slurry from step (a) to less than 15% solids and subjecting same while well dispersed to a separation in a centrifuge to yield an underflow and an overflow fine fraction having less than 5% solids and a P.S.D. such that at least 85% by weight are of < 0.5 μm E.S.D. and at least 30% by weight are of< 0.25 μm E.S.D.;
(c) subjecting said overflow fine fraction slurry of dispersed kaolin to a partial filtration by passing same in cross flow relation to a microporous membrane through which substantially none of the suspended kaolin particles pass, to raise the solids content of the said slurry to at least 20%;
(d) combining said slurry with up to 90% dry weight to dry weight of a second slurry of a kaolin clay having a solids content of at least 20% and in which substantially all the kaolin particles have an E.S.D. of less than 1 μm;
(e) bleaching, flocculating and filtering said at least 25% solids slurry to yield a filter cake;
(f) redispersing, and drying and milling the filtered kaolin to provide a calciner feed; and (g) calcining the feed at temperatures above the kaolimexotherm to yield a calcined product having a brightness of at least 92 and an Einleiner Abrasion less than 24.0.
2. A process in accordance with claim 1, wherein the slurry in step (c) has its solids content raised into the range of 20 to 55%.
3. A process in accordance with claim 1, wherein the kaolin in said second slurry is of tertiary origin.
4. A process in accordance with claim 3, wherein said second slurry has a 25 to 30% solids content.
5. A process in accordance with claim 2, wherein from 10 to 50% by dry weight kaolin of the slurry from step (c) is combined in step (d) with the said second slurry.
6. A process in accordance with claim 2, in which the diluted slurry in step (b) is heated to from 110° to 140°F before being provided to said centrifuge; and wherein hot water separated in step (c) at said microporous membrane is recycled to the diluting of the slurry in step (b) to enable use of the water heat content in heating of the slurry.
7. In the process for preparing a high opacity kaolin product from a cretaceous kaolin crude by the steps of :
(a) wet beneficiating the cretaceous crude by subjecting same as an aqueous slurry to degritting, classification, magnetic separation, and scrub grinding; and (b) diluting the slurry from step (a) to less than 15% solids and subjecting same while well dispersed to a separation in a centrifuge to yield an underflow and a normally discarded overflow fine fraction having less than 5% solids and a P.S.D. such that at least 85% by weight are of < 0.5 μm E.S.D. and at least 30% by weight are of< 0.25 μm E.S.D.;
THE IMPROVEMENT enabling utilization of said normally discarded fine fraction to produce a high brightness, low abrasion calcined kaolin, comprising:
subjecting said overflow fine fraction slurry of dispersed kaolin to a partial filtration by passing same in cross flow relation to a microporous membrane through which substantially none of the suspended kaolin particles pass, to raise the solids content of the said slurry to at least 20%;
bleaching, flocculating and filtering said at least 20% solids slurry to yield a filter cake;
redispersing, and drying and milling the filtered kaolin to provide a calciner feed; and
calcining the feed at temperatures above the kaolin exotherm to yield a calcined product having a brightness of at least 92 and an Einleiner Abrasion less than 24.
8. The process of claim 7, wherein the slurry having been raised in its solid content by filtration at said membrane, is combined with up to 90% dry weight to dry weight of a second slurry of a tertiary kaolin having a solids content of at least 20% and in which substantially all the kaolin particles have an E.S.D. of less than 1 μm; and the combined slurry is subjected to the remainder of said process.
PCT/US1996/003569 1995-03-17 1996-03-15 Method for producing high brightness, low abrasion calcined kaolin pigment WO1996029294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU54231/96A AU5423196A (en) 1995-03-17 1996-03-15 Method for producing high brightness, low abrasion calcined kaolin pigment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/405,610 US5522924A (en) 1995-03-17 1995-03-17 Method for producing high brightness low abrasion calcined kaolin pigment
US08/405,610 1995-03-17

Publications (1)

Publication Number Publication Date
WO1996029294A1 true WO1996029294A1 (en) 1996-09-26

Family

ID=23604421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/003569 WO1996029294A1 (en) 1995-03-17 1996-03-15 Method for producing high brightness, low abrasion calcined kaolin pigment

Country Status (3)

Country Link
US (1) US5522924A (en)
AU (1) AU5423196A (en)
WO (1) WO1996029294A1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6312511B1 (en) * 1996-03-22 2001-11-06 Imerys Kaolin, Inc. Kaolin clays and methods of making and using same
WO1997048653A1 (en) * 1996-06-20 1997-12-24 Dry Branch Kaolin Company Compositions of large particle calcined kaolin clay and methods of making the same
US5846309A (en) * 1997-02-20 1998-12-08 J. M. Huber Corporation Coarse particle size kaolin clay and method
US5968250A (en) * 1997-06-06 1999-10-19 Engelhard Corporation Kaolin composition for use electrodeposition paints
US6103005A (en) * 1997-06-20 2000-08-15 Imerys Kaolin, Inc. Compositions of large particle calcined kaolin clay and methods of making the same
US6050509A (en) * 1998-03-18 2000-04-18 Amcol International Corporation Method of manufacturing polymer-grade clay for use in nanocomposites
US6090734A (en) * 1998-03-18 2000-07-18 Amcol International Corporation Process for purifying clay by the hydrothermal conversion of silica impurities to a dioctahedral or trioctahedral smectite clay
GB9807180D0 (en) * 1998-04-04 1998-06-03 Ecc Int Ltd Pigment products
US6142309A (en) * 1998-11-04 2000-11-07 Cabot Corporation Method of determining the amount of residue in carbon black
AU764156B2 (en) 1999-04-01 2003-08-14 Imerys Pigments, Inc. Kaolin clay pigments, their preparation and use
BR0009458A (en) 1999-04-01 2002-01-08 Imerys Pigments Inc Pigment product for a paper coating composition, processes for making a pigment product for a paper coating composition, and for producing a pigment product, coating composition for use in the production of gloss coatings on paper and others substrates, and, process for coating a sheet of paper and calendering the paper to form a gloss coating on it
US6554892B1 (en) 1999-07-02 2003-04-29 Imerys Kaolin, Inc. Compositions and methods for making a coarse platey, high brightness kaolin product
US6432192B1 (en) 2000-02-23 2002-08-13 Flint Ink Corporation Process for manufacturing pigments
GB0020180D0 (en) 2000-08-17 2000-10-04 Imerys Minerals Ltd Kaolin products and their production
GB0020182D0 (en) 2000-08-17 2000-10-04 Imerys Minerals Ltd Particulate kaolin
GB0020179D0 (en) * 2000-08-17 2000-10-04 Imerys Minerals Ltd Kaolin products and their use
US20030085012A1 (en) * 2001-09-07 2003-05-08 Jones J Philip E Hyperplaty clays and their use in paper coating and filling, methods for making same, and paper products having improved brightness
US7122080B2 (en) * 2001-09-14 2006-10-17 Imerys Pigments, Inc. Integrated process for simultaneous beneficiation, leaching, and dewatering of kaolin clay suspension
US6808559B2 (en) * 2002-02-26 2004-10-26 Imerys Pigments, Inc. Kaolin clay pigments suited to rotogravure printing applications and method for preparing the same
EP1490428A1 (en) * 2002-03-28 2004-12-29 Imerys Minerals Limited Flame retardant polymer compositions comprising a particulate clay mineral
BRPI0309275B1 (en) 2002-04-16 2015-06-23 Imerys Pigments Inc Hydrated Kaolin Pigment and Hydrated Kaolin Pigment Production Process
AU2003297123A1 (en) * 2002-12-16 2004-07-29 Imerys Pigments, Inc. Fine platy kaolin composition
EP1660593A2 (en) * 2003-08-11 2006-05-31 Imerys Kaolin, Inc. High whiteness metakaolin and high whiteness fully calcined kaolin
WO2005095709A1 (en) * 2004-03-23 2005-10-13 Imerys Pigments, Inc. Effective reductive bleaching of mineral slurries
BRPI0510551A (en) 2004-05-03 2007-11-20 Imerys Pigments Inc kaolin refining method, paper coating composition, coated paper, printing ink, printing ink composition, ink, ink composition, polymeric composition, rubber composition, and barrier coating composition
US8557037B2 (en) 2004-08-26 2013-10-15 Basf Corporation Ultrafine hydrous kaolin pigments, methods of making the pigments, and methods of using the pigments in gloss paint formulations
BRPI0500403A (en) * 2005-01-31 2006-09-12 Vale Do Rio Doce Co fine kaolin processing method
JP4144887B2 (en) * 2005-02-08 2008-09-03 インターナショナル・ビジネス・マシーンズ・コーポレーション Apparatus, method, and program for controlling tape drive
US7780779B2 (en) * 2005-02-23 2010-08-24 Imerys Pigments, Inc. Method for separating mixture of finely divided minerals
US8083848B2 (en) * 2005-05-03 2011-12-27 Imerys Pigments, Inc. Compositions comprising fine sedimentary kaolin and methods for preparing same
TWI341218B (en) 2005-11-14 2011-05-01 Oxy Vinyls Lp Catalyst compositions and process for oxychlorination
WO2008154614A1 (en) * 2007-06-13 2008-12-18 Imerys Pigments, Inc. Methods for dewatering kaolin clay slurries and kaolin-clay filter cakes and kaolin-clay slurries made therefrom
US20090208750A1 (en) * 2008-02-14 2009-08-20 Imerys Pigments, Inc. Treatment of Mineral Processing Waste Waters Using Disc-Nozzle Centrifuges
CN101585014B (en) * 2009-05-27 2012-09-05 龙岩高岭土有限公司 Method for improving washing rate of kaolin clay raw ore
CN103774491B (en) * 2012-10-25 2016-06-01 金东纸业(江苏)股份有限公司 White Board
EP3426730B1 (en) * 2016-03-08 2020-06-17 BASF Corporation Heat treated kaolin pigment with a ge brightness of at least 92 for paper and coatings
CN106964481B (en) * 2017-04-26 2018-11-23 揭阳恒成陶瓷科技有限公司 The technique of mica in a kind of separation kaolin
CN109772578B (en) * 2019-01-28 2021-05-07 厦门欣意盛新材料科技有限公司 Treatment process for comprehensive utilization of kaolin tailings
CN111847468B (en) * 2020-07-29 2022-04-22 东北大学 Method for producing high-whiteness calcined kaolin by multi-stage suspension calcination of coal-series kaolin
CN111874919A (en) * 2020-08-19 2020-11-03 漳州阳盛贸易有限公司 Production and processing technology of halloysite

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381948A (en) * 1979-07-26 1983-05-03 Anglo-American Clays Corporation Anhydrous kaolin clay pigment and method of preparation
US5047375A (en) * 1988-12-22 1991-09-10 Ecc America Inc. Method for producing high opacifying kaolin pigment
US5137574A (en) * 1988-12-22 1992-08-11 Ecc America Inc. Method for producing high opacifying kaolin pigment
US5168083A (en) * 1990-05-09 1992-12-01 Georgia Kaolin Company, Inc. High opacity defined kaolin product and method of producing same
US5227349A (en) * 1989-09-20 1993-07-13 Ecc International Inc. Process for producing a kaolin clay product

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1103585A (en) * 1964-03-02 1968-02-14 English Clays Lovering Pochin Improvements in or relating to the processing of clay
US3586523A (en) * 1968-01-15 1971-06-22 Engelhard Min & Chem Calcined kaolin clay pigment
US3627678A (en) * 1969-09-03 1971-12-14 Magnetic Eng Ass Inc Magnetic separator and magnetic separation method
US4090688A (en) * 1976-02-27 1978-05-23 Gardner-Denver Company Low pressure shutoff valve for fluid operated tool
US4693427A (en) * 1982-06-22 1987-09-15 E.C.C. America Inc. Method for improving handleability of calcined kaolin clay products
US4518491A (en) * 1982-09-13 1985-05-21 Anglo-American Clays Corporation Beneficiation of clays by froth flotation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381948A (en) * 1979-07-26 1983-05-03 Anglo-American Clays Corporation Anhydrous kaolin clay pigment and method of preparation
US5047375A (en) * 1988-12-22 1991-09-10 Ecc America Inc. Method for producing high opacifying kaolin pigment
US5137574A (en) * 1988-12-22 1992-08-11 Ecc America Inc. Method for producing high opacifying kaolin pigment
US5227349A (en) * 1989-09-20 1993-07-13 Ecc International Inc. Process for producing a kaolin clay product
US5168083A (en) * 1990-05-09 1992-12-01 Georgia Kaolin Company, Inc. High opacity defined kaolin product and method of producing same

Also Published As

Publication number Publication date
US5522924A (en) 1996-06-04
AU5423196A (en) 1996-10-08

Similar Documents

Publication Publication Date Title
US5522924A (en) Method for producing high brightness low abrasion calcined kaolin pigment
US5112782A (en) Cationically processed calcined kaolin clay
US5168083A (en) High opacity defined kaolin product and method of producing same
US4943324A (en) High performance paper filler and method of producing same
CA2368750C (en) Kaolin clay pigments, their preparation and use
US6402826B1 (en) Kaolin clay pigment for paper coating and method for producing same
US5645635A (en) Delaminated kaolin pigments, their preparation and use in paper filling applications
US5454865A (en) Method for preparing refined kaolin in clay products
AU669334B2 (en) Process for producing a kaolin clay product
US5371051A (en) Method for producing high opacifying kaolin pigment
US4419228A (en) Process for producing high brightness clays utilizing magnetic beneficiation and calcining
US5573658A (en) Low brightness functional pigment from process by-product
CA2013619C (en) Cationic processing of kaolin ores
EP0559772B1 (en) Method for producing high opacifying kaolin pigment
WO1999058613A1 (en) Preparation and use of high brightness kaolin pigments
US5147458A (en) Structured pigment from high TiO2 /Fe2 O3 kaolinite reject material
EP0396419B1 (en) Cationic processing of mineral ores
US5713998A (en) Method for producing high opacifying kaolin pigment
EP0216002A2 (en) Process for beneficiating natural calcite ores
CA2013623A1 (en) Cationically process calcined kaolin clay

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase