WO1996035926A1 - Procede, dispositif et systeme de determination de changements dans un specimen - Google Patents

Procede, dispositif et systeme de determination de changements dans un specimen

Info

Publication number
WO1996035926A1
WO1996035926A1 PCT/JP1996/000266 JP9600266W WO9635926A1 WO 1996035926 A1 WO1996035926 A1 WO 1996035926A1 JP 9600266 W JP9600266 W JP 9600266W WO 9635926 A1 WO9635926 A1 WO 9635926A1
Authority
WO
WIPO (PCT)
Prior art keywords
predetermined
statistical
inverse filter
subject
time
Prior art date
Application number
PCT/JP1996/000266
Other languages
English (en)
French (fr)
Inventor
Ryoji Ohba
Yoshihito Tamanoi
Original Assignee
Japan, Represented By President Of Hokkaido University
Koa Oil Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan, Represented By President Of Hokkaido University, Koa Oil Company, Limited filed Critical Japan, Represented By President Of Hokkaido University
Priority to US08/716,208 priority Critical patent/US5798459A/en
Priority to EP96901961A priority patent/EP0770854B1/en
Priority to DK96901961T priority patent/DK0770854T3/da
Priority to DE69621739T priority patent/DE69621739T2/de
Publication of WO1996035926A1 publication Critical patent/WO1996035926A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/38Detecting the response signal, e.g. electronic circuits specially adapted therefor by time filtering, e.g. using time gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/40Detecting the response signal, e.g. electronic circuits specially adapted therefor by amplitude filtering, e.g. by applying a threshold or by gain control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/449Statistical methods not provided for in G01N29/4409, e.g. averaging, smoothing and interpolation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Definitions

  • the present invention provides a method for determining whether a subject is the same or of the same kind, whether the subject is under the same conditions, whether the subject is in the same state, and the like.
  • the present invention relates to a subject identification method, a subject identification device, and a subject identification system for testing whether or not a change is present in a subject or estimating the degree of the change. Background art
  • gas or liquid such as flammable gas or toxic gas handled by manufacturing equipment and manufacturing equipment such as gas, petroleum, and chemical factories may cause minute holes in equipment or piping (for example, corrosion due to aging deterioration).
  • a description will be given of an attempt to detect the presence / absence of leakage based on the leakage signal in the ultrasonic frequency band that is generated when leakage occurs due to a hole, etc., and to detect equipment failure based on the presence / absence of this leakage.
  • a permanent concentration type gas detector is generally used as a method of detecting the leakage of combustible gas or toxic gas in the above-mentioned manufacturing facilities or factories.
  • the concentration type gas detector detects the leaked gas only when it reaches a certain detection concentration level or more, it must be installed in a place where the gas easily stays.
  • the detection accuracy changes due to the influence of the wind direction and the like.
  • the gas detector due to the influence of wind and diffusion, a considerable amount of gas leaks before the gas concentration reaches the detection level. There are cases that lead to leakage.
  • any of the disclosed technologies for capturing ultrasonic waves at the time of the above-mentioned leakage it is possible to capture the ultrasonic noise other than the leaked sound when there is no such noise.
  • this is an effective means only in a place having a surrounding environment free from ultrasonic noise.
  • countless ultrasonic noises exist in actual factories and manufacturing equipment that require leak detection technology.
  • These ultrasonic noises include the following. That is, normal steam leakage from a valve stem system such as a main closing valve and a steam control valve included in the steam turbine for driving the pump in the manufacturing equipment, and from the gland packing part of the rotor shaft seal of the turbine. Normal leaking steam, flow rate, normal air leaking from the air positioner, which is configured as a control valve that controls the liquid level, ultrasonic waves generated by the throttle of the valve, and other sliding friction noise of rotating machinery, etc. There is.
  • the present inventor has proposed a method that can detect a failure or a defect (leakage in the case of the above example) even in an environment where large noise such as ambient environmental noise exists, as described above. (Noise is present), an inverse filter of the obtained signal is generated, and a signal at a point in time when it is considered that a failure or failure may have occurred is obtained, and the above inverse filter is applied to the signal.
  • a method has been proposed in which a residual signal obtained by canceling normal components including noise is determined, and a failure or defect is detected based on the residual signal (see Japanese Patent Laid-Open No. 7-43259). ). This method is extremely excellent as a method for removing stationary noise.
  • the present invention is suitable for an object identification method capable of detecting whether or not a change has occurred in an object or estimating the degree of the change with high accuracy, and suitable for implementing the method. It is an object to provide a subject identification apparatus and a subject identification system to which the method is specifically applied. Disclosure of the invention
  • a plurality of first residual signals are obtained by applying the inverse filter to each of a plurality of first time series signals comprising at least a part of the plurality of first time series signals. 3rd step to find
  • the fourth process of the above (1-4) includes:
  • the difference between the population variance and the population or the population mean is estimated or tested.
  • the first subject and what is defined as the second subject are arbitrary and not particularly limited.
  • the second subject and the second subject may be the same or the same subject.
  • first subject what is considered as a first subject and what is referred to as a second subject, and what is estimated or tested, for example, is as follows.
  • first subject One or more standard products of a large number of products of the same type (for example, many motors manufactured to the same standard) are used as the first subject, and the physical quantity (for example, Inverse filters should be constructed based on signals carrying torque, motor noise, etc.) to determine whether many other similar products are good or defective.
  • One device is defined as a first subject and a second subject, and a physical quantity (for example, vibration or operation sound of the device) related to the device when the device is operating normally is picked up.
  • An inverse filter is constructed based on the obtained signal, and how much the device has changed compared to when the device was completely normal (for example, how much the operating sound of the device was approaching an abnormal state) ). Alternatively, verify that the equipment is normal or abnormal.
  • predetermined physical quantity is not limited to a specific physical quantity.
  • a rotating machine is used as a subject, it is generated by the vibration of the case of the rotating machine or the vibration.
  • Various sounds, such as the runout of the rotating shaft of the rotating machine The physical quantity can be selected as the predetermined physical quantity.
  • predetermined statistical variable is not particularly limited, and any quantity representing the characteristic of the residual signal may be adopted as the predetermined statistical variable.
  • various statistical variables such as the average value and variance of the residual signal, the variance of the power spectrum of the residual signal, (maximum value-minimum value), maximum value, etc. Can be.
  • a sensor that measures a predetermined physical quantity of a subject and obtains a time series signal carrying the predetermined physical quantity.
  • a residual signal is obtained by applying an inverse filter generated by an inverse filter generation means to a plurality of time-series signals obtained by the above-described sensor, and a predetermined statistical variable is determined based on the residual signal. Variable calculation means to be found
  • (2-4) storage means for storing a plurality of predetermined statistical variables obtained by the variable calculation means
  • the first object identification device has a built-in inverse filter generation means of (2-2), and is configured to collect both of the two statistical variable groups to be used for estimating or testing statistical differences by the device.
  • an inverse filter and one of the two statistical variable groups serving as a reference among the two statistical variable groups may be obtained in advance and incorporated in the apparatus.
  • (3-2) A sensor that measures a predetermined physical quantity of a subject and obtains a time series signal carrying the predetermined physical quantity.
  • a residual signal is obtained by applying an inverse filter stored in the first storage means to the time-series signal obtained by the sensor, and the predetermined statistical variable is calculated based on the residual signal. Variable calculation means to be found
  • Second storage means for storing a plurality of the predetermined statistical variables obtained by the variable calculation means
  • At least one sound pressure sensor installed at a position having a predetermined positional relationship with the subject
  • a sensor attitude control device for directing the sound pressure sensor in a plurality of directions (4-3) an inverse filter generating means for generating an inverse filter based on a sound signal obtained by the sound pressure sensor;
  • Calculation means storage means for storing a plurality of the predetermined statistical variables obtained by the variable calculation means, and a plurality of the predetermined statistical variables stored in the storage means divided into at least two groups. Monitor having statistical means for estimating or testing statistical differences between groups
  • An arbitrary time-series signal can be regarded as an output when white noise is input to an appropriate linear system. Determining the corresponding linear system from a given time-series signal is called linear predictive analysis, and there is an established method.
  • X ( ⁇ ) - ⁇ ⁇ X (n ⁇ k) + e (n) (1)
  • e (n) is a virtual input signal to the linear system and is white noise.
  • an autoregressive model for the time-series signal is determined by obtaining a set of coefficients ⁇ A k ⁇ from the data.
  • Y (n) is defined as follows using the time-series signal data ⁇ X (n) ⁇ . At this time, Y (n) is said to be the linear predicted value of X (n).
  • the residual becomes white noise.
  • subtracting the predicted value Y (n) obtained from the previous M data from the time-series signal data X (n) at the n-th point gives the input white noise.
  • subtracting the predicted value Y (n) from X (n) to obtain the residual e (n) is called applying an inverse filter. If a certain time series signal can be represented by an appropriate autoregressive model, an inverse filter constructed using it can be applied to the original time series signal. With this, white noise is obtained. That is, the input signal is whitened by the inverse filter.
  • the input time-series signal need not be the signal used in the design of the inverse filter, and if the autoregressive models are the same, that is, signals having the same characteristics, the whitened signal is output as the signal. Obtainable. However, if the characteristics of the time-series signal are different from those used in the design, whitening will not occur even if the inverse filter is applied, and white noise will not be obtained.
  • an inverse filter is configured using the first time-series signal that carries the operating sound and vibration in the normal state (hereinafter referred to as the operating sound and the like), and carries the operating sound and the like at an arbitrary time.
  • a new second time-series signal is obtained, and an output is monitored by applying an inverse filter to the second time-series signal to detect a time-series signal (residual signal) different from the normal time. I can do it.
  • One of the features of the present invention is that, like the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 7-43259, the first time series obtained from the device to be detected in the normal state as described above is used. Since an inverse filter is configured based on the signal, and the inverse filter is applied to the second time-series signal obtained from the device to be detected, etc., the residual signal is obtained.
  • the residual signal is a signal representing the “difference” from the first time-series signal in a normal state
  • the residual signal is obtained by a simple weighted addition of the time-series M pieces of data to the linear prediction value Y (n ) (Equation (2) above) and calculating the difference (Equation (3) above), so that simple calculations can be performed in real time.
  • the “difference” does not always exist as in the above-described example of the steam trap.
  • the two events trying to separate, for example, normal and abnormal, can overlap. In such a case, it is still not enough to accurately determine the “difference”.
  • a statistical variate is determined, and the statistical Significant differences are estimated or tested.
  • the test for the presence or absence of the difference between the first subject and the second subject or the estimation of the degree of the difference is performed with high accuracy.
  • FIG. 1 is a flowchart showing one embodiment of the subject identification method of the present invention.
  • Fig. 2 shows the smoothed power spectrum of background noise.
  • FIG. 3 is a diagram showing a smoothed power spectrum of a residual signal after applying an inverse filter to the background noise in each of the 10 sections whose power spectrum is shown in FIG.
  • FIG. 4 is a diagram showing a smoothed power spectrum of 10 sections of a signal recorded when a gas leak exists.
  • FIG. 5 shows the same inverse filter as the inverse filter when the residual signal shown in Fig. 3 is generated by applying the power spectrum shown in Fig. 4 to the background noise shown in Fig. 2.
  • FIG. 5 is a diagram showing a power spectrum of a residual signal after applying the function.
  • FIG. 6 is a diagram showing each histogram of two statistical variable (maximum value-minimum value) groups.
  • Fig. 7 is a diagram showing the smoothed power vectors of the sound signal in each section when the sound recorded at the moment when the intermittent leakage due to the steam trap occurs is divided at predetermined intervals for 10 sections. is there.
  • FIG. 8 is a diagram showing a power spectrum of a residual signal when an inverse filter obtained from a signal based on only background noise is applied to the sound signal shown in FIG. Figure 9 shows an intermittent leak due to a steam trap at another opportunity.
  • FIG. 11 is a diagram showing 10 sections of the smoothed power spectrum of the sound signal in each section section when the sound recorded at the instant of time is sectioned at predetermined time intervals.
  • FIG. 10 is a diagram showing a power spectrum of a residual signal when an inverse filter obtained from a signal based on only background noise is applied to the sound signal shown in FIG.
  • FIG. 11 is a block diagram of one embodiment of the first object identifying apparatus of the present invention.
  • FIG. 12 is a block diagram of one embodiment of the second object identifying apparatus of the present invention.
  • FIG. 13 is a schematic diagram of an embodiment of the subject identification system of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the flammable gas piping equipment including the environment in which steam piping equipment and other background noise sources are present is defined as the first subject and the second subject in the present invention, and the flammable gas A description will be given of a case where the presence or absence of gas leakage from a hole or crack due to corrosion of the piping in the gas piping equipment is examined.
  • the following experimental data was obtained by filling pipes with air instead of flammable gas and using artificial holes instead of corrosive holes.
  • air leakage from artificial holes and the like is also referred to as gas leakage.
  • FIG. 1 is a flowchart showing one embodiment of the subject identification method of the present invention.
  • step (a) the background noise at the place where the target flammable gas piping equipment is placed is recorded a plurality of times.
  • step (b) an inverse filter is generated based on one background noise signal of the plurality of recorded background noise signals, and in step (c) Then, a plurality of residual signals are obtained by applying the inverse filter to a plurality of background noise signals other than the background noise signal on which the inverse filter is generated.
  • step (d) the power spectrum of each of the plurality of residual signals is obtained.
  • step (e) as an example of the predetermined statistical variable according to the present invention, the power spectrum in the predetermined frequency band of the power spectrum is determined. The maximum and minimum values are extracted
  • the F-test is a test to determine whether there is a significant difference between the variances ⁇ ⁇ 2 and o y 2 of two statistical variate groups (in this example, the group of (maximum value-minimum value)). This is a method of testing, and is generally performed according to the following procedure (see “Quality Control Course New Statistical Method”, edited by Shigeru Moriguchi-Japanese Standards Association).
  • F ⁇ i, ⁇ 2 (0.025) is the point with the upper probability 0.025 of the F distribution with degrees of freedom ( ⁇ , ⁇ ).
  • step (k) whether there is a significant difference in the F-test, that is, the hypothesis H in (4) above. Is rejected, and if there is a significant difference, that is, hypothesis H. If is rejected, proceed to step (n) and it is determined that there is gas leakage.
  • step (k) If it is determined in step (k) that there is no significant difference, the process proceeds to step (1), and a t-test is performed this time.
  • the t-test is a method for testing whether or not there is a significant difference between the means of two statistical variate groups, and the outline is as follows (see the above-mentioned reference).
  • H o: w. (The population mean w is equal to w.).
  • the average of one of the two statistical variables, the reference statistical variable, is calculated.
  • step (m) it is determined whether there is a significant difference in the t-test in step (1) (hypothesis H. was rejected), and if there is a significant difference, it is determined that there is gas leakage. If there is no significant difference in the t test following the above F test, it is determined that there is no gas leakage.
  • FIG. 2 is a background noise smoothing spectrum recorded in step (a) shown in FIG.
  • the horizontal axis represents frequency (kHz) and the vertical axis represents power (dB).
  • a bandpass filter of 20 kHz to 100 kHz is applied to the signal to be recorded.
  • the recorded background noise is divided for each predetermined time length, and the power spectrum of the background noise in each division is shown for ten divisions.
  • FIG. 3 shows the smoothing of the residual signal after applying an inverse filter to the background noise in each of the 10 sections, which shows the power spectrum in step (c) shown in Fig. 1 in step (c).
  • FIG. 4 is a diagram showing a power spectrum (see step (d)).
  • an average inverse filter thereof may be configured.
  • step (e) the difference between the maximum value and the minimum value of the power spectrum of each residual signal in the section from 50 kHz to 100 kHz is extracted as a statistical variable.
  • FIG. 4 is a graph showing the smoothed power spectrum of the signal recorded when there is a gas leak in step (f) shown in FIG. Fig. 5 shows the residual signal shown in Fig. 3 by applying the power spectrum shown in Fig. 4 to the background noise shown in Fig. 2 generated in step (b).
  • FIG. 9 is a diagram showing a smoothed power spectrum of a residual signal after applying the same inverse filter as the inverse filter at the time of the operation.
  • step (i) the difference between the maximum value and the minimum value in the section from 50 kHz to 100 kHz of the power spectrum of each residual signal shown in FIG. Extracted as a target variable.
  • Figure 6 shows the statistical variables (maximum-minimum) extracted in step (e) of 80 and the statistical variables (maximum-minimum) extracted in step (i) of 200 It is a figure showing each histogram.
  • the horizontal axis indicates the value of each statistical variable, and the vertical axis indicates the number of sample variables of the statistical variable having that value.
  • the shaded portion is the statistical variable of the background noise extracted in step (e), and the white portion is the statistical variable of the signal including the sound due to the gas leak extracted in step (i).
  • FIG. 7 shows the smoothed power spectrum of the sound signal in each section when the sound recorded at the moment when the intermittent steam leakage due to the steam trap occurs is divided at predetermined intervals for 10 sections.
  • FIG. 8 is a diagram showing a smoothed power spectrum of a residual signal when an inverse filter obtained from a signal based on only background noise is applied to the sound signal shown in FIG.
  • Figs. 9 and 10 are the same as Figs. 7 and 8, respectively, of the sounds recorded at the moment when the intermittent steam leak due to the steam trap occurred at other occasions. . 7
  • the statistical variables maximum value-minimum value
  • the statistical variables are the same as the statistical variables (the shaded area in Fig. 6) when there is an abnormal gas leak. Therefore, high-precision judgment is impossible with simple threshold processing.
  • both the F test and the t test are performed, and when there is a significant difference in either one, it is determined that there is “leakage”. May be different depending on what is applied.For example, if it is possible to determine the presence or absence of a significant difference by only one of the F test or the t test, only one of them may be performed. A significant difference may be determined only when there is a significant difference between both the F test and the t test. In addition, a statistical test method other than the F test and the “t test may be adopted. In the above-described embodiment, the presence or absence of a significant difference is tested at a risk rate of 5%. The test can be performed at an arbitrary risk rate according to the application field of the present invention, etc.
  • the degree of deviation of the variance or the average value may be used without performing the test.
  • the method of using the degree of deviation as it is is not an application field that makes a binary judgment such as “leakage exists” or “leakage does not exist”. The extent to which changes and the likelihood of failure or failure This is effective in the field of estimating the possibility of kinking.
  • Table 1 shows that in the above-described embodiment, artificial defects (holes or slits) of various sizes were formed in the flammable gas piping, and the gas pressure in the piping and the artificial pressure when recording sound were recorded.
  • 7 is a table showing whether or not it is correctly determined that a defect exists when the distance to a general defect is variously changed.
  • step (e) the difference between the maximum value and the minimum value in the section from 50 kHz to L 0 kHz is extracted as a statistical variable.
  • the difference between the maximum value and the minimum value in the section from kHz to 50 kHz was extracted as a statistical variable, good results were obtained in the same manner as described above. In this way, the ultrasonic band for extracting the statistical variables can be freely selected.
  • FIG. 11 is a block diagram of one embodiment of the first object identifying apparatus of the present invention. Here, a case will be described in which the apparatus shown in FIG. 11 is used to test whether the combustible gas piping equipment is normal or abnormal.
  • background noise is recorded by the ultrasonic microphone 10, and a signal in the first time section of the background noise is input to the inverse filter generation unit 11.
  • the inverse filter generation unit 11 generates an inverse filter based on the input background noise signal.
  • the background noise is continuously collected by the ultrasonic microphone 10, and the collected background noise signal is input to the inverse filter section 12.
  • the inverse filter operation section 12 separates the input background noise signal at predetermined time intervals, applies the inverse filter generated by the inverse filter generation section 11 to the background noise signal in each section, Find the difference signal.
  • Each residual signal generated by the inverse filter operation unit 12 is input to the variable operation unit 13.
  • the variable operation unit 13 calculates the smoothed power spectrum of each of the input residual signals, and calculates the maximum value of the smoothed power spectrum between 50 kHz and 100 kHz. The minimum value is extracted and (maximum value-minimum value) is calculated as a statistical variable.
  • the statistical variables determined in this way are stored in the variable storage unit 14.
  • a switch (not shown) is switched, and sound is collected in the same manner as in the case of the above-described background noise, a statistical variable is obtained, and stored in the variable storage unit 14.
  • the inverse filter generation unit 11 does not generate a new inverse filter
  • the inverse filter operation unit 12 uses the inverse filter generated before switching the switch, that is, the background noise generated as it is.
  • variable storage unit 14 When two statistical variable groups are stored in the variable storage unit 14 in this way, those two statistical variable groups are input to the test unit 15.
  • test unit 15 In the test section 15, the F-test and the t-test described above are used to test whether or not there is a statistically significant difference between the two statistical variate groups. The result of is displayed.
  • FIG. 12 is a block diagram of one embodiment of the second object identifying apparatus of the present invention. Blocks corresponding to the blocks in the embodiment shown in FIG. 11 are denoted by the same reference numerals as those in FIG. 11, and only the differences will be described.
  • the statistical variable relating to the inverse filter and the background noise may be generated only once.
  • the statistical variable is generated by a personal computer or the like (not shown). Stored in 17. Others are the same as those of the embodiment shown in FIG.
  • FIG. 13 is a schematic diagram of an embodiment of the subject identification system of the present invention.
  • a pole 21 is erected at one or more places (only one is shown in Fig. 13) in the factory where a large number of flammable gas piping facilities exist, and a supersonic wave is sensed at the upper end.
  • An ultrasonic microphone 10 for performing the operation is provided.
  • the ultrasonic microphone 10 has an opening 22 a in the direction in which the tip of the ultrasonic microphone 10 faces so that only the sound from the direction aimed at the ultrasonic microphone 10 is input.
  • Hood 22 is covered.
  • the ultrasonic microphone with hood and the microphone 10 are attached to a posture control device 23 for controlling the direction of the ultrasonic microphone 10.
  • the ultrasonic microphone 10 is vertically moved by the posture control device 23. (A-A direction shown) and left-right direction (B-B direction shown) are controlled.
  • the attitude control device 23 circulates the ultrasonic microphone 10 according to a predetermined sequence intermittently in various directions and in the initial direction. Control the orientation.
  • the ultrasonic signal recorded by the ultrasonic microphone 10 is input via a cable 24 to a monitor device 25 configured by a computer system installed in, for example, a central control room or the like.
  • a monitor device 25 configured by a computer system installed in, for example, a central control room or the like.
  • the functions corresponding to the components 11 to 16 in FIG. 11 are realized using software.
  • all the piping in the factory is in a normal state. In each case, each time the ultrasonic microphone 10 turns in each direction, based on the ultrasonic signal recorded by the ultrasonic microphone 10 pointing in that direction, an inverse filter corresponding to the direction, and the direction A corresponding set of reference statistical variables is determined.
  • the monitoring device 25 enters a monitoring state, and each time the ultrasonic microphone 10 turns in each direction, an inverse filter is applied to the ultrasonic signal corresponding to the direction to obtain a statistical variable group, and the statistical variable group is obtained. A test is performed to determine whether a statistically significant difference exists between the statistical variable group and the reference statistical variable group, and the test result is displayed. Displayed on face 25a.
  • the ultrasonic microphone 10 is described as intermittently pointing in various directions. However, the ultrasonic microphone 10 may be continuously turned in various directions.
  • each of the above embodiments is an example in which sound (ultrasonic waves) is recorded to test whether or not there is a significant difference between sounds.
  • the physical quantities targeted in the present invention include ultrasonic waves and the like. It can be applied to any physical quantity, not just sound.
  • each of the above embodiments is an example in which the present invention is applied to a test for the presence or absence of leakage of a flammable gas pipe.
  • the present invention is not limited to a subject, and has an extremely wide field of application. Things.

Description

明 細 書 被検体同定方法、 装置およびシステム 技術分野
本発明は、 被検体が同一もしくは同種のものであるか否か、 あるいは被検 体が同一の条件下に置かれているか否か、 あるいは被検体が同一の状態にあ るか否か等、 被検体に何らかの変化が存在するか否かの検定、 あるいはその 変化の程度の推定を行なう被検体同定方法、 被検体同定装置、 および被検体 同定システムに関する。 背景技術
従来より、 種々の分野において、 装置、 製品、 設備等の故障ないし不良を 検出する手法が種々提案されている。
以下、 その一例として、 ガス、 石油、 化学工場等の製造装置 ·製造設備で 取り扱う可燃性ガスや有毒ガス等の気体や液体が、 機器あるいは配管等の微 小開孔 (例えば、 経年劣化による腐食開孔等) により外部へ漏洩した場合に 発生する超音波周波数帯域の漏洩信号に基づいて漏洩の有無を検出し、 この 漏洩の有無により設備の故障を検知する試みについて説明する。
従来、 上記製造施設や工場等では可燃性ガスや有毒ガスの漏洩を検知する 方法として、 常設された濃度型ガス検知器が一般的に用いられている。 しか し濃度型ガス検知器は漏洩ガスがある一定の検出濃度レベル以上に達して初 めて検知される方式のため、 ガスの滞留しやすい場所に設置する必要がある 力 この場所の選定が難しく、 風向き等の影響により検出精度が変わるとい う欠点がある。 特に漏洩箇所からガス検知器まで距離がある場合には、 風の 影響の他、 拡散により、 ガス濃度が検知レベルに到達するまでに相当量の漏 洩に至るケースがある。 以上のような状況より濃度型ガス検知器で漏洩を早 期発見するためには、 濃度型ガス検知器を多数台設置する必要がある。 その他の漏洩検知技術としては気体が微小開孔より噴出する際に発生する 超音波を捕捉し検出する計測器 (超音波漏洩検出器) が商品として数社より 市販されている。 またこの技術をさらに発展させ、 漏洩源の位置を検知する 手法として、 放物面体に仕切板を設け各々の隔壁内に超音波センサを設置 し、 それぞれのセンサに対応した表示器のモ二タランブの点灯状態により、 漏洩源の位置を検知する技術が実開昭 6 0— 1 4 6 8 3 4号にて開示されて いる。
しかし、 上記の漏洩時の超音波を捕捉するいずれの開示技術においても、 漏洩音以外の超音波雑音がない場合にそれを捕捉することは可能であるが、 これらは広大な原野の移送配管等のように、 超音波ノイズを有しない周囲璟 境を有する場所に於いてのみで有効な手段である。 これに反し、 漏洩検知技 術を必要とする実際の工場、 製造装置には無数の超音波ノイズが存在する。 それらの超音波ノイズには次のようなものがある。 即ち、 製造装置内のボン プ駆動用の蒸気タービンに構成されている主塞止弁 ·蒸気加減弁等の弁棒ス テムからの正常な蒸気漏洩、 同タービンのロータ軸封のグランドパッキング 部からの正常な漏洩蒸気、 流量 ·液面を制御するコントロールバルブに構成 されるエアーポジッショナからの正常なエア一漏洩、 弁の絞りにより発せら れる流体の超音波、 その他回転機械の摺動摩擦音等がある。
実際の装置には、 周囲環境ノイズとして上述のような無数の超音波の発生 があるため、 上述の開示技術を以つて目的とする漏洩音を検出する機器で は、 環境ノイズとしての超音波に反応してしまい実用に耐えないという問題 がある。
また超音波を用いない別の漏洩診断法として、 可聴周波数帯域の、 音圧レ ベルや周波数スぺクトルのレベルの変化を監視して漏洩を検出する方法もす でに提案されている。 しかし、 可聴帯域の漏洩音は音圧レベルの変化を伴う ような大音響の多量漏洩には有効な検知方法であるが、 微量の漏洩について は超音波帯域の検知手法における周囲環境ノイズ以上の外乱としての周囲環 境騒音、 例えば降雨、 工場内の拡声器、 車両、 航空機騒音等の影響を受け易 いという問題がある。
特に危険物等の可燃性ガスを多量に取り扱う施設に於いては、 大音響を伴 うような多量漏洩に至る以前の初期の微小漏洩の段階で検知し、 重大災害の 未然防止に役立つ技術が切望されている。 以上の観点からノイズに弱い従来 の可聴帯域の漏洩監視技術も好ましい方法とは言い難い。
本発明者は、 例えば上述のような、 周囲環境ノイズ等の大きなノイズが存 在する環境下においても故障や不良 (上述の例の場合、 漏洩) を検出するこ とのできる手法として、 正常時 (ノイズは存在する) に得た信号の逆フィル タを生成しておき、 故障や不良を生じているかも知れないと思われる時点の 信号を得、 その信号に上記逆フィルタを作用させることにより、 ノイズを含 む正常時の成分をキャンセルした残差信号を求め、 その残差信号に基づいて 故障や不良の有無を検出する手法を提案した (特開平 7— 4 3 2 5 9号参 照) 。 この手法は、 定常的なノイズを除去する手法として極めて優れてい る。
ところが、 以下に例示するように、 故障や不良による現象と正常時の現象 とが極めて近似している場合がある。
例えば工場内でガス配管からの可燃性ガス漏れ、 あるいは有毒ガス漏れを 検出する場合を考える。 そのような工場には、 通常、 そのガス配管の周囲に 動力用ないし加熱源用のスチーム配管が多数敷設されており、 スチーム配管 には、 スチーム配管内部のスチームの凝縮による水を排出するためにスチー ムを間欠的に故意に放出するスチームトラップが存在し、 スチームトラップ からのスチームの放出とガス配管の腐食開孔からのガス漏れとが極めて近似 し、 このような場合、 上述の手法により周囲環境ノイズ等、 正常時のノイズ の影響をきれいに排除しても、 例えば上述のスチームトラップを異常として 判定しそしまうなど、 誤検出を避けることができない場合がある。
本発明は、 上記事情に鑑み、 被検体に変化が生じたか否かの検出、 あるい はその変化の程度の推定を高精度に行なうことのできる被検体同定方法、 そ の方法の実施に好適な被検体同定装置、 およびその方法が具体的に適用され る被検体同定システムを提供することを目的とする。 発明の開示
上記目的を達成する本発明の被検体同定方法は、
( 1 - 1 ) 所定の第 1の被検体から所定の物理量を担持する複数の第 1の時 系列信号を得る第 1過程
( 1 - 2) 上記複数の第 1の時系列信号のうちの少なくとも 1つの第 1の時 系列信号に基づいて逆フィルタを構成する第 2過程
( 1— 3) 上記複数の第 1の時系列信号のうちの少なくとも一部からなる複 数の第 1の時系列信号それぞれに上記逆フィルタを作用させることにより複 数の第 1の残差信号を求める第 3過程
( 1 -4) 上記複数の第 1の残差信号に基づいて複数の所定の統計的変量を 求める第 4過程
( 1 - 5) 所定の第 2の被検体から所定の物理量を担持する複数の第 2の時 系列信号を得る第 5過程
( 1 - 6) 上記第 2の時系列信号それぞれに上記逆フィルタを作用させるこ とにより複数の第 2の残差信号を求める第 6過程
( 1 - 7) 上記複数の第 2の残差信号に基づいて複数の上記所定の統計的変 量を求める第 7過程
( 1 -8) 上記第 4過程で求められた複数の統計的変量と上記第 7過程で求 められた複数の統計的変量との間の統計的相違を推定もしくは検定する第 8 過程
を有することを特徴とする。
ここで、 上記本発明の非検体同定方法において、 上記 ( 1—4) の第 4過 程が、
( 1一 4一 1 ) 複数の第 1の残差信号それぞれの、 少なくとも一部の周波数 帯域のパワースぺクトルを求める過程
( 1 -4-2) 上記パワースぺクトルに基づいて所定の統計的変量を求める 過程
を有し、
上記 ( 1一 7) の第 7過程が、
( 1 -7- 1 ) 複数の第 2の残差信号それぞれの、 少なくとも一部の周波数 帯域のパワースぺクトルを求める過程
( 1 - 7- 2) 上記パワースぺクトルに基づいて上記所定の統計的変量を求 める過程
を有するものであってもよい。
また、 上記本発明の被検体同定方法において、 上記 ( 1 -8) の第 8過程 では、 典型的には、 母分散及びノ又は母平均の相違が推定もしくは検定され る。
尚、 上記本発明の被検体同定方法において、 何を第 1の被検体とし、 何を 第 2の被検体とするかは任意であって特に限定されるものでなく、 例えば第 1の被検体と第 2の被検体は、 互いに同一もしくは同種の被検体であっても よい。
本発明の被検体同定方法において、 何を第 1の被検体とし何を第 2の被検 体とするかという点、 および何を推定もしくは検定するかという点について 例示すると、 例えば ( a ) 多数の同種の製品 (例えば同一規格で製造した多数個のモータ) のう ちの標準的な 1個もしくは複数個を第 1の被検体として、 その標準的な製品 に関する物理量 (例えばモータのトルク、 モータ音等) を担持する信号に基 づいて逆フィルタを構成しておき、 その他の多数の同種の製品が良品である か不良品であるかを検定すること。
( b ) ある 1つの装置を、 第 1の被検体かつ第 2の被検体とし、 その装置が 正常に作動しているときのその装置に関する物理量 (例えばその装置の振動 や作動音など) をピックアップした信号に基づいて逆フィルタを構成してお き、 その装置が完全に正常であったときと比べ、 どの程度変化してきている か (例えばその装置の作動音がどの程度異常状態に近づいてきているか) を 推定すること。 あるいは、 その装置が正常であるか異常であるかを検定する こと。
( c ) 材料等が破壊されるとき、 その破壊に先立って微弱な音を出すことが 知られている (いわゆるアコ一スティックェミッション) 。 その材料等が置 かれた環境を含めたものを、 第 1の被検体かつ第 2の被検体とし、 その材料 等が正常なときの環境ノィズに基づいて逆フィルタを構成しておき、 アコ一 スティックェミッションを捉えてその材料等が破壊される危険度を推定する こと。
( d ) 特定の装置や設備等を対象とするのではなく、 例えばある工場の環境 (例えば騒音) 全体を、 第 1の被検体かつ第 2の被検体とし、 その工場の通 常の環境を基に逆フィルタを構成しておき、 その工場の環境に異常が生じて いないかどうかを検定すること。
等を挙げることができる。
また、 上記 「所定の物理量」 も特定の物理量に限定されるものではなく、 —例として回転機を被検体とした場合であっても、 その回転機のケースの振 動、 その振動により発せられる音、 その回転機の回転軸の芯振れ等、 種々の 物理量を上記の所定の物理量として選択することができる。
さらに、 上記 「所定の統計的変量」 も特に限定されるものではなく、 その 残差信号の特徴を表わす量であればどのような量を所定の統計的変量として 採用してもよく、 その残差信号の性質に応じて、 例えばその残差信号の平均 値、 分散、 その残差信号のパワースペクトルの分散、 (最大値一最小値) 、 最大値等、 種々の統計的変量を採用することができる。
また、 本発明の第 1の被検体同定装置は、
( 2 - 1 ) 被検体の所定の物理量を測定して該所定の物理量を担持する時系 列信号を得るセンサ
( 2 - 2 ) 上記センサにより得られた時系列信号に基づいて逆フィルタを生 成する逆フィルタ生成手段
( 2 - 3 ) 上記センサにより得られた複数の時系列信号に、 逆フィルタ生成 手段により生成された逆フィルタを作用させることにより残差信号を求め残 差信号に基づいて所定の統計的変量を求める変量演算手段
( 2 - 4 ) 変量演算手段で求められた所定の統計的変量を複数記憶する記憶 手段
( 2 - 5 ) 上記記憶手段に記憶された複数の所定の統計的変量が少なくとも 2つの群に分けられてなる各群間の統計的相違の推定もしくは検定を行なう 統計手段
を備えたことを特徴とする。
上記第 1の被検体同定装置は、 ( 2 - 2 ) の逆フィルタ生成手段を内蔵 し、 統計的相違の推定もしくは検定の対象となる 2つの統計的変量群双方を その装置で採取する構成を備えているが、 逆フィルタ、 およびそれら 2つの 統計的変量群のうちの基準となる一方の統計的変量群はあらかじめ求められ てその装置に内蔵されてもよい。
すなわちそのように構成された本発明の第 2の被検体同定装置は、 (3- 1 ) 逆フィルタと複数の所定の統計的変量とを記憶する第 1の記憶手 段
(3 - 2) 被検体の所定の物理量を測定して該所定の物理量を担持する時系 列信号を得るセンサ
(3 -3) センサにより得られた時系列信号に、 第 1の記憶手段に記憶され た逆フィルタを作用させることにより残差信号を求め残差信号に基づいて上 記所定の統計的変量を求める変量演算手段
(3 -4) 変量演算手段で求められた上記所定の統計的変量を複数記憶する 第 2の記憶手段
( 3 - 5 ) 第 1の記憶手段に記憶された複数の上記所定の統計的変量と、 第
2の記憶手段に記憶された複数の上記所定の統計的変量との間の統計的相違 を推定もしくは検定する統計手段
を備えたことを特徴とする。
また、 本発明の被検体同定システムは、
(4- 1 ) 被検体に対し所定の位置関係を有する位置に設置された、 少なく とも 1つの音圧センサ
(4- 2) 上記音圧センサを複数の各方向に向けるセンサ姿勢制御装置 (4- 3) 上記音圧センサにより得られた音信号に基づいて逆フィルタを生 成する逆フィル夕生成手段、 上記音圧センサにより得られた複数の音信号 に、 上記逆フィルタ生成手段により生成された逆フィルタを作用させること により残差信号を求め該残差信号に基づいて所定の統計的変量を求める変量 演算手段、 上記変量演算手段で求められた上記所定の統計的変量を複数記憶 する記憶手段、 および上記記憶手段に記憶された複数の前記所定の統計的変 量が少なくとも 2つの群に分けられてなる各群間の統計的相違の推定もしく は検定を行なう統計手段を有するモニタ装置
を備えたことを特徴とする。 任意の時系列信号は、 適当な線型系に白色雑音を入力したときの出力と見 なすことができる。 与えられた時系列信号から対応する線型系を決定するこ とは、 線型予測分析と呼ばれ、 確立した手法が存在する。 通常そのようにし て求められるものに、 自己回帰モデル (ARモデル) がある。 これは標本 化、 離散化された時系列信号を X (n) 、 n= l、 2、 ··· とする時、 第 n 時点の信号 X (n) をそれ以前の M個の時点のデータから次のようにして決 定するものである。
X (η) =- ∑ Ακ X (n- k) + e (n) ( 1 ) ここで e (n) は線型系への仮想的な入力信号であって、 白色雑音であ る。 時系列信号が与えられた時、 そのデータから係数の組 {Ak } を求める ことにより、 その時系列信号に対する自己回帰モデルが決定される。
いま係数の組 {Ak } が求まった時、 時系列信号データ {X (n) } を用 いて Y (n) を次のように定義する。 この時 Y (n) は X (n) の線型予測 値といわれる。
Υ (η) =- ∑ Ακ X (n- k) … (2)
k = i
そこで次のような量を計算すると、 ( 1 ) 、 (2) 式から、
X (n) -Y (n) =e (n) - (3)
となり、 残差は白色雑音となる。 つまり、 第 n時点の時系列信号データ X (n) から、 それ以前の Mケのデータから求めた予測値 Y (n) を減じる と、 入力の白色雑音が得られる。 ここでは、 X (n) から予測値 Y (n) を 減じて残差 e (n) を求めることを、 逆フィルタを作用させると称してい る。 このようにある時系列信号を適切な自己回帰モデルで表すことができれ ば、 それを用いて構成された逆フィルタを元の時系列信号に作用させること により、 白色雑音を得る。 すなわち、 入力信号は、 逆フィルタにより白色化 される。 この場合、 入力時系列信号が逆フィル夕の設計時に用いた信号その ものでなくてもよく、 その自己回帰モデルが同一のものすなわち同じ特性の 信号であれば、 出力として白色化された信号を得ることができる。 ただし、 時系列信号の特性が設計に用いたそれと異なっていた場合には、 逆フィル夕 を作用させても白色化はされず、 白色雑音は得られない。
そこで、 例えば正常時の作動音や振動等 (以下、 作動音等と称する) を担 持する第 1の時系列信号を用いて、 逆フィルタを構成し、 任意の時点で作動 音等を担持する新たな第 2の時系列信号を得、 この第 2の時系列信号に逆フ ィルタを作用させて出力を監視することにより、 正常時とは異なる時系列信 号 (残差信号) を検出することが出来る。
本発明の特徴の 1つは、 上述した特開平 7— 4 3 2 5 9号公報に開示され た手法と同様、 上記のように正常状態の被検出装置等から得られた第 1の時 系列信号に基づいて逆フィルタを構成しておき、 被検出装置等から得られた 第 2の時系列信号にこの逆フィルタを作用させて残差信号を求めるものであ るため、 この残差信号は、 いわば正常状態における第 1の時系列信号との 「 相違」 を表す信号であり、 またこの残差信号は、 時系列的な Mケのデータの 単純な重みづけ加算により線型予測値 Y ( n ) を求め (上記 (2 ) 式) 、 差 を演算する (上記 (3 ) 式) だけで求められ、 したがって実時間的に単純な 演算で済む。
ところで、 第 1の時系列信号と第 2の時系列信号との 「相違」 を表わす残 差信号を求めても、 前述したスチームトラップの例のように、 常にはその 「 相違」 は存在せず、 例えば正常な状態と異常な状態等、 分離しょうとしてい る 2つの事象が重なることがある。 このような場合、 「相違」 を正確に求め ただけでは未だ不充分である。
そこで本発明では、 統計的変量が求められ、 統計的変量群どうしの統計的 な有意差が推定もしくは検定される。 これにより、 第 1の被検体と第 2の被 検体との相違の有無の検定ないし相違の程度の推定が高精度に行なわれる。 以上説明したように、 本発明によれば、 被検体に何らかの変化が生じたか 否かの高精度な検定、 もしくはその変化の程度の高精度な推定を行なうこと ができる。 図面の簡単な説明
第 1図は、 本発明の被検体同定方法の一実施形態を示すフローチャートで ある。
第 2図は、 暗騒音の平滑化パワースペクトルである。
第 3図は、 第 2図にパワースぺクトルを示す 1 0個の各区間の暗騒音に逆 フィルタを作用させた後の残差信号の平滑化パワースぺクトルを示した図で ある。
第 4図は、 ガスの洩れが存在しているときに収録した信号の、 1 0個の区 切り区間の平滑化パワースぺクトルを示した図である。
第 5図は、 第 4図にパワースペクトルを示す信号に、 第 2図に示す暗騒音 に作用させて第 3図に示す残差信号を生成した際の逆フィルタと同一の逆フ ィル夕を作用させた後の残差信号のパワースぺクトルを示した図である。 第 6図は、 2つの統計的変量 (最大値一最小値) 群の各ヒス卜グラムを示 した図である。
第 7図は、 スチームトラップによる間欠的な洩れが生じた瞬間に収録した 音を所定時間毎に区切ったときの各区切り区間内の音信号の平滑化パワース ベクトルを 1 0区間分示した図である。
第 8図は、 第 7図に示す音信号に、 暗騒音のみによる信号から得た逆フィ ルタを作用させたときの残差信号のパワースぺクトルを示した図である。 第 9図は、 他の機会におけるスチームトラップによる間欠的な洩れが生じ 2 た瞬間に収録した音を所定時間毎に区切ったときの各区切り区間内の音信号 の平滑化パワースぺクトルを 1 0区間分示した図である。
第 1 0図は、 第 9図に示す音信号に、 暗騒音のみによる信号から得た逆フ ィル夕を作用させたときの残差信号のパワースぺクトルを示した図である。 第 1 1図は、 本発明の第 1の被検体同定装置の一実施形態のブロック図で ある。
第 1 2図は、 本発明の第 2の被検体同定装置の一実施形態のブロック図で ある。
第 1 3図は、 本発明の被検体同定システムの一実施形態の模式図である。 発明を実施するための最良の形態
以下、 本発明の実施形態について説明する。
ここでは、 周囲にスチーム用配管設備やその他暗騒音源が存在するという 環境を含めた、 可燃性ガス配管設備を、 本発明にいう第 1の被検体、 かつ第 2の被検体とし、 可燃性ガス配管設備におけるその配管の腐食等による開孔 や亀裂からのガス漏洩の存在の有無を検定する場合について説明する。 ただ し、 可燃性ガスによる実験は危険が伴うために、 以下に示す実験データは、 可燃性ガスに代えて配管にエアーを充満させ、 腐食開孔等に代えて人工開孔 等を用いて行なった実験によるものである。 ただし、 記載の都合上、 人工開 孔等からのエア一漏れも、 ガス漏れと表現されている。
第 1図は、 本発明の被検体同定方法の一実施形態を示すフローチャートで ある。
ここでは、 先ずステップ (a ) において、 対象とする可燃性ガス配管設備 が置かれた場所の暗騒音が複数回収録される。
次に、 ステップ (b ) において、 収録された複数回の暗騒音信号のうちの ある 1つの暗騒音信号に基づいて逆フィル夕が生成され、 ステップ (c ) に 3 おいて、 その逆フィルタ生成の基になった暗騒音信号を除く他の複数の暗騒 音信号にその逆フィルタを作用させて複数の残差信号を求める。 ステップ
( d) ではそれら複数の残差信号それぞれのパワースぺクトルが求められ、 ステップ (e) では、 本発明にいう所定の統計的変量の一例として、 そのパ ワースぺクトルの所定の周波数帯域内における最大値と最小値が抽出され
(最大値一最小値) が求められる。
次に、 ステップ (f ) 〜 ( i ) において、 暗騒下での、 可燃性ガス配管か ら可燃性ガスの漏洩に起因する音を収録して、 同様の過程により、 (最大値 一最小値) を求める。
次に、 ステップ (e) で求められた (最大値一最小値) の群と、 ステップ ( i ) で求められた (最大値一最小値) の群との間に有意差があるか否かの 検定を行なう。
ここでは、 先ずステップ j ) において、 F検定が行なわれる。 F検定と は、 2つの統計的変量群 (ここでの例では (最大値一最小値) の群) の各分 散 σχ 2 , oy 2 の間に有意差が存在するか否かを検定する手法であり、 概 略、 以下の手順による ( 「品質管理講座 新編 統計的方法」 森口繁ー編 日本規格協会 参照) 。
( 1 ) 仮説の設定 H。 : σ χ 2 =c?y 2
(2) 不偏分散 Vx , Vy を求める。 その自由度を、 それぞれ ら , φν とする。
(3) 分散比を求める
Vx ≥Vy のとき F。 = Vx /Vy
1 = Φ x , Φ 2 = Φ y とする
Vx < Vy のとき F。 = Vy /Vx
Φ ι = Φν , Φ 2 = Φχ とする
(4) 判定 4
F o ≥ F Φ , , ψ 2 ( 0 . 0 2 5 ) ならば、 仮説 Η。 を棄却する (危険率 5 %) 。
ここで、 F Φ i , φ 2 ( 0. 0 2 5 ) は、 自由度 (< , ζ ) の F分布 の上側確率 0. 0 2 5の点である。
ステップ (k ) では、 F検定において有意差が存在するか否か、 すなわち 上記 (4 ) において仮説 H。 が棄却されたか否かが判定され、 有意差が存在 する場合、 すなわち仮説 H。 が棄却された場合、 ステップ (n) に進み、 ガ • ス洩れがあると判定される。
また、 ステップ (k ) において有意差がないと判定されると、 ステップ ( 1 ) に進み、 今度は t検定が行なわれる。 t検定とは、 2つの統計的変量 群の各平均の間に有意差が存在するか否かを検定する手法であり、 概略、 以 下の手順による (上述の参考文献 参照) 。
( 1 ) 仮説の設定
H o : = w。 (母平均 wは w。 に等しい) 。
ここでは、 2つの統計的変量群のうちの一方の、 基準となる統計的変量群 の平均を 。 、 他方の統計的変量群 (サンプル) の平均を としたとき、 と 。 が統計的に等しい ( = w。 ) か否かを検出する。
( 2 ) サンプルの平均 <x>と不偏分散 Vを求める。
( 3 ) サンプルの平均 <x>の標準偏差 V" (V/N) を求める。 ここで、 Nはサンプル数を表わす。
( 4 ) 次の式で t。 を求める。
t。 = (< χ〉一 /1。 ) / {7" (V/N) }
( 5 ) 判定
| t。 | ≥ t ( N— 1 , 0 . 0 5 ) ならば仮説 H。 を棄却する (危険率 5 %) 。
ここで、 t ( N - 1 , 0 . 0 5 ) は、 自由度 Φ = N — 1の t分布の両側 5
5 %の点である。
ステップ (m ) では、 ステップ ( 1 ) における t検定において有意差が存 在する (仮説 H。 が棄却された) か否かが判定され、 有意差が存在する場 合、 ガス洩れがあると判定され、 上述の F検定に続き、 t検定でも有意差が 存在しない場合、 ガス洩れは無いと判定される。
第 2図は、 第 1図に示すステップ (a ) で収録された暗騒音の平滑化パヮ 一スぺクトルである。 この第 2図および以降に説明する同様の各図におい て、 横軸は周波数 (k H z ) 、 縦軸はパワー (d B ) を示している。 また、 ここでは、 取録される信号に 2 0 k H z〜l 0 0 k H zのバンドパスフィル タを作用させている。
この第 2図には、 収録した暗騒音を所定の時間長毎に区切り、 各区切り区 間内の暗騒音のパワースペクトルが、 1 0個の区切り区間について示されて いる。
第 3図は、 第 1図に示すステップ (c ) において、 第 2図にパワースぺク トルを示す 1 0個の各区間の暗騒音に逆フィルタを作用させた後の残差信号 の平滑化パワースペクトルを示した図である (ステップ (d ) 参照) 。 ここでは、 第 2図にパワースぺクトルを示す 1 0個の区切り区間内の暗騒 音以外の、 同一条件で収録された別の区切り区間内の暗騒音に基づいて生成 された逆フィルタを用いている。 尚、 複数の区切り区間内の暗騒音に基づい て、 それらの平均的な逆フィルタを構成してもよい。
第 3図に示すように、 暗騒音はほとんどきれいに除去されている。
ステップ (e ) では、 各残差信号それぞれのパワースペクトルの、 5 0 k H z〜 1 0 0 k H zの区間内における最大値と最小値との差を統計的変量 として抽出する。
第 4図は、 第 1図に示すステップ (f ) における、 ガス洩れが存在してい るときに収録した信号の、 1 0個の区切り区間の平滑化パワースぺクトルを 示した図、 第 5図は、 第 4図にパワースペクトルを示す信号に、 ステップ ( b ) において生成された、 第 2図に示す暗騒音に作用させて第 3図に示す 残差信号を生成した際の逆フィルタと同一の逆フィルタを作用させた後の残 差信号の平滑化パワースぺクトルを示した図である。
ステップ ( i ) では、 第 5図に示す各残差信号それぞれのパワースぺク卜 ルの、 5 0 k H z〜l 0 0 k H zの区間内における最大値と最小値との差が 統計的変量として抽出される。
第 6図は、 ステップ (e ) で抽出された統計的変量 (最大値 -最小値) 8 0個とステップ ( i ) で抽出された統計的変量 (最大値一最小値) 2 0 0 個の各ヒストグラムを示した図である。 横軸は各統計的変量の値、 縦軸はそ の値を有する統計的変量のサンブル数を示している。 斜線部は、 ステップ ( e ) で抽出された暗騒音の統計的変量、 白抜部は、 ステップ ( i ) で抽出 された、 ガス洩れによる音を含む信号に関する統計的変量である。
この第 6図に示すように、 2つの統計的変量群のヒス卜グラムが重ならな いときは、 その中間にしきい値を設定することにより、 ガス洩れがあるか否 か判別されるが、 前述したように、 正常な状態で間欠的にスチームを漏出さ せるスチームトラッブが存在すると、 2つの統計的変量群のヒストグラムに 重なりが生じ、 単純にはしきい値を設定することはできない。
第 7図は、 スチームトラップによる間欠的なスチームの洩れが生じた瞬間 に収録した音を所定時間毎に区切ったときの各区切り区間内の音信号の平滑 化パワースペクトルを 1 0区間分示した図、 第 8図は、 第 7図に示す音信号 に、 暗騒音のみによる信号から得た逆フィルタを作用させたときの残差信号 の平滑化パワースぺクトルを示した図である。
また、 第 9図、 第 1 0図は、 他の機会における、 スチームトラップによる 間欠的なスチームの洩れが生じた瞬間に収録した音の、 それぞれ第 7図、 第 8図と同様な図である。 7 これらの図から容易に想像されるように、 統計的変量 (最大値一最小値) は、 異常なガス漏れが存在しているときの統計的変量 (第 6図の斜線部) と 一部重なることになり、 単純なしきい値処理では高精度な判定は不可能であ る。
そこで、 本実施形態では、 第 1図のステップ 〜 (m ) により、 統計 的に有意差があるか否かが判定される。 これにより、 第 7図〜第 1 0図に示 すスチームトラップによる "正常な洩れ" は、 暗騒音のみのときと同様に " 正常" と判定させ、 連続した "異常な洩れ" のみを "異常" と判定させるこ とができる。
このように、 本実施形態によれば、 正常状態における現象と異常状態にお ける現象との中間的な現象が存在する場合であっても、 正常、 異常を正確に 判定することができる。
尚、 第 1図に示す実施形態では、 F検定と t検定との双方の検定を行な レ、、 いずれか一方でも有意差があるときに "洩れあり" としているカ^ これ は、 本発明を何に適用するかに応じて異なってよく、 例えば F検定ないし t 検定の一方のみで有意差の有無を判定することができる場合はその一方のみ を行なってもよく、 また適用例によっては、 F検定と t検定との双方で有意 差があつたときにはじめて有意差があると判定してもよい。 また、 F検定、 "t検定以外の統計的検定手法を採用してもよい。 また、 上述の実施形態では 有意差の有無を危険率 5 %で検定を行なっているが、 目的に応じ、 あるいは 本発明の適用分野等に応じ、 任意の危険率で検定を行なうことができる。 あ るいは、 検定は行なわずに、 分散や平均値のずれの程度をそのまま用いても よい。 分散や平均値のずれの程度をそのまま用いる手法は、 "洩れが存在す る" 、 "漏れは存在しない" といった二値的な判定を行なう適用分野ではな く、 例えばモータの作動音が初期状態の作動音からどの程度変化し、 故障な いし不良を生じる恐れがどの程度高まったかといつた、 故障ないし不良の生 じる可能性等を推定する分野に有効である。
表 1は、 前述した実施形態において、 可燃性ガス配管に種々の大きさの人 ェ的な欠陥 (孔ないしスリット) を形成し、 配管内のガス圧と、 音を収録す る際のその人工的な欠陥との間の距離とを種々に変化させたときに、 欠陥が 存在することが正しく判定されるか否かを示した表である。
表 1 距 離
条 件 圧力 1 m 2m 4m 5 m
(MPa)
0 . 5 mm ( L) 0. 1 一 〇 〇 一
0. 2 一 〇 一 ノノ 0. 4 〇
1 . 0 議 Φ (孔) 0. 1 〇 〇 〇
〃 0. 2 〇 〇 〇 ノノ 0. 3 〇 〇 ノノ 0. 4 〇 〇 〇
2 . 0 mm (孔) 0. 1 〇 〇 ノノ 0. 2 〇 〇
0. 3 〇 〇 ノノ 0. 4 〇 〇 〇
1 0議 X 0. 1 mm (スリッ h) 0. 1 〇 ノノ 0. 2 〇 ノノ 0. 3 〇 ノ / 0. 4 〇
1 0 mm x l . ό mm (スリッ卜) 0. 1 〇
〃 0. 2 〇 ノノ 0. 3 〇 ノノ 0. 4 〇 この表 1中、 "〇" 印は、 洩れが存在せず暗騒音のみの場合、 およびスチ ームトラップによる "正常な洩れ" が存在する場合の双方が "正常" と判定 され、 人工欠陥による "異常な洩れ" が存在する場合に "異常" と判定され たことを示し、 "一" 印は、 実験を行なわなかったことを示している。 すなわち、 この表 1は、 ここに示す全ての実験で正しい判定が行なわれた ことを示している。
尚、 上記の実施例では、 ステップ (e ) において、 5 0 k H z〜; L 0 0 k H zの区間内における最大値と最小値との差を統計的変量として抽出した が、 2 5 k H z〜5 0 k H zの区間内における最大値と最小値との差を統計 的変量として抽出した場合も、 上記と同様に良好な結果が得られた。 このよ うに、 統計的変量を抽出するための超音波帯域はかなり自由に選択すること ができる。
第 1 1図は、 本発明の第 1の被検体同定装置の一実施形態のブロック図で ある。 ここでは、 この第 1 1図に示す装置を用いて、 可燃性ガス配管設備の 正常、 異常を検定する場合について説明する。
超音波マイクロホン 1 0により、 先ず暗騒音が収録され、 その暗騒音の最 初の時間区間の信号が逆フィルタ生成部 1 1に入力される。 逆フィルタ生成 部 1 1では、 入力された暗騒音信号に基づいて逆フィルタが生成される。 超音波マイクロホン 1 0では引き続き暗騒音が収音され、 その収音された 暗騒音信号は、 逆フィル夕作用部 1 2に入力される。 逆フィルタ作用部 1 2 では、 入力された暗騒音信号を所定時間長毎に区切り、 各区切り区間内の暗 騒音信号に、 逆フィルタ生成部 1 1で生成された逆フィルタを作用させ、 各 残差信号を求める。 この逆フィルタ作用部 1 2で生成された各残差信号は、 変量演算部 1 3に入力される。 変量演算部 1 3では、 入力された各残差信号 の平滑化パワースぺクトルが演算され、 5 0 k H z〜l 0 0 k H zの間の、 その平滑化パワースぺクトルの最大値と最小値が抽出され、 統計的変量とし て (最大値一最小値) が求められる。
このようにして求められた統計的変量は、 変量記憶部 1 4に記憶される。 次に、 図示しないスィッチを切り換え、 上記の暗騒音のときと同様にして 収音されて統計的変量が求められ、 変量記憶部 1 4に記憶される。 ただし、 この際は、 逆フィルタ生成部 1 1では新たな逆フィルタは生成せず、 逆フィ ルタ作用部 1 2では、 スィッチを切換える前、 すなわち暗騒音のときに生成 された逆フィルタがそのまま用いられる。
このようにして変量記憶部 1 4に 2つの統計的変量群が格納されると、 そ れら 2つの統計的変量群が検定部 1 5に入力される。 検定部 1 5では、 前述 した F検定と t検定とにより、 それら 2つの統計的変量群の間に統計的な有 意差が存在するか否かが検定され、 表示部 1 6において、 その検定の結果が 表示される。
第 1 2図は、 本発明の第 2の被検体同定装置の一実施形態のブロック図で ある。 第 1 1図に示す実施形態におけるブロックに対応するブロックには、 第 1 1図に付した番号と同一の番号を付して示し、 相違点のみについて説明 する。
第 1 2図に示す装置には、 第 1 1図に示す逆フィルタ生成部 1 1に代わ り、 暗騒音に基づいて生成された逆フィルタと、 暗騒音にその逆フィルタを 作用させたときの残差信号に基づく統計的変量を記憶する記憶部 1 7が備え られている。
単機能的な装置の場合、 逆フィルタと暗騒音に関する統計的変量は、 一度 生成するだけでもよいため、 例えば図示しないパーソナルコンピュータ等で 生成されて、 この第 1 2図に示す装置の、 記憶部 1 7に格納される。 その他 は、 第 1 1図に示す実施形態の場合と同様である。
尚、 第 1 1図, 第 1 2図に示す実施形態における、 例えば逆フィルタ作用 部 1 2や変量演算部 1 3等における各演算は、 各専用のハードウェアで構成 してもよいが、 一般的には、 コンピュータシステムにおけるソフトウェアで 実現される。 2 第 1 3図は、 本発明の被検体同定システムの一実施形態の模式図である。 多数本の可燃性ガス配管設備が存在する工場内の 1力所もしくは複数箇所 (第 1 3図には 1つのみ図示) にポール 2 1が立設され、 その上端部に超音 波をセンスするための超音波マイクロホン 1 0が備えられている。 この超音 波マイクロホン 1 0に狙った方向からの音のみが入力されように、 この超音 波マイクロホン 1 0には、 超音波マイクロホン 1 0の先端が向いた方向に開 □ 2 2 aを有するフード 2 2が被せられている。 このフード付超音波マイク 口ホン 1 0は、 この超音波マイクロホン 1 0の向きを制御する姿勢制御装置 2 3に取り付けられており、 この超音波マイクロホン 1 0は、 姿勢制御装置 2 3により上下方向 (図示の A - A方向) および左右方向 (図示の B - B方 向) の向きが制御される。 姿勢制御装置 2 3は、 超音波マイクロホン 1 0 力 あらかじめ決められたシーケンスに従って、 間欠的に種々の方向を向い てはまた初期の方向を向くように、 循環的に、 その超音波マイクロホン 1 0 の向きを制御する。
超音波マイクロホン 1 0で収録された超音波信号は、 ケーブル 2 4を経由 して、 例えば集中管理室等に設置された、 コンピュータシステムで構成され るモニタ装置 2 5に入力される。 モニタ装置 2 5では、 第 1 1図の各部 1 1 〜 1 6に対応する機能がソフトウユアを使って実現されており、 モニタ装置 2 5では、 先ず、 工場内の配管全てが正常な状態にある場合において、 超音 波マイクロホン 1 0が各方向を向く毎にその方向を向いた超音波マイクロホ ン 1 0で収録される超音波信号に基づいて、 その方向に対応する逆フィル タ、 およびその方向 対応する、 基準となる統計的変量群が求められる。 モニ夕装置 2 5では、 以後、 監視状態に入り、 超音波マイクロホン 1 0が 各方向を向く毎に、 その方向に対応する超音波信号に逆フィルタを作用させ て統計的変量群を求め、 その統計的変量群と基準となる統計的変量群との間 に統計的有意差が存在するか否かの検定が行なわれ、 その検定結果が表示画 面 2 5 a上に表示される。
尚、 上記のシステムでは、 超音波マイクロホン 1 0は間欠的に種々の方向 を向くとして説明したが、 超音波マイクロホン 1 0を、 連続的に種々の方向 に向けてもよい。
以上の各実施形態は、 音 (超音波) を収録して音どうしに有意差が存在す るか否かを検定する例であるが、 本発明において対象とする物理量は、 超音 波等の音に限らず、 あらゆる物理量に適用可能である。 また、 上述の各実施 形態は可燃性ガス配管の洩れの有無の検定に、 本発明を適用した例である 力、 本発明は被検体が限定されるものではなく、 極めて広い適用分野を有す るものである。

Claims

請 求 の 範 囲
1 . 所定の第 1の被検体から所定の物理量を担持する複数の第 1の時系列 信号を得る第 1過程と、
前記複数の第 1の時系列信号のうちの少なくとも 1つの第 1の時系列信号 に基づいて逆フィルタを構成する第 2過程と、
前記複数の第 1の時系列信号のうちの少なくとも一部からなる複数の第 1 の時系列信号それぞれに前記逆フィルタを作用させることにより複数の第 1 の残差信号を求める第 3過程と、
前記複数の第 1の残差信号に基づいて複数の所定の統計的変量を求める第 4過程と、
所定の第 2の被検体から前記所定の物理量を担持する複数の第 2の時系列 信号を得る第 5過程と、
前記第 2の時系列信号それぞれに前記逆フィルタを作用させることにより 複数の第 2の残差信号を求める第 6過程と、
前記複数の第 2の残差信号に基づいて複数の前記所定の統計的変量を求め る第 7過程と、
前記第 4過程で求められた複数の統計的変量と前記第 7過程で求められた 複数の統計的変量との間の統計的相違を推定もしくは検定する第 8過程とを 有することを特徴とする被検体同定方法。
2 . 前記第 4過程が、 前'記複数の第 1の残差信号それぞれの、 少なくとも —部の周波数帯域のパワースぺクトルを求める過程と、 該パワースぺクトル に基づいて所定の統計的変量を求める過程とを有し、
前記第 7過程が、 前記複数の第 2の残差信号それぞれの、 少なくとも一部 の周波数帯域のパワースぺクトルを求める過程と、 該パワースぺクトルに基 づいて前記所定の統計的変量を求める過程とを有することを特徴とする請求 の範囲第 1項記載の被検体同定方法。
3 . 前記第 8過程が、 母分散及び/又は母平均の相違を推定もしくは検定 するものであることを特徴とする請求の範囲第 1項又は第 2項記載の被検体 同定方法。
4 . 前記第 1の被検体と前記第 2の被検体が、 互いに同一もしくは同種の 被検体であることを特徴とする請求の範囲第 1項から第 3項のうちいずれか 1項記載の被検体同定方法。
5 . 被検体の所定の物理量を測定して該所定の物理量を担持する時系列信 号を得るセンサと、
前記センサにより得られた時系列信号に基づいて逆フィルタを生成する逆 フィルタ生成手段と、
前記センサにより得られた複数の時系列信号に、 前記逆フィルタ生成手段 により生成された逆フィル夕を作用させることにより残差信号を求め該残差 信号に基づいて所定の統計的変量を求める変量演算手段と、
前記変量演算手段で求められた前記所定の統計的変量を複数記憶する記憶 手段と、
前記記憶手段に記憶された複数の前記所定の統計的変量が少なくとも 2つ の群に分けられてなる各群間の統計的相違の推定もしくは検定を行なう統計 手段とを備えたことを特徴とする被検体同定装置。
6 . 逆フィルタと複数の所定の統計的変量とを記憶する第 1の記憶手段 と、 被検体の所定の物理量を測定して該所定の物理量を担持する時系列信号を 得るセンサと、
前記センサにより得られた時系列信号に、 前記第 1の記憶手段に記憶され た逆フィルタを作用させることにより残差信号を求め該残差信号に基づいて 前記所定の統計的変量を求める変量演算手段と、
前記変量演算手段で求められた前記所定の統計的変量を複数記憶する第 2 の記憶手段と、
前記第 1の記憶手段に記憶された複数の前記所定の統計的変量と、 前記第 2の記憶手段に記憶された複数の前記所定の統計的変量との間の統計的相違 を推定もしくは検定する統計手段とを備えたことを特徴とする被検体同定装
7 . 被検体に対し所定の位置関係を有する位置に設置された、 少なくとも 1つの音圧センサと、
前記音圧センサを複数の各方向に向けるセンサ姿勢制御装置と、 前記音圧センサにより得られた音信号に基づいて逆フィルタを生成する逆 フィルタ生成手段、 前記音圧センサにより得られた複数の音信号に、 前記逆 フィルタ生成手段により生成された逆フィルタを作用させることにより残差 信号を求め該残差信号に基づいて所定の統計的変量を求める変量演算手段、 前記変量演算手段で求められた前記所定の統計的変量を複数記憶する記憶手 段、 および前記記憶手段に記憶された複数の前記所定の統計的変量が少なく とも 2つの群に分けられてなる各群間の統計的相違の推定もしくは検定を行 なう統計手段を有するモニタ装置とを備えたことを特徴とする被検体同定シ ステム。
PCT/JP1996/000266 1995-05-12 1996-02-08 Procede, dispositif et systeme de determination de changements dans un specimen WO1996035926A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/716,208 US5798459A (en) 1995-05-12 1996-02-08 Subject identification method, apparatus and system
EP96901961A EP0770854B1 (en) 1995-05-12 1996-02-08 Method, apparatus and system for determining specimen
DK96901961T DK0770854T3 (da) 1995-05-12 1996-02-08 Fremgangsmåde, apparat og system til bestemmelse af prøver
DE69621739T DE69621739T2 (de) 1995-05-12 1996-02-08 Verfahren, vorrichtung und system zur bestimmung der änderungen eines prüfkörpers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/114366 1995-05-12
JP11436695A JP3358167B2 (ja) 1995-05-12 1995-05-12 被検体同定方法、装置およびシステム

Publications (1)

Publication Number Publication Date
WO1996035926A1 true WO1996035926A1 (fr) 1996-11-14

Family

ID=14635923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000266 WO1996035926A1 (fr) 1995-05-12 1996-02-08 Procede, dispositif et systeme de determination de changements dans un specimen

Country Status (7)

Country Link
US (1) US5798459A (ja)
EP (1) EP0770854B1 (ja)
JP (1) JP3358167B2 (ja)
KR (1) KR100426227B1 (ja)
DE (1) DE69621739T2 (ja)
DK (1) DK0770854T3 (ja)
WO (1) WO1996035926A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6389881B1 (en) 1999-05-27 2002-05-21 Acoustic Systems, Inc. Method and apparatus for pattern match filtering for real time acoustic pipeline leak detection and location
JP2002312870A (ja) * 2001-04-13 2002-10-25 Tlv Co Ltd 携帯型ガス検出器
WO2003007302A1 (en) 2001-07-09 2003-01-23 Seagate Technology Llc Early leak detection system for a disc drive containing a low-density gas
US6819517B2 (en) 2001-07-31 2004-11-16 Seagate Technology Llc Disc drive servo track writer gas leak detector and method
JP2003106893A (ja) * 2001-09-28 2003-04-09 Yamatake Sangyo Systems Co Ltd 異常監視装置および異常監視プログラム
WO2003038816A1 (en) 2001-10-30 2003-05-08 Seagate Technology Llc Disc drive servo track writer utilizing low-density gas
US6898043B2 (en) * 2002-05-20 2005-05-24 Seagate Technology Llc Dual stage enclosure for servo track writer utilizing low-density gas
JP2004020484A (ja) * 2002-06-19 2004-01-22 Yamatake Corp 異常監視装置および異常監視プログラム
WO2007092054A2 (en) 2006-02-06 2007-08-16 Specht Donald F Method and apparatus to visualize the coronary arteries using ultrasound
EP2088932B1 (en) 2006-10-25 2020-04-08 Maui Imaging, Inc. Method and apparatus to produce ultrasonic images using multiple apertures
US9282945B2 (en) 2009-04-14 2016-03-15 Maui Imaging, Inc. Calibration of ultrasound probes
JP5193714B2 (ja) * 2008-07-18 2013-05-08 Jx日鉱日石エネルギー株式会社 配管亀裂診断装置及び配管の亀裂診断方法
JP5666446B2 (ja) 2008-08-08 2015-02-12 マウイ イマギング,インコーポレーテッド マルチアパーチャ方式の医用超音波技術を用いた画像形成方法及びアドオンシステムの同期方法
JP5485373B2 (ja) * 2009-04-14 2014-05-07 マウイ イマギング,インコーポレーテッド 複数開口の超音波アレイ位置合せ装置
JP6274724B2 (ja) 2010-02-18 2018-02-07 マウイ イマギング,インコーポレーテッド 多開口超音波撮像を用いた点音源送信及び音速補正
WO2012051305A2 (en) 2010-10-13 2012-04-19 Mau Imaging, Inc. Multiple aperture probe internal apparatus and cable assemblies
EP3563768A3 (en) 2010-10-13 2020-02-12 Maui Imaging, Inc. Concave ultrasound transducers and 3d arrays
WO2013082455A1 (en) 2011-12-01 2013-06-06 Maui Imaging, Inc. Motion detection using ping-based and multiple aperture doppler ultrasound
CN104080407B (zh) 2011-12-29 2017-03-01 毛伊图像公司 任意路径的m模式超声成像
JP6438769B2 (ja) 2012-02-21 2018-12-19 マウイ イマギング,インコーポレーテッド 多数開口超音波を用いた物質の硬度の決定
IN2014DN07243A (ja) 2012-03-26 2015-04-24 Maui Imaging Inc
JP6270843B2 (ja) 2012-08-10 2018-01-31 マウイ イマギング,インコーポレーテッド 多数開口超音波プローブの校正
WO2014031642A1 (en) 2012-08-21 2014-02-27 Maui Imaging, Inc. Ultrasound imaging system memory architecture
US9510806B2 (en) 2013-03-13 2016-12-06 Maui Imaging, Inc. Alignment of ultrasound transducer arrays and multiple aperture probe assembly
US9883848B2 (en) 2013-09-13 2018-02-06 Maui Imaging, Inc. Ultrasound imaging using apparent point-source transmit transducer
JP6722656B2 (ja) 2014-08-18 2020-07-15 マウイ イマギング,インコーポレーテッド ネットワークベース超音波イメージングシステム
JP6463205B2 (ja) * 2015-04-02 2019-01-30 株式会社テイエルブイ 蒸気システムの故障判定装置および故障判定方法
CN108778530B (zh) 2016-01-27 2021-07-27 毛伊图像公司 具有稀疏阵列探测器的超声成像
GB2563351B (en) * 2016-02-26 2021-07-21 Nec Corp Piping diagnostic device, piping diagnostic method, discriminant-problem optimizing device, discriminant-problem optimizing method, criteria distribution ge
JP6694320B2 (ja) * 2016-04-28 2020-05-13 株式会社工技研究所 地下タンクの漏洩検査装置及び検査方法
US10620170B2 (en) 2017-01-30 2020-04-14 Latency, LLC Systems, methods, and media for detecting abnormalities in equipment that emit ultrasonic energy into a solid medium during failure
JP7035442B2 (ja) * 2017-10-18 2022-03-15 中国電力株式会社 ホール検知装置
DE102022122295A1 (de) 2022-09-02 2024-03-07 Gestra Ag Verfahren und Sensoreinrichtung zur akustischen Überwachung einer Messstelle an einer fluiddurchströmten Armatur und betreffende Sensoreinrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142424A (ja) * 1983-02-03 1984-08-15 Mitsubishi Electric Corp 異常検出装置
JPS60123730A (ja) * 1983-12-07 1985-07-02 Mitsubishi Electric Corp 異常検出装置
JPS60146834U (ja) * 1984-03-09 1985-09-30 東京瓦斯株式会社 ガスの漏洩位置検知器
JPH0743259A (ja) * 1992-05-29 1995-02-14 Hokkaido Univ 異常検出方法及び装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60146834A (ja) * 1983-12-29 1985-08-02 Kitasato Inst:The 歯周炎抑制用抗体の製法及び同抗体を含有する歯周炎抑制用組成物
GB8727178D0 (en) * 1987-11-20 1987-12-23 British Petroleum Co Plc Monitoring accoustic emissions
US4882668A (en) * 1987-12-10 1989-11-21 General Dynamics Corp., Pomona Division Adaptive matched filter
US4980844A (en) * 1988-05-27 1990-12-25 Victor Demjanenko Method and apparatus for diagnosing the state of a machine
JP2919685B2 (ja) * 1992-11-02 1999-07-12 シャープ株式会社 信号識別回路
US5477730A (en) * 1993-09-07 1995-12-26 Carter; Duncan L. Rolling element bearing condition testing method and apparatus
US5623402A (en) * 1994-02-10 1997-04-22 Schenck Pegasus Corporation Multi-channel inverse control using adaptive finite impulse response filters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142424A (ja) * 1983-02-03 1984-08-15 Mitsubishi Electric Corp 異常検出装置
JPS60123730A (ja) * 1983-12-07 1985-07-02 Mitsubishi Electric Corp 異常検出装置
JPS60146834U (ja) * 1984-03-09 1985-09-30 東京瓦斯株式会社 ガスの漏洩位置検知器
JPH0743259A (ja) * 1992-05-29 1995-02-14 Hokkaido Univ 異常検出方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0770854A4 *

Also Published As

Publication number Publication date
KR100426227B1 (ko) 2004-07-01
EP0770854A4 (en) 1999-12-01
DE69621739D1 (de) 2002-07-18
EP0770854B1 (en) 2002-06-12
EP0770854A1 (en) 1997-05-02
DK0770854T3 (da) 2002-07-15
DE69621739T2 (de) 2002-12-19
JPH08304124A (ja) 1996-11-22
US5798459A (en) 1998-08-25
JP3358167B2 (ja) 2002-12-16

Similar Documents

Publication Publication Date Title
WO1996035926A1 (fr) Procede, dispositif et systeme de determination de changements dans un specimen
JP4610649B2 (ja) 化学検出システムを診断する装置および方法
Song et al. Gas leak detection in galvanised steel pipe with internal flow noise using convolutional neural network
CN103968256B (zh) 油库管道泄漏检测方法
US8638226B2 (en) Method and device for determining a leak in a system component and/or for determining a state of a system component
JP2913552B1 (ja) 音響法による空調用フアン及びポンプの異常機器識別方法
KR20200040553A (ko) 음향 방출 센서를 이용한 결함 추정 장치 및 결함 추정 방법
JPH04296299A (ja) スチームトラップの監視方法及び監視装置並びに診断方法及び診断装置並びにスチームトラップ製造ライン
JP2575810B2 (ja) 弁漏洩監視装置
Fukuda et al. Pipeline inspection and maintenance by applications of computer data processing and robotic technology
Begovich et al. Comparison of two detection algorithms for pipeline leaks
Kampelopoulos et al. Applying one class classification for leak detection in noisy industrial pipelines
JP2023540897A (ja) バルブを有するパイプラインの密閉性を監視し、漏れを検出する方法
CN112182959A (zh) 一种配水管网泄漏检测方法
Ostapkowicz et al. Detection of multiple leaks in liquid transmission pipelines using static flow model
RU2800565C1 (ru) Способ определения присосов воздуха в вакуумной системе паротурбинных установок
CN111828845A (zh) 基于人工智能的管道自动检漏方法
Sheng et al. Gas leakage detection system using Kalman filter
Han et al. Application of time-frequency image feature extraction method based on gray level co-occurrence matrix in coal mine pipeline leakage detection
CN113464711B (zh) 一种基于振动测量技术的阀门内漏监测系统及方法
KR102584912B1 (ko) 음향방출신호 및 진동가속도의 측정에 의한 유체수송관의 감육 탐지 장치 및 방법
EP4227659A1 (en) Method and system for detection of leakages in process industry
Yerra et al. Sequential state logic for pneumatic valve monitoring using piezo film sensors
Li Pipeline Leak Detection and Localization Based on Advanced Signal Processing and Negative Pressure Wave Analysis
Kousiopoulos et al. Acoustic method for leak size estimation in fluid-carrying pipelines

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1996901961

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019960705590

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08716208

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996901961

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996901961

Country of ref document: EP