WO1996038853A1 - A field emission display device - Google Patents

A field emission display device Download PDF

Info

Publication number
WO1996038853A1
WO1996038853A1 PCT/US1996/007991 US9607991W WO9638853A1 WO 1996038853 A1 WO1996038853 A1 WO 1996038853A1 US 9607991 W US9607991 W US 9607991W WO 9638853 A1 WO9638853 A1 WO 9638853A1
Authority
WO
WIPO (PCT)
Prior art keywords
work function
effective work
low effective
function material
cathode
Prior art date
Application number
PCT/US1996/007991
Other languages
French (fr)
Inventor
Nalin Kumar
Original Assignee
Microelectronics And Computer Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microelectronics And Computer Technology Corporation filed Critical Microelectronics And Computer Technology Corporation
Publication of WO1996038853A1 publication Critical patent/WO1996038853A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/316Cold cathodes, e.g. field-emissive cathode having an electric field parallel to the surface, e.g. thin film cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/127Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • H01J61/0675Main electrodes for low-pressure discharge lamps characterised by the material of the electrode
    • H01J61/0677Main electrodes for low-pressure discharge lamps characterised by the material of the electrode characterised by the electron emissive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J63/00Cathode-ray or electron-stream lamps
    • H01J63/06Lamps with luminescent screen excited by the ray or stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/027Manufacture of electrodes or electrode systems of cold cathodes of thin film cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30403Field emission cathodes characterised by the emitter shape
    • H01J2201/30426Coatings on the emitter surface, e.g. with low work function materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30457Diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/316Cold cathodes having an electric field parallel to the surface thereof, e.g. thin film cathodes
    • H01J2201/3165Surface conduction emission type cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/319Circuit elements associated with the emitters by direct integration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8625Spacing members

Definitions

  • This invention relates in general to flat panel displays for computers and the like, and, more particularly, to flat panel displays that are of a field emission type with flat cathode emitters.
  • Field emission computer displays in the general sense, are not new. For years there have been displays that comprise a plurality of field emission cathodes and corresponding anodes (field emission devices ("FEDs”)), the anodes emitting light in response to electron bombardment from the corresponding cathodes.
  • FEDs field emission devices
  • FIGURE 1 there is illustrated a portion of a display device 10 produced in accordance with the prior art teachings of micro-tipped cathodes.
  • Display 10 includes an anode comprising glass substrate 15, conductive layer 20 and phosphor layer 16, which may comprise any known phosphor material capable of emitting photons in response to bombardment by electrons.
  • the cathode comprises substrate 11 , which may be comprised of glass, on which micro-tip 12 has been formed.
  • Micro-tip 12 has often been comprised of a metal such as molybdenum, or a semiconductor material such as silicon, or a combination of molybdenum and silicon.
  • a metal layer 17 may be deposited on substrate 11.
  • Metal layer 17 is conductive and operable for providing an electrical potential to the cathode.
  • Dielectric film 13 is deposited on top of metal layer 17.
  • Dielectric layer 13 may comprise an silicon-oxide material.
  • a second electrode 14 is deposited upon dielectric layer 13 to act as a gate electrode for the operation of display 10.
  • Device 10 operates by the application of an electrical potential between gate electrode 14 and layer 17 to cause the field emission of electrons from micro-tip 12 to phosphor layer 16.
  • an electrical potential may also be applied to metal layer 20 between glass substrate 15 and phosphor layer 16.
  • One or more of anode conductive layer 20, gate electrode 14 and metal layer 17 may be individually addressable in a manner so that pixels within a display may be individually addressed in a matrix addressable configuration.
  • micro-tip 12 is comprised of a submicro-tip 18 which may consist of such materials as a conductive metal (e.g., molybdenum) with layer 19 formed thereon.
  • Layer 19 has typically comprised any well-known low work function material.
  • micro-tip cathodes require extensive fabrication facilities to finely tailor the micro-tips to a conical shape.
  • it is very difficult to build large area field emitters because cone size is limited by the lithography equipment.
  • diode structure FED panels require high voltage drivers, increasing the overall display system cost.
  • this forces the use of lower anode voltages, which limits the maximum panel efficiency and brightness.
  • the present invention satisfies the foregoing needs by providing a flat panel display comprising a flat cathode that is thinner than prior flat cathode structures.
  • the pixel structure is produced by coating an appropriate substrate with a thin strip of a non-homogenous low effective work function ("LWF") material such as a cermet, CVD (chemical vapor deposition) diamond films, aluminum nitrite, gallium nitrite, or amorphic diamond.
  • LWF low effective work function
  • the above pixel structure can be used to fabricate a cathode plate for a matrix addressable FED panel.
  • the present invention may be referred to as having a triode structure (three terminals, or electrodes), though the structure of the present invention is dissimilar to typical triode structure FEDs.
  • Advantages of the present invention include low power dissipation, high intensity and projected low cost to manufacture. Another advantage of the present invention is that a reduced driver voltage is required increasing the power efficiency of a resultant display panel.
  • cathode structure has a less number of layers than prior flat cathode triode structures, resulting in reduced manufacturing time.
  • FIGURE 1 illustrates a prior art triode structure FED pixel
  • FIGURE 2 illustrates another prior art triode structure FED pixel
  • FIGURE 3 illustrates a portion of a flat cathode triode structure pixel
  • FIGURE 4 illustrates one embodiment of the present invention
  • FIGURE 5 illustrates a second embodiment of the present invention
  • FIGURE 6 illustrates a portion of a cathode or a flat panel display implemented in accordance with the present invention.
  • FIGURE 7 illustrates a data processing system in accordance with the present invention.
  • FIGURE 3 there is illustrated a portion of a flat panel display comprising a triode structure pixel employing a flat cathode as disclosed within Serial No. 07/993,863.
  • Display 30 comprises an anode which may be configured in the same way as described earlier.
  • the anode may comprise a glass substrate 15, with a conductive layer 20 disposed thereover and a phosphor layer 16 disposed over conductive layer 20.
  • An electrical potential may be applied to conductive layer 20 for producing the required electric field as described below.
  • the cathode comprises substrate 32, which may have a conductive layer (not shown) deposited thereon, such as shown in FIGURE 2.
  • Flat cathode emitter 31 is then deposited and may comprise a low effective work function material such as amorphic diamond.
  • Dielectric film 33 is then deposited on substrate 32 in order to support gate electrode 34. Electrical potentials may be applied to conductive layer 20, gate electrode 34 and the conducting layer on substrate 32 (not shown). The operation of display 30 is as described within Serial No. 07,993,863.
  • FIGURE 4 there is illustrated a portion of display 40 configured in accordance with the teachings of the present invention.
  • Display 40 is somewhat based upon the structure and operation of display 30.
  • the anode is as described above with respect to FIGURE 3.
  • the cathode comprises substrate 42 which may consist of glass, whereon a thin layer 41 of a non-homogenous LWF material such as cermet, CVD diamond films, aluminum nitrite, gallium nitrite, or amorphic diamond has been deposited thereon.
  • cermet is an acronym for ceramic and metal, which may be a mixture of an insulating material and a highly conducting material.
  • Amorphic diamond is as described in Serial Nos. 07/993,863 and 07/995,846 referenced above.
  • layer 41 comprises two primary portions 45 and 46. There may be one each of portions 45 and 46 within layer 41 or a plurality of each.
  • Portion 45 comprises a metal or conductive material (e.g., aluminum, chromium, titanium, molybdenum, graphite), while portion 46 may comprise an insulating material (e.g., diamond, amorphic diamond, aluminum nitrite, gallium nitrite, silicon dioxide).
  • insulating material e.g., diamond, amorphic diamond, aluminum nitrite, gallium nitrite, silicon dioxide.
  • What is essential is the interface 47 between materials 45 and 46. It is conducting-insulating interface 47 where electrons are released upon an application of an electric field (a few volts to 50 volts) between conducting strips 43 and 44. These electrons are then attracted to phosphor layer 16 by an electric field (100-30,000 volts) between the anode and cathode, which is assisted by the application of a potential to conducting layer 20 in the anode
  • FIGURE 4 illustrates that pixel 40 is operable with only one conducting- insulating interface within cathode 41.
  • Cathode 41 may be fabricated using the following described process. Note, the structures illustrated in FIGURES 5 and 6 may also be constructed using the following fabrication process.
  • Substrate 42 which may be glass or ceramic, is coated with a thin layer, typically 0.001-1 micron thick, of LWF material using any one of several appropriate deposition techniques.
  • a standard photolithographic process involving coating of a photoresist, exposure through a mask, development of the photoresist, and etching of the LWF material in order to define the LWF layer into pixel or sub-pixel sized strips or patches of cathode 41. (In FIGURE 6, such a pixel patch is shown as item 51.)
  • a metal contact deposition followed by a standard photolithography to define the electrical contact areas 43 and 44.
  • FIGURE 5 there is shown another embodiment of the present invention whereby pixel 50 comprises an anode similar to the one described with respect to FIGURE 4 and a cathode, which may be comprised with layer 51 of cermet or amorphic diamond.
  • the cermet or amorphic diamond may have many interfaces 47 between conducting material 45 and insulating material 46. These conducting- insulating interfaces 47 have electrons hop up from the interface 47 due to a low voltage applied across metal contacts 43 and 44.
  • Electrodes 43 and 44 may be comprised of aluminum, chromium, titanium, molybdenum, or graphite.
  • Electrode layer 20 may be comprised of indium tin oxide (ITO).
  • FIGURE 6 there is illustrated a portion of a matrix addressable flat panel display.
  • the portion illustrated is a top view of four pixels (e.g., pixel 40 or 50) addressable in a manner well-known in the art.
  • a cathode layer 51 may be addressed by the application of a voltage potential across electrodes 43 and 44 in a matrix-addressable manner.
  • cathode layer 51 may be replaced by cathode layer 41, shown in FIGURE 4.
  • the matrix addressing of pixels may be performed as discussed within Serial No. 07/995,846 or U.S. Patent No. 5,015,912, which is hereby incorporated by reference herein.
  • FIGURE 7 illustrates a typical hardware configuration of a workstation in accordance with the subject invention having central processing unit 710, such as a conventional microprocessor, and a number of other units interconnected via system bus 712.
  • central processing unit 710 such as a conventional microprocessor
  • system bus 712 interconnects system bus 712.
  • the workstation shown in FIGURE 7 includes random access memory (RAM) 714, read only memory (ROM) 716, and input/output (I O) adapter 718 for connecting peripheral devices such as disk units 720 and tape drives 740 to bus 712, user interface adapter 722 for connecting keyboard 724, mouse 726, speaker 728, microphone 732, and/or other user interface devices such as a touch screen device (not shown) to bus 712, communication adapter 734 for connecting the workstation to a data processing network, and display adapter 736 for connecting bus 712 to display device 738.
  • RAM random access memory
  • ROM read only memory
  • I O input/output
  • Display device 738 may be configured as an FED display in accordance with the teachings of the present invention.

Abstract

A matrix addressable flat panel display includes a flat cathode (31) operable for emitting electrons to an anode (15) when an electric field is produced across the surface of the flat cathode by two electrodes (34) placed on each side of the flat cathode. The flat cathode (31) may consist of a cermet or amorphic diamond or some other combination of a conducting material and an insulating material such as a low effective work function material. The electric field produced causes electrons to hop on the surface of the cathode (31) at the conducting-insulating interfaces. An electric field produced between the anode (15) and the cathode (31) causes these electrons to bombard a phosphor layer (16) on the anode (15).

Description

A FIELD EMISSION DISPLAY DEVICE
RELATED APPLICATIONS
This application is a continuation-in-part of Serial No. 07/993,863, which was filed on December 23, 1992, which is a continuation-in-part of Serial No. 07/851,701, filed March 16, 1992, which was abandoned and refiled as a continuation application
Serial No. 08/300,771. These applications are incorporated herein by reference.
CROSS REFERENCE TO RELATED APPLICATION
This application for patent is related to the following application for patent filed concurrently herewith:
A METHOD OF MAKING A FIELD EMITTER, Serial No. 08/AAA,AAA (8520-P018US).
TECHNICAL FIELD QF THE INVENTION
This invention relates in general to flat panel displays for computers and the like, and, more particularly, to flat panel displays that are of a field emission type with flat cathode emitters. BACKGROUND OF THE INVENTION
Field emission computer displays, in the general sense, are not new. For years there have been displays that comprise a plurality of field emission cathodes and corresponding anodes (field emission devices ("FEDs")), the anodes emitting light in response to electron bombardment from the corresponding cathodes.
For a discussion on the nature of field emission, please refer to the referenced parent application, Serial No. 07/993,863, which is hereby incorporated by reference herein. Micro-tipped cathodes have been well-known in the art for several years.
Please refer to U.S. Patent Nos. 3,665,241, 3,755,704, 3,789,471, 3,812,559, 4,857,799, and 5,015,912, each issued to Spindt, et al., for teachings of micro-tipped cathodes and the use of micro-tipped cathodes within triode pixel (three electrodes) displays.
Referring to FIGURE 1, there is illustrated a portion of a display device 10 produced in accordance with the prior art teachings of micro-tipped cathodes.
Display 10 includes an anode comprising glass substrate 15, conductive layer 20 and phosphor layer 16, which may comprise any known phosphor material capable of emitting photons in response to bombardment by electrons.
The cathode comprises substrate 11 , which may be comprised of glass, on which micro-tip 12 has been formed. Micro-tip 12 has often been comprised of a metal such as molybdenum, or a semiconductor material such as silicon, or a combination of molybdenum and silicon. A metal layer 17 may be deposited on substrate 11. Metal layer 17 is conductive and operable for providing an electrical potential to the cathode. Dielectric film 13 is deposited on top of metal layer 17. Dielectric layer 13 may comprise an silicon-oxide material.
A second electrode 14 is deposited upon dielectric layer 13 to act as a gate electrode for the operation of display 10. Device 10 operates by the application of an electrical potential between gate electrode 14 and layer 17 to cause the field emission of electrons from micro-tip 12 to phosphor layer 16. Note, an electrical potential may also be applied to metal layer 20 between glass substrate 15 and phosphor layer 16. One or more of anode conductive layer 20, gate electrode 14 and metal layer 17 may be individually addressable in a manner so that pixels within a display may be individually addressed in a matrix addressable configuration.
Referring next to FIGURE 2, there is shown an alternative embodiment of display 10 wherein micro-tip 12 is comprised of a submicro-tip 18 which may consist of such materials as a conductive metal (e.g., molybdenum) with layer 19 formed thereon. Layer 19 has typically comprised any well-known low work function material.
As was discussed in Serial No. 07/993,863 referenced above, fabrication of micro-tip cathodes requires extensive fabrication facilities to finely tailor the micro-tips to a conical shape. At the same time, it is very difficult to build large area field emitters because cone size is limited by the lithography equipment. In addition, it is difficult to perform very fine feature lithography on large area substrates, as required by flat panel display type applications.
The viability of producing a flat cathode using amorphic diamond thin films and building diode structure field emission display panels using such cathodes has been shown in U.S. Patent Application Serial No. 07/995,846, which is also a continuation-in-part application of Serial No. 07/851,701 referenced above. Serial No. 07/995,846 is owned by a common assignee of the present invention. Serial No. 07/995,846 is hereby incorporated by reference herein. Such flat cathodes overcome many of the above-noted problems associated with micro- tipped cathodes.
However, diode structure FED panels require high voltage drivers, increasing the overall display system cost. In addition, this forces the use of lower anode voltages, which limits the maximum panel efficiency and brightness.
Thus, there is a need in the art to develop an FED pixel structure that will work with flat cathodes and will not require fine conical or pyramid-shaped features
(i.e., micro-tipped cathodes), yet overcomes the problems associated with diode structure FED panels.
SUMMARY OF THE INVENTION
The present invention satisfies the foregoing needs by providing a flat panel display comprising a flat cathode that is thinner than prior flat cathode structures. The pixel structure is produced by coating an appropriate substrate with a thin strip of a non-homogenous low effective work function ("LWF") material such as a cermet, CVD (chemical vapor deposition) diamond films, aluminum nitrite, gallium nitrite, or amorphic diamond. When a low voltage is applied to metal contacts attached to the two ends of the thin strip, electrons flow under the applied electric field atop the LWF strip. Due to the non-homogenous nature of the cathode film, electrons hop across the conducting-insulating interface's) integrated within the LWF material. It is well known that electrons will "hop" across such a conducting-insulating interface in materials having such interfaces such as those materials listed above. Such a phenomenon is sometimes referred to as "hopping conduction." If the insulating phase has a low or negative electron affinity, a fraction of these electrons can be removed by a very low electric field applied with the help of a third electrode associated with the anode placed above the cathode strip. A thin film of 100-10,000 angstroms thickness may be used in such a structure. The minimum feature sizes are on the order of a pixel size, and no micro-tips or grid structures are needed.
The above pixel structure can be used to fabricate a cathode plate for a matrix addressable FED panel.
The present invention may be referred to as having a triode structure (three terminals, or electrodes), though the structure of the present invention is dissimilar to typical triode structure FEDs.
Advantages of the present invention include low power dissipation, high intensity and projected low cost to manufacture. Another advantage of the present invention is that a reduced driver voltage is required increasing the power efficiency of a resultant display panel.
Yet another advantage of the present invention is that the cathode structure has a less number of layers than prior flat cathode triode structures, resulting in reduced manufacturing time.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention.
BRIEF DESCRIPTION OF THE DRAWING
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
FIGURE 1 illustrates a prior art triode structure FED pixel; FIGURE 2 illustrates another prior art triode structure FED pixel; FIGURE 3 illustrates a portion of a flat cathode triode structure pixel; FIGURE 4 illustrates one embodiment of the present invention; FIGURE 5 illustrates a second embodiment of the present invention;
FIGURE 6 illustrates a portion of a cathode or a flat panel display implemented in accordance with the present invention; and
FIGURE 7 illustrates a data processing system in accordance with the present invention.
DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT OF THE
INVENTION
In the following description, numerous specific details are set forth to provide a thorough understanding of the present invention. However, it will be obvious to those skilled in the art that the present invention may be practiced without such specific details. In other instances, well-known circuits have been shown in block diagram form in order not to obscure the present invention in unnecessary detail. For the most part, details concerning timing considerations and the like have been omitted inasmuch as such details are not necessary to obtain a complete understanding of the present invention and are within the skills of persons of ordinary skill in the relevant art.
Refer now to the drawings wherein depicted elements are not necessarily shown to scale and wherein like or similar elements are designated by the same reference numeral through the several views. Referring to FIGURE 3, there is illustrated a portion of a flat panel display comprising a triode structure pixel employing a flat cathode as disclosed within Serial No. 07/993,863.
Display 30 comprises an anode which may be configured in the same way as described earlier. The anode may comprise a glass substrate 15, with a conductive layer 20 disposed thereover and a phosphor layer 16 disposed over conductive layer 20. An electrical potential may be applied to conductive layer 20 for producing the required electric field as described below.
The cathode comprises substrate 32, which may have a conductive layer (not shown) deposited thereon, such as shown in FIGURE 2. Flat cathode emitter 31 is then deposited and may comprise a low effective work function material such as amorphic diamond. Dielectric film 33 is then deposited on substrate 32 in order to support gate electrode 34. Electrical potentials may be applied to conductive layer 20, gate electrode 34 and the conducting layer on substrate 32 (not shown). The operation of display 30 is as described within Serial No. 07,993,863.
Referring next to FIGURE 4, there is illustrated a portion of display 40 configured in accordance with the teachings of the present invention. Display 40 is somewhat based upon the structure and operation of display 30.
The anode is as described above with respect to FIGURE 3. The cathode comprises substrate 42 which may consist of glass, whereon a thin layer 41 of a non-homogenous LWF material such as cermet, CVD diamond films, aluminum nitrite, gallium nitrite, or amorphic diamond has been deposited thereon. Cermet is an acronym for ceramic and metal, which may be a mixture of an insulating material and a highly conducting material. Amorphic diamond is as described in Serial Nos. 07/993,863 and 07/995,846 referenced above.
In FIGURE 4, layer 41 comprises two primary portions 45 and 46. There may be one each of portions 45 and 46 within layer 41 or a plurality of each. Portion 45 comprises a metal or conductive material (e.g., aluminum, chromium, titanium, molybdenum, graphite), while portion 46 may comprise an insulating material (e.g., diamond, amorphic diamond, aluminum nitrite, gallium nitrite, silicon dioxide). What is essential is the interface 47 between materials 45 and 46. It is conducting-insulating interface 47 where electrons are released upon an application of an electric field (a few volts to 50 volts) between conducting strips 43 and 44. These electrons are then attracted to phosphor layer 16 by an electric field (100-30,000 volts) between the anode and cathode, which is assisted by the application of a potential to conducting layer 20 in the anode.
FIGURE 4 illustrates that pixel 40 is operable with only one conducting- insulating interface within cathode 41. Cathode 41 may be fabricated using the following described process. Note, the structures illustrated in FIGURES 5 and 6 may also be constructed using the following fabrication process.
Substrate 42, which may be glass or ceramic, is coated with a thin layer, typically 0.001-1 micron thick, of LWF material using any one of several appropriate deposition techniques. This is followed by a standard photolithographic process, involving coating of a photoresist, exposure through a mask, development of the photoresist, and etching of the LWF material in order to define the LWF layer into pixel or sub-pixel sized strips or patches of cathode 41. (In FIGURE 6, such a pixel patch is shown as item 51.) This is followed by a metal contact deposition followed by a standard photolithography to define the electrical contact areas 43 and 44.
An alternative fabrication method could include fabrication of metal contact areas 43 and 44 over substrate 42 prior to depositing LWF patches 41. LWF patches 41 may be fabricated by use of shadow mask techniques instead of photolithography. Referring next to FIGURE 5, there is shown another embodiment of the present invention whereby pixel 50 comprises an anode similar to the one described with respect to FIGURE 4 and a cathode, which may be comprised with layer 51 of cermet or amorphic diamond. The cermet or amorphic diamond may have many interfaces 47 between conducting material 45 and insulating material 46. These conducting- insulating interfaces 47 have electrons hop up from the interface 47 due to a low voltage applied across metal contacts 43 and 44. These electrons are then caused to bombard phosphor layer 16 by the application of a voltage between the anode and cathode as described above. Electrodes 43 and 44 may be comprised of aluminum, chromium, titanium, molybdenum, or graphite. Electrode layer 20 may be comprised of indium tin oxide (ITO).
Referring next to FIGURE 6, there is illustrated a portion of a matrix addressable flat panel display. The portion illustrated is a top view of four pixels (e.g., pixel 40 or 50) addressable in a manner well-known in the art. As can be seen, a cathode layer 51 may be addressed by the application of a voltage potential across electrodes 43 and 44 in a matrix-addressable manner. Note, cathode layer 51 may be replaced by cathode layer 41, shown in FIGURE 4.
The matrix addressing of pixels may be performed as discussed within Serial No. 07/995,846 or U.S. Patent No. 5,015,912, which is hereby incorporated by reference herein.
A representative hardware environment for practicing the present invention is depicted in FIGURE 7, which illustrates a typical hardware configuration of a workstation in accordance with the subject invention having central processing unit 710, such as a conventional microprocessor, and a number of other units interconnected via system bus 712. The workstation shown in FIGURE 7 includes random access memory (RAM) 714, read only memory (ROM) 716, and input/output (I O) adapter 718 for connecting peripheral devices such as disk units 720 and tape drives 740 to bus 712, user interface adapter 722 for connecting keyboard 724, mouse 726, speaker 728, microphone 732, and/or other user interface devices such as a touch screen device (not shown) to bus 712, communication adapter 734 for connecting the workstation to a data processing network, and display adapter 736 for connecting bus 712 to display device 738.
Display device 738 may be configured as an FED display in accordance with the teachings of the present invention.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims

WHAT IS CLAIMED IS:
1. A field emission cathode comprising: a low effective work function material; and means operable for producing an electric field across a surface of said low effective work function material.
2. The cathode recited in claim 1 , wherein said low effective work function material is non-homogenous.
3. The cathode recited in claim 2, wherein said non-homogenous low effective work function material has at least one interface between conducting and insulating materials.
4. The cathode as recited in claim 3, wherein said non-homogenous low effective work function material is a cermet.
5. The cathode as recited in claim 3, wherein said non-homogenous low effective work function material is amorphic diamond.
6. The cathode as recited in claim 3, wherein said non-homogenous low effective work function material is polycrystalline CVD diamond.
7. The cathode as recited in claim 1, further comprising: a substrate, wherein said low effective work function material is deposited as a thin strip on said substrate having a substantially flat surface parallel to a surface of said substrate.
8. The cathode as recited in claim 1, wherein said means operable for producing an electric field across a surface of said low effective work function material further comprises first and second electrodes made of a conductive material.
9. The cathode as recited in claim 1, further comprising: a substrate, wherein said low effective work function material is deposited as a thin strip on said substrate having a substantially flat surface substantially parallel to a surface of said substrate, wherein said means operable for producing an electric field across a surface of said low effective work function material further comprises first and second electrodes made of a conductive material, wherein said first and second electrodes are deposited adjacent separate portions of said thin strip.
10. The cathode as recited in claim 8, wherein said low effective work function material is operable for emitting electrons from said surface when a first voltage potential is applied between said first and second electrodes.
11. A field emission cathode comprising: a substrate; a non-homogenous low effective work function material, wherein said non-homogenous low effective work function material is deposited as a thin strip on said substrate having a substantially flat surface substantially parallel to a surface of said substrate, wherein said non-homogenous low effective work function material has at least one interface between conducting and insulating materials; and first and second electrodes made of a conductive material operable for producing an electric field across a surface of said non-homogenous low effective work function material, wherein said first and second electrodes are deposited adjacent separate portions of said thin strip.
12. The cathode as recited in claim 11, wherein said non-homogenous low effective work function material is amorphic diamond.
13. A field emission display device comprising: a cathode comprising: a substrate; a low effective work function material deposited on said substrate; and means operable for producing an electric field across a surface of said low effective work function material resulting in an extraction of electrons from said low effective work function material; an anode including a luminescent material operable for emitting photons in response to receipt of said electrons; and means operable for directing said electrons from said cathode to said anode.
14. The device recited in claim 13, wherein said means operable for directing said electrons from said cathode to said anode further comprises means for applying an electric field between said anode and said cathode.
15. The device recited in claim 14, wherein said low effective work function material is non-homogenous.
16. The device recited in claim 15, wherein said non-homogenous low effective work function material has at least one interface between conducting and insulating materials.
17. The device as recited in claim 15, wherein said non-homogenous low effective work function material is a cermet.
18. The device as recited in claim 15, wherein said non-homogenous low effective work function material is amorphic diamond.
19. The device as recited in claim 15, wherein said low effective work function material is deposited as a thin strip on said substrate having a substantially flat surface substantially parallel to a surface of said substrate.
20. The device as recited in claim 19, wherein said means operable for producing an electric field across a surface of said low effective work function material further comprises first and second electrodes made of a conductive material.
21. The device as recited in claim 20, further comprising means for addressing said first and second electrodes in a matrix-addressable manner.
22. A data processing system comprising a processor, a storage device, a memory device, an input device, an output device, and a display device coupled via a bus, said display device further comprising a field emission cathode comprising: a substrate; a non-homogenous low effective work function material, wherein said non-homogenous low effective work function material is deposited as a thin strip on said substrate, wherein said non-homogenous low effective work function material has at least one interface between conducting and insulating materials; and first and second electrodes made of a conductive material operable for producing an electric field across a surface of said non-homogenous low effective work function material.
23. The system as recited in claim 22, wherein said electric field results in an extraction of electrons from said low effective work function material, said system further comprising: an anode including a luminescent material operable for emitting photons in response to receipt of said electrons; and means operable for directing said electrons from said cathode to said anode.
24. The system recited in claim 23, wherein said means operable for directing said electrons from said cathode to said anode further comprises means for applying an electric field between said anode and said cathode.
25. The system as recited in claim 24, wherein said non-homogenous low effective work function material is a cermet.
26. The system as recited in claim 22, wherein said non-homogenous low effective work function material is amorphic diamond.
27. The system as recited in claim 26, further comprising means for addressing said first and second electrodes in a matrix-addressable manner.
28. The system as recited in claim 22, wherein said first and second electrodes are deposited on said substrate adjacent said thin strip of non-homogenous low effective work function material.
PCT/US1996/007991 1995-06-01 1996-05-30 A field emission display device WO1996038853A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/456,453 US5763997A (en) 1992-03-16 1995-06-01 Field emission display device
US08/456,453 1995-06-01

Publications (1)

Publication Number Publication Date
WO1996038853A1 true WO1996038853A1 (en) 1996-12-05

Family

ID=23812822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/007991 WO1996038853A1 (en) 1995-06-01 1996-05-30 A field emission display device

Country Status (2)

Country Link
US (1) US5763997A (en)
WO (1) WO1996038853A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1746620A2 (en) * 2005-07-19 2007-01-24 Samsung SDI Co., Ltd. Electron emission device, electron emission type backlight unit and flat display apparatus having the same
EP1758146A3 (en) * 2005-08-24 2008-09-03 Canon Kabushiki Kaisha Electron source and image display apparatus

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE39633E1 (en) 1987-07-15 2007-05-15 Canon Kabushiki Kaisha Display device with electron-emitting device with electron-emitting region insulated from electrodes
USRE40566E1 (en) 1987-07-15 2008-11-11 Canon Kabushiki Kaisha Flat panel display including electron emitting device
USRE40062E1 (en) 1987-07-15 2008-02-12 Canon Kabushiki Kaisha Display device with electron-emitting device with electron-emitting region insulated from electrodes
US6013980A (en) * 1997-05-09 2000-01-11 Advanced Refractory Technologies, Inc. Electrically tunable low secondary electron emission diamond-like coatings and process for depositing coatings
US6064148A (en) * 1997-05-21 2000-05-16 Si Diamond Technology, Inc. Field emission device
US6586872B2 (en) * 1997-09-03 2003-07-01 Canon Kabushiki Kaisha Electron emission source, method and image-forming apparatus, with enhanced output and durability
US6351254B2 (en) * 1998-07-06 2002-02-26 The Regents Of The University Of California Junction-based field emission structure for field emission display
US6328620B1 (en) * 1998-12-04 2001-12-11 Micron Technology, Inc. Apparatus and method for forming cold-cathode field emission displays
US6417627B1 (en) 1999-02-03 2002-07-09 Micron Technology, Inc. Matrix-addressable display with minimum column-row overlap and maximum metal line-width
US20020163294A1 (en) * 1999-02-17 2002-11-07 Ammar Derraa Methods of forming a base plate for a field emission display (fed) device, methods of forming a field emission display (fed) device,base plates for field emission display (fed) devices, and field emission display (fed) devices
EP2161735A3 (en) * 1999-03-05 2010-12-08 Canon Kabushiki Kaisha Image formation apparatus
US6590320B1 (en) 2000-02-23 2003-07-08 Copytale, Inc. Thin-film planar edge-emitter field emission flat panel display
US6580211B1 (en) * 2000-03-09 2003-06-17 Si Diamond Technology, Inc. Triode assembly for carbon cold cathode
GB0006762D0 (en) * 2000-03-22 2000-05-10 Smiths Industries Plc Displays
KR100343205B1 (en) * 2000-04-26 2002-07-10 김순택 Field emission array using carbon nanotube and fabricating method thereof
US6587097B1 (en) 2000-11-28 2003-07-01 3M Innovative Properties Co. Display system
US6911768B2 (en) * 2001-04-30 2005-06-28 Hewlett-Packard Development Company, L.P. Tunneling emitter with nanohole openings
FR2836279B1 (en) * 2002-02-19 2004-09-24 Commissariat Energie Atomique CATHODE STRUCTURE FOR EMISSIVE SCREEN
JP4112449B2 (en) * 2003-07-28 2008-07-02 株式会社東芝 Discharge electrode and discharge lamp
KR20050096534A (en) * 2004-03-31 2005-10-06 삼성에스디아이 주식회사 Cathode plate of electron emission display and method for manufacturing the same
US7501750B2 (en) * 2005-05-31 2009-03-10 Motorola, Inc. Emitting device having electron emitting nanostructures and method of operation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3259782A (en) * 1961-11-08 1966-07-05 Csf Electron-emissive structure
US4663559A (en) * 1982-09-17 1987-05-05 Christensen Alton O Field emission device
US5138237A (en) * 1991-08-20 1992-08-11 Motorola, Inc. Field emission electron device employing a modulatable diamond semiconductor emitter
US5141460A (en) * 1991-08-20 1992-08-25 Jaskie James E Method of making a field emission electron source employing a diamond coating

Family Cites Families (190)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1954691A (en) * 1930-09-27 1934-04-10 Philips Nv Process of making alpha layer containing alpha fluorescent material
US2851408A (en) * 1954-10-01 1958-09-09 Westinghouse Electric Corp Method of electrophoretic deposition of luminescent materials and product resulting therefrom
US2959483A (en) * 1955-09-06 1960-11-08 Zenith Radio Corp Color image reproducer and method of manufacture
US2867541A (en) * 1957-02-25 1959-01-06 Gen Electric Method of preparing transparent luminescent screens
US3070441A (en) * 1958-02-27 1962-12-25 Rca Corp Art of manufacturing cathode-ray tubes of the focus-mask variety
US3108904A (en) * 1960-08-30 1963-10-29 Gen Electric Method of preparing luminescent materials and luminescent screens prepared thereby
US3360450A (en) * 1962-11-19 1967-12-26 American Optical Corp Method of making cathode ray tube face plates utilizing electrophoretic deposition
US3314871A (en) * 1962-12-20 1967-04-18 Columbia Broadcasting Syst Inc Method of cataphoretic deposition of luminescent materials
US3525679A (en) * 1964-05-05 1970-08-25 Westinghouse Electric Corp Method of electrodepositing luminescent material on insulating substrate
US3481733A (en) * 1966-04-18 1969-12-02 Sylvania Electric Prod Method of forming a cathodo-luminescent screen
US3554889A (en) * 1968-11-22 1971-01-12 Ibm Color cathode ray tube screens
US3675063A (en) * 1970-01-02 1972-07-04 Stanford Research Inst High current continuous dynode electron multiplier
US3755704A (en) * 1970-02-06 1973-08-28 Stanford Research Inst Field emission cathode structures and devices utilizing such structures
US3789471A (en) * 1970-02-06 1974-02-05 Stanford Research Inst Field emission cathode structures, devices utilizing such structures, and methods of producing such structures
US3665241A (en) * 1970-07-13 1972-05-23 Stanford Research Inst Field ionizer and field emission cathode structures and methods of production
US3812559A (en) * 1970-07-13 1974-05-28 Stanford Research Inst Methods of producing field ionizer and field emission cathode structures
NL7018154A (en) * 1970-12-12 1972-06-14
JPS4889678A (en) * 1972-02-25 1973-11-22
US3898146A (en) * 1973-05-07 1975-08-05 Gte Sylvania Inc Process for fabricating a cathode ray tube screen structure
US3947716A (en) * 1973-08-27 1976-03-30 The United States Of America As Represented By The Secretary Of The Army Field emission tip and process for making same
US3970887A (en) * 1974-06-19 1976-07-20 Micro-Bit Corporation Micro-structure field emission electron source
JPS5436828B2 (en) * 1974-08-16 1979-11-12
US4075535A (en) * 1975-04-15 1978-02-21 Battelle Memorial Institute Flat cathodic tube display
CA1083266A (en) * 1975-06-27 1980-08-05 Hitachi, Ltd. Field emission cathode and method for preparation thereof
US4084942A (en) * 1975-08-27 1978-04-18 Villalobos Humberto Fernandez Ultrasharp diamond edges and points and method of making
US4164680A (en) * 1975-08-27 1979-08-14 Villalobos Humberto F Polycrystalline diamond emitter
US4168213A (en) * 1976-04-29 1979-09-18 U.S. Philips Corporation Field emission device and method of forming same
US4178531A (en) * 1977-06-15 1979-12-11 Rca Corporation CRT with field-emission cathode
US4141405A (en) * 1977-07-27 1979-02-27 Sri International Method of fabricating a funnel-shaped miniature electrode for use as a field ionization source
US4139773A (en) * 1977-11-04 1979-02-13 Oregon Graduate Center Method and apparatus for producing bright high resolution ion beams
SE411003B (en) * 1978-04-13 1979-11-19 Soredal Sven Gunnar FIELD EMISSION ISSUER, AS WELL AS PRODUCTION OF THE EMITER
US4350926A (en) * 1980-07-28 1982-09-21 The United States Of America As Represented By The Secretary Of The Army Hollow beam electron source
US4307507A (en) * 1980-09-10 1981-12-29 The United States Of America As Represented By The Secretary Of The Navy Method of manufacturing a field-emission cathode structure
US4507562A (en) * 1980-10-17 1985-03-26 Jean Gasiot Methods for rapidly stimulating luminescent phosphors and recovering information therefrom
DE3103293A1 (en) * 1981-01-31 1982-08-26 Standard Elektrik Lorenz Ag, 7000 Stuttgart VACUUM FLUOREZENCE DISPLAY MATRIX AND METHOD FOR THEIR OPERATION
DE3235724A1 (en) * 1981-10-02 1983-04-21 Futaba Denshi Kogyo K.K., Mobara, Chiba FLUORESCENT DISPLAY DEVICE
US4728851A (en) * 1982-01-08 1988-03-01 Ford Motor Company Field emitter device with gated memory
US4528474A (en) * 1982-03-05 1985-07-09 Kim Jason J Method and apparatus for producing an electron beam from a thermionic cathode
US4578614A (en) * 1982-07-23 1986-03-25 The United States Of America As Represented By The Secretary Of The Navy Ultra-fast field emitter array vacuum integrated circuit switching device
JPS6010120B2 (en) * 1982-09-14 1985-03-15 ソニー株式会社 Non-aqueous electrodeposition method of powder
US4498952A (en) * 1982-09-17 1985-02-12 Condesin, Inc. Batch fabrication procedure for manufacture of arrays of field emitted electron beams with integral self-aligned optical lense in microguns
US4513308A (en) * 1982-09-23 1985-04-23 The United States Of America As Represented By The Secretary Of The Navy p-n Junction controlled field emitter array cathode
DE3319526C2 (en) * 1983-05-28 1994-10-20 Max Planck Gesellschaft Arrangement with a physical sensor
FR2547828B1 (en) * 1983-06-23 1985-11-22 Centre Nat Rech Scient LUMINESCENT MATERIAL COMPRISING A SOLID MATRIX WITHIN A FLUORESCENT COMPOUND, ITS PREPARATION METHOD AND ITS USE IN A CELL
CA1266297A (en) * 1983-07-30 1990-02-27 Hideaki Nakagawa Luminescent display cell
JPS6038490A (en) * 1983-08-11 1985-02-28 Toshiba Corp White light-emitting phosphor mixture and cathode-ray tube using the same
JPS6074231A (en) * 1983-09-30 1985-04-26 Hitachi Ltd Method of manufacturing cathode ray tube
US4594527A (en) * 1983-10-06 1986-06-10 Xerox Corporation Vacuum fluorescent lamp having a flat geometry
US4816717A (en) * 1984-02-06 1989-03-28 Rogers Corporation Electroluminescent lamp having a polymer phosphor layer formed in substantially a non-crossed linked state
FR2561019B1 (en) * 1984-03-09 1987-07-17 Etude Surfaces Lab PROCESS FOR PRODUCING FLAT VISUALIZATION SCREENS AND FLAT SCREENS OBTAINED BY IMPLEMENTING SAID METHOD
JPS60207229A (en) * 1984-03-30 1985-10-18 Toshiba Corp Formation of phosphor screen of cathode-ray tube
JPS6110827A (en) * 1984-06-27 1986-01-18 Matsushita Electronics Corp Forming method of crt phosphor film
FR2568394B1 (en) * 1984-07-27 1988-02-12 Commissariat Energie Atomique DEVICE FOR VIEWING BY CATHODOLUMINESCENCE EXCITED BY FIELD EMISSION
US4633131A (en) * 1984-12-12 1986-12-30 North American Philips Corporation Halo-reducing faceplate arrangement
US4788472A (en) * 1984-12-13 1988-11-29 Nec Corporation Fluoroescent display panel having indirectly-heated cathode
JPS61142645A (en) * 1984-12-17 1986-06-30 Hitachi Ltd Ion source for combined use by positive and negative polarity
US4684353A (en) * 1985-08-19 1987-08-04 Dunmore Corporation Flexible electroluminescent film laminate
JPS6247050U (en) * 1985-09-10 1987-03-23
US5124558A (en) 1985-10-10 1992-06-23 Quantex Corporation Imaging system for mamography employing electron trapping materials
US5166456A (en) 1985-12-16 1992-11-24 Kasei Optonix, Ltd. Luminescent phosphor composition
FR2593953B1 (en) * 1986-01-24 1988-04-29 Commissariat Energie Atomique METHOD FOR MANUFACTURING A DEVICE FOR VIEWING BY CATHODOLUMINESCENCE EXCITED BY FIELD EMISSION
US4684540A (en) * 1986-01-31 1987-08-04 Gte Products Corporation Coated pigmented phosphors and process for producing same
US5015912A (en) * 1986-07-30 1991-05-14 Sri International Matrix-addressed flat panel display
US4857799A (en) * 1986-07-30 1989-08-15 Sri International Matrix-addressed flat panel display
GB8621600D0 (en) * 1986-09-08 1987-03-18 Gen Electric Co Plc Vacuum devices
US4685996A (en) * 1986-10-14 1987-08-11 Busta Heinz H Method of making micromachined refractory metal field emitters
FR2607623B1 (en) * 1986-11-27 1995-02-17 Commissariat Energie Atomique SOURCE OF POLARIZED SPIN ELECTRONS USING AN EMISSIVE MICROPOINT CATHODE, APPLICATION IN PHYSICS OF ELECTRON-MATERIAL OR ELECTRON-PARTICLE INTERACTIONS, PLASMA PHYSICS, ELECTRON MICROSCOPY
US4851254A (en) * 1987-01-13 1989-07-25 Nippon Soken, Inc. Method and device for forming diamond film
US4721885A (en) * 1987-02-11 1988-01-26 Sri International Very high speed integrated microelectronic tubes
US4822466A (en) * 1987-06-25 1989-04-18 University Of Houston - University Park Chemically bonded diamond films and method for producing same
US4818914A (en) * 1987-07-17 1989-04-04 Sri International High efficiency lamp
JPH063715B2 (en) * 1987-10-02 1994-01-12 双葉電子工業株式会社 Fluorescent display tube
US4855636A (en) * 1987-10-08 1989-08-08 Busta Heinz H Micromachined cold cathode vacuum tube device and method of making
FR2623013A1 (en) * 1987-11-06 1989-05-12 Commissariat Energie Atomique ELECTRO SOURCE WITH EMISSIVE MICROPOINT CATHODES AND FIELD EMISSION-INDUCED CATHODOLUMINESCENCE VISUALIZATION DEVICE USING THE SOURCE
JPH0693164B2 (en) * 1987-12-01 1994-11-16 双葉電子工業株式会社 Display device
US5153901A (en) 1988-01-06 1992-10-06 Jupiter Toy Company Production and manipulation of charged particles
US5123039A (en) 1988-01-06 1992-06-16 Jupiter Toy Company Energy conversion using high charge density
DE3817897A1 (en) * 1988-01-06 1989-07-20 Jupiter Toy Co THE GENERATION AND HANDLING OF CHARGED FORMS OF HIGH CHARGE DENSITY
US5054046A (en) * 1988-01-06 1991-10-01 Jupiter Toy Company Method of and apparatus for production and manipulation of high density charge
US5148461A (en) 1988-01-06 1992-09-15 Jupiter Toy Co. Circuits responsive to and controlling charged particles
US5089812A (en) 1988-02-26 1992-02-18 Casio Computer Co., Ltd. Liquid-crystal display
JPH02503728A (en) 1988-03-25 1990-11-01 トムソン‐セーエスエフ Method for manufacturing a field emission source and its application to manufacturing an emitter array
US4987007A (en) * 1988-04-18 1991-01-22 Board Of Regents, The University Of Texas System Method and apparatus for producing a layer of material from a laser ion source
US5098737A (en) 1988-04-18 1992-03-24 Board Of Regents The University Of Texas System Amorphic diamond material produced by laser plasma deposition
US4874981A (en) * 1988-05-10 1989-10-17 Sri International Automatically focusing field emission electrode
JP2630988B2 (en) * 1988-05-26 1997-07-16 キヤノン株式会社 Electron beam generator
US5285129A (en) 1988-05-31 1994-02-08 Canon Kabushiki Kaisha Segmented electron emission device
US4926056A (en) * 1988-06-10 1990-05-15 Sri International Microelectronic field ionizer and method of fabricating the same
US5063327A (en) * 1988-07-06 1991-11-05 Coloray Display Corporation Field emission cathode based flat panel display having polyimide spacers
US4923421A (en) * 1988-07-06 1990-05-08 Innovative Display Development Partners Method for providing polyimide spacers in a field emission panel display
US5185178A (en) 1988-08-29 1993-02-09 Minnesota Mining And Manufacturing Company Method of forming an array of densely packed discrete metal microspheres
US4956573A (en) * 1988-12-19 1990-09-11 Babcock Display Products, Inc. Gas discharge display device with integral, co-planar, built-in heater
US4882659A (en) * 1988-12-21 1989-11-21 Delco Electronics Corporation Vacuum fluorescent display having integral backlit graphic patterns
US4892757A (en) * 1988-12-22 1990-01-09 Gte Products Corporation Method for a producing manganese activated zinc silicate phosphor
US4956202A (en) * 1988-12-22 1990-09-11 Gte Products Corporation Firing and milling method for producing a manganese activated zinc silicate phosphor
ATE156648T1 (en) 1988-12-27 1997-08-15 Canon Kk LIGHT EMITTING DEVICE BY ELECTRICAL FIELD
JP2548352B2 (en) 1989-01-17 1996-10-30 松下電器産業株式会社 Light emitting device and method of manufacturing the same
US4994205A (en) * 1989-02-03 1991-02-19 Eastman Kodak Company Composition containing a hafnia phosphor of enhanced luminescence
US5142390A (en) 1989-02-23 1992-08-25 Ricoh Company, Ltd. MIM element with a doped hard carbon film
US5101288A (en) 1989-04-06 1992-03-31 Ricoh Company, Ltd. LCD having obliquely split or interdigitated pixels connected to MIM elements having a diamond-like insulator
US5153753A (en) 1989-04-12 1992-10-06 Ricoh Company, Ltd. Active matrix-type liquid crystal display containing a horizontal MIM device with inter-digital conductors
JP2799875B2 (en) 1989-05-20 1998-09-21 株式会社リコー Liquid crystal display
US4990766A (en) * 1989-05-22 1991-02-05 Murasa International Solid state electron amplifier
JP2757207B2 (en) 1989-05-24 1998-05-25 株式会社リコー Liquid crystal display
US4990416A (en) * 1989-06-19 1991-02-05 Coloray Display Corporation Deposition of cathodoluminescent materials by reversal toning
KR910008017B1 (en) 1989-08-30 1991-10-05 삼성전관 주식회사 Manufacturing method for flourescent screen for color crt
EP0420188A1 (en) 1989-09-27 1991-04-03 Sumitomo Electric Industries, Ltd. Semiconductor heterojunction structure
US5019003A (en) * 1989-09-29 1991-05-28 Motorola, Inc. Field emission device having preformed emitters
US5055077A (en) * 1989-11-22 1991-10-08 Motorola, Inc. Cold cathode field emission device having an electrode in an encapsulating layer
US5214416A (en) 1989-12-01 1993-05-25 Ricoh Company, Ltd. Active matrix board
US5229682A (en) 1989-12-18 1993-07-20 Seiko Epson Corporation Field electron emission device
US5228878A (en) 1989-12-18 1993-07-20 Seiko Epson Corporation Field electron emission device production method
EP0434001B1 (en) 1989-12-19 1996-04-03 Matsushita Electric Industrial Co., Ltd. Electron emission device and method of manufacturing the same
US5038070A (en) * 1989-12-26 1991-08-06 Hughes Aircraft Company Field emitter structure and fabrication process
US5235244A (en) 1990-01-29 1993-08-10 Innovative Display Development Partners Automatically collimating electron beam producing arrangement
US5064396A (en) * 1990-01-29 1991-11-12 Coloray Display Corporation Method of manufacturing an electric field producing structure including a field emission cathode
US4964946A (en) * 1990-02-02 1990-10-23 The United States Of America As Represented By The Secretary Of The Navy Process for fabricating self-aligned field emitter arrays
US5007873A (en) * 1990-02-09 1991-04-16 Motorola, Inc. Non-planar field emission device having an emitter formed with a substantially normal vapor deposition process
US5079476A (en) 1990-02-09 1992-01-07 Motorola, Inc. Encapsulated field emission device
US5142184B1 (en) 1990-02-09 1995-11-21 Motorola Inc Cold cathode field emission device with integral emitter ballasting
JP2820491B2 (en) 1990-03-30 1998-11-05 松下電子工業株式会社 Gas discharge display
US5126287A (en) 1990-06-07 1992-06-30 Mcnc Self-aligned electron emitter fabrication method and devices formed thereby
US5214347A (en) 1990-06-08 1993-05-25 The United States Of America As Represented By The Secretary Of The Navy Layered thin-edged field-emitter device
US5266155A (en) 1990-06-08 1993-11-30 The United States Of America As Represented By The Secretary Of The Navy Method for making a symmetrical layered thin film edge field-emitter-array
FR2663462B1 (en) 1990-06-13 1992-09-11 Commissariat Energie Atomique SOURCE OF ELECTRON WITH EMISSIVE MICROPOINT CATHODES.
US5156770A (en) 1990-06-26 1992-10-20 Thomson Consumer Electronics, Inc. Conductive contact patch for a CRT faceplate panel
US5231606A (en) 1990-07-02 1993-07-27 The United States Of America As Represented By The Secretary Of The Navy Field emitter array memory device
US5202571A (en) 1990-07-06 1993-04-13 Canon Kabushiki Kaisha Electron emitting device with diamond
US5204581A (en) 1990-07-12 1993-04-20 Bell Communications Research, Inc. Device including a tapered microminiature silicon structure
US5075591A (en) * 1990-07-13 1991-12-24 Coloray Display Corporation Matrix addressing arrangement for a flat panel display with field emission cathodes
US5063323A (en) * 1990-07-16 1991-11-05 Hughes Aircraft Company Field emitter structure providing passageways for venting of outgassed materials from active electronic area
US5141459A (en) 1990-07-18 1992-08-25 International Business Machines Corporation Structures and processes for fabricating field emission cathodes
US5203731A (en) 1990-07-18 1993-04-20 International Business Machines Corporation Process and structure of an integrated vacuum microelectronic device
US5089292A (en) 1990-07-20 1992-02-18 Coloray Display Corporation Field emission cathode array coated with electron work function reducing material, and method
US5276521A (en) 1990-07-30 1994-01-04 Olympus Optical Co., Ltd. Solid state imaging device having a constant pixel integrating period and blooming resistance
US5148078A (en) 1990-08-29 1992-09-15 Motorola, Inc. Field emission device employing a concentric post
US5103145A (en) 1990-09-05 1992-04-07 Raytheon Company Luminance control for cathode-ray tube having field emission cathode
US5157309A (en) 1990-09-13 1992-10-20 Motorola Inc. Cold-cathode field emission device employing a current source means
US5057047A (en) * 1990-09-27 1991-10-15 The United States Of America As Represented By The Secretary Of The Navy Low capacitance field emitter array and method of manufacture therefor
US5150192A (en) 1990-09-27 1992-09-22 The United States Of America As Represented By The Secretary Of The Navy Field emitter array
US5136764A (en) 1990-09-27 1992-08-11 Motorola, Inc. Method for forming a field emission device
US5089742A (en) 1990-09-28 1992-02-18 The United States Of America As Represented By The Secretary Of The Navy Electron beam source formed with biologically derived tubule materials
US5103144A (en) 1990-10-01 1992-04-07 Raytheon Company Brightness control for flat panel display
US5075596A (en) 1990-10-02 1991-12-24 United Technologies Corporation Electroluminescent display brightness compensation
US5183529A (en) 1990-10-29 1993-02-02 Ford Motor Company Fabrication of polycrystalline free-standing diamond films
US5173635A (en) 1990-11-30 1992-12-22 Motorola, Inc. Bi-directional field emission device
US5173634A (en) 1990-11-30 1992-12-22 Motorola, Inc. Current regulated field-emission device
US5157304A (en) 1990-12-17 1992-10-20 Motorola, Inc. Field emission device display with vacuum seal
US5132585A (en) 1990-12-21 1992-07-21 Motorola, Inc. Projection display faceplate employing an optically transmissive diamond coating of high thermal conductivity
US5075595A (en) * 1991-01-24 1991-12-24 Motorola, Inc. Field emission device with vertically integrated active control
US5212426A (en) 1991-01-24 1993-05-18 Motorola, Inc. Integrally controlled field emission flat display device
GB9101723D0 (en) 1991-01-25 1991-03-06 Marconi Gec Ltd Field emission devices
JP2626276B2 (en) 1991-02-06 1997-07-02 双葉電子工業株式会社 Electron-emitting device
US5312514A (en) 1991-11-07 1994-05-17 Microelectronics And Computer Technology Corporation Method of making a field emitter device using randomly located nuclei as an etch mask
US5281891A (en) 1991-02-22 1994-01-25 Matsushita Electric Industrial Co., Ltd. Electron emission element
US5140219A (en) 1991-02-28 1992-08-18 Motorola, Inc. Field emission display device employing an integral planar field emission control device
US5142256A (en) 1991-04-04 1992-08-25 Motorola, Inc. Pin diode with field emission device switch
US5220725A (en) 1991-04-09 1993-06-22 Northeastern University Micro-emitter-based low-contact-force interconnection device
FR2675947A1 (en) 1991-04-23 1992-10-30 France Telecom PROCESS FOR LOCAL PASSIVATION OF A SUBSTRATE BY A HYDROGEN AMORPHOUS CARBON LAYER AND METHOD FOR MANUFACTURING THIN FILM TRANSISTORS ON THE PASSIVE SUBSTRATE.
US5144191A (en) 1991-06-12 1992-09-01 Mcnc Horizontal microelectronic field emission devices
US5155420A (en) 1991-08-05 1992-10-13 Smith Robert T Switching circuits employing field emission devices
US5227699A (en) 1991-08-16 1993-07-13 Amoco Corporation Recessed gate field emission
US5129850A (en) 1991-08-20 1992-07-14 Motorola, Inc. Method of making a molded field emission electron emitter employing a diamond coating
US5199918A (en) 1991-11-07 1993-04-06 Microelectronics And Computer Technology Corporation Method of forming field emitter device with diamond emission tips
US5536193A (en) 1991-11-07 1996-07-16 Microelectronics And Computer Technology Corporation Method of making wide band gap field emitter
US5399238A (en) 1991-11-07 1995-03-21 Microelectronics And Computer Technology Corporation Method of making field emission tips using physical vapor deposition of random nuclei as etch mask
US5124072A (en) 1991-12-02 1992-06-23 General Electric Company Alkaline earth hafnate phosphor with cerium luminescence
US5199917A (en) 1991-12-09 1993-04-06 Cornell Research Foundation, Inc. Silicon tip field emission cathode arrays and fabrication thereof
DE69214780T2 (en) 1991-12-11 1997-05-15 Agfa Gevaert Nv Method of making a radiographic screen
US5204021A (en) 1992-01-03 1993-04-20 General Electric Company Lanthanide oxide fluoride phosphor having cerium luminescence
US5252833A (en) 1992-02-05 1993-10-12 Motorola, Inc. Electron source for depletion mode electron emission apparatus
US5173697A (en) 1992-02-05 1992-12-22 Motorola, Inc. Digital-to-analog signal conversion device employing scaled field emission devices
US5180951A (en) 1992-02-05 1993-01-19 Motorola, Inc. Electron device electron source including a polycrystalline diamond
US5213712A (en) 1992-02-10 1993-05-25 General Electric Company Lanthanum lutetium oxide phosphor with cerium luminescence
US5229331A (en) 1992-02-14 1993-07-20 Micron Technology, Inc. Method to form self-aligned gate structures around cold cathode emitter tips using chemical mechanical polishing technology
US5151061A (en) 1992-02-21 1992-09-29 Micron Technology, Inc. Method to form self-aligned tips for flat panel displays
US5259799A (en) 1992-03-02 1993-11-09 Micron Technology, Inc. Method to form self-aligned gate structures and focus rings
US5186670A (en) 1992-03-02 1993-02-16 Micron Technology, Inc. Method to form self-aligned gate structures and focus rings
US5449970A (en) 1992-03-16 1995-09-12 Microelectronics And Computer Technology Corporation Diode structure flat panel display
US5543684A (en) 1992-03-16 1996-08-06 Microelectronics And Computer Technology Corporation Flat panel display based on diamond thin films
US5548185A (en) 1992-03-16 1996-08-20 Microelectronics And Computer Technology Corporation Triode structure flat panel display employing flat field emission cathode
US5315393A (en) 1992-04-01 1994-05-24 Amoco Corporation Robust pixel array scanning with image signal isolation
KR950004516B1 (en) 1992-04-29 1995-05-01 삼성전관주식회사 Field emission display and manufacturing method
US5256888A (en) 1992-05-04 1993-10-26 Motorola, Inc. Transistor device apparatus employing free-space electron emission from a diamond material surface
US5283500A (en) 1992-05-28 1994-02-01 At&T Bell Laboratories Flat panel field emission display apparatus
US5278475A (en) 1992-06-01 1994-01-11 Motorola, Inc. Cathodoluminescent display apparatus and method for realization using diamond crystallites
US5242620A (en) 1992-07-02 1993-09-07 General Electric Company Gadolinium lutetium aluminate phosphor with cerium luminescence
US5380546A (en) 1993-06-09 1995-01-10 Microelectronics And Computer Technology Corporation Multilevel metallization process for electronic components
US5302423A (en) 1993-07-09 1994-04-12 Minnesota Mining And Manufacturing Company Method for fabricating pixelized phosphors
US5531880A (en) 1994-09-13 1996-07-02 Microelectronics And Computer Technology Corporation Method for producing thin, uniform powder phosphor for display screens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3259782A (en) * 1961-11-08 1966-07-05 Csf Electron-emissive structure
US4663559A (en) * 1982-09-17 1987-05-05 Christensen Alton O Field emission device
US5138237A (en) * 1991-08-20 1992-08-11 Motorola, Inc. Field emission electron device employing a modulatable diamond semiconductor emitter
US5141460A (en) * 1991-08-20 1992-08-25 Jaskie James E Method of making a field emission electron source employing a diamond coating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1746620A2 (en) * 2005-07-19 2007-01-24 Samsung SDI Co., Ltd. Electron emission device, electron emission type backlight unit and flat display apparatus having the same
EP1746620A3 (en) * 2005-07-19 2007-04-25 Samsung SDI Co., Ltd. Electron emission device, electron emission type backlight unit and flat display apparatus having the same
EP1758146A3 (en) * 2005-08-24 2008-09-03 Canon Kabushiki Kaisha Electron source and image display apparatus

Also Published As

Publication number Publication date
US5763997A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
US5763997A (en) Field emission display device
Spindt et al. Field-emitter arrays to vacuum fluorescent display
US7462088B2 (en) Method for making large-area FED apparatus
US7288884B2 (en) Field emission backlight unit having emitters disposed on edges of electrodes
US5670296A (en) Method of manufacturing a high efficiency field emission display
US5679043A (en) Method of making a field emitter
US20070046165A1 (en) Pixel structure for an edge-emitter field-emission display
Vaudaine et al. 'Microtips' fluorescent display
US6646282B1 (en) Field emission display device
EP1547114A2 (en) Barrier metal layer for a carbon nanotube flat panel display
US5955833A (en) Field emission display devices
US6825607B2 (en) Field emission display device
US5717288A (en) Perforated screen for brightness enhancement
US6838814B2 (en) Field emission display device
US6750617B2 (en) Field emission display device
US7327080B2 (en) Hybrid active matrix thin-film transistor display
US6084338A (en) Cathode assembly with diamond particles and layer
US5838103A (en) Field emission display with increased emission efficiency and tip-adhesion
US6750616B2 (en) Field emission display device
US5973452A (en) Display
US6215242B1 (en) Field emission display device having a photon-generated electron emitter
Kaneko et al. Wedge-shaped field emitter arrays for flat display
US20070229003A1 (en) Field emission type backlight unit and method of manufacturing the same
US6310432B1 (en) Surface treatment process used in growing a carbon film
EP0757372A1 (en) Field emission display fabrication method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA RU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA