WO1997014373A1 - Hardening process for ultrasonic dental surgical tips - Google Patents

Hardening process for ultrasonic dental surgical tips Download PDF

Info

Publication number
WO1997014373A1
WO1997014373A1 PCT/US1996/015332 US9615332W WO9714373A1 WO 1997014373 A1 WO1997014373 A1 WO 1997014373A1 US 9615332 W US9615332 W US 9615332W WO 9714373 A1 WO9714373 A1 WO 9714373A1
Authority
WO
WIPO (PCT)
Prior art keywords
tip
metal nitride
coating
nitride
hardness
Prior art date
Application number
PCT/US1996/015332
Other languages
French (fr)
Inventor
Teresa R. Hickok
Claude E. Martin
Original Assignee
Hickok Teresa R
Martin Claude E
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hickok Teresa R, Martin Claude E filed Critical Hickok Teresa R
Priority to AU71665/96A priority Critical patent/AU7166596A/en
Publication of WO1997014373A1 publication Critical patent/WO1997014373A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C3/00Dental tools or instruments
    • A61C3/02Tooth drilling or cutting instruments; Instruments acting like a sandblast machine
    • A61C3/03Instruments operated by vibration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C17/00Devices for cleaning, polishing, rinsing or drying teeth, teeth cavities or prostheses; Saliva removers; Dental appliances for receiving spittle
    • A61C17/16Power-driven cleaning or polishing devices
    • A61C17/20Power-driven cleaning or polishing devices using ultrasonics

Definitions

  • This invention relates generally to ultrasonic dental surgical tips and more specifically to a surface hardening process for the tips.
  • the chipping motion has several negative qualities associated with it.
  • Another negative is that the patient experiences discomfort during the operation because of the steady knocking.
  • Still another disadvantage is that these steady vibrations cause fatigue in the operator, reducing the time that he or she may devote to operations without rest periods.
  • U.S. Patent 5,376,444 to Grotepass et al. discloses diamond coated surgical drills and burrs with hard coatings such as titanium nitride (Ti- N). The hard coating applied over the diamond coat is intended to compress the diamond coat to prevent fracturing it.
  • Another patent disclosing the use of a diamond coating is U.S. Patent 4,731,019 to Martin. It discloses coating an ultrasonic dental instrument for scaling with diamond particles.
  • U.S. Patent 5,330,481 to Hood et al. discloses an ultrasonic apparatus for implantation and extraction of a prosthetic comprising an acoustic transfuser and adapter, each coated with Ti-N.
  • U.S. Patent 4,681,541 to Snaper describes a dental bur having a suitable nitride deposited on the surface to enhance durability. The nitrides are disclosed as being selected from a group including Ti-N. Unfortunately, applying such a coating to the surface of a smooth dental tip exacerbates the problems caused by the vibrations because it simply increases the hardness of the hammering tip.
  • An objective of this invention is to provide a hardened ultrasonic dental surgical tip that is capable of cutting or abrading without the expense of prior art diamond coated tips. Another objective is to provide a tip having those advantages that can be made small enough for microsurgery.
  • this invention provides a novel embodiment of an ultrasonic dental tip that has been roughened to create an abrasive surface and then hard surfaced with a coating of a metallic nitride according to a never before known process.
  • the roughing process is preferably done by sandblasting the tip with a microblaster.
  • the metallic element in the coating is preferably selected from a group consisting of Zirconium and Titanium.
  • An optional step in the process of this invention includes a heat-treating step applied between the roughing and coating step.
  • the heat-treating hardens the tip further by changing its internal grain structure.
  • Fig. 1 is an isometric view of an ultrasonic dental tip roughened according to the process of this invention
  • Fig. 2 is a front plan view of the tip of Fig. 1 having a metal nitride coating applied according to the process of this invention
  • Fig. 3 is an enlarged view of the roughened portion of the tip of Fig. 1;
  • Fig. 4 is a side view of the tip of Fig. 2;
  • Fig. 5 is an isometric view of another embodiment of an ultrasonic dental tip roughened according to the process of this invention
  • Fig. 6 is a front plan view of the tip of Fig. 5 having a metal nitride coating applied according to the process of this invention.
  • Fig. 7 is an enlarged view of the roughened portion of the tip of Fig. 5;
  • Fig. 8 is a side view of the tip of Fig. 5.
  • Fig. 1 shows an ultrasonic dental tip 10 with a roughened area 12 extending from near curved radius portion 16 to pointed end 18.
  • Fig. 3 provides an enlarged view of the roughened area.
  • the roughened area provides a coarse abrasive surface that will cut along any part of the roughened surface.
  • An example of a way to create the rough area is described below; however, it will be understood by those skilled in the art that any technique for creating a roughened or coarse face on the working end of the tip will be satisfactory.
  • the roughing is performed by sand blasting the desired area with a microetcher or microblaster using approximately 400 grit powder.
  • a suitable choice for such a sandblaster is provided by Danville Engineering Inc., of Danville CA, and is available by the model name of "S-2 Precision Microsandblaster. " It is preferable to operate the sandblaster by supplying pneumatic pressure of about 60-120 pounds-per- square inch, although it will be apparent to one skilled in the art that a suitable hydraulic pressure could be provided.
  • a hard coating of a metal nitride can be applied to the tip 10. It is preferable to apply the metal nitride coating from the end 20 of threads 22 to the pointed end 18 covering the entire surface area of the tip including the rough area. At a minimum the roughened area should be coated to achieve maximum hardness at the working part of the tip but it is easiest to simply coat from the threads up.
  • the addition of the metal nitride coating to the roughened area creates an abrasive hard cutting area that is very durable and much less expensive than prior art diamond coated tips or tips having diamond abrasives imbedded therein.
  • the metal nitride can be applied very thinly and still imparts excellent hardness properties in contrast to the relatively thick diamond coatings of the prior art that are required to gain hardness.
  • the thin coating is desirable because the tips do not have to support the weight of the diamond abrasive, allowing for smaller diameter tips.
  • the small size allows the tip to access hard to reach areas that were not reachable with prior art tips. The small size also allows for a less intrusive invasion of the subject, for example, a smaller filling may be added to a tooth.
  • Fig. 3 shows a side view ofthe tip of Fig. 2, in which it can be appreciated that the metal coating is preferably applied over the entire tip 10 with the exception of threads 22.
  • a wrench flat area 24 is also shown, but it will be appreciated that the geometric configuration of the tip is not of particular importance to this invention, although very narrow dimensions are made possible by the process of this invention. It will be further appreciated that any coupling means other than threads may be used to enable the tip to have motion induced by the generator.
  • Ultrasonic generators are well known in the art and the particular type being employed with a tip of this invention is not of particular importance so the generator is not shown in the drawing figures.
  • Figs. 5, 6, and 7 show another embodiment of a tip 30 created by the process of this invention.
  • Fig. 5 shows the tip 30 having a rough area 32 extending from pointed end 38 to curved portion 36.
  • Fig. 7 shows an enlarged view of the roughened portion of the tip.
  • the rough area is preferably created according to the sandblasting process described above.
  • Fig. 6 shows the same tip after a hard coating of a metal nitride is applied in the same manner as described above with reference to Fig. 2.
  • the hard coating is preferably applied from the end 40 of threads 42 to the pointed end 38. It will be apparent to those skilled in the art that the geometric configuration of the tip is not of particular importance but the embodiment of Figs. 5 and 6 are shown to illustrate a example of a tip which can be created according to the process of this invention.
  • Fig. 8 shows a side view of the tip of Fig. 5 which shows a wrench flat area 46 which is considered optional.
  • the threads 42 are just one example of coupling means to an ultrasonic generator.
  • the preferred overall process for creating the tips is as follows.
  • An ultrasonic dental tip is manufactured, bent into the proper shape, and roughened by an externally applied abrasive process.
  • a metal nitride coating is applied to the roughened outer surface.
  • the metal element is selected from the group consisting of Zirconium (Zr) and Titanium (Ti). Between a Ti-N and Zr-N coating, the latter is the hardest at about 3000 Vickers while the former is about 2800 Vickers. Either is harder than carbide instruments which are commonly used in the prior art, but softer than an instrument prepared with expensive diamond abrasives. However, either metal nitride provides a very hard surface tip with far less cost than those using diamonds.
  • the tip is comprised of a metal substrate, such as stainless steel, and in particular the inventors have recognized that ASTM 13-8 stainless steel is a good choice for the substrate. It has been further recognized by the inventors that it is beneficial to heat treat the steel after the roughing step to achieve a Rockwell-C hardness rating of about 40-42. Heat treating is a well known process that involves heating and cooling of a metal in the solid state for the purpose of obtaining certain desirable properties including increased hardness.
  • the coating may be applied by any well-known technique in the art. While not desiring to be limited to any particular method of coating, the inventors have discovered that the well-known technique of using physical vapor deposition equipment employing cathodic arc techniques is a satisfactory way to deposit thin films of the metal nitrides on dental surgical tips.
  • the coating is preferably applied very thinly so that its average thickness is about 0.0002 inches.
  • An advantage of such a thin coating is that very small diameter tips can be created that are extremely hard and yet abrasive. Such small diameter tips are desirable for microsurgery.

Abstract

An ultrasonic dental tip that is hardened by a novel process that includes roughing the tip and then applying a metal nitride coating, such as titanium nitride (Ti-N) or zirconium nitride (Zr-N). The roughing is preferably accomplished by sandblasting the tip with a microblaster. Optionally the tip may be heat treated after it has been roughened and prior to being coated in order to further increase its hardness.

Description

HARDENING PROCESS FOR ULTRASONIC DENTAL SURGICAL TIPS
TECHNICAL FIELD
This invention relates generally to ultrasonic dental surgical tips and more specifically to a surface hardening process for the tips.
BACKGROUND ART Dental surgeons commonly use a tip coupled to an ultrasonic generator for operations on teeth, bones, and soft tissue including dislodging and removal of dental material. With the exception of diamond coated tips, which are very expensive, the tips are smooth on the end that contacts the patient's mouth. Because the tips are smooth they have no cutting edge. Instead they rely on the ultrasonic vibrations to impart a hammering or chipping force action the target surface to dislodge material for removal.
The chipping motion has several negative qualities associated with it. One is that the steady shock can cause microfractures in teeth and bones, eventually leading to decay, soreness, and possibly loss of teeth. Another negative is that the patient experiences discomfort during the operation because of the steady knocking. Still another disadvantage is that these steady vibrations cause fatigue in the operator, reducing the time that he or she may devote to operations without rest periods.
As briefly mentioned above, one attempt by the prior art to alleviate some ofthe above-mentioned problems has been to use abrasive diamond coatings. The diamond surface is abrasive and therefore is able to cut bone, tissue, or teeth so no hammering action is required. In that vein, U.S. Patent 5,376,444 to Grotepass et al. discloses diamond coated surgical drills and burrs with hard coatings such as titanium nitride (Ti- N). The hard coating applied over the diamond coat is intended to compress the diamond coat to prevent fracturing it. Another patent disclosing the use of a diamond coating is U.S. Patent 4,731,019 to Martin. It discloses coating an ultrasonic dental instrument for scaling with diamond particles.
Unfortunately, diamond coated tips are very expensive, owing to the high cost of diamonds. Another disadvantage is that the tips usually have a fairly wide cross- sectional area because ofthe thickness of the diamond coating. In the case of a diamond coating plus an additional Ti-N coating the thickness is even greater. The thickness is undesirable because it limits the applications that the diamond coated tips can be used for. In particular, an important emerging dentistry field is the field of microsurgery where operations are performed under the microscope. Clearly, there is a need for hard low-cost abrasive dental surgical tips for microsurgeons but the prior art had not provided any.
The prior art has recognized the benefit of applying a hard coating, such as Ti-N, to increase the durability of medical instruments. In addition to the art referenced above, U.S. Patent 5,330,481 to Hood et al. discloses an ultrasonic apparatus for implantation and extraction of a prosthetic comprising an acoustic transfuser and adapter, each coated with Ti-N. U.S. Patent 4,681,541 to Snaper describes a dental bur having a suitable nitride deposited on the surface to enhance durability. The nitrides are disclosed as being selected from a group including Ti-N. Unfortunately, applying such a coating to the surface of a smooth dental tip exacerbates the problems caused by the vibrations because it simply increases the hardness of the hammering tip.
DISCLOSURE OF INVENTION
An objective of this invention is to provide a hardened ultrasonic dental surgical tip that is capable of cutting or abrading without the expense of prior art diamond coated tips. Another objective is to provide a tip having those advantages that can be made small enough for microsurgery. To meet these objectives, this invention provides a novel embodiment of an ultrasonic dental tip that has been roughened to create an abrasive surface and then hard surfaced with a coating of a metallic nitride according to a never before known process. The roughing process is preferably done by sandblasting the tip with a microblaster. The metallic element in the coating is preferably selected from a group consisting of Zirconium and Titanium.
An optional step in the process of this invention includes a heat-treating step applied between the roughing and coating step. The heat-treating hardens the tip further by changing its internal grain structure. Other objects and advantages of this invention will be readily appreciated upon reading the following description in view of the accompanying drawings.
BRIEF DESCRIPTION OF DRAWING
The objects, advantages and features of this invention will be more readily appreciated from the following detailed description, when read in conjunction with the accompanying drawing, in which:
Fig. 1 is an isometric view of an ultrasonic dental tip roughened according to the process of this invention;
Fig. 2 is a front plan view of the tip of Fig. 1 having a metal nitride coating applied according to the process of this invention;
Fig. 3 is an enlarged view of the roughened portion of the tip of Fig. 1;
Fig. 4 is a side view of the tip of Fig. 2;
Fig. 5 is an isometric view of another embodiment of an ultrasonic dental tip roughened according to the process of this invention; Fig. 6 is a front plan view of the tip of Fig. 5 having a metal nitride coating applied according to the process of this invention; and
Fig. 7 is an enlarged view of the roughened portion of the tip of Fig. 5; and
Fig. 8 is a side view of the tip of Fig. 5.
BEST MODE FOR CARRYING OUT THE INVENTION This invention is described with reference to a preferred embodiment shown in the drawing figures. In these figures, a like number shown in various figures represents the same or similar elements in each figure. While this invention is described in terms ofthe best mode for achieving this invention's objectives, it will be appreciated by those skilled in the art that variations may be accomplished in view of these teachings without deviating from the spirit or scope of the invention.
Referring to Figs. 1 and 3 a roughened tip is shown. Fig. 1 shows an ultrasonic dental tip 10 with a roughened area 12 extending from near curved radius portion 16 to pointed end 18. Fig. 3 provides an enlarged view of the roughened area. The roughened area provides a coarse abrasive surface that will cut along any part of the roughened surface. An example of a way to create the rough area is described below; however, it will be understood by those skilled in the art that any technique for creating a roughened or coarse face on the working end of the tip will be satisfactory.
Preferably the roughing is performed by sand blasting the desired area with a microetcher or microblaster using approximately 400 grit powder. A suitable choice for such a sandblaster is provided by Danville Engineering Inc., of Danville CA, and is available by the model name of "S-2 Precision Microsandblaster. " It is preferable to operate the sandblaster by supplying pneumatic pressure of about 60-120 pounds-per- square inch, although it will be apparent to one skilled in the art that a suitable hydraulic pressure could be provided.
Reference is made to Fig. 2 below. Once the roughened area is created, then a hard coating of a metal nitride can be applied to the tip 10. It is preferable to apply the metal nitride coating from the end 20 of threads 22 to the pointed end 18 covering the entire surface area of the tip including the rough area. At a minimum the roughened area should be coated to achieve maximum hardness at the working part of the tip but it is easiest to simply coat from the threads up. The addition of the metal nitride coating to the roughened area creates an abrasive hard cutting area that is very durable and much less expensive than prior art diamond coated tips or tips having diamond abrasives imbedded therein. The metal nitride can be applied very thinly and still imparts excellent hardness properties in contrast to the relatively thick diamond coatings of the prior art that are required to gain hardness. The thin coating is desirable because the tips do not have to support the weight of the diamond abrasive, allowing for smaller diameter tips. Additionally, the small size allows the tip to access hard to reach areas that were not reachable with prior art tips. The small size also allows for a less intrusive invasion of the subject, for example, a smaller filling may be added to a tooth.
Fig. 3 shows a side view ofthe tip of Fig. 2, in which it can be appreciated that the metal coating is preferably applied over the entire tip 10 with the exception of threads 22. A wrench flat area 24 is also shown, but it will be appreciated that the geometric configuration of the tip is not of particular importance to this invention, although very narrow dimensions are made possible by the process of this invention. It will be further appreciated that any coupling means other than threads may be used to enable the tip to have motion induced by the generator.
Ultrasonic generators are well known in the art and the particular type being employed with a tip of this invention is not of particular importance so the generator is not shown in the drawing figures.
Figs. 5, 6, and 7 show another embodiment of a tip 30 created by the process of this invention. Fig. 5 shows the tip 30 having a rough area 32 extending from pointed end 38 to curved portion 36. For the sake of clarity, Fig. 7 shows an enlarged view of the roughened portion of the tip. The rough area is preferably created according to the sandblasting process described above. Fig. 6 shows the same tip after a hard coating of a metal nitride is applied in the same manner as described above with reference to Fig. 2. The hard coating is preferably applied from the end 40 of threads 42 to the pointed end 38. It will be apparent to those skilled in the art that the geometric configuration of the tip is not of particular importance but the embodiment of Figs. 5 and 6 are shown to illustrate a example of a tip which can be created according to the process of this invention.
Fig. 8 shows a side view of the tip of Fig. 5 which shows a wrench flat area 46 which is considered optional. In a similar manner to that described above with reference to Fig. 3, it will be appreciated that the threads 42 are just one example of coupling means to an ultrasonic generator.
In general, the preferred overall process for creating the tips is as follows. An ultrasonic dental tip is manufactured, bent into the proper shape, and roughened by an externally applied abrasive process. Then, a metal nitride coating is applied to the roughened outer surface. Preferably, the metal element is selected from the group consisting of Zirconium (Zr) and Titanium (Ti). Between a Ti-N and Zr-N coating, the latter is the hardest at about 3000 Vickers while the former is about 2800 Vickers. Either is harder than carbide instruments which are commonly used in the prior art, but softer than an instrument prepared with expensive diamond abrasives. However, either metal nitride provides a very hard surface tip with far less cost than those using diamonds. Further, one can expect long wear from tips created by the process of this invention because Ti-N and Zr-N are both highly resistant to abrasion and corrosion. Zr-N has not been used as a hard coating for surgical tips prior to this invention. This invention is based to an extent on the inventors critical recognition of its desirable properties.
Preferably, the tip is comprised of a metal substrate, such as stainless steel, and in particular the inventors have recognized that ASTM 13-8 stainless steel is a good choice for the substrate. It has been further recognized by the inventors that it is beneficial to heat treat the steel after the roughing step to achieve a Rockwell-C hardness rating of about 40-42. Heat treating is a well known process that involves heating and cooling of a metal in the solid state for the purpose of obtaining certain desirable properties including increased hardness.
However, prior to this invention the combination of roughing a metal dental tip and then heat treating it to create a hard durable abrasive tip had not been done. One of the benefits of using stainless steel is that it is easy to heat treat. Empirical evidence shows that good results can be obtained by subjecting 13-8 stainless steel to a temperature of about 900° degrees for about two hours.
When the roughing and heat treating is followed by the application of a metal nitride coating the result is an extremely hard tip having very desirable cutting abilities. The coating may be applied by any well-known technique in the art. While not desiring to be limited to any particular method of coating, the inventors have discovered that the well-known technique of using physical vapor deposition equipment employing cathodic arc techniques is a satisfactory way to deposit thin films of the metal nitrides on dental surgical tips. The coating is preferably applied very thinly so that its average thickness is about 0.0002 inches. An advantage of such a thin coating is that very small diameter tips can be created that are extremely hard and yet abrasive. Such small diameter tips are desirable for microsurgery.
In view of the above description, it is possible that modifications and improvements will occur to those skilled in the art which are within the scope of the appended claims. Therefore, this invention is not to be limited in any way except by the appended claims.

Claims

1. A surgical tip for use with an ultrasonic device, the tip comprising: a substantially elongate instrument having first and second opposite ends, the second end having an outer surface, wherein the first end has coupling means for coupling to an ultrasonic device; and the outer surface of the second end being roughened by an external abrasive process and having a coating of a metal nitride applied over the roughened surface.
2. The tip of claim 1, wherein the external abrasive process used for roughing the outer surface is a sandblasting process.
3. The tip of claim 2, wherein the sandblasting process is accomplished with a microblaster employing powder having the abrasive characteristic of about 400 grit.
4. The tip of claim 1. wherein the metal nitride coat applied to the outer surface has an average thickness of about 0.0002 inches.
5. The tip of claim 1, wherein the metal member of the metal nitride is selected from the group consisting of Titanium (Ti) and Zirconium (Zr).
6. The tip of claim 1, wherein the metal nitride is Titanium nitride (Ti-N).
7. The tip of claim 6. wherein the outer surface of the tip has a surface hardness of about 2800 Vickers.
8. The tip of claim 1 , wherein the metal nitride is Zirconium nitride (Zr-N).
9. The tip of claim 8, wherein the outer surface of the tip has a surface hardness of about 3000 Vickers.
10. The tip of claim 1, wherein the instrument is composed of stainless steel.
11. The tip of claim 10, wherein the instrument is heat treated to about 40-42 Rockwell-C hardness prior to applying the metal nitride coating.
12. A method for hardening surgical tips having an outside surface and adapted for use with ultrasonic devices, the method comprising the steps of: roughing the outside surface of the tip with an externally applied abrasive process; and applying a coating of a metal nitride over the roughened surface.
13. The method of claim 12, wherein the externally applied abrasive process used for roughing the outer surface is a sandblasting process.
14. The method of claim 13, wherein the sandblasting process is accomplished with a microblaster employing powder having the abrasive characteristic of about 400 grit.
15. The method of claim 12, wherein the metal nitride coat applied to the outer surface has an average thickness of about 0.
16. The method of claim 12, wherein the metal member of the metal nitride is selected from the group consisting of Titanium (Ti) and Zirconium (Zr).
17. The method of claim 12, wherein the metal nitride is Titanium nitride (Ti-N).
18. The method of claim 17, wherein the outer surface of the method has a surface hardness of about 2800 Vickers.
19. The method of claim 12, wherein the metal nitride is Zirconium nitride
(Zr-N).
20. The method of claim 19, wherein the outer surface of the method has a surface hardness of about 3000 Vickers.
21. The method of claim 12, wherein the instrument is composed of stainless steel.
22. The method of claim 21 , wherein the instrument is heat treated to about 40-42 Rockwell-C hardness prior to applying the metal nitride coating.
23. The method of claim 22, wherein the heat treating is performed by subjecting the method to about 900° F temperatures for about two hours.
PCT/US1996/015332 1995-10-20 1996-09-25 Hardening process for ultrasonic dental surgical tips WO1997014373A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU71665/96A AU7166596A (en) 1995-10-20 1996-09-25 Hardening process for ultrasonic dental surgical tips

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/546,336 US5704787A (en) 1995-10-20 1995-10-20 Hardened ultrasonic dental surgical tips and process
US08/546,336 1995-10-20

Publications (1)

Publication Number Publication Date
WO1997014373A1 true WO1997014373A1 (en) 1997-04-24

Family

ID=24179962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/015332 WO1997014373A1 (en) 1995-10-20 1996-09-25 Hardening process for ultrasonic dental surgical tips

Country Status (3)

Country Link
US (1) US5704787A (en)
AU (1) AU7166596A (en)
WO (1) WO1997014373A1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040097996A1 (en) 1999-10-05 2004-05-20 Omnisonics Medical Technologies, Inc. Apparatus and method of removing occlusions using an ultrasonic medical device operating in a transverse mode
US6660013B2 (en) * 1999-10-05 2003-12-09 Omnisonics Medical Technologies, Inc. Apparatus for removing plaque from blood vessels using ultrasonic energy
DE60028697T2 (en) * 1999-11-15 2007-06-14 Bobby Hu Method for processing a hand tool
US6910889B1 (en) 2000-11-02 2005-06-28 San Diego Swiss Machining, Inc. Ultrasonic surgical dental tool having a rasp tip
WO2002070158A1 (en) * 2001-03-07 2002-09-12 Omnisonics Medical Technologies, Inc. Apparatus and method for manufacturing small diameter medical devices
US7103457B2 (en) * 2002-03-28 2006-09-05 Dean Technologies, Inc. Programmable lawn mower
US7239944B2 (en) * 2002-03-28 2007-07-03 Dean Jason A Programmable lawn mower
US20040023187A1 (en) * 2002-08-02 2004-02-05 Hickok Teresa R. Ultrasonic surgical dental tool and method of making same
US20040063059A1 (en) * 2002-09-30 2004-04-01 Meckel Nathan K. Dental braces and methods for coating
WO2004052230A1 (en) * 2002-12-12 2004-06-24 Discus Dental Impressions, Inc. Ultrasonic dental handpiece having a rotatable head
US7044736B2 (en) * 2002-12-12 2006-05-16 Discus Dental Impressions, Inc. Ultrasonic dental insert having a hand grip fitted to a retaining ring
US7217128B2 (en) * 2002-12-12 2007-05-15 Discus Dental Impressions, Inc. Ultrasonic dental insert having interchangeable plastic and metal tips
US7530809B2 (en) * 2002-12-12 2009-05-12 Discus Dental, Llc Ultrasonic dental handpiece having a rotatable head
US7144307B2 (en) * 2003-03-27 2006-12-05 United Technologies Corporation Point superabrasive machining of nickel alloys
WO2005039395A2 (en) * 2003-10-23 2005-05-06 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Sonic and ultrasonic surgical tips
US20050187514A1 (en) * 2004-02-09 2005-08-25 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic medical device operating in a torsional mode
US7794414B2 (en) * 2004-02-09 2010-09-14 Emigrant Bank, N.A. Apparatus and method for an ultrasonic medical device operating in torsional and transverse modes
US20050267488A1 (en) * 2004-05-13 2005-12-01 Omnisonics Medical Technologies, Inc. Apparatus and method for using an ultrasonic medical device to treat urolithiasis
US20050256410A1 (en) * 2004-05-14 2005-11-17 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic probe capable of bending with aid of a balloon
US20050282112A1 (en) * 2004-06-17 2005-12-22 Ajay Kumar Coated dental instruments
US20060116610A1 (en) * 2004-11-30 2006-06-01 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic medical device with variable frequency drive
US20060263745A1 (en) * 2005-05-20 2006-11-23 Jeffrey Lasner Periotome
KR100675096B1 (en) 2005-06-02 2007-01-30 최한철 Method for Manufacturing of ZrN Coated Orthodontic Brackets and Wire
EP1736107A1 (en) * 2005-06-21 2006-12-27 Ivo Agabiti Tip for bone microsurgery
DE102005057996B4 (en) * 2005-12-05 2008-08-28 Gebr. Brasseler Gmbh & Co. Kg Root canal instrument
WO2007070633A2 (en) * 2005-12-14 2007-06-21 3M Innovative Properties Company Orthodontic articles with silicon nitride coatings
DE102008010049B3 (en) * 2008-02-20 2009-01-02 Gebr. Brasseler Gmbh & Co. Kg Dental drill, has head provided with cutting edges, where two of cutting edges cross over at front side in intersection cutting edge and drill is made of plastic material exhibiting specific hardness
US9788925B2 (en) 2009-08-19 2017-10-17 Vicky L Moran Transducer activated tool with water conduit
EP2509529B1 (en) * 2009-12-10 2018-09-19 Yugen Kaisha Siesta Ultrasonic scaler tip
US9764986B2 (en) * 2015-01-22 2017-09-19 Kennametal Inc. Low temperature CVD coatings and applications thereof
US20170333169A1 (en) * 2016-05-19 2017-11-23 Tram Quynh Hoang Scaler Tips and Implant Cleaning Inserts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4353696A (en) * 1981-07-10 1982-10-12 Bridges Byron K Vibrating dental tool device and method
DE3150039A1 (en) * 1981-12-17 1983-06-23 W.C. Heraeus Gmbh, 6450 Hanau Dental prostheses with gold-coloured coating
US4681541A (en) * 1985-07-05 1987-07-21 Snaper Alvin A Dental bur with enhanced durability
US4731019A (en) * 1984-06-04 1988-03-15 Howard Martin Diamond coated scaler dental instrument for ultrasonic operation
SU1744148A1 (en) * 1990-06-29 1992-06-30 Опытное конструкторское бюро "Факел" Method of processing titanium alloy medical instruments
WO1993024676A1 (en) * 1992-05-26 1993-12-09 British Technology Group Ltd. Diamond film deposition

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2562587A (en) * 1948-07-19 1951-07-31 Ind Res And Engineering Compan Bonded abrasive
US2831132A (en) * 1954-06-28 1958-04-15 Forest W Jackson Magnetostrictive reciprocating motor
US2921372A (en) * 1955-06-24 1960-01-19 Jr Albert G Bodine Torsional vibration sonic drill
US3937990A (en) * 1974-05-28 1976-02-10 Winston Ronald H Ultrasonic composite devices
US4803127A (en) * 1983-02-25 1989-02-07 Liburdi Engineering Limited Vapor deposition of metal compound coating utilizing metal sub-halides and coated metal article
JPS60238481A (en) * 1984-05-14 1985-11-27 Sumitomo Electric Ind Ltd Multilayered coated hard metal
JPH0623394B2 (en) * 1987-10-21 1994-03-30 猛雄 沖 Coated abrasive grains and manufacturing method thereof
US5019083A (en) * 1989-01-31 1991-05-28 Advanced Osseous Technologies, Inc. Implanting and removal of orthopedic prostheses
US4981756A (en) * 1989-03-21 1991-01-01 Vac-Tec Systems, Inc. Method for coated surgical instruments and tools
US5266389A (en) * 1989-09-29 1993-11-30 Sumitomo Electric Industries, Ltd. Surface-coated hard material for cutting tools or wear resistance tools
JP2651947B2 (en) * 1990-03-26 1997-09-10 株式会社半導体エネルギー研究所 Diamond thin film coating member and diamond thin film coating method
US5145739A (en) * 1990-07-12 1992-09-08 Sarin Vinod K Abrasion resistant coated articles
US5376444A (en) * 1990-07-27 1994-12-27 Grotepass; Wilhelm P. Diamond coated wear resistant tools
US5139537A (en) * 1991-06-13 1992-08-18 Julien D Lynn Titanium-nitride coated grinding wheel and method therefor
US5244390A (en) * 1992-01-14 1993-09-14 Implant Innovations, Inc. Dental scaling instrument
US5507760A (en) * 1993-11-09 1996-04-16 Devices For Vascular Intervention, Inc. Cutter device
US5466626A (en) * 1993-12-16 1995-11-14 International Business Machines Corporation Micro mask comprising agglomerated material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4353696A (en) * 1981-07-10 1982-10-12 Bridges Byron K Vibrating dental tool device and method
DE3150039A1 (en) * 1981-12-17 1983-06-23 W.C. Heraeus Gmbh, 6450 Hanau Dental prostheses with gold-coloured coating
US4731019A (en) * 1984-06-04 1988-03-15 Howard Martin Diamond coated scaler dental instrument for ultrasonic operation
US4681541A (en) * 1985-07-05 1987-07-21 Snaper Alvin A Dental bur with enhanced durability
SU1744148A1 (en) * 1990-06-29 1992-06-30 Опытное конструкторское бюро "Факел" Method of processing titanium alloy medical instruments
WO1993024676A1 (en) * 1992-05-26 1993-12-09 British Technology Group Ltd. Diamond film deposition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 9325, Derwent World Patents Index; AN 93-204229, XP002022807 *

Also Published As

Publication number Publication date
AU7166596A (en) 1997-05-07
US5704787A (en) 1998-01-06

Similar Documents

Publication Publication Date Title
US5704787A (en) Hardened ultrasonic dental surgical tips and process
EP1574179B1 (en) Ultrasonic dental tool
US6726531B1 (en) Abrasive tool having safe and active areas
US5299937A (en) Dental instruments having diamond-like working surface
US20060269901A1 (en) Dental instruments having durable coatings
US9297080B2 (en) Method of providing a zirconium surface and resulting product
US8182265B2 (en) Endodontic instrument with multi-tapered flutes
US5376444A (en) Diamond coated wear resistant tools
US20060008766A1 (en) Dental instruments made from super-elastic alloys
US20070224242A1 (en) Tetrahedral Amorphous Carbon Coated Medical Devices
US20040023187A1 (en) Ultrasonic surgical dental tool and method of making same
EP2240213B1 (en) Surface alloyed medical implant
US5307594A (en) Method for forming textured surfaces on an orthopaedic implant
US5347887A (en) Composite cutting edge
US20080248444A1 (en) Ultrasonic endodontic tip having a low-modulus of elasticity
US20100211180A1 (en) Tetrahedral Amorphous Carbon Coated Medical Devices
CN101765412A (en) Stainless steel bar
US6910889B1 (en) Ultrasonic surgical dental tool having a rasp tip
US20050282112A1 (en) Coated dental instruments
Torregrosa et al. Phase analysis, microhardness and tribological behaviour of Ti-6Al-4V after ion implantation of nitrogen in connection with its application for hip-joint prosthesis
Wang et al. Mechanisms of abrasive wear in a boronized alloy steel
Gorokhovsky et al. The effect of multilayer filtered arc coatings on mechanical properties, corrosion resistance and performance of periodontal dental instruments
US20170367827A1 (en) Medical implants with 100% subsurface boron carbide diffusion layer
EP1179997B1 (en) Abrasive tool having safe and active areas
EP1392478B1 (en) Ultrasonic cutting tool coated by diamond cvd

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97515824

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase