WO1997015435A1 - Procede de fabrication en continu d'un dispositif optique, ensemble et appareil prevu a cet effet - Google Patents

Procede de fabrication en continu d'un dispositif optique, ensemble et appareil prevu a cet effet Download PDF

Info

Publication number
WO1997015435A1
WO1997015435A1 PCT/JP1996/003038 JP9603038W WO9715435A1 WO 1997015435 A1 WO1997015435 A1 WO 1997015435A1 JP 9603038 W JP9603038 W JP 9603038W WO 9715435 A1 WO9715435 A1 WO 9715435A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthetic resin
sheet
mold
temperature
optical element
Prior art date
Application number
PCT/JP1996/003038
Other languages
English (en)
French (fr)
Inventor
Ikuo Mimura
Keiji Adachi
Original Assignee
Nippon Carbide Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbide Kogyo Kabushiki Kaisha filed Critical Nippon Carbide Kogyo Kabushiki Kaisha
Priority to EP96935377A priority Critical patent/EP0799686B1/en
Priority to US08/860,418 priority patent/US5945042A/en
Priority to JP51646497A priority patent/JP3285586B2/ja
Priority to DE69618338T priority patent/DE69618338T2/de
Publication of WO1997015435A1 publication Critical patent/WO1997015435A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00278Lenticular sheets
    • B29D11/00288Lenticular sheets made by a rotating cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/222Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/28Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00605Production of reflex reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/46Rollers
    • B29C2043/461Rollers the rollers having specific surface features
    • B29C2043/463Rollers the rollers having specific surface features corrugated, patterned or embossed surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Definitions

  • the present invention relates to a method and apparatus for continuously forming an optical element assembly.
  • an aggregate of optical elements such as a corner cube prism, a linear prism, a lenticular lens, a refractive lens, a Fresnel lens, a linear Fresnel lens, and a hologram pattern is continuously formed on a sheet such as a synthetic resin sheet.
  • the present invention relates to a method for continuously forming a corner cube type microprism assembly useful for manufacturing a corner cube type retroreflector, that is, an object in which incident light is substantially reflected toward a light source. And a device therefor.
  • U.S. Pat. No. 3,689,346 to Rowland describes a method for continuously producing corner cube retroreflective sheets. After filling a curable molding material into a corner cube mold, a transparent and flexible film-like material is put on the molding material, and then the molding material is cured and simultaneously bonded to the film material. To manufacture a retroreflective sheet.
  • the resin specifically described as the molding material in this specification is substantially a cross-linked resin such as a plastisol-type vinyl chloride resin containing a crosslinked acrylate monomer.
  • resin in a partially molten state can be used, products with good shape accuracy can be embossed under any melt viscosity, heating, or cooling conditions. Is not specifically described.
  • US Pat. No. 4,244,683 to Rowland discloses a device for embossing a corner cube prism semi-continuously on the surface of a thermoplastic synthetic resin sheet. And a so-called progressive press forming method.
  • a flat embossing die is placed on a synthetic resin sheet moving on an endless belt having a smooth surface, and three types of press stations, namely, preheating stations, are provided.
  • a prism element is formed by sequentially performing pressure molding in a heating molding stage and a plurality of cooling stations.
  • This method The formed prism sheet has problems that seams become apparent because the flat molds are formed side by side, the appearance of the product is deteriorated, and the productivity is poor.
  • the temperature of a part of the embossing device composed of an endless belt having a precision emboss pattern was heated to a temperature equal to or higher than the glass transition point of the thermoplastic synthetic resin.
  • the thermoplastic synthetic resin sheet is continuously embossed by a plurality of pressure points, and then cooled to a temperature below the glass transition point of the synthetic resin in a cooling stage.
  • the embossing temperature is limited to a temperature not lower than the glass transition point of the synthetic resin and not higher than the glass transition point of the carrier film, the flow state of the resin is insufficient. It is necessary to take a long pressurizing time or to install multiple pressurizing points, which is not a method with excellent productivity.
  • the element which has been embossed under the temperature condition has a disadvantage that the shape accuracy is reduced due to elastic deformation.
  • the embossing temperature is limited to a temperature equal to or higher than the glass transition point of the synthetic resin and equal to or lower than the glass transition point of the carrier film, for example, a high melting point synthetic resin sheet such as a polycarbonate resin is used.
  • JP-A-56-159039 and JP-A-56-159127 a synthetic resin member is supplied between a pair of endless belts to form an optical element assembly such as a lenticular lens and a Fresnel lens.
  • a method for forming the synthetic resin on the surface of a sheet is disclosed.
  • these publications do not specifically describe the melt viscosity conditions, heating conditions, and cooling conditions of the synthetic resin during embossing. It does not have a structure that peels off the synthetic resin after cooling it sufficiently, and is not suitable for molding an optical element assembly having sufficient optical precision.
  • Japanese Patent Application Laid-Open No. HEI 4-107502 discloses a diffraction grating in which a molten synthetic resin sheet extruded by an extruder is bridged between a pair of elastic rolls and a cooling roll by a cooling roll and another roll. It describes that a hologram sheet is formed by pressing against an endless stamper for embossing. However, according to the method described in this publication, the pressed synthetic resin sheet is not sufficiently cooled, so that the shape of the optical element obtained by this method is unlikely to be highly accurate. Further, the above publication does not specifically disclose what melt viscosity conditions, heating conditions, and cooling conditions can provide a product having good shape by embossing.
  • the problems with the formation of the optical element assembly expected in the method of the prior art include, according to experiments performed by the inventors, poor flow of the synthetic resin. Insufficient filling into the mold, elastic deformation after pressure release due to poor melting, chemical bonding of the synthetic resin, and shrinkage due to scattering of solvents and low molecular components in the synthetic resin.
  • the deformation of the optical element due to the shrinkage of the synthetic resin causes the optical element surface, which should be originally flat, to shrink concavely due to chemical bonding and scattering of solvents and low molecular components in the synthetic resin under pressure molding and pressure release. It is a phenomenon of deformation. This shrinkage phenomenon hinders the separation of the synthetic resin from the mold and tends to lower the productivity.
  • the low molecular component adheres to the mold surface, easily causing defects such as poor peeling and reduced surface smoothness. Volatile components remaining on the sheet gradually disperse during use as a product, resulting in deformation of the optical element and impairing the performance of the product.
  • the present inventors have found that the above-described problems in the case where an optical element assembly is formed continuously on a synthetic resin sheet, particularly the corner-cube type microprism used for manufacturing a corner cube type retroreflector. Research has been conducted to solve the above-mentioned problems when forming aggregates continuously. As a result, this time, the synthetic resin sheet was raised to the flow temperature range of the synthetic resin and supplied directly to the heat molding area of the embossing means, and the optical element aggregate shape of the embossing means was maintained while maintaining the flow temperature. The sheet and the mold are pressed continuously by pressing against a mold having a shape, and an optical element assembly is formed on one surface of the sheet.
  • the temperature of the sheet is reduced to the glass of the synthetic resin.
  • the optical surface The present inventors have found that a synthetic resin sheet having an element assembly and excellent in optical precision can be produced, and the present invention has been completed.
  • a synthetic resin sheet is continuously supplied, the sheet is pressed against a moving mold having the shape of an optical element assembly in a heat molding area, and the sheet and the mold are pressed against each other.
  • An optical element assembly is formed on one surface of the sheet, and then the sheet is moved together with a mold to a cooling area, where the sheet is cooled to a temperature below the glass transition point of the synthetic resin.
  • thermoforming section (a) feeding a synthetic resin sheet having a temperature in the flow temperature range directly to the thermoforming section;
  • the present invention also provides a seamless embossing means having an optical element assembly-shaped mold on the outer surface; heating means for heating the embossing means to raise the temperature to form a heat-molded area in the embossing means; Synthetic resin sheet supply means for continuously supplying a synthetic resin sheet to the heat molding area; the supplied synthetic resin sheet is formed into an optical element assembly on the outer surface of the embossing means in the heat molding area of the embossing means.
  • An apparatus for continuously forming an optical element assembly having a peeling means for peeling the synthesized resin sheet from the mold of the embossing means,
  • Synthetic resin sheet supply means has heating means for increasing the temperature of the supplied sheet to the flow temperature region of the synthetic resin, and the synthetic resin sheet having a temperature in the flow temperature region.
  • Supply means capable of continuously directly supplying a synthetic resin sheet to the thermoforming area of the embossing means,
  • the temperature of the heat forming area of the embossing means is a temperature sufficient to keep the temperature of the supplied and pressed synthetic resin sheet in the flow temperature region of the synthetic resin;
  • Linear Fresnel lens hologram pattern
  • corner cube microprisms which are used for manufacturing corner cut elbows, that is, objects whose incident light is substantially reflected toward a light source, are preferable.
  • the formation of the matrix of the corner cube type microprism assembly suitable for the present invention is performed in accordance with the method disclosed in PCT International Application No. PCTZJ P96 No. 02117 filed on July 26, 1996, that is, By stacking a plurality of flat plates having two planes parallel to each other and cutting V-grooves on one side surface of the obtained flat plate laminate at a pitch equal to the direction perpendicular to the flat surfaces, an apex angle of about 90 ° is obtained. A series of roof-shaped protrusions is formed, and then the top of the roof-shaped protrusions formed on each flat plate is made to coincide with the bottom of the V-groove formed on the adjacent flat plate.
  • the thickness of the flat plate used is 50 to 500 // m
  • the flat plate is formed of a synthetic resin having a mouthpiece hardness of 70 or more. It can be manufactured by a method.
  • the synthetic resin that can be used for the synthetic resin sheet for forming the optical element assembly is not particularly limited as long as it is a resin having good transparency.
  • acrylic resin, polyester Resins, polycarbonate resins, vinyl chloride resins, polystyrene resins, polyurethane resins, polyolefin resins, and the like acrylic resin, polycarbonate resin, vinyl chloride resin and polyurethane resin are preferable from the viewpoint of weather resistance and transparency.
  • the matrix on which these optical element assemblies are formed can be formed by a method known per se, for example, by an electroforming method (for example, practical surface technology, 35 (8), 1).
  • the copying electrode mold manufactured as described above is attached to the inner surface of the rotating drum electrode without any gaps, and then further subjected to electrode working. By doing so, it is possible to form a belt-shaped mold having no seams by welding.
  • the thickness of the belt-shaped mold is not limited at all.
  • the thickness is preferably 1/3000 to 1/500, particularly preferably 1/1200 to 1/800 of the diameter of the roll.
  • embossing roll type embossing means in which a mold having the shape of an optical element assembly is provided directly on the roll surface can be used.
  • the embossing roll type embossing means is preferable in the case of a linear optical element such as a linear prism, a linear Fresnel lens, or a lenticular lens, since the element shape can be cut directly on the roll surface.
  • the synthetic resin sheet in the flow temperature range is directly heated using a hot melt extrusion molding machine or the like.
  • Method of supplying to the molding area a method of heating a synthetic resin formed in a sheet shape in advance to a flow temperature area or more by a preheating means, and then supplying the synthetic resin to the heat molding area.
  • a specific method when using an extruder a method of extruding a synthetic resin in a molten state from a coat hanger type extrusion die attached to a single-screw extruder is generally used.
  • the screw shape of the extruder is, for example, the ratio of diameter to length (diameter length) is 1/20 to 1/35, the compression ratio of screw ⁇ is 1.5 to 2.0, and the rotation speed is 20 Examples of about 100 rpra can be given. Further, depending on the characteristics of the synthetic resin, a vacuum vent, a gear pump supply device, and the like can be used in combination. Further, in order to improve the thickness accuracy of the sheet, it is possible to install a pair of force render rolls immediately before the heat forming area where the synthetic resin sheet is supplied. A calender roll that can be used is, for example, a roll having a diameter of about 100 to 500 mm, and a metal roll having a mirror-like surface is preferable. Is better. It is desirable to control the gap between the calender rolls so as to obtain a desired synthetic resin sheet thickness.
  • the molded synthetic resin sheet is supplied between two or more heating rolls.
  • a method of heating the liquid to a temperature higher than the flow temperature range by passing the liquid is passed.
  • an indirect heating device such as a hot air blowing device, a near infrared lamp heating device, or a far infrared lamp heating device can be used in combination.
  • Heat molding area and heating means are identical to Heat molding area and heating means:
  • the synthetic resin sheet in the flow temperature region directly supplied to the heat forming area of the optical element assembly continuous forming apparatus by the above-described method and means for supplying a synthetic resin sheet is subjected to the optical element assembly by the press molding means.
  • the sheet and the mold are pressed against a mold having a shape, and the sheet and the mold are pressure-bonded. Subsequently, the sheet and the mold are moved together with the mold in an integrated state, and an optical element assembly is formed on the surface of the sheet. .
  • Examples of the press forming means include one or more pressure rolls provided for the emboss belt or the emboss opening as described above.
  • the pressure roll a roll made of metal, rubber or synthetic resin can be used. Since the pressing force at the time of pressing depends on the type of synthetic resin constituting the sheet and the shape of the mold, etc., it is strictly required. Although not restricted, it is usually preferable that the width is 5 to 100 kgZcm, particularly 20 to 60 kgZcm with respect to the width of the roll.
  • the speed of the continuous pressing is generally in the range of 5 to 3 mZniiru, preferably 7 to 15 mZmin, and depends on the size of the optical element, the molding pressure and speed, etc. Multiple rolls can be installed
  • the heating means an internal heating method of supplying heat from the inside of the roll can be adopted, and as the heat supplying means, a dielectric heating method, a heating medium circulation method, or the like can be used.
  • a combination of indirect heating devices such as a hot air blowing device, a near infrared lamp heating device, and a far infrared lamp heating device.
  • a hot air blowing device such as a hot air blowing device
  • a near infrared lamp heating device such as a near infrared lamp heating device
  • a far infrared lamp heating device such as a hot air blowing device, a near infrared lamp heating device, and a far infrared lamp heating device.
  • the belt may be pre-heated by an auxiliary heating means after peeling off (the laminate of) the synthetic resin sheet after the molding described later.
  • the ⁇ flow temperature region '' means that when the synthetic resin sheet is in a molten state and is pressed against a mold provided with the optical element assembly shape, it flows and fills according to the shape of the mold, The temperature at which the mold can be integrated with the mold.
  • the flow temperature range is, specifically, not less than the temperature at which the melt viscosity of the synthetic resin is 100,000 or less, preferably 50,000 or less, and less than the decomposition temperature of the synthetic resin. Temperature range.
  • the melt viscosity of a synthetic resin is measured by a temperature rise method using a Koka type flow tester specified in JIS K-7210, and the flow temperature range is regulated based on the relationship between temperature and viscosity obtained from the measurement. Is determined.
  • a specific measurement method of the temperature rise method 1.5 g of a synthetic resin sample was set to a hole temperature set at a starting temperature of 140 ° C. 1. O mni 0. A cross section of 1 cm 2 with a die of lOmm in length was installed. The sample is placed in a metal cylinder and extruded while raising the temperature under the conditions of a heating rate of 3 ° C / min and a pressure of 30 kgf. The melt viscosity can be determined from the relationship between the sample temperature and the outflow speed at this time.
  • the temperature of the synthetic resin sheet in the heat molding area can be measured by, for example, an infrared thermometer.
  • Surface hereinafter, sometimes referred to as the outer surface
  • a surface film can be laminated for the purpose of improving performance.
  • a rubber roll provided opposite to the emboss belt can be exemplified.
  • the surface film is supplied through a rubber hole onto a synthetic resin sheet at least at a temperature equal to or higher than the flow start point temperature, preferably in a flow temperature range, and is heated and pressed by a rubber roll to be laminated. At that time, the surface layer film is preferably laminated by a thermal fusion method under a temperature condition not lower than its glass transition point.
  • the "flow point temperature” is the temperature at which a resin that is solid at room temperature is heated to a temperature equal to or higher than the glass transition point and degrades, and further heated to start flowing to such an extent that press molding can be performed. Specifically, it refers to a temperature at which the melt viscosity of the synthetic resin becomes 1,000,000 or less.
  • the material of the surface layer film that can be laminated on the outer surface of the synthetic resin sheet for the above purposes include acrylic resin, fluorine resin, vinyl chloride resin, polyester resin, polyurethane resin, and the like.
  • the thickness of the surface film is not particularly limited, it can be generally about 10 to 100 // m, preferably about 20 to 50 m.
  • Printing is preferably performed on the back surface of the surface film, that is, on the surface of the surface film that is in contact with the synthetic resin sheet, since the printing ink does not peel off.
  • the synthetic resin sheet pressed and molded into a mold as described above, or, if necessary, a synthetic resin sheet having a surface film laminated on the outer surface of the sheet is integrated with the mold.
  • the carrier film is supplied to the side of the sheet not in contact with the mold and is laminated.
  • a roll provided opposite to the emboss belt for example, a rubber roll can be exemplified.
  • the carrier film is supplied through a rubber roll onto the outer surface of a synthetic resin sheet at a temperature at least equal to the flow start temperature or, if necessary, onto the surface of the laminated surface film that is not in contact with the sheet. It is heated and pressed by a roll.
  • the carrier film is applied to the outer surface of the synthetic resin sheet that has been melted and pressure-bonded to the mold to become an integrated state, or to the surface of the surface film that is laminated as necessary, which is not in contact with the synthetic resin sheet.
  • the carrier film also serves as a protective layer, for example, to prevent damage to the product surface during manufacturing. Since the cooling of the carrier film is started immediately after lamination on the synthetic resin sheet or surface film, it is possible to use a synthetic resin film having a flow temperature almost equal to that of the synthetic resin sheet or surface film. It is.
  • the synthetic resin that can be used for the carrier film include resins having relatively high heat resistance, such as polyethylene terephthalate resin, polyimide resin, and aramid resin. It may be almost the same as the glass transition temperature of the synthetic resin used for the synthetic resin sheet.
  • the thickness of the carrier film is not particularly limited, but it can be usually about 35 to: I 50 m, preferably about 50 to: L.
  • Cooling area and cooling means are identical Cooling area and cooling means:
  • the temperature of the carrier film at the time of thermocompression bonding is almost the same as the temperature at which the synthetic resin sheet is pressed against the mold and pressed to be integrated with the mold, so that the carrier film does not melt.
  • a cooling area for rapid cooling immediately after hiring for example, a cooling medium spray nozzle for blowing a cooling medium such as air, nitrogen gas, or water onto one or both sides of a belt-shaped mold (embossed belt) is provided at the position of the carrier film laminating means.
  • a method in which the two rolls on which the embossing belt is stretched are used as a heating roll (heat forming area) as described above, and the other is cooled by a medium such as water.
  • Cooling rolls a combination of these two methods can be adopted.
  • the area where the cooling roll and the cooling medium spray nozzle of the emboss belt are provided is the cooling area.
  • half of the roll can be used as a cooling zone.
  • a heat medium and a cooling medium are flowed through each manifold through two manifolds that define a plurality of holes formed inside the roll, so that a heat forming area and a cooling area are formed on the roll. Two temperature zones can be provided.
  • the laminate of the synthetic resin sheet and the carrier film or the laminate of the synthetic resin sheet and the surface layer film and the carrier film is at a temperature lower than the glass transition point (T g) of the synthetic resin, preferably It is cooled to a temperature of (T g (° C)-20 ° C) or less, more preferably (T g (° C)-50 ° C) or less.
  • a cooled laminate of a synthetic resin sheet and a carrier film, or a laminate of a synthetic resin sheet, a surface film, and a carrier film may be formed by a conventional means, for example, pulling. It can be peeled from the mold through the peeling hole.
  • the peeling roll must be arranged so as not to come into contact with the cooling roll in order to prevent the sheet laminate peeled from the mold after the cooling treatment from being pressed by the cooling roll by the peeling roll. preferable.
  • the peeling roll for example, a rubber roll, a metal roll, a synthetic resin roll, or the like can be used.
  • the synthetic resin optical sheet having the optical element assembly formed on the surface as described above is provided as a product after the carrier film is peeled off. If necessary, the optical element of the optical sheet is provided.
  • a back sheet is arranged, for example, the back sheet is moved from the back surface, that is, from the surface not facing the optical sheet.
  • the capsule structure is formed by forming a connecting line of a continuous fine line mesh pattern by heat embossing, and partially connecting the surface of the optical sheet on which the optical element assembly is formed and the back sheet.
  • a light-reflecting surface layer is formed on the surface of the optical element assembly of the optical sheet by metal vapor deposition, silver chemical plating, or the like, and further bonded to another structure.
  • For the combined rear panel And adhesive layer may be provided on the mirror layer disposed on the surface of the back or on the optical element assembly of divination.
  • FIG. 1 is a conceptual diagram showing one embodiment of an apparatus for continuously forming an optical element assembly according to the present invention.
  • FIG. 2 is a conceptual diagram showing another embodiment of the continuous forming apparatus of the optical element assembly of the present invention.
  • FIG. 3 is a conceptual diagram showing still another embodiment of the apparatus for continuously forming an optical element assembly according to the present invention.
  • an annular seamless emboss belt (3) is stretched over two steel rolls (1) and (2).
  • Roll (1) The part has oil circulation type heating means, and is a ripening forming roll that forms a heated forming area.
  • the roll (2) has a cooling means having a structure capable of being cooled by a cooling medium inside, and is a cooling roll forming a main part of a cooling area.
  • a mold having an optical element assembly shape is provided on the surface of the seamless emboss belt (3).
  • the synthetic resin sheet (5) is continuously extruded from an extrusion die (4) attached to an extrusion molding machine while being held in a flow temperature range, and is pressed by a hydraulic cylinder (6).
  • An optical element assembly which is supplied between the roll (7) and the surface of the embossed belt (3) on the roll (1) in the heat forming area, is pressed and provided on the surface of the embossed belt.
  • the sheet (5) is pressure-bonded to a mold having a shape to be integrated with the mold, and an optical element assembly is formed on one surface of the sheet (5).
  • the synthetic resin sheet (5) integrated with the mold moves in the heat molding area together with the emboss belt (3), and the carrier sheet is placed on the outer surface of the sheet (5) near the end point of the heat molding area.
  • the carrier sheet (9) is supplied and pressed by a rubber stacking and pressing roll (8) to laminate the carrier sheet (9), and at the same time, the shaping of the optical element assembly is completed.
  • the roll (8) is pressed by an air cylinder (11) via a metal arm (10) rotatably supported by a fulcrum (15), and the carrier sheet (9) is fed from an unwinder (12). It is unwound.
  • the cooled sheet laminate is released via a release roll (14). It is stripped off from the dress belt and wound up as a product.
  • an endless belt (27) is stretched over two steel rolls (25) and (26).
  • the roll (25) has a heating means of a dielectric heating method inside thereof, and is a heat forming hole for forming a heat forming area.
  • the roll (26) has a cooling means having a structure in which the inside can be cooled by a cooling medium, and is a cooling roll forming a main part of the cooling area.
  • a mold having an optical element assembly shape is provided on the surface of the seamless emboss belt (27).
  • the synthetic resin sheet is continuously extruded from an extrusion die (21) attached to the extrusion molding machine while being held in the flow temperature range, and is pressed by a hydraulic cylinder (22) into a pair of steel force renderers. It is supplied between the rolls (23) and (24), and then moves on the calender roll (23) and is pressed by the calender roll (23) against the emboss belt (27) in the heat forming area.
  • the optical element assembly is pressed against a mold having an optical element assembly shape provided on the surface of the emboss belt to be integrated with the mold, and the optical element assembly is formed on one surface of the sheet. At that time, in some cases, calendar roll
  • a pressure roll may be further provided adjacent to (23) to complete the pressure bonding.
  • the synthetic resin sheet integrated with the mold moves in the heat molding area together with the emboss belt (27), and the surface film (29) is supplied to the outer surface of the sheet in the heat molding area.
  • the surface film (29) is laminated by being pressed by a rubber-made laminating pressing roll (28).
  • the roll (28) is pressed by the air cylinder (31) via the metal arm (30), and the surface film (29) is unwound from the unwinder (32).
  • the laminate of the synthetic resin sheet and the surface film (29) moving together with the emboss belt (27) in a state integrated with the mold further moves in the heat forming area together with the emboss belt (27).
  • a carrier sheet (34) is supplied to the outer surface of the synthetic resin sheet, and is pressed by a rubber laminating pressing roll (33) to laminate the carrier sheet (34). The shaping of the aggregate is completed.
  • the roll (33) is pressed by the air-cylinder (36) via the metal arm (35), and the carrier sheet (34) is unwound from the unwinder (37).
  • the sheet laminate in which the synthetic resin sheet, the surface film (29) and the carrier sheet (34) are laminated is then moved to a cooling area, cooled by an air blow cooler (38), and then further cooled.
  • the synthetic resin is cooled to a temperature equal to or lower than the glass transition point of the resin (26) constituting the main part of the resin.
  • the cooled sheet laminate is peeled off from the endless belt (27) via a peeling roll (39) and wound up as a product on a winder (40).
  • the endless belt (27) from which the sheet laminate has been peeled off is preheated to the pressing temperature by a near-infrared heating type preheater (41) while moving, and then returned between the rolls (25) and (23). .
  • the embossing roll (55) has a structure capable of exchanging heat by flowing a heat medium through the pores (56) inside the embossing roll (55). It is divided into two sections by (57) and (58).
  • the heat medium oil heated through the heating manifold (57) is passed through the pores on the upper part of the roll (55) to form a heat forming area, and the pores on the lower part of the roll are cooled through the cooling manifold (58). Water is passed through to form a cooling zone.
  • the embossing roll (55) is partitioned into two temperature zones. Embossing roll On the surface of (55), a mold having an optical element assembly shape is provided.
  • the synthetic resin sheet (52) is continuously extruded from an extrusion die (51) attached to an extrusion molding machine while being held in a flow temperature range, and is interposed between a pair of steel calender rolls (53) and (54).
  • the embossing roll (55) is then pressed and then moved over the render roll (54) and pressed by the curry roll (54) against the hot forming area of the embossing roll (55), and the surface of the embossing roll (55)
  • the optical element assembly is pressed into a mold having the shape of an optical element assembly provided in the mold to be integrated with the mold, and the optical element assembly is formed on one surface of the sheet.
  • the synthetic resin sheet (52) integrated with the mold moves along with the rotation of the embossing roll (55), and the sheet (52) is located at the end of the heat forming area of the embossing roll (55).
  • the carrier sheet (9) is supplied to the outer surface of (52) and pressed by the laminating roll (59) to laminate the carrier sheet (60), and at the same time, the shaping of the optical element assembly is completed.
  • the laminate of the synthetic resin sheet (52) and the carrier sheet (60) then moves to the cooling area of the embossing roll (55) by rotation, is rapidly cooled, and is sent to the cooling air blowing device (61). Cooling is also performed from the surface to a temperature below the glass transition point of the synthetic resin.
  • the cooled sheet laminate is peeled off via a peeling roll (62) and wound up as a product.
  • the synthetic resin sheet can be quickly filled in the mold, and the productivity of the optical element assembly can be significantly increased.
  • a pair of steel rolls (25) and (26) with a diameter of 300 mm and a width of 800 mm are wrapped with an endless belt (27) with a circumference of 4000 mm and a width of 700 mm. It can be heated to 280 ° C by the dielectric heating method provided inside.
  • the lower roll (26) has a cooling means so that the inside can be cooled to a surface temperature of 30 ° C by water.
  • a seamless embossed belt (27) is stretched between the pair of rolls.
  • the surface of the belt has a concave height of 100 m and a tilted optical axis of 8 °.
  • the mold cube corner retroreflective elements are installed in a close-packed form over a width of 600 mm.
  • Polycarbonate with a thickness of 250 // m is extruded at a temperature of 280 ° C from a 50 mm diameter single screw extruder equipped with a coat hanger type extrusion die (2 1) with a width of 650 mm on the belt device.
  • a resin manufactured by Mitsubishi Engineering-Plastics Co., Ltd.
  • After passing between (24) and (24) it was press-bonded onto the envelop belt on the belt device with a linear pressure of 50 kgZcm.
  • the polycarbonate resin film moved on the belt was pressed with a pressing force of 30 kcm by a silicon roll (not shown) having a diameter of 20 Omm and a width of 700 mm.
  • a 30-m-thick acrylic resin film (manufactured by Mitsubishi Rayon Co., Ltd.) (29) is laminated on a polycarbonate resin sheet using a silicon roll (28) with a diameter of 200 mm and a width of 700 mm. did.
  • the polycarbonate resin film fused with the acrylic film proceeds on an emboss belt, and then a 75 m thick polyethylene terephthalate resin sheet (34) is further placed on the laminated acrylic resin film.
  • Lamination was performed using a silicon roll (33) with a diameter of 200 mm and a width of 700 mm.
  • the layer sheet was immediately cooled to 50 ° C or less by a cooling device (38) equipped with an air blowing nozzle at a temperature of 20 ° C, and peeled off from the lower cooling roll (26).
  • a cooling device (38) equipped with an air blowing nozzle at a temperature of 20 ° C, and peeled off from the lower cooling roll (26).
  • the reflection surface of the element was extremely smooth, and both the apex and each edge of the element were defective. It was confirmed that there was no spot and the shape was uniform and sharp. Furthermore, for the obtained optical element assembly, the retroreflective performance at an incident angle of 5 ° and an observation angle of 0.2 ° was measured according to JIS Z 8714 “Retroreflector-Optical property-Measurement method”.

Description

明 細 害 光学素子集合体の連铳的形成方法及びその装置 技術分野
本発明は、 コーナーキューブ型プリズム、 リニアプリズム、 レンチキュ ラーレンズ、 屈折型レンズ、 フレネルレンズ、 リニアフ レネルレンズ、 フォログラムパターンなどの光学素子の集合体を合成樹脂シート等のシ ート上に連続的に形成する方法及びそのための装置に関し、 特に、 コ一 ナーキューブ型再帰反射体、 即ち、 入射した光が概ね光源に向かって反 射する物体の製造に有用なコーナーキューブ型マイクロプリズム集合体 の連続的形成方法及びそのための装置に関する。
背景技術
従来より合成樹脂シート表面上に上記の如き種々の光学素子の集合体 を搭載した合成樹脂光学シー トの製造法に関しては数多くの提案がなさ れている。
これら合成樹脂光学シー 卜の製造においては、 合成樹脂の所謂ェンボ ス加工、 シボ加工、 梨地加工などの一般的な樹脂加工とは異なり、 光学 素子の形状精度が光学性能を決定するという意味で非常に精度の高い加 ェを必要とする。 例えば、 コーナーキューブの集合体を合成樹脂シート 上に搭載した、 所謂マイクロプリズム型再帰反射シー卜の場合、 プリズ ムを構成する互いに 90°の三つの面が成形加工時に、 例えば 1 °程度変動 しただけでも、 再帰反射する光の束の発散角度が大きくなり過ぎて実用 にならないという不具合を生じる。 これら不具合の改善を目的として、 合成樹脂シー 卜の表囬丄に尤字某 子集合体を搭載する方法について種々の改善の試みが行われている。 以 下、 合成樹脂光学シー 卜の製造に関して開示しているいくつかの特許に ついて説明する。
Rowlandによる米国特許第 3, 689. 346号明細書には、 コーナーキューブ 型再帰反射シー トを連続的に製造する方法が記載されている。 その方法 は、 コーナーキューブ金型に硬化可能な成形材料を充填した後、 透明で 柔軟なフィルム状材料を該成形材料上に被せ、 しかる後に該成形材料を 硬化させると同時に該フィルム材料と結合させることにより再帰反射シ ートを製造することからなる。 しかしながら、 この明細書に該成形材料 として具体的に記載されている樹脂は、 架橘性ァク リル酸エステルモノ マーを含有したプラスチゾル型塩化ビニル樹脂などのような架橋型の榭 脂に実質的に限られており、 一部溶融状態の樹脂を用いうることも示唆 されてはいるが、 どのような榭脂の溶融粘度条件、 加熱条件又は冷却条 件においてエンボス加工すれば形状精度の良い製品が得られるについて 具体的には何ら記載されていない。
Rowlandによる米国特許第 4, 244, 683号明細害 (=特公昭 56— 51320号 公報) には、 熱可塑性合成樹脂シー トの表面に半連続的にコーナーキュ —ブ型プリズムをエンボス加工する装置及び方法、 所謂、 順送りプレス 成形方法が開示されている。 この明細書には、 表面が平滑なエン ドレス ベルトの上を移動する合成樹脂シー卜の上に平板状のエンボス金型を置 き、 3種のプレスステーショ ン、 即ち、 予備加熱ステ一ショ ン、 加熱成 形ステージョン及び複数の冷却ステーションで順次加圧成形してプリズ ム素子を形成することが記載されている。 しかしながら、 この方法によ り形成されるプリズムシ一トは、 平板状の金型を並べて成形するために 継ぎ目が明らかになり製品の外観が低下し、 また、 生産性にも劣るとい う問題がある。
Pricone et al.による米国特許第 4, 486, 363号明細書 (=特開昭 59— 1 40021号公報) 、 及び米国特許第 4, 601, 861号明細書 (=特開昭 61— 4723 7号公報) には、 熱可塑性合成樹脂シー トの表面に連続的にコーナーキュ ーブ型プリズムをエンボス加工する装置及び方法が開示されている。 こ れらの明細書に記載のエンボス加工方法によれば、 精密エンボスパター ンを有するェンドレスベル卜よりなるエンボス装置の一部の温度が熱可 塑性合成樹脂のガラス転移点以上の温度に加熱された後に、 複数の加圧 点により熱可塑性合成樹脂シー 卜が連铳的にエンボス加工され、 しかる 後に冷却ステージョ ンにおいて該合成樹脂のガラス転移点以下の温度に 冷却される。
しかしながら、 これらの明細書に記載の方法は、 エンボス加工温度が 合成樹脂のガラス転移点以上で且つキヤリアフィルムのガラス転移点以 下の温度に限られているために、 樹脂の流動状態が不十分となりがちで、 長い加圧時間を必要としたり複数の加圧点を設置するなどの必要があり、 生産性の優れた方法ではない。 また、 該温度条件においてエンボス加工 された素子は、 弾性変形により形状精度が低下するという不都合がある。 さらに、 エンボス加工温度が上記のとおり該合成樹脂のガラス転移点以 上で且つキャリアフィルムのガラス転移点以下の温度に限られているた めに、 例えば、 ポリカーボネート樹脂などの高融点の合成樹脂シートを エンボス加工する場合には、 キャリアフィルムの選択に限りが有るとい う不都合がある。 特開昭 56— 159039号公報及び特開昭 56— 159127号公報には、 一对のェ ン ドレスベルトの間に合成樹脂部材を供給し、 レンチキュラーレンズ及 びフレネルレンズなどの光学素子集合体を該合成樹脂のシー 卜の表面に 形成する方法が開示されている。 しかしながら、 これらの公報には、 ェ ンボス加工時の合成樹脂の溶融粘度条件、 加熱条件及び冷却条件につい て具体的には何ら記載されておらず、 また、 開示されている装置は、 ェ ンボス成形された合成樹脂を十分に冷却した後に剥離するような構造に なっておらず、 十分な光学精度を有する光学素子集合体の成形には適し ていない。
特開平 4一 107502号公報には、 押出し機により押出された溶融状態の 合成樹脂シー トを、 一対の弾性ロール及び冷却ロールの間で、 この冷却 ロールと他のロールに掛け渡された回折格子エンボス用のェンドレスス タンパに押し付けることにより、 フォログラムシ一 トを形成することが 記載されている。 しかしながら、 この公報に記載の方法では、 押し付け られた合成樹脂シートが十分に冷却されないために、 この方法によって 得られる光学素子の形状は精度の高いものとはなり難い。 さらに、 上記 公報にもどのような溶融粘度条件又は加熱条件、 冷却条件においてェン ボス加工すれば形状性の良い製品が得られるかについて具体的な記載は なされていない。
次に、 以上に述べた如き従来技術の方法を用いて、 コーナーキューブ 型プリズムなどの前記の如き光学素子集合体を合成樹脂シー ト上に連続 的に形成する場合の問題点について述べる。
前記従来技術の方法において予想される光学素子集合体の形成にかか わる問題点としては、 発明者等の実験によれば、 合成樹脂の流動不良に 基づく金型への充填不良、 溶融不良に起因する圧力解放後の弾性変形、 合成樹脂の化学結合及び溶剤や合成樹脂中の低分子成分の飛散などに基 づく収縮などが挙げられる。
合成樹脂の流動不良に基づく金型への充填不良は、 特に合成樹脂が比 較的低温、 例えば室温程度のシートの状態でエンボス装置に供給される 場合、 加圧成形区域の前段又は加熱成形区域内で合成樹脂が十分に加熱 され得ないことにより発生しやすい。 特に、 Pricone et al.による米国 特許第 4, 486, 363号明細書 (=特開昭 59— 140021号公報) 及び米国特許 第 4, 601, 861号明細書 (=特開昭 61— 47237号公報) に記載の方法におい ては、 合成樹脂シー トがエンボス加工される温度が該合成樹脂のガラス 転移点以上で且つキヤリアフィルムのガラス転移点以下の温度に限られ ているために、 合成樹脂の流動状態が不十分となりがちである。
このため Pricone et al.は、 加圧点を複数設置する方法や、 合成樹脂 シー トの移動速度を遅く して十分な加圧時間を付与するという方法を採 用しているが、 何れも生産性に優れた方法とはいえない。 また、 数多く の加圧点を不用意に設置した場合には、 金型から剥離した合成樹脂シー 卜が次の加圧点で再度加圧成形される際にパターンずれを生じるという 不都合もある。 また他の改善の方法として、 例えば押出し成形機などで 溶融させた合成樹脂を、 シート状で供給する方法が記載されているが、 どのような温度条件や合成樹脂の溶融状態を用いれば精度のよい光学素 子集合体を製造することができるか具体的には何ら記載されていない。 溶融不良に起因する圧力解放後の弾性変形は、 合成樹脂が溶融不良状 態において高圧力により強制的に金型内に充填された場合に発生し易い c この場合、 合成樹脂は金型に完全に充填されはするが、 圧力解放後の弾 性変形により、 例えば、 本来平面であるべき光学素子面か ϋ ϋΐ狖に膨れ るなどの不都合が発生しやすい。 また、 このような条件下での高圧成形 は、 金型の寿命を低下させるという弊害もある。
合成樹脂の収縮による光学素子の変形は、 加圧成形下や圧力解放後に 化学結合及び溶媒や合成樹脂中の低分子成分の飛散などに基づいて本来 平面であるべき光学素子面が凹面状に収縮変形する現象である。 この収 縮現象は金型からの合成樹脂の剥離を阻害して生産性を低下させ易い。 また、 合成樹脂中に低分子成分が含まれている場合、 金型表面にこの低 分子成分が固着し、 剥離不良や表面の平滑性の低下などの不具合を発生 し易く、 さらに、 得られるエンボスシー トに残留している揮発成分が、 製品として使用中に徐々に飛散して光学素子の変形を生じて製品の性能 を損なうという不都合がある。
本発明者等は、 光学素子集合体を合成樹脂シー 卜上に連続的に形成す る場合の前述した如き問題点、 特にコーナーキューブ型再帰反射体の製 造に用いるコーナ一キューブ型マイクロプリズムの集合体を連続的に形 成する場合の上記の如き問題点を解決するために研究を行ってきた。 そ の結果、 今回、 合成樹脂シー トを該合成樹脂の流動温度領域まで高めて そのまま、 直接エンボス手段の加熱成形区域に供給し、 その流動温度を 保ちながら、 該エンボス手段の光学素子集合体形状をもつ型に連続的に 押し当てて該シ一 卜と型とを圧着させ、 該シー トの一方の面に光学素子 集合体を形成させた後、 必要に応じて、 該シー トの型と接していない側 の面に表層フィルムを積層し、 次いで得られる積層物の型と接していな い側にキャ リアフィルムを供給して密着させた後、 該シー 卜の温度を該 合成樹脂のガラス転移点以下の温度に冷却することにより、 表面に光学 素子集合体を有する光学精度に優れた合成樹脂シ一 トを生 κよ、 することができることを見出だし本発明を完成した。
発明の開示
本発明は、 合成樹脂シートを連続的に供給し、 加熱成形区域において 該シートを移動している光学素子集合体形状をもつ型に押し当て、 該シ 一トと型とを圧着させて、 該シー卜の一方の面に光学素子集合体を形成 させ、 引き続き該シー トを型と共に一体の状態で冷却区域に移動させ、 該冷却区域において該シー トを該合成樹脂のガラス転移点以下の温度に 冷却した後、 該シー トを型から剥離させることからなる光学素子集合体 の連続的形成方法において、
( a ) 温度が流動温度領域にある合成樹脂シー トを加熱成形区域に直 接供給すること、
( b ) 加熱成形区域において、 合成樹脂シー トの温度を該合成樹脂の 流動温度領域に保持すること、 及び、
( c ) 合成樹脂シ一 卜と型とを圧着させた後、 該シー トの型と接して いない側にキヤリアフィルムを供給し密着させ、 次いで該シー卜の温度 を該合成樹脂のガラス転移点以下の温度に冷却すること、
を特徴とする光学素子集合体の連続的形成方法を提供するものである。 本発明はまた、 外側表面に光学素子集合体形状の型を有する継ぎ目の ないエンボス手段;該エンボス手段を加熱して昇温させ該エンボス手段 に加熱成形区域を形成させる加熱手段;該エンボス手段の加熱成形区域 に合成樹脂シー トを連続的に供給する合成樹脂シ一 卜供給手段; 供給さ れた合成樹脂シートを該エンボス手段の加熱成形区域において該ェンボ ス手段外側表面の光学素子集合体形状の型に押し当て、 該シー トと型と を圧着させて該シー 卜の一方の面に光学素子集合体を形) ¾させる押比) ¾ 形手段 ;該シートを型と一体の状態で冷却区域に移動させるエンボス手 段の駆動手段 ;該エンボス手段を冷却して該エンボス手段に合成樹脂シ 一卜の温度を該合成樹脂のガラス転移点以下の温度に低下させるための 冷却区域を形成させる冷却手段;及び、 光学素子集合体が形成された合 成榭脂シ一トを該エンボス手段の型から剥離させる剥離手段を有する光 学素子集合体の連続的形成装置において、
( a ) 合成樹脂シー ト供給手段が、 供給される該シー トの温度を該合 成樹脂の流動温度領域に高める加熱手段を有し、 且つ温度が流動温度領 域にある合成樹脂シー トをエンボス手段の加熱成形区域に合成樹脂シー トを連铳的に直接供給できる供給手段であること、
( b ) エンボス手段の加熱成形区域の温度が、 供給され押圧成形され る合成樹脂シートの温度を該合成樹脂の流動温度領域に保持させるに十 分な温度であること、 及び、
( c ) 合成樹脂シー 卜と型とを圧着させた後、 該シー 卜の温度がその ガラス転移点以下の温度に冷却される前に、 該シー 卜の型と接していな い側にキヤリアフィルムを供給するキヤリアフィルム供給手段を有して いること、
を特徴とする光学素子集合体の連続的形成装置を提供するものである。 以下、 本発明についてさらに詳細に説明する。
光学素子の形状及び光学素子集合体の母型の形成方法: 本発明により作成可能な光学素子の具体例としては、 例えば、 コーナ 一キューブ型プリズム、 リニアプリズム、 レンチキュラーレンズ、 屈折 型レンズ、 フレネルレンズ、 リニアフレネルレンズ、 フォログラムパタ ーンなどを挙げることができ、 中でも、 コーナーキューフ^冉帰 Λ肘体、 即ち、 入射した光が概ね光源に向かって反射する物体の製造に用いるコ ーナーキューブ型マイクロプリズムが好適である。
これらの光学素子の集合体を合成樹脂シー 卜上に連続的に形成するた めに必要な基本的な型である、 光学素子集合体の母型の形成方法として は、 例えば、 フライカツ ト法、 ルーリング法、 ダイアモンドターニング 法などの手段によって、 金属表面に複数の方向から溝を切削加工して光 学素子を形成する方法 (例えば、 特開昭 60 - 100103号公報 (= 米国特許第 4, 588, 258号明細書参照) ; 金属や合成樹脂のシ一 ト を重ね合わせてその端面に溝を切削加工した後に、 溝の深さと溝のピッ チの長さ分シートを移動させて該シ一トの端面に光学素子集合体の母型 を形成させる方法 (例えば、 米国特許第 4, 073.568号明細書参照) などを挙げることができる。
また、 本発明において好適なコーナーキューブ型マイクロプリズム集 合体の母型の作成は、 1996年 7月 26日に出願された PCT国際出 願 PCTZJ P96ノ 02117に開示されている方法に従い、 すなわ ち、 互いに平行な二平面を持つ複数の平板を重ね、 得られる平板積層物 の一側面を該平面に対して直角な方向に等しいピッチで V溝を切削する ことにより、 頂角が約 90° の連続する屋根型の突起群を形成し、 次い で各々の平板上に形成された屋根型突起群の屋根の頂部を、 隣接する平 板上に形成された V溝の底部に一致させるように移動させることからな り、 その際、 用いる平板の厚さが 50〜500 //mであり、 且つ、 該平 板が口ックゥエル硬さ 70以上の合成樹脂で形成されていることを特徴 とする方法によって製造することができる。 本発明において光学素子集合体を形成するための合成樹脂シ一 卜に用 いることのできる合成樹脂は、 透明性の良い樹脂であれば特に限定され るものではなく、 例えば、 アクリル系樹脂、 ポリエステル系樹脂、 ポリ カーボネー ト系榭脂、 塩化ビニル系樹脂、 ポリスチレン系榭脂、 ポリウ レタン系樹脂、 ポリオレフイン系樹脂等を例示することができる。 耐候 性や透明性等の観点から、 中でも、 アクリル系榭脂、 ポリカーボネー ト 系樹脂、 塩化ビニル系樹脂及びポリウレタン系榭脂が好適である。
エンボス手段の形成方法 :
これらの光学素子集合体が形成された母型は、 それ自体既知の方法、 例えば、 電铸加工法等により (例えば、 実務表面技術, 3 5 ( 8 ) , 1
0〜 1 6 ( 1 9 8 8 ) 、 「特殊電铸とその応用 電铸に使用される材料 と薬剤」 (井上学著) 参照) 合成樹脂シー トの成形加工が可能な、 反転 された金型に多数枚複写することができる。 これらの電铸複写された複 数の金型は、 さらにつなぎ合わせて大きな寸法の金型に形成することが 可能である。 このようにして複写され、 つなぎ合わされた金型は、 一枚 の大きなシー ト状金型とした後にシートの末端を例えばレーザ一溶接等 により接合して、 合成樹脂シートをエンボス加工してその表面に光学素 子集合体を形成するための継ぎ目のないベルト状金型 (エンボスベルト) に形成することができる。
また、 例えば、 実公昭 48- 1072号公報に記載の如きの方法に従って、 回転ドラム型電極の内面に上記の如く して作製される複写電铸金型を隙 間なく取り付けた後さらに電铸加工することにより、 溶接による継ぎ目 のないベルト状金型を形成することも可能である。
ベルト状金型の厚さは、 何ら制限されるものではないが、 通常、 用い るロールの直径の 1/3000〜1/500、 特に 1/1200〜1 /800の厚さとするのが 好ましい。
さらに、 ロール表面上に直接光学素子集合体形状の金型を設けたェン ボスロール型のエンボス手段も使用可能である。 エンボスロール型のェ ンボス手段は、 リニアプリズム、 リニアフレネルレンズ、 レンチキユラ 一レンズなどの直線状の光学素子の場合に、 ロール表面上に直接素子形 状を切削加工できるので好ましい。
合成樹脂シー 卜の供給方法及び手段 :
本発明に従う光学素子集合体の連続的形成装置に流動温度領域にある 合成樹脂シー トを供給する方法としては、 加熱溶融押出し成形機等を用 いて流動温度領域にある合成樹脂シー トを直接加熱成形区域に供給する 方法 ;予めシート状に形成された合成樹脂を予熱手段により流動温度領 域以上に加熱した後に加熱成形区域に供給する方法などが挙げられる。 押出し成形機を用いる場合の具体的方法としては、 一軸型押出し成形 機に取り付けたコ一 トハンガータイプ押出しダイスより溶融状態の合成 樹脂を押出す方法が一般的である。 押出し成形機のスクリュウ形状とし ては、 例えば、 直径と長さの比率 (直径 長さ) が 1/20〜1/35、 スクリュ ゥの圧縮比が 1. 5〜2. 0、 回転数が 20〜100rpra程度のものを例示すること ができる。 また、 合成樹脂の特性に応じて、 真空ベント、 ギアポンプ供 給装置などを併用することもできる。 さらに、 シー トの厚み精度を向上 させる目的で、 一対の力レンダーロールを合成樹脂シー トが供給される 加熱成形区域の直前に設置することも可能である。 使用しうるカレンダ 一ロールとしては 100〜500mm程度の直径を有するものを例示することが でき、 表面が鏡面状の金属ロールが好ましく、 内部加熱可能な構造になつ ているものがよい。 カレンダーロールの間隙は、 所望の合成樹脂シー ト 厚さが得られるように制御することが望ましい。
—方、 予めシー ト状に形成された合成樹脂を流動温度領域以上に加熱 した後に加熱成形区域に供給する方法としては、 成形された合成樹脂シ 一トを 2本以上の加熱ロールの間を通過させることにより流動温度領域 以上に加熱する方法が挙げられる。 この際に、 熱風吹き付け装置、 近赤 外ランプ加熱装置、 遠赤外ランプ加熱装置などの間接加熱装置を併用す ることも可能である。
加熱成形区域及び加熱手段 :
上記の合成樹脂シー 卜の供給方法及び手段によって光学素子集合体の 連続形成装置の加熱成形区域に直接供給された流動温度領域にある合成 榭脂シ一トは、 押圧成形手段により光学素子集合体形状をもつ型に押し 当てられて該シー卜と型とが圧着され、 引き続いて加熱成形区域内を型 と共に一体の状態で移動して、 該シー卜の表面に光学素子集合体が形成 される。
押圧成形手段としては、 前記の如きエンボスベルト又はエンボス口一 ルに対して設置された 1個以上の加圧ロールを例示することができる。 加圧ロールは金属製、 ゴム製又は合成樹脂製のロールを使用することが でき、 圧着時の加圧力は該シートを構成する合成樹脂の種類や金型の形 状等に依存するので厳密に規制されるものではないが、 通常、 ロールの 幅に対して 5〜100kgZcm、 特に 2 0〜6 0 kg Zcm程度であるのが好 ましい。 連続的に押圧成形する速度としては一般に 5〜3 O mZniiru 好 ましくは 7〜 1 5 mZminの範囲内を例示することができ、 光学素子のサ ィズ、 成形の圧力や速度等に応じて複数のロールを設置することも可能
12
訂正された用紙 (規則 91) である。
加熱手段としては、 ロール内部から熱を供給する内部加熱方法を採用 することができ、 熱の供給手段としては、 誘電加熱方式、 熱媒体循環方 式などを用いることができる。 また補助手段として、 熱風吹き付け装置、 近赤外ランプ加熱装置、 遠赤外ランプ加熱装置などの間接加熱装置を組 み合わせて用いることも可能である。 加熱成形区域は、 例えば、 ェンボ スベルトを用いる場合、 該ベル卜が掛け渡されている 2つのロールの一 方を加熱ロールとすることにより、 また、 エンボスロールなどを用いる 場合は、 該ロールの半分を加熱ゾーンとすることにより形成することが できる。 さらに必要に応じて、 後記する成形終了後の合成樹脂シー ト (の 積層物) を引き剥がした後、 該ベルトを補助加熱手段により予備加熱す ることもできる。
流動温度領域:
本発明において 「流動温度領域」 とは、 合成樹脂シートが溶融状態に なり、 これが光学素子集合体形状が設けられている金型に押し当てられ た時、 型の形状に従って流動して充填され、 型と一体化されることが可 能となる温度をいい、 従来技術で発生しがちであった前記の不具合、 即 ち、 合成樹脂の流動不足に基づく金型への充填不良、 溶融不良に起因す る圧力解放後の弾性変形などが発生しない温度領域を意味する。
流動温度領域は、 具体的には、 合成樹脂の溶融粘度が 1 0 0 , 0 0 0 ボイズ以下、 好ましくは 5 0, 0 0 0ボイズ以下となる温度以上で且つ 該合成樹脂の分解温度未満の温度領域である。 合成樹脂の溶融粘度は、 JIS K- 7210に規定された高化式フローテスターを用いて昇温法により測 定され、 それから求められる温度一粘度の関係により流動温度領域が規 定される。
昇温法の具体的測定法としては、 合成樹脂の試料 1. 5gを開始温度 140 °Cに設定された穴怪 1 . O mni 0 . 長さ lOmmのダイを設置した断面積 1 cm 2 の金属製シリ ンダーに入れ、 昇温速度 3 °C /min、 加圧力 30kgfの条件で 該試料を昇温させながら押出しさせる。 このときの試料の温度と流出速 度との関係より溶融粘度を求めることができる。
なお、 加熱成形区域にある合成樹脂シー トの温度は、 例えば、 赤外線 温度計で測定することができる。
表層フィルムの積層 :
押圧成形されて金型に圧着され一体化されて、 その一方の面に光学素 子集合体を形成された合成樹脂シー 卜には、 必要に応じて、 該シー 卜の 型と接していない側の表面 (以下、 外表面ということがある) に、 耐候 性、 耐溶剤性、 耐汚染性、 耐ク リーニング性、 柔軟性、 耐塞性、 耐傷性、 耐摩耗性、 耐屈曲性などの諸性能の改善を目的として、 表層フィルムを 積層することができる。 積層の手段としてはエンボスベルトに相対して 設置されたゴムロールを例示することができる。 表層フイルムはゴム口 ールを通じて、 少なく とも流動開始点温度以上の温度、 好ましくは流動 温度領域にある合成樹脂シー ト上に供給され、 ゴムロールにより加熱圧 着されて積層される。 その際表層フィルムはそのガラス転移点以上の温 度条件で、 熱融着法により積層するのが好ましい。
ここで、 「流動開始点温度」 とは、 常温で固体である樹脂が、 ガラス 転移点以上の温度に熱せられて钦化し、 さらに加熱されて押圧成形が可 能となる程度に流動しはじめる温度をいい、 具体的には、 合成樹脂の溶 融粘度が 1 , 0 0 0 , 0 0 0ボイズ以下となる温度をいう。 上記の如き目的で合成樹脂シー 卜の外表面に積層しうる表層フィルム の材質としては、 例えば、 アクリル系樹脂、 フッ素系樹脂、 塩化ビニル 系樹脂、 ポリエステル系榭脂、 ポリウレタン系樹脂などが挙げられる。 表層フィルムの厚さは特に制限されるものではないが、 通常、 1 0〜 1 0 0 // m、 好ましくは 2 0〜5 0 m程度とすることができる。
また、 表層フィルムには、 必要に応じてロゴや交通檩識マークなどの 印刷を施すことが可能である。 印刷は表層フィルムの裏面、 すなわち、 表層フィルムが合成榭脂シ一卜と接する側の面に行なう方が印刷ィンキ の剥離を生じないために好ましい。
キャ リアフィルムの積層 :
前記のようにして押圧成形されて金型に圧着された合成榭脂シ一ト、 又はさらに必要に応じて、 該シートの外表面に表層フィルムが積層され た合成樹脂シートは、 金型と一体の状態で冷却区域に移動する直前に、 該シー 卜の金型と接していない側にキヤリアフィルムが供給されて積層 される。 キャリアフィルムの積層手段としては、 エンボスベルトに相対 して設置されたロール、 例えばゴムロールを例示することができる。 キヤ リアフィルムはゴムロールを通して少なく とも流動開始温度以上の温度 にある合成樹脂シー卜の外表面上、 又は必要に応じて積層された表層フィ ルムの該シートと接していない側の表面上に供給され、 ロールにより加 熱圧着される。
このようにして溶融して型に圧着されて一体の状態となった合成樹脂 シートの外表面、 又は必要に応じて積層される表層フィルムの合成樹脂 シートと接していない側の表面にキヤリアフィルムを押し付けて積層す ることにより、 合成樹脂シー 卜の外表面又は表層フィルムの外表面にキヤ リアフィルムの表面を転写し平滑な表面とすることができる。 また、 キヤ リアフィルムは製造中における製品表面の傷付き防止などの保護層の役 割も果たす。 キャリアフィルムは、 合成榭脂シ一ト又は表層フィルムに 積層した直後に冷却が開始されるので、 合成樹脂シー ト又は表層フィル ムとほぼ等しい流動温度を有する合成樹脂フィルムを使用することも可 能である。
キャリアフィルムに用いることのできる合成樹脂の具体例としては、 ポリエチレンテレフタレー ト系榭脂、 ポリイ ミ ド系榭脂、 ァラ ミ ド系樹 脂などの比較的耐熱性の高い樹脂が好ましいが、 合成樹脂シー 卜に用い られる合成樹脂のガラス転移点温度とほぼ同程度のものであってもかま わない。
また、 キャリアフィルムの厚さも特に制限されるものではないが、 通 常、 3 5〜: I 5 0 m、 好ましくは 5 0〜: L 程度とすることが できる。
冷却区域及び冷却手段:
キャリアフィルムの加熱圧着時の温度は、 合成樹脂シー 卜が金型に押 し当てられて圧着され該金型と一体の状態となる時の温度にほぼ等しい ため、 キャ リアフィルムが溶融しないように、 積雇直後に急速に冷却す るための冷却区域を設ける必要がある。 冷却区域における冷却手段とし ては、 例えば、 ベルト状金型 (エンボスベルト) の片面又は両面に空気、 窒素ガス、 水などの冷却媒体を吹き付けるための冷却媒体吹き付けノズ ルをキヤリアフィルム積層手段の位置より移動方向下流側に設置する方 法 ; エンボスベルトが掛け渡されている 2つのロールの一方を前記のよ うに加熱ロール (加熱成形区域) とし、 他方を水などの媒体で冷却され ている冷却ロールとする方法 ; これら両方法の組合わせなどを採用する ことができる。 この場合、 冷却ロール及びエンボスベルトの冷却媒体吹 き付けノズルが設けられている区域が冷却領域となっている。 また、 前 記エンボスロールなどのロール表面に光学素子集合体形状が設置されて いるような成形手段においては、 ロールの半分を冷却ゾーンにすること も可能である。 この場合、 ロールの内部に形成された複数の孔を区画す る 2つのマ二ホールドを通じてそれぞれのマ二ホールドに熱媒体と冷却 媒体を流すことにより、 ロール上に加熱成形領域と冷却領域の二つの温 度区域を設けることができる。
上記冷却区域において、 合成樹脂シー 卜とキャリアフィルムとの積層 物又は合成樹脂シー 卜と表層フィルムとキャリアフィルムとの積層物は、 該合成樹脂のガラス転移点 (T g ) 以下の温度、 好ましくは (T g (°C) 一 2 0 °C) 以下、 より好ましくは (T g (°C ) - 5 0 °C ) 以下の温度に 冷却される。
剥離手段 :
冷却された合成樹脂シ一 卜とキャリアフィルムとの積層物、 又は合成 樹脂シー トと表層フイルムとキャリアフィルムとの積層物 (以下、 単に シート積層物ということがある) は通常の手段、 例えば引き剥がし口一 ルを通じて金型から引き剥がすことができる。 引き剥がしロールは、 冷 却処理後に金型から剥離するシー ト積層物が引き剥がしロールにより冷 却ロールに押圧されることを防止するために、 冷却ロールと接触しない ように配置されていることが好ましい。 剥離ロールとしては例えばゴム 製のロール、 金属製のロール、 合成樹脂ロールなどを用いることができ る。 後工程 :
以上のようにして光学素子集合体が表面に形成された合成樹脂光学シ ー トは、 キャリアフィルムが剥ぎ取られた後に製品として供されるが、 必要に応じて、 該光学シー 卜の光学素子集合体が形成されている側の面 に空気層を確保するため、 背面シー トを配置して、 例えば、 該背面シー トをその背面、 すなわち、 該光学シートに面していない側の面から熱ェ ンボスして連続細線状の網目模様の連結壁を形成し、 該光学シートの光 学素子集合体が形成されている側の面と背面シートとを部分的に結合さ せることによりカプセル構造を形成したり、 また、 該光学シー 卜の光学 素子集合体の表面に、 金属蒸着や銀の化学メ ツキ等により光を反射する 镜面層を設置したり、 さらに、 他の構造物に接合するために、 結合され た背面シー 卜の背面上や光学素子集合体の表面に設置された鏡面層上に 接着層などを設けることもできる。
以下、 本発明の光学素子集合体の連続的形成方法及び装置を、 添付図 面を参照しつつさらに具体的に説明する。
図面の簡単な説明
図 1は、 本発明の光学素子集合体の連铳的形成装置の一態様を示す概 念図である。
図 2は、 本発明の光学素子集合体の連続的形成装置の別の態様を示す 概念図である。
図 3は、 本発明の光学素子集合体の連続的形成装置のさらに別の態様 を示す概念図である。
図 1に示す態様において、 2個のスチールロール(1)、 (2)に環状のシ ームレスエンボスベルト(3)が掛け渡されている。 ロール(1)は、 その内 部に油循環方式の加熱手段を有しており、 加熱成形区域を形成する加熟 成形用ロールである。 ロール(2)は、 内部に冷却媒体により冷却できる 構造の冷却手段を有しており、 冷却区域の主要部をなす冷却用ロールで ある。 また、 シームレスエンボスベルト(3)の表面には光学素子集合体 形状の金型が設置されている。
合成樹脂シート(5)は、 押出し成形機に取り付けられた押出しダイス (4)から、 流動温度領域に保持されて連続的に押出され、 油圧シリ ンダ 一(6)により押圧された押圧成形用ゴム製ロール(7)と、 加熱成形区域に あるロール(1)上のエンボスベルト(3)の表面との間に供給され、 押圧さ れて該エンボスベルトの表面に設けられている光学素子集合体形状の金 型に圧着され、 該金型と一体の状態となると共に、 該シー ト(5)の一方 の面に光学素子集合体が形成される。
金型と一体の状態となった合成樹脂シート(5)は、 エンボスベルト(3) と共に加熱成形区域を移動し、 該加熱成形区域の終点付近で該シー ト(5) の外表面にキャリアシート(9)が供給され、 ゴム製の積雇用押圧ロール(8 )によって押圧されて該キヤリアシート(9)が積層され、 同時に光学素子 集合体の賦型が完了する。 ロール(8)は、 支点(15)によって回転自在に 支持されている金属アーム(10)を介して エアーシリ ンダー(11)により 押圧され、 また、 キャリアシート(9)は巻出し機(12)より巻き出される。 金型と一体の状態でエンボスベルト(3)と共に移動するキヤリアシー ト(9)と合成樹脂シート(5)との積層物は、 次いで冷却区域に移動し空気 吹き付け冷却器(13) によって冷却された後に、 さらに冷却区域の主要 部を構成しているロール(2)上で該合成樹脂のガラス転移点以下の温度 に冷却される。 冷却されたシー ト積層物は、 剥離ロール(14)を介してェ ンドレスベル卜から剥ぎ取られ、 製品として巻き取られる。
図 2に示す態様において、 2個のスチールロール(25)、 (26)にエン ド レスベルト(27)が掛け渡されている。 ロール(25)は、 その内部に誘電加 熱方式の加熱手段を有しており、 加熱成形区域を形成する加熱成形用口 ールである。 ロール(26)は、 内部を冷却媒体により冷却できる構造の冷 却手段を有しており、 冷却区域の主要部をなす冷却用ロールである。 ま た、 シームレスエンボスベルト(27)の表面には光学素子集合体形状の金 型が設置されている。
合成樹脂シー トは、 押出し成形機に取り付けられた押出しダイス(21) から、 流動温度領域に保持されて連続的に押出され、 油圧シリ ンダー(2 2)により押圧された一対のスチール製力レンダーロール(23)、 (24)の間 に供給され、 次いで、 カレンダーロール(23)の上を移動して、 カレンダ 一ロール(23)により加熱成形区域にあるエンボスベルト(27)に押圧ざれ て該エンボスベルトの表面に設けられている光学素子集合体形状の金型 に圧着され、 該金型と一体の状態となると共に、 該シートの一方の面に 光学素子集合体が形成される。 その際、 場合により、 カレンダーロール
(23)に隣接してさらに押圧ロールを設けて圧着を完結させるようにして もよい。
金型と一体の状態となった合成樹脂シー トは、 エンボスベルト(27)と 共に加熱成形区域を移動し、 該加熱成形区域内において該シー トの外表 面に表層フィルム(29)が供給され、 ゴム製の積層用押圧ロール(28)によつ て押圧されて表層フィルム(29)が積層される。 ロール(28)は金属アーム (30)を介してェアーシリ ンダー(31)により押圧され、 また、 表層フィ ル ム(29)は巻出し機(32)より巻き出される。 金型と一体の状態でエンボスベルト(27)と共に移動する合成樹脂シー トと表層フィルム(29)との積層物は、 さらにエンボスベルト(27)と共に 加熱成形区域を移動し、 該加熱成形区域の終点付近で合成樹脂シー 卜の 外表面にキヤリアシート(34)が供給され、 ゴム製の積層用押圧ロール(3 3)によって押圧されて該キャリアシー ト(34)が積層され、 同時に光学素 子集合体の賦型が完了する。 ロール(33)は金属アーム(35)を介してエア —シリ ンダー(36)により押圧され、 また、 キャリアシー ト(34)は巻出し 機(37)より巻き出される。
合成樹脂シー ト、 表層フィルム(29)及びキヤリアシー 卜(34)が積層さ れたシ一卜積層物は、 次いで冷却区域へ移動し空気吹き付け冷却器(38) によって冷却された後に、 さらに冷却区域の主要部を構成している口一 ル(26)上で該合成樹脂のガラス転移点以下の温度に冷却される。 冷却さ れたシ一ト積層物は、 剥離ロール(39)を介してェン ドレスベルト(27)か ら剥ぎ取られ、 製品として巻き取り機(40)に巻き取られる。 シー ト積層 物を剥離したエン ドレスベルト(27)は、 移動しながら近赤外線加熱方式 の予熱器(41)により押圧温度まで予備加熱された後、 ロール(25)と(23) の間に戻る。
図 3に示す態様において、 エンボスロール(55)は、 その内部の細孔(5 6)に熱媒体を流して熱交換可能な構造になっており、 ロールの外周部に 設置されたマ二ホールド(57)、 (58)により二つの区画に仕切られている。 ロール(55)上部の細孔には加熱マ二ホールド(57)を通じて熱された熱媒 体油が通され加熱成形区域を形成し、 ロール下部の細孔には冷却マニホ ールド(58)を通じて冷却水が通され冷却区域を形成する。 このようにェ ンボスロール(55)は二つの温度区域に仕切られている。 エンボスロール (55)の表面には光学素子集合体形状の金型が設置されている。
合成樹脂シート(52)は、 押出し成形機に取り付けられた押出しダイス (51)から流動温度領域に保持されて連続的に押出され、 一対のスチール 製のカレンダーロール(53)、 (54)の間に供袷されて押圧され、 次いで力 レンダーロール(54)の上を移動して該カレングーロール(54)によってェ ンボスロール(55)の加熱成形区域に押圧され、 エンボスロール(55)の表 面に設けられている光学素子集合体形状の金型に圧着されて該金型と一 体の状態となると共に、 該シー 卜の一方の面に光学素子集合体が形成さ れる。
金型と一体の状態となった合成樹脂シー ト(52)は、 エンボスロール(5 5)の回転にともなつて移動し、 該エンボスロール(55)の加熱成形区域の 最後部で該シート(52)の外表面にキヤ リアシー ト(9)が供給され、 積層 用ロール(59)によって押圧されてキヤリアシー ト(60)が積層され、 同時 に光学素子集合体の賦型が完了する。 合成樹脂シート(52)とキヤリアシ ート(60)との積層物は、 次いで回転によりエンボスロール(55)の冷却区 域に移動して急速に冷却されると共に、 冷却空気吹き付け装置(61)によ り表面からも冷却が行われて、 合成樹脂のガラス転移点以下の温度に冷 却される。 冷却されたシ一ト積層物は剥離ロール(62)を介して剥ぎ取ら れ製品として巻き取られる。
以上に述べた本発明の成形方法においては、 合成樹脂の流動温度領域 で光学素子が押圧成形されるために、 樹脂の流動不足に基づく金型への 充填不良、 溶融不良に起因する圧力解放後の弾性変形、 樹脂の化学結合 や溶剤の飛散に基づく収縮など従来技術に発生しがちな不具合を改善す ることができ、 光学精度が極めて優れた光学素子集合体をつく ることが できる。
しかも、 本発明の装置を用いれば、 合成樹脂シー トの金型への充填を 速やかに達成することができ、 光学素子集合体の生産性を格段に高める ことができる。
実施例
以下、 実施例により本発明をさらに具体的に説明する。
実施例 1
図 2に示す装置を用いて本発明の光学素子集合体を連続的に製造する 場合の具体例を以下に示す。
図 2において、 直径 300mm、 幅 800 mmの一対のスチールロー ノレ (25) 、 (26) に周長 4000mm、 幅 700mmのエン ドレス ベルト (27) が掛け渡されており、 上部ロール (25) はその内部に 設けられた誘電加熱方式により 280°Cに加熱することができる。 また、 下部ロール (26) は、 内部を水により表面温度が 30°Cに冷却できる ように冷却手段を有している。 この一対のロールの間に、 シームレスェ ンボスベルト (27) が掛け渡されており、 そのベルトの表面にはプリ ズム高さが 1 00 m、 光学軸の傾斜角度が 8° の凹形状の三角錐型キュ ーブコーナー再帰反射素子が幅 600mmにわたつて最密充填状に設置 されている。
上記ベルト装置に、 幅 650mmのコートハンガー型押出しダイス (2 1 ) が設置された直径 50 mmの一軸スクリュー型押出し機から 280 °Cの温度条件で押出した、 厚み 250 //mのポリカーボネー ト榭脂 (三 菱エンジニアリ ングプラスチックス社製) を、 油圧シリ ンダ一 (22) により押圧された一対の表面温度が 1 80 °Cのクロムメ ツキロール (2 3) 、 (24) の間を通過させた後、 上記ベルト装置上のェンホスベル ト上に線圧 50 k gZcmの加圧力で圧着させた。 さらに、 ベルト上を 移動したポリカーボネー ト樹脂フィルムを直径 20 Omm. 幅 700m mのシリ コンロール (図示せず) により、 加圧力 30 k c mの加圧 力で押圧した。
しかるのち、 ポリカーボネー ト榭脂シ一 ト上に厚さ 30 mのァク リ ル樹脂フィルム (三菱レーヨン社製) (29) を、 直径 200mm、 幅 700mmのシリ コンロール (28) を用いて積層した。 このアク リル フィルムを融着したポリカーボネー 卜樹脂フィルムはエンボスベルト上 を進み、 積層されたァク リル樹脂フィルム上に、 さらに、 厚さ 75 m のポリエチレンテレフタレー ト榭脂シート (34) を、 直径 200mm- 幅 700 mmのシリ コンロール (33) を用いて積層した。
上記穑層シ一トは直ちに、 温度 20°Cの空気吹き出しノズルを備えた 冷却装置 (38) により 50°C以下に冷却し、 下部冷却ロール (26) から引き剥がした。 それによつて、 表面がポリエチレンテレフタレート 榭脂シ一卜により保護され且つァク リル樹脂フィルムが積層され、 ポリ カーボネー ト樹脂の表面に多数の三角錐型キューブコーナー再帰反射素 子が形成された光学素子集合体を得た。
得られた光学素子集合体の各素子外観を、 走査型電子顕微鏡を用いて 1000倍で観察したところ、 該素子の反射面は非常に平滑であり、 ま た、 素子の頂点及び各稜とも欠陥箇所がなく均一でシャープに賦形され ていることが確認された。 さらに、 得られた光学素子集合体について、 J I S Z 8714 「再帰性反射体一光学的特性一測定方法」 に従い, 入射角 5° 、 観察角 0.2° における再帰反射性能を測定したところ、
24
訂正された用紙 (規則 91) 88 OcdZlx'cm2という極めて優れた値を示した。

Claims

請求の範囲
1 . 合成樹脂シー トを連続的に供辁し、 加熱成形区域において該シー トを移動している光学素子集合体形状をもつ型に押し当て、 該シー トと 型とを圧着させて、 該シー 卜の一方の面に光学素子集合体を形成させ、 引き続き該シートを型と共に一体の状態で冷却区域に移動させ、 該冷却 区域において該シー トを該合成樹脂のガラス転移点以下の温度に冷却し た後、 該シー トを型から剥離させることからなる光学素子集合体の連続 的形成方法において、
( a ) 温度が流動温度領域にある合成樹脂シー トを加熱成形区域に直 接供給すること、
( b ) 加熱成形区域において、 合成樹脂シー トの温度を該合成樹脂の 流動温度領域に保持すること、 及び、
( c ) 合成樹脂シー 卜と型とを圧着させた後、 該シー トの型と接して いない側にキャ リアフィルムを供給し密着させ、 次いで該シー トの温度 を該合成樹脂のガラス転移点以下の温度に冷却すること、
を特徴とする光学素子集合体の連続的形成方法。
2 . 加熱成形区域において、 合成樹脂シー トと型とを圧着させた後、 該合成樹脂が少なく とも流動開始点温度以上の温度にある間に、 該シー 卜の型と接していない側の面に表層フィルムを供給して積層し、 次いで 得られる積層物の型と接していない側にキヤ リアフィルムを供給する請 求の範囲第 1項に記載の方法。
3 . 合成樹脂の流動温度領域が、 該合成樹脂の溶融粘度が 1 0 0 , 0 0 0ボイズ以下となる温度以上で且つ該合成樹脂の分解温度未満である 請求の範囲第 1項に記載の方法。
4 . 合成樹脂シー トと型とを圧着させた後、 該合成樹脂が少なく とも 流動開始点温度以上の温度にある間にキヤリアフィルムを供給する請求 の範囲第 1項に記載の方法。
5 . 合成樹脂がアクリル系樹脂、 ポリエステル系榭脂、 ポリカーボネ 一ト系樹脂、 塩化ビニル系樹脂、 ポリスチレン系樹脂、 ポリオレフイン 系樹脂又はポリウレタン系樹脂である請求の範囲第 1項に記載の方法。
6 . 型がベルト状金型又はロール状金型である請求の範囲第 1項に記 載の方法。
7 . 光学素子集合体がコーナーキューブ型プリズム、 リニアプリズム、 レンチキユラ一レンズ、 屈折型レンズ、 フ レネルレンズ、 リニアフレネ ルレンズ又はフォログラムパターンである請求の範囲第 1項に記載の方 法。
8 . 外側表面に光学素子集合体形状の型を有する継ぎ目のないェンボ ス手段 :該エンボス手段を加熱して昇温させ該エンボス手段に加熱成形 区域を形成させる加熱手段;該エンボス手段の加熱成形区域に合成樹脂 シー トを連続的に供給する合成樹脂シー 卜供給手段 ; 供給された合成榭 脂シー トを該エンボス手段の加熱成形区域において該エンボス手段外側 表面の光学素子集合体形状の型に押し当て、 該シー トと型とを圧着させ て該シートの一方の面に光学素子集合体を形成させる押圧成形手段 :該 シートを型と一体の状態で冷却区域に移動させるエンボス手段の駆動手 段 ;該エンボス手段を冷却して該エンボス手段に合成樹脂シートの温度 を該合成樹脂のガラス転移点以下の温度に低下させるための冷却区域を 形成させる冷却手段;及び、 光学素子集合体が形成された合成樹脂シー トを該エンボス手段の型から剥離させる剥離手段を有する光学素子集合 体の連続的形成装置において、
( a ) 合成榭脂シ一ト供給手段が、 供給される該シー 卜の温度を該合 成樹脂の流動温度領域に高める加熱手段を有し、 且つ温度が流動温度領 域にある合成樹脂シー トをエンボス手段の加熱成形区域に合成樹脂シ一 トを連続的に直接供給できる供給手段であること、
( b ) エンボス手段の加熱成形区域の温度が、 供耠され押圧成形され る合成樹脂シー 卜の温度を該合成樹脂の流動温度領域に保持させるに十 分な温度であること、 及び、
( c ) 合成樹脂シー 卜と型とを圧着させた後、 該シ一 卜の温度がその ガラス転移点以下の温度に冷却される前に、 該シー 卜の型と接していな い側にキヤリアフィルムを供給するキヤリアフィルム供給手段を有して いること、
を特徴とする光学素子集合体の連続的形成装置。
9 . エンボス手段の加熱成形区域において、 合成樹脂シー トと型とを 圧着させた後で且つキヤリアフィルム供給前に、 該シー トの型と接して いない側の面に表層フィルムを供給する表層フィルム供給手段、 及び、 該シートと表層フィルムとを積層する積層手段をさらに有している請求 の範囲第 8項に記載の装置。
1 0 . エンボス手段がエンボスベルトである請求の範囲第 8項に記載 の装置。
1 1 . エンボス手段がエンボスロールである請求の範囲第 8項に記載 の装置。
1 2 . 合成樹脂シ一 ト供給手段が合成樹脂の加熱溶融押出し装置であ る請求の範囲第 8項に記載の装置,
PCT/JP1996/003038 1995-10-24 1996-10-21 Procede de fabrication en continu d'un dispositif optique, ensemble et appareil prevu a cet effet WO1997015435A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP96935377A EP0799686B1 (en) 1995-10-24 1996-10-21 Method of continuously forming optical device assembly and apparatus therefor
US08/860,418 US5945042A (en) 1995-10-24 1996-10-21 Method for continuously forming an array of optical elements and apparatus therefor
JP51646497A JP3285586B2 (ja) 1995-10-24 1996-10-21 光学素子集合体の連続的形成方法及びその装置
DE69618338T DE69618338T2 (de) 1995-10-24 1996-10-21 Verfahren zum kontinuirlichen formen von optischen anordnungen und vorrichtung dazu

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/298850 1995-10-24
JP29885095 1995-10-24

Publications (1)

Publication Number Publication Date
WO1997015435A1 true WO1997015435A1 (fr) 1997-05-01

Family

ID=17865015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003038 WO1997015435A1 (fr) 1995-10-24 1996-10-21 Procede de fabrication en continu d'un dispositif optique, ensemble et appareil prevu a cet effet

Country Status (6)

Country Link
US (1) US5945042A (ja)
EP (1) EP0799686B1 (ja)
JP (1) JP3285586B2 (ja)
CN (1) CN1064589C (ja)
DE (1) DE69618338T2 (ja)
WO (1) WO1997015435A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270133A (ja) * 2006-03-08 2007-10-18 Toray Ind Inc 易表面賦形性シート用組成物、及びそれを用いて形成される易表面賦形性シート、易表面賦形性シート積層体、それを用いた表面賦形方法ならびに成形品。
JP2008073914A (ja) * 2006-09-20 2008-04-03 Sumitomo Heavy Industries Modern Ltd フィルム製造装置及びフィルム製造方法
JP2008265347A (ja) * 2008-06-02 2008-11-06 Canon Chemicals Inc 現像剤量規制ブレードのブレード部材の製造方法および現像剤量規制ブレードの製造方法
JP2009509102A (ja) * 2005-09-15 2009-03-05 ローム アンド ハース デンマーク ファイナンス エーエス 円周方向可変表面温度ローラ
WO2010032613A1 (ja) * 2008-09-19 2010-03-25 富士フイルム株式会社 偏肉樹脂シートの製造方法
WO2012134466A1 (en) * 2011-03-30 2012-10-04 Taiwan Green Point Enterprises Co., Ltd. Molding tool with a three dimensional surface relief pattern and method of making the same

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126775A (en) * 1998-02-06 2000-10-03 Horizon Photonics, Llc Method of microfabrication
US6395126B1 (en) 1998-02-06 2002-05-28 Horizon Photonics, Inc. Method of micro-fabrication
DE19900183A1 (de) * 1999-01-07 2000-07-13 Beiersdorf Ag Verfahren zur Herstellung einer Elastomerträgerbahn
DE19943604C2 (de) * 1999-09-11 2002-06-27 Schroeder Heinrich Friedrich Verfahren zur kontinuierlichen Herstellung von endlosen, optisch abbildungsfähigen Folien, Bahnen und Platten aus Kunststoffen und Einrichtung zur Ausübung des Verfahrens
KR100373209B1 (ko) * 1999-09-11 2003-02-25 주식회사 엘지화학 재귀 반사체
US6375776B1 (en) 2000-01-24 2002-04-23 Avery Dennison Corporation Method for forming multi-layer laminates with microstructures
FI116086B (fi) * 2000-06-08 2005-09-15 Avantone Oy Varmistusmerkitty paperi- tai kartonkituote ja varmistusmerkitty pakkaus
DE10045955A1 (de) * 2000-09-18 2002-04-04 Heinrich Friedrich Schroeder K Verfahren zur kontinuierlichen Herstellung optischer Folien aus Kunststoff und Einrichtung zur Ausübung des Verfahrens
US20040026824A1 (en) * 2000-10-18 2004-02-12 Atsushi Fujii Method for producing embossed sheet and embossed sheet
US6758992B2 (en) 2001-02-28 2004-07-06 3M Innovative Properties Company Process of stripe coating to produce microstructured composite articles
DE10143005A1 (de) * 2001-09-03 2003-03-20 Rohrscheidt Friedrich Von Verfahren zur Handhabung einer laufenden Folienbahn
DE10158347A1 (de) * 2001-11-28 2003-06-12 Tesa Ag Verfahren zur Erzeugung von nano- und mikrostrukturierten Polymerfolien
CA2494535A1 (en) * 2002-08-02 2004-05-13 Avery Dennison Corporation Process and apparatus for microreplication
JP2006513450A (ja) * 2003-01-06 2006-04-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ エンボス加工された配向光学フィルム
US7410604B2 (en) * 2003-03-06 2008-08-12 3M Innovative Properties Company Method of making retroreflective sheeting and slot die apparatus
JP3862669B2 (ja) * 2003-04-16 2006-12-27 Thk株式会社 球面軸受の製造方法
US7024082B2 (en) * 2003-05-16 2006-04-04 Eastman Kodak Company Apparatus and method for forming an optical converter
EP1559528A1 (de) * 2004-01-30 2005-08-03 Kark AG Vorrichtung und Verfahren zum Formen eines Folienbandes
US20050275132A1 (en) * 2004-06-15 2005-12-15 Eastman Kodak Company Belt over compliant roller used with molding roller
US7465163B2 (en) 2004-06-15 2008-12-16 Rohm And Haas Denmark Finance A/S Smooth compliant belt for use with molding roller
FI20045462A (fi) * 2004-11-29 2006-05-30 Avantone Oy Embossauselin
CN100532070C (zh) * 2005-03-02 2009-08-26 辅祥实业股份有限公司 一种用以制造表面具有压花的板件的装置与方法
DE602006005638D1 (de) * 2005-03-09 2009-04-23 3M Innovative Properties Co Vorrichtung und verfahren zur herstellung eines mikroreplizierten artikels
JP4598574B2 (ja) * 2005-03-17 2010-12-15 東芝機械株式会社 加熱、冷却ロール
US20070013100A1 (en) * 2005-07-13 2007-01-18 Capaldo Kevin P Method for producing plastic film
US20070037960A1 (en) * 2005-08-15 2007-02-15 General Electric Company Copolyester stilbene embossed film and methods of making the same
TWI301794B (en) * 2005-09-22 2008-10-11 Toshiba Machine Co Ltd Sheet or film-forming roll
US20070240585A1 (en) * 2006-04-13 2007-10-18 Nitin Vaish Embossing system, methods of use, and articles produced therefrom
FI20065407A0 (fi) * 2006-06-14 2006-06-14 Avantone Oy Vaikeasti väärennettävissä oleva hologrammi
JP2008003234A (ja) * 2006-06-21 2008-01-10 Fujifilm Corp 光学シート及びその製造方法
US20080001316A1 (en) * 2006-06-29 2008-01-03 Sanjog Shyam Jain Apparatus and Method for Producing Embossed Film
JP4610546B2 (ja) * 2006-12-11 2011-01-12 東芝機械株式会社 シート・フィルム成形ロール、シート・フィルムキャスティング装置および微細パターン転写装置
US8021135B2 (en) * 2007-06-08 2011-09-20 Sabic Innovative Plastics Ip B.V. Mold apparatus for forming polymer and method
CN101909839B (zh) * 2007-10-26 2013-08-14 沙伯基础创新塑料知识产权有限公司 聚合物成形系统和方法
CN101959684A (zh) 2008-04-03 2011-01-26 赢创罗姆有限公司 菲涅耳透镜制造中聚甲基丙烯酸甲酯(pmma)薄膜的连续层压
JP5193683B2 (ja) * 2008-05-28 2013-05-08 東芝機械株式会社 タッチロール、主ロール、シート・フィルムキャスティング装置および微細パターン転写装置
JP5597537B2 (ja) 2008-08-20 2014-10-01 日本カーバイド工業株式会社 光学シート製造装置、及び、光学シートの製造方法
KR101034708B1 (ko) * 2009-02-09 2011-05-17 삼성모바일디스플레이주식회사 롤러 타입 스템퍼
KR20130136493A (ko) * 2010-11-30 2013-12-12 애버리 데니슨 코포레이션 미세복제용 냉각 유닛
CN102176082B (zh) * 2010-12-27 2012-11-14 浙江道明光学股份有限公司 一种具有微棱镜阵列结构的反光膜的生产方法
PE20140597A1 (es) 2011-01-28 2014-06-02 Evonik Roehm Gmbh Nuevos dispositivos de concentracion solar
DE102011003311A1 (de) 2011-01-28 2012-08-02 Evonik Röhm Gmbh Langlebiger optischer Konzentrator auf Basis einer speziellen, aus polymeren Werkstoffen hergestellten, Fresnellinse für die solare Energiegewinnung
US10434689B2 (en) * 2011-06-09 2019-10-08 Nekoosa Corporation Optically variable device (OVD) images embedded within plastic strips
CN103935056B (zh) * 2014-04-28 2016-08-24 田武学 一种挤出法生产微棱镜结构反光膜的设备和方法
KR101827463B1 (ko) 2014-06-27 2018-02-08 사빅 글로벌 테크놀러지스 비.브이. 다재료 코어를 갖는 유도 가열 금형 장치 및 이의 사용 방법
CN111196050B (zh) * 2018-11-16 2021-09-14 佳胜科技股份有限公司 液晶聚合物薄膜的加工方法及其装置
WO2022046134A1 (en) 2020-08-27 2022-03-03 Aura Optical System, LP Microprismatic retroreflective mold, sheet, and article and methods of manufacture thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159127A (en) * 1980-05-12 1981-12-08 Dainippon Printing Co Ltd Manufacture of fresnel lens
JPS6056103B2 (ja) * 1979-09-20 1985-12-09 リフレクサイト・コ−ポレ−シヨン エンボス加工方法及び装置
JPS6147237A (ja) * 1984-08-10 1986-03-07 アメレース・コーポレーシヨン 精密光学パターンを連続的にエンボスする方法及び装置
JPH0470891A (ja) * 1990-07-12 1992-03-05 Toppan Printing Co Ltd 冷却ロール及び回折格子シートの製造方法
JPH04232019A (ja) * 1990-06-09 1992-08-20 Roehm Gmbh 平滑の押出プレーンシートまたはフイルムを製造する方法および装置、この種の押出品および光学的記憶体を製造する方法
JPH06314058A (ja) * 1993-04-28 1994-11-08 Toppan Printing Co Ltd ホログラム形成シートの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3146492A (en) * 1957-12-18 1964-09-01 Jerome H Lemelson Apparatus for making a lenticular display sheet
US4576850A (en) * 1978-07-20 1986-03-18 Minnesota Mining And Manufacturing Company Shaped plastic articles having replicated microstructure surfaces
US4332847A (en) * 1979-09-20 1982-06-01 Relfexite Corporation Method for compression molding of retroreflective sheeting and sheeting produced thereby
WO1993013929A1 (en) * 1992-01-15 1993-07-22 Karszes William M Method of making lenticular plastics and products therefrom
EP0659531B1 (de) * 1993-12-24 2000-05-17 Röhm Gmbh Verfahren zur Extrusion von Kunststofftafeln und daraus hergestellte Fresnel-Linsen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056103B2 (ja) * 1979-09-20 1985-12-09 リフレクサイト・コ−ポレ−シヨン エンボス加工方法及び装置
JPS56159127A (en) * 1980-05-12 1981-12-08 Dainippon Printing Co Ltd Manufacture of fresnel lens
JPS6147237A (ja) * 1984-08-10 1986-03-07 アメレース・コーポレーシヨン 精密光学パターンを連続的にエンボスする方法及び装置
JPH04232019A (ja) * 1990-06-09 1992-08-20 Roehm Gmbh 平滑の押出プレーンシートまたはフイルムを製造する方法および装置、この種の押出品および光学的記憶体を製造する方法
JPH0470891A (ja) * 1990-07-12 1992-03-05 Toppan Printing Co Ltd 冷却ロール及び回折格子シートの製造方法
JPH06314058A (ja) * 1993-04-28 1994-11-08 Toppan Printing Co Ltd ホログラム形成シートの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0799686A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009509102A (ja) * 2005-09-15 2009-03-05 ローム アンド ハース デンマーク ファイナンス エーエス 円周方向可変表面温度ローラ
JP2007270133A (ja) * 2006-03-08 2007-10-18 Toray Ind Inc 易表面賦形性シート用組成物、及びそれを用いて形成される易表面賦形性シート、易表面賦形性シート積層体、それを用いた表面賦形方法ならびに成形品。
JP2008073914A (ja) * 2006-09-20 2008-04-03 Sumitomo Heavy Industries Modern Ltd フィルム製造装置及びフィルム製造方法
JP4546433B2 (ja) * 2006-09-20 2010-09-15 住友重機械モダン株式会社 フィルム製造装置及びフィルム製造方法
JP2008265347A (ja) * 2008-06-02 2008-11-06 Canon Chemicals Inc 現像剤量規制ブレードのブレード部材の製造方法および現像剤量規制ブレードの製造方法
JP4598103B2 (ja) * 2008-06-02 2010-12-15 キヤノン化成株式会社 現像剤量規制ブレードのブレード部材の製造方法および現像剤量規制ブレードの製造方法
WO2010032613A1 (ja) * 2008-09-19 2010-03-25 富士フイルム株式会社 偏肉樹脂シートの製造方法
WO2012134466A1 (en) * 2011-03-30 2012-10-04 Taiwan Green Point Enterprises Co., Ltd. Molding tool with a three dimensional surface relief pattern and method of making the same
CN103052491A (zh) * 2011-03-30 2013-04-17 绿点高新科技股份有限公司 具有三维表面浮凸图案的模具及其制作方法

Also Published As

Publication number Publication date
CN1166152A (zh) 1997-11-26
US5945042A (en) 1999-08-31
EP0799686A1 (en) 1997-10-08
CN1064589C (zh) 2001-04-18
EP0799686B1 (en) 2002-01-02
DE69618338T2 (de) 2002-08-14
JP3285586B2 (ja) 2002-05-27
DE69618338D1 (de) 2002-02-07
EP0799686A4 (en) 1998-12-02

Similar Documents

Publication Publication Date Title
WO1997015435A1 (fr) Procede de fabrication en continu d'un dispositif optique, ensemble et appareil prevu a cet effet
KR101321682B1 (ko) 광학 시트 제조 장치 및 광학 시트의 제조 방법
EP1150841B1 (en) Method and apparatus for embossing a precision pattern of micro-prismatic elements in a resinous sheet or laminate
US6908295B2 (en) Process and apparatus for embossing precise microstructures and embossing tool for making same
EP0818301B1 (en) Method of embossing a sheet and embossing apparatus
KR101089459B1 (ko) 재귀반사성 시트 및 물품의 제조 방법
CN1579732A (zh) 用于对薄膜表面进行压花的方法和设备
EP1366888A1 (en) Method of manufacturing micro emboss sheet and micro emboss sheet
EP1858688A1 (en) Method of producing resin sheet
US20070126145A1 (en) Process and apparatus for embossing a film surface
US20150140309A1 (en) Process and Apparatus for Embossing Precise Microstructures in Rigid Thermoplastic Panels
TWI461762B (zh) 薄雙側光導板
TW201223742A (en) Optical sheet manufactured with micro-patterned carrier
JP4533542B2 (ja) マイクロエンボスシートの製造方法
US20200230901A1 (en) Method and apparatus to manufacture a rigid polymer panel having integrally formed optical quality surfaces
JPH08292305A (ja) 光学的平滑表面シートの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96191270.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08860418

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1996935377

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996935377

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996935377

Country of ref document: EP