WO1997020525A1 - Modular prosthesis - Google Patents

Modular prosthesis Download PDF

Info

Publication number
WO1997020525A1
WO1997020525A1 PCT/US1996/019376 US9619376W WO9720525A1 WO 1997020525 A1 WO1997020525 A1 WO 1997020525A1 US 9619376 W US9619376 W US 9619376W WO 9720525 A1 WO9720525 A1 WO 9720525A1
Authority
WO
WIPO (PCT)
Prior art keywords
clamp
cavity
kit
dimension
rod
Prior art date
Application number
PCT/US1996/019376
Other languages
French (fr)
Inventor
Wesley D. Johnson
Richard C. Emery
Original Assignee
Metagen, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metagen, Llc filed Critical Metagen, Llc
Priority to JP09521426A priority Critical patent/JP2000515030A/en
Priority to KR1019980704253A priority patent/KR19990071963A/en
Priority to DE69623129T priority patent/DE69623129T2/en
Priority to DK96942902T priority patent/DK0869752T3/en
Priority to EP96942902A priority patent/EP0869752B1/en
Priority to AU11474/97A priority patent/AU730597B2/en
Priority to BR9611809-1A priority patent/BR9611809A/en
Priority to EA199800421A priority patent/EA000291B1/en
Priority to KR19997011332A priority patent/KR20010013336A/en
Publication of WO1997020525A1 publication Critical patent/WO1997020525A1/en
Priority to NO982572A priority patent/NO982572L/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/389Tibial components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4637Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for connecting or disconnecting two parts of a prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/2812Surgical forceps with a single pivotal connection
    • A61B17/2833Locking means
    • A61B2017/2837Locking means with a locking ratchet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3662Femoral shafts
    • A61F2/367Proximal or metaphyseal parts of shafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4607Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of hip femoral endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30092Properties of materials and coating materials using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30205Three-dimensional shapes conical
    • A61F2002/3021Three-dimensional shapes conical frustoconical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30205Three-dimensional shapes conical
    • A61F2002/30217Three-dimensional shapes conical hollow cones, e.g. tubular-like cones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • A61F2002/30235Three-dimensional shapes cylindrical tubular, e.g. sleeves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • A61F2002/30332Conically- or frustoconically-shaped protrusion and recess
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • A61F2002/30354Cylindrically-shaped protrusion and recess, e.g. cylinder of circular basis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30405Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by screwing complementary threads machined on the parts themselves
    • A61F2002/30425Square threads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30474Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using an intermediate sleeve interposed between both prosthetic parts to be coupled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/30484Mechanically expandable devices located on the first prosthetic part for locking into or onto the second prosthetic part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30537Special structural features of bone or joint prostheses not otherwise provided for adjustable
    • A61F2002/30538Special structural features of bone or joint prostheses not otherwise provided for adjustable for adjusting angular orientation
    • A61F2002/3054Special structural features of bone or joint prostheses not otherwise provided for adjustable for adjusting angular orientation about a connection axis or implantation axis for selecting any one of a plurality of radial orientations between two modular parts, e.g. Morse taper connections, at discrete positions, angular positions or continuous positions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30574Special structural features of bone or joint prostheses not otherwise provided for with an integral complete or partial collar or flange
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30594Special structural features of bone or joint prostheses not otherwise provided for slotted, e.g. radial or meridian slot ending in a polar aperture, non-polar slots, horizontal or arcuate slots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • A61F2002/30616Sets comprising a plurality of prosthetic parts of different sizes or orientations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30721Accessories
    • A61F2/30734Modular inserts, sleeves or augments, e.g. placed on proximal part of stem for fixation purposes or wedges for bridging a bone defect
    • A61F2002/30738Sleeves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30795Blind bores, e.g. of circular cross-section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • A61F2002/3625Necks
    • A61F2002/3627Necks with lateral apertures, holes or openings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • A61F2002/3625Necks
    • A61F2002/3647Necks pierced with a longitudinal bore
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • A61F2002/365Connections of heads to necks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • A61F2002/3652Connections of necks to shafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3662Femoral shafts
    • A61F2002/3678Geometrical features
    • A61F2002/3694Geometrical features with longitudinal bores
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4688Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor having operating or control means
    • A61F2002/4692Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor having operating or control means fluid
    • A61F2002/4693Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor having operating or control means fluid hydraulic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4688Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor having operating or control means
    • A61F2002/4692Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor having operating or control means fluid
    • A61F2002/4694Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor having operating or control means fluid pneumatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • A61F2210/0019Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol operated at only one temperature whilst inside or touching the human body, e.g. constrained in a non-operative shape during surgery, another temperature only occurring before the operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0033Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementary-shaped recess, e.g. held by friction fit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0067Three-dimensional shapes conical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00017Iron- or Fe-based alloys, e.g. stainless steel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00029Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium

Definitions

  • This invention relates to the field of medical prostheses and particularly to prostheses for use as replacements for diseased or damaged joints.
  • Prostheses for replacement of joints commonly involve two parts having mutually articulating surfaces, and structure for mounting the parts to bone.
  • the prostheses parts must be carefully shaped and sized, and must be properly oriented by the surgeon with respect to each other and with respect to the anatomy of the patient.
  • Modular prostheses for the hip joint are shown, for example, in Boleski et al., U.S. patent 5,080,685, Gianezio et al., U.S. patent 4,520,511, De ane et al. , U.S. patent 4,995,883, Luman, U.S. patent 5,002,578 and Rhenter et al., U.S. patent 4,693,724.
  • Such prostheses for the most part involve a substantial number of parts that are held together in one configuration or another by means of mounting screws which operate to draw together tapered connections of the parts.
  • some freedom of selection is provided by previous modular prostheses, the use of threaded mounting screws and tapered connections can lead to loosening of the parts and to other problems.
  • the present invention makes use of a clamp capable of firmly clamping to a prosthesis member and that may be used to firmly clamp together selected parts of a modular prosthesis.
  • the clamp has a "rest" configuration having a dimension in one direction that can be reduced by applying to it an external stimulus, with concurrent expansion of the clamp in a second direction normal to the first direction, so that the clamp may be received in a cavity of a prosthesis member.
  • the clamp seeks to return toward its "rest” configuration, the clamp dimension in the one direction increasing so that the clamp presses upon the cavity walls to strongly clamp to the prosthesis member.
  • the invention relates to a modular prosthesis kit
  • a first member having walls defining a cavity, and a clamp releasably clampable within said cavity.
  • the clamp has a first, rest configuration having a predetermined dimension in a first direction and being responsive to an external stimulus to assume a second configuration having a lesser dimension in said first direction with concurrent increase of a dimension in a second direction normal to the first direction to permit the clamp to be at least partially received in the cavity.
  • the predetermined dimension is so chosen that upon withdrawal of the external stimulus, the clamp returns toward its rest configuration with consequent increase in its dimension in the first direction sufficient to strongly clamp to said member.
  • the invention comprises a modular prosthesis kit that includes instrumentation for assembly, comprising a first prosthesis member having walls defining a cavity and a clamp releasably clampable within said cavity.
  • the clamp has a first, rest configuration having a predetermined dimension in a first direction.
  • An instrument is provided for applying a stretching force to said clamp in a second direction normal to said first direction to reduce said dimension in the first direction enough to permit said clamp to be received in said cavity.
  • the predetermined dimension is such that upon removal of the stretching force, the clamp returns toward its rest configuration with consequent increase in its dimension in the first direction sufficient to strongly clamp to said first prosthesis member.
  • the prosthesis kit includes a second member configured to snugly receive at least a portion of the first member in any of several orientations.
  • the cavity walls of the first member are configured to expand into clamping contact with the second member as the clamp returns toward its rest configuration to fixedly support the second member in a predetermined orientation with respect to the first member.
  • the invention relates to a method for assembling members of a modular prosthesis.
  • a first prosthesis member is provided with walls defining a cavity, and a clamp is provided having a first, rest configuration having a predetermined dimension in a first direction.
  • the clamp is subjected to an external stimulus, preferably a physical tensioning stimulus, to reduce the dimension in the first direction with concurrent expansion of a clamp dimension in a second direction normal to the first direction to enable the clamp to be received in the cavity of the first prosthesis member.
  • the external stimulus is thereafter withdrawn to allow the clamp to return toward its first, rest configuration with consequent increase in its dimension in the first direction sufficient to strongly clamp to said first prosthesis member.
  • the clamp and the cavity of the first prosthesis member have confronting, clamping surfaces that, when clamped, are substantially congruent so as to provide surface-to-surface contact between the clamp and first member and the prosthesis is free of gaps between confronting surfaces.
  • a second prosthesis member receives and becomes clamped to the first member
  • the clamping surfaces of these members are substantially congruent so as to provide surface-to-surface contact between the clamping surfaces of the first and second members and the prosthesis is free of gaps between confronting surfaces. Such surface-to-surface contact promotes uniform loading along the clamping surfaces.
  • Figure 1 is a side view, in partial cross-section, of a portion of a hip joint prosthesis in accordance with the invention
  • Figure 2 is a cross-sectional, broken away view taken across line 2-2 of Figure l;
  • Figure 3 is a schematic front view of the tibial portion of a knee joint in accordance with the invention
  • Figure 4 is a side view, in partial cross-section, of a portion of another hip joint prosthesis similar to that of Figure 1 ;
  • Figure 5 is an exploded assembly view of parts of instrumentation for use in the assembly of the hip joint prosthesis of Figure 4;
  • Figure 6 is a view of the parts of Figure 5 as assembled;
  • Figure 7 is a view of the assembly of Figure 6 together with a manually operated force generating device;
  • FIG 8 is a cross- sectional, broken away view showing another embodiment of the invention.
  • a modular hip prosthesis is designated 10, and comprises an elongated stem 12 sized to be received in a surgically prepared intramedullary canal of the femur.
  • Axial bore 14 is formed in the stem 12.
  • a body member 16 is provided with a bore 18 sized to closely receive the stem 12, the body having a generally triangular shape when viewed from the side and configured to fit the surgically sculpted proximal end of the intramedullary canal of the femur.
  • a neck member 20 Proximally of the body 16 is positioned a neck member 20 having a bore 21 sized to closely receive the upper end of the stem 12, the neck including an angled extension 22 terminating in a ball 24 sized to articulate with an appropriately sized and shaped socket prosthesis (not shown) to be mounted in the acetabular recess of the pelvis.
  • a clamp 30 is shown in Figure 1 as an elongated metal rod having an axial bore 32 that extends from its proximal end portion 34 to a floor 36 short of the distal end portion 38 of the clamp. Near its upper end, the axial bore 32 has a distally facing shoulder fashioned to receive a placement instrument, as will be described below.
  • the clamp 30 is shaped and sized such that at body temperature, its diameter, when not constrained in the stem 12, will be slightly larger than the diameter of the bore 14 of the stem.
  • the diameter 21 of the neck bore and the diameter 18 of the body bore are essentially the same as the outer diameter of the stem 12; that is, the stem is snugly but slidably received in the bores 18, 21 so that the body and the neck can be moved by hand upon the stem without difficulty.
  • a preferred metal is a shape memory alloy such as nitinol, in its superelastic state in which applied stress results in a reversible martensitic phase transition.
  • a nitinol claimp 30 When a nitinol claimp 30 is stretched as described above, and providing that its temperature is maintained substantially above its ausenite finish temperature (the temperature at which the alloy is completely in its austenitic form), a transition from the austenite phase to the martensite phase occurs. This is known as stress induced martensite formation and is the basis for the phenomenon known as pseudoelasticity or superelasticity.
  • the shape memory alloy will remain at least partially in the martensite phase as long as the external stress is maintained.
  • the clamp 30 Upon release of the stress, however, the clamp 30 will return to the austeniste phase and toward its original shape and size. Because the clamp is constrained within the dimensions of the stem bore 14, however, it will not be able to completely resume its original shape and size. As a result, the clamp 30 will exert a continuous force against the bore 14 of the stem 12.
  • the clamp may be made from a shape memory alloy such as nitinol in which the material is capable of undergoing a temperature-induced phase change.
  • the shape memory alloy is so configured that when in its stable phase at body temperature, its diameter is slightly greater than the diameter 14 of the stem.
  • the clamp may be deformed into a different physical shape in which it is slightly longer and slightly more slender than in its stable form at body temperature, this configuration permitting the clamp to slide into the bore 14 of the stem.
  • the shape memory alloy once the shape memory alloy is warmed and passes through its phase transition temperature range, it expands toward its stable configuration at body temperature, thereby pressing outwardly with a continuous force upon the bore of the stem.
  • the clamp tends to return to a configuration which may be referred to as a "rest" configuration at body temperature.
  • the rest configuration has a transverse dimension (the diameter in the case of a rod having a circular cross-section) that is slightly larger than the transverse dimension of the stem bore, and as a result the clamp pushes outwardly strongly upon the stem bore and becomes firmly clamped in the stem bore.
  • the walls 42 of the clamp have outer surfaces 44 that engage and push outwardly upon the bore 14.
  • the outer wall 44 of the clamp pushes outwardly upon the surface of the stem bore 14, and the walls of the stem, in turn, are forced outwardly into contact with the inner surface 26 of the body 16 and also with the inner surface 28 of the neck 20.
  • the outer surface of the clamp 30 is generally cylindrical and makes substantial surface-to-surface contact with the surface of the bore 14.
  • the stem wall is sufficiently flexible as to enable the outer wall of the stem to expand into contact with the bores of both the body and the shoulder, even when these bores are slightly different in diameter.
  • the clamped surfaces - that is, the confronting surfaces of the clamp and first member, and the confronting surfaces of the first and second members - mate in surface-to-surface contact to fairly uniformly distribute the compressive forces over the clamped surfaces and preferably to avoid gaps between confronting surfaces.
  • a "gap" is the thin void space formed between slightly spaced confronting surfaces of a prosthesis when assembled, as, for example, the space formed between an elongated, smooth-walled rod having threads at one end and the bore receiving the rod.
  • the clamp is a cylinder having a circular cross-section and the cavity is a circular bore, the compressive clamping force exerted by the clamp against the walls of the bore would be primarily radial and substantially uniform along the length of the clamp.
  • One may vary as desired the concentration of compressive forces between the clamp (and between prosthesis members) by varying the shapes of the clamping surfaces.
  • the angled extension 22 has an internal bore 50 that is open at one end and is closed at its other end 52.
  • the bore 50 extends downwardly and laterally as shown in Figures 1 and 2, and opens into the bore 28.
  • the distal end of the angled neck has a tapered head 54 that is received within a tapered bore 60 formed in the ball 24.
  • the angled neck 22 functions not only as a part of the prosthesis but also as the clamp. To positively and firmly connect the ball 24 to the angled neck, one first elongates the angled neck in the manner described above in connection with the clamp 30.
  • the stretching force imparted by the instrument is withdrawn, and the neck 22 returns toward its original, "rest” configuration, the outer wall of the head 54 bearing outwardly against the confining walls of the bore 60 to firmly clamp the ball to the angled neck.
  • the bore 50 is fully accessible through its open end prior to mounting of the neck 20 upon the stem 12.
  • the clamp and the cavity although circular in cross-section and making mutual surface-to- surface contact, are tapered rather than cylindrical, illustrating how the shape of the clamp and cavity may be varied.
  • a tibial tray component is shown generally as 70 and comprises a stem 72 adapted to be received in the surgically prepared intramedullary canal of the tibia in a known fashion.
  • the stem terminates upwardly in a metal tray 74 which in turn supports a bearing insert 76 of high molecular weight polyethylene or the like.
  • the latter is adapted to articulate with the condyles at the distal end of the femur, or with the condyles of a prosthetic femoral implant, all in a known fashion.
  • a shoulder 78 which fits in the surgically prepared upper end of the tibial intramedullary canal, and serves to support the upper end of the stem.
  • a clamp such as that described above is shown at 80 in Figure 3. It is desirably cylindrical in cross section, having a diameter at body temperature that is slightly greater than the diameter of a bore 82 formed axial within the stem 72.
  • the clamp 80 may be inserted by the same method described in connection with the clamp 30 of Figure 1. When the stretching force is withdrawn, the clamp returns toward its "rest” configuration and its walls press outwardly against the walls of the stem 72, causing the latter in turn to clamp strongly to the walls of the bore 84 of the shoulder member 78.
  • a slightly modified hip joint prosthesis is depicted in Fig. 4 as 100, the prosthesis having a stem 112 adapted for insertion in the intramedullary canal of the femur.
  • An axial bore 114 is formed in the stem, and the walls of the stem near its proximal end may have longitudinal slots 116 formed therein, the slots ending in round holes 118 to avoid stress concentration areas.
  • the slots 116 enable the wall of the stem to expand more easily, and are spaced evenly about the circumference of the stem.
  • Four slots may be employed.
  • a body 120 is provided with an internal bore 122 sized to snugly receive the stem, the body bearing a ball 124 similar to ball 24 of
  • FIG. 1 The upper or proximal end of the body 120 extends slightly beyond the proximal end 126 of the stem.
  • Clamp 130 has a proximal, externally threaded end portion 132 that extends beyond the proximal end 126 of the stem but is yet preferably retained in the proximal end portion of the body bore 122, all as shown in Figure 4.
  • Figures 5 - 7 depict instrumentation for applying tensile stress to the clamp typified as 130 in the drawing.
  • Shown at 140 is a tubular gripping tool having an open distal end portion 142 that is internally threaded to receive the external threads of the proximal end portion 132 of the clamp. Square threads preferably are used.
  • An aperture 144 is formed in the gripping tool 140 proximal of its distal end portion 142.
  • An elongated pushing rod 150 is received in the hollow clamp, and has a distal end 152 shaped to engage the confronting distal end wall 134 of the clamp in surface-to- surface contact.
  • the proximal end 154 of the pushing rod is accessible through the aperture 144, as shown best in Figure 6, and has a recessed end surface 156.
  • the proximal end wall 146 of the tubular gripping tool similarly has a recessed surface 148 facing the recessed end surface 156 of the rod.
  • Figure 7 depicts the assembly of Figure 6 in association with a manually operated plier-like force-generating device 170, the device having handles 172, oppositely facing nose portions 174 receivable in the aperture in the gripping tool, and a pivot 176 positioned to provide substantial mechanical advantage to the nose portions.
  • Nose portions 174 bear against the respective recessed surfaces of the push rod and gripping tool as shown in Figure 7; squeezing of the handles together results in the application of substantial force to the rod 150, causing the clamp 130 to elongate slightly but sufficiently to enable the clamp to be inserted in the bore of the stem.
  • a tooth and pawl mechanism 178 of known design and commonly used with surgical instruments is provided at the ends of the handles to hold them together and thus maintain the stem in its stressed, elongated configuration.
  • Various other devices capable of delivering substantial force to stretch the clamp may be employed using any of a number of mechanical, pneumatic, and hydraulic means.
  • a push rod 150 is inserted in an appropriate clamp 130, and the proximal end of the clamp is screwed onto the end of the gripping tool 140 to form the assembly shown in Figure 6.
  • the nose portions 174 of the force-generating device 170 are inserted through the aperture 144 into contact with the respective recessed surfaces of the push rod and gripping tool, and the handles are squeezed toward each other and locked by the mechanism 178, thus holding the clamp in its elongated configuration.
  • Body 120 is received over the stem, and is positioned where desired along the stem by the surgeon during the implantation procedure.
  • the clamp is inserted into the stem bore.
  • Mechanism 178 is then released, resulting in the release of pressure of the nose elements against the push rod and gripping tool.
  • the gripping tool is then removed, and the open proximal end of the clamp is capped appropriately if desired. It may be particularly valuable to utilize the stem of the prosthesis of Figure 1 itself as the clamp, eliminating the clamp 30.
  • the proximal end of the stem may be internally threaded to receive the distal threaded end of an externally threaded gripping tool similar to that shown at 140 in Figure 6.
  • the gripping tool and push rod may be longer than that shown in the drawing to allow placement of the neck and body over the gripping tool prior to threading the gripping tool onto the threaded end of the stem.
  • the push rod 150 is placed in the bore of the stem, and the gripping tool is threaded onto the stem.
  • the various parts of the prostheses of the invention that are clamped together are made of metal such as stainless steel, cobalt chrome alloys, titanium alloys or the like as are commonly employed for prostheses manufacture.
  • the clamp similarly, may be made of a shape memory alloy or of any metal that exhibits an initial proportional relationship between stress and strain (in the range of validity of Hooke's law).
  • Various metals and metal alloys satisfy this requirement, including stainless steel.
  • the ratio of the lateral or transverse strain to the longitudinal or axial strain commonly referred to as Poisson's ratio, can range from 0.2 to 0.5, depending on the material and its condition. Poisson's ratio for stainless steel, for example, is about 0.28.
  • the clamps according to the invention preferably are made of a shape memory alloy such as nitinol.
  • Nitinol exhibits a Poisson's ratio of about 0.3, but this ratio significantly increases up to approximately 0.5 or more when the shape memory alloy is stretched beyond its initial elastic limit; that is, when the formation of stress-induced martensite begins to occur.
  • Nitinol is a pseudoelastic material, that is, a material that exhibits superelasticity at room temperature.
  • a number of shape memory alloys are known to exhibit the superelastic/pseudoelastic recovery characteristic, and these are generally characterized by their ability, at room or body temperature, to be deformed from an austenitic crystal structure to a stressed-induced martensitic structure, returning to the austenitic state when the stress is removed.
  • the alternate crystal structures give the alloy superelastic or pseudoelastic properties.
  • Nitinol clamps of the type referred to above in connection with Figures 1 and 3 can readily be elongated up to 8% or more through the use of instruments such as that shown in Figure 4.
  • nitinol with an assumed Poisson's ratio of 0.3, if a clamp such as that shown in Figure 6 is elongated 8%, it would be expected to shrink about 2.4% in diameter. If the initial diameter of a clamp were in the neighborhood of 1/2 inch, the decrease in diameter would be on the order of 0.012 inches. Since tooling tolerances for the internal bores of stems and other prosthesis parts can easily be held within ⁇ 0.002 inches, a change of 0.012 inches in the clamp diameter allows substantial room for design variations in size. It is generally preferred that the diameter of the stem bore, however, be only very slightly greater than the outer diameter of the clamp when the clamp is longitudinally stretched to an elongation of, for example, 8%.
  • a surgeon may select the desired sizes of the stem, body and head, and can assemble the same during a surgical procedure.
  • an articulating ball 124 of the appropriate size is selected and is mounted as described above to the neck 120.
  • the femoral prosthesis without the clamp 130 is then assembled. Assembly may take place away from the patient if the desired dimensions and respective angles of the prosthesis parts are known with accuracy ahead of time, as by measurement or by use of trial prosthesis parts.
  • the prosthesis itself can be assembled in the intramedullary canal of the patient, with the correct orientations of the parts noted.
  • a clamp 130 is tensioned to reduce its diameter through use of the gripping tool 140, the pushrod 150 and the force generating device 170, and is then gently placed in the bore of the stem.
  • the clamp expands immediately toward its larger diameter "rest” configuration, thereby clamping itself to the stem and clamping the stem 112 to the body 120.
  • the resulting prosthesis desirably has no threaded fastenings to come loose.
  • the body 120 may be positioned independently in axial and rotational directions on the stem as the surgeon may deem appropriate for the particular patient. In the same manner in which assembly was carried out, disassembly can be afforded by reversing the steps.
  • the clamp 80 may be inserted in the bore 82 and permitted to expand toward its "rest" configuration. This, in turn, forces the walls of the stem outwardly and to contact with the bore 84 of the shoulder 78 to lock the stem and shoulder together.
  • clamp of the invention has been described in terms of a hollow rod with one open end and one closed end, it should be understood that a variety of clamp configurations may be employed. If a change of shape of the clamp due to a martensite to austenite shape memory alloy phase change is desired, then a solid rather than hollow clamp may be preferred. Hollow structures are preferred even in this instance, however, in that the hollow interior of the clamp provides a means for cooling the clamp in the event that a prosthesis needs to be disassembled.
  • the outer surface of the clamp and the inner surfaces of the bore or bores within which the clamp is received be smooth and regular so as to make good surface-to-surface contact
  • the outer surface of the clamp may, in fact, be ridged or roughened or longitudinally fluted or otherwise configured, as desired.
  • the clamps of the invention need not be round in cross section nor must they have a uniform dimension transverse to the longitudinal axis. If desired, the outer surface of the clamp may have a greater transverse dimension in some areas than in others. For example, with reference to Figure 1, the transverse dimension of the clamp may be greater near the top of the clamp where the stem portion that is clamped bears also against the bore of the body or vice versa.
  • the clamp may in fact be hollow or tubular in design.
  • head 54 of the neck extension 22 may be formed with a thimble-shaped clamp 180 having an outwardly flared skirt 182 at its open end.
  • the rim of the opening 60 encounters the skirt 182 and forces the walls of the clamp to elongate.
  • the walls of the clamp increase slightly in thickness, wedging the ball onto the head 54 and sealing the opening 60.
  • the interface 61 between the head 54 and the clamp 180 is also sealed.
  • the confronting walls of the clamp and cavity may be so configured that any slippage between the clamp and the cavity results in the clamp being urged more deeply into the cavity.
  • the confronting walls of the clamp or cavity or both may be configured to have circumferential shoulders or tapered surfaces or other shapes, that coact to preferentially urge the clamp to move or "walk" in one direction rather than the opposite direction upon repeated slippage between the confronting surfaces.
  • the diameters of the clamp 130 and the bore in the stem 112 may be slightly greater near the distal end of the stem 112 than near the proximal end so that any movement or "walking" of the clamp due to repeated slippage of the clamp and the stem bore urges the clamp distally within the stem, drawing the widened threaded shoulder at the proximal end of the clamp into contact with the proximal end 126 of the stem.

Abstract

A kit for producing a modular prosthesis is provided, the kit including a first prosthesis member having a cavity such as a bore formed in it, and a clamp releasably clamped in the cavity. The clamp, which may be a rod having an axial bore through a portion of its length, is subjected to an external stimulus such as a stretching force to cause the diameter of the clamp to be reduced enough so that the clamp is received in the cavity. As the stimulus is withdrawn, the clamp returns toward its initial configuration, and in so doing, expands against the walls of the cavity. A second prosthesis member may be configured to receive a portion of the first member such that expansion of the clamp in the cavity of the first member concurrently causes that member to expand into contact with the second member to clamp the members together.

Description

MODULAR PROSTHESIS
Field of the Invention
This invention relates to the field of medical prostheses and particularly to prostheses for use as replacements for diseased or damaged joints. Background of the Invention
Prostheses for replacement of joints commonly involve two parts having mutually articulating surfaces, and structure for mounting the parts to bone. To duplicate closely the structure and function of natural joints, the prostheses parts must be carefully shaped and sized, and must be properly oriented by the surgeon with respect to each other and with respect to the anatomy of the patient.
To achieve good surgical results, a surgeon should have as much freedom as possible during the surgical implantation procedure to vary the shape, size and orientation of prosthesis parts. Mainly for this reason, efforts have been made to provide prostheses that are modular in form so that various elements of a prosthesis can be individually selected and the prosthesis can be assembled and oriented according to the anatomical needs of the patient.
Modular prostheses for the hip joint are shown, for example, in Boleski et al., U.S. patent 5,080,685, Gianezio et al., U.S. patent 4,520,511, De ane et al. , U.S. patent 4,995,883, Luman, U.S. patent 5,002,578 and Rhenter et al., U.S. patent 4,693,724. Such prostheses for the most part involve a substantial number of parts that are held together in one configuration or another by means of mounting screws which operate to draw together tapered connections of the parts. Although some freedom of selection is provided by previous modular prostheses, the use of threaded mounting screws and tapered connections can lead to loosening of the parts and to other problems. Physical and chemical corrosion can become substantial problems due to weakening of the prosthesis and to biologic responses to corrosion debris and byproducts. See Jacobs, J. J. et al., Biological Activity of Particulate Chromium- Phosphate Corrosion Products. Collected Papers of the 21st Annual Meeting of the Society for Biomaterials, March 18 - 22, 1995, p. 398, and Urban, Robert M. , et al. , Corrosion Products From Modular-Head Femoral Stems of Different Designs and Material Couples. Collected Papers of the 21st Annual Meeting of the Society for Biomaterials, March 18 - 22, 1995, p. 326. Fretting corrosion caused by relative motion between adjoining surfaces leads to the production of debris which in turn may lead to accelerated wear between normally articulating joint parts of a prosthesis and to osteolysis. When gaps occur between adjacent surfaces of prosthesis parts, oxidation of the surfaces may lead to formation of an acidic environment and hence to chemical attack of the surfaces (commonly referred to as crevice corrosion).
It would be desirable to provide a modular prosthesis kit having elements that can be freely chosen and oriented by the surgeon in the operating arena and that can be strongly and firmly fastened to one another without the need for screw fasteners or tapered connections that are drawn together. Summary of the Invention
The present invention makes use of a clamp capable of firmly clamping to a prosthesis member and that may be used to firmly clamp together selected parts of a modular prosthesis. The clamp has a "rest" configuration having a dimension in one direction that can be reduced by applying to it an external stimulus, with concurrent expansion of the clamp in a second direction normal to the first direction, so that the clamp may be received in a cavity of a prosthesis member. Upon withdrawal of the external stimulus, the clamp seeks to return toward its "rest" configuration, the clamp dimension in the one direction increasing so that the clamp presses upon the cavity walls to strongly clamp to the prosthesis member.
Thus, in one embodiment the invention relates to a modular prosthesis kit comprising a first member having walls defining a cavity, and a clamp releasably clampable within said cavity. The clamp has a first, rest configuration having a predetermined dimension in a first direction and being responsive to an external stimulus to assume a second configuration having a lesser dimension in said first direction with concurrent increase of a dimension in a second direction normal to the first direction to permit the clamp to be at least partially received in the cavity. The predetermined dimension is so chosen that upon withdrawal of the external stimulus, the clamp returns toward its rest configuration with consequent increase in its dimension in the first direction sufficient to strongly clamp to said member.
In another embodiment, the invention comprises a modular prosthesis kit that includes instrumentation for assembly, comprising a first prosthesis member having walls defining a cavity and a clamp releasably clampable within said cavity. The clamp has a first, rest configuration having a predetermined dimension in a first direction. An instrument is provided for applying a stretching force to said clamp in a second direction normal to said first direction to reduce said dimension in the first direction enough to permit said clamp to be received in said cavity. The predetermined dimension is such that upon removal of the stretching force, the clamp returns toward its rest configuration with consequent increase in its dimension in the first direction sufficient to strongly clamp to said first prosthesis member. In a preferred embodiment, the prosthesis kit includes a second member configured to snugly receive at least a portion of the first member in any of several orientations. The cavity walls of the first member are configured to expand into clamping contact with the second member as the clamp returns toward its rest configuration to fixedly support the second member in a predetermined orientation with respect to the first member. In yet a further embodiment, the invention relates to a method for assembling members of a modular prosthesis. A first prosthesis member is provided with walls defining a cavity, and a clamp is provided having a first, rest configuration having a predetermined dimension in a first direction. The clamp is subjected to an external stimulus, preferably a physical tensioning stimulus, to reduce the dimension in the first direction with concurrent expansion of a clamp dimension in a second direction normal to the first direction to enable the clamp to be received in the cavity of the first prosthesis member. The external stimulus is thereafter withdrawn to allow the clamp to return toward its first, rest configuration with consequent increase in its dimension in the first direction sufficient to strongly clamp to said first prosthesis member. Preferably, the clamp and the cavity of the first prosthesis member have confronting, clamping surfaces that, when clamped, are substantially congruent so as to provide surface-to-surface contact between the clamp and first member and the prosthesis is free of gaps between confronting surfaces. Similarly, if a second prosthesis member receives and becomes clamped to the first member, preferably the clamping surfaces of these members are substantially congruent so as to provide surface-to-surface contact between the clamping surfaces of the first and second members and the prosthesis is free of gaps between confronting surfaces. Such surface-to-surface contact promotes uniform loading along the clamping surfaces. Brief Description of the Drawing
Figure 1 is a side view, in partial cross-section, of a portion of a hip joint prosthesis in accordance with the invention;
Figure 2 is a cross-sectional, broken away view taken across line 2-2 of Figure l;
Figure 3 is a schematic front view of the tibial portion of a knee joint in accordance with the invention; Figure 4 is a side view, in partial cross-section, of a portion of another hip joint prosthesis similar to that of Figure 1 ;
Figure 5 is an exploded assembly view of parts of instrumentation for use in the assembly of the hip joint prosthesis of Figure 4;
Figure 6 is a view of the parts of Figure 5 as assembled; Figure 7 is a view of the assembly of Figure 6 together with a manually operated force generating device; and
Figure 8 is a cross- sectional, broken away view showing another embodiment of the invention. Detailed Description of the Preferred Embodiments With reference first to Figure 1, a modular hip prosthesis is designated 10, and comprises an elongated stem 12 sized to be received in a surgically prepared intramedullary canal of the femur. Axial bore 14 is formed in the stem 12. A body member 16 is provided with a bore 18 sized to closely receive the stem 12, the body having a generally triangular shape when viewed from the side and configured to fit the surgically sculpted proximal end of the intramedullary canal of the femur.
Proximally of the body 16 is positioned a neck member 20 having a bore 21 sized to closely receive the upper end of the stem 12, the neck including an angled extension 22 terminating in a ball 24 sized to articulate with an appropriately sized and shaped socket prosthesis (not shown) to be mounted in the acetabular recess of the pelvis. A clamp 30 is shown in Figure 1 as an elongated metal rod having an axial bore 32 that extends from its proximal end portion 34 to a floor 36 short of the distal end portion 38 of the clamp. Near its upper end, the axial bore 32 has a distally facing shoulder fashioned to receive a placement instrument, as will be described below.
The clamp 30 is shaped and sized such that at body temperature, its diameter, when not constrained in the stem 12, will be slightly larger than the diameter of the bore 14 of the stem. The diameter 21 of the neck bore and the diameter 18 of the body bore, on the other hand, are essentially the same as the outer diameter of the stem 12; that is, the stem is snugly but slidably received in the bores 18, 21 so that the body and the neck can be moved by hand upon the stem without difficulty.
The clamp 30, before installation in the bore 14 of the stem, first must be altered so that its diameter is slightly less than the bore diameter of the stem. This is accomplished by physically stretching the clamp in its long or axial direction to cause the diameter of the clamp to shrink sufficiently to enable the clamp to be inserted in the bore 14. Although the clamp may be made from various metals as described below, a preferred metal is a shape memory alloy such as nitinol, in its superelastic state in which applied stress results in a reversible martensitic phase transition. When a nitinol claimp 30 is stretched as described above, and providing that its temperature is maintained substantially above its ausenite finish temperature (the temperature at which the alloy is completely in its austenitic form), a transition from the austenite phase to the martensite phase occurs. This is known as stress induced martensite formation and is the basis for the phenomenon known as pseudoelasticity or superelasticity. The shape memory alloy will remain at least partially in the martensite phase as long as the external stress is maintained. Upon release of the stress, however, the clamp 30 will return to the austeniste phase and toward its original shape and size. Because the clamp is constrained within the dimensions of the stem bore 14, however, it will not be able to completely resume its original shape and size. As a result, the clamp 30 will exert a continuous force against the bore 14 of the stem 12.
Alternatively, the clamp may be made from a shape memory alloy such as nitinol in which the material is capable of undergoing a temperature-induced phase change. In this embodiment, the shape memory alloy is so configured that when in its stable phase at body temperature, its diameter is slightly greater than the diameter 14 of the stem. At a lower temperature, however, the clamp may be deformed into a different physical shape in which it is slightly longer and slightly more slender than in its stable form at body temperature, this configuration permitting the clamp to slide into the bore 14 of the stem. In this embodiment, once the shape memory alloy is warmed and passes through its phase transition temperature range, it expands toward its stable configuration at body temperature, thereby pressing outwardly with a continuous force upon the bore of the stem.
Thus, both when using a temperature-induced phase change for a shape memory alloy, and when using a physical lengthening of the clamp, the clamp tends to return to a configuration which may be referred to as a "rest" configuration at body temperature. The rest configuration, however, has a transverse dimension (the diameter in the case of a rod having a circular cross-section) that is slightly larger than the transverse dimension of the stem bore, and as a result the clamp pushes outwardly strongly upon the stem bore and becomes firmly clamped in the stem bore.
As shown in Figure 1, the walls 42 of the clamp have outer surfaces 44 that engage and push outwardly upon the bore 14. When appropriately in place, the outer wall 44 of the clamp pushes outwardly upon the surface of the stem bore 14, and the walls of the stem, in turn, are forced outwardly into contact with the inner surface 26 of the body 16 and also with the inner surface 28 of the neck 20.
Preferably, the outer surface of the clamp 30 is generally cylindrical and makes substantial surface-to-surface contact with the surface of the bore 14. Moreover, the stem wall is sufficiently flexible as to enable the outer wall of the stem to expand into contact with the bores of both the body and the shoulder, even when these bores are slightly different in diameter. A feature of a preferred embodiment of the invention is that the clamped surfaces - that is, the confronting surfaces of the clamp and first member, and the confronting surfaces of the first and second members - mate in surface-to-surface contact to fairly uniformly distribute the compressive forces over the clamped surfaces and preferably to avoid gaps between confronting surfaces. As used herein, a "gap" is the thin void space formed between slightly spaced confronting surfaces of a prosthesis when assembled, as, for example, the space formed between an elongated, smooth-walled rod having threads at one end and the bore receiving the rod. If the clamp is a cylinder having a circular cross-section and the cavity is a circular bore, the compressive clamping force exerted by the clamp against the walls of the bore would be primarily radial and substantially uniform along the length of the clamp. One may vary as desired the concentration of compressive forces between the clamp (and between prosthesis members) by varying the shapes of the clamping surfaces. For example, if the cross-sections of the clamp and recess were oval rather than circular, one would expect the compressive clamping force to be somewhat greater in the longer transverse dimension than in the shorter transverse dimension. The invention in another embodiment is shown in Figure 2, in which the ball 24 is firmly mounted to the angled neck extension 22. The ball 24 and the neck member 20 (from which extends the angled extension 22) generally will be assembled as a subunit, and the subunit will then be assembled with the body and stem as mentioned above.
As shown in Figure 2, the angled extension 22 has an internal bore 50 that is open at one end and is closed at its other end 52. The bore 50 extends downwardly and laterally as shown in Figures 1 and 2, and opens into the bore 28. The distal end of the angled neck has a tapered head 54 that is received within a tapered bore 60 formed in the ball 24. In this embodiment, the angled neck 22 functions not only as a part of the prosthesis but also as the clamp. To positively and firmly connect the ball 24 to the angled neck, one first elongates the angled neck in the manner described above in connection with the clamp 30. Upon elongation of the angled neck 22 sufficient to enable the head 54 to be snugly received in the ball, the stretching force imparted by the instrument is withdrawn, and the neck 22 returns toward its original, "rest" configuration, the outer wall of the head 54 bearing outwardly against the confining walls of the bore 60 to firmly clamp the ball to the angled neck. Referring to Figure 1 , it will be noted that the bore 50 is fully accessible through its open end prior to mounting of the neck 20 upon the stem 12. It may also be noted that the clamp and the cavity, although circular in cross-section and making mutual surface-to- surface contact, are tapered rather than cylindrical, illustrating how the shape of the clamp and cavity may be varied.
With reference to Figure 3, a tibial tray component is shown generally as 70 and comprises a stem 72 adapted to be received in the surgically prepared intramedullary canal of the tibia in a known fashion. The stem terminates upwardly in a metal tray 74 which in turn supports a bearing insert 76 of high molecular weight polyethylene or the like. The latter is adapted to articulate with the condyles at the distal end of the femur, or with the condyles of a prosthetic femoral implant, all in a known fashion. Near the upper end of the stem is positioned a shoulder 78 which fits in the surgically prepared upper end of the tibial intramedullary canal, and serves to support the upper end of the stem. A clamp such as that described above is shown at 80 in Figure 3. It is desirably cylindrical in cross section, having a diameter at body temperature that is slightly greater than the diameter of a bore 82 formed axial within the stem 72. The clamp 80 may be inserted by the same method described in connection with the clamp 30 of Figure 1. When the stretching force is withdrawn, the clamp returns toward its "rest" configuration and its walls press outwardly against the walls of the stem 72, causing the latter in turn to clamp strongly to the walls of the bore 84 of the shoulder member 78.
A slightly modified hip joint prosthesis is depicted in Fig. 4 as 100, the prosthesis having a stem 112 adapted for insertion in the intramedullary canal of the femur. An axial bore 114 is formed in the stem, and the walls of the stem near its proximal end may have longitudinal slots 116 formed therein, the slots ending in round holes 118 to avoid stress concentration areas. The slots 116 enable the wall of the stem to expand more easily, and are spaced evenly about the circumference of the stem. Four slots may be employed. A body 120 is provided with an internal bore 122 sized to snugly receive the stem, the body bearing a ball 124 similar to ball 24 of
Figure 1. The upper or proximal end of the body 120 extends slightly beyond the proximal end 126 of the stem.
Within the stem is received a hollow, tubular clamp 130 similar to the clamp 30 shown in Figure 1. Clamp 130 has a proximal, externally threaded end portion 132 that extends beyond the proximal end 126 of the stem but is yet preferably retained in the proximal end portion of the body bore 122, all as shown in Figure 4.
Figures 5 - 7 depict instrumentation for applying tensile stress to the clamp typified as 130 in the drawing. Shown at 140 is a tubular gripping tool having an open distal end portion 142 that is internally threaded to receive the external threads of the proximal end portion 132 of the clamp. Square threads preferably are used. An aperture 144 is formed in the gripping tool 140 proximal of its distal end portion 142. An elongated pushing rod 150 is received in the hollow clamp, and has a distal end 152 shaped to engage the confronting distal end wall 134 of the clamp in surface-to- surface contact. The proximal end 154 of the pushing rod is accessible through the aperture 144, as shown best in Figure 6, and has a recessed end surface 156. Note that the proximal end wall 146 of the tubular gripping tool similarly has a recessed surface 148 facing the recessed end surface 156 of the rod.
Figure 7 depicts the assembly of Figure 6 in association with a manually operated plier-like force-generating device 170, the device having handles 172, oppositely facing nose portions 174 receivable in the aperture in the gripping tool, and a pivot 176 positioned to provide substantial mechanical advantage to the nose portions. Nose portions 174 bear against the respective recessed surfaces of the push rod and gripping tool as shown in Figure 7; squeezing of the handles together results in the application of substantial force to the rod 150, causing the clamp 130 to elongate slightly but sufficiently to enable the clamp to be inserted in the bore of the stem. A tooth and pawl mechanism 178 of known design and commonly used with surgical instruments is provided at the ends of the handles to hold them together and thus maintain the stem in its stressed, elongated configuration. Various other devices capable of delivering substantial force to stretch the clamp may be employed using any of a number of mechanical, pneumatic, and hydraulic means.
In use, referring again to Figures 4 through 7, a push rod 150 is inserted in an appropriate clamp 130, and the proximal end of the clamp is screwed onto the end of the gripping tool 140 to form the assembly shown in Figure 6. The nose portions 174 of the force-generating device 170 are inserted through the aperture 144 into contact with the respective recessed surfaces of the push rod and gripping tool, and the handles are squeezed toward each other and locked by the mechanism 178, thus holding the clamp in its elongated configuration. Body 120 is received over the stem, and is positioned where desired along the stem by the surgeon during the implantation procedure. Once the stem and body have been properly oriented with respect to each other, and the body has been suitably impacted by the surgeon into the intramedullary canal, the clamp is inserted into the stem bore. Mechanism 178 is then released, resulting in the release of pressure of the nose elements against the push rod and gripping tool. As the clamp 130 expands toward its rest configuration, it bears with substantial force against the walls of the stem, forcing these walls into tight contact with the walls of the bore formed in the body. The gripping tool, of course, is then removed, and the open proximal end of the clamp is capped appropriately if desired. It may be particularly valuable to utilize the stem of the prosthesis of Figure 1 itself as the clamp, eliminating the clamp 30. Here, the proximal end of the stem may be internally threaded to receive the distal threaded end of an externally threaded gripping tool similar to that shown at 140 in Figure 6. The gripping tool and push rod may be longer than that shown in the drawing to allow placement of the neck and body over the gripping tool prior to threading the gripping tool onto the threaded end of the stem. By appropriately configuring the gripping tool 140, one may loosely position the neck 20 and body 16 on the gripping tool prior to use of the device to elongate the proximal portion of the stem. The push rod 150 is placed in the bore of the stem, and the gripping tool is threaded onto the stem. Once the stem 12 has been elongated by operation of the force generating device and appropriately positioned in the femoral cavity, the neck and body may be brought down over the nose portions and around the stem and positioned as desired within the intramedullary canal.
Desirably, the various parts of the prostheses of the invention that are clamped together are made of metal such as stainless steel, cobalt chrome alloys, titanium alloys or the like as are commonly employed for prostheses manufacture. The clamp, similarly, may be made of a shape memory alloy or of any metal that exhibits an initial proportional relationship between stress and strain (in the range of validity of Hooke's law). Various metals and metal alloys satisfy this requirement, including stainless steel. The ratio of the lateral or transverse strain to the longitudinal or axial strain, commonly referred to as Poisson's ratio, can range from 0.2 to 0.5, depending on the material and its condition. Poisson's ratio for stainless steel, for example, is about 0.28.
The clamps according to the invention preferably are made of a shape memory alloy such as nitinol. Nitinol exhibits a Poisson's ratio of about 0.3, but this ratio significantly increases up to approximately 0.5 or more when the shape memory alloy is stretched beyond its initial elastic limit; that is, when the formation of stress-induced martensite begins to occur. Nitinol is a pseudoelastic material, that is, a material that exhibits superelasticity at room temperature. A number of shape memory alloys are known to exhibit the superelastic/pseudoelastic recovery characteristic, and these are generally characterized by their ability, at room or body temperature, to be deformed from an austenitic crystal structure to a stressed-induced martensitic structure, returning to the austenitic state when the stress is removed. The alternate crystal structures give the alloy superelastic or pseudoelastic properties.
Nitinol clamps of the type referred to above in connection with Figures 1 and 3 can readily be elongated up to 8% or more through the use of instruments such as that shown in Figure 4. Using nitinol with an assumed Poisson's ratio of 0.3, if a clamp such as that shown in Figure 6 is elongated 8%, it would be expected to shrink about 2.4% in diameter. If the initial diameter of a clamp were in the neighborhood of 1/2 inch, the decrease in diameter would be on the order of 0.012 inches. Since tooling tolerances for the internal bores of stems and other prosthesis parts can easily be held within ± 0.002 inches, a change of 0.012 inches in the clamp diameter allows substantial room for design variations in size. It is generally preferred that the diameter of the stem bore, however, be only very slightly greater than the outer diameter of the clamp when the clamp is longitudinally stretched to an elongation of, for example, 8%.
A surgeon may select the desired sizes of the stem, body and head, and can assemble the same during a surgical procedure. With reference to the femoral implant shown in Figure 4, an articulating ball 124 of the appropriate size is selected and is mounted as described above to the neck 120. The femoral prosthesis without the clamp 130 is then assembled. Assembly may take place away from the patient if the desired dimensions and respective angles of the prosthesis parts are known with accuracy ahead of time, as by measurement or by use of trial prosthesis parts. The prosthesis itself can be assembled in the intramedullary canal of the patient, with the correct orientations of the parts noted. Referring to Figures 4 through 7, once the parts have been arranged and oriented as desired in the intramedullary canal, a clamp 130 is tensioned to reduce its diameter through use of the gripping tool 140, the pushrod 150 and the force generating device 170, and is then gently placed in the bore of the stem. When tension on the clamp is withdrawn, the clamp expands immediately toward its larger diameter "rest" configuration, thereby clamping itself to the stem and clamping the stem 112 to the body 120. It will be noted that the resulting prosthesis desirably has no threaded fastenings to come loose. While tension is maintained on the clamp, the body 120 may be positioned independently in axial and rotational directions on the stem as the surgeon may deem appropriate for the particular patient. In the same manner in which assembly was carried out, disassembly can be afforded by reversing the steps.
Similarly in connection with the prosthesis of Figure 3, once the shoulder 78 and stem 72 have been mounted in the distal end of the tibia as desired and oriented with respect to one another, the clamp 80 may be inserted in the bore 82 and permitted to expand toward its "rest" configuration. This, in turn, forces the walls of the stem outwardly and to contact with the bore 84 of the shoulder 78 to lock the stem and shoulder together.
Although the clamp of the invention has been described in terms of a hollow rod with one open end and one closed end, it should be understood that a variety of clamp configurations may be employed. If a change of shape of the clamp due to a martensite to austenite shape memory alloy phase change is desired, then a solid rather than hollow clamp may be preferred. Hollow structures are preferred even in this instance, however, in that the hollow interior of the clamp provides a means for cooling the clamp in the event that a prosthesis needs to be disassembled. Also, while it is desired that the outer surface of the clamp and the inner surfaces of the bore or bores within which the clamp is received be smooth and regular so as to make good surface-to-surface contact, the outer surface of the clamp may, in fact, be ridged or roughened or longitudinally fluted or otherwise configured, as desired.
Moreover, as noted above, the clamps of the invention need not be round in cross section nor must they have a uniform dimension transverse to the longitudinal axis. If desired, the outer surface of the clamp may have a greater transverse dimension in some areas than in others. For example, with reference to Figure 1, the transverse dimension of the clamp may be greater near the top of the clamp where the stem portion that is clamped bears also against the bore of the body or vice versa.
The clamp may in fact be hollow or tubular in design. Referring to Figure 8, head 54 of the neck extension 22 may be formed with a thimble-shaped clamp 180 having an outwardly flared skirt 182 at its open end. When the head 54 with clamp 180 attached is forced into the bore 60 of the ball (leaving a gap 62 between the end of the clamp 180 and the floor of the bore 60), the rim of the opening 60 encounters the skirt 182 and forces the walls of the clamp to elongate. Upon release of the pressure forcing the head 54 into the opening 60, the walls of the clamp increase slightly in thickness, wedging the ball onto the head 54 and sealing the opening 60. The interface 61 between the head 54 and the clamp 180 is also sealed.
In a preferred embodiment, the confronting walls of the clamp and cavity may be so configured that any slippage between the clamp and the cavity results in the clamp being urged more deeply into the cavity. For example, the confronting walls of the clamp or cavity or both may be configured to have circumferential shoulders or tapered surfaces or other shapes, that coact to preferentially urge the clamp to move or "walk" in one direction rather than the opposite direction upon repeated slippage between the confronting surfaces. With reference to Figure 4, for example, the diameters of the clamp 130 and the bore in the stem 112 may be slightly greater near the distal end of the stem 112 than near the proximal end so that any movement or "walking" of the clamp due to repeated slippage of the clamp and the stem bore urges the clamp distally within the stem, drawing the widened threaded shoulder at the proximal end of the clamp into contact with the proximal end 126 of the stem.
While a preferred embodiment of the present invention has been described, it should be understood that various changes, adaptations and modifications may be made without departing from the spirit of the invention and the scope of the appended claims.

Claims

WHAT IS CLAIMED IS:
1. A kit for making a modular prosthesis comprising a first member having walls defining a cavity and a clamp releasably clampable within said cavity, the clamp having a first, rest configuration having a predetermined dimension in a first direction and being responsive to an external stimulus to assume a second shape having a lesser dimension in said first direction with concurrent increase of a dimension in a second direction normal to said first direction to permit said clamp to be at least partially received in said cavity, said predetermined dimension being such that upon withdrawal of the external stimulus, the clamp returns toward its rest configuration with consequent increase in its dimension in the first direction sufficient to strongly clamp to said member.
2. The kit of claim 1 wherein said cavity has a surface that is congruent to a surface of the clamp that is received in the cavity to provide surface-to-surface of the clamp to the cavity.
3. The kit of claim 1 wherein the clamp comprises a metal rod having an axial dimension and a transverse dimension that is increased upon decrease in said axial dimension, and wherein said cavity is shaped to axially receive the rod.
4. The kit of claim 3 wherein said metal rod includes an axial bore that is closed at one end.
5. The kit of claim 4 including instrumentation for clamping said rod to said first member, the instrumentation including means insertable in said bore for bearing against said closed bore end to elongate the rod sufficiently to enable it to be received in the cavity.
6. The kit of claim 1 wherein said prosthesis includes a second member configured to snugly receive at least a portion of the first member in any of several orientations, and wherein said cavity walls are configured to expand into clamping contact with said second member as said clamp moves from its second shape toward its first shape to fixedly support the second member in a predetermined orientation with respect to the first member.
7. The kit of claim 1 wherein said clamp is of shape memory alloy having said first shape at body temperature and said second shape at a second different given temperature.
8. The kit of claim 1 wherein said clamp is of shape memory alloy having superelastic properties at body temperature.
9. A kit for making a modular prosthesis comprising a first member having walls defining a cavity having an internal surface, and a clamp comprising a metal rod having an axis and an external surface, the rod having a first, rest configuration having a predetermined dimension in a direction transverse to its axial direction and being responsive to an external stimulus to assume a second shape having a lesser dimension in said transverse direction with concunent increase in its axial length to permit the rod to be at least partially received in said cavity, said predetermined transverse dimension being such that upon withdrawal of the external stimulus, the clamp returns toward its rest configuration with consequent increase in its dimension in said transverse direction sufficient to bring said internal surface of the cavity and the external surface of the rod into surface-to-surface contact to strongly clamp said clamp to said member.
10. The kit of claim 9 wherein said clamp is of shape memory alloy having superelastic properties at body temperature.
11. A kit for making a modular prosthesis comprising a first member having walls defining a cavity having an internal surface, a second member having a cavity with an inner surface configured to snugly receive and confront a surface of at least a portion of the first member, and a clamp comprising a metal rod having an axis and an external surface, the rod having a first, rest configuration having a predetermined dimension in a direction transverse to its axis direction and being responsive to an external stimulus to assume a second shape having a lesser dimension in said transverse direction with concurrent increase in its axial length to permit the rod to be at least partially received in the cavity of the first member, said predetermined transverse dimension being such that upon withdrawal of the external stimulus, the clamp returns toward its rest configuration with consequent increase in its dimension in the one direction sufficient to bring said internal surface of the cavity of the first member and the external surface of the rod into surface-to-surface contact and to bring said confronting surfaces of the first and second members into surface-to-surface contact to strongly clamp said members together.
12. A kit for a modular prosthesis comprising a first prosthesis member having walls defining a cavity and a clamp releasably clampable within said cavity, the clamp having a first, rest configuration having a predetermined dimension in one direction, an instrument for applying a stretching force to said clamp in a second direction normal to said one direction to reduce said dimension in the one direction enough to permit said clamp to be received in said cavity, said predetermined dimension being such that upon removal of the stretching force, the clamp returns toward its rest configuration with consequent increase in its dimension in the one direction sufficient to strongly clamp to said member.
13. The kit of claim 12 wherein said clamp comprises a rod having end portions and said instrument includes means for releasably gripping the rod adjacent one of its end portions and means for imparting axial tensile force to the other end portion of the rod to stretch the rod.
14. The kit of claim 12 wherein said clamp comprises a rod having end portions and wherein said instrument comprises a handle including a manual squeezing element, means for releasably gripping the rod adjacent one of its end portions and means responsive to squeezing of the handle to impart axial tensile force to the other end portion of the rod to stretch the rod.
15. The kit of claim 14 wherein said rod has an axial bore open at one end and a fastener adjacent said open end, and wherein said releasable gripping means includes means for fastening to said fastener.
16. The kit of claim 15 wherein said instrument includes a shaft receivable through the open end of the bore and engaging the rod adjacent its other end portion for imparting tensile axial force to the rod.
17. The kit of any one of claims 1 and 9-12 wherein said first member comprises an elongated stem receivable in the marrow cavity of a long bone, the stem having an axial bore forming said cavity.
18. Method for assembling a modular prosthesis, comprising providing a first prosthesis member having walls defining a cavity, providing a clamp having a first, rest configuration having a predetermined dimension in a first direction, subjecting the clamp to an external stimulus to reduce the dimension in said first direction with concurrent expansion of a clamp dimension in a second direction normal to the first direction, inserting the clamp in said cavity, and withdrawing said external stimulus to allow the clamp to return toward its first, rest configuration with consequent increase in its dimension in the first direction sufficient to strongly clamp to said first prosthesis member.
19. The method of claim 18 including, before withdrawal of said stimulus, the step of receiving at least a portion of the first member in a second prosthesis member, adjusting the relative orientation between the first and second members, and withdrawing said stimulus to enable said clamp to return toward its first, rest configuration, the cavity walls of the first member being configured to expand into clamping contact with said second member as said clamp moves from its second shape toward its first shape to fixedly support the second member in a predetermined orientation with respect to the first member.
20. The method of claim 19 wherein said first and second members have confronting surfaces so configured as to come into surface-to-surface contact when the first member is clamped to the second member.
21. The kit of any of claims 1, 9, 11 and 12 wherein confronting walls of the clamp and cavity are so configured as to urge the clamp toward one direction rather than the opposite direction with respect to the cavity upon any repeated slippage between said confronting walls.
22. The kit of any of claims 1, 9, 11 and 12 wherein the clamp and cavity have confronting walls that are tapered outwardly from a first position to a second position along the cavity so that any slippage between confronting surfaces of the clamp and cavity tends to draw said clamp toward said second position.
23. The kit of any of claims 1, 9, 11 and 12 wherein the confronting surfaces of the clamp and the cavity are so configured as to resist movement between the clamp and cavity due to repeated slippage of either of the confronting walls with respect to the other.
24. The kit of claim 1 wherein said clamp is hollow and has an outer surface engaging said cavity and an inner surface.
25. The kit of claim 24 including a second prosthesis member having a portion received within said hollow clamp, said clamp clamping together said first and second prosthesis members.
26. The kit of claim 25 wherein said hollow clamp has walls, an open end and a closed end, and having an outwardly extending skirt at its open end, the cavity of said first member having a rim sized to encounter and bear against said skirt when the second member portion is forced into the cavity, whereby walls of the clamp between the first and second members are elongated, and wedge and seal said members together when force forcing the second member portion into the cavity is removed.
27. The method of claim 18 including the step of orienting a second prosthesis member within a cavity in said clamp with a wall of the clamp separating said members, whereupon said clamp, upon withdrawal of said external stimulus with consequent increase of its wall thickness dimension in said first direction, clamps said members together.
PCT/US1996/019376 1995-12-05 1996-12-05 Modular prosthesis WO1997020525A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP09521426A JP2000515030A (en) 1995-12-05 1996-12-05 Modular prostheses
KR1019980704253A KR19990071963A (en) 1995-12-05 1996-12-05 Modular prosthetics
DE69623129T DE69623129T2 (en) 1995-12-05 1996-12-05 MODULAR PROSTHESIS
DK96942902T DK0869752T3 (en) 1995-12-05 1996-12-05 Modular prosthetic
EP96942902A EP0869752B1 (en) 1995-12-05 1996-12-05 Modular prosthesis
AU11474/97A AU730597B2 (en) 1995-12-05 1996-12-05 Modular prosthesis
BR9611809-1A BR9611809A (en) 1995-12-05 1996-12-05 Modular prosthesis
EA199800421A EA000291B1 (en) 1995-12-05 1996-12-05 Modular prosthesis
KR19997011332A KR20010013336A (en) 1995-12-05 1997-06-04 Modular prosthesis
NO982572A NO982572L (en) 1995-12-05 1998-06-04 Modular Prosthetic

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/567,650 1995-12-05
US08/567,650 US5858020A (en) 1995-12-05 1995-12-05 Modular prosthesis

Publications (1)

Publication Number Publication Date
WO1997020525A1 true WO1997020525A1 (en) 1997-06-12

Family

ID=24268058

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US1996/019376 WO1997020525A1 (en) 1995-12-05 1996-12-05 Modular prosthesis
PCT/US1997/009466 WO1998055051A1 (en) 1995-12-05 1997-06-04 Modular prosthesis

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US1997/009466 WO1998055051A1 (en) 1995-12-05 1997-06-04 Modular prosthesis

Country Status (14)

Country Link
US (1) US5858020A (en)
EP (2) EP0869752B1 (en)
JP (1) JP2000515030A (en)
KR (2) KR19990071963A (en)
AU (1) AU730597B2 (en)
BR (1) BR9611809A (en)
CA (1) CA2239551A1 (en)
DE (1) DE69623129T2 (en)
DK (1) DK0869752T3 (en)
EA (1) EA000291B1 (en)
ES (1) ES2181929T3 (en)
NO (1) NO982572L (en)
TW (1) TW477693B (en)
WO (2) WO1997020525A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998008468A1 (en) * 1996-08-30 1998-03-05 Hunter Innovations, Inc. Adjustable modular orthopedic implant
WO1998055051A1 (en) * 1995-12-05 1998-12-10 Metagen, Llc Modular prosthesis
US5906644A (en) * 1996-08-30 1999-05-25 Powell; Douglas Hunter Adjustable modular orthopedic implant
WO1999047081A1 (en) * 1998-03-18 1999-09-23 Patrick Michel White Prosthesis having wedge-shaped body
WO2000004885A3 (en) * 1998-07-21 2000-05-04 Merete Management Gmbh Joint prosthesis system
EP1013242A3 (en) * 1998-12-18 2001-11-21 Benoist Girard Sas Femoral component
EP1013241A3 (en) * 1998-12-22 2002-03-06 JOHNSON & JOHNSON PROFESSIONAL Inc. Proximal femoral sleeve for a revision hip prosthesis
WO2008118896A1 (en) * 2007-03-26 2008-10-02 Dynamic Flowform Corp. Proximally self-locking long bone prosthesis
US8241367B2 (en) 2002-04-25 2012-08-14 Zimmer, Inc. Modular bone implant, tool, and method

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU749190B2 (en) * 1997-06-04 2002-06-20 Orthopaedic Innovations, Inc. Modular prosthesis
US5976188A (en) * 1997-10-21 1999-11-02 Johnson & Johnson Professional, Inc. Modular prosthesis system with hybrid fixation
ATE261707T1 (en) * 1998-01-16 2004-04-15 Ct Pulse Orthopedics Ltd CONSTRUCTION KIT FOR SHAFT PROSTHESES
DE19834305A1 (en) * 1998-07-30 2000-02-03 Rau Gmbh G Mechanical fastener
EP0995412B1 (en) * 1998-10-23 2004-03-31 Centerpulse Orthopedics Ltd. Artificial joint cup
US6306174B1 (en) * 1998-12-18 2001-10-23 Benoist Girard Sas Femoral component
US6435519B1 (en) 1999-05-14 2002-08-20 Patrick Michel White Stress-induced gasket
US6257593B1 (en) * 1999-05-14 2001-07-10 Patrick Michel White Stress induced interposed connector
AU5135100A (en) * 1999-05-14 2000-12-05 Patrick White Stress-induced seal
US7150680B2 (en) 1999-05-14 2006-12-19 Precimed S.A. Drive shaft coupling
US6637995B1 (en) 2000-02-09 2003-10-28 Patrick Michel White Super-elastic rivet assembly
US6319286B1 (en) * 2000-03-13 2001-11-20 Exactech, Inc Modular hip prosthesis
US8535382B2 (en) 2000-04-10 2013-09-17 Biomet Manufacturing, Llc Modular radial head prostheses
US8920509B2 (en) * 2000-04-10 2014-12-30 Biomet Manufacturing, Llc Modular radial head prosthesis
US8114163B2 (en) * 2000-04-10 2012-02-14 Biomet Manufacturing Corp. Method and apparatus for adjusting height and angle for a radial head
US6852132B1 (en) * 2000-07-05 2005-02-08 Russell A Houser Artificial limbs incorporating superelastic supports
US6913623B1 (en) 2000-08-15 2005-07-05 Centerpulse Orthopedics, Inc. Two piecefused femoral hip stem
US6706072B2 (en) 2000-11-08 2004-03-16 Depuy Orthopaedics, Inc. Modular prosthesis having a stem component with a counterbored cavity defined therein and associated method
US20030065397A1 (en) * 2001-08-27 2003-04-03 Hanssen Arlen D. Prosthetic implant support structure
US20040162619A1 (en) 2001-08-27 2004-08-19 Zimmer Technology, Inc. Tibial augments for use with knee joint prostheses, method of implanting the tibial augment, and associated tools
US7892288B2 (en) 2001-08-27 2011-02-22 Zimmer Technology, Inc. Femoral augments for use with knee joint prosthesis
US6749639B2 (en) 2001-08-27 2004-06-15 Mayo Foundation For Medical Education And Research Coated prosthetic implant
CN2534997Y (en) * 2001-09-21 2003-02-12 钱本文 Thigh-bone neck protection apparatus
US6692530B2 (en) * 2001-10-17 2004-02-17 Hammill Manufacturing Co. Split sleeve modular joint
DE10157969C1 (en) * 2001-11-27 2003-02-06 Biedermann Motech Gmbh Element used in spinal and accident surgery comprises a shaft joined to a holding element having a U-shaped recess with two free arms having an internal thread with flanks lying at right angles to the central axis of the holding element
US6875239B2 (en) * 2002-04-25 2005-04-05 Medicinelodge, Inc. Modular prosthesis for replacing bone and method
US20030204268A1 (en) * 2002-04-25 2003-10-30 Medicinelodge, Inc. Binary attachment mechanism and method for a modular prosthesis
US6902583B2 (en) 2002-04-25 2005-06-07 Medicinelodge, Inc. Tripartite attachment mechanism and method for a modular prosthesis
USD684693S1 (en) 2002-08-22 2013-06-18 Zimmer, Inc. Prosthetic implant support structure
US6863690B2 (en) 2002-09-27 2005-03-08 Depuy Products, Inc. Humeral shoulder prosthesis
WO2004030556A2 (en) * 2002-10-04 2004-04-15 Orthosoft Inc. Computer-assisted hip replacement surgery
DE10257774A1 (en) * 2002-12-10 2004-07-29 Hjs Gelenk System Gmbh Artificial joint
US6866683B2 (en) 2002-12-13 2005-03-15 Medicine Lodge, Inc. Modular implant for joint reconstruction and method of use
US6887276B2 (en) * 2002-12-13 2005-05-03 Medicine Lodge, Inc Modular implant for joint reconstruction and method of use
US20040122439A1 (en) * 2002-12-20 2004-06-24 Dwyer Kimberly A. Adjustable biomechanical templating & resection instrument and associated method
US7022141B2 (en) * 2002-12-20 2006-04-04 Depuy Products, Inc. Alignment device for modular implants and method
US7854737B2 (en) * 2002-12-20 2010-12-21 Depuy Products, Inc. Instrument and associated method of trailing for modular hip stems
US7235106B2 (en) 2002-12-20 2007-06-26 Depuy Products, Inc. Modular hip stems and associated method of trialing
US20040254646A1 (en) * 2003-06-16 2004-12-16 Stone Kevin T. Provisional coupling mechanism
US20040267267A1 (en) * 2003-06-25 2004-12-30 Daniels David Wayne Non-linear reamer for bone preparation and associated method
US8998919B2 (en) 2003-06-25 2015-04-07 DePuy Synthes Products, LLC Assembly tool for modular implants, kit and associated method
US7582092B2 (en) 2003-06-25 2009-09-01 Depuy Products, Inc. Assembly tool for modular implants and associated method
US7297166B2 (en) * 2003-06-25 2007-11-20 Depuy Products, Inc. Assembly tool for modular implants and associated method
US7074224B2 (en) * 2003-06-25 2006-07-11 Depuy Products, Inc. Modular tapered reamer for bone preparation and associated method
US7468078B2 (en) * 2003-07-03 2008-12-23 Zimmer, Inc. Modular hip prosthesis
US7766968B2 (en) * 2003-12-08 2010-08-03 Sweeney Patrick J Modular cannulated total joint prosthesis
US11419642B2 (en) 2003-12-16 2022-08-23 Medos International Sarl Percutaneous access devices and bone anchor assemblies
US7179261B2 (en) 2003-12-16 2007-02-20 Depuy Spine, Inc. Percutaneous access devices and bone anchor assemblies
US7785328B2 (en) * 2003-12-30 2010-08-31 Depuy Products, Inc. Minimally invasive bone miller apparatus
US7833228B1 (en) * 2004-01-05 2010-11-16 Biomet Manufacturing Corp. Method and instrumentation for performing minimally invasive hip arthroplasty
US7534271B2 (en) * 2004-01-22 2009-05-19 Smith + Nephew Femoral hip prosthesis and method of implantation
EP1753354B1 (en) * 2004-05-21 2010-09-15 Myers Surgical Solutions, LLC Fracture fixation and site stabilization system
US8163029B2 (en) * 2004-06-30 2012-04-24 Depuy Products, Inc. Extended radius prosthesis and associated method
US7474223B2 (en) * 2005-04-18 2009-01-06 Warsaw Orthopedic, Inc. Method and apparatus for implant identification
US7909825B2 (en) 2006-11-22 2011-03-22 Sonoma Orthepedic Products, Inc. Fracture fixation device, tools and methods
US8961516B2 (en) 2005-05-18 2015-02-24 Sonoma Orthopedic Products, Inc. Straight intramedullary fracture fixation devices and methods
US9060820B2 (en) 2005-05-18 2015-06-23 Sonoma Orthopedic Products, Inc. Segmented intramedullary fracture fixation devices and methods
DE602005005664T2 (en) * 2005-07-08 2008-06-26 Biedermann Motech Gmbh Bone anchoring element
KR101145415B1 (en) 2005-07-08 2012-05-15 비이더만 모테크 게엠베하 & 코. 카게 Bone Anchoring Element
US20070050041A1 (en) * 2005-08-30 2007-03-01 Dietz Terry L Orthopaedic implant stem component, joint component, and associated kit
US8790413B2 (en) * 2005-10-27 2014-07-29 Zimmer, Inc. Orthopaedic implant sleeve and method
US8597298B2 (en) 2006-09-29 2013-12-03 DePuy Synthes Products, LLC Proximal reamer
US7585329B2 (en) * 2006-11-28 2009-09-08 Depuy Products, Inc. Modular proximal body trial
US8328873B2 (en) 2007-01-10 2012-12-11 Biomet Manufacturing Corp. Knee joint prosthesis system and method for implantation
JP5448842B2 (en) * 2007-01-10 2014-03-19 バイオメト マニファクチャリング コーポレイション Knee joint prosthesis system and implantation method
US8163028B2 (en) * 2007-01-10 2012-04-24 Biomet Manufacturing Corp. Knee joint prosthesis system and method for implantation
US8187280B2 (en) 2007-10-10 2012-05-29 Biomet Manufacturing Corp. Knee joint prosthesis system and method for implantation
US8562616B2 (en) 2007-10-10 2013-10-22 Biomet Manufacturing, Llc Knee joint prosthesis system and method for implantation
US8556912B2 (en) 2007-10-30 2013-10-15 DePuy Synthes Products, LLC Taper disengagement tool
US8518050B2 (en) 2007-10-31 2013-08-27 DePuy Synthes Products, LLC Modular taper assembly device
US8206143B2 (en) * 2007-12-13 2012-06-26 Biomet Manufacturing Corp. Modular articulating cement spacer
US7637729B2 (en) * 2007-12-13 2009-12-29 Biomet Manufacturing Corp. Modular articulating cement spacer mold
US8480289B2 (en) 2008-08-22 2013-07-09 Biomet Manufacturing, Llc Bone cement mixing cartridge and method of use
EP2341857A2 (en) 2008-09-26 2011-07-13 Sonoma Orthopedic Products, Inc. Bone fixation device, tools and methods
US8167882B2 (en) * 2008-09-30 2012-05-01 Depuy Products, Inc. Minimally invasive bone miller apparatus
US20100198271A1 (en) * 2009-02-02 2010-08-05 Vincent Leone Screw Sheath for Minimally Invasive Spinal Surgery and Method Relating Thereto
KR101239218B1 (en) * 2010-05-13 2013-03-05 서울대학교산학협력단 Bistable intelligence morphing active plate
US8533921B2 (en) 2010-06-15 2013-09-17 DePuy Synthes Products, LLC Spiral assembly tool
US9095452B2 (en) 2010-09-01 2015-08-04 DePuy Synthes Products, Inc. Disassembly tool
CN103813764B (en) 2011-04-06 2017-04-19 德普伊新特斯产品有限责任公司 Instrument assembly for implanting revision hip prosthesis and orthopaedic surgical procedure for using same
AU2012258998B2 (en) 2011-05-20 2016-05-05 Zimmer, Inc. Stabilizing prosthesis support structure
FR2977139B1 (en) * 2011-06-30 2014-08-22 Ldr Medical INTER-SPINAL IMPLANT AND IMPLANTATION INSTRUMENT
FR2994077B1 (en) * 2012-08-06 2015-06-12 Univ Bordeaux 1 CONDYLIAN PROSTHESIS FOR TEMPOROMANDIBULAR JOINT
JP2014087531A (en) * 2012-10-31 2014-05-15 Kyocera Medical Corp Artificial hip joint
US9770278B2 (en) 2014-01-17 2017-09-26 Arthrex, Inc. Dual tip guide wire
US9814499B2 (en) 2014-09-30 2017-11-14 Arthrex, Inc. Intramedullary fracture fixation devices and methods
DE102015121779B4 (en) 2015-12-15 2018-03-29 Gottfried Wilhelm Leibniz Universität Hannover Revisionable endoprosthesis
US10508323B2 (en) * 2016-01-20 2019-12-17 Baker Hughes, A Ge Company, Llc Method and apparatus for securing bodies using shape memory materials
US10280479B2 (en) 2016-01-20 2019-05-07 Baker Hughes, A Ge Company, Llc Earth-boring tools and methods for forming earth-boring tools using shape memory materials
US10487589B2 (en) 2016-01-20 2019-11-26 Baker Hughes, A Ge Company, Llc Earth-boring tools, depth-of-cut limiters, and methods of forming or servicing a wellbore
US10569370B2 (en) * 2016-09-12 2020-02-25 Baker Hughes, A Ge Company, Llc Mechanical locking mechanism using shape memory materials
EP3570787B1 (en) 2017-01-20 2022-05-04 Biomet Manufacturing, LLC Modular augment component
GB201705917D0 (en) 2017-04-12 2017-05-24 Davidson Craig Femoral trialling kit and assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4170794A (en) * 1977-03-23 1979-10-16 Rosenthal Technik Ag Bone joint endoprosthesis
EP0311208A1 (en) * 1987-10-05 1989-04-12 Ordev B.V. Adjustable prosthesis
FR2651119A1 (en) * 1989-08-23 1991-03-01 Felman Daniel Phalangeal articular prosthesis
WO1995013757A1 (en) * 1993-11-18 1995-05-26 Kirschner Medical Corporation Modular prosthesis with shape memory alloy elements

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE7504068L (en) * 1975-04-09 1976-10-28 Raychem Corp FESTORGAN
US3981307A (en) * 1974-07-01 1976-09-21 Ethicon, Inc. Thermal attachment of surgical sutures to needles
US4170990A (en) * 1977-01-28 1979-10-16 Fried. Krupp Gesellschaft Mit Beschrankter Haftung Method for implanting and subsequently removing mechanical connecting elements from living tissue
EP0077868A1 (en) * 1981-10-26 1983-05-04 Nunzio Godoli Hip prosthesis as expanding femoral component
SU1110447A1 (en) * 1982-09-24 1984-08-30 Новокузнецкий институт усовершенствования врачей Compressing fixative
US5190546A (en) * 1983-10-14 1993-03-02 Raychem Corporation Medical devices incorporating SIM alloy elements
US4896955B1 (en) * 1983-12-06 1991-05-21 Eyeglass frame including shape-memory elements
FR2576777B1 (en) * 1985-01-31 1987-03-06 Rhenter Jean Luc TOTAL HIP PROSTHESIS WITH PRIMARY FIXING
FR2591885B1 (en) * 1985-12-24 1990-06-15 Mai Christian SELF-LOCKING PROSTHESIS, METHODS OF MAKING AND IMPLEMENTING SAME
SU1351591A1 (en) * 1986-06-17 1987-11-15 Запорожский Областной Отдел Здравоохранения Intraosseous fixative
US5080685A (en) * 1986-08-15 1992-01-14 Boehringer Mannheim Corporation Modular hip prosthesis
DE3838388A1 (en) * 1988-11-11 1990-05-17 Thomas Dr Med Pfeifer Fastening device
US4938773A (en) * 1989-01-18 1990-07-03 Strand John A Hip joint prosthesis
US4995883A (en) * 1989-02-08 1991-02-26 Smith & Nephew Richards Inc. Modular hip prosthesis
NL8901526A (en) * 1989-06-16 1991-01-16 Ordev Bv SELF-ADJUSTING PROSTHESIS CONFIRMATION.
US5013507A (en) * 1989-09-29 1991-05-07 The Boeing Company Method for producing an elongate passage within a component
JPH03159645A (en) * 1989-11-20 1991-07-09 Ngk Spark Plug Co Ltd Artificial condyle
US5002578A (en) * 1990-05-04 1991-03-26 Venus Corporation Modular hip stem prosthesis apparatus and method
CA2104391C (en) * 1991-02-22 2006-01-24 Madhavan Pisharodi Middle expandable intervertebral disk implant and method
US5120175A (en) * 1991-07-15 1992-06-09 Arbegast William J Shape memory alloy fastener
IT1263895B (en) * 1993-02-11 1996-09-05 Giuseppe Vrespa REMOVABLE PIN-ABUTMENT FOR ENDOSSEAL IMPLANTS
US5397360A (en) * 1993-02-11 1995-03-14 Osteonics Corp. Modular components for prosthetic implants
US5551871A (en) * 1993-03-05 1996-09-03 Besselink; Petrus A. Temperature-sensitive medical/dental apparatus
IT1262759B (en) * 1993-07-16 1996-07-04 Mec Hint S R L IMPROVEMENT OF THE BLOCK BETWEEN THE COMPONENTS OF A MULTI-COMPOSED PROSTHESIS FOR USE IN ORTHOPEDIC AND VETERINARY TRAUMATOLOGY
US5415660A (en) * 1994-01-07 1995-05-16 Regents Of The University Of Minnesota Implantable limb lengthening nail driven by a shape memory alloy
US5584695A (en) * 1994-03-07 1996-12-17 Memory Medical Systems, Inc. Bone anchoring apparatus and method
FR2722679A1 (en) * 1994-07-25 1996-01-26 Daniel Felman Expansible arthrodesis implant for insertion between vertebrae
US5858020A (en) * 1995-12-05 1999-01-12 Metagen, Llc Modular prosthesis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4170794A (en) * 1977-03-23 1979-10-16 Rosenthal Technik Ag Bone joint endoprosthesis
EP0311208A1 (en) * 1987-10-05 1989-04-12 Ordev B.V. Adjustable prosthesis
FR2651119A1 (en) * 1989-08-23 1991-03-01 Felman Daniel Phalangeal articular prosthesis
WO1995013757A1 (en) * 1993-11-18 1995-05-26 Kirschner Medical Corporation Modular prosthesis with shape memory alloy elements

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998055051A1 (en) * 1995-12-05 1998-12-10 Metagen, Llc Modular prosthesis
US5906644A (en) * 1996-08-30 1999-05-25 Powell; Douglas Hunter Adjustable modular orthopedic implant
WO1998008468A1 (en) * 1996-08-30 1998-03-05 Hunter Innovations, Inc. Adjustable modular orthopedic implant
US6428578B2 (en) 1998-03-18 2002-08-06 Sct Incorporated Modular prosthesis and connector therefor
WO1999047081A1 (en) * 1998-03-18 1999-09-23 Patrick Michel White Prosthesis having wedge-shaped body
WO2000004885A3 (en) * 1998-07-21 2000-05-04 Merete Management Gmbh Joint prosthesis system
EP1013242A3 (en) * 1998-12-18 2001-11-21 Benoist Girard Sas Femoral component
EP1013241A3 (en) * 1998-12-22 2002-03-06 JOHNSON & JOHNSON PROFESSIONAL Inc. Proximal femoral sleeve for a revision hip prosthesis
US8241367B2 (en) 2002-04-25 2012-08-14 Zimmer, Inc. Modular bone implant, tool, and method
WO2008118896A1 (en) * 2007-03-26 2008-10-02 Dynamic Flowform Corp. Proximally self-locking long bone prosthesis
US7947135B2 (en) 2007-03-26 2011-05-24 Mx Orthopedics Corp. Proximally self-locking long bone prosthesis
US8062378B2 (en) 2007-03-26 2011-11-22 Mx Orthopedics Corp. Proximal self-locking long bone prosthesis
US8137486B2 (en) 2007-03-26 2012-03-20 Mx Orthopedics, Corp. Proximally self-locking long bone prosthesis
US8398790B2 (en) 2007-03-26 2013-03-19 Mx Orthopedics, Corp. Proximally self-locking long bone prosthesis

Also Published As

Publication number Publication date
EP0991378A1 (en) 2000-04-12
DE69623129D1 (en) 2002-09-26
EP0869752B1 (en) 2002-08-21
NO982572D0 (en) 1998-06-04
AU1147497A (en) 1997-06-27
CA2239551A1 (en) 1997-06-12
TW477693B (en) 2002-03-01
AU730597B2 (en) 2001-03-08
ES2181929T3 (en) 2003-03-01
DK0869752T3 (en) 2002-12-23
EA000291B1 (en) 1999-02-25
JP2000515030A (en) 2000-11-14
KR20010013336A (en) 2001-02-26
EA199800421A1 (en) 1998-12-24
BR9611809A (en) 1999-09-21
NO982572L (en) 1998-08-04
WO1998055051A1 (en) 1998-12-10
EP0869752A1 (en) 1998-10-14
DE69623129T2 (en) 2003-04-17
US5858020A (en) 1999-01-12
KR19990071963A (en) 1999-09-27

Similar Documents

Publication Publication Date Title
EP0869752B1 (en) Modular prosthesis
US5645589A (en) Anchor and method for securement into a bore
AU2001284857B2 (en) Surgical instrumentation and method for treatment of the spine
AU738126B2 (en) Stretchable clamp
JP3548578B2 (en) Artificial joint
US20040059318A1 (en) Instrument and method for surgical extraction
EP1943985A1 (en) Orthopaedic stem with protrusion
CN104042365B (en) The prosthetic component close for joint line and method
AU2010269153B2 (en) Hip joint device
JP2010522048A (en) Spinal implant and method for providing dynamic stability to the spine
CN104042362B (en) The prosthetic component kept with secondary
US20040153076A1 (en) Ligament graft cage fixation device
AU749190B2 (en) Modular prosthesis
US11304813B2 (en) Hip joint device
JPH0910224A (en) Bone fixing element and bone fixing appliance
MXPA98004487A (en) Protesis modu
AU3826602A (en) Modular prosthesis

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96199478.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 199800421

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2239551

Country of ref document: CA

Ref document number: 2239551

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/1998/004487

Country of ref document: MX

Ref document number: 1019980704253

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1996942902

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1996942902

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980704253

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996942902

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019980704253

Country of ref document: KR