WO1997021983A1 - System and method for measuring movement of objects - Google Patents

System and method for measuring movement of objects Download PDF

Info

Publication number
WO1997021983A1
WO1997021983A1 PCT/US1996/019648 US9619648W WO9721983A1 WO 1997021983 A1 WO1997021983 A1 WO 1997021983A1 US 9619648 W US9619648 W US 9619648W WO 9721983 A1 WO9721983 A1 WO 9721983A1
Authority
WO
WIPO (PCT)
Prior art keywords
accordance
shoe
cos
signals
ofthe
Prior art date
Application number
PCT/US1996/019648
Other languages
French (fr)
Inventor
Lawrence J. Hutchings
Original Assignee
Hutchings Lawrence J
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hutchings Lawrence J filed Critical Hutchings Lawrence J
Priority to CA002246412A priority Critical patent/CA2246412C/en
Priority to DE69629585T priority patent/DE69629585D1/en
Priority to AT96943673T priority patent/ATE247818T1/en
Priority to EP96943673A priority patent/EP0866949B1/en
Publication of WO1997021983A1 publication Critical patent/WO1997021983A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0021Tracking a path or terminating locations
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B3/00Footwear characterised by the shape or the use
    • A43B3/34Footwear characterised by the shape or the use with electrical or electronic arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1123Discriminating type of movement, e.g. walking or running
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C22/00Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers
    • G01C22/006Pedometers
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C1/00Registering, indicating or recording the time of events or elapsed time, e.g. time-recorders for work people
    • G07C1/22Registering, indicating or recording the time of events or elapsed time, e.g. time-recorders for work people in connection with sports or games
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0021Tracking a path or terminating locations
    • A63B2024/0025Tracking the path or location of one or more users, e.g. players of a game
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B2071/0658Position or arrangement of display
    • A63B2071/0661Position or arrangement of display arranged on the user
    • A63B2071/0663Position or arrangement of display arranged on the user worn on the wrist, e.g. wrist bands
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/10Positions
    • A63B2220/13Relative positions
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/30Speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/40Acceleration
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2244/00Sports without balls
    • A63B2244/08Jumping, vaulting
    • A63B2244/081High jumping
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/0028Training appliances or apparatus for special sports for running, jogging or speed-walking

Definitions

  • This invention relates generally to the field of measuring instruments and is particularly directed to a system and method for determining the speed, distance traversed, and height jumped by a person while running or walking
  • Jogging has long been recognized for its therapeutic effects on the body It purportedly increases cardiopulmonary fitness, helps to lower blood pressure, decreases cholesterol and triglyercides associated with heart disease and reduces weight Jogging is also one ofthe easiest exercises to do It requires no athletic ability and can be done almost any time and any place with a minimum of equipment and without assistance In more recent times, jogging has also gained acceptance for its recreational value as well and is recognized as a positive factor in promoting psychological well-being
  • the simplest jogging aids for measuring movements are basic pacing timers such as those disclosed in U S Pat No 3,540,344 to Veech and TJ S Pat No
  • Pacing timers generate a repetitive audio tone signal at selected intervals for pacing the strides of the jogging, where the length of the interval between tones is adjusted to suit the pace ofthe individual jogger
  • Human speedometers and odometers that measure the speed and distance traveled by a person include devices that utilize ultrasound to measure the distance between each foot such as disclosed in U.S. Pat No 4,736,312 to Dassler.
  • ultra sound devices can measure the distance between two feet, this is not equivalent to the length of a step or a stride, which is defined as the distance traveled by the same foot from the beginning of a stride till the end ofthe same stride.
  • the difference between (1) separation between feet, as measured by the ultra sound device, and (2) stride length, is different for each person and will vary for different speeds of running.
  • stride length begins to increase as speed increases, and the relationship of stride length to speed is not directly proportional, and moreover, is different for each runner.
  • most ofthe devices mentioned above require calibration, which may prove to be a difficult task For example, many of these devices need to be calibrated by the manufacturer or by specially designed equipment
  • pacing timers can provide no more than a constant running pace, and pedometer measurements are only useful as an approximation of distance traversed
  • ultra sound and elapsed-foot-time-distance devices provide only a rough approximation of actual distance traveled and speed of the person
  • none ofthe prior art includes a measurement of height jumped Running and walking aids known in the prior art are often deficient and cumbersome to use and they often add weight to the runner or walker while providing only marginal utility in terms ofthe amount of information available and its accuracy
  • the ideal running aid should, therefore: be light in weight; serve a number of useful functions; be inexpensive, provide measurements that are readily available to the user, be reliable and easy to use; and provide accurate measurements of speed, distance traversed, height jumped, and other useful information
  • a specific objective of this invention is to provide a new and improved running and walking measuring system, in which the speed ofthe runner can be easily and accurately determined
  • a further specific objective of this invention is to provide a new and improved running and walking measuring system, in which the distance traversed by the runner can be easily and accurately determined.
  • Another specific objective of this invention is to provide a new and improved running measuring system, in which the height jumped by the runner or jogger can be easily determined.
  • a still further objective of this invention is to provide a new and improved running and walking measuring system having the above advantages which is light in weight, relatively inexpensive and convenient to use.
  • a device for measuring the performance of a runner utilizes accelerometers and rotational sensors to measure the speed, distance traveled, and height jumped of a person. It may be preferably placed in the sole ofa shoe and information signals may be transmitted to the user's watch for display. An indication signal may be configured to reset measurement values to zero coordinates with each step taken, and the system records accelerations relating to the movement ofthe foot to the next step.
  • the accelerations recorded are multiplied by appropriate cosine and sine values of angles of rotation ofthe foot, and integrated twice to obtain displacement of each step Time is inco ⁇ orated with the acceleration to perform the integration Once the length of steps is determined, the elapsed time is used to obtain the speed ofthe person, and the sum ofthe step lengths is used to obtain the distance traveled The maximum value ofthe vertical displacement is used to determine the height jumped
  • One set of three-component linear accelerometers and one set of three-component rotational sensors are necessary to fully resolve the absolute motion of a person from the motion ofthe foot
  • substantially satisfactory measurements may be obtained with two accelerometers and one rotational sensor; or the system may be attached to the top portion ofthe user's shoe, instead of installation inside the sole ofthe shoe.
  • FIG 1 illustrates one embodiment of the invention as employed by a user.
  • FIG. 2 illustrates the location ofthe system's components in the sole of the shoe, in accordance with an embodiment ofthe invention.
  • FIG 3 is a coordinate system for the reference frame ofthe stationary ground, and the vectors of linear and rotational motion that are necessary to determine motion ofthe foot in accordance with one embodiment ofthe invention
  • FIG. 4 is a side view diagram ofthe foot during running, illustrating information employed to resolve step length in two dimensions in accordance with one embodiment ofthe invention.
  • FIG. 5 is a vector diagram illustrating output acceleration, velocity and displacement of one embodiment ofthe invention during running
  • FIG. 6 is a block diagram ofthe electronic units necessary to solve equations for step length in accordance with the invention.
  • FIG.1 shows an embodiment of a measuring system 10 as employed by a user, although the invention is not limited in scope to the location of different components ofthe system as illustrated herein.
  • the shoe ofthe user may include interrelated elements such as linear accelerometers; rotational sensors, a microprocessor to calculate the distance and height of each step; a foot impact switch, battery; and a radio transmitter 12, as will be explained in more detail below.
  • interrelated elements such as linear accelerometers; rotational sensors, a microprocessor to calculate the distance and height of each step; a foot impact switch, battery; and a radio transmitter 12, as will be explained in more detail below.
  • the user may wear a hand display having a radio receiver 14
  • the radio receiver may alternately be located at a remote site so that the performance ofthe runner can be monitored by another person Inco ⁇ orated into the receiving unit may be a microprocessor for processing the received signals into the speed ofthe runner, the distance traversed and the height jumped
  • the processed information may be selectively displayed on display 18.
  • the hand display may also perform other functions, for example, it may selectively display normal watch functions, such as time of day, date, alarm and stop watch signals
  • FIG. 2 shows one possible location of different components ofthe measuring system in the sole ofthe user's shoe .
  • the invention is not limited in scope in this respect, and, various components ofthe system in accordance with the present invention may be implemented in a variety of arrangements
  • Rotational sensors 4 and a contact switch 8 are preferably placed in the ball-of-the-foot portion ofthe sole ofthe shoe so that they may come in contact with the ground for each step during either walking or running.
  • the measuring system in accordance with the present invention may also operate without contact switch 8.
  • Measuring system 10 may include three rotational sensors 4, each configured to measure the angle ofthe user's foot with respect to a reference frame as will be explained in more detail below.
  • Rotational sensors 4 are well known, such as those provided by AMP model numbers ACH-04-08. Each rotational sensor converts the measured angle into a corresponding signal, which is employed by a microprocessor 6 to calculate information related to the user's movements, such as user's speed, distance traveled and the height jumped. It will be appreciated that the present invention is not limited in scope to the components illustrated in FIG. 2. For example, instead of contact switch 8, other means may be employed so as to generate a signal to indicate the beginning of each step.
  • Measuring system 10 preferably includes three accelerometers 2, each configured to measure the acceleration ofthe user's foot with respect to a reference frame as will be explained in more detail below.
  • the accelerometers may also be located in the sole ofthe user's shoe.
  • Accelerometers 2 are well known, such as those provided by Analog Devices model ADXL05. Each accelerometer may convert the measured acceleration into a corresponding signal, which may be preferably employed by microprocessor 6 to accomplish movement measurements.
  • other components may be separated and placed in another portion ofthe shoe.
  • the measuring system may be placed at another location of the shoe.
  • FIG. 3 illustrates a plot ofthe coordinate systems necessary to resolve step length and height.
  • a first coordinate system such as (x,y,z)
  • Y x J Y y are tne rotational coordinates about x and y axis of the reference frame. In one embodiment ofthe invention, rotation about the z axis may not be measured. These values advantageously indicate the slope ofthe ground at the beginning ofthe step.
  • the reference frame coordinate system is reset at the initiation of a new step and remains stationary throughout the time the same foot leaves and touches the ground again
  • the orientation of the reference frame coordinate system with respect to the foot is arbitrary, but it is preferably selected so that at the beginning of the step the positive x direction may be aligned with the axis ofthe sole ofthe shoe, the positive y axis may be in the same plane as the sole and at right angles to the x axis, and the positive z axis may be normal to the plane ofthe sole ofthe shoe
  • the arrows in FIG 3 indicate the direction of positive motion
  • the length and height of each step with respect to this coordinate system may be measured in accordance with the present invention as explained in more detail hereinafter
  • FIG 3 also illustrates a second coordinate system, such as (X,Y,Z) 24, referred to as the translational coordinate system ofthe linear accelerometers This coordinate system moves with the foot and may be centered at the location ofthe sensors
  • FIG 3 further illustrates rotational coordinates , such as (
  • an exemplary foot is shown part way through a step that moves along a trajectory r such as 25
  • the orientation ofthe translational coordinate system with respect to the foot is the same as described for the reference frame, but moves with the foot.
  • the reference and translational coordinate systems may be aligned together every time a new step is indicated
  • FIG 4 illustrates an example of a motion ofthe foot and how the length ofthe step is resolved for a motion in one plane, along two dimensions (here, the plane ofthe paper), and for a step along a horizontal surface
  • the reference frame coordinate system 26 is that described as 22 in FIG.
  • FIG 4 also illustrates acceleration vectors (Ax, Az) in the translational coordinate system
  • accelerations are represented by arrows aligned along the X and Z axes ofthe translation coordinate system, respectively
  • the length ofthe arrows represent the amount of acceleration for each component (30 and 32, respectively)
  • the angle of rotation about the y axis relative to the reference frame coordinate system is ⁇ y From these components of motion the acceleration relative to the reference frame coordinate system can be resolved This is shown as ax and az in the reference frame (34 and 36, respectively)
  • the amount of acceleration and its direction (a vector solution) is preferably employed to keep track of forward and reverse motions ofthe foot For example, if motion remains in the (z,x) plane and the surface is ho ⁇ zontal (Fig 4), then
  • g is the acceleration due to gravity, which is preferably considered as a factor due to the use of accelerometers
  • Gravity may be assumed to be a constant as explained in more detail below
  • acceleration az is assumed to be vertical and aligned with the orientation of gravity
  • Acceleration az may be aligned at an angle from the direction of gravity, such as on a hill, as explained in more detail below
  • FIG 5 shows the elements that may be employed to obtain a complete solution ofthe foot motion in three dimensions
  • the reference frame is established from the foot contact at the beginning of a step 40
  • the reference frame z axis may not be aligned with the direction of gravity if the ground (x,y plane) is not horizontal
  • ⁇ y 42 is the angle ofthe x axis from the horizontal plane
  • ⁇ x 44 is the angle ofthe y axis from the horizontal plane.
  • the terms involving gravity g counteract the accelerations in gravity recorded by the linear accelerometers
  • the values for ⁇ x and y y may be determined at the initiation of each step, and are substantially equal to zero for a substantially horizontal surface.
  • the proportion of gravity recorded by the accelerometers is related, among other things, to the angle from the vertical coordinate (as resolved by an accelerometer such as the ADXL05, from Analog Devices)
  • the accelerometers employed in the present invention are desired to be properly calibrated
  • the embodiments described herein may be conveniently calibrated in accordance with the present invention. This follows because gravity g only varies by less than 0 3% throughout the surface ofthe earth, and provides a substantially constant value in a direction substantially aligned towards the center ofthe earth Therefore, an accelerometer employed in accordance with the present invention must generate an acceleration signal substantially equal to gravity g, when the user's foot is resting on a surface It will be appreciated that an embodiment in accordance with the present invention may be configured so as to advantageously reset the value generated by the accelerometers to substantially represent gravity, g, when the user's foot is resting on a surface. As such, the accelerometers employed in accordance with the present invention may remain substantially calibrated at all times.
  • accelerometers and rotation sensors are connected to a timing device, their values may be known as a function of time.
  • the horizontal and vertical displacement may then be obtained by integrating by time as they traverse the path:
  • Lz would be zero if the ground remained at the slope ofthe beginning of the step, and would be significant if a person, for example, climbed a step. To obtain the length ofthe step,
  • FIG. 6 is a block diagram ofthe components employed to solve the equations, although the invention is not limited in scope in this respect. Therefore, any hardware or software system configured to solve the above equations to measure the length of each step and the height jumped may be employed.
  • unit 48 may preferably contain the linear accelerometers employed to measure accelerations Ax, Ay and Az and frequency filters (not shown) Such filters may be used to reduce high frequency components in measured acceleration signals
  • the linear accelerometers are configured to measure accelerations in three dimensions, along the direction ofthe foot as it travels during each step
  • Unit 50 may preferably contain rotational sensors employed to measure ⁇ x ⁇ y and ⁇ z signals. Thus the rotational sensors provide the angle of rotation along each axis ofthe translational coordinate.
  • the output terminals of units 48 and 50 are coupled to input terminals of a processor 52
  • Processor 52 may be employed to make the calculations necessary to solve equations 3-7 mentioned above For example, the sine and cosine of each measured angle may be computed by processor 52
  • the sine and cosine value signals are then coupled to input terminals of unit 54
  • Unit 52 may contain multipliers and adder processors to solve equations 3 - 7 in analog format
  • processor 52 may process the received signals digitally by employing an analog to digital converter and a microprocessor that calculates equations, 3-7
  • the output terminals of units 48 and 50 may be coupled directly to a microprocessor 56, via an analog to digital converter 54
  • Analog to digital converter 54 may be a separate integrated circuit, such as one provided by Linear Technology LTC 1
  • analog to digital converter 54 may be part of microprocessor 56, such as one provided by Motorola MC68HC11E9
  • Microprocessor 56 is preferably configured to measure the distance L traversed after each step and the maximum height H jumped during that step. It will be appreciated that these measurements may be employed in either analog or digital format.
  • a foot switch (not shown) may be employed so as to reset the accelerometers and rotational sensors contained in units 48 and 50, when the user's shoe contacts the ground Information relating to the length and height ofa step, and the contacts with ground may then be transmitted by transmitter 58 to a remote receiver unit 60
  • the accelerometers or the rotational sensors may be configured to reset themselves, whenever their output signal levels indicate that the user's foot has touched the running surface again
  • Unit 60 is the remote device , which may be located in the user's wrist watch, and contains a receiver 62, a microprocessor 64, a mode select switch 66 and a display 68.
  • Transmitter 58 includes a means for encoding the output signals provided by a microprocessor 56 into a transmitted signal.
  • Transmitter 58 may also be ofthe type already known in the art such as the RF Monolithics model HX2000. Transmitter 58 may operate on any frequency selected amplitude or frequency modulation
  • the transmitted signal from transmitter 58 is received and decoded by receiver 62.
  • Receiver 62 may also be ofthe type known in the prior art such as the RF Monolithics model RX2010. Receiver 62 may also be selectively tuned to receive the signals of several different transmitters operating on different frequencies so that the performance of several runners may be monitored from a remote location
  • Microprocessor 64 may be selected from various microprocessors known in the prior art, such as Motorola model
  • Mode select unit 66 is employed at the start ofthe run or jog by depressing an appropriate switch, not shown, which is coupled to microprocessor 64 through an input switch control logic interface.
  • a first output signal is generated by accelerometers contained in unit 48 representing that a foot ofthe runner is in contact with the surface.
  • Unit 52 begins to calculate the initial location ofthe user's foot along the reference coordinate in accordance with equations (6) and (7).
  • unit 48 generates acceleration signals along the translational coordinates.
  • Rotational sensors contained in unit 50 begin to track the rotation ofthe user's foot along the translational coordinate system.
  • unit 52 measures instantaneous acceleration of the foot along the reference coordinates as the foot travels in the air and contacts the surface again
  • Unit 54 receives these acceleration signals and unit 56 calculates the length of each step by integrating the acceleration signals
  • Unit 56 also calculates the height jumped by obtaining the maximum length measured along the z axis ofthe reference coordinate system
  • the output signals are coupled to RF transmitter 58 and transmitted to receiver 62
  • the signals received by receiver 62 are coupled to microprocessor 64
  • the microprocessor interface converts the output ofa microprocessor to signals suitable to drive display 68
  • Microprocessor 64 also maintains running elapsed time
  • Microprocessor 64 may be configured to calculate distance traversed by summing the length of all steps taken. It may further be configured to calculate the instantaneous and the average speed ofthe user. The running elapsed time, the distance traversed and the speed may be selectively displayed on display 68 These values may also be stored in a read only memory (not shown) associated with microprocessor 64 for virtually an indefinite period of time
  • microprocessor 56 may be desirably configured to monitor the value of signals provided by accelerometers of unit 48
  • microcontroller 56 may provide a feedback signal so as to reset the values ofthe accelerometers to provide a desired signal representing gravity, g.
  • microprocessor 64 selectively provides to display 68, normal watch functions such as time of day, date, an alarm signal when a preselected time occurs.
  • normal watch functions such as time of day, date, an alarm signal when a preselected time occurs.

Abstract

A device (10) that measures the distance traveled, speed, and height jumped of a person while running or walking. Accelerometers and rotational sensors are placed in the sole of one shoe along with an electronic circuit that performs mathematical calculations to determine the distance and height of each step. A radio frequency transmitter (12) sends the distance and height information to a wristwatch or other central receiving unit. A radio frequency receiver (14) in the wristwatch or other unit is coupled to a microprocessor that calculates an output speed based upon step-distance and elapsed time, and the distance traveled of the runner from the sum of all previous step distances. The output of the microprocessor is coupled to a display (18) that shows the distance traveled, speed, or height jumped of the runner or walker.

Description

SYSTEM AND METHOD FOR MEASURING MOVEMENT OF OBJECTS
FIELD OF THE INVENTION
This invention relates generally to the field of measuring instruments and is particularly directed to a system and method for determining the speed, distance traversed, and height jumped by a person while running or walking
BACKGROUND OF THE INVENTION
In recent years many individuals have turned to their own fitness program of regular jogging As used herein, jogging is also intended to include running and walking and the words are used interchangeably Jogging has long been recognized for its therapeutic effects on the body It purportedly increases cardiopulmonary fitness, helps to lower blood pressure, decreases cholesterol and triglyercides associated with heart disease and reduces weight Jogging is also one ofthe easiest exercises to do It requires no athletic ability and can be done almost any time and any place with a minimum of equipment and without assistance In more recent times, jogging has also gained acceptance for its recreational value as well and is recognized as a positive factor in promoting psychological well-being
The popularity of jogging today is well documented by the large numbers of products and literature available to the public As in many exercise and sporting endeavors, there exists in the prior art a wide variety of devices for aiding those who jog Many people who run, jog or walk regularly desire to know their progress over time Therefore, it is desirable to know the accurate distance and speed traveled during an exercise session This information allows a jogger to monitor his or her progress and accordingly pursue a regular course of exercise designed to enhance performance
Further, it has become desirable to accurately measure the speed of amateur and professional runners, both in training and during competition In the prior art, such measurements were made with a stop watch timing the runner over a known distance Heretofore, it has not been possible to obtain accurate instantaneous speeds of runners or height jumped using the measuring devices currently known in the prior art
The simplest jogging aids for measuring movements are basic pacing timers such as those disclosed in U S Pat No 3,540,344 to Veech and TJ S Pat No
SUBSTTΓUTE SHEET (RULE 26) 3,882,480 to Greber. Pacing timers generate a repetitive audio tone signal at selected intervals for pacing the strides of the jogging, where the length of the interval between tones is adjusted to suit the pace ofthe individual jogger
There are other running aids known in the prior art such as pedometers as disclosed in U.S. Pat. No. 4,053,755 to Sherrill. These devices usually count the number of steps taken and for a particular stride length, the approximate distance traversed can be determined.
Human speedometers and odometers that measure the speed and distance traveled by a person include devices that utilize ultrasound to measure the distance between each foot such as disclosed in U.S. Pat No 4,736,312 to Dassler.
Also used is a device that measures the elapsed time of shoe in contact with the ground and converts this to the length of step and speed as disclosed In U.S. Pat. No 4,578,769 to Frederick.
While pacing timers, pedometers, ultra sound, and elapsed foot-time- distance devices are useful to the runner and walker, they are deficient in several areas
For example, while ultra sound devices can measure the distance between two feet, this is not equivalent to the length of a step or a stride, which is defined as the distance traveled by the same foot from the beginning of a stride till the end ofthe same stride. For example, the difference between (1) separation between feet, as measured by the ultra sound device, and (2) stride length, is different for each person and will vary for different speeds of running.
Furthermore, devices that employ elapsed-foot-contact-time measurements, have significant errors in measuring stride length. It is known that above a certain speed, stride length begins to increase as speed increases, and the relationship of stride length to speed is not directly proportional, and moreover, is different for each runner. In addition, most ofthe devices mentioned above require calibration, which may prove to be a difficult task For example, many of these devices need to be calibrated by the manufacturer or by specially designed equipment
It is, therefore, a difficult task to determine the correct stride length for an individual runner at various speeds Thus, pacing timers can provide no more than a constant running pace, and pedometer measurements are only useful as an approximation of distance traversed Also, ultra sound and elapsed-foot-time-distance devices provide only a rough approximation of actual distance traveled and speed of the person Also, none ofthe prior art includes a measurement of height jumped Running and walking aids known in the prior art are often deficient and cumbersome to use and they often add weight to the runner or walker while providing only marginal utility in terms ofthe amount of information available and its accuracy
With the foregoing in mind, the ideal running aid should, therefore: be light in weight; serve a number of useful functions; be inexpensive, provide measurements that are readily available to the user, be reliable and easy to use; and provide accurate measurements of speed, distance traversed, height jumped, and other useful information
OBJECT OF THE INVENTION It is the overall objective of this invention to provide a new and improved running and walking measuring system, which overcomes the disadvantages ofthe prior art devices and substantially increases the amount and accuracy of information available to the jogger
A specific objective of this invention is to provide a new and improved running and walking measuring system, in which the speed ofthe runner can be easily and accurately determined
A further specific objective of this invention is to provide a new and improved running and walking measuring system, in which the distance traversed by the runner can be easily and accurately determined. Another specific objective of this invention is to provide a new and improved running measuring system, in which the height jumped by the runner or jogger can be easily determined.
A still further objective of this invention is to provide a new and improved running and walking measuring system having the above advantages which is light in weight, relatively inexpensive and convenient to use. SUMMARY OF THE INVENTION
In accordance with one aspect ofthe invention, a device for measuring the performance ofa runner utilizes accelerometers and rotational sensors to measure the speed, distance traveled, and height jumped of a person. It may be preferably placed in the sole ofa shoe and information signals may be transmitted to the user's watch for display. An indication signal may be configured to reset measurement values to zero coordinates with each step taken, and the system records accelerations relating to the movement ofthe foot to the next step. The accelerations recorded are multiplied by appropriate cosine and sine values of angles of rotation ofthe foot, and integrated twice to obtain displacement of each step Time is incoφorated with the acceleration to perform the integration Once the length of steps is determined, the elapsed time is used to obtain the speed ofthe person, and the sum ofthe step lengths is used to obtain the distance traveled The maximum value ofthe vertical displacement is used to determine the height jumped One set of three-component linear accelerometers and one set of three-component rotational sensors are necessary to fully resolve the absolute motion of a person from the motion ofthe foot
According to another aspect ofthe invention, substantially satisfactory measurements may be obtained with two accelerometers and one rotational sensor; or the system may be attached to the top portion ofthe user's shoe, instead of installation inside the sole ofthe shoe.
BRIEF DESCRIPTION OF THE DRAWINGS
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion ofthe specification. The invention, however, both as to organization and method of operation, together with features, objects, and advantages thereof may best be understood by reference to the following detailed description when read with the accompanying drawings in which:
FIG 1 illustrates one embodiment of the invention as employed by a user. FIG. 2 illustrates the location ofthe system's components in the sole of the shoe, in accordance with an embodiment ofthe invention.
FIG 3 is a coordinate system for the reference frame ofthe stationary ground, and the vectors of linear and rotational motion that are necessary to determine motion ofthe foot in accordance with one embodiment ofthe invention FIG. 4 is a side view diagram ofthe foot during running, illustrating information employed to resolve step length in two dimensions in accordance with one embodiment ofthe invention.
FIG. 5 is a vector diagram illustrating output acceleration, velocity and displacement of one embodiment ofthe invention during running FIG. 6 is a block diagram ofthe electronic units necessary to solve equations for step length in accordance with the invention.
DETAILED DESCRIPTION OF THE INVENTION
FIG.1 shows an embodiment of a measuring system 10 as employed by a user, although the invention is not limited in scope to the location of different components ofthe system as illustrated herein. The shoe ofthe user may include interrelated elements such as linear accelerometers; rotational sensors, a microprocessor to calculate the distance and height of each step; a foot impact switch, battery; and a radio transmitter 12, as will be explained in more detail below. As shown in FIG. 1, the user may wear a hand display having a radio receiver 14 The radio receiver may alternately be located at a remote site so that the performance ofthe runner can be monitored by another person Incoφorated into the receiving unit may be a microprocessor for processing the received signals into the speed ofthe runner, the distance traversed and the height jumped The processed information may be selectively displayed on display 18. The hand display may also perform other functions, for example, it may selectively display normal watch functions, such as time of day, date, alarm and stop watch signals
FIG. 2 shows one possible location of different components ofthe measuring system in the sole ofthe user's shoe . However, the invention is not limited in scope in this respect, and, various components ofthe system in accordance with the present invention may be implemented in a variety of arrangements Rotational sensors 4 and a contact switch 8 are preferably placed in the ball-of-the-foot portion ofthe sole ofthe shoe so that they may come in contact with the ground for each step during either walking or running. As it will explained in more detail below, the measuring system in accordance with the present invention may also operate without contact switch 8. Measuring system 10 may include three rotational sensors 4, each configured to measure the angle ofthe user's foot with respect to a reference frame as will be explained in more detail below. Rotational sensors 4 are well known, such as those provided by AMP model numbers ACH-04-08. Each rotational sensor converts the measured angle into a corresponding signal, which is employed by a microprocessor 6 to calculate information related to the user's movements, such as user's speed, distance traveled and the height jumped. It will be appreciated that the present invention is not limited in scope to the components illustrated in FIG. 2. For example, instead of contact switch 8, other means may be employed so as to generate a signal to indicate the beginning of each step.
Measuring system 10 preferably includes three accelerometers 2, each configured to measure the acceleration ofthe user's foot with respect to a reference frame as will be explained in more detail below. The accelerometers may also be located in the sole ofthe user's shoe. Accelerometers 2 are well known, such as those provided by Analog Devices model ADXL05. Each accelerometer may convert the measured acceleration into a corresponding signal, which may be preferably employed by microprocessor 6 to accomplish movement measurements.
Also, other components may be separated and placed in another portion ofthe shoe. For example, the measuring system may be placed at another location of the shoe.
FIG. 3 illustrates a plot ofthe coordinate systems necessary to resolve step length and height. In the present context, a first coordinate system, such as (x,y,z)
22, is referred to as the reference frame coordinate system ofthe stationary ground. (Y x J Y y) are tne rotational coordinates about x and y axis of the reference frame. In one embodiment ofthe invention, rotation about the z axis may not be measured. These values advantageously indicate the slope ofthe ground at the beginning ofthe step. Preferably, the reference frame coordinate system is reset at the initiation ofa new step and remains stationary throughout the time the same foot leaves and touches the ground again The orientation of the reference frame coordinate system with respect to the foot is arbitrary, but it is preferably selected so that at the beginning of the step the positive x direction may be aligned with the axis ofthe sole ofthe shoe, the positive y axis may be in the same plane as the sole and at right angles to the x axis, and the positive z axis may be normal to the plane ofthe sole ofthe shoe The arrows in FIG 3 indicate the direction of positive motion The length and height of each step with respect to this coordinate system may be measured in accordance with the present invention as explained in more detail hereinafter FIG 3 also illustrates a second coordinate system, such as (X,Y,Z) 24, referred to as the translational coordinate system ofthe linear accelerometers This coordinate system moves with the foot and may be centered at the location ofthe sensors FIG 3 further illustrates rotational coordinates , such as (θxy,θj about the axes X, Y and Z These rotational coordinates may be employed advantageously to keep track ofthe orientation ofthe (X,Y,Z) coordinate system relative to the (x,y,z) coordinate system, as will be explained below, and to resolve the accelerations along the reference frame
In FIG 3, an exemplary foot is shown part way through a step that moves along a trajectory r such as 25 The orientation ofthe translational coordinate system with respect to the foot is the same as described for the reference frame, but moves with the foot. Preferably, the reference and translational coordinate systems may be aligned together every time a new step is indicated
FIG 4 illustrates an example of a motion ofthe foot and how the length ofthe step is resolved for a motion in one plane, along two dimensions (here, the plane ofthe paper), and for a step along a horizontal surface The reference frame coordinate system 26 is that described as 22 in FIG. 3, and the translational coordinate system 28 is that described as 24 in FIG 3 The foot is shown part way through a step having moved along trajectory r such as 29 The translational coordinate system is moving along trajectory 29, as described in FIG 3 FIG 4 also illustrates acceleration vectors (Ax, Az) in the translational coordinate system These accelerations are represented by arrows aligned along the X and Z axes ofthe translation coordinate system, respectively The length ofthe arrows represent the amount of acceleration for each component (30 and 32, respectively) The angle of rotation about the y axis relative to the reference frame coordinate system is θy From these components of motion the acceleration relative to the reference frame coordinate system can be resolved This is shown as ax and az in the reference frame (34 and 36, respectively)
The amount of acceleration and its direction (a vector solution) is preferably employed to keep track of forward and reverse motions ofthe foot For example, if motion remains in the (z,x) plane and the surface is hoπzontal (Fig 4), then
(1) ax = Ax cos θy + Az sin θy
(2) az = -Ax sin θy + Az cos θy + g
Where g is the acceleration due to gravity, which is preferably considered as a factor due to the use of accelerometers Gravity may be assumed to be a constant as explained in more detail below Here, acceleration az is assumed to be vertical and aligned with the orientation of gravity Acceleration az may be aligned at an angle from the direction of gravity, such as on a hill, as explained in more detail below The + g factor added to the az component of equation 2 is to balance the effect of gravity For example, if the user ofthe system is standing still, θy = 0 and Az = -g, then az = 0 If the user is moving up at g, Az will read 0, and az = g If the user moves down at g and θy = 180, Az =-2g, and az =- g. For horizontal motion, for example, θy = 45°, Az and Ax would be positive and substantially equal from motion, but there would be an added negative g cos θy component added to Az and an added positive g sin θy component added to Ax, and their sum would be such that az = 0 The length ofthe step is obtained by integration as discussed in reference with FIG 5
FIG 5 shows the elements that may be employed to obtain a complete solution ofthe foot motion in three dimensions The reference frame is established from the foot contact at the beginning of a step 40 The reference frame z axis may not be aligned with the direction of gravity if the ground (x,y plane) is not horizontal γy 42 is the angle ofthe x axis from the horizontal plane, and γx 44 is the angle ofthe y axis from the horizontal plane. These values are unknown, as they depend on the slope ofthe ground at the beginning of each step, and are calculated by measuring system 10, as explained below. At any point along the trajectory r, the components of motion in the reference frame can be determined from the linear accelerometers and rotational sensors in the translational coordinate system 46
(3) ax = Ax Cos θ y Cos θ z - Ay Cos θ x Sin θ z + Az Cos θ x Sin θy + g sin γy (4) ay = Ax Cos θ y Sιn θ z + Ay Cos θ x Cos θ z - Az Stn θ x Cos θ y + g sin γ„
(5) az = -Ax Sin θy Cos θ z + Ay Sin θx Cos θ z + Az Cos θ y Cos θ x + g cos γχ cos γy
As explained in reference with FIG 4, the terms involving gravity g counteract the accelerations in gravity recorded by the linear accelerometers The values for γx and yy may be determined at the initiation of each step, and are substantially equal to zero for a substantially horizontal surface. At this time the proportion of gravity recorded by the accelerometers is related, among other things, to the angle from the vertical coordinate (as resolved by an accelerometer such as the ADXL05, from Analog Devices)
(6) γx = Sin-' (Ax/ g)
(7) γy = Sin-' (Ay/ g)
In order to assure accurate measurements, the accelerometers employed in the present invention are desired to be properly calibrated The embodiments described herein may be conveniently calibrated in accordance with the present invention. This follows because gravity g only varies by less than 0 3% throughout the surface ofthe earth, and provides a substantially constant value in a direction substantially aligned towards the center ofthe earth Therefore, an accelerometer employed in accordance with the present invention must generate an acceleration signal substantially equal to gravity g, when the user's foot is resting on a surface It will be appreciated that an embodiment in accordance with the present invention may be configured so as to advantageously reset the value generated by the accelerometers to substantially represent gravity, g, when the user's foot is resting on a surface. As such, the accelerometers employed in accordance with the present invention may remain substantially calibrated at all times.
Since the accelerometers and rotation sensors are connected to a timing device, their values may be known as a function of time. The horizontal and vertical displacement may then be obtained by integrating by time as they traverse the path:
Figure imgf000012_0001
(9) Ly = j ay(t)dU
(10) Lz = Jj az(t)dt2
The integration is performed twice to obtain Lx, Ly, Lz shown in the equations. Lz would be zero if the ground remained at the slope ofthe beginning of the step, and would be significant if a person, for example, climbed a step. To obtain the length ofthe step,
Figure imgf000012_0002
The maximum height H jumped is,
(12) H = ax(Lz)
FIG. 6 is a block diagram ofthe components employed to solve the equations, although the invention is not limited in scope in this respect. Therefore, any hardware or software system configured to solve the above equations to measure the length of each step and the height jumped may be employed. In FIG. 6, unit 48 may preferably contain the linear accelerometers employed to measure accelerations Ax, Ay and Az and frequency filters (not shown) Such filters may be used to reduce high frequency components in measured acceleration signals The linear accelerometers are configured to measure accelerations in three dimensions, along the direction ofthe foot as it travels during each step
Unit 50 may preferably contain rotational sensors employed to measure θxθy and θz signals. Thus the rotational sensors provide the angle of rotation along each axis ofthe translational coordinate. The output terminals of units 48 and 50 are coupled to input terminals ofa processor 52 Processor 52 may be employed to make the calculations necessary to solve equations 3-7 mentioned above For example, the sine and cosine of each measured angle may be computed by processor 52 The sine and cosine value signals are then coupled to input terminals of unit 54
Unit 52 may contain multipliers and adder processors to solve equations 3 - 7 in analog format In accordance with another embodiment ofthe invention, processor 52 may process the received signals digitally by employing an analog to digital converter and a microprocessor that calculates equations, 3-7 Yet, In accordance with another embodiments ofthe invention, the output terminals of units 48 and 50 may be coupled directly to a microprocessor 56, via an analog to digital converter 54 Analog to digital converter 54 may be a separate integrated circuit, such as one provided by Linear Technology LTC 1 In another embodiment of the invention, analog to digital converter 54 may be part of microprocessor 56, such as one provided by Motorola MC68HC11E9
Microprocessor 56 is preferably configured to measure the distance L traversed after each step and the maximum height H jumped during that step. It will be appreciated that these measurements may be employed in either analog or digital format.
In accordance with one embodiment ofthe invention, a foot switch (not shown) may be employed so as to reset the accelerometers and rotational sensors contained in units 48 and 50, when the user's shoe contacts the ground Information relating to the length and height ofa step, and the contacts with ground may then be transmitted by transmitter 58 to a remote receiver unit 60 However, the invention is not limited in scope in this respect For example, instead of a foot switch, the accelerometers or the rotational sensors may be configured to reset themselves, whenever their output signal levels indicate that the user's foot has touched the running surface again
Unit 60 is the remote device , which may be located in the user's wrist watch, and contains a receiver 62, a microprocessor 64, a mode select switch 66 and a display 68. Transmitter 58 includes a means for encoding the output signals provided by a microprocessor 56 into a transmitted signal. Transmitter 58 may also be ofthe type already known in the art such as the RF Monolithics model HX2000. Transmitter 58 may operate on any frequency selected amplitude or frequency modulation The transmitted signal from transmitter 58 is received and decoded by receiver 62. Receiver
62 may also be ofthe type known in the prior art such as the RF Monolithics model RX2010. Receiver 62 may also be selectively tuned to receive the signals of several different transmitters operating on different frequencies so that the performance of several runners may be monitored from a remote location Microprocessor 64 may be selected from various microprocessors known in the prior art, such as Motorola model
MC68HC05L1.
A typical run mode sequence will now be described with reference to FIG.6. Mode select unit 66 is employed at the start ofthe run or jog by depressing an appropriate switch, not shown, which is coupled to microprocessor 64 through an input switch control logic interface. As the shoe ofthe runner comes into contact with the surface, a first output signal is generated by accelerometers contained in unit 48 representing that a foot ofthe runner is in contact with the surface. Unit 52 begins to calculate the initial location ofthe user's foot along the reference coordinate in accordance with equations (6) and (7). Thereafter unit 48 generates acceleration signals along the translational coordinates. Rotational sensors contained in unit 50 begin to track the rotation ofthe user's foot along the translational coordinate system. Thereafter, unit 52 measures instantaneous acceleration of the foot along the reference coordinates as the foot travels in the air and contacts the surface again Unit 54 receives these acceleration signals and unit 56 calculates the length of each step by integrating the acceleration signals Unit 56 also calculates the height jumped by obtaining the maximum length measured along the z axis ofthe reference coordinate system The output signals are coupled to RF transmitter 58 and transmitted to receiver 62 The signals received by receiver 62 are coupled to microprocessor 64 The microprocessor interface converts the output ofa microprocessor to signals suitable to drive display 68
Speed is continuously calculated by measuring the distance of each step and is instantaneously available for display. Microprocessor 64 also maintains running elapsed time Microprocessor 64 may be configured to calculate distance traversed by summing the length of all steps taken. It may further be configured to calculate the instantaneous and the average speed ofthe user. The running elapsed time, the distance traversed and the speed may be selectively displayed on display 68 These values may also be stored in a read only memory (not shown) associated with microprocessor 64 for virtually an indefinite period of time
For calibration puφoses, microprocessor 56 may be desirably configured to monitor the value of signals provided by accelerometers of unit 48
Whenever it is determined that the user's foot is on the running surface, the value of these signals may correspond to gravity, g If, however, the value of the these signals does not correspond to gravity, g, microcontroller 56 may provide a feedback signal so as to reset the values ofthe accelerometers to provide a desired signal representing gravity, g.
In the watch mode, microprocessor 64 selectively provides to display 68, normal watch functions such as time of day, date, an alarm signal when a preselected time occurs. Obviously, many modifications and variations ofthe above preferred embodiment ofthe invention will become apparent to those skilled in the art from a reading of this disclosure For example, a less expensive embodiment may be implemented where all electronic components are disposed on the shoe In that case, there may be no desire for a transmitter and a receiver circuit It may also be possible to combine the functions performed by microprocessors 56 and 64 into one microprocessor, such as a Motorola model MC68HC05L In the alternative it is also possible to combine the functions performed by signal processor 52, and microprocessors 56 and 64 into one such microprocessor
It should be realized that the invention is not limited to the particular embodiment disclosed, but its scope is intended to be governed only by the scope of the appended claims

Claims

I claim
1 A system for measuring the speed ofa person, said system comprising a plurality of accelerometers and rotational sensors disposed in the shoe of said person, said accelerometers configured so as to provide acceleration signals corresponding to accelerations associated with the movement of said shoe as said person takes a step, said rotational sensors configured so as to provide angular signals corresponding to the angle of said shoe about an axis ofa three dimensional translational coordinate, a calculator coupled to said accelerometers and said rotational sensors configured so as to receive said acceleration signals and said angular signals, said calculator adapted to measure the distance traversed during each step and the speed of said person
2 The system in accordance with claim 1 further comprising a foot contact sensor adapted to generate an indication signal when a foot ofthe user is in contact with the surface
3. The system in accordance with claim 2, wherein said calculator further measures the height jumped during each step
4. The system in accordance with claim 3 further comprising a transmitter configured so as to receive length and height signals from said calculator, said transmitter further configured to transmit said length and height signals to a remote location.
5. The system in accordance with claim 4 wherein said accelerometers are configured to be calibrated when said user's shoe is resting on a surface.
6. The system in accordance with claim 4 wherein said remote location comprises: a receiver adapted to receive said transmitted length and height signals, a processor coupled to said receiver , said processor configured so as to calculate the total length traversed by said user and generate a corresponding output distance signal, said processor further adapted to generate a height jumped signal.
7. The system in accordance with claim 6, wherein said processor further calculates the instantaneous and average speed of said user and generates a corresponding output speed signal.
8. The system in accordance with claim 7, wherein said processor includes a timer means for producing output time signals representing the date, time of day and the time elapsed from a predetermined time, said display means further comprising means for displaying said date, said time of day and said elapsed time in accordance with said output time signals.
9. The system in accordance with claim 8 wherein said processor further comprises means for timing a running elapsed time and generating a signal representing the time elapsed from the beginning of the run.
10. The system in accordance with claim 9 wherein said output speed signal, said running elapsed time signal, said output distance signal and said height jumped signal are stored for a virtually indefinite period of time and selectively displayed.
11. A system for measuring the speed of a runner, said system comprising: an accelerometer unit disposed in a shoe of said runner, said accelerometer unit containing a plurality of accelerometers configured to measure the acceleration associated with the movement of said shoe along a translational coordinate defined by the movement of said shoe, said accelerometers further configured to generate acceleration signals corresponding to said measured accelerations; a rotational sensor unit disposed in said shoe , said rotational sensor unit containing a plurality of rotational sensors configured so as to provide angular signals corresponding to the angle of rotation of said shoe about each one of said translational coordinates, a first calculator unit coupled to said accelerometer unit and said rotational sensor unit configured so as to receive said acceleration signals and said angular signals, said calculator adapted to measure the instantaneous accelerations of said shoe with respect to a reference coordinate defined by said shoe while in contact with a surface, a second calculator unit coupled to said first calculator unit configured so as to receive said instantaneous accelerations, said second calculator adapted to measure the length of each step and the height jumped by said person
12 The system in accordance with claim 1 1 , wherein said accelerometer unit contains three accelerometers each configured to measure accelerations Ax , Aγ , and Az along X,Y, and Z coordinates of said translational coordinate system
13 The system in accordance with claim 12, wherein said rotational sensor unit contains three rotational sensors each configured to measure angular signals θx, θy and θz corresponding to the angle of rotation of said shoe about the respective X,
Y, and Z axis of said translational coordinate system
14 The system in accordance with claim 13, wherein said first calculator derives acceleration signals along said reference coordinate system in accordance with ax = Ax Cos θy Cos θz - Ay Cos θ x Sin θz + Az Cos θ x Sin θy + g sin γy ay = Ax Cos θy Sin θz + Ay Cos θ x Cos θz - Az Sin θ x Cos θ y + g sin γχ az =-Ax Sin θy Cos θz + Ay Sin θ x Cos θz + Az Cos θ y Cos θ x + cos γχ cos γ wherein ax is acceleration along the x axis of said reference coordinate, ay is acceleration along the y axis of said reference coordinate, az is acceleration along the z axis of said reference coordinate, and γx and γy are angles of rotation of said shoe at the beginning of each step along said x and y coordinates of said reference coordinate system
15 The system in accordance with claim 14 wherein said first calculator derives said γx and γy angles in accordance with γx = Sin-' ( Ax/g) γy = Sin"1 ( Ay/g) wherein Ax is the extent of acceleration along the X axis of said translational coordinate and Ay is the extent of gravity along the Y axis of said translational coordinate at the beginning of each step
16 The system in accordance with claim 15, wherein said accelerometers are configured to be calibrated when said user's shoe is resting on a surface
17 The system in accordance with claim 16, wherein said second calculator derives the length of each step L and the height H jumped duπng each step in accordance with
Figure imgf000020_0001
H = max(Lz) where Lx ,Ly and Lz are respectively the length of each step along the reference frame coordinates
18 A method for measuring the distance traveled by a runner comprising
the steps of measuring the acceleration associated with the movement of a shoe of said runner along a translational coordinate defined by the movement of said shoe, measuring the angle of rotation of said shoe about each one of said translational coordinates,
calculating instantaneous accelerations of said shoe with respect to a reference coordinate defined by said shoe while in contact with a surface, and calculating the length of each step and the height jumped by said person in accordance with said calculated instantaneous accelerations
19 The method in accordance with claim 18 further comprising the step of generating an indication signal when said shoe of said runner contacts the running surface
20 The method in accordance with claim 19, further comprising the step of repeating said measuring and calculating steps upon detecting said indication signal
21 The method in accordance with claim 20, further comprising the step of accumulating each calculated step length to measure the total distance traveled by said runner
22 The method in accordance with claim 21 , further comprising the step of calculating the instantaneous and average speed of said runner
PCT/US1996/019648 1995-12-12 1996-12-12 System and method for measuring movement of objects WO1997021983A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002246412A CA2246412C (en) 1995-12-12 1996-12-12 System and method for measuring movement of objects
DE69629585T DE69629585D1 (en) 1995-12-12 1996-12-12 DEVICE AND METHOD FOR MEASURING MOTION
AT96943673T ATE247818T1 (en) 1995-12-12 1996-12-12 DEVICE AND METHOD FOR MEASURING MOTION
EP96943673A EP0866949B1 (en) 1995-12-12 1996-12-12 System and method for measuring movement of objects

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/570,759 US5724265A (en) 1995-12-12 1995-12-12 System and method for measuring movement of objects
US08/570,759 1995-12-12

Publications (1)

Publication Number Publication Date
WO1997021983A1 true WO1997021983A1 (en) 1997-06-19

Family

ID=24280951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/019648 WO1997021983A1 (en) 1995-12-12 1996-12-12 System and method for measuring movement of objects

Country Status (6)

Country Link
US (1) US5724265A (en)
EP (1) EP0866949B1 (en)
AT (1) ATE247818T1 (en)
CA (1) CA2246412C (en)
DE (1) DE69629585D1 (en)
WO (1) WO1997021983A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1019789A1 (en) * 1997-10-02 2000-07-19 Personal Electronic Devices, Inc. Measuring foot contact time and foot loft time of a person in locomotion
US6356856B1 (en) 1998-02-25 2002-03-12 U.S. Philips Corporation Method of and system for measuring performance during an exercise activity, and an athletic shoe for use in system
WO2007000282A2 (en) * 2005-06-29 2007-01-04 Infriccioli Amedeo Procedure and device for the acquisition, treatment and transmission of human energy consumption data
EP1970671A1 (en) * 2007-03-16 2008-09-17 Calzados Hergar, S.A. Intelligent shoe
CN101822445A (en) * 2010-03-04 2010-09-08 马莉芳 Traveling shoes for preventing sudden death caused by cerebral hemorrhage and wearing method thereof
EP2298107A1 (en) * 2003-03-10 2011-03-23 adidas International Marketing B.V. Intelligent footwear systems
WO2012095712A1 (en) 2011-01-14 2012-07-19 Koninklijke Philips Electronics N.V. Activity visualization device
EP2654030A1 (en) * 2012-04-13 2013-10-23 Adidas AG Wearable athletic activity monitoring methods and systems
EP2687114A3 (en) * 2006-04-20 2014-05-07 Nike International Ltd. Systems for activating and/or authenticating electronic devices for operation with apparel and equipment
US9504414B2 (en) 2012-04-13 2016-11-29 Adidas Ag Wearable athletic activity monitoring methods and systems
US9913509B2 (en) 2005-06-27 2018-03-13 Nike, Inc. Systems for activating and/or authenticating electronic devices for operation with footwear and other uses
EP3977926A4 (en) * 2019-05-29 2022-06-15 NEC Corporation Information processing device, individual identification device, individual identification system, information processing method and storage medium

Families Citing this family (246)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7949488B2 (en) * 1994-11-21 2011-05-24 Nike, Inc. Movement monitoring systems and associated methods
US8280682B2 (en) 2000-12-15 2012-10-02 Tvipr, Llc Device for monitoring movement of shipped goods
US7386401B2 (en) 1994-11-21 2008-06-10 Phatrat Technology, Llc Helmet that reports impact information, and associated methods
US6266623B1 (en) * 1994-11-21 2001-07-24 Phatrat Technology, Inc. Sport monitoring apparatus for determining loft time, speed, power absorbed and other factors such as height
US5636146A (en) 1994-11-21 1997-06-03 Phatrat Technology, Inc. Apparatus and methods for determining loft time and speed
US6539336B1 (en) 1996-12-12 2003-03-25 Phatrat Technologies, Inc. Sport monitoring system for determining airtime, speed, power absorbed and other factors such as drop distance
US6885971B2 (en) 1994-11-21 2005-04-26 Phatrat Technology, Inc. Methods and systems for assessing athletic performance
US7739076B1 (en) 1999-06-30 2010-06-15 Nike, Inc. Event and sport performance methods and systems
US6254513B1 (en) * 1995-09-12 2001-07-03 Omron Corporation Pedometer
US5899963A (en) * 1995-12-12 1999-05-04 Acceleron Technologies, Llc System and method for measuring movement of objects
US6122960A (en) * 1995-12-12 2000-09-26 Acceleron Technologies, Llc. System and method for measuring movement of objects
IT1284186B1 (en) * 1996-06-28 1998-05-08 Alberto Gregori DEVICE FOR MEASURING THE DISTANCE TRAVELED ON FOOT (WALKING OR RUNNING), APPLICABLE INSIDE FOOTWEAR OR
CA2218242C (en) * 1996-10-11 2005-12-06 Kenneth R. Fyfe Motion analysis system
US6145389A (en) * 1996-11-12 2000-11-14 Ebeling; W. H. Carl Pedometer effective for both walking and running
US5976083A (en) * 1997-07-30 1999-11-02 Living Systems, Inc. Portable aerobic fitness monitor for walking and running
US6493652B1 (en) 1997-10-02 2002-12-10 Personal Electronic Devices, Inc. Monitoring activity of a user in locomotion on foot
US6876947B1 (en) 1997-10-02 2005-04-05 Fitsense Technology, Inc. Monitoring activity of a user in locomotion on foot
US6611789B1 (en) 1997-10-02 2003-08-26 Personal Electric Devices, Inc. Monitoring activity of a user in locomotion on foot
US6560903B1 (en) 2000-03-07 2003-05-13 Personal Electronic Devices, Inc. Ambulatory foot pod
US6122340A (en) 1998-10-01 2000-09-19 Personal Electronic Devices, Inc. Detachable foot mount for electronic device
US6882955B1 (en) 1997-10-02 2005-04-19 Fitsense Technology, Inc. Monitoring activity of a user in locomotion on foot
US6298314B1 (en) 1997-10-02 2001-10-02 Personal Electronic Devices, Inc. Detecting the starting and stopping of movement of a person on foot
US6301964B1 (en) * 1997-10-14 2001-10-16 Dyhastream Innovations Inc. Motion analysis system
US6133946A (en) * 1998-01-06 2000-10-17 Sportvision, Inc. System for determining the position of an object
AU4964199A (en) * 1998-07-01 2000-01-24 Sportvision System, Llc System for measuring a jump
US6473483B2 (en) 1998-10-28 2002-10-29 Nathan Pyles Pedometer
US6175608B1 (en) 1998-10-28 2001-01-16 Knowmo Llc Pedometer
WO2000033031A1 (en) * 1998-11-27 2000-06-08 Carnap Analytic Corporation System for use in footwear for measuring, analyzing, and reporting the performance of an athlete
FI108579B (en) * 1999-05-28 2002-02-15 Polar Electro Oy Procedure and measurement arrangement for determining the velocity of a running, walking or otherwise moving living object
AU6065600A (en) * 1999-06-30 2001-01-31 Phatrat Technology, Inc. Event and sport performance methods and systems
US6243660B1 (en) * 1999-10-12 2001-06-05 Precision Navigation, Inc. Digital compass with multiple sensing and reporting capability
KR20010086867A (en) * 2000-03-03 2001-09-15 백민호 sports shoes clined identified signal chips
US6413145B1 (en) * 2000-04-05 2002-07-02 Applied Materials, Inc. System for polishing and cleaning substrates
GB0014134D0 (en) * 2000-06-10 2000-08-02 Astrazeneca Ab Combination therapy
US6594617B2 (en) 2000-08-18 2003-07-15 Applanix Corporation Pedometer navigator system
GB0022269D0 (en) * 2000-09-12 2000-10-25 Koninkl Philips Electronics Nv Data transmission system
IL139387A0 (en) * 2000-11-01 2001-11-25 Dintex Ltd Feedback system and method for monitoring and measuring physical exercise related information
US6805006B2 (en) * 2000-12-07 2004-10-19 Bbc International, Ltd. Method and apparatus for measuring the maximum speed of a runner over a prescribed distance including a transmitter and receiver
US7171331B2 (en) 2001-12-17 2007-01-30 Phatrat Technology, Llc Shoes employing monitoring devices, and associated methods
US6549845B2 (en) 2001-01-10 2003-04-15 Westinghouse Savannah River Company Dead reckoning pedometer
AU2002255568B8 (en) 2001-02-20 2014-01-09 Adidas Ag Modular personal network systems and methods
US7480512B2 (en) 2004-01-16 2009-01-20 Bones In Motion, Inc. Wireless device, program products and methods of using a wireless device to deliver services
US7631382B2 (en) * 2003-03-10 2009-12-15 Adidas International Marketing B.V. Intelligent footwear systems
US7225565B2 (en) * 2003-03-10 2007-06-05 Adidas International Marketing B.V. Intelligent footwear systems
US6944542B1 (en) 2003-03-12 2005-09-13 Trimble Navigation, Ltd. Position determination system for movable objects or personnel
US7539330B2 (en) * 2004-06-01 2009-05-26 Lumidigm, Inc. Multispectral liveness determination
ES2237280B1 (en) * 2003-04-14 2006-10-01 Universidad De Cadiz SYSTEM OF DETECTION OF SUPPORTS VIA RADIO.
US20040233044A1 (en) * 2003-05-22 2004-11-25 Carter Yolanda K. Racing muzzle and bridle
US6880258B2 (en) * 2003-08-26 2005-04-19 Horizon Hobby Digital inclinometer and related methods
JP4642338B2 (en) * 2003-11-04 2011-03-02 株式会社タニタ Body movement measuring device
US7289875B2 (en) * 2003-11-14 2007-10-30 Siemens Technology-To-Business Center Llc Systems and methods for sway control
US7119687B2 (en) * 2003-12-03 2006-10-10 Siemens Technology-To-Business Center, Llc System for tracking object locations using self-tracking tags
JP4504043B2 (en) * 2004-02-19 2010-07-14 セイコーインスツル株式会社 Walking speed calculation device and walking speed calculation method
US20050195094A1 (en) * 2004-03-05 2005-09-08 White Russell W. System and method for utilizing a bicycle computer to monitor athletic performance
US8629836B2 (en) 2004-04-30 2014-01-14 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
KR100985364B1 (en) 2004-04-30 2010-10-04 힐크레스트 래보래토리스, 인크. Free space pointing device and method
US7758523B2 (en) 2004-05-24 2010-07-20 Kineteks Corporation Remote sensing shoe insert apparatus, method and system
US7319385B2 (en) * 2004-09-17 2008-01-15 Nokia Corporation Sensor data sharing
DE102004045176B4 (en) * 2004-09-17 2011-07-21 Adidas International Marketing B.V. bladder
WO2006058129A2 (en) 2004-11-23 2006-06-01 Hillcrest Laboratories, Inc. Semantic gaming and application transformation
US7254516B2 (en) 2004-12-17 2007-08-07 Nike, Inc. Multi-sensor monitoring of athletic performance
KR100653315B1 (en) * 2005-01-04 2006-12-01 주식회사 헬스피아 Method for measuring exercise quantity using portable terminal
DE102005014709C5 (en) 2005-03-31 2011-03-24 Adidas International Marketing B.V. shoe
US20070006489A1 (en) * 2005-07-11 2007-01-11 Nike, Inc. Control systems and foot-receiving device products containing such systems
US20070054778A1 (en) * 2005-08-29 2007-03-08 Blanarovich Adrian M Apparatus and system for measuring and communicating physical activity data
US7237446B2 (en) * 2005-09-16 2007-07-03 Raymond Chan System and method for measuring gait kinematics information
US7911339B2 (en) 2005-10-18 2011-03-22 Apple Inc. Shoe wear-out sensor, body-bar sensing system, unitless activity assessment and associated methods
US20070129907A1 (en) * 2005-12-05 2007-06-07 Demon Ronald S Multifunction shoe with wireless communications capabilities
WO2007070478A2 (en) 2005-12-13 2007-06-21 Pallets Unlimited, Llc Method and associated system for manufacturing pallets
US7602301B1 (en) 2006-01-09 2009-10-13 Applied Technology Holdings, Inc. Apparatus, systems, and methods for gathering and processing biometric and biomechanical data
US8055469B2 (en) * 2006-03-03 2011-11-08 Garmin Switzerland Gmbh Method and apparatus for determining the attachment position of a motion sensing apparatus
US7467060B2 (en) * 2006-03-03 2008-12-16 Garmin Ltd. Method and apparatus for estimating a motion parameter
KR100782502B1 (en) * 2006-03-09 2007-12-05 삼성전자주식회사 Apparatus and method for preventing loss of shoes using personal area network and shoes having loss prevention function
US7607243B2 (en) * 2006-05-03 2009-10-27 Nike, Inc. Athletic or other performance sensing systems
US7643895B2 (en) * 2006-05-22 2010-01-05 Apple Inc. Portable media device with workout support
US20070270663A1 (en) * 2006-05-22 2007-11-22 Apple Computer, Inc. System including portable media player and physiologic data gathering device
US20070271116A1 (en) * 2006-05-22 2007-11-22 Apple Computer, Inc. Integrated media jukebox and physiologic data handling application
US9137309B2 (en) * 2006-05-22 2015-09-15 Apple Inc. Calibration techniques for activity sensing devices
US8073984B2 (en) 2006-05-22 2011-12-06 Apple Inc. Communication protocol for use with portable electronic devices
US8626472B2 (en) * 2006-07-21 2014-01-07 James C. Solinsky System and method for measuring balance and track motion in mammals
US7610166B1 (en) 2006-07-21 2009-10-27 James Solinsky Geolocation system and method for determining mammal locomotion movement
US7913297B2 (en) 2006-08-30 2011-03-22 Apple Inc. Pairing of wireless devices using a wired medium
US7813715B2 (en) 2006-08-30 2010-10-12 Apple Inc. Automated pairing of wireless accessories with host devices
US8924248B2 (en) * 2006-09-26 2014-12-30 Fitbit, Inc. System and method for activating a device based on a record of physical activity
KR100827076B1 (en) * 2006-10-31 2008-05-02 삼성전자주식회사 Appratus and method for measuring walking distance
CN103182174B (en) 2007-02-14 2015-09-16 耐克创新有限合伙公司 The collection of movable information and display
US7698101B2 (en) 2007-03-07 2010-04-13 Apple Inc. Smart garment
FI121289B (en) * 2007-04-13 2010-09-15 Vti Technologies Oy Method and apparatus for measuring a moving person's forward movement
JP4842885B2 (en) 2007-05-23 2011-12-21 トヨタ自動車株式会社 In-vehicle device control system and vehicle
CN100534346C (en) * 2007-07-25 2009-09-02 中国科学院合肥物质科学研究院 Digital track shoes based on flexible array pressure transducer
ES2412891T3 (en) * 2007-08-15 2013-07-12 Catapult Innovations Pty Ltd Track sports balls
US8221290B2 (en) * 2007-08-17 2012-07-17 Adidas International Marketing B.V. Sports electronic training system with electronic gaming features, and applications thereof
US8360904B2 (en) 2007-08-17 2013-01-29 Adidas International Marketing Bv Sports electronic training system with sport ball, and applications thereof
US8702430B2 (en) 2007-08-17 2014-04-22 Adidas International Marketing B.V. Sports electronic training system, and applications thereof
US7877226B2 (en) * 2008-03-03 2011-01-25 Idt Technology Limited Apparatus and method for counting exercise repetitions
EP2265341A1 (en) 2008-04-02 2010-12-29 Nike International Ltd. Wearable device assembly having athletic functionality
US8224575B2 (en) * 2008-04-08 2012-07-17 Ensco, Inc. Method and computer-readable storage medium with instructions for processing data in an internal navigation system
US7969315B1 (en) 2008-05-28 2011-06-28 MedHab, LLC Sensor device and method for monitoring physical stresses placed upon a user
US8384551B2 (en) * 2008-05-28 2013-02-26 MedHab, LLC Sensor device and method for monitoring physical stresses placed on a user
EP3087858B1 (en) 2008-06-13 2021-04-28 NIKE Innovate C.V. Footwear having sensor system
US10070680B2 (en) 2008-06-13 2018-09-11 Nike, Inc. Footwear having sensor system
US9549585B2 (en) 2008-06-13 2017-01-24 Nike, Inc. Footwear having sensor system
US9002680B2 (en) * 2008-06-13 2015-04-07 Nike, Inc. Foot gestures for computer input and interface control
CN102089622A (en) 2008-07-14 2011-06-08 矿井安全装置公司 System and method of determining the location of mobile personnel
US20100184564A1 (en) 2008-12-05 2010-07-22 Nike, Inc. Athletic Performance Monitoring Systems and Methods in a Team Sports Environment
US8628453B2 (en) 2008-12-05 2014-01-14 Nike, Inc. Athletic performance monitoring systems and methods in a team sports environment
US8231506B2 (en) 2008-12-05 2012-07-31 Nike, Inc. Athletic performance monitoring systems and methods in a team sports environment
US9149693B2 (en) 2009-01-20 2015-10-06 Nike, Inc. Golf club and golf club head structures
US9192831B2 (en) 2009-01-20 2015-11-24 Nike, Inc. Golf club and golf club head structures
ES2344980B1 (en) * 2009-02-13 2011-05-23 Universidad De Cadiz PORTABLE SYSTEM OF VALUATION OF THE HEIGHT OF VERTICAL JUMP, FOR THE MEASUREMENT AND DETECTION OF THE CAPACITY OF JUMP.
US9855484B1 (en) 2009-04-24 2018-01-02 Mayfonk Athletic, Llc Systems, methods, and apparatus for measuring athletic performance characteristics
US8253586B1 (en) 2009-04-24 2012-08-28 Mayfonk Art, Inc. Athletic-wear having integral measuring sensors
DE102009028069A1 (en) * 2009-07-29 2011-02-10 Robert Bosch Gmbh Pedometer with automatic step length adjustment, method for operating a pedometer and use of the pedometer
US8744765B2 (en) 2009-07-30 2014-06-03 Msa Technology, Llc Personal navigation system and associated methods
FR2951628B1 (en) * 2009-10-22 2012-07-13 Genourob IMPROVEMENTS IN THE DEVICE FOR DETECTING AND FOLLOWING A TOTAL OR PARTIAL LESION OF CROSS LIGAMENT BEFORE THE KNEE, BY COMPARISON BETWEEN THE TWO MEMBERS
EP2491343A1 (en) * 2009-10-23 2012-08-29 Mine Safety Appliances Company Navigational system initialization system, process, and arrangement
TWI407987B (en) * 2009-12-22 2013-09-11 Ind Tech Res Inst Sport guiding device and sport guiding method using the same
US9470763B2 (en) 2010-02-25 2016-10-18 James C. Solinsky Systems and methods for sensing balanced-action for improving mammal work-track efficiency
CN102008802A (en) * 2010-06-29 2011-04-13 上海杰人信息科技有限公司 Body-extending training system and realization method thereof
US10039970B2 (en) 2010-07-14 2018-08-07 Adidas Ag Location-aware fitness monitoring methods, systems, and program products, and applications thereof
US9392941B2 (en) 2010-07-14 2016-07-19 Adidas Ag Fitness monitoring methods, systems, and program products, and applications thereof
US9940682B2 (en) 2010-08-11 2018-04-10 Nike, Inc. Athletic activity user experience and environment
US11243093B2 (en) 2010-09-30 2022-02-08 Fitbit, Inc. Methods, systems and devices for generating real-time activity data updates to display devices
US9167991B2 (en) 2010-09-30 2015-10-27 Fitbit, Inc. Portable monitoring devices and methods of operating same
US8781791B2 (en) 2010-09-30 2014-07-15 Fitbit, Inc. Touchscreen with dynamically-defined areas having different scanning modes
US8751194B2 (en) 2010-09-30 2014-06-10 Fitbit, Inc. Power consumption management of display in portable device based on prediction of user input
US8694282B2 (en) 2010-09-30 2014-04-08 Fitbit, Inc. Methods and systems for geo-location optimized tracking and updating for events having combined activity and location information
US8775120B2 (en) 2010-09-30 2014-07-08 Fitbit, Inc. Method of data synthesis
US8954291B2 (en) 2010-09-30 2015-02-10 Fitbit, Inc. Alarm setting and interfacing with gesture contact interfacing controls
US9310909B2 (en) 2010-09-30 2016-04-12 Fitbit, Inc. Methods, systems and devices for physical contact activated display and navigation
US8954290B2 (en) 2010-09-30 2015-02-10 Fitbit, Inc. Motion-activated display of messages on an activity monitoring device
US9188460B2 (en) 2010-09-30 2015-11-17 Fitbit, Inc. Methods, systems and devices for generating real-time activity data updates to display devices
US8805646B2 (en) 2010-09-30 2014-08-12 Fitbit, Inc. Methods, systems and devices for linking user devices to activity tracking devices
US8849610B2 (en) 2010-09-30 2014-09-30 Fitbit, Inc. Tracking user physical activity with multiple devices
US8712724B2 (en) 2010-09-30 2014-04-29 Fitbit, Inc. Calendar integration methods and systems for presentation of events having combined activity and location information
US8762101B2 (en) 2010-09-30 2014-06-24 Fitbit, Inc. Methods and systems for identification of event data having combined activity and location information of portable monitoring devices
US8620617B2 (en) 2010-09-30 2013-12-31 Fitbit, Inc. Methods and systems for interactive goal setting and recommender using events having combined activity and location information
US8738321B2 (en) 2010-09-30 2014-05-27 Fitbit, Inc. Methods and systems for classification of geographic locations for tracked activity
US8812259B2 (en) 2010-09-30 2014-08-19 Fitbit, Inc. Alarm setting and interfacing with gesture contact interfacing controls
US9390427B2 (en) 2010-09-30 2016-07-12 Fitbit, Inc. Methods, systems and devices for automatic linking of activity tracking devices to user devices
US8738323B2 (en) 2010-09-30 2014-05-27 Fitbit, Inc. Methods and systems for metrics analysis and interactive rendering, including events having combined activity and location information
US9253168B2 (en) 2012-04-26 2016-02-02 Fitbit, Inc. Secure pairing of devices via pairing facilitator-intermediary device
US10983945B2 (en) 2010-09-30 2021-04-20 Fitbit, Inc. Method of data synthesis
US8744803B2 (en) 2010-09-30 2014-06-03 Fitbit, Inc. Methods, systems and devices for activity tracking device data synchronization with computing devices
US8762102B2 (en) 2010-09-30 2014-06-24 Fitbit, Inc. Methods and systems for generation and rendering interactive events having combined activity and location information
US8615377B1 (en) 2010-09-30 2013-12-24 Fitbit, Inc. Methods and systems for processing social interactive data and sharing of tracked activity associated with locations
US9241635B2 (en) 2010-09-30 2016-01-26 Fitbit, Inc. Portable monitoring devices for processing applications and processing analysis of physiological conditions of a user associated with the portable monitoring device
US9148483B1 (en) 2010-09-30 2015-09-29 Fitbit, Inc. Tracking user physical activity with multiple devices
US10004406B2 (en) 2010-09-30 2018-06-26 Fitbit, Inc. Portable monitoring devices for processing applications and processing analysis of physiological conditions of a user associated with the portable monitoring device
US8744804B2 (en) 2010-09-30 2014-06-03 Fitbit, Inc. Methods, systems and devices for automatic linking of activity tracking devices to user devices
US8768648B2 (en) 2010-09-30 2014-07-01 Fitbit, Inc. Selection of display power mode based on sensor data
CN103443795B (en) 2010-11-10 2016-10-26 耐克创新有限合伙公司 Measure for time-based motor activity and the system and method for display
US8694251B2 (en) * 2010-11-25 2014-04-08 Texas Instruments Incorporated Attitude estimation for pedestrian navigation using low cost mems accelerometer in mobile applications, and processing methods, apparatus and systems
US9687705B2 (en) 2010-11-30 2017-06-27 Nike, Inc. Golf club head or other ball striking device having impact-influencing body features
JP2013544178A (en) 2010-11-30 2013-12-12 ナイキ インターナショナル リミテッド Golf club head or other ball striking device having a face plate with distributed impact repulsion and stiffening
US9202111B2 (en) 2011-01-09 2015-12-01 Fitbit, Inc. Fitness monitoring device with user engagement metric functionality
US8475367B1 (en) 2011-01-09 2013-07-02 Fitbit, Inc. Biometric monitoring device having a body weight sensor, and methods of operating same
JP5689705B2 (en) * 2011-02-10 2015-03-25 任天堂株式会社 Information processing system, information processing program, information processing device, input device, and information processing method
BR112013021141A2 (en) 2011-02-17 2019-12-10 Nike Int Ltd footwear with sensor system
US9381420B2 (en) 2011-02-17 2016-07-05 Nike, Inc. Workout user experience
WO2012112930A1 (en) 2011-02-17 2012-08-23 Nike International Ltd. Footwear having sensor system
KR101810751B1 (en) 2011-02-17 2017-12-19 나이키 이노베이트 씨.브이. Selecting and correlating physical activity data with image data
EP3662829A1 (en) 2011-02-17 2020-06-10 NIKE Innovate C.V. Footwear having sensor system
CN103476283B (en) 2011-02-17 2016-01-20 耐克创新有限合伙公司 The shoes of belt sensor system
US8903677B2 (en) 2011-03-04 2014-12-02 Msa Technology, Llc Inertial navigation units, systems, and methods
US9453772B2 (en) 2011-03-24 2016-09-27 MedHab, LLC Method of manufacturing a sensor insole
US10004946B2 (en) 2011-03-24 2018-06-26 MedHab, LLC System and method for monitoring power applied to a bicycle
US20120258433A1 (en) 2011-04-05 2012-10-11 Adidas Ag Fitness Monitoring Methods, Systems, And Program Products, And Applications Thereof
US9375624B2 (en) 2011-04-28 2016-06-28 Nike, Inc. Golf clubs and golf club heads
US9925433B2 (en) 2011-04-28 2018-03-27 Nike, Inc. Golf clubs and golf club heads
US8986130B2 (en) 2011-04-28 2015-03-24 Nike, Inc. Golf clubs and golf club heads
US9409073B2 (en) 2011-04-28 2016-08-09 Nike, Inc. Golf clubs and golf club heads
US9433845B2 (en) 2011-04-28 2016-09-06 Nike, Inc. Golf clubs and golf club heads
US9433844B2 (en) 2011-04-28 2016-09-06 Nike, Inc. Golf clubs and golf club heads
US9409076B2 (en) 2011-04-28 2016-08-09 Nike, Inc. Golf clubs and golf club heads
US9186547B2 (en) 2011-04-28 2015-11-17 Nike, Inc. Golf clubs and golf club heads
US8738925B1 (en) 2013-01-07 2014-05-27 Fitbit, Inc. Wireless portable biometric device syncing
US8768620B2 (en) 2011-07-27 2014-07-01 Msa Technology, Llc Navigational deployment and initialization systems and methods
KR101863519B1 (en) 2011-08-23 2018-06-29 카스턴 매뉴팩츄어링 코오포레이숀 Golf club head with a void
US20130213144A1 (en) 2012-02-22 2013-08-22 Nike, Inc. Footwear Having Sensor System
US11071344B2 (en) 2012-02-22 2021-07-27 Nike, Inc. Motorized shoe with gesture control
KR102022224B1 (en) 2012-02-22 2019-09-17 나이키 이노베이트 씨.브이. Footwear having sensor system
US20130213147A1 (en) 2012-02-22 2013-08-22 Nike, Inc. Footwear Having Sensor System
US11684111B2 (en) 2012-02-22 2023-06-27 Nike, Inc. Motorized shoe with gesture control
US10922383B2 (en) 2012-04-13 2021-02-16 Adidas Ag Athletic activity monitoring methods and systems
US9257054B2 (en) 2012-04-13 2016-02-09 Adidas Ag Sport ball athletic activity monitoring methods and systems
US9409068B2 (en) 2012-05-31 2016-08-09 Nike, Inc. Adjustable golf club and system and associated golf club heads and shafts
US9053256B2 (en) 2012-05-31 2015-06-09 Nike, Inc. Adjustable golf club and system and associated golf club heads and shafts
US9326704B2 (en) 2012-06-22 2016-05-03 Alpinereplay, Inc. Method and apparatus for determining sportsman jumps using fuzzy logic
US9641239B2 (en) 2012-06-22 2017-05-02 Fitbit, Inc. Adaptive data transfer using bluetooth
US10008237B2 (en) 2012-09-12 2018-06-26 Alpinereplay, Inc Systems and methods for creating and enhancing videos
US10408857B2 (en) 2012-09-12 2019-09-10 Alpinereplay, Inc. Use of gyro sensors for identifying athletic maneuvers
US10548514B2 (en) * 2013-03-07 2020-02-04 Alpinereplay, Inc. Systems and methods for identifying and characterizing athletic maneuvers
US9566021B2 (en) * 2012-09-12 2017-02-14 Alpinereplay, Inc. Systems and methods for synchronized display of athletic maneuvers
US9060682B2 (en) 2012-10-25 2015-06-23 Alpinereplay, Inc. Distributed systems and methods to measure and process sport motions
US8827906B2 (en) 2013-01-15 2014-09-09 Fitbit, Inc. Methods, systems and devices for measuring fingertip heart rate
US9039614B2 (en) 2013-01-15 2015-05-26 Fitbit, Inc. Methods, systems and devices for measuring fingertip heart rate
US9728059B2 (en) 2013-01-15 2017-08-08 Fitbit, Inc. Sedentary period detection utilizing a wearable electronic device
US11006690B2 (en) 2013-02-01 2021-05-18 Nike, Inc. System and method for analyzing athletic activity
US9743861B2 (en) 2013-02-01 2017-08-29 Nike, Inc. System and method for analyzing athletic activity
US10926133B2 (en) 2013-02-01 2021-02-23 Nike, Inc. System and method for analyzing athletic activity
DE102013202485B4 (en) 2013-02-15 2022-12-29 Adidas Ag Ball for a ball sport
US9500464B2 (en) 2013-03-12 2016-11-22 Adidas Ag Methods of determining performance information for individuals and sports objects
US9279734B2 (en) 2013-03-15 2016-03-08 Nike, Inc. System and method for analyzing athletic activity
CN103245355A (en) * 2013-05-27 2013-08-14 苏州市伦琴工业设计有限公司 Distance measurement shoes
US9063164B1 (en) 2013-10-02 2015-06-23 Fitbit, Inc. Collaborative activity-data acquisition
CN103637805A (en) * 2013-12-02 2014-03-19 王希华 Shoes and method for measuring exercise load
US9031812B2 (en) 2014-02-27 2015-05-12 Fitbit, Inc. Notifications on a user device based on activity detected by an activity monitoring device
US9449409B2 (en) 2014-04-11 2016-09-20 Fitbit, Inc. Graphical indicators in analog clock format
US9449365B2 (en) 2014-04-11 2016-09-20 Fitbit, Inc. Personalized scaling of graphical indicators
US9288298B2 (en) 2014-05-06 2016-03-15 Fitbit, Inc. Notifications regarding interesting or unusual activity detected from an activity monitoring device
US9849361B2 (en) 2014-05-14 2017-12-26 Adidas Ag Sports ball athletic activity monitoring methods and systems
US10523053B2 (en) 2014-05-23 2019-12-31 Adidas Ag Sport ball inductive charging methods and systems
US9889346B2 (en) 2014-06-20 2018-02-13 Karsten Manufacturing Corporation Golf club head or other ball striking device having impact-influencing body features
US9710711B2 (en) 2014-06-26 2017-07-18 Adidas Ag Athletic activity heads up display systems and methods
US11562417B2 (en) 2014-12-22 2023-01-24 Adidas Ag Retail store motion sensor systems and methods
US10212325B2 (en) 2015-02-17 2019-02-19 Alpinereplay, Inc. Systems and methods to control camera operations
US9672462B2 (en) * 2015-03-03 2017-06-06 Umm Al-Qura University Smart surface-mounted hybrid sensor system, method, and apparatus for counting
WO2016168610A1 (en) 2015-04-15 2016-10-20 Nike, Inc. Activity monitoring device with assessment of exercise intensity
WO2016196265A1 (en) * 2015-05-29 2016-12-08 Nike Innovate C.V. Activity monitoring device with assessment of exercise intensity
JP6750198B2 (en) * 2015-09-03 2020-09-02 オムロンヘルスケア株式会社 Blood pressure measurement device, body characteristic information calculation method, body characteristic information calculation program
US11103030B2 (en) 2015-10-07 2021-08-31 Puma SE Article of footwear having an automatic lacing system
US11185130B2 (en) 2015-10-07 2021-11-30 Puma SE Article of footwear having an automatic lacing system
US11033079B2 (en) 2015-10-07 2021-06-15 Puma SE Article of footwear having an automatic lacing system
US10321208B2 (en) 2015-10-26 2019-06-11 Alpinereplay, Inc. System and method for enhanced video image recognition using motion sensors
WO2017095951A1 (en) 2015-11-30 2017-06-08 Nike Innovate C.V. Apparel with ultrasonic position sensing and haptic feedback for activities
CN108366639B (en) 2015-12-02 2022-03-25 彪马欧洲股份公司 Method for fastening shoes, especially sports shoes
US10080530B2 (en) 2016-02-19 2018-09-25 Fitbit, Inc. Periodic inactivity alerts and achievement messages
US10137347B2 (en) 2016-05-02 2018-11-27 Nike, Inc. Golf clubs and golf club heads having a sensor
US10220285B2 (en) 2016-05-02 2019-03-05 Nike, Inc. Golf clubs and golf club heads having a sensor
US10226681B2 (en) 2016-05-02 2019-03-12 Nike, Inc. Golf clubs and golf club heads having a plurality of sensors for detecting one or more swing parameters
US10159885B2 (en) 2016-05-02 2018-12-25 Nike, Inc. Swing analysis system using angular rate and linear acceleration sensors
GB2553141B (en) 2016-08-26 2019-12-11 Raytheon Systems Ltd Method and apparatus for position estimation
US11272873B2 (en) * 2016-10-07 2022-03-15 Panasonic Intellectual Property Management Co., Ltd. Cognitive function evaluation device, cognitive function evaluation system, cognitive function evaluation method, and recording medium
BR112019010429B1 (en) 2016-11-22 2022-08-09 Puma SE METHOD FOR PLACING OR REMOVING A PIECE OF CLOTHING IN OR FROM THE CARRIER OR TO CLOSE, PLACE, OPEN OR REMOVE A PIECE OF BAGGAGE CARRIED BY A PERSON
MX2019005959A (en) 2016-11-22 2019-07-10 Puma SE Method for fastening a shoe, in particular a sports shoe, and shoe, in particular sports shoe.
US11040246B2 (en) 2018-02-06 2021-06-22 Adidas Ag Increasing accuracy in workout autodetection systems and methods
USD889805S1 (en) 2019-01-30 2020-07-14 Puma SE Shoe
USD899053S1 (en) 2019-01-30 2020-10-20 Puma SE Shoe
USD906657S1 (en) 2019-01-30 2021-01-05 Puma SE Shoe tensioning device
JP7124965B2 (en) * 2019-05-29 2022-08-24 日本電気株式会社 Information processing device, walking environment determination device, walking environment determination system, information processing method, and storage medium
US11484089B2 (en) 2019-10-21 2022-11-01 Puma SE Article of footwear having an automatic lacing system with integrated sound damping
USD939986S1 (en) 2019-10-28 2022-01-04 Pure Global Brands, Inc. Counter for a bar on a seesaw
US11089825B1 (en) * 2020-06-23 2021-08-17 Jacob M. Ell Step triggered light up footwear
WO2022224361A1 (en) * 2021-04-20 2022-10-27 株式会社アシックス Body condition estimation system and shoe
WO2024049986A1 (en) 2022-08-31 2024-03-07 Nike Innovate C.V. Electromechanical ambulatory assist device

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789402A (en) * 1971-04-01 1974-01-29 R Heywood Electronic signal device and method
US3797010A (en) * 1972-07-31 1974-03-12 R Adler Jogging computer
US3865305A (en) * 1971-11-01 1975-02-11 Pentron Industries Programmable distance measuring instrument
US4053755A (en) * 1976-08-16 1977-10-11 Sherrill John C Pedometer distance-measuring device
US4180726A (en) * 1978-02-01 1979-12-25 Decrescent Ronald System for measuring characteristics of an object's motion
US4220996A (en) * 1979-01-31 1980-09-02 Searcy Talmadge R Jogger's computational device
US4312358A (en) * 1979-07-23 1982-01-26 Texas Instruments Incorporated Instrument for measuring and computing heart beat, body temperature and other physiological and exercise-related parameters
US4334190A (en) * 1980-08-01 1982-06-08 Aviezer Sochaczevski Electronic speed measuring device particularly useful as a jogging computer
US4371945A (en) * 1980-12-01 1983-02-01 Lawrence Joseph Karr Electronic pedometer
US4387437A (en) * 1979-07-25 1983-06-07 John W. Lowrey Runners watch
US4449191A (en) * 1980-05-14 1984-05-15 Walter Mehnert Process and an apparatus for measuring an angle
US4578769A (en) * 1983-02-09 1986-03-25 Nike, Inc. Device for determining the speed, distance traversed, elapsed time and calories expended by a person while running
US4703445A (en) * 1984-02-13 1987-10-27 Puma Ag Rudolf Dassler Sport (Formerly Puma-Sportschuhfabriken Rudolf Dassler Kg) Athletic shoe for running disciplines and a process for providing information and/or for exchanging information concerning moving sequences in running disciplines
US4736312A (en) * 1985-02-18 1988-04-05 Puma Ag Rudolf Dassler Sport Arrangement for the determination of movement sequences in running disciplines
US4763287A (en) * 1986-05-24 1988-08-09 Puma Ag Rudolf Dassler Sport Measuring performance information in running disciplines and shoe systems
US4855942A (en) * 1987-10-28 1989-08-08 Elexis Corporation Pedometer and/or calorie measuring device and method
US4885710A (en) * 1987-06-25 1989-12-05 Delco Electronics Corporation Method and apparatus for low speed estimation
US5033013A (en) * 1985-04-22 1991-07-16 Yamasa Tokei Meter Co., Ltd. Method and apparatus for measuring the amount of exercise
US5117444A (en) * 1990-07-30 1992-05-26 W. Ron Sutton High accuracy pedometer and calibration method
US5206652A (en) * 1991-11-07 1993-04-27 The United States Of America As Represented By The Secretary Of The Army Doppler radar/ultrasonic hybrid height sensing system
US5245537A (en) * 1991-11-25 1993-09-14 Barber Andrew T Golf distance tracking, club selection, and player performance statistics apparatus and method
US5396510A (en) * 1993-09-30 1995-03-07 Honeywell Inc. Laser sensor capable of measuring distance, velocity, and acceleration
US5452216A (en) * 1993-08-02 1995-09-19 Mounce; George R. Microprocessor-based navigational aid system with external electronic correction
US5471405A (en) * 1992-11-13 1995-11-28 Marsh; Stephen A. Apparatus for measurement of forces and pressures applied to a garment
US5516334A (en) * 1994-01-28 1996-05-14 Easton; Gregory D. Interactive exercise monitor
US5524637A (en) * 1994-06-29 1996-06-11 Erickson; Jon W. Interactive system for measuring physiological exertion
US5574669A (en) * 1993-05-28 1996-11-12 Marshall; William R. Device for measuring foot motion and method
US5583776A (en) * 1995-03-16 1996-12-10 Point Research Corporation Dead reckoning navigational system using accelerometer to measure foot impacts

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094199A (en) * 1976-07-06 1978-06-13 Sundstrand Data Control, Inc. Accelerometer
US4571680A (en) * 1981-05-27 1986-02-18 Chyuan Jong Wu Electronic music pace-counting shoe
JPS58189509A (en) * 1982-04-28 1983-11-05 Matsushita Electric Works Ltd Walking distance meter
GB2121219B (en) * 1982-05-18 1986-02-05 Chyuan Jong Wu Electronic music pace and distance counting shoe
NZ204355A (en) * 1982-06-02 1986-07-11 Nat Res Dev Averaging accelerometer
US4460823A (en) * 1982-12-20 1984-07-17 K & R Precision Instruments, Inc. Dual mode pedometer
JPS59202016A (en) * 1983-04-30 1984-11-15 Matsushita Electric Works Ltd Pedometer
JPS6064282A (en) * 1983-09-19 1985-04-12 Nissan Motor Co Ltd Ultrasonic type distance measuring apparatus
JPS60148919U (en) * 1984-03-15 1985-10-03 山佐時計計器株式会社 Measurement condition adjustment device for exercise meter
JPS60200119A (en) * 1984-03-24 1985-10-09 Matsushita Electric Works Ltd Pedometer
DE3432596A1 (en) * 1984-09-05 1986-03-06 Pötsch, Edmund Reinfried, 8901 Königsbrunn ACCELERATION AND / OR SPEED AND / OR ROUTE OR TILT ANGLE MEASUREMENT ARRANGEMENT
US4741001A (en) * 1986-05-02 1988-04-26 Robert Ma Pedometer stop watch
FR2670004B1 (en) * 1990-12-04 1993-01-22 Thomson Csf LOCATION PEDOMETER FOR PEDESTRIAN.
DE4222373A1 (en) * 1992-07-08 1994-01-13 Gerhard Ruppenthal Distance and speed meter for sportsmen - derives speed and distance by integration of measured acceleration using sensor without external source

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789402A (en) * 1971-04-01 1974-01-29 R Heywood Electronic signal device and method
US3865305A (en) * 1971-11-01 1975-02-11 Pentron Industries Programmable distance measuring instrument
US3797010A (en) * 1972-07-31 1974-03-12 R Adler Jogging computer
US4053755A (en) * 1976-08-16 1977-10-11 Sherrill John C Pedometer distance-measuring device
US4180726A (en) * 1978-02-01 1979-12-25 Decrescent Ronald System for measuring characteristics of an object's motion
US4220996A (en) * 1979-01-31 1980-09-02 Searcy Talmadge R Jogger's computational device
US4312358A (en) * 1979-07-23 1982-01-26 Texas Instruments Incorporated Instrument for measuring and computing heart beat, body temperature and other physiological and exercise-related parameters
US4387437A (en) * 1979-07-25 1983-06-07 John W. Lowrey Runners watch
US4449191A (en) * 1980-05-14 1984-05-15 Walter Mehnert Process and an apparatus for measuring an angle
US4334190A (en) * 1980-08-01 1982-06-08 Aviezer Sochaczevski Electronic speed measuring device particularly useful as a jogging computer
US4371945A (en) * 1980-12-01 1983-02-01 Lawrence Joseph Karr Electronic pedometer
US4578769A (en) * 1983-02-09 1986-03-25 Nike, Inc. Device for determining the speed, distance traversed, elapsed time and calories expended by a person while running
US4703445A (en) * 1984-02-13 1987-10-27 Puma Ag Rudolf Dassler Sport (Formerly Puma-Sportschuhfabriken Rudolf Dassler Kg) Athletic shoe for running disciplines and a process for providing information and/or for exchanging information concerning moving sequences in running disciplines
US4736312A (en) * 1985-02-18 1988-04-05 Puma Ag Rudolf Dassler Sport Arrangement for the determination of movement sequences in running disciplines
US5033013A (en) * 1985-04-22 1991-07-16 Yamasa Tokei Meter Co., Ltd. Method and apparatus for measuring the amount of exercise
US4763287A (en) * 1986-05-24 1988-08-09 Puma Ag Rudolf Dassler Sport Measuring performance information in running disciplines and shoe systems
US4885710A (en) * 1987-06-25 1989-12-05 Delco Electronics Corporation Method and apparatus for low speed estimation
US4855942A (en) * 1987-10-28 1989-08-08 Elexis Corporation Pedometer and/or calorie measuring device and method
US5117444A (en) * 1990-07-30 1992-05-26 W. Ron Sutton High accuracy pedometer and calibration method
US5206652A (en) * 1991-11-07 1993-04-27 The United States Of America As Represented By The Secretary Of The Army Doppler radar/ultrasonic hybrid height sensing system
US5245537A (en) * 1991-11-25 1993-09-14 Barber Andrew T Golf distance tracking, club selection, and player performance statistics apparatus and method
US5471405A (en) * 1992-11-13 1995-11-28 Marsh; Stephen A. Apparatus for measurement of forces and pressures applied to a garment
US5574669A (en) * 1993-05-28 1996-11-12 Marshall; William R. Device for measuring foot motion and method
US5452216A (en) * 1993-08-02 1995-09-19 Mounce; George R. Microprocessor-based navigational aid system with external electronic correction
US5396510A (en) * 1993-09-30 1995-03-07 Honeywell Inc. Laser sensor capable of measuring distance, velocity, and acceleration
US5516334A (en) * 1994-01-28 1996-05-14 Easton; Gregory D. Interactive exercise monitor
US5524637A (en) * 1994-06-29 1996-06-11 Erickson; Jon W. Interactive system for measuring physiological exertion
US5583776A (en) * 1995-03-16 1996-12-10 Point Research Corporation Dead reckoning navigational system using accelerometer to measure foot impacts

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1019789A1 (en) * 1997-10-02 2000-07-19 Personal Electronic Devices, Inc. Measuring foot contact time and foot loft time of a person in locomotion
EP1019789A4 (en) * 1997-10-02 2011-12-28 Nike International Ltd Measuring foot contact time and foot loft time of a person in locomotion
US6356856B1 (en) 1998-02-25 2002-03-12 U.S. Philips Corporation Method of and system for measuring performance during an exercise activity, and an athletic shoe for use in system
EP2298107A1 (en) * 2003-03-10 2011-03-23 adidas International Marketing B.V. Intelligent footwear systems
US11006691B2 (en) 2005-06-27 2021-05-18 Nike, Inc. Systems for activating and/or authenticating electronic devices for operation with footwear and other uses
US9913509B2 (en) 2005-06-27 2018-03-13 Nike, Inc. Systems for activating and/or authenticating electronic devices for operation with footwear and other uses
WO2007000282A2 (en) * 2005-06-29 2007-01-04 Infriccioli Amedeo Procedure and device for the acquisition, treatment and transmission of human energy consumption data
WO2007000282A3 (en) * 2005-06-29 2007-08-02 Infriccioli Amedeo Procedure and device for the acquisition, treatment and transmission of human energy consumption data
US9649532B2 (en) 2006-04-20 2017-05-16 Nike, Inc. Golf club including an electronic module
US9844698B2 (en) 2006-04-20 2017-12-19 Nike, Inc. Systems for activating electronic devices for operation with athletic equipment
EP2687114A3 (en) * 2006-04-20 2014-05-07 Nike International Ltd. Systems for activating and/or authenticating electronic devices for operation with apparel and equipment
US9259613B2 (en) 2006-04-20 2016-02-16 Nike, Inc. Systems for activating electronic devices for operation with athletic equipment
US11207563B2 (en) 2006-04-20 2021-12-28 Nike, Inc. Systems for activating electronic devices for operation with apparel
US9555285B2 (en) 2006-04-20 2017-01-31 Nike, Inc. Systems for activating electronic devices for operation with athletic equipment
US10300335B2 (en) 2006-04-20 2019-05-28 Nike, Inc. Systems for activating electronic devices for operation with athletic equipment
EP1970671A1 (en) * 2007-03-16 2008-09-17 Calzados Hergar, S.A. Intelligent shoe
CN101822445A (en) * 2010-03-04 2010-09-08 马莉芳 Traveling shoes for preventing sudden death caused by cerebral hemorrhage and wearing method thereof
WO2012095712A1 (en) 2011-01-14 2012-07-19 Koninklijke Philips Electronics N.V. Activity visualization device
EP2654030A1 (en) * 2012-04-13 2013-10-23 Adidas AG Wearable athletic activity monitoring methods and systems
US10244984B2 (en) 2012-04-13 2019-04-02 Adidas Ag Wearable athletic activity monitoring systems
US9737261B2 (en) 2012-04-13 2017-08-22 Adidas Ag Wearable athletic activity monitoring systems
US10369410B2 (en) 2012-04-13 2019-08-06 Adidas Ag Wearable athletic activity monitoring methods and systems
US10765364B2 (en) 2012-04-13 2020-09-08 Adidas Ag Wearable athletic activity monitoring systems
US11097156B2 (en) 2012-04-13 2021-08-24 Adidas Ag Wearable athletic activity monitoring methods and systems
US9504414B2 (en) 2012-04-13 2016-11-29 Adidas Ag Wearable athletic activity monitoring methods and systems
US11839489B2 (en) 2012-04-13 2023-12-12 Adidas Ag Wearable athletic activity monitoring systems
US11931624B2 (en) 2012-04-13 2024-03-19 Adidas Ag Wearable athletic activity monitoring methods and systems
EP3977926A4 (en) * 2019-05-29 2022-06-15 NEC Corporation Information processing device, individual identification device, individual identification system, information processing method and storage medium

Also Published As

Publication number Publication date
DE69629585D1 (en) 2003-09-25
CA2246412A1 (en) 1997-06-19
US5724265A (en) 1998-03-03
ATE247818T1 (en) 2003-09-15
EP0866949B1 (en) 2003-08-20
EP0866949A1 (en) 1998-09-30
CA2246412C (en) 2001-11-27
EP0866949A4 (en) 1999-05-26

Similar Documents

Publication Publication Date Title
EP0866949B1 (en) System and method for measuring movement of objects
US5899963A (en) System and method for measuring movement of objects
US6305221B1 (en) Rotational sensor system
EP0977974B1 (en) Method of and system for measuring performance during an exercise activity
US4578769A (en) Device for determining the speed, distance traversed, elapsed time and calories expended by a person while running
US7057551B1 (en) Electronic exercise monitor and method using a location determining component and a pedometer
US5955667A (en) Motion analysis system
US9320457B2 (en) Integrated portable device and method implementing an accelerometer for analyzing biomechanical parameters of a stride
AU2008202170B2 (en) Improved Sports Sensor
CA2312640C (en) Motion analysis system
US7912672B2 (en) Method and device for evaluating displacement signals
JP5801426B2 (en) Method and apparatus for measuring the transition of a moving person
US5209710A (en) Treadmill
US6418181B1 (en) Method and measuring arrangement for determining speed of runner, walker or another moving and living object
AU2006222732C1 (en) Monitoring Sports
CA2329368C (en) System and method for measuring movement of objects
JPS62229075A (en) Speedometer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1996943673

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2246412

Country of ref document: CA

Ref country code: CA

Ref document number: 2246412

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1996943673

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996943673

Country of ref document: EP