WO1997026015A1 - Sustained release drug formulations - Google Patents

Sustained release drug formulations Download PDF

Info

Publication number
WO1997026015A1
WO1997026015A1 PCT/IB1997/000014 IB9700014W WO9726015A1 WO 1997026015 A1 WO1997026015 A1 WO 1997026015A1 IB 9700014 W IB9700014 W IB 9700014W WO 9726015 A1 WO9726015 A1 WO 9726015A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
polymer
drug
formulation according
formulation
Prior art date
Application number
PCT/IB1997/000014
Other languages
French (fr)
Inventor
Jean-Marc Ruiz
Original Assignee
Delab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delab filed Critical Delab
Priority to AU12064/97A priority Critical patent/AU1206497A/en
Priority to DE69721481T priority patent/DE69721481T2/en
Priority to EP97900072A priority patent/EP0874642B1/en
Priority to CA002242986A priority patent/CA2242986C/en
Priority to DK97900072T priority patent/DK0874642T3/en
Priority to AT97900072T priority patent/ATE238813T1/en
Publication of WO1997026015A1 publication Critical patent/WO1997026015A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner

Definitions

  • Biodegradable polymer sustained release formulations have been used to administer drugs over a prolonged period of time. See, e.g., U.S. Patent Nos. 3,773,919 and 4,767,628. These formulations are generally in the form of solid cylindrical implants, microcapsules, or microspheres. Solid implants require incisions in the patient which often are quite painful, resulting in poor patient compliance. Solid microcapsules and microspheres, which are injected into the patient, are often difficult to reproducibly manufacture and, thus, can give varying release profiles. Also, microcapsules and microspheres require lyophilization in order to avoid agglomerization of the particles during storage and large needles for injection.
  • the invention features a sustained release drug formulation which includes: a drug; a biodegradable polymer insoluble in water (i.e., less than 0.01 mg/ml at
  • an oil vehicle containing 10-100% by volume a pharmaceutically acceptable and biodegradable oil and 0- 90% by volume a pharmaceutically acceptable liquid carrier.
  • the drug and the biodegradable polymer are dissolved in the oil vehicle.
  • the amount of a drug dissolved in an oil vehicle depends on its solubility, and may range from 1 to 500 mg per ml of the oil vehicle.
  • the drug can be a peptide, e.g., somatostatin, luteinizing hormone-releasing hormone
  • LHRH growth hormone releasing peptide
  • bo besin growth hormone releasing peptide
  • gastrin releasing peptide gastrin releasing peptide
  • calcitonin bradykinin
  • CONFIRMATIONCOPT galanin melanocyte stimulating hormone, growth hormone releasing factor, amylin, adrenomedullin, tachykinins, secretin, parathyroid hormone, enkephalin, endotheiin, calcitonin gene releasing peptide, neuromedins, parathyroid hormone related protein, glucagon, neurotensin, adrenocorticotrophic hormone, peptide YY, glucagon releasing peptide, vasoactive intestinal peptide, pituitary adenylated cyclase activating peptide, motilin, substance P, neuropeptide Y, thyrotropin stimulating hormone, and analogs and fragments thereof.
  • the drug can also be a steroid. Examples of a steroid drug include, but are not limited to, 17-?-hydroxy oestradiol and progesterone.
  • the drug can be provided in the form of pharmaceutically acceptable salts.
  • such salts include, but are not limited to, those formed with organic acids (e.g., acetic, lactic, maleic, citric, malic, ascorbic, succinic, benzoic, methanesulfonic, toluenesulfonic, or pamoic acid) , inorganic acids (e.g. , hydrochloric acid, sulfuric acid, or phosphoric acid) , polymeric acids (e.g., tannic acid, carboxymethyl cellulose, polylactic, polyglycolic, or copolymers of polylactic-glycolic acids) .
  • organic acids e.g., acetic, lactic, maleic, citric, malic, ascorbic, succinic, benzoic, methanesulfonic, toluenesulfonic, or pamoic acid
  • inorganic acids e.g. , hydrochloric acid, sulfuric acid, or
  • a suitable biodegradable polymer to be used to practice this invention is a polyester.
  • monomers used to form such a polyester include, but are not limited to, e-caprolactone, lactic acid, glycolic acid, e-caprolic acid, p-dioxanone, e-caprionic acid, l,5-dioxepan-2-one, l,4-dioxepan-2-one, alkylene oxylate, cycloalkylene, cycloalkylene oxylate, alkylene succinate, and 3-hydroxy butyrate, .
  • any optically active isomers or racemates can be used.
  • the polyester can be a copolymers prepared from two or more different monomers.
  • the biodegradable polymer may be a liquid, or have a glass transition temperature or a melting temperature up to 200°C. It may have a molecular weight (averaged) of 500-150,000 daltons, preferably, 1,000-75,000 daltons. Polymers with higher molecular weights slow down the release of the drug from the formulation. Generally speaking, 1-500 mg (preferably, 15-300 mg) of the polymer can be dissolved in 1 ml of the oil vehicle.
  • Examples of a biodegradable oil, an essential component of the oil vehicle include oils derived from plants (e.g., corn oil, coconut oil, linseed oil, olive oil, palm oil, sunflower seed oil, cottonseed oil, peanut oil, sesame oil, or castor oil), animals (e.g., sardine oil, cod-liver oil, whale oil, sperm oil), paraffin oil, or triglyceride derivatives such as miglyol (Labafac, Gattefusse, Lyon, France) , or mixtures thereof.
  • the oil vehicle may also contain one or more pharmaceutically acceptable liquid carriers, e.g., solvents of either the drug or the polymer such as water and ethanol.
  • a pharmaceutically acceptable liquid ester or polyether may be added to the oil vehicle to aid in the dissolution of the drug or the polymer into the oil vehicle.
  • suitable esters include benzyl benzoate (which can assist the dissolution of the polymer such as a polyester), or polyethylene glycol, e.g., PEG 400 (which can assist the dissolution of the drug such as a peptide).
  • the ester or polyether may constitute 0.1- 90% by volume of the oil vehicle.
  • the oil vehicle may also include a pharmaceutically acceptable surfactant in order to clarify the formulation.
  • suitable surfactants include polysorbates (e.g., TWEEN 80 or SPAN 80) .
  • an oil vehicle herein is a water-immiscible medium in which a drug and a biodegradable polymer are dissolved. It contains at least an oil and may also contain a liquid carrier for the drug or polymer, a liquid ester or polyether, or a surfactant. Sterilization of formulations may be assured by microfiltration. This specialized technique, which is for low viscosity liquid formulations labile to heat or other sterilization methods, depends upon the physical removal of microorganisms by adsorption onto a filter or sieve mechanism. The separation of microorganisms from the filtrate may involve interactions associated with electrostatic forces or mechanical sieving by the size, shape, and tortuousness of the voids. Examples of filters for achieving sterility have a nominal porosity of 0.22 ⁇ m.
  • the formulations of the invention may be stored at 4°C sheltered from sunlight.
  • compositions of the present invention may be distributed into the systemic circulation by parenteral, e.g. , intramuscular or subcutaneous, administration, oral, ophthalmic, nasal, or pulmonary administration.
  • parenteral e.g. , intramuscular or subcutaneous, administration, oral, ophthalmic, nasal, or pulmonary administration.
  • the biodegradable polymer was a copolymer comprising 50% by weight D, -lactic acid and 50% by weight glycolic acid (“50/50 PLGA”) and having an average molecular weight between 20,000 and 30,000 daltons, and was synthesized using standard methods known in the art. See, e.g., U.S. Patent Nos. 2,703,316 or 2,758,987.
  • Example 2 The formulation prepared by the procedures described above in Example 1 was poured into a vial containing 20 ml of saline. Again, the dye was contained within the congealed globules, and was slowly released into the surrounding saline upon the addition of 3 ml of methylene chloride.
  • the formulation was dispersed into a vial containing distilled water, and the vial was agitated.
  • the formulation emulsified as globules in the vial.
  • the globules had a mean diameter of 60 nM.
  • High performance liquid chromatography revealed virtually no degradation of the LHRH agonist during the formulation process.
  • Example 3 The formulation described in Example 3 was injected into Wistar rats (IFFA Credo, St. Germain Sur L'Arbesle, France) at a dose of 400 ⁇ g of peptide per kg weight of rat.
  • Plasma levels of testosterone were determined from blood samples collected at different days by sinus retroorbital taking. 50 ⁇ l of blood sample, 200 ⁇ l of ⁇ 125 testosterone, and 200 ⁇ l of antiserum were poured into tubes which were shaken and incubated during 24 hours at 37°C.
  • the immuno- precipitant reagent propanol (1 ml) was added in each tube, and all the tubes were incubated 15 minutes at room temperature. The supernatant was eliminated after centrifugation, and radioactivity was measured with a multigamma counter LKB-WALLAC Model 1261 (LKB, Les Ulis, France) .
  • Example 3 The above synthetic protocol in Example 3 was performed with the exception that 62 mg of the insoluble pamoate salt of TriptorelinTM dissolved in 1 ml of ethanol was used instead of 51 mg of the acetate salt of TriptorelinTM dissolved in 0.1 ml of water and 0.9 ml of - 8 - ethanol.
  • the resulting formulation was injected into Wistar rats at a concentration of 400 ⁇ g/kg as performed in Example 4.
  • the data is presented in Table II.
  • the formulation slowly released the LHRH agonist over a period of at least 17 days.
  • Example 6 The formulation described in Example 6 was intramuscularly injected into Wistar rats at a dose of 6 g of peptide per kg weight of rat. Blood for peptide analysis was collected into aprotinine tubes to avoid any peptide degradation (Laboratoire CHOAY, Gentilly, France) . Samples were centrifuged immediately and the plasma separated and stored at -20°C until radioimmunoassay ("RIA") to determine the amounts of the drug (ng/ml) . RIA had been developed after immunization of rabbits with peptide conjugated to bovine serum albumin to obtain a specific antibody. Iodine 125 has been used to label LANREOTIDE.
  • the data is presented in Table III.
  • the formulation slowly released LANREOTIDE over a period of at least 12 days.
  • Example 6 The above synthetic protocol in Example 6 was performed with the exception that 365 mg of the acetate salt of LANREOTIDE dissolved in 0.1 ml of water and 0.9 ml of ethanol was used instead of 388 mg of the pamoate salt of LANREOTIDE dissolved in 1 ml of ethanol.
  • This formulation was injected into Wistar rats at a dose of 6 ⁇ g/kg and RIA performed in the manners as described in Example 7. The data is presented in Table IV. The formulation slowly released the peptide over a period of at least 14 days.
  • Example 9 10 ml of PEG 400 and 8 ml of benzyl benzoate were added to and mixed within a 100 ml beaker. l g of 50/50 PLGA copolymer having an average molecular weight of 40,000 to 50,000 was added to the same beaker and dissolved by heating the beaker to 60°C while stirring. The beaker was then cooled. 200 mg of the steroid 179- hydroxy-oestradiol was then added to and mixed within the beaker. 4 ml of castor oil was then slowly added to and mixed within the same beaker.
  • Example 10 10 ml of PEG 400 and 8 ml of benzyl benzoate were added to and mixed within a 100 ml beaker. l g of 50/50 PLGA copolymer having an average molecular weight of 40,000 to 50,000 was added to the same beaker and dissolved by heating the beaker to 60°C while stirring. The beaker was then cooled.
  • Example 9 The formulation described in Example 9 was intramuscularly injected into Wistar rats at a dose of 4 mg/kg.
  • the concentration of the steroid was determined using an EIA (enzymoimmunoassay) kit (Cayman Chemical, SPI-BIO, Massay, France) .
  • the data is presented in Table V.
  • the formulation slowly released the 17?-hydroxy- oestradiol over a period of at least 11 days.
  • Example 12 The formulation in Example 12 was injected into Wistar rats at a dose of 4 ⁇ g/kg.
  • concentration of the steroid (ng/ml plasma) was determined using an EIA kit (Cayman Chemical, SPI-BIO, Massay, France) .
  • the data is presented in Table VI.
  • the formulation slowly released progesterone over a period of at least 11 days.

Abstract

A sustained release drug formulation including: a drug; a biodegradable polymer which is insoluble in water; and an oil vehicle in which both the drug and the polymer are dissolved. The oil vehicle contains 10-100 % by volume of a pharmaceutically acceptable oil and 0-90 % by volume of a pharmaceutically acceptable liquid carrier for the drug or the polymer.

Description

SUSTAINED RELEASE DRUG FORMULATIONS
Background of the Invention Biodegradable polymer sustained release formulations have been used to administer drugs over a prolonged period of time. See, e.g., U.S. Patent Nos. 3,773,919 and 4,767,628. These formulations are generally in the form of solid cylindrical implants, microcapsules, or microspheres. Solid implants require incisions in the patient which often are quite painful, resulting in poor patient compliance. Solid microcapsules and microspheres, which are injected into the patient, are often difficult to reproducibly manufacture and, thus, can give varying release profiles. Also, microcapsules and microspheres require lyophilization in order to avoid agglomerization of the particles during storage and large needles for injection.
Summary of the Invention The invention features a sustained release drug formulation which includes: a drug; a biodegradable polymer insoluble in water (i.e., less than 0.01 mg/ml at
25°C) ; and an oil vehicle containing 10-100% by volume a pharmaceutically acceptable and biodegradable oil and 0- 90% by volume a pharmaceutically acceptable liquid carrier. The drug and the biodegradable polymer are dissolved in the oil vehicle.
The amount of a drug dissolved in an oil vehicle depends on its solubility, and may range from 1 to 500 mg per ml of the oil vehicle. The drug can be a peptide, e.g., somatostatin, luteinizing hormone-releasing hormone
("LHRH") , growth hormone releasing peptide, bo besin, gastrin releasing peptide, calcitonin, bradykinin,
CONFIRMATIONCOPT galanin, melanocyte stimulating hormone, growth hormone releasing factor, amylin, adrenomedullin, tachykinins, secretin, parathyroid hormone, enkephalin, endotheiin, calcitonin gene releasing peptide, neuromedins, parathyroid hormone related protein, glucagon, neurotensin, adrenocorticotrophic hormone, peptide YY, glucagon releasing peptide, vasoactive intestinal peptide, pituitary adenylated cyclase activating peptide, motilin, substance P, neuropeptide Y, thyrotropin stimulating hormone, and analogs and fragments thereof. The drug can also be a steroid. Examples of a steroid drug include, but are not limited to, 17-?-hydroxy oestradiol and progesterone.
The drug can be provided in the form of pharmaceutically acceptable salts. Examples of such salts include, but are not limited to, those formed with organic acids (e.g., acetic, lactic, maleic, citric, malic, ascorbic, succinic, benzoic, methanesulfonic, toluenesulfonic, or pamoic acid) , inorganic acids (e.g. , hydrochloric acid, sulfuric acid, or phosphoric acid) , polymeric acids (e.g., tannic acid, carboxymethyl cellulose, polylactic, polyglycolic, or copolymers of polylactic-glycolic acids) .
A suitable biodegradable polymer to be used to practice this invention is a polyester. Examples of monomers used to form such a polyester include, but are not limited to, e-caprolactone, lactic acid, glycolic acid, e-caprolic acid, p-dioxanone, e-caprionic acid, l,5-dioxepan-2-one, l,4-dioxepan-2-one, alkylene oxylate, cycloalkylene, cycloalkylene oxylate, alkylene succinate, and 3-hydroxy butyrate, . Note that any optically active isomers or racemates can be used. Further, the polyester can be a copolymers prepared from two or more different monomers. The biodegradable polymer may be a liquid, or have a glass transition temperature or a melting temperature up to 200°C. It may have a molecular weight (averaged) of 500-150,000 daltons, preferably, 1,000-75,000 daltons. Polymers with higher molecular weights slow down the release of the drug from the formulation. Generally speaking, 1-500 mg (preferably, 15-300 mg) of the polymer can be dissolved in 1 ml of the oil vehicle.
Examples of a biodegradable oil, an essential component of the oil vehicle, include oils derived from plants (e.g., corn oil, coconut oil, linseed oil, olive oil, palm oil, sunflower seed oil, cottonseed oil, peanut oil, sesame oil, or castor oil), animals (e.g., sardine oil, cod-liver oil, whale oil, sperm oil), paraffin oil, or triglyceride derivatives such as miglyol (Labafac, Gattefusse, Lyon, France) , or mixtures thereof.
The oil vehicle may also contain one or more pharmaceutically acceptable liquid carriers, e.g., solvents of either the drug or the polymer such as water and ethanol. The amount of a carrier added should remain miscible with the oil used to form the vehicle. If necessary, a pharmaceutically acceptable liquid ester or polyether may be added to the oil vehicle to aid in the dissolution of the drug or the polymer into the oil vehicle. Examples of suitable esters include benzyl benzoate (which can assist the dissolution of the polymer such as a polyester), or polyethylene glycol, e.g., PEG 400 (which can assist the dissolution of the drug such as a peptide). The ester or polyether may constitute 0.1- 90% by volume of the oil vehicle.
The oil vehicle may also include a pharmaceutically acceptable surfactant in order to clarify the formulation. Examples of suitable surfactants include polysorbates (e.g., TWEEN 80 or SPAN 80) .
Thus, what is meant by "an oil vehicle" herein is a water-immiscible medium in which a drug and a biodegradable polymer are dissolved. It contains at least an oil and may also contain a liquid carrier for the drug or polymer, a liquid ester or polyether, or a surfactant. Sterilization of formulations may be assured by microfiltration. This specialized technique, which is for low viscosity liquid formulations labile to heat or other sterilization methods, depends upon the physical removal of microorganisms by adsorption onto a filter or sieve mechanism. The separation of microorganisms from the filtrate may involve interactions associated with electrostatic forces or mechanical sieving by the size, shape, and tortuousness of the voids. Examples of filters for achieving sterility have a nominal porosity of 0.22 μm. The formulations of the invention may be stored at 4°C sheltered from sunlight.
The formulations of the present invention may be distributed into the systemic circulation by parenteral, e.g. , intramuscular or subcutaneous, administration, oral, ophthalmic, nasal, or pulmonary administration.
Other features and advantages of the present invention will be apparent from the detailed description of the invention, and also from the claims.
Detailed Description of the Invention It is believed that one skilled in the art can, based on the description herein, utilize the present invention to its fullest extent. The following specific examples, which shows various ways of preparing and testing several formulations of this invention are therefore to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Also, all publications, patent applications, patents, and other references mentioned herein are incorporated by reference.
Example l
In a 100 ml beaker, 6 ml of benzyl benzoate and 8 ml of polyethylene glycol 400 (PEG 400) were mixed together. 6 ml of sesame oil was then added to and mixed within the beaker, forming an oily substance. The oily substance was then mixed with 50 mg of a biodegradable polymer and was added to the same beaker and dissolved by heating the beaker to 60°C while stirring. The beaker was then cooled. 10 mg of blue patente V dye (Prolabo, Fontenay Sous, Bois, France; used here as a drug substitute for experimental purposes) dissolved in 0.1 ml of water and 0.1 mg of TWEEN 80 dissolved in 0.9 ml of ethanol were mixed with the oily substance to form the sustained release formulation. The biodegradable polymer was a copolymer comprising 50% by weight D, -lactic acid and 50% by weight glycolic acid ("50/50 PLGA") and having an average molecular weight between 20,000 and 30,000 daltons, and was synthesized using standard methods known in the art. See, e.g., U.S. Patent Nos. 2,703,316 or 2,758,987.
2 ml of the resulting sustained release formulation was poured into a vial containing 20 ml of distilled water. The oil settled at the bottom of the vial and formed an emulsion. Upon agitation with a magnetic stirrer, the emulsion formed globules. The blue dye remained in the emulsion globules and was slowly released into the surrounding water over time. The subsequent addition of 3 ml of methylene chloride to the vial, a solvent of the copolymer, degraded the emulsion and quickly release the blue dye into the distilled water. Example 2
The formulation prepared by the procedures described above in Example 1 was poured into a vial containing 20 ml of saline. Again, the dye was contained within the congealed globules, and was slowly released into the surrounding saline upon the addition of 3 ml of methylene chloride.
Example 3
8 ml of PEG 400 and 6 ml of benzyl benzoate were added to and mixed within a 100 ml beaker. 500 mg of 50/50 PLGA copolymer having an average molecular weight of 30,000 to 40,000 was added to the same beaker and dissolved by heating the beaker to 60°C while stirring. The beaker was then cooled. 51 mg of the water-soluble acetate salt of the LHRH agonist Triptorelin™ (p-Glu-His- Trp-Ser-Tyr-D-Trp-Leu-Arg-Pro-Gly-NH2) was dissolved in a solvent consisting of 0.1 ml of water and 0.9 ml of ethanol, and the resulting solution was then added to and mixed within the beaker. 6 ml of castor oil was then slowly added to and mixed within the same beaker.
Finally, 100 μl of ethanol was added to and mixed within the same beaker in order to clarify the resulting formulation.
The formulation was dispersed into a vial containing distilled water, and the vial was agitated. The formulation emulsified as globules in the vial. The globules had a mean diameter of 60 nM. High performance liquid chromatography revealed virtually no degradation of the LHRH agonist during the formulation process.
Example 4
The formulation described in Example 3 was injected into Wistar rats (IFFA Credo, St. Germain Sur L'Arbesle, France) at a dose of 400 μg of peptide per kg weight of rat. Plasma levels of testosterone (ng/ml) were determined from blood samples collected at different days by sinus retroorbital taking. 50 μl of blood sample, 200 μl of ι125 testosterone, and 200 μl of antiserum were poured into tubes which were shaken and incubated during 24 hours at 37°C. The immuno- precipitant reagent propanol (1 ml) was added in each tube, and all the tubes were incubated 15 minutes at room temperature. The supernatant was eliminated after centrifugation, and radioactivity was measured with a multigamma counter LKB-WALLAC Model 1261 (LKB, Les Ulis, France) .
The data is presented in Table I. As the data indicated, the formulation continuously release the LHRH agonist over a period of at least 29 days as indicated by the inhibition of testosterone in the rats.
TABLE I
DAYS TESTOSTERONE (ng/ml)
0 2.80
2 4.17
4 0.47
8 0.64
11 1.34
15 1.04
18 0.69
22 1.63
25 1.57
29 0.85
Example 5
The above synthetic protocol in Example 3 was performed with the exception that 62 mg of the insoluble pamoate salt of Triptorelin™ dissolved in 1 ml of ethanol was used instead of 51 mg of the acetate salt of Triptorelin™ dissolved in 0.1 ml of water and 0.9 ml of - 8 - ethanol. The resulting formulation was injected into Wistar rats at a concentration of 400 μg/kg as performed in Example 4. The data is presented in Table II. The formulation slowly released the LHRH agonist over a period of at least 17 days.
TABLE II
DAYS TESTOSTERONE (ng/ml)
0 2.50
2 3.33
3 1.30
7 0.68
10 0.84
14 0.29
17 0.46
Example 6
8 ml of PEG 400 and 6 ml of benzyl benzoate were added to and mixed within a 100 ml beaker. 50 mg of a 50/50 PLGA copolymer was then added to the same beaker and dissolved by heating the beaker to 60°C while stirring. 90 percent, by weight, of the copolymer, had an average molecular weight of 20,000 to 30,000 while 10 percent, by weight, of the copolymer had an average molecular weight of 1500 to 2000. The beaker was then cooled. 388 mg of the pamoate salt of the somatostatin agonist LANREOTIDE (D-Nal-c[Cys-Tyr-D-Trp-Lys-Val-Cys]- Thr-NH2) was dissolved in 1 ml of ethanol, and the resulting solution was added to and mixed within the same beaker. Finally, 6 ml of castor oil was then slowly added to the same beaker to form the sustained release formulation.
Example 7
The formulation described in Example 6 was intramuscularly injected into Wistar rats at a dose of 6 g of peptide per kg weight of rat. Blood for peptide analysis was collected into aprotinine tubes to avoid any peptide degradation (Laboratoire CHOAY, Gentilly, France) . Samples were centrifuged immediately and the plasma separated and stored at -20°C until radioimmunoassay ("RIA") to determine the amounts of the drug (ng/ml) . RIA had been developed after immunization of rabbits with peptide conjugated to bovine serum albumin to obtain a specific antibody. Iodine 125 has been used to label LANREOTIDE.
The data is presented in Table III. The formulation slowly released LANREOTIDE over a period of at least 12 days.
TABLE III
DAYS LANREOTIDE (ng/ml)
2 9.31
5 1.87
8 0.81
12 0.28
Example 8
The above synthetic protocol in Example 6 was performed with the exception that 365 mg of the acetate salt of LANREOTIDE dissolved in 0.1 ml of water and 0.9 ml of ethanol was used instead of 388 mg of the pamoate salt of LANREOTIDE dissolved in 1 ml of ethanol. This formulation was injected into Wistar rats at a dose of 6 μg/kg and RIA performed in the manners as described in Example 7. The data is presented in Table IV. The formulation slowly released the peptide over a period of at least 14 days.
TABLE IV
DAYS LANREOTIDE (ng/ml)
2 26.14
5 3.15
8 0.79
12 0.37
14 0.16
Example 9 10 ml of PEG 400 and 8 ml of benzyl benzoate were added to and mixed within a 100 ml beaker. l g of 50/50 PLGA copolymer having an average molecular weight of 40,000 to 50,000 was added to the same beaker and dissolved by heating the beaker to 60°C while stirring. The beaker was then cooled. 200 mg of the steroid 179- hydroxy-oestradiol was then added to and mixed within the beaker. 4 ml of castor oil was then slowly added to and mixed within the same beaker. Example 10
The formulation described in Example 9 was intramuscularly injected into Wistar rats at a dose of 4 mg/kg. The concentration of the steroid was determined using an EIA (enzymoimmunoassay) kit (Cayman Chemical, SPI-BIO, Massay, France) . The data is presented in Table V. The formulation slowly released the 17?-hydroxy- oestradiol over a period of at least 11 days.
TABLE V
DAYS 170-HYDROXY-OESTRADIOL (ng/ml)
2 12.45
4 2.62
8 0.19
11 0.10
Example 11
10 ml of PEG 400 and 8 ml of benzyl benzoate were added to and mixed within a 100 ml beaker. 1 g of 50/50 PLGA copolymer having an average molecular weight of 40,000 to 50,000 was then added to the same beaker and dissolved by heating the beaker to 60°C while stirring. The beaker was then cooled. 200 mg of progesterone was then added to and mixed within the beaker. 4 ml of castor oil was then mixed with 2 ml of ethanol and slowly added to the same beaker to form the sustained release formulation. Example 12
The formulation in Example 12 was injected into Wistar rats at a dose of 4 μg/kg. The concentration of the steroid (ng/ml plasma) was determined using an EIA kit (Cayman Chemical, SPI-BIO, Massay, France) . The data is presented in Table VI. The formulation slowly released progesterone over a period of at least 11 days.
TABLE VI
DAYS PROGESTERONE (ng/ml)
2 11.54
4 9.51
8 1.39
11 1.97
Other Embodiments It is to be understood that while the invention has been described in conjunction with the detailed description thereof, that the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the claims.
What is claimed is:

Claims

1. A sustained release drug formulation, said formulation comprising: 5 a drug; a biodegradable polymer which is insoluble in water; and an oil vehicle containing a pharmaceutically acceptable oil which is biodegradable and a pharmaceutically acceptable liquid carrier which dissolves said drug or said polymer, said oil and said carrier constitution 10- 100% and 0-90% by ϋ volume of said oil vehicule. respectively; wherein bolh said drug and said polymer are dissolved in said oil vehicle.
2. A formulation of claim 1 . wherein the amount o said polymer is 1 - 500 mg per ml of said oil vehicle.
3. A formulation of claim 1 or 2. wherein the amount of said polymer is 15-300 mg per ml of said oil vehicle.
4. A formulation according to anyone of claims 1 to 3. wherein the 0 molecular weight of said polymer is 500-150.000 daltons.
5. A formulation according to anyone oi' claims 1 to 4. wherein said polymer is made of a monomer selected from ε -caprolactone. lactic acid, glycolic acid, and a combination thereof.
6. A formulation according to anyone of claims 1 to 5. wherein the molecular weight of said polymer is 1.000-75.000 daltons.
7. A formulation according to anyone of claims 1 to 6, wherein said oil is 0 corn oil. cottonseed oil. peanut oil. sesame oil. castor oil. or a mixture thereof.
8. A formulation according to anyone of claims 1 to 7. wherein said oil vehicle further comprises a pharmaceuticalh' acceptable ester or polyesther to facilitate dissolution of said drug or polymer, said ester or polyether constituting 0.1 - 5 90% by volume of said oil vehicle.
9. A formulation according to claim 8. wherein said ester or polyether is benzyl benzoate, polyethylene glycol. or a mixture thereof.
10. A formulation according to anyone of claims 1 to 9. wherein said oil vehicule further comprises a pharmaceutically acceptable surfactant.
1 1. A formulation according to anyone of claims 1 to 10, wherein said drug is a peptide.
12. A formulation according to claim 1 1. wherein said peptide is a somatostatin agonist or an LHRH agonist.
13. A formulation according to anyone of claims 1 to 1 1 . wherein said drug is a steroid.
14. A formulation according to claim 13. wherein said steroid is 17-β- hydroxy oestradiol or progesterone.
PCT/IB1997/000014 1996-01-16 1997-01-15 Sustained release drug formulations WO1997026015A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU12064/97A AU1206497A (en) 1996-01-16 1997-01-15 Sustained release drug formulations
DE69721481T DE69721481T2 (en) 1996-01-16 1997-01-15 DELAYED RELEASE ACTIVE SUBSTANCE FORMULATIONS
EP97900072A EP0874642B1 (en) 1996-01-16 1997-01-15 Sustained release drug formulations
CA002242986A CA2242986C (en) 1996-01-16 1997-01-15 Sustained release drug formulations
DK97900072T DK0874642T3 (en) 1996-01-16 1997-01-15 Delayed-release drug formulations
AT97900072T ATE238813T1 (en) 1996-01-16 1997-01-15 SUSTAINED RELEASE ACTIVE FORMULATIONS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/584,320 1996-01-16
US08/584,320 US5980945A (en) 1996-01-16 1996-01-16 Sustained release drug formulations

Publications (1)

Publication Number Publication Date
WO1997026015A1 true WO1997026015A1 (en) 1997-07-24

Family

ID=24336839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB1997/000014 WO1997026015A1 (en) 1996-01-16 1997-01-15 Sustained release drug formulations

Country Status (10)

Country Link
US (1) US5980945A (en)
EP (1) EP0874642B1 (en)
AT (1) ATE238813T1 (en)
AU (1) AU1206497A (en)
CA (1) CA2242986C (en)
DE (1) DE69721481T2 (en)
DK (1) DK0874642T3 (en)
ES (1) ES2197982T3 (en)
PT (1) PT874642E (en)
WO (1) WO1997026015A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130200A (en) * 1996-12-20 2000-10-10 Alza Corporation Gel composition and methods
WO2002067991A1 (en) * 2001-02-23 2002-09-06 Genentech, Inc. Erodible polymers for injection
WO2005000268A2 (en) * 2003-06-26 2005-01-06 Control Delivery Systems, Inc. Bioerodible sustained release drug delivery systems
WO2005002625A2 (en) * 2003-06-26 2005-01-13 Control Delivery Systems, Inc. In-situ gelling drug delivery system
JP2005514350A (en) * 2001-11-14 2005-05-19 アルザ・コーポレーション Injectable depot composition
US20060233841A1 (en) * 1999-06-04 2006-10-19 Brodbeck Kevin J Implantable gel compositions and method of manufacture
WO2009068708A3 (en) * 2007-11-23 2009-07-16 Gp Pharm Sa Pharmaceutical composition with prolonged release of somatostatin or an analogue thereof
EP2088154A1 (en) 2004-03-09 2009-08-12 Ironwood Pharmaceuticals, Inc. Methods and compositions for the treatment of gastrointestinal disorders
WO2011069038A2 (en) 2009-12-03 2011-06-09 Synergy Pharmaceuticals, Inc. Agonists of guanylate cyclase useful for the treatment of hypercholesterolemia, atherosclerosis, coronary heart disease, gallstone, obesity and other cardiovascular diseases
US8080562B2 (en) 2008-04-15 2011-12-20 Sarcode Bioscience Inc. Crystalline pharmaceutical and methods of preparation and use thereof
WO2012151343A1 (en) 2011-05-04 2012-11-08 Balance Therapeutics, Inc. Pentylenetetrazole derivatives
US8378105B2 (en) 2009-10-21 2013-02-19 Sarcode Bioscience Inc. Crystalline pharmaceutical and methods of preparation and use thereof
WO2013138352A1 (en) 2012-03-15 2013-09-19 Synergy Pharmaceuticals Inc. Formulations of guanylate cyclase c agonists and methods of use
US8592450B2 (en) 2005-05-17 2013-11-26 Sarcode Bioscience Inc. Compositions and methods for treatment of eye disorders
WO2014131024A2 (en) 2013-02-25 2014-08-28 Synergy Pharmaceuticals Inc. Agonists of guanylate cyclase and their uses
WO2014151200A2 (en) 2013-03-15 2014-09-25 Synergy Pharmaceuticals Inc. Compositions useful for the treatment of gastrointestinal disorders
WO2014151206A1 (en) 2013-03-15 2014-09-25 Synergy Pharmaceuticals Inc. Agonists of guanylate cyclase and their uses
EP2810951A2 (en) 2008-06-04 2014-12-10 Synergy Pharmaceuticals Inc. Agonists of guanylate cyclase useful for the treatment of gastrointestinal disorders, inflammation, cancer and other disorders
WO2015054649A2 (en) 2013-10-10 2015-04-16 Synergy Pharmaceuticals, Inc. Agonists of guanylate cyclase useful for the treatment of opioid induced dysfunctions
US9085553B2 (en) 2012-07-25 2015-07-21 SARcode Bioscience, Inc. LFA-1 inhibitor and methods of preparation and polymorph thereof
US9216174B2 (en) 2003-11-05 2015-12-22 Sarcode Bioscience Inc. Modulators of cellular adhesion
EP2998314A1 (en) 2007-06-04 2016-03-23 Synergy Pharmaceuticals Inc. Agonists of guanylate cyclase useful for the treatment of gastrointestinal disorders, inflammation, cancer and other disorders
WO2017123634A1 (en) 2016-01-11 2017-07-20 Synergy Pharmaceuticals, Inc. Formulations and methods for treating ulcerative colitis
EP3241839A1 (en) 2008-07-16 2017-11-08 Synergy Pharmaceuticals Inc. Agonists of guanylate cyclase useful for the treatment of gastrointestinal, inflammation, cancer and other disorders
US10960087B2 (en) 2007-10-19 2021-03-30 Novartis Ag Compositions and methods for treatment of diabetic retinopathy

Families Citing this family (300)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7048906B2 (en) 1995-05-17 2006-05-23 Cedars-Sinai Medical Center Methods of diagnosing and treating small intestinal bacterial overgrowth (SIBO) and SIBO-related conditions
US6861053B1 (en) 1999-08-11 2005-03-01 Cedars-Sinai Medical Center Methods of diagnosing or treating irritable bowel syndrome and other disorders caused by small intestinal bacterial overgrowth
AU8530498A (en) 1997-06-05 1998-12-21 Roland Bodmeier Multiphase system
JP2003518914A (en) 1999-02-10 2003-06-17 キュリス インコーポレイテッド Methods and reagents for treating glucose metabolism disorders
US7745216B2 (en) * 1999-02-10 2010-06-29 Curis, Inc. Methods and reagents for treating glucose metabolic disorders
EP1248596B1 (en) 2000-01-11 2007-03-07 Roland Bodmeier Implantation kit comprising a support phase and a solvent
US6358513B1 (en) 2000-02-15 2002-03-19 Allergan Sales, Inc. Method for treating Hashimoto's thyroiditis
US6773711B2 (en) * 2000-02-15 2004-08-10 Allergan, Inc. Botulinum toxin therapy for Hashimoto's thyroiditis
US6524580B1 (en) 2000-02-15 2003-02-25 Allergan Sales, Inc. Method for treating thyroid disorders
US6328977B1 (en) 2000-02-22 2001-12-11 Allergan Sales, Inc. Method for treating hyperparathyroidism
US20030211974A1 (en) * 2000-03-21 2003-11-13 Brodbeck Kevin J. Gel composition and methods
US20040170665A1 (en) * 2000-06-02 2004-09-02 Allergan, Inc. Intravitreal botulinum toxin implant
US20040033241A1 (en) * 2000-06-02 2004-02-19 Allergan, Inc. Controlled release botulinum toxin system
US6306423B1 (en) 2000-06-02 2001-10-23 Allergan Sales, Inc. Neurotoxin implant
CN1568195B (en) * 2000-12-14 2011-03-02 安米林药品公司 Peptide YY and peptide YY agonists for treatment of metabolic disorders
US7122622B2 (en) * 2002-04-16 2006-10-17 Biosynthema Inc. Peptide compounds having improved binding affinity to somatostatin receptors
US20060122106A1 (en) * 2002-06-14 2006-06-08 Amylin Pharmaceuticals, Inc Prevention and/or treatment of inflammatory bowel disease using pyy or agonists thereof
BR0316685A (en) * 2002-12-17 2005-11-01 Nastech Pharm Co Compositions and methods for the improved mucosal administration of γ2 receptor-fixing peptides and methods for treating and preventing obesity
US7166575B2 (en) * 2002-12-17 2007-01-23 Nastech Pharmaceutical Company Inc. Compositions and methods for enhanced mucosal delivery of peptide YY and methods for treating and preventing obesity
US7186692B2 (en) 2002-12-17 2007-03-06 Nastech Pharmaceutical Company Inc. Compositions and methods for enhanced mucosal delivery and non-infused administration of Y2 receptor-binding peptides and methods for treating and preventing obesity
US7229966B2 (en) * 2002-12-17 2007-06-12 Nastech Pharmaceutical Company Inc. Compositions and methods for enhanced mucosal delivery of Y2 receptor-binding peptides and methods for treating and preventing obesity
CN100428923C (en) * 2003-10-06 2008-10-29 株式会社资生堂 External use composition
TWI353250B (en) * 2003-12-16 2011-12-01 Ipsen Pharma Sas Glp-1 pharmaceutical compositions
JP5638177B2 (en) 2004-02-11 2014-12-10 アミリン・ファーマシューティカルズ, リミテッド・ライアビリティ・カンパニーAmylin Pharmaceuticals, Llc Pancreatic polypeptide family motif and polypeptide containing the motif
GB0412866D0 (en) * 2004-06-09 2004-07-14 Novartis Ag Organic compounds
US11246913B2 (en) 2005-02-03 2022-02-15 Intarcia Therapeutics, Inc. Suspension formulation comprising an insulinotropic peptide
US8318210B2 (en) 2005-02-28 2012-11-27 Neos Therapeutics, Lp Compositions and methods of making sustained release liquid formulations
WO2006137953A1 (en) 2005-04-01 2006-12-28 The Regents Of The Univerisity Of California Phosphono-pent-2-en-1-yl nucleosides and analogs
RU2408368C2 (en) * 2005-06-27 2011-01-10 Биовэйл Лэборэториз Интернэшнл С.Р.Л. Modified release bupropion salt preparations
CA2615939A1 (en) * 2005-08-02 2007-02-08 Miv Therapeutics Inc. Microdevices comprising nanocapsules for controlled delivery of drugs and method of manufacturing same
US20090227552A1 (en) * 2005-09-26 2009-09-10 Kellie Ann Hooley Fulvestrant formulations
US20070092553A1 (en) * 2005-10-21 2007-04-26 Pfab Lp Compositions and methods of making rapidly dissolving lonically masked formulations
CA2634974A1 (en) 2005-12-30 2007-07-12 Zensun (Shanghai) Science & Technology, Ltd. Extended release of neuregulin for improved cardiac function
US7756524B1 (en) 2006-01-31 2010-07-13 Nextel Communications Inc. System and method for partially count-based allocation of vocoder resources
CA2644784A1 (en) * 2006-03-13 2007-09-20 Jinling Chen Formulations of sitaxsentan sodium
MX2008011842A (en) * 2006-03-13 2008-10-02 Encysive Pharmaceuticals Inc Methods and compositions for treatment of diastolic heart failure.
JP5424480B2 (en) * 2006-03-13 2014-02-26 杏林製薬株式会社 Aminoquinolones as GSK-3 inhibitors
US20080026061A1 (en) * 2006-06-22 2008-01-31 Reichwein John F Crystalline N-(4-chloro-3-methyl-5-isoxazolyl)-2-[2-methyl-4.5-(methylenedioxy)phenylacetyl]-thiophene-3-sulfonamide
CN102274557B (en) 2006-08-09 2014-12-03 精达制药公司 Osmotic delivery systems and piston assemblies
AU2007297597B2 (en) 2006-09-21 2013-02-21 Kyorin Pharmaceuticals Co., Ltd. Serine hydrolase inhibitors
EP2081893B1 (en) 2006-10-19 2011-03-23 Auspex Pharmaceuticals, Inc. Substituted indoles
US20100137421A1 (en) * 2006-11-08 2010-06-03 Emmanuel Theodorakis Small molecule therapeutics, synthesis of analogues and derivatives and methods of use
EP2125739A1 (en) * 2006-12-22 2009-12-02 Encysive Pharmaceuticals, Inc. Modulators of c3a receptor and methods of use thereof
CA2696053A1 (en) 2007-02-28 2008-09-04 Conatus Pharmaceuticals, Inc. Methods for the treatment of liver diseases
SI2125698T1 (en) 2007-03-15 2016-12-30 Auspex Pharmaceuticals, Inc. DEUTERATED d9-VENLAFAXINE
NZ580447A (en) 2007-04-23 2011-06-30 Intarcia Therapeutics Inc Suspension formulations of insulinotropic peptides and uses thereof
US7892776B2 (en) 2007-05-04 2011-02-22 The Regents Of The University Of California Screening assay to identify modulators of protein kinase A
EP2164631A4 (en) * 2007-05-30 2013-08-21 Neos Therapeutics Lp Modifying drug release in suspensions of ionic resin systems
BRPI0814542A2 (en) * 2007-07-12 2014-09-30 Tragara Pharmaceuticals Inc METHODS AND COMPOSITIONS FOR THE TREATMENT OF CANCER, TUMORS AND TUMOR-RELATED DISORDERS
ES2371800T3 (en) * 2007-09-11 2012-01-10 Kyorin Pharmaceutical Co.,Ltd. CYANOAMINOQUINOLONES AS INHIBITORS OF GSK-3.
MX2010002662A (en) 2007-09-12 2010-04-09 Activx Biosciences Inc Spirocyclic aminoquinolones as gsk-3 inhibitors.
US8193182B2 (en) 2008-01-04 2012-06-05 Intellikine, Inc. Substituted isoquinolin-1(2H)-ones, and methods of use thereof
CA2726861C (en) 2008-02-13 2014-05-27 Intarcia Therapeutics, Inc. Devices, formulations, and methods for delivery of multiple beneficial agents
US9107815B2 (en) 2008-02-22 2015-08-18 Allergan, Inc. Sustained release poloxamer containing pharmaceutical compositions
US8618289B2 (en) 2008-03-17 2013-12-31 Ambit Biosciences Corporation RAF kinase modulator compounds and methods of use thereof
WO2009128932A1 (en) * 2008-04-15 2009-10-22 Sarcode Corporation Delivery of lfa-1 antagonists to the gastrointestinal system
US20090298882A1 (en) * 2008-05-13 2009-12-03 Muller George W Thioxoisoindoline compounds and compositions comprising and methods of using the same
BRPI0912842A8 (en) * 2008-05-20 2019-01-29 Cerenis Therapeutics Holding pharmaceutical composition, methods to prevent or treat niacin-induced flushing in an individual, to reduce at least one niacin therapy-related flushing symptom in an individual, to decrease protaglandin-related side effects in an individual, to decrease a rate of discontinuation of niacin treatment by an individual, to increase patient compliance with niacin treatment, to treat atherosclerosis in a patient, to treat a disease related to a low hdl profile in a patient, nicotinic acid formulation of modified dispensing, pharmaceutical composition use, and aspirin microcapsule
JP2011526893A (en) 2008-07-02 2011-10-20 イデニク プハルマセウティカルス,インコーポレイテッド Compounds and pharmaceutical compositions for the treatment of viral infections
EA020299B1 (en) 2008-09-04 2014-10-30 АМИЛИН ФАРМАСЬЮТИКАЛЗ, ЭлЭлСи Sustained release formulations using non-aqueous carriers
JP5780969B2 (en) 2008-12-31 2015-09-16 サイネクシス,インコーポレーテッド Cyclosporine A derivative
WO2010088450A2 (en) 2009-01-30 2010-08-05 Celladon Corporation Methods for treating diseases associated with the modulation of serca
US9186336B2 (en) 2009-02-06 2015-11-17 The General Hospital Corporation Methods of treating vascular lesions
US8568793B2 (en) 2009-02-11 2013-10-29 Hope Medical Enterprises, Inc. Sodium nitrite-containing pharmaceutical compositions
MY159327A (en) 2009-02-27 2016-12-25 Ambit Biosciences Corp Jak kinase modulating quinazoline derivatives and methods of use thereof
EP2403860B1 (en) 2009-03-04 2015-11-04 IDENIX Pharmaceuticals, Inc. Phosphothiophene and phosphothiazole as hcv polymerase inhibitors
CA2754909A1 (en) 2009-03-11 2010-09-16 Ambit Biosciences Corp. Combination of an indazolylaminopyrrolotriazine and taxane for cancer treatment
CN102421784B (en) * 2009-03-11 2015-09-30 杏林制药株式会社 As the 7-cycloalkyl amino quinolone of GSK-3 inhibitor
MX2011010105A (en) 2009-03-27 2012-01-12 Pathway Therapeutics Inc Pyrimidinyl and 1,3,5-triazinyl benzimidazole sulfonamides and their use in cancer therapy.
WO2010110686A1 (en) 2009-03-27 2010-09-30 Pathway Therapeutics Limited Pyrimidinyl and 1,3,5 triazinyl benzimidazoles and their use in cancer therapy
MX2011011141A (en) 2009-04-22 2012-02-13 Axikin Pharmaceuticals Inc Arylsulfonamide ccr3 antagonists.
EP2727908A3 (en) 2009-04-22 2014-08-20 Axikin Pharmaceuticals, Inc. 2,5-disubstituted arylsulfonamide CCR3 antagonists
EP2749554B1 (en) 2009-04-22 2017-12-20 SMA Therapeutics, Inc. 2,5-disubstituted arylsulfonamide CCR3 antagonists
WO2011003870A2 (en) 2009-07-06 2011-01-13 Creabilis S.A. Mini-pegylated corticosteroids, compositions including same, and methods of making and using same
DK3072890T3 (en) 2009-07-07 2019-02-11 Mei Pharma Inc Pyrimidinyl and 1,3,5-triazinylbenzimidazoles and their use in cancer therapy
EP3213756A1 (en) 2009-07-08 2017-09-06 Hope Medical Enterprise, Inc. D.b.a. Hope Pharmaceuticals Sodium thiosulfate-containing pharmaceutical compositions
US20110020272A1 (en) 2009-07-24 2011-01-27 Ulrich Schubert Combination therapy for treating hepatitis viral infection
US9284307B2 (en) 2009-08-05 2016-03-15 Idenix Pharmaceuticals Llc Macrocyclic serine protease inhibitors
JP2013502429A (en) 2009-08-19 2013-01-24 アムビト ビオスシエンセス コルポラチオン Biaryl compounds and methods of use thereof
CA2775676C (en) 2009-09-28 2016-08-16 Intarcia Therapeutics, Inc. Rapid establishment and/or termination of substantial steady-state drug delivery
WO2011056566A2 (en) 2009-10-26 2011-05-12 Sunesis Pharmaceuticals, Inc. Compounds and methods for treatment of cancer
WO2011056764A1 (en) 2009-11-05 2011-05-12 Ambit Biosciences Corp. Isotopically enriched or fluorinated imidazo[2,1-b][1,3]benzothiazoles
WO2011064769A1 (en) 2009-11-24 2011-06-03 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Methods and pharmaceutical compositions for the treatment of hot flashes
WO2011069002A1 (en) 2009-12-02 2011-06-09 Alquest Therapeutics, Inc. Organoselenium compounds and uses thereof
AU2010330862B2 (en) 2009-12-18 2015-06-25 Idenix Pharmaceuticals, Inc. 5,5-fused arylene or heteroarylene hepatitis C virus inhibitors
WO2011079313A1 (en) * 2009-12-23 2011-06-30 Map Pharmaceuticals, Inc. Novel ergoline analogs
CN102834409A (en) 2009-12-30 2012-12-19 西尼克斯公司 Cyclosporine analogues
WO2011089167A1 (en) 2010-01-19 2011-07-28 Virologik Gmbh Kombination of proteasome inhibitors and anti -hepatitis medication for treating retroviral diseases
WO2011094890A1 (en) 2010-02-02 2011-08-11 Argusina Inc. Phenylalanine derivatives and their use as non-peptide glp-1 receptor modulators
WO2011097525A1 (en) 2010-02-05 2011-08-11 Tragara Pharmaceuticals, Inc. Solid state forms of macrocyclic kinase inhibitors
NZ601289A (en) 2010-02-11 2014-10-31 Celgene Corp Arylmethoxy isoindoline derivatives and compositions comprising and methods of using the same
EP2542542B1 (en) 2010-03-02 2015-04-22 Axikin Pharmaceuticals, Inc. Isotopically enriched arylsulfonamide ccr3 antagonists
WO2011112689A2 (en) 2010-03-11 2011-09-15 Ambit Biosciences Corp. Saltz of an indazolylpyrrolotriazine
AU2011227232B2 (en) 2010-03-17 2015-07-09 Axikin Pharmaceuticals Inc. Arylsulfonamide CCR3 antagonists
WO2011150198A1 (en) 2010-05-27 2011-12-01 Ambit Biosciences Corporation Azolyl urea compounds and methods of use thereof
WO2011150201A2 (en) 2010-05-27 2011-12-01 Ambit Biosciences Corporation Azolyl amide compounds and methods of use thereof
JP6019015B2 (en) 2010-06-01 2016-11-02 ビオトヘルイク, インコーポレイテッド Method for treating hematological malignancies using 6-cyclohexyl-1-hydroxy-4-methyl-2 (1H) -pyridone
JP5844354B2 (en) 2010-06-01 2016-01-13 ビオトヘルイク, インコーポレイテッド Hydroxypyridone derivatives, pharmaceutical compositions thereof, and their therapeutic use for the treatment of proliferative diseases
CN103108868B (en) 2010-06-07 2015-11-25 诺沃梅迪科斯有限公司 Furyl compounds and uses thereof
NZ605860A (en) 2010-07-19 2015-04-24 Summa Health System Use of vitamin c, and chromium-free vitamin k or 2-methyl-1,4-naphthalendione, and compositions thereof for treating a polycystic disease
CA3040415A1 (en) 2010-08-11 2012-02-16 Forest Laboratories Holdings Limited Stable formulations of linaclotide
JP5901634B2 (en) 2010-09-01 2016-04-13 アムビト ビオスシエンセス コルポラチオン Quinazoline compounds and methods of use thereof
WO2012030918A1 (en) 2010-09-01 2012-03-08 Ambit Biosciences Corporation Adenosine a3 receptor modulating compounds and methods of use thereof
WO2012030944A2 (en) 2010-09-01 2012-03-08 Ambit Biosciences Corporation Quinoline and isoquinoline compounds and methods of use thereof
WO2012030894A1 (en) 2010-09-01 2012-03-08 Ambit Biosciences Corporation Thienopyridine and thienopyrimidine compounds and methods of use thereof
ES2619850T3 (en) 2010-09-01 2017-06-27 Ambit Biosciences Corporation Hydrobromide salts of a pyrazolilaminoquinazoline
EP2611793A1 (en) 2010-09-01 2013-07-10 Ambit Biosciences Corporation 2-cycloquinazoline derivatives and methods of use thereof
AU2011296078B2 (en) 2010-09-01 2015-06-18 Ambit Biosciences Corporation An optically active pyrazolylaminoquinazoline, and pharmaceutical compositions and methods of use thereof
EP2611809A1 (en) 2010-09-01 2013-07-10 Ambit Biosciences Corporation Azolopyridine and azolopyrimidine compounds and methods of use thereof
EP2611794A1 (en) 2010-09-01 2013-07-10 Ambit Biosciences Corporation 4-azolylaminoquinazoline derivatives and methods of use thereof
WO2012030912A1 (en) 2010-09-01 2012-03-08 Ambit Biosciences Corporation 7-cyclylquinazoline derivatives and methods of use thereof
WO2012044641A1 (en) 2010-09-29 2012-04-05 Pathway Therapeutics Inc. 1,3,5-triazinyl benzimidazole sulfonamides and their use in cancer therapy
EP2627635A1 (en) 2010-10-11 2013-08-21 Axikin Pharmaceuticals, Inc. Salts of arylsulfonamide ccr3 antagonists
WO2012064973A2 (en) 2010-11-10 2012-05-18 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
EP2648676A4 (en) 2010-12-06 2016-05-04 Follica Inc Methods for treating baldness and promoting hair growth
WO2012080050A1 (en) 2010-12-14 2012-06-21 F. Hoffmann-La Roche Ag Solid forms of a phenoxybenzenesulfonyl compound
AR084824A1 (en) 2011-01-10 2013-06-26 Intellikine Inc PROCESSES TO PREPARE ISOQUINOLINONES AND SOLID FORMS OF ISOQUINOLINONAS
CN103338753A (en) 2011-01-31 2013-10-02 细胞基因公司 Pharmaceutical compositions of cytidine analogs and methods of use thereof
AR085352A1 (en) 2011-02-10 2013-09-25 Idenix Pharmaceuticals Inc MACROCICLIC INHIBITORS OF SERINA PROTEASA, ITS PHARMACEUTICAL COMPOSITIONS AND ITS USE TO TREAT HCV INFECTIONS
US20120208755A1 (en) 2011-02-16 2012-08-16 Intarcia Therapeutics, Inc. Compositions, Devices and Methods of Use Thereof for the Treatment of Cancers
RU2013145556A (en) 2011-03-11 2015-04-20 Селджин Корпорейшн APPLICATION OF 3- (5-AMINO-2-METHYL-4-OXOCHINAZOLIN-3 (4H) -YL) PIPERIDINE-2,6-DION IN THE TREATMENT OF IMMUNE AND INFLAMMATORY DISEASES
EP2691384B1 (en) 2011-03-28 2016-10-26 MEI Pharma, Inc. (alpha-substituted aralkylamino and heteroarylalkylamino) pyrimidinyl and 1,3,5-triazinyl benzimidazoles, pharmaceutical compositions containing them, and these compounds for use in treating proliferative diseases
EP2691388A1 (en) 2011-03-28 2014-02-05 MEI Pharma, Inc. (fused ring arylamino and heterocyclylamino) pyrimidynyl and 1,3,5-triazinyl benzimidazoles, pharmaceutical compositions thereof, and their use in treating proliferative diseases
JP2014509648A (en) 2011-03-28 2014-04-21 メイ プハルマ,インコーポレーテッド (Α-Substituted cycloalkylamino and heterocyclylamino) pyrimidinyl and 1,3,5-triazinylbenzimidazoles, pharmaceutical compositions thereof, and their use in the treatment of proliferative diseases
CN103842369A (en) 2011-03-31 2014-06-04 埃迪尼克斯医药公司 Compounds and pharmaceutical compositions for the treatment of viral infections
US20120252721A1 (en) 2011-03-31 2012-10-04 Idenix Pharmaceuticals, Inc. Methods for treating drug-resistant hepatitis c virus infection with a 5,5-fused arylene or heteroarylene hepatitis c virus inhibitor
JP2014517076A (en) 2011-06-23 2014-07-17 マップ・ファーマシューティカルズ・インコーポレイテッド Novel fluoroergoline analogues
EP2734520B1 (en) 2011-07-19 2016-09-14 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
JP6027611B2 (en) 2011-07-19 2016-11-16 インフィニティー ファーマシューティカルズ, インコーポレイテッド Heterocyclic compounds and uses thereof
US8785470B2 (en) 2011-08-29 2014-07-22 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US8951985B2 (en) 2011-09-12 2015-02-10 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of viral infections
TW201329096A (en) 2011-09-12 2013-07-16 Idenix Pharmaceuticals Inc Substituted carbonyloxymethylphosphoramidate compounds and pharmaceutical compositions for the treatment of viral infections
WO2013049332A1 (en) 2011-09-29 2013-04-04 Infinity Pharmaceuticals, Inc. Inhibitors of monoacylglycerol lipase and methods of their use
AU2012322095B2 (en) 2011-10-14 2017-06-29 Ambit Biosciences Corporation Heterocyclic compounds and use thereof as modulators of type III receptor tyrosine kinases
AR089650A1 (en) 2011-10-14 2014-09-10 Idenix Pharmaceuticals Inc PHOSPHATES 3,5-REPLACED CYCLES OF PURINE NUCLEOTIDE COMPOUNDS AND PHARMACEUTICAL COMPOSITIONS FOR THE TREATMENT OF VIRAL INFECTIONS
CA2859173A1 (en) 2011-12-19 2013-06-27 Map Pharmaceuticals, Inc. Novel iso-ergoline derivatives
AU2012355983A1 (en) 2011-12-21 2015-01-22 Map Pharmaceuticals, Inc. Novel neuromodulatory compounds
US9611253B2 (en) 2012-02-29 2017-04-04 Ambit Biosciences Corporation Solid forms comprising optically active pyrazolylaminoquinazoline, compositions thereof, and uses therewith
EP2834232A1 (en) 2012-03-16 2015-02-11 Axikin Pharmaceuticals, Inc. 3,5-diaminopyrazole kinase inhibitors
US8940742B2 (en) 2012-04-10 2015-01-27 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
MX355708B (en) 2012-05-22 2018-04-27 Idenix Pharmaceuticals Llc D-amino acid compounds for liver disease.
EP2852605B1 (en) 2012-05-22 2018-01-31 Idenix Pharmaceuticals LLC 3',5'-cyclic phosphate prodrugs for hcv infection
EP2852604B1 (en) 2012-05-22 2017-04-12 Idenix Pharmaceuticals LLC 3',5'-cyclic phosphoramidate prodrugs for hcv infection
US9012640B2 (en) 2012-06-22 2015-04-21 Map Pharmaceuticals, Inc. Cabergoline derivatives
EP3524598B1 (en) 2012-08-09 2021-07-07 Celgene Corporation A solid form of (s)-3-(4-((4-morpholinomethyl)benzyl)oxy)-1-oxoisoindolin-2-yl)piperidine-2,6-dione hydrochloride
CN108938642A (en) 2012-08-09 2018-12-07 细胞基因公司 Immune related and inflammatory disease treatment
WO2014036528A2 (en) 2012-08-31 2014-03-06 Ixchel Pharma, Llc Agents useful for treating obesity, diabetes and related disorders
JP2015527396A (en) 2012-09-07 2015-09-17 アクシキン ファーマシューティカルズ インコーポレーテッド Isotope enriched arylsulfonamide CCR3 antagonist
WO2014055647A1 (en) 2012-10-03 2014-04-10 Mei Pharma, Inc. (sulfinyl and sulfonyl benzimidazolyl) pyrimidines and triazines, pharmaceutical compositions thereof, and their use for treating proliferative diseases
PE20151318A1 (en) 2012-10-08 2015-10-03 Idenix Pharmaceuticals Inc 2'-NUCLEOSIDE CHLORINE ANALOGS FOR HCV INFECTION
WO2014063019A1 (en) 2012-10-19 2014-04-24 Idenix Pharmaceuticals, Inc. Dinucleotide compounds for hcv infection
WO2014066239A1 (en) 2012-10-22 2014-05-01 Idenix Pharmaceuticals, Inc. 2',4'-bridged nucleosides for hcv infection
PL2914296T5 (en) 2012-11-01 2022-01-17 Infinity Pharmaceuticals, Inc. Treatment of cancers using pi3 kinase isoform modulators
CA2890177A1 (en) 2012-11-08 2014-05-15 Summa Health System Vitamin c, vitamin k, a polyphenol, and combinations thereof for wound healing
US20140140952A1 (en) 2012-11-14 2014-05-22 Idenix Pharmaceuticals, Inc. D-Alanine Ester of Sp-Nucleoside Analog
US20140140951A1 (en) 2012-11-14 2014-05-22 Idenix Pharmaceuticals, Inc. D-Alanine Ester of Rp-Nucleoside Analog
AU2013352106B2 (en) 2012-11-30 2018-04-26 Novomedix, Llc Substituted biaryl sulfonamides and the use thereof
US9211300B2 (en) 2012-12-19 2015-12-15 Idenix Pharmaceuticals Llc 4′-fluoro nucleosides for the treatment of HCV
EP2934143A4 (en) 2012-12-21 2016-06-15 Map Pharmaceuticals Inc Novel methysergide derivatives
CA2897665A1 (en) 2013-01-11 2014-07-17 Mayo Foundation For Medical Education And Research Vitamins c and k for treating polycystic diseases
WO2014137926A1 (en) 2013-03-04 2014-09-12 Idenix Pharmaceuticals, Inc. 3'-deoxy nucleosides for the treatment of hcv
WO2014137930A1 (en) 2013-03-04 2014-09-12 Idenix Pharmaceuticals, Inc. Thiophosphate nucleosides for the treatment of hcv
NZ629037A (en) 2013-03-15 2017-04-28 Infinity Pharmaceuticals Inc Salts and solid forms of isoquinolinones and composition comprising and methods of using the same
US9187515B2 (en) 2013-04-01 2015-11-17 Idenix Pharmaceuticals Llc 2′,4′-fluoro nucleosides for the treatment of HCV
EP3811974A1 (en) 2013-05-30 2021-04-28 Infinity Pharmaceuticals, Inc. Treatment of cancers using pi3 kinase isoform modulators
US10005779B2 (en) 2013-06-05 2018-06-26 Idenix Pharmaceuticals Llc 1′,4′-thio nucleosides for the treatment of HCV
WO2015017713A1 (en) 2013-08-01 2015-02-05 Idenix Pharmaceuticals, Inc. D-amino acid phosphoramidate pronucleotides of halogeno pyrimidine compounds for liver disease
CA2922230A1 (en) 2013-08-30 2015-03-05 Ambit Biosciences Corporation Biaryl acetamide compounds and methods of use thereof
NZ631142A (en) 2013-09-18 2016-03-31 Axikin Pharmaceuticals Inc Pharmaceutically acceptable salts of 3,5-diaminopyrazole kinase inhibitors
WO2015042375A1 (en) 2013-09-20 2015-03-26 Idenix Pharmaceuticals, Inc. Hepatitis c virus inhibitors
US9700549B2 (en) 2013-10-03 2017-07-11 David Wise Compositions and methods for treating pelvic pain and other conditions
PL3052485T3 (en) 2013-10-04 2022-02-28 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
WO2015051241A1 (en) 2013-10-04 2015-04-09 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US20160244452A1 (en) 2013-10-21 2016-08-25 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
WO2015061683A1 (en) 2013-10-25 2015-04-30 Idenix Pharmaceuticals, Inc. D-amino acid phosphoramidate and d-alanine thiophosphoramidate pronucleotides of nucleoside compounds useful for the treatment of hcv
US20160271162A1 (en) 2013-11-01 2016-09-22 Idenix Pharmacueticals, Llc D-alanine phosphoramide pronucleotides of 2'-methyl 2'-fluro guanosine nucleoside compounds for the treatment of hcv
US20170198005A1 (en) 2013-11-27 2017-07-13 Idenix Pharmaceuticals Llc 2'-dichloro and 2'-fluoro-2'-chloro nucleoside analogues for hcv infection
CA2931458A1 (en) 2013-11-27 2015-06-04 Idenix Pharmaceuticals Llc Nucleotides for the treatment of liver cancer
WO2015095419A1 (en) 2013-12-18 2015-06-25 Idenix Pharmaceuticals, Inc. 4'-or nucleosides for the treatment of hcv
EP3114122A1 (en) 2014-03-05 2017-01-11 Idenix Pharmaceuticals LLC Solid forms of a flaviviridae virus inhibitor compound and salts thereof
CA2943075C (en) 2014-03-19 2023-02-28 Infinity Pharmaceuticals, Inc. Heterocyclic compounds for use in the treatment of pi3k-gamma mediated disorders
TWI683813B (en) 2014-03-20 2020-02-01 美商卡佩拉醫療公司 Benzimidazole derivatives, and pharmaceutical compositions and methods of use thereof
WO2015143161A1 (en) 2014-03-20 2015-09-24 Capella Therapeutics, Inc. Benzimidazole derivatives as erbb tyrosine kinase inhibitors for the treatment of cancer
EP3129381B1 (en) 2014-04-09 2020-11-04 Siteone Therapeutics Inc. 10',11'-modified saxitoxins useful for the treatment of pain
EP3131914B1 (en) 2014-04-16 2023-05-10 Idenix Pharmaceuticals LLC 3'-substituted methyl or alkynyl nucleosides for the treatment of hcv
WO2015168079A1 (en) 2014-04-29 2015-11-05 Infinity Pharmaceuticals, Inc. Pyrimidine or pyridine derivatives useful as pi3k inhibitors
WO2015175381A1 (en) 2014-05-12 2015-11-19 Conatus Pharmaceuticals, Inc. Treatment of the complications of chronic liver disease with caspase inhibitors
WO2015181624A2 (en) 2014-05-28 2015-12-03 Idenix Pharmaceuticals, Inc Nucleoside derivatives for the treatment of cancer
WO2015195474A1 (en) 2014-06-18 2015-12-23 Biotheryx, Inc. Hydroxypyridone derivatives, pharmaceutical compositions thereof, and their therapeutic use for treating inflammatory, neurodegenerative, or immune-mediated diseases
IL274159B2 (en) 2014-06-19 2024-03-01 Ariad Pharma Inc Heteroaryl compounds for kinase inhibition
US9499514B2 (en) 2014-07-11 2016-11-22 Celgene Corporation Antiproliferative compounds and methods of use thereof
CA2960284A1 (en) 2014-09-12 2016-03-17 Tobira Therapeutics, Inc. Cenicriviroc combination therapy for the treatment of fibrosis
US9889085B1 (en) 2014-09-30 2018-02-13 Intarcia Therapeutics, Inc. Therapeutic methods for the treatment of diabetes and related conditions for patients with high baseline HbA1c
US9708348B2 (en) 2014-10-03 2017-07-18 Infinity Pharmaceuticals, Inc. Trisubstituted bicyclic heterocyclic compounds with kinase activities and uses thereof
CN107108559B (en) 2014-10-21 2020-06-05 阿瑞雅德制药公司 Crystalline forms of 5-chloro-N4- [2- (dimethylphosphoryl) phenyl ] -N2- { 2-methoxy-4- [4- (4-methylpiperazin-1-yl) piperidin-1-yl ] phenyl } pyrimidine-2, 4-diamine
EP3209658A1 (en) 2014-10-24 2017-08-30 Biogen MA Inc. Diterpenoid derivatives and methods of use thereof
WO2016106309A1 (en) 2014-12-23 2016-06-30 Axikin Pharmaceuticals, Inc. 3,5-diaminopyrazole kinase inhibitors
MX2017009406A (en) 2015-01-20 2018-01-18 Xoc Pharmaceuticals Inc Isoergoline compounds and uses thereof.
JP6856532B2 (en) 2015-01-20 2021-04-07 エックスオーシー ファーマシューティカルズ インコーポレイテッドXoc Pharmaceuticals, Inc Ergoline compounds and their use
TWI731853B (en) * 2015-03-18 2021-07-01 日商參天製藥股份有限公司 Xufang drug composition and its stabilization method
US10815264B2 (en) 2015-05-27 2020-10-27 Southern Research Institute Nucleotides for the treatment of cancer
CN113598842A (en) 2015-06-03 2021-11-05 因塔西亚制药公司 Implant placement and removal system
MY189806A (en) 2015-06-23 2022-03-08 Neurocrine Biosciences Inc Vmat2 inhibitors for treating neurological diseases or disorders
US10328087B2 (en) 2015-07-23 2019-06-25 Therapeuticsmd, Inc. Formulations for solubilizing hormones
JP6630742B2 (en) 2015-08-17 2020-01-15 クラ オンコロジー, インコーポレイテッド Method of treating a cancer patient with a farnesyltransferase inhibitor
EP3356370B1 (en) 2015-09-30 2021-08-18 Siteone Therapeutics, Inc. 11,13-modified saxitoxins for the treatment of pain
FI3875459T3 (en) 2015-10-30 2024-02-14 Neurocrine Biosciences Inc Valbenazine dihydrochloride salts and polymorphs thereof
WO2017079566A1 (en) 2015-11-05 2017-05-11 Conatus Pharmaceuticals, Inc. Caspase inhibitors for use in the treatment of liver cancer
US10112924B2 (en) 2015-12-02 2018-10-30 Astraea Therapeutics, Inc. Piperdinyl nociceptin receptor compounds
RS63170B1 (en) 2015-12-23 2022-05-31 Neurocrine Biosciences Inc Synthetic method for preparation of (s)-(2r,3r,11br)-3-isobutyl-9,10-dimethoxy-2,3,4,6,7,11b-hexahydro-1h-pyrido[2,1,-a]lsoquinolin-2-yl 2-amino-3-methylbutanoate di(4-methylbenzenesulfonate)
MX2018007964A (en) 2015-12-31 2018-11-09 Conatus Pharmaceuticals Inc Methods of using caspase inhibitors in treatment of liver disease.
CA3010801A1 (en) 2016-01-08 2017-07-13 Celgene Corporation Methods for treating cancer and the use of biomarkers as a predictor of clinical sensitivity to therapies
TWI717448B (en) 2016-01-08 2021-02-01 美商西建公司 Antiproliferative compounds, and their pharmaceutical compositions and uses
US10189808B2 (en) 2016-01-08 2019-01-29 Celgene Corporation Solid forms of 2-(4-chlorophenyl)-N-((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)methyl)-2,2-difluoroacetamide, and their pharmaceutical compositions and uses
WO2017161116A1 (en) 2016-03-17 2017-09-21 Infinity Pharmaceuticals, Inc. Isotopologues of isoquinolinone and quinazolinone compounds and uses thereof as pi3k kinase inhibitors
US10286077B2 (en) 2016-04-01 2019-05-14 Therapeuticsmd, Inc. Steroid hormone compositions in medium chain oils
AU2017239645A1 (en) 2016-04-01 2018-10-18 Therapeuticsmd, Inc. Steroid hormone pharmaceutical composition
JP2019513707A (en) 2016-04-11 2019-05-30 クレキシオ バイオサイエンシーズ エルティーディー. Deuterated ketamine derivative
US10047077B2 (en) 2016-04-13 2018-08-14 Skyline Antiinfectives, Inc. Deuterated O-sulfated beta-lactam hydroxamic acids and deuterated N-sulfated beta-lactams
WO2017184968A1 (en) 2016-04-22 2017-10-26 Kura Oncology, Inc. Methods of selecting cancer patients for treatment with farnesyltransferase inhibitors
JP6931695B2 (en) 2016-04-29 2021-09-08 エフジーエイチ バイオテック,インコーポレーテッド Disubstituted pyrazole compounds for the treatment of diseases
EP3458084B1 (en) 2016-05-16 2020-04-01 Intarcia Therapeutics, Inc Glucagon-receptor selective polypeptides and methods of use thereof
TWI753910B (en) 2016-05-16 2022-02-01 美商拜歐斯瑞克斯公司 Pyridinethiones, pharmaceutical compositions thereof, and their therapeutic use for treating a proliferative, inflammatory, neurodegenerative, or immune-mediated disease
USD840030S1 (en) 2016-06-02 2019-02-05 Intarcia Therapeutics, Inc. Implant placement guide
USD860451S1 (en) 2016-06-02 2019-09-17 Intarcia Therapeutics, Inc. Implant removal tool
US10919914B2 (en) 2016-06-08 2021-02-16 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
EP3510027B1 (en) 2016-09-07 2022-11-02 FGH BioTech, Inc. Di-substituted pyrazole compounds for the treatment of diseases
EP3515414B1 (en) 2016-09-19 2022-11-30 MEI Pharma, Inc. Combination therapy
HUE053927T2 (en) 2016-11-03 2021-07-28 Kura Oncology Inc Farnesyltransferase inhibitors for use in treating cancer
US10106521B2 (en) 2016-11-09 2018-10-23 Phloronol, Inc. Eckol derivatives, methods of synthesis and uses thereof
AU2017356926B2 (en) 2016-11-09 2024-01-04 Novomedix, Llc Nitrite salts of 1, 1-dimethylbiguanide, pharmaceutical compositions, and methods of use
CN110191705A (en) 2016-12-01 2019-08-30 亚尼塔公司 The method for the treatment of cancer
US20200078352A1 (en) 2016-12-02 2020-03-12 Neurocrine Biosciences, Inc. Use of Valbenazine for Treating Schizophrenia or Schizoaffective Disorder
KR20190104039A (en) 2017-01-03 2019-09-05 인타르시아 세라퓨틱스 인코포레이티드 Methods Including Continuous Administration of GLP-1 Receptor Agonists and Co-administration of Drugs
MY191077A (en) 2017-01-27 2022-05-30 Neurocrine Biosciences Inc Methods for the administration of certain vmat2 inhibitors
US9956215B1 (en) 2017-02-21 2018-05-01 Kura Oncology, Inc. Methods of treating cancer with farnesyltransferase inhibitors
WO2018156609A1 (en) 2017-02-21 2018-08-30 Kura Oncology, Inc. Methods of treating cancer with farnesyltransferase inhibitors
WO2018164996A1 (en) 2017-03-06 2018-09-13 Neurocrine Biosciences, Inc. Dosing regimen for valbenazine
EP3601326A4 (en) 2017-03-20 2020-12-16 The Broad Institute, Inc. Compounds and methods for regulating insulin secretion
CN110914276A (en) 2017-03-29 2020-03-24 赛特温治疗公司 11, 13-modified saxitoxins for the treatment of pain
EP3601291A1 (en) 2017-03-29 2020-02-05 Siteone Therapeutics, Inc. 11,13-modified saxitoxins for the treatment of pain
WO2018200605A1 (en) 2017-04-26 2018-11-01 Neurocrine Biosciences, Inc. Use of valbenazine for treating levodopa-induced dyskinesia
JOP20190219A1 (en) 2017-05-09 2019-09-22 Cardix Therapeutics LLC Pharmaceutical compositions and methods of treating cardiovascular diseases
US10085999B1 (en) 2017-05-10 2018-10-02 Arixa Pharmaceuticals, Inc. Beta-lactamase inhibitors and uses thereof
EP3624795B1 (en) 2017-05-19 2022-04-20 NFlection Therapeutics, Inc. Fused heteroaromatic-aniline compounds for treatment of dermal disorders
KR102642411B1 (en) 2017-05-19 2024-02-28 엔플렉션 테라퓨틱스, 인코포레이티드 Pyrrolopyridine-aniline compounds for the treatment of skin diseases
BR112019025420A2 (en) 2017-06-01 2020-06-16 Xoc Pharmaceuticals, Inc. POLYCYCLICAL COMPOUNDS AND USES OF THESE
US10806730B2 (en) 2017-08-07 2020-10-20 Kura Oncology, Inc. Methods of treating cancer with farnesyltransferase inhibitors
WO2019032489A1 (en) 2017-08-07 2019-02-14 Kura Oncology, Inc. Methods of treating cancer with farnesyltransferase inhibitors
CN111372567B (en) 2017-09-21 2024-03-15 纽罗克里生物科学有限公司 High dose valphenazine formulations and compositions, methods and kits relating thereto
US10993941B2 (en) 2017-10-10 2021-05-04 Neurocrine Biosciences, Inc. Methods for the administration of certain VMAT2 inhibitors
AU2017435893B2 (en) 2017-10-10 2023-06-29 Neurocrine Biosciences, Inc Methods for the administration of certain VMAT2 inhibitors
WO2019113269A1 (en) 2017-12-08 2019-06-13 Kura Oncology, Inc. Methods of treating cancer patients with farnesyltransferase inhibitors
WO2019139871A1 (en) 2018-01-10 2019-07-18 Cura Therapeutics Llc Pharmaceutical compositions comprising dicarboxylic acids and their therapeutic applications
JP7395480B2 (en) 2018-01-10 2023-12-11 クラ セラピューティクス, エルエルシー Pharmaceutical compositions containing phenylsulfonamides and their therapeutic applications
SG11202011544UA (en) 2018-06-14 2020-12-30 Neurocrine Biosciences Inc Vmat2 inhibitor compounds, compositions, and methods relating thereto
EP3814327A1 (en) 2018-06-29 2021-05-05 Histogen, Inc. (s)-3-(2-(4-(benzyl)-3-oxopiperazin-1-yl)acetamido)-4-oxo-5-(2,3,5,6-tetrafluorophenoxy)pentanoic acid derivatives and related compounds as caspase inhibitors for treating cardiovascular diseases
CN112867491A (en) 2018-08-15 2021-05-28 纽罗克里生物科学有限公司 Methods of administering certain VMAT2 inhibitors
US20220009938A1 (en) 2018-10-03 2022-01-13 Siteone Therapeutics, Inc. 11,13-modified saxitoxins for the treatment of pain
JP2022506463A (en) 2018-11-01 2022-01-17 クラ オンコロジー, インコーポレイテッド How to Treat Cancer with Farnesyltransferase Inhibitors
WO2020106308A1 (en) 2018-11-20 2020-05-28 Nflection Therapeutics, Inc. Naphthyridinone-aniline compounds for treatment of dermal disorders
US20220087989A1 (en) 2018-11-20 2022-03-24 Nflection Therapeutics, Inc. Aryl-aniline and heteroaryl-aniline compounds for treatment of skin cancers
US20230013227A1 (en) 2018-11-20 2023-01-19 Nflection Therapeutics, Inc. Aryl-aniline and heteroaryl-aniline compounds for treatment of birthmarks
CA3120371A1 (en) 2018-11-20 2020-05-28 Nflection Therapeutics, Inc. Cyanoaryl-aniline compounds for treatment of dermal disorders
WO2020132071A1 (en) 2018-12-19 2020-06-25 Shy Therapeutics. Llc Compounds that interact with the ras superfamily for the treatment of cancers, inflammatory diseases, rasopathies, and f1brotic disease
WO2020132700A1 (en) 2018-12-21 2020-06-25 Fgh Biotech Inc. Methods of using inhibitors of srebp in combination with niclosamide and analogs thereof
AU2019403379A1 (en) 2018-12-21 2021-07-15 Kura Oncology, Inc. Therapies for squamous cell carcinomas
EP3921038A1 (en) 2019-02-06 2021-12-15 Dice Alpha, Inc. Il-17a modulators and uses thereof
US20220142983A1 (en) 2019-03-01 2022-05-12 Kura Oncology, Inc. Methods of treating cancer with farnesyltransferase inhibitors
US11597703B2 (en) 2019-03-07 2023-03-07 Histogen, Inc. Caspase inhibitors and methods of use thereof
WO2020190604A1 (en) 2019-03-15 2020-09-24 Kura Oncology, Inc. Methods of treating cancer patients with farnesyltransferase inhibitors
CA3134825A1 (en) 2019-03-29 2020-10-08 Kura Oncology, Inc. Methods of treating squamous cell carcinomas with farnesyltransferase inhibitors
US20220168296A1 (en) 2019-04-01 2022-06-02 Kura Oncology, Inc. Methods of treating cancer with farnesyltransferase inhibitors
US20220305001A1 (en) 2019-05-02 2022-09-29 Kura Oncology, Inc. Methods of treating acute myeloid leukemia with farnesyltransferase inhibitors
WO2021007478A1 (en) 2019-07-11 2021-01-14 Cura Therapeutics, Llc Sulfone compounds and pharmaceutical compositions thereof, and their therapeutic applications for the treatment of neurodegenerative diseases
CA3146159A1 (en) 2019-07-11 2021-01-14 Cura Therapeutics, Llc Phenyl compounds and pharmaceutical compositions thereof, and their therapeutic applications
KR20220039754A (en) 2019-07-26 2022-03-29 에스퍼비타 테라퓨틱스, 인크. Functionalized long chain hydrocarbon mono- and di-carboxylic acids useful for the prevention or treatment of diseases
US10940141B1 (en) 2019-08-23 2021-03-09 Neurocrine Biosciences, Inc. Methods for the administration of certain VMAT2 inhibitors
CN115103835A (en) 2019-09-16 2022-09-23 戴斯阿尔法公司 IL-17A modulators and uses thereof
US20230008367A1 (en) 2019-09-26 2023-01-12 Abionyx Pharma Sa Compounds useful for treating liver diseases
US11643420B2 (en) 2019-10-01 2023-05-09 Molecular Skin Therapeutics, Inc. Benzoxazinone compounds as KLK5/7 dual inhibitors
EP4157271A1 (en) 2020-05-29 2023-04-05 Boulder Bioscience LLC Methods for improved endovascular thrombectomy using 3,3'-diindolylmethane
WO2021257828A1 (en) 2020-06-18 2021-12-23 Shy Therapeutics, Llc Substituted thienopyrimidines that interact with the ras superfamily for the treatment of cancers, inflammatory diseases, rasopathies, and fibrotic disease
EP4196482A1 (en) 2020-08-14 2023-06-21 SiteOne Therapeutics, Inc. Non-hydrated ketone inhibitors of nav1.7 for the treatment of pain
WO2022164997A1 (en) 2021-01-27 2022-08-04 Shy Therapeutics, Llc Methods for the treatment of fibrotic disease
WO2022165000A1 (en) 2021-01-27 2022-08-04 Shy Therapeutics, Llc Methods for the treatment of fibrotic disease
WO2022189856A1 (en) 2021-03-08 2022-09-15 Abionyx Pharma Sa Compounds useful for treating liver diseases
EP4304716A1 (en) 2021-03-10 2024-01-17 Dice Molecules Sv, Inc. Alpha v beta 6 and alpha v beta 1 integrin inhibitors and uses thereof
WO2022226166A1 (en) 2021-04-22 2022-10-27 Protego Biopharma, Inc. Spirocyclic imidazolidinones and imidazolidinediones for treatment of light chain amyloidosis
EP4347568A1 (en) 2021-05-27 2024-04-10 Protego Biopharma, Inc. Heteroaryl diamide ire1/xbp1s activators
WO2023102378A1 (en) 2021-11-30 2023-06-08 Kura Oncology, Inc. Macrocyclic compounds having farnesyltransferase inhibitory activity
US11932665B2 (en) 2022-01-03 2024-03-19 Lilac Therapeutics, Inc. Cyclic thiol prodrugs
US20230303580A1 (en) 2022-03-28 2023-09-28 Isosterix, Inc. Inhibitors of the myst family of lysine acetyl transferases
TW202342070A (en) 2022-03-30 2023-11-01 美商拜奧馬林製藥公司 Dystrophin exon skipping oligonucleotides
GB2619907A (en) 2022-04-01 2023-12-27 Kanna Health Ltd Novel crystalline salt forms of mesembrine
US20230331693A1 (en) 2022-04-14 2023-10-19 Bristol-Myers Squibb Company Gspt1 compounds and methods of use of the novel compounds
WO2023201348A1 (en) 2022-04-15 2023-10-19 Celgene Corporation Methods for predicting responsiveness of lymphoma to drug and methods for treating lymphoma
WO2023211990A1 (en) 2022-04-25 2023-11-02 Siteone Therapeutics, Inc. Bicyclic heterocyclic amide inhibitors of na v1.8 for the treatment of pain
WO2023215781A1 (en) 2022-05-05 2023-11-09 Biomarin Pharmaceutical Inc. Method of treating duchenne muscular dystrophy
WO2024054832A1 (en) 2022-09-09 2024-03-14 Innovo Therapeutics, Inc. CK1α AND DUAL CK1α / GSPT1 DEGRADING COMPOUNDS

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) * 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
EP0001851A1 (en) * 1977-10-29 1979-05-16 Akzo N.V. Highly concentrated pharmaceutical formulations of steroids and processes for their preparation
US4767628A (en) * 1981-02-16 1988-08-30 Imperial Chemical Industries Plc Continuous release pharmaceutical compositions
JPH0418035A (en) * 1990-05-10 1992-01-22 Nkk Corp Sustained release pharmaceutical preparation and production thereof
JPH08143449A (en) * 1994-11-17 1996-06-04 Lederle Japan Ltd Injection for sustained release local anesthesia

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ194192A (en) * 1979-07-02 1982-11-23 Pfizer Long-acting injectable composition containing sulfadimethoxine or sulfamethazine
JPS60502087A (en) * 1983-08-31 1985-12-05 キングストン・テクノロジーズ・インコーポレーテッド Injectable, physiologically acceptable polymer compositions
US4678809A (en) * 1985-02-01 1987-07-07 Michael Phillips Injectable fomulations of disulfiram for the treatment of alcoholism
US4707470A (en) * 1985-05-17 1987-11-17 Smithkline Beckman Corporation Polyene antibiotic emulsion formulation
US4938763B1 (en) * 1988-10-03 1995-07-04 Atrix Lab Inc Biodegradable in-situ forming implants and method of producing the same
GB9016885D0 (en) * 1990-08-01 1990-09-12 Scras Sustained release pharmaceutical compositions
CA2062659A1 (en) * 1991-03-12 1992-09-13 Yasutaka Igari Composition for sustained-release of erythropoietin
US5470582A (en) * 1992-02-07 1995-11-28 Syntex (U.S.A.) Inc. Controlled delivery of pharmaceuticals from preformed porous polymeric microparticles
US5242910A (en) * 1992-10-13 1993-09-07 The Procter & Gamble Company Sustained release compositions for treating periodontal disease
JP3523254B2 (en) * 1992-10-26 2004-04-26 シュヴァルツ・ファルマ・アクチエンゲゼルシャフト Manufacturing method of microcapsules
US5576016A (en) * 1993-05-18 1996-11-19 Pharmos Corporation Solid fat nanoemulsions as drug delivery vehicles
US5582591A (en) * 1994-09-02 1996-12-10 Delab Delivery of solid drug compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) * 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
EP0001851A1 (en) * 1977-10-29 1979-05-16 Akzo N.V. Highly concentrated pharmaceutical formulations of steroids and processes for their preparation
US4767628A (en) * 1981-02-16 1988-08-30 Imperial Chemical Industries Plc Continuous release pharmaceutical compositions
US4767628B1 (en) * 1981-02-16 1990-07-17 Ici Plc
JPH0418035A (en) * 1990-05-10 1992-01-22 Nkk Corp Sustained release pharmaceutical preparation and production thereof
JPH08143449A (en) * 1994-11-17 1996-06-04 Lederle Japan Ltd Injection for sustained release local anesthesia

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 9210, Derwent World Patents Index; Class A96, AN 92-075205, XP002028258 *
DATABASE WPI Section Ch Week 9632, Derwent World Patents Index; Class A96, AN 96-318842, XP002028265 *

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6673767B1 (en) 1996-12-20 2004-01-06 Alza Corporation Gel composition and methods
US6130200A (en) * 1996-12-20 2000-10-10 Alza Corporation Gel composition and methods
US20060233841A1 (en) * 1999-06-04 2006-10-19 Brodbeck Kevin J Implantable gel compositions and method of manufacture
WO2002067991A1 (en) * 2001-02-23 2002-09-06 Genentech, Inc. Erodible polymers for injection
US8501216B2 (en) 2001-02-23 2013-08-06 Genentech, Inc. Bioerodible polymers for injection
US7824700B2 (en) 2001-02-23 2010-11-02 Genentech, Inc. Erodible polymers for injection
JP2010265277A (en) * 2001-11-14 2010-11-25 Durect Corp Injectable depot composition
JP2005514350A (en) * 2001-11-14 2005-05-19 アルザ・コーポレーション Injectable depot composition
WO2005002625A2 (en) * 2003-06-26 2005-01-13 Control Delivery Systems, Inc. In-situ gelling drug delivery system
JP2007524628A (en) * 2003-06-26 2007-08-30 シヴィダ・インコーポレイテッド In-situ gelled drug delivery system
EP2044959A1 (en) * 2003-06-26 2009-04-08 pSivida Inc In-situ gelling drug delivery system
US10300114B2 (en) 2003-06-26 2019-05-28 Eyepoint Pharmaceuticals Us, Inc. Bioerodible sustained release drug delivery systems
US8815284B2 (en) 2003-06-26 2014-08-26 Psivida Us, Inc. Bioerodible sustained release drug delivery systems
WO2005000268A3 (en) * 2003-06-26 2005-08-18 Control Delivery Sys Inc Bioerodible sustained release drug delivery systems
WO2005002625A3 (en) * 2003-06-26 2005-04-21 Control Delivery Sys Inc In-situ gelling drug delivery system
WO2005000268A2 (en) * 2003-06-26 2005-01-06 Control Delivery Systems, Inc. Bioerodible sustained release drug delivery systems
US9566336B2 (en) 2003-06-26 2017-02-14 Psivida Us, Inc. In situ gelling drug delivery system
US9248126B2 (en) 2003-11-05 2016-02-02 Sarcode Bioscience Inc. Modulators of cellular adhesion
US9216174B2 (en) 2003-11-05 2015-12-22 Sarcode Bioscience Inc. Modulators of cellular adhesion
EP2088154A1 (en) 2004-03-09 2009-08-12 Ironwood Pharmaceuticals, Inc. Methods and compositions for the treatment of gastrointestinal disorders
US9045458B2 (en) 2005-05-17 2015-06-02 Sarcode Bioscience Inc. Compositions and methods for treatment
US9051297B2 (en) 2005-05-17 2015-06-09 Sarcode Bioscience Inc. Compositions and methods for treatment
US10188641B2 (en) 2005-05-17 2019-01-29 Sarcode Bioscience Inc. Compositions and methods for treatment
US9045457B2 (en) 2005-05-17 2015-06-02 Sarcode Bioscience Inc. Compositions and methods for treatment
US8592450B2 (en) 2005-05-17 2013-11-26 Sarcode Bioscience Inc. Compositions and methods for treatment of eye disorders
US8758776B2 (en) 2005-05-17 2014-06-24 Sarcode Bioscience Inc. Compositions and methods for treatment
US8771715B2 (en) 2005-05-17 2014-07-08 Sarcode Bioscience Inc. Compositions and methods for treatment
EP2998314A1 (en) 2007-06-04 2016-03-23 Synergy Pharmaceuticals Inc. Agonists of guanylate cyclase useful for the treatment of gastrointestinal disorders, inflammation, cancer and other disorders
US10960087B2 (en) 2007-10-19 2021-03-30 Novartis Ag Compositions and methods for treatment of diabetic retinopathy
WO2009068708A3 (en) * 2007-11-23 2009-07-16 Gp Pharm Sa Pharmaceutical composition with prolonged release of somatostatin or an analogue thereof
US20110124563A1 (en) * 2007-11-23 2011-05-26 Gp Pharm S.A. Pharmaceutical composition with prolonged release of somatostatin or an analogue thereof
US8367701B2 (en) 2008-04-15 2013-02-05 Sarcode Bioscience Inc. Crystalline pharmaceutical and methods of preparation and use thereof
US11028077B2 (en) 2008-04-15 2021-06-08 Novartis Pharmaceuticals Corporation Crystalline pharmaceutical and methods of preparation and use thereof
US8871935B2 (en) 2008-04-15 2014-10-28 Sarcode Bioscience Inc. Crystalline pharmaceutical and methods of preparation and use thereof
US8080562B2 (en) 2008-04-15 2011-12-20 Sarcode Bioscience Inc. Crystalline pharmaceutical and methods of preparation and use thereof
EP2810951A2 (en) 2008-06-04 2014-12-10 Synergy Pharmaceuticals Inc. Agonists of guanylate cyclase useful for the treatment of gastrointestinal disorders, inflammation, cancer and other disorders
EP3241839A1 (en) 2008-07-16 2017-11-08 Synergy Pharmaceuticals Inc. Agonists of guanylate cyclase useful for the treatment of gastrointestinal, inflammation, cancer and other disorders
US9353088B2 (en) 2009-10-21 2016-05-31 Sarcode Bioscience Inc. Crystalline pharmaceutical and methods of preparation and use thereof
US9890141B2 (en) 2009-10-21 2018-02-13 Sarcode Bioscience Inc. Crystalline pharmaceutical and methods of preparation and use thereof
US8927574B2 (en) 2009-10-21 2015-01-06 Sarcode Bioscience Inc. Crystalline pharmaceutical and methods of preparation and use thereof
US8378105B2 (en) 2009-10-21 2013-02-19 Sarcode Bioscience Inc. Crystalline pharmaceutical and methods of preparation and use thereof
EP2923706A1 (en) 2009-12-03 2015-09-30 Synergy Pharmaceuticals Inc. Agonists of guanylate cyclase useful for the treatment of hypercholesterolemia
WO2011069038A2 (en) 2009-12-03 2011-06-09 Synergy Pharmaceuticals, Inc. Agonists of guanylate cyclase useful for the treatment of hypercholesterolemia, atherosclerosis, coronary heart disease, gallstone, obesity and other cardiovascular diseases
WO2012151343A1 (en) 2011-05-04 2012-11-08 Balance Therapeutics, Inc. Pentylenetetrazole derivatives
EP3708179A1 (en) 2012-03-15 2020-09-16 Bausch Health Ireland Limited Formulations of guanylate cyclase c agonists and methods of use
WO2013138352A1 (en) 2012-03-15 2013-09-19 Synergy Pharmaceuticals Inc. Formulations of guanylate cyclase c agonists and methods of use
EP4309673A2 (en) 2012-03-15 2024-01-24 Bausch Health Ireland Limited Formulations of guanylate cyclase c agonists and methods of use
US10214517B2 (en) 2012-07-25 2019-02-26 Sarcode Bioscience Inc. LFA-1 inhibitor and methods of preparation and polymorph thereof
US10906892B2 (en) 2012-07-25 2021-02-02 Novartis Pharmaceuticals Corporation LFA-1 inhibitor and methods of preparation and polymorph thereof
US9085553B2 (en) 2012-07-25 2015-07-21 SARcode Bioscience, Inc. LFA-1 inhibitor and methods of preparation and polymorph thereof
WO2014131024A2 (en) 2013-02-25 2014-08-28 Synergy Pharmaceuticals Inc. Agonists of guanylate cyclase and their uses
EP3718557A2 (en) 2013-02-25 2020-10-07 Bausch Health Ireland Limited Guanylate cyclase receptor agonist sp-333 for use in colonic cleansing
WO2014151200A2 (en) 2013-03-15 2014-09-25 Synergy Pharmaceuticals Inc. Compositions useful for the treatment of gastrointestinal disorders
WO2014151206A1 (en) 2013-03-15 2014-09-25 Synergy Pharmaceuticals Inc. Agonists of guanylate cyclase and their uses
WO2015054649A2 (en) 2013-10-10 2015-04-16 Synergy Pharmaceuticals, Inc. Agonists of guanylate cyclase useful for the treatment of opioid induced dysfunctions
WO2017123634A1 (en) 2016-01-11 2017-07-20 Synergy Pharmaceuticals, Inc. Formulations and methods for treating ulcerative colitis

Also Published As

Publication number Publication date
EP0874642B1 (en) 2003-05-02
EP0874642A1 (en) 1998-11-04
PT874642E (en) 2003-09-30
CA2242986A1 (en) 1997-07-24
CA2242986C (en) 2004-09-21
ES2197982T3 (en) 2004-01-16
AU1206497A (en) 1997-08-11
DE69721481T2 (en) 2004-04-15
DK0874642T3 (en) 2003-08-11
DE69721481D1 (en) 2003-06-05
US5980945A (en) 1999-11-09
ATE238813T1 (en) 2003-05-15

Similar Documents

Publication Publication Date Title
US5980945A (en) Sustained release drug formulations
ES2391315T5 (en) Method for preparing microparticles having a selected polymer molecular weight
ES2286157T5 (en) Induced phase transition procedure for the production of microparticles containing hydrophobic active agents
US6720008B2 (en) Composition and method for the encapsulation of water-soluble molecules into nanoparticles
Jalil et al. Biodegradable poly (lactic acid) and poly (lactide-co-glycolide) microcapsules: problems associated with preparative techniques and release properties
Jameela et al. Progesterone-loaded chitosan microspheres: a long acting biodegradable controlled delivery system
US5993855A (en) Delayed drug-releasing microspheres
JP3600252B2 (en) Composition capable of sustained and controlled release of a drug substance
NL195056C (en) Process for the preparation of preparations containing salts of peptides with carboxy terminated polyesters.
US6306406B1 (en) Drug delivery system involving interaction between protein or polypeptide and hydrophobic biodegradable polymer
JP2001181924A (en) Polymer having biologically active agent
JP4073478B2 (en) Biodegradable controlled-release microspheres and their production
PT98497B (en) PROCESS FOR THE PREPARATION OF PARTICLES FOR THE CONTROLLED LIBERATION OF AN ACTIVE INGREDIENT
US20110200679A1 (en) Method for manufacturing sustained release microsphere by solvent flow evaporation method
US7691412B2 (en) Prolonged release biodegradable microspheres and method for preparing same
JP2010174021A6 (en) Sustained release biodegradable microspheres and method for producing the same
Prieto et al. Characterization of V3 BRU peptide-loaded small PLGA microspheres prepared by a (w1/o) w2 emulsion solvent evaporation method
Brannon-Peppas et al. Polylactic and polyglycolic acids as drug delivery carriers
JP2867404B2 (en) Porous microspheres for drug delivery and method for producing the same
JPS6143119A (en) Microcapsules, manufacture and injection composition
JP5851518B2 (en) MICROPARTICLES CONTAINING BIOACTIVE PEPTIDE, PROCESS FOR PRODUCING THE SAME, AND PHARMACEUTICAL COMPOSITION CONTAINING THE SAME
JP3026228B2 (en) Sustained-release preparation and method for producing the same
CN100475264C (en) Slow release microphere for injection containing interferon or its analog, and preparation method thereof
CN100528224C (en) Slow release microphere for injection containing interferon alpha-1b and its preparation method
US20210128484A1 (en) Microspheres for extended, controlled release of therapeutic agents

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2242986

Country of ref document: CA

Ref country code: CA

Ref document number: 2242986

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1997900072

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997900072

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97525828

Format of ref document f/p: F

WWG Wipo information: grant in national office

Ref document number: 1997900072

Country of ref document: EP