WO1997036364A1 - Power generator and portable device - Google Patents

Power generator and portable device Download PDF

Info

Publication number
WO1997036364A1
WO1997036364A1 PCT/JP1997/000885 JP9700885W WO9736364A1 WO 1997036364 A1 WO1997036364 A1 WO 1997036364A1 JP 9700885 W JP9700885 W JP 9700885W WO 9736364 A1 WO9736364 A1 WO 9736364A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibrating
lever
vibration
vibrating reed
power generation
Prior art date
Application number
PCT/JP1997/000885
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuharu Hashimoto
Osamu Takahashi
Hajime Miyazaki
Tsukasa Funasaka
Makoto Furuhata
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to JP53423097A priority Critical patent/JP3711562B2/en
Publication of WO1997036364A1 publication Critical patent/WO1997036364A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/304Beam type
    • H10N30/306Cantilevers

Definitions

  • the present invention relates to a power generating device that generates power by vibrating a vibrating reed having a piezoelectric body, and a portable device including the power generating device.
  • Japanese Utility Model Laid-Open No. 6-768984 uses a rotary motion of a weight to drive a hammer lever to use piezoelectric materials.
  • the technology to generate electricity by tapping is described.
  • Japanese Utility Model Laid-Open No. 63-725-93 a piezoelectric element is housed inside the watch case, and the weight is inertially operated in the vertical direction and vibrated.
  • Japanese Utility Model Laid-Open No. 63-725-93 a piezoelectric element is housed inside the watch case, and the weight is inertially operated in the vertical direction and vibrated.
  • Japanese Utility Model Laid-Open No. 63-725-93 a piezoelectric element is housed inside the watch case, and the weight is inertially operated in the vertical direction and vibrated.
  • there is a description of a technology for generating electric energy by this vibration there is a description of a technology for generating electric energy by this vibration.
  • These power generation methods using piezoelectric materials generate power by
  • such a portable and small power generator In order to obtain kinetic energy from the movement of the arm and efficiently convert it into electric energy, such a portable and small power generator firstly converts the movement of the arm and the like to the rotation of the rotating weight efficiently. Second, the kinetic energy is efficiently applied to the piezoelectric material as strain, and
  • the kinetic energy (input energy) applied to the piezoelectric body is the strain energy of the support layer that supports the piezoelectric body and the strain energy of the piezoelectric body itself. It can be divided into three main types: electrical energy stored in power storage devices such as capacitors and electricity generated by piezoelectric power. Of these, the most important electrical energy for the power generation device varies depending on the electromechanical coupling coefficient of the piezoelectric body, the output voltage and capacitance when the piezoelectric element is not charged, the voltage of the power storage device, etc. This is only a few percent of the strain energy of the piezoelectric body. Therefore, it is being studied to generate power using a piezoelectric material that vibrates freely as a paneling lever.
  • strain can be repeatedly generated by vibrating the piezoelectric body, and the strain energy generated by the input energy can be gradually converted to electric energy. In this way, the efficiency of electric energy generated with respect to the input energy corresponding to the third requirement is improved.
  • the wristwatch-type power generator attached to the wrist of the user the first factor described above is being studied so that the movement of the arm of the user is analyzed and the rotating weight rotates efficiently.
  • the present invention provides a device capable of efficiently transmitting kinetic energy, which corresponds to the second factor described above, obtained as rotational motion of a rotary weight, to a piezoelectric body as input energy. It is intended. By realizing such a device, it is an object of the present invention to provide a power generation device having a sufficient power supply capability to actually drive a portable device from the movement of a user's arm. .
  • the input energy can be efficiently converted to electric energy by vibrating the vibrating reed having the piezoelectric body as described above. Therefore, in the present invention, the kinetic energy of the rotary weight and the like is transmitted to the vibrating reed with as little loss as possible.
  • the aim is to provide a possible generator.
  • An object of the present invention is to provide a power generating device that improves power generation efficiency by efficiently applying displacement to a piezoelectric body, has a high power generation capability, and can secure a sufficient power generation amount by movement of an arm or the like. . 700885
  • the inventors of the present application When vibrating the vibrating reed by the kinetic energy of the rotary weight or the like, the inventors of the present application often lost the input energy applied to the vibrating reed to the striking portion that hits the vibrating reed and the vibrated vibrating piece. It was found to be caused by a secondary collision with the piece.
  • At least one vibrating piece having the piezoelectric layer of the present invention, and a vibrating device that excites vibration by applying a blow to the vibrating piece, the electric power generated in the vibrating piezoelectric layer is provided. in can output power generator, and an equivalent mass m e of the hitting portion of the vibrating unit colliding with vibration Dohen to set rather smaller than the equivalent weight M e of the vibrating element.
  • the mass of the vibrating bar is M H
  • the distance from the fixed end to the other free end is 1 H
  • the impact from the fixed end the distance to the excitation point of striking is added by parts when an x H
  • the criterion function of the vibration modes .XI eta the equivalent mass M e of definitive to vibration point is represented by the following formula (a) .
  • a lever one excitation of the swirl type striking portion hurt the vibration point, the moment of inertia of I b, the distance from the turning center to the striking point to hit the vibration point
  • equivalent mass m e of the hitting portion is represented by the following formula (B).
  • the primary mode vibration which is effectively used for power generation, is efficiently excited, and the high-order mode higher than the second-order mode is used. It is desirable to reduce vibration of the gate. Therefore, it is effective for the impact portion to apply an impact near the node of the secondary mode of the vibrating piece slightly returned from the free end of the cantilever-mounted vibrating piece to the fixed side.
  • the resonator element does not have a cantilever shape, it is needless to say that it is desirable to excite the vicinity of the node of the mode in which the contribution to the power generation of the second or higher order is small.
  • Such a power generation device can be realized as a portable device by being housed in a case such as an arm-mounted type, and a time-measuring device or a communication device that can operate on the portable device with the power output from the power generation device.
  • a processing device such as a device, it is possible to provide a portable device that does not require external power supply and does not require battery replacement.
  • a rotating weight which is rotatably mounted inside the case, and a train for transmitting the movement of the rotating weight to the striking portion at a reduced speed are provided, and the striking portion is driven to swing in conjunction with the train wheel. It is desirable to use a vibration lever that collides with the vibrating bar. By increasing the speed of the oscillating weight, the oscillating lever can be driven to rotate faster than the cycle at which the oscillating weight moves.Therefore, the kinetic energy of the oscillating weight must be split by the vibrating lever and applied to the vibrating element. Becomes possible.
  • the vibrating reed since the input energy given to the vibrating reed can be dispersed, the vibrating reed can be prevented from being damaged, and a vibration having a small amplitude can be repeatedly applied to the small vibrating reed. For this reason, a small and low-loss generator can be realized, and sufficient power generation can be secured.
  • the vibration lever is Can be downsized.
  • the inertial moment of the vibration lever can be reduced, so that the equivalent mass of the vibration lever can be reduced, secondary collision with the vibrating element can be prevented, and the speed of the train wheel can be increased sufficiently. It is made to follow.
  • the vibration lever does not move unnecessarily, preventing secondary collision between the vibrating reed and the vibration lever. It is possible to provide a power generation device having a high power generation capacity capable of effectively utilizing movement and the like.
  • a power generation device having a high power generation capacity capable of effectively utilizing movement and the like.
  • by providing a plurality of vibrating bars and applying vibrations to the vibrating bars alternately with the vibrating bars it is possible to lengthen the duration of vibration of each vibrating bar by one impact. Therefore, it is possible to prevent the loss caused by the next excitation being applied during the vibration of the resonator element, and to improve the efficiency.
  • vibration lever it is also possible to hit the vibrating bar using at least one ball that moves in a groove formed around the vibrating bar.
  • FIG. 1 is a diagram showing a schematic configuration of a power generator having a resonator element provided with a piezoelectric layer according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a configuration of a drive system and a vibration device of the power generator shown in FIG.
  • FIG. 3 is an enlarged view of the vibration device shown in FIG.
  • Fig. 4 is a graph showing how the mechanical energy loss rate of the resonator element changes with the amplitude.
  • Fig. 5 is a graph showing how the transmission efficiency of energy transmitted from the vibrating lever to the vibrating bar changes depending on the ratio between the equivalent mass of the vibrating bar and the equivalent K amount of the vibrating lever.
  • FIG. 6 is a diagram for explaining a state in which the vibrating lever and the vibrating element collide.
  • FIG. 6 (a) shows a state before the collision
  • FIG. 6 (b) shows a state after the collision. .
  • FIG. 7 shows the conditions for calculating the equivalent mass of the vibrating lever and the vibrating element.
  • Fig. 8 is a graph showing the displacement of the vibration lever and the vibrating bar after collision.
  • Fig. 9 is a graph showing the re-collision limit equivalent mass of the vibration lever and the vibrating bar based on several collision coefficients. .
  • FIG. 10 is a graph showing a state in which the amplitude of the primary mode and the secondary mode of the vibration of the vibrating bar changes depending on the collision position where the vibrating bar is hit.
  • FIG. 11 is a diagram showing how the amplitudes of the primary mode and the secondary mode shown in FIG. 10 are determined from the open-circuit voltage.
  • FIG. 12 is a diagram showing a schematic configuration of a power generator according to Embodiment 2 of the present invention.
  • FIG. 13 is a diagram showing a schematic configuration of a power generator according to Embodiment 3 of the present invention.
  • FIG. 14 is a diagram showing a schematic configuration of a power generator according to Embodiment 4 of the present invention.
  • FIG. 15 is a diagram showing a schematic configuration of a power generator according to Embodiment 5 of the present invention.
  • FIG. 16 is a view showing a cross section of a groove portion of the power generating apparatus shown in FIG.
  • FIG. 17 is a diagram showing a schematic configuration of a power generator according to Embodiment 6 of the present invention.
  • FIG. 18 is a view showing a shape and a vibration mode of a resonator element of the power generating apparatus shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows an outline of a wrist-mounted portable device provided with a power generator according to an embodiment of the present invention.
  • the portable device 10 of this example is composed of a power generating device 20 including a vibrating reed 21 having piezoelectric layers 22 a and 22 b and an alternating current obtained by vibrating the vibrating reed 21. It includes a rectifying circuit 2 for rectifying, a power storage circuit 4 for storing the rectified current, and a processing device 6 for performing timekeeping processing with the generated current.
  • the processing device 6 may have a function such as a radio, a louver, or a personal computer in addition to the timekeeping process such as driving the clock unit 7 or performing an alarm process.
  • the capacitor 5 is used for the power storage circuit 4, but any device having a power storage capability such as a secondary battery may be used.
  • the rectifier circuit 2 is not limited to the full-wave rectifier using the diode 3 as in the present embodiment, but may be a half-wave rectifier circuit or a rectifier circuit using an inverter or the like. good.
  • the portable device of this example is shown in a conceptual diagram in FIG. 1, the rectifier circuit 2, the power storage circuit 4, the processing device 6, and the like are arranged so as to overlap a drive system 11 described later in a plan view. They are arranged to reduce the size of the entire device.
  • the power generating device 20 of this example includes a vibrating device 30 that applies vibration to the vibrating piece 21 having a piezoelectric layer, and the vibrating device 30 is driven by a driving system 40. It has become.
  • the vibrating reed 21 is fixed to the base plate 12 in a cantilever shape, and includes a metal support layer 26 and piezoelectric layers 22 a and 22 b formed on both sides thereof. ing.
  • a weight 25 is attached to the tip (free end) 23 of the vibrating reed 21 for free vibration.
  • the weight 25 is provided with a recess 25 c at the center, which is open toward the free end 23.
  • the active end 39 of the vibrating lever 35 collides with the inside of the recess 25c, and is set so that the vibrating piece 21 is hit. Therefore, when the vibration lever 35 of the vibration device 30 turns, the vibrating piece 21 is vibrated, and the tip 2 3 of the vibrating piece 2 1 is j Li] end, and the side 24 fixed to the main plate 1'2 with the screw 27 becomes the fixed end and freely vibrates. Accordingly, the piezoelectric layers 22 a and 22 b of the resonator element 21 are repeatedly displaced accordingly, and an electromotive force is generated.
  • the drive system 40 of the present example is provided with a rotary weight 13 that performs a rotary motion inside the case 1, and when mounted as a wrist watch, the rotary weight 13 is attached to the arm or body of the user. It rotates in response to the movement of the robot and uses the force to apply vibration to the resonator element 21. Also, the drive system of this example
  • the 40 is provided with a train wheel 41 having the configuration shown in FIG. 2 so as to increase the speed of the movement of the rotary weight 13 and to be applied to the vibration device 30.
  • the movement of the oscillating weight 13 is transmitted to the first intermediate wheel 15a by the oscillating weight wheel 14 constituting the train wheel 4 1 and is accelerated.
  • the first intermediate wheel 15a is meshed with a second intermediate wheel 15b of the same diameter, and the first and second intermediate wheels 15a and 15a 1 5b rotates. Then, the respective movements of the intermediate cars 15a and 15b are transmitted to the driving levers of the vibrator 30 and the cars 31a and 31b, and these intermediate cars 15a and 1
  • the drive lever wheels 31a and 31b are rotationally driven at the same speed in the opposite direction.
  • the train wheel 41 for example, when the rotating weight 13 moves at about 1 Hz after capturing the movement of the user's wrist, the movement is accelerated to about 50 Hz and accelerated. Can be transmitted to the vibration device 30.
  • the vibrating lever 35 is driven by the two drive levers 32a and 32b, so that the vibrating bar 21 receives an impact in units of about 100 Hz. Is applied, whereby a vibration of about 2 kHz is excited in the resonator element 21.
  • FIG. 2 shows a combination of one intermediate table 15a, one driving lever 31a, a driving lever 32a, and a passive end 36a. The same applies to the combination of car 15b, drive lever car 31b, drive lever -32b, and passive end 36b.
  • the vibrating reed has a large kinetic energy like the rotating weight 13 with respect to the vibrating reed 21 of the power generating device 20. If the vibrating reed is directly vibrated, it is necessary to increase the size of the vibrating reed to prevent breakage. On the other hand, when the speed of the rotating weight 13 is increased by using the train wheel 4 1 as in this example, the kinetic energy of the rotating weight 13 can be divided and applied to the vibrating piece 21. It is possible to prevent damage and reduce the size of the resonator element 21.
  • FIG. 3 shows an enlarged view of the arrangement of the driving levers 32a and 32b constituting the vibrating device 3 and the vibrating lever 35.
  • the drive levers 32a and 32b in this example are almost spindle-shaped levers, and each lever 32a and 32b is equal with its center 33a and 33b as the rotation center. It is driven to rotate in the reverse direction at the speed. Furthermore, these spindle-shaped levers 32a and 32b are set to rotate out of phase, and both ends 34 of the levers are connected to the passive ends 36a of the vibration lever. And 36 b alternately to drive the passive lever 35.
  • the passive ends 36a and 36b are located at appropriate angles away in consideration of the arrangement of the intermediate wheels 15a and 15b.
  • the drive end 39 is located on the opposite side to the center 37 of the vibration lever.
  • the center 3 3a of the drive lever 3 2a is selected so that the kinetic energy of the drive levers 32a and 32b can be transmitted to the passive lever 35 most efficiently.
  • the position 38 a where both ends 34 contact the passive end 36 a of the vibrating lever and the center 37 of the vibrating lever 35 are arranged substantially in a straight line.
  • the center 3 3b of the drive lever 3 2b, the position 3 8b where its both ends 3 4 abut the passive end 36 b of the receiving lever, and the center 3 7 of the vibrating lever 3 5 are almost straight It is arranged so that it becomes.
  • the vibrating lever 35 of the vibrating device of this example can be transmitted from the driving system 40 to the vibrating lever 35 with very little energy loss by arranging as described above. Since the drive levers 32a and 32b are alternately driven, vibration can be efficiently excited by giving input energy to the resonator element 21 in smaller time units. In addition, since the drive levers 35 are driven by the drive levers 32a and 32b, the moment of inertia of the drive lever 35 can be reduced. Even when the vibration lever 35 moves at a relatively high frequency, it is possible to cause the motion to sufficiently follow the high-frequency motion that has been accelerated.
  • the vibrating lever 35 in this example is attached to the case 1 with its center of gravity substantially at the center of rotation 37, so that the vibrating lever 35 can be used only by changing the direction of the case 1. It does not turn. For this reason, the vibration lever 35 is driven only by the drive levers 32a and 32b, so that the positional relationship with the drive lever is always properly maintained. Also, the vibration lever 35 is prevented from moving inadvertently depending on the direction of the case 1 to cause a secondary collision with the vibrating bar 21, thereby preventing energy loss.
  • FIG. 5 shows the input energy (vibration energy of the vibrating bar 21) E i and the kinetic energy E of the vibrating lever 35 in the power generator 20 of this example.
  • energy transduction efficiency 77 t becomes the equivalent mass ratio M R is approximately 1 rapidly decreases, equivalent mass ratio M R is greater than 1 when the energy first transmission efficiency 7? t increases again but the initial speed of the vibration of the resonator element 2 1 according equivalent mass ratio M R is the maximum value by remote lowered in less than 1.
  • equivalent mass ratio M R If there is less than 1, the equivalent mass ratio M R is increased There the energy transfer efficiency ?? t is increased with the increase. in contrast, it approaches the equivalent mass ratio M R is approximately 1, pressurized shake -3 5 of the kinetic energy E.
  • the vibrating lever 35 stops at the position where the vibrating bar 21 is hit, and a secondary collision between the vibrating bar 21 and the vibrating lever 35 occurs. Due to this secondary collision, the input energy obtained by the resonator element 21 is applied to the vibrating lever 35 in the opposite direction, resulting in an energy loss, so that the energy transfer efficiency r? T decreases rapidly.
  • the equivalent mass ratio M R exceeds 1
  • the energy loss due to the secondary collision on the side of the resonator element 2 1 slightly decreases, also including tertiary collision occurs, the energy transfer power factor? ? t rises.
  • Equivalent mass M e is not limited to the combination of the cantilever with vibrating lever, described later
  • the present invention can be equally applied to a case where a different mechanism such as a ball is used for the striking portion or a case where a piezoelectric body having a different shape such as a rectangular plate is used for the vibrating piece.
  • V H ′ and V t are the respective velocities of the vibrating bar 21 and the excitation lever 35 immediately after the collision.
  • the vibrating reed 21 starts to vibrate from the time of being hit, and shows a displacement as shown by a solid line 51 in FIG.
  • the displacement u H is represented by the following equation. For simplicity, primary mode vibration is considered for the vibrating piece 21 and no vibration attenuation is considered.
  • indicates angular velocity
  • indicates amplitude
  • t indicates time. From the initial conditions, the following relationship is satisfied.
  • uank 3 (t) B 't (t- ⁇ / ⁇ ) (t-2 ⁇ / ⁇ )
  • equation (11) can be approximated by the following equation (14).
  • the inventors of the present application have found that the electromotive voltage generated from the vibrating bar 21 fluctuates even with the change of the excitation point X shown in FIG.
  • the vibration that contributes to power generation is the vibration in the primary mode, and when a higher-order vibration that is higher than the secondary mode occurs, the vibration mode is excited to the primary mode that is effective for power generation. Input energy is reduced.
  • the inventors measured how the amplitude of the primary mode and the amplitude of the secondary mode change depending on the excitation point X, and the results are shown in FIG. 10. .
  • a piezoelectric a is PZT layer evening Yunimo Ruff full-length 1 H laminated on phosphorous bronze support material is 2 1 mm using a vibrating reed Eve, vibrating piece excitation point X shown in FIG. 7
  • the open-circuit voltage V generated by the vibrating reed after the impact is changed while changing the distance (collision position (1 Volunteer1 x H )) from the tip (free end) of the wire is measured.
  • a value almost proportional to the amplitude of the piece is obtained, and a waveform in which the primary mode of vibration overlaps the secondary mode is obtained, as shown in Fig. 11. Therefore, 1
  • the amplitudes V and V of the second and second modes were obtained, and the results are shown in Figure 10.
  • the person who hit the vibrating piece slightly back from the free end toward the fixed end, compared with the case where the free end of the vibrating piece was hit It can be seen that the amplitude of the first mode can be increased and the amplitude of the second mode can be reduced. Then, the amplitude of the primary mode becomes maximum when the collision position is about 3.5 mm from the tip, and the amplitude of the secondary mode becomes minimum at almost the same collision position. It is considered that there is a node of the vibration of the secondary mode near the position where the amplitude of the secondary mode becomes minimum.
  • a concave weight 25 is added to the free end 23 of the vibrating reed 21, so that even the small vibrating reed 21 can be used.
  • the configuration is such that the equivalent mass can be adjusted to make it larger than the vibration lever 35.
  • a cam portion or the like is provided so as to be driven not through the wheel train 41 directly but through the drive lever 32. 3 5 small PT / JP97 / 00885
  • the power generation device 20 of the present example has a configuration in which secondary collision between the vibrating reed 21 and the vibration lever 35 can be prevented, and energy loss due to the secondary collision can be eliminated. It is a high power generator.
  • the weight can be extended on both sides of the free end of the resonator element, so that a sufficient weight can be arranged in a small space.
  • the active end 39 of the vibrating lever 35 is provided inside the recess 25c of the concave weight 25. Accordingly, the active end 39 excites the position of the entire vibrating piece 21 including the weight 25 from the free end 23 to a position slightly returned to the fixed end 24. For this reason, the input energy is transmitted to the resonator element 21 such that the amplitude of the secondary mode is small and the amplitude of the primary mode is larger, and a power generation device with high power generation capability is obtained.
  • the power generating device 20 of the present example accelerates the movement of the oscillating weight 13 by the train wheel 41 and strikes the vibrating piece 21 to split the kinetic energy of the oscillating weight 13.
  • the kinetic energy of the rotating weight 13 can be transmitted very efficiently to a small vibrating piece 21 equipped with a piezoelectric layer, for example, it can be applied to the vibrating piece 21 with a piezoelectric layer. is there.
  • the power supplied by the power generation device of this example can operate not only the time measurement device of this example but also processing devices such as a pager, a telephone, a radio, a hearing aid, a calculator, and an information terminal. is there.
  • the shape of the portable device is not limited to a portable device that is mounted on an arm, such as a vehicle-mounted type or a pocket type.
  • FIG. 12 shows a wrist-worn S-type portable device 60 including a power generation device 20 according to the present invention.
  • the power generation device 20 of this example also includes a vibrating piece 21 having a piezoelectric layer, and the kinetic energy of the rotating weight 13 rotating in the case 1 of the portable device 60 with respect to the vibrating piece 21 is provided. A blow is applied to excite the vibration, and the generated current can be supplied. Therefore, portions common to those in the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted. The same applies to the other embodiments described below.
  • the excitation lever 35 is turned by one drive lever 32 to supply kinetic energy to the vibrating piece 21. Therefore, the wheel train 41 of the drive system 40 is also configured to increase the movement of the rotary weight 13 by one intermediate wheel 15 and transmit it to the drive lever 13 2. Therefore, the configurations of the wheel train 41 and the drive levers 32 of the drive system 40 can be simplified, so that the power generation device 20 and the portable device 60 can be reduced in size at any time. Further, a concave weight 25 is provided at the free end 23 of the vibrating reed 21, and the active end 39 of the vibrating lever 35 is installed inside the M part 25 c.
  • the power generation device and the arm-mounted device of the present example have improved energy transfer efficiency as in the first embodiment, and are smaller and have higher power generation capability and the arm-mounted device. It is.
  • FIG. 13 shows an example of a different power generation device 20 according to the embodiment of the present invention '.
  • the power generating device 20 of this example includes two vibrating bars 21a and 21b, and the active end 39 of the vibrating lever 35 is connected to the two vibrating bars 21a and 21b. It is located between. Then, the fixed ends 2 4 are slightly more than the free ends 23 of the weights 25 a and 25 b installed at the free ends 23 a and 23 b of the two vibrating bars 21 a and 21 b. The returning place is alternately impacted by the vibrating levers 35, which are exciting the vibrating pieces 21a and 21b.
  • the time for which the vibrating is continued by one hit is longer for each vibrating reed. Can be taken. Therefore, the period during which the input energy by one impact is converted into electric energy can be set longer, so that the energy transmitted by the vibrating lever increases, and even if the number of vibrations of the vibrating piece 21 increases. A sufficient margin time can be secured before the next vibration. For this reason, the situation where the next vibration is further excited during the vibration can be prevented, and the loss of vibration energy due to such a situation can be avoided.
  • two vibrating bars 2 1 a and 2 1 b are alternately hit by a vibrating lever.
  • three or more vibrating pieces are provided around a rotating vibrating lever.
  • FIG. 14 shows an example of a different power generator according to the embodiment of the present invention.
  • the support layers 26 a and 26 b of the two vibrating bars 21 a and 21 b are formed in a tuning fork shape, and these two support layers 26 a and 2 b 6 b Connect base 2 6 c to main plate 12 Is attached.
  • each of the vibrating pieces 2 1 is connected to two different rectifier circuits (not shown) of the piezoelectric layers 2 2 a and 22 b provided on the respective screw pieces 2 la and 2 lb. Current is supplied from a and 21b.
  • the vibration lever 35 has a smaller equivalent mass than the vibrating bars 21 a and 21 b as in the embodiment described above, and furthermore, the vibration levers 21 a and 21 b The part slightly returned from the free end to the fixed end is hit. Therefore, by generating power using the vibrator 29 combined with the tuning fork type of this example, it is possible to generate a vibration having a small vibration loss rate by utilizing the characteristics of the tuning fork. It is possible to provide a power generation device with high power generation efficiency by suppressing mechanical energy loss.
  • FIGS. 15 and 16 show schematic configurations of different power generators 20 according to the embodiment of the present invention.
  • a pole 62 is used for a striking portion that vibrates the resonator element 21.
  • the free end 23 of the vibrating piece 21 was slightly returned to the fixed end 24 in the upper and lower cases 65 a and 65 b containing the vibrating piece 21.
  • a circular groove 61 passing through the position is formed, and the ball 62 can move freely inside the groove 61.
  • case 6 5 When the ball ⁇ 2 is moved by moving the vibrating bar 2, the ball 6 2 collides with the vibrating bar 2 1 at a position slightly returned from the free end 23 of the vibrating bar 2 1, and vibrates the vibrating bar 2 1. I have. As a result, an electromotive force is generated in the piezoelectric layers 22a and 22b of the resonator element 21 and power is generated.
  • the equivalent mass of the ball 62 that hits the vibrating bar 21 can be made smaller than the equivalent mass of the vibrating bar 21.
  • the energy transfer efficiency from the ball 62 to the resonator element 21 can be increased.
  • the ball 62 that hits the vibrating piece 21 can move freely inside the groove 61, there is no need for a complicated structure such as a bearing for attaching a rotating weight or a train wheel. Become. Therefore, it is possible to provide a low-cost power generator with a simple configuration and high power generation capacity.
  • FIG. 17 and FIG. 18 show schematic configurations of different power generating devices 20 according to the embodiment of the present invention.
  • the ball 62 is used for the striking portion that vibrates the vibrating piece 21.
  • a circular groove 61 is formed inside a case 65 accommodating a rectangular plate-shaped vibrating piece 21 having both ends free, and a ball 61 is formed inside the groove 61. 6 2 can move freely. Therefore, when the ball 62 is moved by giving a motion to the case 65, the ball 62 collides with the vibrating bar 21 to vibrate the vibrating bar 21. As a result, electromotive force is generated in the piezoelectric layers 22 a and 22 b of the resonator element 21, and power is generated.
  • the shape of the resonator element 21 is shown in Fig. 18 (a). As shown, it is a “rectangular” plate with both ends free, so the primary mode has nodes 8 1 a and 8 1 b.
  • the primary mode has nodes 8 1 a and 8 1 b.
  • Fig. 18 (c) shows the primary mode
  • Fig. 18 (d) shows the secondary mode
  • Fig. 18 (e) shows the tertiary mode of a rectangular plate with S ends.
  • the straight line in the figure represents the position in the longitudinal direction of the rectangular plate, and the curve represents the shape during deformation.
  • the numerical values in the figure indicate the positions of the nodes of vibration when the length in the longitudinal direction of the rectangular plate is set to 1.
  • the equivalent mass of the ball 62 that hits the vibrating bar 21 can be made smaller than the equivalent mass of the vibrating bar 21.
  • the energy transfer efficiency from the ball 62 to the resonator element 21 can be increased.
  • the ball 62 that hits the vibrating bar 21 can move freely inside the groove 61, a complicated structure such as a bearing for attaching a rotating weight or a train wheel is not required. Becomes Therefore, it is possible to provide a low-cost power generator with a simple configuration and high power generation capacity. Further, by enclosing a plurality of balls 62 in the groove 61, it is possible to increase the number of hits to the vibrating reed 21.
  • the energy for moving the case 65 is more efficiently used. Can be transmitted to Therefore, by using the vibrator 21 of this example to generate power, Since a vibration with a small vibration loss rate that makes use of the characteristics of a free rectangular plate can be generated, a power generation device with high power generation efficiency can be provided by suppressing mechanical energy loss.
  • Example 6 it was stated that the same loss-free setting is possible for the rectangular plate-shaped moving piece and the vibrating section that are free at both ends.
  • the present invention is not limited to these vibrating reeds / vibration structures, and any vibrating reed, such as a disk, trapezoidal plate, rectangular plate, cylinder, or rectangular parallelepiped, and any vibrating reed, ball, leaf spring, etc. As shown in Fig.
  • the vibrating piece of the bimorph filter in which the two piezoelectric layers 22 a and 22 b are formed on both sides of the metal support layer 26, or the piezoelectric layer 22 a The description is based on a device that generates power using a resonator element in which 2 and 2b are stacked. Of course, it may be used.
  • the materials that make up the piezoelectric body are PZT (trademark), ceramic materials such as barium titanate and lead titanate, single crystals such as quartz and lithium niobate, and polymer materials such as PVDF. Of course, it is good.
  • the present invention provides an arm-mounted type such as the timepiece described in the above embodiment. Not limited to portable devices ⁇ ). Since the present invention can provide a small-sized power generation device having a high power generation capability, it is suitable as a power generation device incorporated in other small and portable electronic devices. For example, a pager, a telephone, a wireless device, a hearing aid, The power generation device of the present invention can be applied to information terminals such as meters, calculators, electronic organizers, IC cards, radio receivers, and the like. By adopting the power generation device of the present invention in these portable devices, power generation can be efficiently performed by capturing human movements, etc., and battery consumption can be suppressed, or the battery itself can be made unnecessary. It is also possible to do so.
  • the function of the portable electronic device can be exhibited even in an area or place where a battery or a charging device is not readily available, or in a situation where it is difficult to replenish the battery due to a disaster or the like.
  • the present invention relates to a power generating apparatus that generates power by vibrating a vibrating reed having a piezoelectric layer, wherein the equivalent mass of a striking portion that excites the vibrating reed by hitting the vibrating reed is set to By making the mass smaller than the equivalent mass, the secondary collision between the vibrating piece and the impact portion is prevented. For this reason, according to the present invention, energy loss due to a secondary collision can be prevented, and a power generation device with extremely high energy transmission efficiency from the impact portion to the resonator element can be provided.
  • the power generating device can efficiently apply the kinetic energy generated by the rotating weight or the like to the vibrating reed as input energy, and thus the power generating device using the vibrating reed having the piezoelectric layer with high power generation efficiency In this case, large input energy can be supplied to the resonator element, and a power generation device with high power generation capability can be realized. Therefore, it is possible to provide a power generator suitable for supplying electric power to a small and portable portable device using the piezoelectric body.
  • the amplitude of the primary mode contributing to power generation is increased by setting the position where the vibrating piece is excited near the node of the secondary mode, and the input energy is effectively used for power generation. It is being used.
  • the rotational movement of the rotating fe / weight mounted on the arm-mounted device is accelerated using a wheel train, and kinetic energy is divided and applied to the vibrating reed to thereby provide a mechanical device during vibration.
  • the vibrating reed is made of a tuning fork or a rectangular plate with both ends free, and is supported on a node in the primary mode to reduce fixed loss, improve conversion efficiency, and use a piezoelectric material with high power generation capability. A power generation device has been realized.
  • the power generation device of the present invention can efficiently transmit the kinetic energy obtained by capturing the movement of the user's arm, etc., to the resonator element, so that sufficient power is supplied to the small-sized portable device. It is possible to provide a power generator that can be used.

Abstract

A power generator suitably used for small-sized portable devices which generates electric power by vibrating a vibrating piece carrying a piezoelectric layer. The energy transmitting efficieny from an exciter to the vibrating piece is improved and the generator can efficiently generate electric power by utilizing the movement of the arm, etc., of the user. The occurrence of a secondary sollision between the vibrating piece (21) and an exciting lever (35) is prevented by making the equivalent mass of the exciting lever (35) - which causes the vibration of the vibrating piece (21) by giving a blow to the piece (21) - smaller than that of the piece (21). Since the energy loss of the vibrating piece (21) caused by the secondary collision is prevented, the energy transmitting efficieny from the exciting lever (35) to the vibration piece (21) is improved remarkably. Therefore, a power generator which has a high power generating ability and a small size and is suitable for portable devices is provided.

Description

- 明 細 書 発電装置および携帯型機器 技術分野  -Description Power generation equipment and portable equipment Technical field
本発明は、 圧電体を備えた振動片を加振して発電を行う発電装置 およびこれを備えた携帯型機器に関するものである。 背景技術  The present invention relates to a power generating device that generates power by vibrating a vibrating reed having a piezoelectric body, and a portable device including the power generating device. Background art
圧電材料を用いて発電を行う小型の装置が幾つか提案されており . 例えば、 実開平 6— 7 6 8 9 4号には錘の回転運動を用いてハンマ 一レバーを駆動し、 圧電材料を叩いて発電する技術が記載されてい また、 実開昭 6 3— 7 2 5 9 3号には、 時計ケースの内部に圧電 素子を収納し、 重りが上下方向に慣性的に稼動されて振動され、 こ の振動によって電気エネルギーを発生させる技術が記載されている < これらの圧電体を用いた発電方式によって、 腕の動きなどを捉え て圧電体に歪みを与えて発電を行い、 時計装置などを動かす電力を 得ることができる。 このような携帯型で小型の発電装置は、 腕の動 きなどから運動エネルギーを得て電気エネルギーに効率良く変換す るために、 先ず第 1に、 腕の動きなどを効率良く回転錘の回転など の実際に発電に用いられる運動エネルギーに変換し、 第 2に、 その 運動エネルギーを効率良く圧電体に歪みとして印加し、 さらに、 第 Several small devices that generate electric power using piezoelectric materials have been proposed. For example, Japanese Utility Model Laid-Open No. 6-768984 uses a rotary motion of a weight to drive a hammer lever to use piezoelectric materials. The technology to generate electricity by tapping is described. In Japanese Utility Model Laid-Open No. 63-725-93, a piezoelectric element is housed inside the watch case, and the weight is inertially operated in the vertical direction and vibrated. However, there is a description of a technology for generating electric energy by this vibration. <These power generation methods using piezoelectric materials generate power by capturing the movement of the arm and distorting the piezoelectric materials to produce a clock device. You can get the power to move. In order to obtain kinetic energy from the movement of the arm and efficiently convert it into electric energy, such a portable and small power generator firstly converts the movement of the arm and the like to the rotation of the rotating weight efficiently. Second, the kinetic energy is efficiently applied to the piezoelectric material as strain, and
3に、 圧電体に加えられた歪みを効率良く電気エネルギーに変換す ることが重要である。 Third, it is important to efficiently convert the strain applied to the piezoelectric body into electrical energy.
圧電体に加えられた運動エネルギー (入力エネルギー) は、 圧電 体を支持する支持層などの歪みエネルギー、 圧電体自体の歪みエネ ルギ一、 および圧電体-の発電によ りコンデンサなどの蓄電装置に蓄 えられる電気エネルギーの 3つに主に分けられる。 これらの内、 発 電装置として最も重要な電気エネルギーは、 圧電体の電気機械結合 係数、 圧電素子の充電しない時の出力電圧および静電容量、 蓄電装 置の電圧等によ り変動するが、 圧電体の歪みエネルギの数%にしか ならない。 そこで、 パネ性レバ一と して自由振動するような圧電体 を用いて発電することが検討されている。 圧電体を振動させること によって繰り返し歪みを発生でき、 入力エネルギーによって発生し た歪みエネルギーを徐々に電気エネルギーに変換できるからである。 このようにして、 上記の第 3の要冈に当たる入力エネルギーに対し 発生される電気エネルギーの効率向上が図られている。 また、 ユー ザ一の手首に装着する腕時計型の発電装置においては、 ユーザーの 腕の動きを解析して回転錘が効率良く回転するように上述した第 1 の要因に係る検討が進んでいる。 The kinetic energy (input energy) applied to the piezoelectric body is the strain energy of the support layer that supports the piezoelectric body and the strain energy of the piezoelectric body itself. It can be divided into three main types: electrical energy stored in power storage devices such as capacitors and electricity generated by piezoelectric power. Of these, the most important electrical energy for the power generation device varies depending on the electromechanical coupling coefficient of the piezoelectric body, the output voltage and capacitance when the piezoelectric element is not charged, the voltage of the power storage device, etc. This is only a few percent of the strain energy of the piezoelectric body. Therefore, it is being studied to generate power using a piezoelectric material that vibrates freely as a paneling lever. This is because strain can be repeatedly generated by vibrating the piezoelectric body, and the strain energy generated by the input energy can be gradually converted to electric energy. In this way, the efficiency of electric energy generated with respect to the input energy corresponding to the third requirement is improved. In the wristwatch-type power generator attached to the wrist of the user, the first factor described above is being studied so that the movement of the arm of the user is analyzed and the rotating weight rotates efficiently.
そこで、 本発明においては、 上述した第 2の要因に当たる、 回転 錘の回転運動などと して得られた運動エネルギーを効率良く入力ェ ネルギ一と して圧電体に伝達できる装置を提供することを目的とし ている。 そして、 このような装置を実現するこ とによって、 ユーザ —の腕の動きなどから実際に携帯用機器を駆動するのに十分な給電 能力を備えた発電装置を提供することを目的と している。  In view of the above, the present invention provides a device capable of efficiently transmitting kinetic energy, which corresponds to the second factor described above, obtained as rotational motion of a rotary weight, to a piezoelectric body as input energy. It is intended. By realizing such a device, it is an object of the present invention to provide a power generation device having a sufficient power supply capability to actually drive a portable device from the movement of a user's arm. .
特に、 上述したように圧電体を備えた振動片を振動させることに よって入力エネルギーを効率良く電 エネルギーに変換できるので、 本発明においては、 回転錘などの運動エネルギーをできるだけ損失 なく振動片に伝達可能な発電装置を提供することを目的としている。 そして、 効率良く圧電体に変位を印加することによって発電効率を 向上し、 発電能力が高く、 腕などの動きによって十分な発電量を確 保できる発電装置を提供することを本発明の目的としている。 700885 In particular, as described above, the input energy can be efficiently converted to electric energy by vibrating the vibrating reed having the piezoelectric body as described above. Therefore, in the present invention, the kinetic energy of the rotary weight and the like is transmitted to the vibrating reed with as little loss as possible. The aim is to provide a possible generator. An object of the present invention is to provide a power generating device that improves power generation efficiency by efficiently applying displacement to a piezoelectric body, has a high power generation capability, and can secure a sufficient power generation amount by movement of an arm or the like. . 700885
発明の開示 Disclosure of the invention
本願の発明者らは、 回転錘などの運動エネルギーによって振動片 を加振する際に、 振動片に与えられた入力エネルギーの損失の多く が、 振動片を打撃する打撃部と加振された振動片との 2次衝突に起 因することを見いだした。  When vibrating the vibrating reed by the kinetic energy of the rotary weight or the like, the inventors of the present application often lost the input energy applied to the vibrating reed to the striking portion that hits the vibrating reed and the vibrated vibrating piece. It was found to be caused by a secondary collision with the piece.
この 2次衝突を防ぐには、 打撃部が振動片に打撃を与えた後、 振 動片の初期の変位に対し反対方向の速度が ^えられる必要がある。 そこで、 本発明の圧電体層を備えた少なく とも 1つの振動片と、 この振動片に打撃を加えて振動を励起する加振装置とを有し、 振動 中の圧電体層で発生した電力を出力可能な発電装置においては、 振 動片と衝突する加振装置の打撃部の等価質量 meを振動片の等価質 量 Meより小さ く設定するようにしている。 これによ り、 振動片に 打撃を与えた後、 打撃部には振動片の初期の変位に対し反対方向の 速度が与えられる。 In order to prevent this secondary collision, it is necessary that after the impact unit hits the vibrating bar, the velocity in the opposite direction to the initial displacement of the vibrating bar is obtained. Therefore, at least one vibrating piece having the piezoelectric layer of the present invention, and a vibrating device that excites vibration by applying a blow to the vibrating piece, the electric power generated in the vibrating piezoelectric layer is provided. in can output power generator, and an equivalent mass m e of the hitting portion of the vibrating unit colliding with vibration Dohen to set rather smaller than the equivalent weight M e of the vibrating element. Thus, after the vibrating bar is hit, a velocity in the opposite direction to the initial displacement of the vibrating bar is applied to the hitting portion.
従って、 打撃部と振動片の 2次衝突によるエネルギーの再伝達や 損失を防げるので、 振動片によ り多くの人力エネルギーを印加でき、 発電能力を向上できる。  Therefore, retransmission and loss of energy due to the secondary collision between the impact portion and the vibrating piece can be prevented, so that more manpower energy can be applied to the vibrating piece and the power generation capacity can be improved.
—例と して振動片が片持ち梁状に取り付けられている場合は、 振 動片の質量を MH、 固定された固定端から他方の自由端までの距離 を 1 H、 固定端から打撃部によって打撃が加えられる加振点までの 距離を xH、 振動モー ドの規準関数を Ξη と したときに、 加振点に おける等価質量 Meは次の式 (A) で表される。 また、 打撃部が加 振点に打撃を与える旋回式の加振レバ一であり、 その慣性モーメン トを I b、 旋回中心から加振点に打撃を与える打撃点までの距離を xbとすると、 打撃部の等価質量 meは次の式 (B) で表される。 —For example, if the vibrating bar is mounted in a cantilever shape, the mass of the vibrating bar is M H , the distance from the fixed end to the other free end is 1 H , and the impact from the fixed end the distance to the excitation point of striking is added by parts when an x H, the criterion function of the vibration modes .XI eta, the equivalent mass M e of definitive to vibration point is represented by the following formula (a) . Also, a lever one excitation of the swirl type striking portion hurt the vibration point, the moment of inertia of I b, the distance from the turning center to the striking point to hit the vibration point When x b , equivalent mass m e of the hitting portion is represented by the following formula (B).
Me=MH/ (Ξη (Χ Η 1 Η) ) 2 · · · (A) me = I b/x b 2 - · · ( B ) 振動片の等価質量を大き くするには、 片持ち梁状に取り付 られ た振動片の自由端に重り を付加することが望ましく、 その場合の等 価質量 Me は次の式 (D) で表される。 なお、 振動片の片持ち粱 部の質量を MHとし、 重りの質量を Μβとする。 M e = M H / (Ξ η (Χ Η 1 Η)) 2 m e = I b / x b 2- (B) To increase the equivalent mass of the resonator element, it is desirable to add a weight to the free end of the resonator element mounted in a cantilever shape. as the equivalent weight M e of the case is represented by the following formula (D). Incidentally, the mass of the cantilever粱portion of the resonator element and M H, the mass of the weight and Micromax beta.
Me = Ma+M„/ (Ξη (χ„/1 Η) ) 2 · · · CD) さらに、打撃部と振動片の衝突係数を eと したときに、次の式 C) を満たすことによって打撃部と振動片との 2次衝突を防止できる。 従って、 2次衝突による入力エネルギーの損失がないので、 圧鼈体 層を備えた振動片を用いた発電装置の発電能力をさらに向上できる。 M e = M a + M „/ (Ξ η (χ„ / 1 Η )) 2 2CD ) In addition, when the impact coefficient between the impact part and the vibrating bar is e, the following formula C) is satisfied. This can prevent a secondary collision between the hitting portion and the resonator element. Accordingly, since there is no loss of input energy due to the secondary collision, the power generation capacity of the power generation device using the resonator element having the tortoise layer can be further improved.
M e > ( ( 2 · β + 3 · ^+ 2 ) /3 · 7Γ · β) x me · - -M e > ((2β + 3 ^ + 2) / 3 / 3Γβ) xm e
( C) (C)
また、 圧電体層を備えた振動片を振動させて発電する場合は、 発 鼋に有効に活用される 1次モー ドの振動を効率良く励起し、 2:次モ — ド以上の高次モー ドの振動を低減することが望ましい。 そこで、 打撃部は片持ち梁状に取り付けられた振動片の自由端から固定斕の 側に若干戻った振動片の 2次モ一 ドの節近傍に打撃を与えることが 有効である。 また振動片が片持ち梁形状でない場合においても、 2 次以上の発電に対する寄与が少ないモードの節近傍を加振す ¾事が 望ま しいのはもちろんである。  In addition, when power is generated by vibrating a vibrating reed having a piezoelectric layer, the primary mode vibration, which is effectively used for power generation, is efficiently excited, and the high-order mode higher than the second-order mode is used. It is desirable to reduce vibration of the gate. Therefore, it is effective for the impact portion to apply an impact near the node of the secondary mode of the vibrating piece slightly returned from the free end of the cantilever-mounted vibrating piece to the fixed side. In addition, even when the resonator element does not have a cantilever shape, it is needless to say that it is desirable to excite the vicinity of the node of the mode in which the contribution to the power generation of the second or higher order is small.
片持ち梁状に取り付けられた振動片の自由端に重りを付加し,て等 価質量を増加するときは、 自由端の側、 すなわち振動片の先端に向 かって開いた凹部を備えた重りを採用することによって大きな重り を振動片の先端に装着できる。 また、 その凹部の内側と衝突するよ うに加振レバーを設置することにより、 加振レバ一をコンパタ トに 設置できる。 同時に加振レバ一によって自由端の側から固定端の側 に若干戻った 2次モー ドの節付近に打撃を与えられるので、 ί次モ — ドの振動を効率良ぐ励起し、 発電能力を向上できる。 To increase the equivalent mass by adding weight to the free end of the vibrating reed mounted in a cantilever shape, use a weight with a concave part that opens toward the free end, that is, toward the tip of the vibrating reed. By using this method, a large weight can be attached to the tip of the resonator element. In addition, by setting the vibration lever so as to collide with the inside of the concave portion, the vibration lever can be mounted on the compact. At the same time, the vibrating lever can strike the node in the secondary mode, which is slightly returned from the free end to the fixed end, so that the — Exciting the vibration of the node efficiently and improving the power generation capacity.
このような発電装置は腕装着型などのケースに収納して携帯型機 器として実現することが可能であり、 携帯型機器にこの発電装置か ら出力される電力で動作可能な計時装置や通信装置などの処理装置 を収納することによ り、 外部から電力供給がいらず、 また、 電池交 換も不要な携帯型機器を提供できる。  Such a power generation device can be realized as a portable device by being housed in a case such as an arm-mounted type, and a time-measuring device or a communication device that can operate on the portable device with the power output from the power generation device. By housing a processing device such as a device, it is possible to provide a portable device that does not require external power supply and does not require battery replacement.
さらに、 このケース内部で旋回可能に取り付けられた冋転錘と、 この回転錘の動きを增速して打撃部に伝達する綸列とを設け、 打撃 部に輪列に連動して旋回駆動され振動片と衝突する加振レバーを採 用することが望ましい。 回転錘の運動を増速することによって回転 錘が動く周期よ り早い周期で加振レバ一を旋回駆動できるので、 回 転錘の運動エネルギーを加振レバーによって分割して振動片に印加 することが可能となる。 従って、 振動片に与えられる入力エネルギ 一を分散できるので、 振動片の破損を防止し、 小型の振動片に振幅 の小さな振動を繰り返し印加できる。 このため、 小型で損失の少な い発電機を実現でき、 十分な発電量を確保できる。  Further, a rotating weight which is rotatably mounted inside the case, and a train for transmitting the movement of the rotating weight to the striking portion at a reduced speed are provided, and the striking portion is driven to swing in conjunction with the train wheel. It is desirable to use a vibration lever that collides with the vibrating bar. By increasing the speed of the oscillating weight, the oscillating lever can be driven to rotate faster than the cycle at which the oscillating weight moves.Therefore, the kinetic energy of the oscillating weight must be split by the vibrating lever and applied to the vibrating element. Becomes possible. Therefore, since the input energy given to the vibrating reed can be dispersed, the vibrating reed can be prevented from being damaged, and a vibration having a small amplitude can be repeatedly applied to the small vibrating reed. For this reason, a small and low-loss generator can be realized, and sufficient power generation can be secured.
また、 輪列によって回転駆動される駆動レバーを設け、 この駆動 レバ一の一端に加振レバ一の一端が当接して旋回駆動される加振レ バーを採用することにより、 加振レバ一を小型化できる。 このため、 加振レバ一の慣性モーメン トを低減できるので、 加振レバーの等価 質量を小さ くでき、 振動片との 2次衝突を防止でき、 増速された輪 列の速度にも十分に追従させられる。 さらに、 このような加振レバ —は、 旋回中心と重心が一致するようにケースに取り付けることが 望ま しい。 これにより腕などの動きに伴いケースの角度が変化して も加振レバ一は安定して不要な動きがないので、 振動片と加振レバ 一の 2次衝突を防止でき、 ユーザーの腕の動きなどを有効に活用可 能な発電能力の高い発電装置を提供できる。 また、 複数の振動片-を設けこれらに交互に加振レバーによって振 動を加えることで、 個々の振動片においては 1回の打撃による振動 の継続する時間を長く取ることができる。 したがって振動片の振動 中に次の加振が加えられることに起因する損失を防ぎ、 効率向上を 図る事ができる。 Also, by providing a drive lever that is rotationally driven by a train of wheels, and adopting a vibration lever that is driven to rotate by contacting one end of the vibration lever with one end of the drive lever, the vibration lever is Can be downsized. As a result, the inertial moment of the vibration lever can be reduced, so that the equivalent mass of the vibration lever can be reduced, secondary collision with the vibrating element can be prevented, and the speed of the train wheel can be increased sufficiently. It is made to follow. Furthermore, it is desirable to attach such a vibration lever to the case so that the center of rotation coincides with the center of gravity. As a result, even if the angle of the case changes due to the movement of the arm etc., the vibration lever does not move unnecessarily, preventing secondary collision between the vibrating reed and the vibration lever. It is possible to provide a power generation device having a high power generation capacity capable of effectively utilizing movement and the like. In addition, by providing a plurality of vibrating bars and applying vibrations to the vibrating bars alternately with the vibrating bars, it is possible to lengthen the duration of vibration of each vibrating bar by one impact. Therefore, it is possible to prevent the loss caused by the next excitation being applied during the vibration of the resonator element, and to improve the efficiency.
また、 加振レバーに代わり、 振動片の周囲に形成された溝内を運 動する少なく とも 1つのボールを用いて振動片に打撃を与えること も可能である。  Instead of the vibration lever, it is also possible to hit the vibrating bar using at least one ball that moves in a groove formed around the vibrating bar.
さらに、 振動片を音叉型に組み合わせることや、 矩形板等の片持 ち梁以外の形状と して支持位置を振動の節部とする事で振動損失を 少なく し、 効率のよい発電装置を構成することも可能である。 図面の簡単な説明  Furthermore, by combining the vibrating reed with a tuning fork type, or by using a shape other than a cantilever beam such as a rectangular plate, and setting the supporting position as a node of vibration, vibration loss is reduced and an efficient power generation device is configured. It is also possible. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明の実施例 1 に係る圧電体層を備えた振動片を有す る発電装置の概略構成を示す図である。  FIG. 1 is a diagram showing a schematic configuration of a power generator having a resonator element provided with a piezoelectric layer according to a first embodiment of the present invention.
第 2図は第 1図に示す発電装置の駆動系および加振装置の構成を 示す断面図である。  FIG. 2 is a cross-sectional view showing a configuration of a drive system and a vibration device of the power generator shown in FIG.
第 3図は第 1図に示す加振装置を拡大して示す図である。  FIG. 3 is an enlarged view of the vibration device shown in FIG.
第 4図は振動片の機械的なエネルギー損失率が振幅によって変化 する様子を示すグラフである。  Fig. 4 is a graph showing how the mechanical energy loss rate of the resonator element changes with the amplitude.
第 5図は加振レバーから振動片に伝達されるエネルギーの伝達効 率が振動片の等価質量と加振レバーの等価 K量の比によって変化す る様子を示すグラフである。  Fig. 5 is a graph showing how the transmission efficiency of energy transmitted from the vibrating lever to the vibrating bar changes depending on the ratio between the equivalent mass of the vibrating bar and the equivalent K amount of the vibrating lever.
第 6図は加振レバーと振動片が衝突する様子を説明する図であり、 第 6図 ( a ) は衝突前の状態を示し、 第 6図 ( b ) は衝突後の状態 を示してある。  FIG. 6 is a diagram for explaining a state in which the vibrating lever and the vibrating element collide. FIG. 6 (a) shows a state before the collision, and FIG. 6 (b) shows a state after the collision. .
第 7図は加振レバーと振動片の等価質量を算出する際の諸条件を 示す図である。 ' Fig. 7 shows the conditions for calculating the equivalent mass of the vibrating lever and the vibrating element. FIG. '
第 8図は加振レバーと振動片の衝突後の変位を示すグラフである 第 9図は加振レバーと振動片の再衝突限界等価質量を幾つかの衝 突係数に基づき示したグラフである。  Fig. 8 is a graph showing the displacement of the vibration lever and the vibrating bar after collision. Fig. 9 is a graph showing the re-collision limit equivalent mass of the vibration lever and the vibrating bar based on several collision coefficients. .
第 1 0図は振動片に打撃が与えられる衝突位置によって振動片の 振動の 1次モー ドおよび 2次モー ドの振幅が変化する様子を示すグ ラフである。  FIG. 10 is a graph showing a state in which the amplitude of the primary mode and the secondary mode of the vibration of the vibrating bar changes depending on the collision position where the vibrating bar is hit.
第 1 1 図は第 1 0図に示す 1次モー ドおよび 2次モー ドの振幅を 開放電圧から求める様子を示す図である。  FIG. 11 is a diagram showing how the amplitudes of the primary mode and the secondary mode shown in FIG. 10 are determined from the open-circuit voltage.
第 1 2図は本発明の実施例 2に係る発電装置の概略構成を示す図 である。  FIG. 12 is a diagram showing a schematic configuration of a power generator according to Embodiment 2 of the present invention.
第 1 3図は本発明の実施例 3に係る発電装置の概略構成を示す図 である。  FIG. 13 is a diagram showing a schematic configuration of a power generator according to Embodiment 3 of the present invention.
第 1 4図は本発明の実施例 4に係る発電装置の概略構成を示す図 である。  FIG. 14 is a diagram showing a schematic configuration of a power generator according to Embodiment 4 of the present invention.
第 1 5図は本発明の実施例 5に係る発電装置の概略構成を示す図 である。  FIG. 15 is a diagram showing a schematic configuration of a power generator according to Embodiment 5 of the present invention.
第 1 6図は第 1 5図に示す発電装置の溝の部分の断面を示す図で ある。  FIG. 16 is a view showing a cross section of a groove portion of the power generating apparatus shown in FIG.
第 1 7図は本発明の実施例 6に係る発電装置の概略構成を示す図 である。  FIG. 17 is a diagram showing a schematic configuration of a power generator according to Embodiment 6 of the present invention.
第 1 8図は第 1 7図に示す発電装置の振動片の形状と振動モー ド を示す図である。 発明を実施するための最良の形態  FIG. 18 is a view showing a shape and a vibration mode of a resonator element of the power generating apparatus shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
〔実施例 1〕  (Example 1)
以下に図面を参照しながら本発明をさらに詳しく説明する。 第 1 図に本発明の実施例に係る発電装置を備えた腕装着型の携带型機器 の概要を示してある。 本例の携帯型機器 1 0は、 圧電体層 2 2 aお よび 2 2 bを備えた振動片 2 1 からなる発電装置 2 0 と、 振動片 2 1 が振動して得られた交流電流を整流する整流回路 2 と、 整流され た電流を蓄積する蓄電回路 4 と、 さらに、 発電された電流によって 計時処理を行う処理装置 6 を備えている。 処理装置 6は、 時計部 7 を駆動した りアラーム処理を行うなどの計時処理の他にラジォ、 ぺ —ジャあるいはパソコンなどの機能を備えているものであってもも ちろん良い。 また、 本例では、 蓄電回路 4にコンデンサ 5 を用いて いるが、 2次電池などの電力蓄積能力を備えたものであれば良い。 整流回路 2は、 本例のようにダイオー ド 3 を用いた全波整流に限定 されず、 半波整流回路であっても良く、 イ ンバ一夕などを用いた整 流回路であってももちろん良い。 第 1図では本例の携帯型機器を概 念図を用いて示してあるが、 整流回路 2、 蓄電回路 4および処理装 置 6などは、 後述する駆動系 1 1 と平面的に重なる様に配置されて おり、 装置全体の小型化が図られている。 Hereinafter, the present invention will be described in more detail with reference to the drawings. First FIG. 1 shows an outline of a wrist-mounted portable device provided with a power generator according to an embodiment of the present invention. The portable device 10 of this example is composed of a power generating device 20 including a vibrating reed 21 having piezoelectric layers 22 a and 22 b and an alternating current obtained by vibrating the vibrating reed 21. It includes a rectifying circuit 2 for rectifying, a power storage circuit 4 for storing the rectified current, and a processing device 6 for performing timekeeping processing with the generated current. The processing device 6 may have a function such as a radio, a louver, or a personal computer in addition to the timekeeping process such as driving the clock unit 7 or performing an alarm process. Further, in this example, the capacitor 5 is used for the power storage circuit 4, but any device having a power storage capability such as a secondary battery may be used. The rectifier circuit 2 is not limited to the full-wave rectifier using the diode 3 as in the present embodiment, but may be a half-wave rectifier circuit or a rectifier circuit using an inverter or the like. good. Although the portable device of this example is shown in a conceptual diagram in FIG. 1, the rectifier circuit 2, the power storage circuit 4, the processing device 6, and the like are arranged so as to overlap a drive system 11 described later in a plan view. They are arranged to reduce the size of the entire device.
本例の発電装置 2 0は、 圧電体層を備えた振動片 2 1 に振動を与 える加振装置 3 0を備えており、 この加振装置 3 0が駆動系 4 0に よって駆動されるようになっている。 振動片 2 1は、 片持ち梁 (力 ンチレバー) 状に地板 1 2に固定され、 金属製の支持層 2 6 と、 そ の両側に形成された圧電体層 2 2 aおよび 2 2 bを備えている。 ま た、 振動片 2 1の自由振動を行う先端 (自由端) 2 3には重り 2 5 が取り付けられている。 この重り 2 5には自由端 2 3の側に開いた 凹み 2 5 cが中央に設けられている。 そして、 加振レバー 3 5の能 動端 3 9が凹み 2 5 cの内部に衝突し、 振動片 2 1 に打撃を与えら れるように設置されている。 従って、 加振装置 3 0の加振レバー 3 5が旋回すると振動片 2 1が加振され、 振動片 2 1の先端 2 3が j Li]端となり、 また、 地板 1 ' 2 にネジ 2 7で固定された側 2 4が固定 端となって自由振動する。 このため、 これに伴って振動片 2 1の圧 電体層 2 2 aおよび 2 2 bに繰り返し変位が与えられ、 起電力が発 生する。 The power generating device 20 of this example includes a vibrating device 30 that applies vibration to the vibrating piece 21 having a piezoelectric layer, and the vibrating device 30 is driven by a driving system 40. It has become. The vibrating reed 21 is fixed to the base plate 12 in a cantilever shape, and includes a metal support layer 26 and piezoelectric layers 22 a and 22 b formed on both sides thereof. ing. In addition, a weight 25 is attached to the tip (free end) 23 of the vibrating reed 21 for free vibration. The weight 25 is provided with a recess 25 c at the center, which is open toward the free end 23. The active end 39 of the vibrating lever 35 collides with the inside of the recess 25c, and is set so that the vibrating piece 21 is hit. Therefore, when the vibration lever 35 of the vibration device 30 turns, the vibrating piece 21 is vibrated, and the tip 2 3 of the vibrating piece 2 1 is j Li] end, and the side 24 fixed to the main plate 1'2 with the screw 27 becomes the fixed end and freely vibrates. Accordingly, the piezoelectric layers 22 a and 22 b of the resonator element 21 are repeatedly displaced accordingly, and an electromotive force is generated.
本例の駆動系 4 0は、 ケース 1の内部で回転運動を行う回転錘 1 3を備えており、 腕時計と して装着された際にこの回転錘 1 3がュ 一ザ一の腕や体の動きなどに呼応して回転し、 その力を利用して振 動片 2 1 に振動を与えられるようにしている。 また、 本例の駆動系 The drive system 40 of the present example is provided with a rotary weight 13 that performs a rotary motion inside the case 1, and when mounted as a wrist watch, the rotary weight 13 is attached to the arm or body of the user. It rotates in response to the movement of the robot and uses the force to apply vibration to the resonator element 21. Also, the drive system of this example
4 0には回転錘 1 3の運動を増速して加振装置 3 0に与えられるよ うに第 2図に示す構成の輪列 4 1 を設けてある。 回転錘 1 3の動き は、 輪列 4 1 を構成する回転錘車 1 4によって第 1の中間車 1 5 a に伝達され増速される。 この第 1の中間車 1 5 aは、 同径の第 2の 中問車 1 5 bと嚙み合っており、 回転錘 1 3の動きによって第 1お よび第 2の中間車 1 5 aおよび 1 5 bが回転する。 そして、 中問車 1 5 aおよび 1 5 bのそれそれの動きは、 加振装置 3 0の駆動レバ 一車 3 1 aおよび 3 1 bに伝達され、 これら中間車 1 5 aおよび 140 is provided with a train wheel 41 having the configuration shown in FIG. 2 so as to increase the speed of the movement of the rotary weight 13 and to be applied to the vibration device 30. The movement of the oscillating weight 13 is transmitted to the first intermediate wheel 15a by the oscillating weight wheel 14 constituting the train wheel 4 1 and is accelerated. The first intermediate wheel 15a is meshed with a second intermediate wheel 15b of the same diameter, and the first and second intermediate wheels 15a and 15a 1 5b rotates. Then, the respective movements of the intermediate cars 15a and 15b are transmitted to the driving levers of the vibrator 30 and the cars 31a and 31b, and these intermediate cars 15a and 1
5 bは同一の径で逆方向に回転するので、 駆動レバー車 3 1 aおよ び 3 1 bが逆方向に等しい速度で回転駆動される。 このような輪列 4 1 を用いることによって、 例えば、 回転錘 1 3がユーザーの手首 などの動きを捉えて 1 H z程度で動く と、 この動きを 5 0 H z程度 まで増速して加振装置 3 0に伝達できる。 本例の加振装置では、 2 つの駆動レバー 3 2 aおよび 3 2 bによつて加振レバ一 3 5が駆動 されるので、 振動片 2 1 には 1 0 0 H z程度の単位で衝撃が印加さ れ、 これによつて 2 k H z程度の振動が振動片 2 1 に励起されるよ うになつている。 なお、 上記の周波数は例示であって、 これらの周 波数に本発明が限定されるものでないことはもちろんである。 この ような輪列 4 1 を構成する中間車 1 5 aおよび 1 5 b、 さらに、 後 述する歯車およびレバ二は、 ケース 1 内の地板 1 2 と、 回転錘 1 3 を支持する回転錘受 1 6 に挾まれた狭い空間に配置できるように組 み合わされている。 Since 5b rotates in the opposite direction with the same diameter, the drive lever wheels 31a and 31b are rotationally driven at the same speed in the opposite direction. By using such a train wheel 41, for example, when the rotating weight 13 moves at about 1 Hz after capturing the movement of the user's wrist, the movement is accelerated to about 50 Hz and accelerated. Can be transmitted to the vibration device 30. In the vibrating device of this example, the vibrating lever 35 is driven by the two drive levers 32a and 32b, so that the vibrating bar 21 receives an impact in units of about 100 Hz. Is applied, whereby a vibration of about 2 kHz is excited in the resonator element 21. The above-mentioned frequencies are examples, and it is a matter of course that the present invention is not limited to these frequencies. Intermediate wheels 15a and 15b that make up such a train wheel 4 1 The gears and levers described above are combined so that they can be arranged in a narrow space between the ground plate 12 in the case 1 and the rotary weight receiver 16 supporting the rotary weight 13.
駆動系 4 0によって駆動レバー車 3 1 aおよび 3 1 bが回転駆動 されると、 これらの駆動レバー車 3 1 aおよび 3 1 bと同一に動く 駆動レバ一 3 2 aおよび 3 2 bが逆方向に等しい速度で回転し、 こ れによって加振レバー 3 5の 2つの受動端 3 6 aおよび 3 6 bがそ れそれ動かされる。 加振レバ一 3 5は、 駆動レバ一 3 2 aおよび 3 2 bによって、 加振レバーの中心 3 7を中心に左右に旋回し、 この 動きに呼応して加振レバ一 3 5の受動端 3 6の反対側に位置する能 動端 3 9が左右に動く。 この能動端 3 9によって振動片 2 1の先端 の重り 2 5の内側に打撃が加えられ、 振動片 2 1 に振動が励起され る。 なお、 第 2図には、 一方の中間卓 1 5 aおよび駆動レバ一車 3 1 a、 駆動レバ一 3 2 a、 さらに、 受動端 3 6 aの組み合わせを示 してあるが、 他方の中間車 1 5 b、 駆動レバー車 3 1 b、 駆動レバ - 3 2 b , さらに受動端 3 6 bの組み合わせも同様である。  When the drive lever wheels 31a and 31b are rotationally driven by the drive train 40, the drive lever wheels 31a and 31b move in the same manner as the drive lever wheels 31a and 31b. It rotates at a speed equal to the direction, whereby the two passive ends 36 a and 36 b of the excitation lever 35 are moved respectively. The drive lever 35 is turned left and right around the center 37 of the drive lever by the drive levers 32a and 32b, and in response to this movement, the passive end of the drive lever 35 is actuated. Active end 39 located on the opposite side of 36 moves left and right. The active end 39 applies an impact to the inside of the weight 25 at the tip of the vibrating reed 21 to excite the vibrating reed 21. FIG. 2 shows a combination of one intermediate table 15a, one driving lever 31a, a driving lever 32a, and a passive end 36a. The same applies to the combination of car 15b, drive lever car 31b, drive lever -32b, and passive end 36b.
発電装置 2 0の振動片 2 1 に対して回転錘 1 3の様に大きな運動 エネルギーを持つもので直に加振すると破損を防ぐために振動片を 大型化する必要がある。 これに対し、 本例のように輪列 4 1 を用い て回転錘 1 3の動きを増速すると、 回転錘 1 3の持つ運動エネルギ 一を分割して振動片 2 1 に印加することができ、 破損の防止と振動 片 2 1の小型化が可能となる。  The vibrating reed has a large kinetic energy like the rotating weight 13 with respect to the vibrating reed 21 of the power generating device 20. If the vibrating reed is directly vibrated, it is necessary to increase the size of the vibrating reed to prevent breakage. On the other hand, when the speed of the rotating weight 13 is increased by using the train wheel 4 1 as in this example, the kinetic energy of the rotating weight 13 can be divided and applied to the vibrating piece 21. It is possible to prevent damage and reduce the size of the resonator element 21.
さらに、 第 4図に示す様に、 振動片が振動した時の機械的なエネ ルギ一の損失率は同一の振動子であれば振幅が増加するに従って大 き く なるため、 入力エネルギーを分割して印加することにより、 振 幅を小さ く抑え、 振動片 2 1 における機械的なエネルギー損失を低 減することも可能となる。 第 3図に、 加振装置' 3 ひを構成する駆動レバ一 3 2 aおよび 3 2 b、 および加振レバー 3 5の配置を拡大して示してある。 本例の駆 動レバー 3 2 aおよび 3 2 bはほぼ紡錘型をしたレバーであり、 各々のレバー 3 2 aおよび 3 2 bがその中心 3 3 aおよび 3 3 bを 回転中心と して等しい速度で逆方向に回転駆動される。 さらに、 こ れらの紡錘型のレバ一 3 2 aおよび 3 2 bは位相がずれて回転する ように設定されており、 それそれのレバーの両端 3 4が加振レバー の受動端 3 6 aおよび 3 6 bに交互に当接して受動レバー 3 5 を駆 動するようになっている。 Furthermore, as shown in Fig. 4, the loss rate of mechanical energy when the resonator element vibrates becomes larger as the amplitude increases for the same vibrator. By applying the voltage, the amplitude can be suppressed to a small value, and the mechanical energy loss in the resonator element 21 can be reduced. FIG. 3 shows an enlarged view of the arrangement of the driving levers 32a and 32b constituting the vibrating device 3 and the vibrating lever 35. The drive levers 32a and 32b in this example are almost spindle-shaped levers, and each lever 32a and 32b is equal with its center 33a and 33b as the rotation center. It is driven to rotate in the reverse direction at the speed. Furthermore, these spindle-shaped levers 32a and 32b are set to rotate out of phase, and both ends 34 of the levers are connected to the passive ends 36a of the vibration lever. And 36 b alternately to drive the passive lever 35.
受動端 3 6 aおよび 3 6 bは中間車 1 5 aおよび 1 5 bの配置を 考慮して適当な角度離れた位置に設けられており、 これら受動端 3 6 aおよび 3 6 bに対し、 駆動端 3 9は加振レバーの中心 3 7 に対 し反対側に位置する。 さらに、 本例の加振装置 3 0においては、 駆 動レバー 3 2 aおよび 3 2 bの運動エネルギーを最も効率良く受動 レバー 3 5に伝達できるように、 駆動レバー 3 2 aの中心 3 3 aと、 その両端 3 4が加振レバーの受動端 3 6 aと当接する位置 3 8 aと、 加振レバ一 3 5の中心 3 7がほぼ一直線となるように配置されてお り、 さ らに、 駆動レバ一 3 2 bの中心 3 3 bと、 その両端 3 4が受 動レバーの受動端 3 6 bと当接する位置 3 8 bと、 加振レバー 3 5 の中心 3 7がほぼ一直線となるように配置されている。  The passive ends 36a and 36b are located at appropriate angles away in consideration of the arrangement of the intermediate wheels 15a and 15b. The drive end 39 is located on the opposite side to the center 37 of the vibration lever. Further, in the vibration device 30 of the present example, the center 3 3a of the drive lever 3 2a is selected so that the kinetic energy of the drive levers 32a and 32b can be transmitted to the passive lever 35 most efficiently. The position 38 a where both ends 34 contact the passive end 36 a of the vibrating lever and the center 37 of the vibrating lever 35 are arranged substantially in a straight line. The center 3 3b of the drive lever 3 2b, the position 3 8b where its both ends 3 4 abut the passive end 36 b of the receiving lever, and the center 3 7 of the vibrating lever 3 5 are almost straight It is arranged so that it becomes.
本例の加振装置の加振レバ一 3 5は、 上記のように配置すること によって駆動系 4 0から加振レバ一 3 5にエネルギー損失が非常に 少ない状態で伝達でき、 さらに、 2つの駆動レバ一 3 2 aおよび 3 2 bによって交互に駆動されるので、 より細かな時間の単位で振動 片 2 1 に入力エネルギーを与えて効率良く振動を励起できる。 また、 駆動レバー 3 2 aおよび 3 2 bによって加振レバ一 3 5 を駆動する ようにしているので、 加振レバー 3 5の慣性モーメ ン トを低減でき、 加振レバー 3 5が比較'的高い周波数で運動した場合であっても、 そ の動きを増速した高周波数の動きに十分追従させることが可能とな る。 さらに、 後述するように、 加振レバーの慣性モーメ ン トを低減 することによって加振レバーの等価質量を低減できるので、 振動片 との 2次衝突によるエネルギー損失を低減する効果も備えている。 また、 本例の加振レバー 3 5は、 そのほぼ重心を旋回の中心 3 7 と してケース 1 に取り付けてあるので、 ケース 1の向きが変わった だけでは加振レバ一 3 5が勝手に旋回しないようになっている。 こ のため、 加振レバー 3 5は駆動レバー 3 2 aおよび 3 2 bによって のみ駆動され、 駆動レバーとの位置関係がつねに適正に保たれるよ うになつている。 また、 加振レバ一 3 5がケース 1の向きによって 不用意に動いて振動片 2 1 との間で 2次衝突を引き起こ し、 ェネル ギー損失の原因となることも防止している。 The vibrating lever 35 of the vibrating device of this example can be transmitted from the driving system 40 to the vibrating lever 35 with very little energy loss by arranging as described above. Since the drive levers 32a and 32b are alternately driven, vibration can be efficiently excited by giving input energy to the resonator element 21 in smaller time units. In addition, since the drive levers 35 are driven by the drive levers 32a and 32b, the moment of inertia of the drive lever 35 can be reduced. Even when the vibration lever 35 moves at a relatively high frequency, it is possible to cause the motion to sufficiently follow the high-frequency motion that has been accelerated. Furthermore, as described later, since the equivalent mass of the vibration lever can be reduced by reducing the moment of inertia of the vibration lever, the effect of reducing energy loss due to secondary collision with the vibrating piece is also provided. In addition, the vibrating lever 35 in this example is attached to the case 1 with its center of gravity substantially at the center of rotation 37, so that the vibrating lever 35 can be used only by changing the direction of the case 1. It does not turn. For this reason, the vibration lever 35 is driven only by the drive levers 32a and 32b, so that the positional relationship with the drive lever is always properly maintained. Also, the vibration lever 35 is prevented from moving inadvertently depending on the direction of the case 1 to cause a secondary collision with the vibrating bar 21, thereby preventing energy loss.
第 5図に、 本例の発電装置 2 0において振動片 2 1の得た入力ェ ネルギー (振動片 2 1 の振動エネルギー) E i と加振レバ一 3 5の 運動エネルギー E。の比 (エネルギー伝達効率) 77 t ( = E i / E。) が、 加振レバー 3 5の等価質量 m eと振動片 2 1の等価質量 M eとの 比 (等価質量比) M R ( = m e / M j によって変化する様子を示し てある。 本図から判るように、 等価質量比 M Rが 1未満の場合は、 等価質量比 M Rが増加するに従ってエネルギー伝達効率 r? t が増加 する。 これに対し、 等価質量比 M Rがほぼ 1 になるとエネルギー伝 達効率 77 tは急激に低下し、 等価質量比 M Rが 1 を超えるとエネルギ 一伝達効率 7? tは再び上昇するが、 等価質量比 M Rが 1未満での最大 値よ りも低くなる。 等価質量比 M Rが 1未満の場合は、 等価質量比 M Rが増加するに従って振動片 2 1の振動の初期速度が増加するの でエネルギー伝達効率?? t が上昇する。 これに対し、 等価質量比 M Rがほぼ 1 に近づく と、加振レバー 3 5の運動エネルギー E。がほぽ 振動片 2 1に伝達され 'るので、 加振レバ一 3 5は振動片 2 1に打撃 を与えた位置に止ま り、 振動片 2 1と加振レバー 3 5の 2次衝突が 発生する。 この 2次衝突によって振動片 2 1の得た入力エネルギー が加振レバー 3 5の側に逆に与えられ、 エネルギー損失となるので エネルギー伝達効率 r? tが急激に減少する。 そして、 等価質量比 MR が 1を越えると、 振動片 2 1の側に 2次衝突によるエネルギー損失 が多少減少し、 また 3次衝突などが発生するので、 エネルギー伝達 力率?? tが上昇する。 FIG. 5 shows the input energy (vibration energy of the vibrating bar 21) E i and the kinetic energy E of the vibrating lever 35 in the power generator 20 of this example. Ratio (energy transmission efficiency) 77 t (= E i / E.) is the ratio of the equivalent mass M e of the resonator element 2 1 equivalent weight m e of the vibrating lever 35 (equivalent mass ratio) M R ( = is shown how the changed by m e / M j as can be seen from. this drawing, if the equivalent weight ratio M R is less than 1, the energy transfer efficiency r? t in accordance with equivalent mass ratio M R is increased increases. in contrast, energy transduction efficiency 77 t becomes the equivalent mass ratio M R is approximately 1 rapidly decreases, equivalent mass ratio M R is greater than 1 when the energy first transmission efficiency 7? t increases again but the initial speed of the vibration of the resonator element 2 1 according equivalent mass ratio M R is the maximum value by remote lowered in less than 1. equivalent mass ratio M R If there is less than 1, the equivalent mass ratio M R is increased There the energy transfer efficiency ?? t is increased with the increase. in contrast, it approaches the equivalent mass ratio M R is approximately 1, pressurized shake -3 5 of the kinetic energy E. Gahopo Since the vibration is transmitted to the vibrating bar 21, the vibrating lever 35 stops at the position where the vibrating bar 21 is hit, and a secondary collision between the vibrating bar 21 and the vibrating lever 35 occurs. Due to this secondary collision, the input energy obtained by the resonator element 21 is applied to the vibrating lever 35 in the opposite direction, resulting in an energy loss, so that the energy transfer efficiency r? T decreases rapidly. When the equivalent mass ratio M R exceeds 1, the energy loss due to the secondary collision on the side of the resonator element 2 1 slightly decreases, also including tertiary collision occurs, the energy transfer power factor? ? t rises.
このように、 等価質量比 MRが 1であると、 エネルギー伝達効率 77 tは非常に低くなる。エネルギー伝達効率 7 tを向上させるために は、 等価質量比!^^を 1未満と して、 2次衝突が起こ らないように するか、 2次衝突が起こつてもエネルギー伝達効率 7? tがあま り低 下しない条件を求める必要がある。 そこで、 本願発明者らは以下の ように加振レバー 35と振動片 2 1 との間に 2次衝突が発生しない ための条件を見いだした。 第 6図に、 振動片 2 1に加振レバー 3 5 が衝突する系をそれそれの等価質量 Meおよび me、 さらに、 振動片 2 1の等価パネ定数 Kを用いて示してある。 以下に示すように等価 質量 Me、 meおよび等価パネ定数 Kを用いて評価することによ り、 打撃部と振動片は加振レバーと片持ち梁の組み合わせに限定されず、 後で説明するような打撃部にボールなどの異なつた機構を用いた場 合や振動片に矩形板などの異なった形状の圧電体を使用した場合で あっても同等に本発明を適用することができる。 Thus, when the equivalent mass ratio M R is 1, the energy transfer efficiency 77 t becomes very low. To improve the energy transfer efficiency 7 t , set the equivalent mass ratio! ^^ to less than 1 so that secondary collision does not occur, or the energy transfer efficiency 7? T even if secondary collision occurs. It is necessary to find a condition that does not decrease much. Thus, the inventors of the present application have found conditions for preventing a secondary collision between the vibration lever 35 and the vibrating piece 21 as described below. The in FIG. 6, a system for collision excitation lever 35 to the vibration plate 2 1 it its equivalent mass M e and m e, further, are shown using the equivalent panel constant K of the resonator element 2 1. Equivalent mass M e, as shown below Ri by the be evaluated using the m e and equivalent panel constant K, the striking part and the resonator element is not limited to the combination of the cantilever with vibrating lever, described later The present invention can be equally applied to a case where a different mechanism such as a ball is used for the striking portion or a case where a piezoelectric body having a different shape such as a rectangular plate is used for the vibrating piece.
振動片 2 1の等価質量 Meは、 第 7図 (a) に示したような質量 MH、 固定された固定端から他方の自由端までの距離 1 H、 固定端か ら打撃部によって打撃が加えられる加振点 Xまでの距離 xH、 振動 モー ドの規準関数 Ξηの振動片に対し以下のように表される。 Equivalent mass M e of the resonator element 2 1, FIG. 7 (a) to indicate the kind of mass M H, hit by the distance 1 H, fixed end or et striking portion from the fixed fixed end to the other free end Is expressed as follows for the distance x H to the excitation point X to which is added and the vibrating bar of the reference function 関 数η of the vibration mode.
MeΗ/ (Ξη (Χ Η/1 Η ) ) 2 · · · ( 1 ) ただし、 規準関数 Ξ n¾、 積分点での密度を pとすると、 以下の関 係を満足する関数である。 M e = Μ Η / (Ξ η (Χ Η / 1 Η))) 2 However, assuming that the reference function {n } and the density at the integration point are p, the function satisfies the following relationship.
S S S io . Htl 2 - d V = MH · · · ( 2 ) 本例の振動片 2 1 においては 1次モー ドの振動が励起されることが 望ましく、 このモー ドの規準関数は以下のようになる。 . SSS i o H tl 2 - desirably vibration of the primary mode is excited in d V = M H · · · (2) vibrating piece 2 1 of the present embodiment, criterion function of this mode is less become that way.
J = ( cos α ] y— cos h , y )  J = (cos α] y— cos h, y)
― ( cosひ i y + cos h a i y ) / ( sin a , y + sin h a: , y ) x ( sin a i y - sin h a ! y ) · · . ( 3 ) ただし、 y = x H / 1 H -(Cos hi iy + cos haiy) / (sin a, y + sin ha:, y) x (sin aiy-sin ha! Y) (3) where y = x H / 1 H
cos a J x cos h a J = - 1 ( ひ!は 1番目の解) である。 また、 加振レバー 3 5の等価質量 m e は、 慣性モーメ ン トを I b、 旋回中心から振動片の加振点に打孥を与える打撃点までの距離 X h の加振レバー 3 5 に対し以下のように表される。 cos a J x cos ha J =-1 (where hi is the first solution). Further, the equivalent mass m e of the vibrating lever 35 is inertia Mome down bets I b, the excitation lever 35 of the distance X h from the turning center to the striking point giving Da孥the vibration point of the vibrating element On the other hand, it is expressed as follows.
m e = I b/x b 2 · · ■ ( 4 ) また、 第 7図 ( b ) に示したような、 振動片 2 1の先端に凹みの ある電り 2 5を付加した場合や振動片が片持ち梁以外の場合は、 規 準関数 Ξ , ( ) が異なるが上記と同様に求めることができる。 さ らに、 加振点が先端に非常に近く、 固定端から自由端までの距離 1 Hと固定端から打撃部によつて打撃が加えられる加振点 Xまでの距 離 x Hがほぼ等しい場合は、 式 ( 1 ) で求めた梁状の振動片の等価 質量 Meと重りの質量 Maを用いて第 7図 (b)のような振動片の等 価質量を以下の式で近似できる。 m e = I b / x b 2 ··· (4) In addition, as shown in Fig. 7 (b), when a vibrating piece 21 If is other than a cantilever, the standard functions Ξ and () are different, but can be obtained in the same way as above. In addition, the excitation point is very close to the tip, and the distance 1 H from the fixed end to the free end is almost equal to the distance x H from the fixed end to the excitation point X where the impact is applied by the impact part. If, approximated by the equation below the equivalent mass of the vibrating element such as the FIG. 7 by using a mass M a of equivalent mass M e and the weight in the obtained beam-like vibrating reed formula (1) (b) it can.
Me = Ma+MH/ (ΞηΗ/ 1 Η) ) 2 · · · ( 1 ' ) 第 6図に戻って、等価質量 meの加振レバー 3 5が速度 Vbで等価 質量 Meの振動片 2 1 に衝突した後、 振動を開始した振動片 2 1 と 2次衝突を起こさないためには、 衝突後に加振レバー 3 5が振動片 2 1の変位と逆方向の速度を得ることが必要となる。 従って、 加振 T P97/00885 In M e = M a + M H / (Ξ η (χ Η / 1 Η)) 2 · · · (1 ') back to FIG. 6, the equivalent mass m vibration lever e 3 5 speed V b after colliding with the vibrating element 2 the first equivalent mass M e, in order resonator element 2 1 that initiated the vibration does not cause the secondary collision, the vibrating lever 35 after crash displacement in the opposite direction of the resonator element 2 1 It is necessary to obtain speed. Therefore, the excitation T P97 / 00885
15  Fifteen
レバ一 3 5の等価質量 me と振動片 2 1の等価質量 Meのとの間に 以下の関係が成りたつことが必要となる。 Lever one 3 during 5 of equivalent mass M e Noto the equivalent mass m e of the resonator element 2 1 the following relationship is required to hold true.
mc < Μ。 · · · ( 5 ) さらに詳しく解析すると、 加振レバ一と振動片の衝突係数を e と したときに運動量保存の法則よ り以下の式が導かれる。 m c <Μ. · · · (5) Further analysis shows that the following equation is derived from the law of conservation of momentum when the collision coefficient between the excitation lever and the resonator element is e.
O x Me + Vb x me = VH ' X M e + V b ' x me · · · ( 6 ) (Vb, VH, ) /Vb = _ e · · · ( 7 ) ここで、 VH ' および Vtノ は衝突直後の振動片 2 1および加振レバ 一 3 5のそれぞれの速度である。 O x M e + V b x m e = V H 'XM e + V b ' x m e · · · (6) (V b , V H ) / V b = _ e · · (7) V H ′ and V t are the respective velocities of the vibrating bar 21 and the excitation lever 35 immediately after the collision.
次に、 衝突後の振動片 2 1の運動と加振レバー 3 5の運動を検討 すると、 第 8図に示すようになる。 まず、 振動片 2 1は、 打撃を受 けた時点から振動を開始し、 第 8図に実線 5 1で示したような変位 を示す。 その変位 uHは以下の式で表される。 なお、 簡単のため振 動片 2 1についは 1次モー ドの振動を考え、 また、 振動の減衰は考 慮していない。 Next, the motion of the vibrating piece 21 and the motion of the vibrating lever 35 after the collision are examined, as shown in FIG. First, the vibrating reed 21 starts to vibrate from the time of being hit, and shows a displacement as shown by a solid line 51 in FIG. The displacement u H is represented by the following equation. For simplicity, primary mode vibration is considered for the vibrating piece 21 and no vibration attenuation is considered.
u H二 A · sin ω t · · · ( 8 )  u H two A · sin ω t · (8)
ただし、 ωは角速度、 Αは振幅、 tは時間を示し、 初期条件よ り以 下の関係を満足する。 Here, ω indicates angular velocity, Α indicates amplitude, and t indicates time. From the initial conditions, the following relationship is satisfied.
( d uH/d t ) t = 0 = ω · A= VH, · · · ( 9 ) 一方、 加振レバ一 3 5は一点鎖線 5 2で示したように速度 Vb, で打撃地点から遠く なるので、 その変位 li b は以下の式で表され る。(du H / dt) t = 0 = ω · A = V H , · · · (9) On the other hand, the excitation lever 35 is far from the impact point at the velocity V b , as indicated by the dashed line 52. Therefore, the displacement li b is expressed by the following equation.
b = Vb ' · t · · · ( 1 0 ) 以上よ り、 振動片 2 1 と加振レバー 3 5が 2次衝突を起こさない ためには、 変位 U Hおよび U hが時刻 tが 0のとき以外に解を持たな ければ良い。 すなわち、 以下の式 ( 1 1 ) が t = 0以外で解を持た なければ良い。 A · sin ω t = V"b ' - t · · ■ ( 1 1 ) 式 ( 1 1 ) を解く ために式 ( 8 ) を 3次方程式で近似する。 振動片 2 1 の変位 u„は、 第 8図の 0、 Qおよび Sの各点を通るので、 以 下の 3次方程式で近似できる。 b = V b '· t · · · (1 0) Ri by more than, for vibrating piece 2 1 and vibrating lever 35 does not cause a secondary collision, the displacement UH and U h the time t is 0 It is good if you do not have a solution at any time. In other words, it is sufficient if the following equation (11) does not have a solution except for t = 0. A · sin ω t = V " b '-t · ■ (1 1) Approximating equation (8) with a cubic equation to solve equation (1 1) The displacement u„ of the resonator element 2 1 is Since it passes through each point of 0, Q and S in Fig. 8, it can be approximated by the following cubic equation.
u„ 3 ( t ) = B ' t ( t - π/ω ) ( t - 2 · ττ/ω ) · · ·u „ 3 (t) = B 't (t-π / ω) (t-2 ττ / ω)
( 1 2 ) (1 2)
こ こで、 式 ( 1 2 ) が第 8図の点 R ( 3 κ / 2 ω , 一 Α) を通るの で、 式 ( 9 ) よ り、 定数 Bは以下のようになる。 Here, since the equation (12) passes through the point R (3κ / 2ω, 100) in FIG. 8, the constant B is as follows from the equation (9).
Β = 8 · ω 2/ ( 3 · ττ 3 ) X V„ ' · · · ( 1 3 ) 従って、 式 ( 1 1 ) は、 以下の式 ( 1 4 ) で近似できる。 Β = 8 · ω 2 / (3 · ττ 3 ) XV „'· · · (13) Therefore, equation (11) can be approximated by the following equation (14).
Β · t ( ( t - π/ω ) ( t - 2 - π / ω ) — Vb, /Β ) ) = 0 · · · ( 1 4 ) このため、 以下の式 ( 1 5 ) の判別式 Dを求め、 ω、 eおよび m e が共に 0よ り大きいことを基に判別式 D < 0 となる条件を求め、 式 ( 1 3 ) および式 ( 6 ) 、 ( 7 ) の関係を用いて整理する。 Β · t ((t-π / ω) (t-2-π / ω) — V b , / Β)) = 0 · · (1 4) Therefore, the discriminant of the following equation (1 5) D is determined, and based on the fact that ω, e and m e are all greater than 0, a condition for the discriminant D <0 is determined, and the relations of the equations (13) and (6) and (7) are used. organize.
( t 一 ττ/ω) ( t — 2 · ττ/ω) — Vb, /B = 0 · · ·(t ττ / ω) (t — 2 · ττ / ω) — V b , / B = 0
( 1 5 ) (15)
これによ り、振動片の等価質量 Meと加振レバーの等価質量 meとの 間に式 ( 1 6 ) に示す関係が得られる。 This ensures that the relationship shown in Equation (1 6) between the equivalent mass m e of the equivalent mass M e and vibrating lever resonator element can be obtained.
Me > ( ( 2 - e + 3 · ΤΓ + 2 ) / 3 · π · e ) x me · · ·M e > ((2-e + 3 · ΤΓ + 2) / 3 · π · e) xm e
( 1 6 ) (16)
以上より、 上記の式 ( 1 6 ) を満足する等価質量を備えた振動片ぉ よび加振レバーを採用することによ り、 これら振動片と加振レバー の 2次衝突によるエネルギー損失のない発電装置を提供することが できる。 As described above, by employing the vibrating bar and the vibrating lever having an equivalent mass satisfying the above equation (16), power generation without energy loss due to secondary collision between the vibrating bar and the vibrating lever is achieved. Equipment can be provided.
以上の考察によ り振動片と加振レバーが 2次衝突しない条件を、 各々の等価質量の条件に置き換える事ができた。 第 9図に、 上記の式 · ( 1' 6 ) に基づき、 以下の再衝突限界等価質 量の関係を満たす振動片の等価質量 Meと加振レバーの等価質量 m eを異なる衝突係数 eに対して示してある。 Based on the above considerations, the conditions under which the vibrating reed and the vibrating lever did not collide with each other could be replaced with the equivalent mass conditions. In FIG. 9, based on the equation & (1 '6) above, the following equivalent mass of recollision limit equivalent Weight of satisfying the relationship resonator element M e and vibrating lever equivalent mass m e different collision factor e Is shown for
Me = ( ( 2 · Θ + 3 · 7Γ+ 2 ) /3 · ΤΓ · Θ ) X m e , · · ( 1 7 ) M e = ((2 Θ 3 + 3 Γ 7 Γ + 2) / 3 ΤΓ Θ) X m e , (1 7)
第 5図に示したように、 等価質量比 MRは 2次衝突が発生しない範 囲で 1に近いほうがエネルギー伝達効率 77 tが高いので、 振動片の 等価質量 Meと加振レバーの等価質量 meはこの再衝突限界等価質 量の関係に近いものを採用することが望ま しい。 As shown in FIG. 5, since the equivalent mass ratio M R is high energy transfer efficiency 77 t closer to 1 in the range of the secondary collision does not occur, the equivalent of equivalent mass M e and vibrating lever of the vibrating element mass m e is arbitrarily desirable to employ a close relationship of the re-collision limit equivalent mass.
さらに、 本願発明者らは、 第 7図に示した加振点 Xの変化によつ ても振動片 2 1から発生される起電圧が変動することを見いだした, 振動片 2 1に振動を与えた場合、 発電に寄与する振動は 1次モー ド の振動であり、 2次モー ド以上の高次の振動が発生するとその振動 モー ドを励起するために発電に有効な 1次モー ドへの入力エネルギ —が減少する。 この変化を測定するため、 発明者らは、 加振点 Xに よって 1次モー ドの振幅と 2次モー ドの振幅が変化する様子を計測 し、 その結果を第 1 0図に示してある。 測定には、 圧電体である P Z T層を燐青銅製の支持材に積層した全長 1 Hが 2 1 mmのュニモ ルフ夕イブの振動片を用い、 第 7図に示す加振点 Xの振動片の先端 (自由端) からの距離 (衝突位置 ( 1„一 xH) ) を変えて打撃を与 えた後に振動片で発生する開放電圧 Vを測定している。 この開放電 圧 Vは、 振動片の振幅にほぼ比例した値が得られ、 第 1 1図に示す ように振動の 1次モー ドに 2次モ一 ドが重なつた波形が得られる。 従って、 この得られた波形から 1次モー ドと 2次モー ドの振幅 Vひ と V ?を得て、 その結果を第 1 0図に示してある。 Further, the inventors of the present application have found that the electromotive voltage generated from the vibrating bar 21 fluctuates even with the change of the excitation point X shown in FIG. When given, the vibration that contributes to power generation is the vibration in the primary mode, and when a higher-order vibration that is higher than the secondary mode occurs, the vibration mode is excited to the primary mode that is effective for power generation. Input energy is reduced. To measure this change, the inventors measured how the amplitude of the primary mode and the amplitude of the secondary mode change depending on the excitation point X, and the results are shown in FIG. 10. . For the measurement, a piezoelectric a is PZT layer evening Yunimo Ruff full-length 1 H laminated on phosphorous bronze support material is 2 1 mm using a vibrating reed Eve, vibrating piece excitation point X shown in FIG. 7 The open-circuit voltage V generated by the vibrating reed after the impact is changed while changing the distance (collision position (1 „1 x H )) from the tip (free end) of the wire is measured. A value almost proportional to the amplitude of the piece is obtained, and a waveform in which the primary mode of vibration overlaps the secondary mode is obtained, as shown in Fig. 11. Therefore, 1 The amplitudes V and V of the second and second modes were obtained, and the results are shown in Figure 10.
第 1 0図から判るように、 振動片の自由端に打撃を与えた場合よ り、 自由端から固定端に向かって若干戻った位置に打撃を与えた方 が 1次モー ドの振幅を '大きくでき、 2次モー ドの振幅を小さ くでき ることが判る。 そ して、 1 次モー ドの振幅は衝突位置が先端から約 3 . 5 m mのときに最大になり、 2次モー ドの振幅はほぼ同じ衝突 位置で最小となる。 この 2次モー ドの振幅が最小となる位置の近傍 に 2次モー ドの振動の節の部分があると考えられる。 従って、 振動 片の 2次モー ドの振動の節の近傍に打撃を与えることによ り、 2次 モー ドの発生を抑制し、 発電に寄与する 1次モー ドの振幅を大き く できることが判る。 このため、 振動片の自由端に打撃を与えるので はなく、 自由端から若干戻った位置に打撃を与えることによ り、 発 電によ り有効に活用されるように入力エネルギーを振動片に与える ことができ、 発電能力の高い圧電体を用いた発電装置を提供できる ことが判る。 As can be seen from Fig. 10, the person who hit the vibrating piece slightly back from the free end toward the fixed end, compared with the case where the free end of the vibrating piece was hit It can be seen that the amplitude of the first mode can be increased and the amplitude of the second mode can be reduced. Then, the amplitude of the primary mode becomes maximum when the collision position is about 3.5 mm from the tip, and the amplitude of the secondary mode becomes minimum at almost the same collision position. It is considered that there is a node of the vibration of the secondary mode near the position where the amplitude of the secondary mode becomes minimum. Therefore, it can be seen that by hitting the vibrating piece near the node of the secondary mode vibration, the occurrence of the secondary mode can be suppressed and the amplitude of the primary mode contributing to power generation can be increased. . Therefore, instead of hitting the free end of the vibrating reed, rather than hitting it at a position slightly returned from the free end, the input energy is applied to the vibrating reed so that it can be effectively used by power generation. It can be seen that a power generation device using a piezoelectric material having high power generation capability can be provided.
以上のように、 本願発明者らによ り、 圧電体層を備えた振動片を 用いた発電装置において振動片に有効にエネルギーを伝達するには、 振動片の等価質量と振動片に衝突する加振レバーなどの打撃部の等 価質量との関係を 2次衝突が発生しない範囲に設定することが望ま しいことが見いだされた。 さらに、 振動片における 2次モー ドの捩 動の発生を抑制し、 入力エネルギーが発電にいっそう有効に活用さ れるためには、 2次モー ドの振動が励起され難い 2次モー ドの振動 の節に _当たる付近に打撃を加えることが望ましいことも見いだされ た。  As described above, according to the inventors of the present invention, in order to effectively transmit energy to the vibrating reed in the power generating device using the vibrating reed having the piezoelectric layer, the vibration collides with the equivalent mass of the vibrating reed. It has been found that it is desirable to set the relationship with the equivalent mass of the striking part such as the vibration lever in a range where secondary collision does not occur. Furthermore, in order to suppress the occurrence of secondary mode torsion in the resonator element and to more effectively use the input energy for power generation, the vibration of the secondary mode, in which the secondary mode vibration is hardly excited, is required. It was also found that it was desirable to make a blow near the _ section.
第 1図に示した本例の発電装置 2 0においては、 振動片 2 1の自 由端 2 3の側に凹型の重り 2 5が付加されており、 小型の振動片 2 1であってもその等価質量を調整して加振レバー 3 5 よ り大き く し 易い構成となっている。 また、 加振レバ一 3 5 においては、 カム部 などを設けて直に輪列 4 1 から駆動されるのではなく、 駆動レバー 3 2 を介して駆動されるようにしているので、 加振レバー 3 5 を小 P T/JP97/00885 In the power generating device 20 of the present example shown in FIG. 1, a concave weight 25 is added to the free end 23 of the vibrating reed 21, so that even the small vibrating reed 21 can be used. The configuration is such that the equivalent mass can be adjusted to make it larger than the vibration lever 35. Also, in the vibration lever 35, a cam portion or the like is provided so as to be driven not through the wheel train 41 directly but through the drive lever 32. 3 5 small PT / JP97 / 00885
19  19
型化して等価質量が小 くできるようになつている。 従って、 本例 の発電装置 2 0は、 振動片 2 1 と加振レバ一 3 5の間の 2次衝突を 防止し、 これによるエネルギー損失をなくすことができる構成であ り、 エネルギー伝達効率の高い発電装置である。 また、 凹型の重り 2 5 を採用しているので、 振動片の自由端の両側に重りを拡張でき るため、 小さなスペースで十分な質量の重りを配置することができ る。 It is designed so that the equivalent mass can be reduced by molding. Therefore, the power generation device 20 of the present example has a configuration in which secondary collision between the vibrating reed 21 and the vibration lever 35 can be prevented, and energy loss due to the secondary collision can be eliminated. It is a high power generator. In addition, since a concave weight 25 is used, the weight can be extended on both sides of the free end of the resonator element, so that a sufficient weight can be arranged in a small space.
さらに、 本例の発電装置 2 0においては、 凹型の重り 2 5の凹み 2 5 cの内部に加振レバ一 3 5の能動端 3 9を設置してある。 従つ て、 能動端 3 9は重り 2 5 を含めた振動片 2 1全体の自由端 2 3か ら若干固定端 2 4の側に戻った位置を加振することになる。 このた め、 振動片 2 1 には 2次モー ドの振幅が小さ く 1次モー ドの振幅が よ り大き くなるように入力エネルギーが伝達され、 発電能力の高い 発電装置が得られる。  Further, in the power generator 20 of this example, the active end 39 of the vibrating lever 35 is provided inside the recess 25c of the concave weight 25. Accordingly, the active end 39 excites the position of the entire vibrating piece 21 including the weight 25 from the free end 23 to a position slightly returned to the fixed end 24. For this reason, the input energy is transmitted to the resonator element 21 such that the amplitude of the secondary mode is small and the amplitude of the primary mode is larger, and a power generation device with high power generation capability is obtained.
また、 本例の発電装置 2 0は、 上述したように輪列 4 1 によって 回転錘 1 3の動きを増速して振動片 2 1 に打撃を与え、 回転錘 1 3 の運動エネルギーを分割して振動片 2 1 に印加できるなど、 圧電体 層を備えた小型の振動片 2 1 に対して非常に効率良く回転錘 1 3の 運動エネルギーを伝達できるので、 小型で発電能力の高い発電装置 である。  Further, as described above, the power generating device 20 of the present example accelerates the movement of the oscillating weight 13 by the train wheel 41 and strikes the vibrating piece 21 to split the kinetic energy of the oscillating weight 13. The kinetic energy of the rotating weight 13 can be transmitted very efficiently to a small vibrating piece 21 equipped with a piezoelectric layer, for example, it can be applied to the vibrating piece 21 with a piezoelectric layer. is there.
そして、 本例の発電装置によって供給される電力によ り、 本例の 計時装置に限らず、 ページャ一、 電話機、 無線機、 補聴器、 電卓、 情報端末などの処理装置を作動させることが可能である。 また、 携 帯型機器の形状も車両搭載型、 ボケッ ト型など腕装着型の携帯型機 器に限定するものではない。 これらの携帯型機器に本発明の発電装 置を採用することによ り、 電池切れなどの心配をせずに何時でも何 処でも携帯型機器に搭載された処理装置の機能を発揮させることが 0 5 The power supplied by the power generation device of this example can operate not only the time measurement device of this example but also processing devices such as a pager, a telephone, a radio, a hearing aid, a calculator, and an information terminal. is there. Also, the shape of the portable device is not limited to a portable device that is mounted on an arm, such as a vehicle-mounted type or a pocket type. By employing the power generation device of the present invention in these portable devices, the function of the processing device mounted on the portable device can be exhibited anytime and anywhere without worrying about running out of batteries. 0 5
20  20
できる。 ― it can. ―
〔実施例 2〕  (Example 2)
第 1 2図に、 本発明に係る発電装置 2 0 を備えた腕装着 Sの携帯 型機器 6 0を示してある。 本例の発電装置 2 0 も圧電体層を備えた 振動片 2 1 を備えており、 この振動片 2 1 に対し携帯型機器 6 0の ケース 1内を旋回する回転錘 1 3の運動エネルギーによって打撃を 与え振動を励起し、 これによつて発電された電流を供給できるよう になっている。 従って、 上記の実施例と共通する部分には同じ符 を付して説明を省略する。 また、 以下に説明する他 実施例におい ても同様である。  FIG. 12 shows a wrist-worn S-type portable device 60 including a power generation device 20 according to the present invention. The power generation device 20 of this example also includes a vibrating piece 21 having a piezoelectric layer, and the kinetic energy of the rotating weight 13 rotating in the case 1 of the portable device 60 with respect to the vibrating piece 21 is provided. A blow is applied to excite the vibration, and the generated current can be supplied. Therefore, portions common to those in the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted. The same applies to the other embodiments described below.
本例の発電装置 2 0は、 1つの駆動レバ一 3 2 によって加振レバ 一 3 5 を旋回駆動し、 振動片 2 1 に運動エネルギーを供給するよう になっている。 従って、 駆動系 4 0の輪列 4 1 も 1つの中間車 1 5 によって回転錘 1 3の動きを増速して駆動レバ一 3 2 に伝達するよ うになつている。 このため、 駆動系 4 0の輪列 4 1および駆動レバ 一 3 2の構成を簡略化できるので、 発電装置 2 0および携帯型機器 6 0をいつそう小型化できる。 さらに、 振動片 2 1の自由端 2 3に は凹型の重り 2 5を設けてあり、 その M部 2 5 cの内部に加振レバ 一 3 5の能動端 3 9が設置されているので、 実施例 1 と同様に加振 レバー 3 5 と振動片 2 1の 2次衝突を防止でき、 1次モードの振動 を励起し易い構造となっている。 また、 輪列 4 1 によって回転錘 1 3の動きが増速して伝達されるので、 回転錘 1 3の運動エネルギー が分割して振動片に供給される。 このように、 本例の発電装置およ び腕装着型機器は、 実施例 1 と同様にエネルギー伝達効率の向上が 図られており、 よ り小型で発電能力の高い発電装置および腕装着型 機器である。  In the power generation device 20 of this example, the excitation lever 35 is turned by one drive lever 32 to supply kinetic energy to the vibrating piece 21. Therefore, the wheel train 41 of the drive system 40 is also configured to increase the movement of the rotary weight 13 by one intermediate wheel 15 and transmit it to the drive lever 13 2. Therefore, the configurations of the wheel train 41 and the drive levers 32 of the drive system 40 can be simplified, so that the power generation device 20 and the portable device 60 can be reduced in size at any time. Further, a concave weight 25 is provided at the free end 23 of the vibrating reed 21, and the active end 39 of the vibrating lever 35 is installed inside the M part 25 c. As in the first embodiment, a secondary collision between the vibrating lever 35 and the vibrating piece 21 can be prevented, so that the first mode vibration is easily excited. Further, since the movement of the rotary weight 13 is transmitted at an increased speed by the train wheel 41, the kinetic energy of the rotary weight 13 is divided and supplied to the resonator element. As described above, the power generation device and the arm-mounted device of the present example have improved energy transfer efficiency as in the first embodiment, and are smaller and have higher power generation capability and the arm-mounted device. It is.
〔実施例 3〕 第 1 3図に、 本発明'の実施例に係る異なる発電装置 2 0の例を示 してある。 本例の発電装置 2 0は、 2本の振動片 2 1 aおよび 2 1 bを備えており、 加振レバー 3 5の能動端 3 9がこれら 2本の振動 片 2 1 aおよび 2 1 bの間に位置している。 そして、 2本の振動片 2 1 aおよび 2 1 bの自由端 2 3 aおよび 2 3 bに設置されている 重り 2 5 aおよび 2 5 bの自由端 2 3よ り若干固定端 2 4に戻った 場所に加振レバー 3 5によって交互に衝撃を与え、 それそれの振動 片 2 1 aおよび 2 1 bに振動を励起している。 本例の発電装置 2 0 においては、 2本の振動片 2 1 aおよび 2 1 bに交互に打撃が与え られるので、 個々の振動片においては 1回の打擎による振動の継続 する時間を長く とることができる。 従って、 1回の打撃による入力 エネルギーが電気エネルギーに変換される期間を長く設定できるの で、 加振レバーによって伝達されるエネルギーが大き くなり、 振動 片 2 1の振動回数が多く なつた場合でも次に加振されるまでに十分 な余裕時間を確保できる。 このため、 振動中にさらに次の振動が加 振される事態を防止でき、 このような事態に起因する振動エネルギ —の損失を回避できる。 (Example 3) FIG. 13 shows an example of a different power generation device 20 according to the embodiment of the present invention '. The power generating device 20 of this example includes two vibrating bars 21a and 21b, and the active end 39 of the vibrating lever 35 is connected to the two vibrating bars 21a and 21b. It is located between. Then, the fixed ends 2 4 are slightly more than the free ends 23 of the weights 25 a and 25 b installed at the free ends 23 a and 23 b of the two vibrating bars 21 a and 21 b. The returning place is alternately impacted by the vibrating levers 35, which are exciting the vibrating pieces 21a and 21b. In the power generator 20 of this example, since the two vibrating reeds 21a and 21b are hit alternately, the time for which the vibrating is continued by one hit is longer for each vibrating reed. Can be taken. Therefore, the period during which the input energy by one impact is converted into electric energy can be set longer, so that the energy transmitted by the vibrating lever increases, and even if the number of vibrations of the vibrating piece 21 increases. A sufficient margin time can be secured before the next vibration. For this reason, the situation where the next vibration is further excited during the vibration can be prevented, and the loss of vibration energy due to such a situation can be avoided.
なお、 本例では 2本の振動片 2 1 aおよび 2 1 bに対し加振レバ —によって交互に打撃を与えるようにしているが、 例えば、 旋回す る加振レバーの周囲に 3本以上の振動片を配置した り、 複数の加振 レバ一を用いることによって 3本以上の n本の振動片に対し交互に 打撃を与えることも可能である。  In this example, two vibrating bars 2 1 a and 2 1 b are alternately hit by a vibrating lever. For example, three or more vibrating pieces are provided around a rotating vibrating lever. By arranging vibrating reeds or using multiple vibrating levers, it is possible to alternately hit three or more n vibrating reeds.
〔実施例 4〕  (Example 4)
第 1 4図に、 本発明の実施例に係る異なる発電装置の例を示して ある。 本例の発電装置 2 0は、 2つの振動片 2 1 aおよび 2 1 bの 支持層 2 6 aおよび 2 6 bが音叉型に形成されており、 これら 2つ の支持層 2 6 aおよび 2 6 bを連絡する基部 2 6 cが地板 1 2に取 り付けられている。 ま -た、 'それそれの捩動片 2 l aおよび 2 l bに 設けられた圧電体層 2 2 aおよび 2 2 bのそれそれからは不図示の 異なった 2つの整流回路に各々の振動片 2 1 aおよび 2 1 bから電 流が供給されるようになっている。 従って、 音叉を外部よ り加振し たときに起きる左右の腕が同相で振れるモー ドと、 逆相で振れるモ 一ドの両方から電力を取り出すことができる。 同相のモー ドの振動 ffi失は肩持ち梁とほぼ同じと考えられるが、 逆相のモー ドの振動損 失は固定部に力が加わらないために非常に小さい。 このため、 逆相 のモー ドに印加された入力エネルギーは効率よ く電力に変換できる ので、 片持ち梁よ り も効率の良い圧電体を用いた発電装匿を提供で きる。 FIG. 14 shows an example of a different power generator according to the embodiment of the present invention. In the power generation device 20 of this example, the support layers 26 a and 26 b of the two vibrating bars 21 a and 21 b are formed in a tuning fork shape, and these two support layers 26 a and 2 b 6 b Connect base 2 6 c to main plate 12 Is attached. In addition, each of the vibrating pieces 2 1 is connected to two different rectifier circuits (not shown) of the piezoelectric layers 2 2 a and 22 b provided on the respective screw pieces 2 la and 2 lb. Current is supplied from a and 21b. Therefore, power can be extracted from both the mode in which the left and right arms swing when the tuning fork is externally excited and the mode in which the left and right arms swing in opposite phases. The vibration loss of the in-phase mode is considered to be almost the same as that of the shoulder beam, but the vibration loss of the out-of-phase mode is very small because no force is applied to the fixed part. For this reason, the input energy applied to the opposite-phase mode can be efficiently converted to electric power, and therefore, it is possible to provide a power generation shield using a piezoelectric material that is more efficient than a cantilever.
また、 加振レバ一 3 5は、 ヒ述した実施例と同様に振動片 2 1 a および 2 1 bより等価質量が小さ く設定されており、 さらに、 振動 片 2 1 aおよび 2 1 bの自由端から固定端の側に若干戻った部分に 打撃を与えるようになつている。 従って、 本例の音叉型に組み合わ された振動子 2 9を用いて発電を行うこ とによ り、 音叉の特性を活 かした振動損失率の小さな振動を発生させるこ とができるので、 機 械的なエネルギー損失を抑制して発電効率の高い発電装置を提供す ることができる。  Also, the vibration lever 35 has a smaller equivalent mass than the vibrating bars 21 a and 21 b as in the embodiment described above, and furthermore, the vibration levers 21 a and 21 b The part slightly returned from the free end to the fixed end is hit. Therefore, by generating power using the vibrator 29 combined with the tuning fork type of this example, it is possible to generate a vibration having a small vibration loss rate by utilizing the characteristics of the tuning fork. It is possible to provide a power generation device with high power generation efficiency by suppressing mechanical energy loss.
〔実施例 5〕  (Example 5)
第 1 5図および第 1 6図に、 本発明の実施例に係る異なった発電 装置 2 0の概略構成を示してある。 本例の発電装置 2 0においては、 振動片 2 1 を加振する打撃部にポール 6 2 を用いている。 本例の発 電装置 2 0は、 振動片 2 1 を収納した上下のケース 6 5 aおよび 6 5 bの内部に、 振動片 2 1の自由端 2 3から若干固定端 2 4に戻つ た位置を通る円形の溝 6 1 が形成されており、 この溝 6 1 の内部を ボール 6 2が自由に動けるようになっている。 従って、 ケース 6 5 に運動を与えてボール έ 2 を動かすと、 ボール 6 2は振動片 2 1の 自由端 2 3から若干戻った位置で振動片 2 1 に衝突し振動片 2 1 に 振動を与えるようになつている。 この結果、 振動片 2 1 の圧電体層 2 2 aおよび 2 2 bに起電力が発生し、 発電が行われる。 FIGS. 15 and 16 show schematic configurations of different power generators 20 according to the embodiment of the present invention. In the power generator 20 of the present example, a pole 62 is used for a striking portion that vibrates the resonator element 21. In the power generation device 20 of this example, the free end 23 of the vibrating piece 21 was slightly returned to the fixed end 24 in the upper and lower cases 65 a and 65 b containing the vibrating piece 21. A circular groove 61 passing through the position is formed, and the ball 62 can move freely inside the groove 61. Therefore, case 6 5 When the ball έ 2 is moved by moving the vibrating bar 2, the ball 6 2 collides with the vibrating bar 2 1 at a position slightly returned from the free end 23 of the vibrating bar 2 1, and vibrates the vibrating bar 2 1. I have. As a result, an electromotive force is generated in the piezoelectric layers 22a and 22b of the resonator element 21 and power is generated.
本例の発電装置 2 0は、 振動片 2 1 に打撃を与えるボール 6 2の 等価質量を振動片 2 1の等価質量に対し小さ くできるので実施例 1 において詳述したように 2次衝突を防止でき、 ボール 6 2から振動 片 2 1 に対するエネルギー伝達効率を高くすることが可能である。 また、 振動片 2 1 に打撃を与えるボール 6 2は、 溝 6 1の内部を 由に動けるようになっているので、 回転錘や輪列を取り付けるため のベアリ ングなどの複雑な構造が不要となる。 従って、 簡易な構成 で発電能力の高い発電装置を安価に提供することができる。 さらに、 溝 6 1 に複数のボール 6 2 を封入することによって振動片 2 1 に対 する打撃回数を増加させることも可能であり、 ケース 6 5 を動かす エネルギーをよ り効率よ く振動片 2 1 に伝達することができる。 〔実施例 6〕  In the power generating device 20 of this example, the equivalent mass of the ball 62 that hits the vibrating bar 21 can be made smaller than the equivalent mass of the vibrating bar 21. Thus, the energy transfer efficiency from the ball 62 to the resonator element 21 can be increased. Also, since the ball 62 that hits the vibrating piece 21 can move freely inside the groove 61, there is no need for a complicated structure such as a bearing for attaching a rotating weight or a train wheel. Become. Therefore, it is possible to provide a low-cost power generator with a simple configuration and high power generation capacity. Further, by enclosing a plurality of balls 62 in the groove 61, it is possible to increase the number of hits to the vibrating reed 21, and the energy for moving the case 65 can be more efficiently used. Can be transmitted to (Example 6)
第 1 7図および第 1 8図に、 本発明の実施例に係る異なつた発電 装置 2 0の概略構成を示してある。 本例の発電装置 2 0 においては、 振動片 2 1 を加振する打撃部にボール 6 2を用いている。 本例の発 電装置 2 0は、 両端自由の矩形板型の振動片 2 1 を収納したケース 6 5の内部に、 円形の溝 6 1 が形成されており、 この溝 6 1の内部 をボール 6 2が自由に動けるようになっている。 従って、 ケース 6 5に運動を与えてボール 6 2を動かすと、 ボール 6 2は振動片 2 1 に衝突し振動片 2 1 に振動を与えるようになつている。 この結果、 振動片 2 1の圧電体層 2 2 aおよび 2 2 bに起電力が発生し、 発電 が行われる。  FIG. 17 and FIG. 18 show schematic configurations of different power generating devices 20 according to the embodiment of the present invention. In the power generator 20 of the present example, the ball 62 is used for the striking portion that vibrates the vibrating piece 21. In the power generating device 20 of this example, a circular groove 61 is formed inside a case 65 accommodating a rectangular plate-shaped vibrating piece 21 having both ends free, and a ball 61 is formed inside the groove 61. 6 2 can move freely. Therefore, when the ball 62 is moved by giving a motion to the case 65, the ball 62 collides with the vibrating bar 21 to vibrate the vibrating bar 21. As a result, electromotive force is generated in the piezoelectric layers 22 a and 22 b of the resonator element 21, and power is generated.
また本突施例においては、 振動片 2 1の形状は第 1 8図 ( a ) に 示すように両端自由の—矩形'板であるので、 1次モー ドには節 8 1 a および 8 1 bができる。 この節 8 1 aおよび 8 1 bを第 1 8図( b ) に図示した支持部材 7 1 aおよび 7 1 bで支持することで、 振動片 の固定による振動損失を防ぐ事ができる。 In this embodiment, the shape of the resonator element 21 is shown in Fig. 18 (a). As shown, it is a “rectangular” plate with both ends free, so the primary mode has nodes 8 1 a and 8 1 b. By supporting the nodes 81a and 81b with the support members 71a and 71b shown in FIG. 18 (b), it is possible to prevent vibration loss due to fixing of the resonator element.
さらに片持ち梁の場合と同様に、 振動片の高次モー ドの振動の節 の近傍に打撃を与えるこ とで高次モー ドの発生を抑制し、 発電に寄 与する 1次モー ドの振幅を大き くできる。 両端 S由の矩形板の 1次 モー ドを第 1 8図 ( c ) に、 2次モー ドを第 1 8図 ( d ) に、 3次 モー ドを第 1 8図 ( e ) に示す。 図中の直線は矩形板の長手方向の 位置を表し、 曲線は変形時の形状を表す。 図中の数値は矩形板の長 手方向の長さを 1 とした時の振動の節の位置を示している。 これら からすべてのモ一 ドにおいて振動の腹となる両端部でなく、 2次、 3次モー ドの節がある自由端から全長の 1 0 %〜 1 3 %中心側付近 も しくは自由端から全長の 3 6 %〜 5 0 %の位置に打撃を与える事 が望ま しい。  In addition, as in the case of the cantilever, by hitting the vibrating reed in the vicinity of the node of the higher mode vibration, the generation of the higher mode is suppressed, and the primary mode that contributes to power generation is suppressed. The amplitude can be increased. Fig. 18 (c) shows the primary mode, Fig. 18 (d) shows the secondary mode, and Fig. 18 (e) shows the tertiary mode of a rectangular plate with S ends. The straight line in the figure represents the position in the longitudinal direction of the rectangular plate, and the curve represents the shape during deformation. The numerical values in the figure indicate the positions of the nodes of vibration when the length in the longitudinal direction of the rectangular plate is set to 1. From these, it is not 10% to 13% of the total length from the free end where the nodes of the 2nd and 3rd modes are located, or from the free end, instead of the ends that are the antinodes of vibration in all modes. It is desirable to hit the area between 36% and 50% of the total length.
本例の発電装置 2 0は、 振動片 2 1 に打撃を与えるボール 6 2の 等価質量を振動片 2 1 の等価質量に対し小さ くできるので実施例 1 において詳述したように 2次衝突を防止でき、 ボール 6 2から振動 片 2 1 に対するエネルギー伝達効率を高く することが可能である。 また、 振動片 2 1 に打撃を与えるボール 6 2は、 溝 6 1の内部を自 由に動けるようになっているので、 回転錘や輪列を取り付けるため のベアリ ングなどの複雑な構造が不要となる。 従って、 簡易な構成 で発電能力の高い発電装置を安価に提供することができる。 さらに、 溝 6 1 に複数のボール 6 2 を封入することによって振動片 2 1 に対 する打撃回数を増加させることも可能であり、 ケース 6 5を動かす エネルギーをよ り効率よ く振動片 2 1 に伝達することができる。 従って、 本例の振動子 2 1 を用いて発電を行う ことによ り、 両端 自由の矩形板の特性を ¾かした振動損失率の小さな振動を発生させ ることができるので、 機械的なェネルギ一損失を抑制して発電効率 の高い発電装置を提供することができる。 In the power generating device 20 of this example, the equivalent mass of the ball 62 that hits the vibrating bar 21 can be made smaller than the equivalent mass of the vibrating bar 21. Thus, the energy transfer efficiency from the ball 62 to the resonator element 21 can be increased. In addition, since the ball 62 that hits the vibrating bar 21 can move freely inside the groove 61, a complicated structure such as a bearing for attaching a rotating weight or a train wheel is not required. Becomes Therefore, it is possible to provide a low-cost power generator with a simple configuration and high power generation capacity. Further, by enclosing a plurality of balls 62 in the groove 61, it is possible to increase the number of hits to the vibrating reed 21. The energy for moving the case 65 is more efficiently used. Can be transmitted to Therefore, by using the vibrator 21 of this example to generate power, Since a vibration with a small vibration loss rate that makes use of the characteristics of a free rectangular plate can be generated, a power generation device with high power generation efficiency can be provided by suppressing mechanical energy loss.
ここまで、 実施例 1〜 5において本願の発明者らは 2次衝突に伴 う損失のない片持ち梁状の振動片と加振部 (レバー、 ボール等) の 質量関係について確立し、 また実施例 6においては両端自由の矩形 板状の ¾動片と加振部について同様な損失のない設定が可能である 事を述べた。 しかし、 本発明はこれらの振動片 · 加振構造に限定さ れず、 円板、 台形板、 矩形板、 円筒、 直方体等、 任意の振動片と、 レバ一、 ボール、 板バネ等のいかなる加振部の組み合わせにおいて も、 第 8図に示すように、 加振部が振動片を打撃後、 振動片に対し 反対方向の速度が与えられるような設定を行う事で、 2次衝突に伴 う損失をなく すと言う同等の効果を得る事ができる。 またこの設定 は加娠部の質量を徐々に減少させながら同じ振動片に衝突させ加振 部を親察することで、 容易に求める事ができる。 すなわち加振部が 振動片を打撃後、 振動片に対し反対方向の速度が与えられるような 発電装置は、 全て本発明の範囲内である事は明白である。  Up to this point, in Examples 1 to 5, the inventors of the present application have established the mass relationship between the cantilever-shaped vibrating reed and the vibrating portion (lever, ball, etc.) without loss due to the secondary collision. In Example 6, it was stated that the same loss-free setting is possible for the rectangular plate-shaped moving piece and the vibrating section that are free at both ends. However, the present invention is not limited to these vibrating reeds / vibration structures, and any vibrating reed, such as a disk, trapezoidal plate, rectangular plate, cylinder, or rectangular parallelepiped, and any vibrating reed, ball, leaf spring, etc. As shown in Fig. 8, when the vibrating bar hits the vibrating bar, the setting of the vibrating bar is also applied to the vibrating bar in the opposite direction. The same effect of eliminating the effect can be obtained. In addition, this setting can be easily obtained by observing the vibrating section by colliding with the same vibrating piece while gradually reducing the mass of the prescribed section. That is, it is obvious that all the power generating devices in which the vibrating piece is given a speed in the opposite direction after the vibrating piece hits the vibrating piece are within the scope of the present invention.
なお、 上記の実施例においては、 金属製の支持層 2 6の両側に 2 層の圧電体層 2 2 aおよび 2 2 bの形成されたバイモルフ夕イブの 振動片、 あるいは圧電体層 2 2 aおよび 2 2 bが積層された振動片 を用いて発電を行う装置に基づき説明しているが、 2層以上の複数 層の圧電体が積層された振動片ゃュ二モルフタイプの振動片などを 用いても良いことはもちろんである。 さらに、 圧電体部を構成する 素材は P Z T (商標) 、 チタン酸バリ ウム系やチタン酸鉛系などの セラ ミ ック素材、 水晶やニオブ酸リチウム等の単結晶、 さらに P V D F等の高分子素材であってももちろん良い。  In the above embodiment, the vibrating piece of the bimorph filter in which the two piezoelectric layers 22 a and 22 b are formed on both sides of the metal support layer 26, or the piezoelectric layer 22 a The description is based on a device that generates power using a resonator element in which 2 and 2b are stacked. Of course, it may be used. In addition, the materials that make up the piezoelectric body are PZT (trademark), ceramic materials such as barium titanate and lead titanate, single crystals such as quartz and lithium niobate, and polymer materials such as PVDF. Of course, it is good.
また、 本発明は上記の実施例で説明した時計装置などの腕装着型 の携帯型機器に限定す^)もめではない。 本発明は小型で発電能力の 高い発電装置を提供できるので、 他の小型で携帯型の電子機器に内 蔵される発電装置として好適であり、 例えばページャ一、 電話機、 無線機、 補聴器、 万歩計、 電卓、 電子手帳などの情報端末、 I C力 — ド、 ラジオ受信機などに本発明の発電装置を適用することが可能 である。 そして、 これらの携帯型機器に本発明の発電装置を採用す ることによ り、 人間の動きなどを捉えて効率良く発電を行い、 電池 の消費を抑制した り、 あるいは電池その物を不要にすることも可能 である。 従って、 ユーザーは電池切れを心配せずに、 これらの携帯 型機器を使用することができ、 電池切れによってメモリ一に記憶し た内容が失われるなどの トラブルも未然に防止できる。 さらに、 電 池や充電装置が容易に入手できない地域や場所、 あるいは災害など によって電池の補充が困難な事態であっても携帯型電子機器の機能 を発揮させることが可能となる。 産業上の利用の可能性 Further, the present invention provides an arm-mounted type such as the timepiece described in the above embodiment. Not limited to portable devices ^). Since the present invention can provide a small-sized power generation device having a high power generation capability, it is suitable as a power generation device incorporated in other small and portable electronic devices. For example, a pager, a telephone, a wireless device, a hearing aid, The power generation device of the present invention can be applied to information terminals such as meters, calculators, electronic organizers, IC cards, radio receivers, and the like. By adopting the power generation device of the present invention in these portable devices, power generation can be efficiently performed by capturing human movements, etc., and battery consumption can be suppressed, or the battery itself can be made unnecessary. It is also possible to do so. Therefore, users can use these portable devices without worrying about running out of battery, and problems such as loss of data stored in memory due to running out of battery can be prevented. Furthermore, the function of the portable electronic device can be exhibited even in an area or place where a battery or a charging device is not readily available, or in a situation where it is difficult to replenish the battery due to a disaster or the like. Industrial applicability
以上に説明したように、 本発明は、 圧電体層を備えた振動片を振 動させて発電を行う発電装置において、 振動片に打撃を与えて振動 を励起する打撃部の等価質量を振動片の等価質量よ り小さ く して振 動片と打撃部との 2次衝突が発生するのを防止している。 このため、 本発明によ り、 2次衝突に起因するエネルギー損失を防止できるの で、 打撃部から振動片へのエネルギー伝達効率が非常に高い発電装 置を提供できる。 従って、 本発明に係る発電装置は、 回転錘などで 発生した運動エネルギーを効率良く入力エネルギーとして振動片に 与えることができるので、 発電効率の高い圧電体層を備えた振動片 を用いた発電装置において、 振動片に対し大きな入力エネルギーを 供給することが可能となり、 発電能力の高い発電装置を実現できる。 このため、 圧電体を用 た小型で携帯可能な携帯型機器に電力を提 供するのに適した発電装置を提供することができる。 As described above, the present invention relates to a power generating apparatus that generates power by vibrating a vibrating reed having a piezoelectric layer, wherein the equivalent mass of a striking portion that excites the vibrating reed by hitting the vibrating reed is set to By making the mass smaller than the equivalent mass, the secondary collision between the vibrating piece and the impact portion is prevented. For this reason, according to the present invention, energy loss due to a secondary collision can be prevented, and a power generation device with extremely high energy transmission efficiency from the impact portion to the resonator element can be provided. Therefore, the power generating device according to the present invention can efficiently apply the kinetic energy generated by the rotating weight or the like to the vibrating reed as input energy, and thus the power generating device using the vibrating reed having the piezoelectric layer with high power generation efficiency In this case, large input energy can be supplied to the resonator element, and a power generation device with high power generation capability can be realized. Therefore, it is possible to provide a power generator suitable for supplying electric power to a small and portable portable device using the piezoelectric body.
さらに、 本発明においては、 振動片を加振する位置を 2次モー ド の節の近傍にすることによって発電に寄与する 1次モー ドの振幅を 増大させ、 入力されたエネルギーが有効に発電に用いられるように している。 また、 本発明においては、 腕装着型機器に搭載された回 fe錘の回転遝動を輪列を用いて増速し、 運動エネルギーを分割して 振動片に与えることによ り振動時の機械的損失を低減して、 変換効 率を向上させることで、 圧電体を用いた小型で発電能力の高い発電 装置を実現している。 また、 複数の振動片を設けこれらに交互に加 振レバーによって振動を加えることで、 個々の振動片においては 1 回の打撃による振動の継続する時間を長く取ることができる。 した がって振動片の振動中に次の加振が加えられることに起因する損失 を防ぎ、 効率向上を図る事ができる。 その上、 振動片を音叉や、 両 端自由の矩形板型とし 1次モー ドの節上で支持することで固定損失 を低減し、 変換効率を向上でき、 発電能力の高い圧電体を用いた発 電装置を実現している。  Furthermore, in the present invention, the amplitude of the primary mode contributing to power generation is increased by setting the position where the vibrating piece is excited near the node of the secondary mode, and the input energy is effectively used for power generation. It is being used. Further, in the present invention, the rotational movement of the rotating fe / weight mounted on the arm-mounted device is accelerated using a wheel train, and kinetic energy is divided and applied to the vibrating reed to thereby provide a mechanical device during vibration. By reducing the power loss and improving the conversion efficiency, a small-sized power generation device with high power generation capacity using a piezoelectric material has been realized. In addition, by providing a plurality of vibrating bars and applying vibrations to the vibrating levers alternately with the vibrating bars, it is possible to increase the duration of the vibration of each vibrating bar by one impact. Therefore, it is possible to prevent the loss caused by the next excitation being applied during the vibration of the resonator element, and to improve the efficiency. In addition, the vibrating reed is made of a tuning fork or a rectangular plate with both ends free, and is supported on a node in the primary mode to reduce fixed loss, improve conversion efficiency, and use a piezoelectric material with high power generation capability. A power generation device has been realized.
このように、 本発明の発電装置は、 ユーザーの腕の動きなどを捉 えて得た運動エネルギーを効率良く振動片に伝達することが可能と なるので、 小型 ' 携帯型機器に十分な電力を供給できる発電装置を 提供することが可能となる。  As described above, the power generation device of the present invention can efficiently transmit the kinetic energy obtained by capturing the movement of the user's arm, etc., to the resonator element, so that sufficient power is supplied to the small-sized portable device. It is possible to provide a power generator that can be used.

Claims

' 請求の範囲 ' The scope of the claims
1. 圧電体層を備えた少なく とも 1つの振動片と、 この振動片に 打撃を加えて振動を励起する加振装置とを有し、 振動中の前記圧電 体層で発生した電力を出力可能な ¾' 装置において、 1. At least one vibrating reed with a piezoelectric layer and a vibrating device that excites vibration by hitting the vibrating reed, and can output power generated by the vibrating piezoelectric layer In the ¾ 'device,
前記加振装置は前記振動片に衝突する打撃部を備えており、 その 打撃部の等価質量 meが前記振動片の等価質量 Meより小さいこと を特徴とする発電装置。 It said vibrator has a striking part impinging on the resonator element, the power generation and wherein the equivalent mass m e of the striking part is less than the equivalent mass M e of the resonator element.
2. 圧電体層を備えた少なく とも 1つの振動片と、 この振動片に 打撃を加えて振動を励起する加振装置とを有し、 振動中の前記圧電 体層で発生した電力を出力可能な発電装置において、 2. At least one vibrating reed with a piezoelectric layer and a vibrating device that excites vibration by applying a shock to the vibrating reed can output power generated by the vibrating piezoelectric layer. Power generation equipment,
前記加振装置は前記振動片に衝突する打撃部を備えており、 前記 打擎部が前記振動片に打撃を与えた直後、 前記打撃部は前記振動片 に対し反対方向の速度が与えられることを特徴とする発電装置。  The vibrating device includes a striking portion that collides with the vibrating reed, and immediately after the striking portion strikes the vibrating reed, the striking portion is given a velocity in an opposite direction to the vibrating reed. A power generator characterized by the above-mentioned.
3. 請求項 1において、 前記振動片は片持ち梁状に取り付けられ ており、 その質量を MH、 固定された固定端から他方の自由端まで の距離を 1 H、 前記固定端から前記打撃部によって打撃が加えられ る加振点までの距離を X H、振動モー ドの規準関数を Ξ nと したとき に、 前記加振点における前記等価質量 Meは次の式 (A) で表され、 前記打撃部は前記加振点に打撃を与える旋回式の加振レバーであ り、 その慣性モーメ ン トを Iい 旋回中心から前記加振点に打撃を 与える打撃点までの距離を X bと したときに、 前記等価質量 m eは次 の式 (B) で表されることを特徴とする発電装置。 3. The vibrating reed according to claim 1, wherein the vibrating reed is mounted in a cantilever shape, the mass thereof is M H , the distance from the fixed end to the other free end is 1 H , and the impact is from the fixed end. the distance until the excitation point striking is added by parts XH, when the .XI n criteria function of the vibration mode, the equivalent mass M e in the excitation point is represented by the following formula (a) The striking section is a swing-type swing lever that strikes the excitation point, and its inertia moment is I. The distance from the center of rotation to the strike point that strikes the excitation point is Xb. and when the equivalent mass m e is the power generation apparatus characterized by being represented by the following formula (B).
M 0 = M H / ( Ξ n ( X H / 1 H ) ) 2 · · · ( A ) m = I b/x b 2 · · · (B) M 0 = MH / (Ξ n (XH / 1 H)) 2 (A) m = I b / x b 2 (B)
4. 請求項 1において、 前記打撃部と前記振動片の衝突係数を e としたときに、 前記等価質量 meおよび Meが次の式 ( C) を満たす ことを特徴とする発電装置。 4. In claim 1, the collision factor of the resonator element and the striking part is taken as e, power generator the equivalent mass m e and M e is characterized by satisfying the following formula (C).
M c > ( ( 2 - e + 3 · 7Γ+ 2 )/3 · π■ e ) x me · · ·M c > ((2-e + 3 · 7 Γ + 2) / 3 · π ■ e) xm e
( C) (C)
5. 請求項 1において、 前記振動片は片持ち梁状に取り付けられ ており、 前記打撃部は前記振動片の自由端から固定端の側に若干戻 つた前記振動片の 2次モー ドの節近傍に打撃を与えることを特徴と する発電装置。 5. The vibrating reed according to claim 1, wherein the vibrating reed is mounted in a cantilever shape, and the striking portion is a node in a secondary mode of the vibrating reed slightly returned from a free end to a fixed end of the vibrating reed. A power generator characterized by hitting nearby.
6. 請求項 1において、 前記振動片は片持ち梁状に取り付けられ ており、 前記振動片の自由端に重りが付加されていることを特徴と する発電装置。 6. The power generator according to claim 1, wherein the vibrating reed is mounted in a cantilever shape, and a weight is added to a free end of the vibrating reed.
7. 請求項 6において、 前記振動片の片持ち梁部の質量を MH、 固定された固定端から他方の自由端までの距離を 1 H、 前記固定端 から前記打撃部によって打撃が加えられる加振点までの距離を xH- 振動モー ドの規準関数を Ξ n、前記重りの質量を!^^と したときに、 前記加振点における前記等価質量 Meは次の式 ( D) で表されるこ とを特徴とする発電装置。 7. In claim 6, the mass of the cantilever portion of the vibrating reed is M H , the distance from the fixed end to the other free end is 1 H , and the hitting portion applies a hit from the fixed end. distance x H to excitation point -! n .XI criteria function of the vibration modes, the mass of the weight is taken as ^ ^, the equivalent mass M e in the excitation point following formula (D) A power generator characterized by the following.
Me =Ma + MH/ ( Ξ η (Χ Η/ 1 Η) ) 2 · · · (D) M e = M a + M H / (Ξ η (Χ Η / 1 Η)) 2
8. 請求項 6において、 前記重りは前記自由端の側に開いた凹部 を備えており、 前記打撃部は前記凹部の内側に打撃を与える加振レ バ一であることを特徴とする発電装置。 8. The power generator according to claim 6, wherein the weight has a concave portion that is open on the side of the free end, and the hitting portion is a vibration lever that hits the inside of the concave portion. .
9. 請求項 1において、 振動片が複数であることを特徴とする発9. The method according to claim 1, wherein a plurality of vibrating bars are provided.
¾, i¾ ¾ o ¾, i¾ ¾ o
1 0. 請求項 1において、 前記打撃部が前記振動片の周囲に形成 された溝内部を運動する少なく とも 1つのボールであることを特徴 とする発電装置。  10. The power generator according to claim 1, wherein the hitting portion is at least one ball that moves inside a groove formed around the vibrating piece.
1 1. 請求項 1に記載の発電装置と、 この発電装置から出力され た前記電力によって作動可能な処理装置とを有することを特徴とす る携帯型機器。 1 1. A portable device comprising: the power generation device according to claim 1; and a processing device operable by the power output from the power generation device.
1 2. 請求項 1に記載の発電装置を収納するケースと、 このケー ス内部で旋回可能に取り付けられた回転錘と、 この回転錘の動きを 増速して前記打撃部に伝達する輪列とを有し、 1 2. A case for accommodating the power generating device according to claim 1, a rotating weight rotatably mounted inside the case, and a train train for increasing the speed of movement of the rotating weight and transmitting the movement to the hitting portion. And
前記打撃部は、 前記輪列に連動して旋回駆動され前記振動片と衝 突する加振レバ一であることを特徴とする携帯型機器。  The portable device, wherein the hitting portion is a vibration lever that is driven to rotate in conjunction with the train wheel and collides with the vibrating piece.
1 3. 請求項 1 2において、 前記ケースは腕装着型であることを 特徴とする携帯型機器。 13. The portable device according to claim 12, wherein the case is an arm-mounted type.
1 4. 請求項 1 2において、 前記加振レバーは前記輪列によって 回転駆動されるレバーを備えており、 この駆動レバーの一端と前記 加振レバーの一端が当接し、 当該加振レバーが旋回駆動されること を特徴とする携帯型機器。 14. The device according to claim 12, wherein the vibrating lever includes a lever that is driven to rotate by the wheel train. One end of the driving lever and one end of the vibrating lever abut, and the vibrating lever pivots. A portable device characterized by being driven.
1 5. 請求項 1 2において、 前記加振レバ一は、 旋回中心と重心 がほぼ一致することを特徴とする携帯型機器。 1 5. The method according to claim 12, wherein the vibration lever is a center of rotation and a center of gravity. Is a portable device characterized by substantially matching.
PCT/JP1997/000885 1996-03-22 1997-03-19 Power generator and portable device WO1997036364A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53423097A JP3711562B2 (en) 1996-03-22 1997-03-19 Power generation device and portable device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6600296 1996-03-22
JP8/66002 1996-03-22

Publications (1)

Publication Number Publication Date
WO1997036364A1 true WO1997036364A1 (en) 1997-10-02

Family

ID=13303317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000885 WO1997036364A1 (en) 1996-03-22 1997-03-19 Power generator and portable device

Country Status (3)

Country Link
JP (1) JP3711562B2 (en)
CN (1) CN1220782A (en)
WO (1) WO1997036364A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023749A1 (en) * 1997-10-30 1999-05-14 Martyn Sergeevich Nunuparov Method of power supply for electronic systems and device therefor
JPH11252945A (en) * 1998-03-06 1999-09-17 Seiko Epson Corp Generation device and electronic equipment
JP2010082763A (en) * 2008-09-30 2010-04-15 Hitachi Koki Co Ltd Electric power tool
US9614553B2 (en) 2000-05-24 2017-04-04 Enocean Gmbh Energy self-sufficient radiofrequency transmitter
USRE46499E1 (en) 2001-07-03 2017-08-01 Face International Corporation Self-powered switch initiation system
CN108150336A (en) * 2017-12-06 2018-06-12 田腾 It is a kind of to utilize flow and the portable electric generator of vibrating power-generation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617814A (en) * 2015-01-20 2015-05-13 南京邮电大学 Portable power generation device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133373U (en) * 1974-09-02 1976-03-11
JPS529388A (en) * 1975-07-11 1977-01-24 Seiko Epson Corp Electricity generator
JPS52127092A (en) * 1976-04-16 1977-10-25 Seiko Instr & Electronics Ltd Portable generator
JPS6372593U (en) * 1986-10-30 1988-05-14
JPH07107752A (en) * 1993-09-30 1995-04-21 Mitsuteru Kimura Piezoelectric generating device
JPH08140369A (en) * 1994-11-08 1996-05-31 Toyo Kako Kk Generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133373U (en) * 1974-09-02 1976-03-11
JPS529388A (en) * 1975-07-11 1977-01-24 Seiko Epson Corp Electricity generator
JPS52127092A (en) * 1976-04-16 1977-10-25 Seiko Instr & Electronics Ltd Portable generator
JPS6372593U (en) * 1986-10-30 1988-05-14
JPH07107752A (en) * 1993-09-30 1995-04-21 Mitsuteru Kimura Piezoelectric generating device
JPH08140369A (en) * 1994-11-08 1996-05-31 Toyo Kako Kk Generator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023749A1 (en) * 1997-10-30 1999-05-14 Martyn Sergeevich Nunuparov Method of power supply for electronic systems and device therefor
JPH11252945A (en) * 1998-03-06 1999-09-17 Seiko Epson Corp Generation device and electronic equipment
US9614553B2 (en) 2000-05-24 2017-04-04 Enocean Gmbh Energy self-sufficient radiofrequency transmitter
US9887711B2 (en) 2000-05-24 2018-02-06 Enocean Gmbh Energy self-sufficient radiofrequency transmitter
USRE46499E1 (en) 2001-07-03 2017-08-01 Face International Corporation Self-powered switch initiation system
JP2010082763A (en) * 2008-09-30 2010-04-15 Hitachi Koki Co Ltd Electric power tool
CN108150336A (en) * 2017-12-06 2018-06-12 田腾 It is a kind of to utilize flow and the portable electric generator of vibrating power-generation
CN108150336B (en) * 2017-12-06 2020-11-13 钟小二 Portable generator utilizing water flow and vibration to generate electricity

Also Published As

Publication number Publication date
CN1220782A (en) 1999-06-23
JP3711562B2 (en) 2005-11-02

Similar Documents

Publication Publication Date Title
JPH09233862A (en) Method and device for generating power using piezoelectric body, and electronic equipment
US5751091A (en) Piezoelectric power generator for a portable power supply unit and portable electronic device equipped with same
US8410667B2 (en) Electrical generators for low-frequency and time-varying rocking and rotary motions
US7049959B2 (en) Powerless type security device
US7821183B2 (en) Electrical generators for low-frequency and time-varying rocking and rotary motion
JP3170965B2 (en) Generators and portable equipment
JP4426078B2 (en) Shock resistant device for a generator with a vibrating weight
US20100045119A1 (en) System for generating electrical energy from ambient energy
JPH0990065A (en) Portable equipment with power generating device
JPWO2002078165A1 (en) Piezoelectric actuator and its driving circuit
JPH11146663A (en) Piezoelectric generator
WO1997036364A1 (en) Power generator and portable device
JPH1056784A (en) Power generator and electronic apparatus
JP2002084726A (en) Card generator and electronic apparatus using the same
JPH09182465A (en) Piezoelectric-body power generating apparatus and power supply provided with it as well as electric equipment
JP3539187B2 (en) Power generation equipment and electronic equipment
JP3767388B2 (en) Piezoelectric governor and electronic device using the piezoelectric governor
WO2004074945A1 (en) Drive device, timer device, and method of controlling timer device
JPH10229684A (en) Piezoelectric generator and portable apparatus
JP4265255B2 (en) Piezoelectric actuator driving device, driving method, timepiece, and electronic apparatus
JP3539184B2 (en) Power generation equipment and electronic equipment
JP2002223577A (en) Piezoelectric actuator, clock, mobile apparatus, and designing and manufacturing methods of the piezoelectric actuator
JP3613969B2 (en) Piezoelectric generator and portable device equipped with the piezoelectric generator
JP3706286B2 (en) Power generation device for portable electronic devices
JPH1042577A (en) Generating device and portable electronic apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97190233.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US