WO1997042868A1 - Bestimmung der konzentration von gewebeglucose - Google Patents

Bestimmung der konzentration von gewebeglucose Download PDF

Info

Publication number
WO1997042868A1
WO1997042868A1 PCT/EP1997/001075 EP9701075W WO9742868A1 WO 1997042868 A1 WO1997042868 A1 WO 1997042868A1 EP 9701075 W EP9701075 W EP 9701075W WO 9742868 A1 WO9742868 A1 WO 9742868A1
Authority
WO
WIPO (PCT)
Prior art keywords
glucose
concentration
perfusion solution
value
tissue
Prior art date
Application number
PCT/EP1997/001075
Other languages
English (en)
French (fr)
Inventor
Udo Hoss
Ernst Friedrich Pfeiffer
Original Assignee
Boehringer Mannheim Gmbh
PFEIFFER, Margret
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Mannheim Gmbh, PFEIFFER, Margret filed Critical Boehringer Mannheim Gmbh
Priority to EP97908169A priority Critical patent/EP0898459A1/de
Priority to US09/147,207 priority patent/US6091976A/en
Priority to JP54041897A priority patent/JP3933206B2/ja
Publication of WO1997042868A1 publication Critical patent/WO1997042868A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • A61B5/14865Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14525Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using microdialysis
    • A61B5/14528Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using microdialysis invasively
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/686Permanently implanted devices, e.g. pacemakers, other stimulators, biochips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts

Definitions

  • the invention relates to a method and an arrangement for determining and monitoring the concentration of tissue glucose according to the preamble of independent claims 1 and 17.
  • Methods of this type can be used above all in the field of human medicine, in particular for monitoring blood sugar in diabetics.
  • the starting point is the knowledge that the glucose content of the interstitial tissue fluid has a high correlation with the blood sugar level with a slight time delay. It is known to obtain the glucose according to the dialysis principle and then to determine the glucose content by means of enzymatic-amperometric measurements in a flow measuring cell. For this purpose, a continuous perfusate stream is directed past the dialysis membrane of the dialysis probe. The yield achieved depends essentially on the perfusion rate and is usually below 30%. The measurement is correspondingly imprecise because disruptive factors such as movements of the tissue and changes in the blood flow have a strong effect on the yield and thus on the measurement signal.
  • Glucose gradient from the tissue surrounding the microdialysis probe For long-term treatment of diabetics, however, a reliable measurement of glucose is an indispensable prerequisite in order to be able to dose insulin as needed and, if necessary, automatically.
  • the invention is based on the object of achieving high reliability and accuracy in the determination of glucose in a method and an arrangement of the type mentioned at the beginning.
  • the solution according to the invention is based on the idea that, instead of the usual continuous enrichment of the perfusion solution, the liquid column required by the microdialysis probe has to be adjusted in sections with higher yield to the glucose content of the tissue. Accordingly, it is proposed according to the invention that the volume flow of the perfusion solution for the duration of dialysis intervals is reduced on average, and that during each dialysis interval the perfusion solution in a respective subsequent Trans ⁇ port interval is further promoted with a higher volume flow to the measuring cell through the microdialysis probe perfused volume. Due to the concentration equalization during the dialysis intervals, a continuous de-enrichment of the tissue is avoided. At the same time, a higher signal strength can be achieved because of the higher yield. The enriched partial volumes can be transported to the measuring cell with a high flow rate and thus short dead time.
  • glucose is added to the perfusion solution before it flows through the microdialysis probe, a predetermined starting concentration, preferably in the physiological range, being set.
  • a predetermined starting concentration preferably in the physiological range
  • the use of a starting solution containing glucose leads to either a corresponding enrichment or de-diffusion on the dialysis membrane. Accordingly, either a signal peak (peak) or a signal dip (dip) is observed in the chronological sequence of the measuring signals on the measuring cell.
  • the perfusion solution flowing in through the microdialysis probe during the transport intervals with a higher flow rate essentially maintains its initial concentration of glucose.
  • a baseline is thus scanned, which reflects the initial concentration of glucose.
  • the volume flow of the perfusion ⁇ solution adjusted during the transport intervals so that the glucose content of the perfusion solution during passage through the microdialysis probe because of the ver ⁇ -reduced duration of dialysis by less than 10%, preferred wise less than 5% change.
  • the volume flow during the dialysis intervals should be set so that the glucose content of the perfusion solution as it flows through the microdialysis probe essentially adjusts to the concentration of the tissue glucose.
  • a baseline value is advantageously determined from the measurement signals sampled at the measuring cell when the volume of the perfusion solution perfused with a higher volume flow flows through, which reflects the initial concentration of glucose and thus enables a continuous signal correction, for example in the event of fluctuations in the measuring sensitivity.
  • the measurement signals detected as peaks during the transport intervals on the measuring cell as they flow through the enriched liquid column sections are evaluated with regard to their extreme value or their integral value for determining the concentration of tissue glucose.
  • the concentration of tissue glucose is advantageously determined from the ratio of the extreme value and the Baseline value of the measurement signals, multiplied by the value of the initial glucose concentration and, if appropriate, a predetermined calibration value, determined in each transport interval. This enables a constant recalibration of the glucose measurement values and compensates for any drift in the signal curve. In this way, measurement artifacts can be excluded which can occur, for example, as a result of delivery failures or malfunctions in the measuring cell.
  • the signal curve of the measurement signals is evaluated to check the validity of the glucose content determined, a peak being the valid signal when the concentration value is higher than the initial glucose concentration and a dip is the valid concentration value form is expected. This enables a reliable qualitative check of the measurement.
  • a further increase in measurement reliability can be achieved by setting the initial concentration of the glucose to a hypoglycemic value and by triggering an hypoglycemia alarm in the event of a dip in the signal curve of the measurement signals.
  • a qualitative pattern recognition in the signal course of the measurement signals can be realized in a simple manner by comparing the extreme values recorded in the time interval of the transport intervals with the respectively assigned baseline value, with a peak and at a larger extreme value compared to the baseline value a dip is recognized as a signal form at a smaller extreme value.
  • a further preferred embodiment of the invention provides that the perfusion solution is conveyed through the microdialysis probe in the course of the dialysis intervals, in each case in a number of delivery spurts which occur at intervals from one another.
  • the section of the liquid column enriched with glucose is widened and the diffusion decay is correspondingly reduced during the subsequent transport interval.
  • the volume of the microdialysis probe is essentially speaking volume of the perfusion solution is required.
  • the feed pauses Zvi ⁇ rule are measured the conveying drawers so that the Glu cosegehalt of the currently in the microdialysis probe befind ⁇ union volume of Perfusionslosung is matched substantially to the concentration of the tissue glucose.
  • the volume flow of the perfusion solution can be reduced to a constant value for the duration of the dialysis intervals.
  • the above-mentioned object is achieved in that at least one glucose reservoir, which contains dissolved glucose in a predetermined starting concentration, can be connected to the perfusate line.
  • at least one glucose reservoir which contains dissolved glucose in a predetermined starting concentration
  • two glucose reservoirs can be provided which can be connected separately to the perfusate line and which contain dissolved glucose in different concentrations.
  • the at least one glucose reservoir can be connected to the perfusate line via a switching valve
  • a defined batch-wise promotion of the Perfusion solution enriched with glucose can be achieved in that the delivery unit is designed as a metering pump which can preferably be operated at intervals.
  • 1 shows a microdialysis system for measuring the subcutaneous glucose concentration
  • FIG. 2 shows a time diagram of the volume flow of the perfusion solution flowing through the system according to FIG. 1.
  • the method according to the invention for subcutaneous measurement of tissue glucose is based on the principle of the microdialysis technique and can be carried out with a measuring arrangement shown in FIG. 1.
  • the measuring arrangement essentially consists of a microdialysis probe 12 that can be implanted in the subcutaneous fat tissue 10 of a patient, an extracorporeally arranged flow measuring cell 14 and a signal processing unit 16 that interacts with the measuring cell 14 Reservoir 20 via a perfusate line 21 as a continuous liquid column while flowing through the micro-dialysis probe 12 via a connecting line 22 through the measuring cell 14 into a collecting container 24 pumped.
  • Mixing point 32 is introduced into the connecting line 22.
  • the perfusion solution 18 flows through the micro-dialysis probe 12, a diffusion exchange of glucose between the perfusion liquid and the tissue fluid takes place on the glucose-permeable dialysis membrane 34. Depending on the concentration gradient, the perfusion solution 18 flowing past the membrane 34 is enriched with tissue glucose.
  • the glucose content of the perfusion solution in the measuring cell 14 is then detected in a known manner as an electrode signal by means of an electrochemically amperometric sensor and evaluated in the signal processing unit 16.
  • the underlying detection reactions catalyzed by the enzyme solution 30 are described in detail in DE-OS 44 01 400, to which reference is expressly made. Alternatively, it is also possible to detect the glucose using an enzyme sensor as described in DE-OS 41 30 742.
  • the perfusion solution 18 is delivered by the pump 26 at predetermined time intervals, as shown in FIG. 2.
  • This will the perfusion solution during a dialysis interval T in several, at intervals spaced successive Ford batches 36, each Ford batch 36 essentially corresponds to the volume of the microdialysis probe 12.
  • the pausing intervals 38 between the ford pushers 36 are dimensioned such that the glucose content of the volume of the perfusion solution 18 in each case in the microdialysis probe 12 is essentially matched to the concentration of the tissue glucose.
  • the pump flow rate must be adjustable for this.
  • the volume of the perfusion solution 18 accumulated in the probe 12 during the interval T is pumped to the measuring cell 14 in the course of the subsequent transport interval T with a constant volume flow v given by the flow of the pump 26.
  • the perfusion solution 18 that flows through the microdialysis probe 12 in this phase is hardly loaded with glucose from the tissue 10 due to the higher flow rate.
  • the measurement signal sampled at the measuring cell 14 will therefore have a peak value if the enriched sections of the liquid column are transported past, and it will have a baseline value if the with a short perfusion time the liquid volume guided by the probe 12 are transported past.
  • the baseline and extreme values can thus be sampled at predetermined times in the time interval of the total interval duration T 1 + T 2.
  • Typical flow rates for the interval T are 0.3 - 1 ⁇ l / min and for T 5 - 50 ⁇ l / min.
  • the perfusion solution 18 located in the reservoir 20 is mixed with glucose.
  • an initial concentration in the physiological range of, for example, 5 mmol / 1 is set.
  • Tissue glucose in that the ratio of the extreme value determined at intervals and the associated baseline value is multiplied by the value of the initial glucose concentration and, if appropriate, by a predetermined calibration factor.
  • the calibration factor can be determined by a one-time in vivo comparison measurement of the glucose levels in the blood and in the tissue. An offset is expediently taken into account here, which is obtained by a one-time in vitro measurement prior to implantation by immersing the probe 12 in a glucose-free measurement solution can be won.
  • the addition of glucose to the perfusion solution 18 thus enables the measurement signals to be automatically recalibrated after an initial calibration.
  • the signal validity can be monitored by a simple pattern recognition. With a higher glucose content of the tissue 10 compared to the set concentration, a peak results and with a lower content a dip. A signal shape that deviates, for example, due to a zero point drift can be recognized as invalid in this way. It is thus also possible to monitor a patient's glucose level in a quantitatively predetermined range by simple qualitative comparison measurements. For example, the initial concentration of glucose in the
  • Perfusion solution 30 is alternately set to a hypoglycemic value and an hypoglycemic value, with a dip in the signal curve of the measurement signals during the phase of the set hypoglycemic concentration and with a peak during the
  • the detection of the signal shape is limited to the acquisition of two measured values, namely an extreme value assigned to the high glucose yield during the dialysis intervals T and one to the low glucose yield (due to high volume flow V) during the transport intervals T assigned.
  • the two measured values can each be points are sampled at the time interval T + T, a peak being assumed as the signal form when the extreme value is larger than the baseline value and a dip is assumed as the smaller extreme value.
  • the invention relates to a method and the arrangement for determining the tissue glucose, a solution for perfusion being conveyed to a measuring cell as a liquid column while flowing through a microdialysis probe implanted in the tissue.
  • the volume flow V of the perfusion solution be reduced to a value Vo over time for the duration of dialysis intervals T, and that during each Dialysis intervals T through the microdialysis probe are perfused volumes of the perfusion solution in a subsequent transport interval T 2 with a higher volume flow V1 to the measuring cell.

Abstract

Die Erfindung betrifft ein Verfahren und eine Anordnung zur Bestimmung der Gewebeglucose, wobei eine Perfusionslösung (20) als Flüssigkeitssäule unter Durchströmung einer im Gewebe implantierten Mikrodialysesonde (12) zu einer Messzelle (14) gefördert wird. Dabei wird zur Erhöhung der Ausbeute, Vermeidung eines Konzentrationsgefälles und zur Verringerung der Totzeit vorgeschlagen, dass der Volumenstrom (V) der Perfusionslösung für die Dauer von Dialyse-Intervallen (T1) im Zeitmittel auf einen Wert V0 reduziert wird, und dass das während eines jeden Dialyse-Intervalls (T1) durch die Mikrodialysesonde perfundierte Volumen der Perfusionslösung in einem jeweils anschliessenden Transportintervall (T2) mit hörherem Volumenstrom (V1) zu der Messzelle weitergefördert wird.

Description

BESTIMMUNG DER KONZENTRATION VON GEWEBEGLUCOSE
Beschreibung
Die Erfindung betrifft ein Verfahren und eine Anordnung zur Bestimmung und Überwachung der Konzentration von Gewebeglucose nach dem Oberbegriff der unabhängigen Pa¬ tentansprüche 1 und 17.
Verfahren dieser Art lassen sich vor allem im Bereich der Humanmedizin anwenden, insbesondere zur Blutzucker¬ überwachung bei Diabetikern. Ausgangspunkt ist die Er¬ kenntnis, daß der Glucosegehalt der interstitiellen Ge- webeflüssigkeit bei geringer zeitlicher Verzögerung ei¬ ne hohe Korrelation mit dem Blutzuckerspiegel aufweist. Es ist bekannt, die Glucose nach dem Dialyseprinzip zu gewinnen und anschließend den Glucosegehalt mittels en- zymatisch-amperometrischer Messungen in einer Durch- flußmeßzelle zu bestimmen. Dazu wird an der Dialysemem¬ bran der Dialysesonde ein kontinuierlicher Perfusat- strom vorbeigeleitet. Die dabei erzielte Ausbeute hängt wesentlich von der Perfusionsrate ab und liegt in der Regel unter 30 %. Entsprechend ungenau ist die Messung, weil Störfaktoren wie Bewegungen des Gewebes und Ände¬ rungen der Durchblutung sich stark auf die Ausbeute und damit auf das Meßsignal auswirken. Eine Verringerung der Perfusionsrate bietet keinen Ausweg, da hierdurch die aus der Fließzeit zwischen der Mikrodialysesonde und der Meßstelle resultierende Totzeit entsprechend erhöht ward Umgekehrt wird bei hoher Durchflußge¬ schwindigkeit die Totzeit zwar verringert. In gleichem Maße nimmt "jedoch die Dialyseausbeute bezogen auf die Volumeneinheit der Perfusionslosung ab. Zudem bildet sich aufgrund des kontinuierlichen Glucoseentzugs ein
Glucosegradient m dem die Mikrodialysesonde umgebenden Gewebe aus . Für die Langzeitbehandlung von Diabetikern ist jedoch eine zuverlässige Glucosemessung unabdingba¬ re Voraussetzung, um Insulingaben bedarfsgerecht und gegebenenfalls automatisch dosieren zu können.
Ausgehend hiervon liegt der Erfindung die Aufgabe zu¬ grunde, bei einem Verfahren und einer Anordnung der ein¬ gangs genannten Art eine hohe Zuverlässigkeit und Ge- nauigkeit bei der Glucosebestimmung zu erreichen.
Zur Losung dieser Aufgabe werden die in den Patentan¬ sprüchen 1 und 17 angegebenen Merkmalskombination vorge¬ schlagen. Weitere vorteilhafte Ausgestaltungen der Er- findung ergeben sich aus den abhangigen Ansprüchen.
Die erfmdungsgemaße Losung geht von dem Gedanken aus, anstelle der üblichen kontinuierlichen Anreicherung der Perfusionslosung die durch die Mikrodialysesonde gefor- derte Flussigkeitssaule abschnittsweise mit höherer Aus¬ beute an den Glucosegehalt des Gewebes anzugleichen. Dementsprechend wird gemäß der Erfindung vorgeschlagen, daß der Volumenstrom der Perfusionslosung für die Dauer von Dialyse-Intervallen im Zeitmittel reduziert wird, und daß das wahrend eines jeden Dialyse-Intervalls durch die Mikrodialysesonde perfundierte Volumen der Perfusionslösung in einem jeweils anschließenden Trans¬ portintervall mit höherem Volumenstrom zu der Meßzelle weitergefördert wird. Aufgrund des Konzentrationsaus- gleichs während der Dialyse-Intervalle wird eine konti¬ nuierliche Entreicherung des Gewebes vermieden. Zu¬ gleich läßt sich wegen der höheren Ausbeute eine höhere Signalstärke erreichen. Die angereicherten Teilvolumina können mit hohem Förderstrom und damit geringer Totzeit zu der Meßzelle transportiert werden.
Gemäß einer bevorzugten Ausgestaltung der Erfindung wird die Perfusionslösung vor dem Durchfluß durch die Mikrodialysesonde mit Glucose versetzt, wobei eine vor- bestimmte, vorzugsweise im physiologischen Bereich liegende Ausgangskonzentration eingestellt wird. Die Verwendung einer mit Glucose versetzten Ausgangslösung führt an der Dialysemembran in Abhängigkeit von der Glucosekonzentration im Gewebe entweder zu einer ent- sprechenden Diffusionsanreicherung oder -entreicherung. Demgemäß wird an der Meßzelle entweder eine Signal¬ spitze (Peak) oder eine Signalabsenkung (Dip) in der zeitlichen Abfolge der Meßsignale beobachtet. Die wäh¬ rend der Transportintervalle mit höherem Förderstrom durch die Mikrodialysesonde nachfließende Perfusionslö¬ sung behält dagegen im wesentlichen ihre Ausgangskon¬ zentration an Glucose bei. Beim nachfolgenden Durchfluß durch die Meßzelle wird somit eine Grundlinie abgetas¬ tet, welche die Ausgangskonzentration an Glucose wieder- spiegelt. Vorteilhafterweise wird der Volumenstrom der Perfusions¬ losung wahrend der Transportintervalle so eingestellt, daß sich der Glucosegehalt der Perfusionslösung beim Durchfluß durch die Mikrodialysesonde aufgrund der ver¬ ringerten Dialysedauer um weniger als 10 %, vorzugs¬ weise weniger als 5 % ändert. Hingegen sollte zur Er¬ höhung der Meßgenauigkeit der Volumenstrom während der Dialyse-Intervalle so eingestellt werden, daß sich der Glucosegehalt der Perfusionslösung beim Durchfluß durch die Mikrodialysesonde im wesentlichen an die Konzentra¬ tion der Gewebeglucose angleicht.
Vorteilhafterweise wird aus den beim Durchfluß des mit höherem Volumenstrom perfundierten Volumens der Perfu- sionslösung an der Meßzelle abgetasteten Meßsignalen ein Grundlinienwert bestimmt, welcher die Ausgangskon¬ zentration an Glucose wiederspiegelt und somit eine fortlaufende Signalkorrektur beispielsweise bei Schwan- kungen der Meßempfindlichkeit ermöglicht.
Vorteilhafterweise werden die während der Transportin¬ tervalle an der Meßzelle beim Durchfluß der angereicher¬ ten Flüssigkeitssäulenabschnitte als Peak erfaßten Meß- signale hinsichtlich ihres Extremwerts oder ihres Inte- gralwerts zur Bestimmung der Konzentration der Gewebe¬ glucose ausgewertet.
Vorteilhafterweise wird die Konzentration der Gewebe- glucose aus dem Verhältnis des Extremwerts und des Grundlinienwerts der Meßsignale, multipliziert mit dem Wert der Glucose-Ausgangskonzentration und gegebenen¬ falls einem vorgegebenen Kalibrierwert, in jedem Trans¬ portintervall bestimmt. Damit wird eine ständige Nach¬ kalibrierung der Glucose-Meßwerte ermöglicht und eine eventuelle Drift im Signalverlauf kompensiert. Auf die¬ se Weise lassen sich Meßartefakte ausschließen, die bei¬ spielsweise durch Förderausfälle oder Störungen an der Meßzelle auftreten können.
Aufgrund des peakförmigen Signalverlaufs der Meßsignale ist eine Gültigkeitsprüfung dahingehend möglich, daß der durch den Zeitabstand der Transportintervalle vor¬ gegebene zeitliche Abstand der Extremwerte der Meßsig- nale überwacht wird.
Weiter ist es von Vorteil, wenn der Signalverlauf der Meßsignale zur Gültigkeitsprüfung des ermittelten Glu- cosegehalts ausgewertet wird, wobei bei einem im Ver- gleich zur eingestellten Glucose-Ausgangskonzentration höheren Konzentrationswert ein Peak und bei einem ge¬ ringeren Konzentrationswert ein Dip als gültige Signal¬ form erwartet wird. Damit ist eine zuverlässige quali¬ tative Überprüfung der Messung möglich.
Eine weitere Erhöhung der Meßsicherheit läßt sich da¬ durch erreichen, daß die Ausgangskonzentration der Glu¬ cose auf einen Unterzuckerungswert eingestellt wird, und daß bei einem Dip im Signalverlauf der Meßsignale ein Unterzuckerungsalarm ausgelöst wird. Grundsätzlich ist es auch möglich, die Ausgangskonzentration der Glu¬ cose phasenweise alternierend, beispielsweise durch ei¬ ne Ventilumschaltung, auf einen Unterzuckerungswert und einen Überzuckerungswert einzustellen, wobei bei einem Dip während der Phase der eingestellten Unterzuckerungs- konzentration und bei einem Peak während der Phase der eingestellten Überzuckerungskonzentration ein Warnsig¬ nal ausgelöst wird.
Eine qualitative Mustererkennung im Signalverlauf der Meßsignale läßt sich auf einfache Weise dadurch reali¬ sieren, daß die im Zeitabstand der Transportintervalle erfaßten Extremwerte mit dem jeweils zugeordneten Grund¬ linienwert verglichen werden, wobei bei einem im Ver- gleich zum Grundlinienwert größeren Extremwert ein Peak und bei einem kleineren Extremwert ein Dip als Signal- form erkannt wird.
Eine weitere bevorzugte Ausgestaltung der Erfindung sieht vor, daß die Perfusionslösung während der Dialyse- Intervalle jeweils in mehreren, in zeitlichem Abstand voneinander erfolgenden Förderschüben durch die Mikro¬ dialysesonde gefördert wird. Dadurch wird der mit Glu¬ cose angereicherte Abschnitt der Flüssigkeitssäule ver- breitert und entsprechend der Diffusionszerfall während des anschließenden Transportintervalls verringert.
Zur Erzielung einer hohen Ausbeute bei dem Dialysevor¬ gang ist es vorteilhaft, wenn bei jedem Förderschub ein dem Volumen der Mikrodialysesonde im wesentlichen ent- sprechendes Volumen der Perfusionslösung weitergefor¬ dert wird. Eine weitere Verbesserung in dieser Hinsicht laßt sich dadurch erzielen, daß die Förderpausen zwi¬ schen den Förderschüben so bemessen werden, daß der Glu- cosegehalt des momentan in der Mikrodialysesonde befind¬ lichen Volumens der Perfusionslosung im wesentlichen an die Konzentration der Gewebeglucose angeglichen wird.
Alternativ zu einer schubweisen Förderung kann der Vo- lumenstrom der Perfusionslosung für die Dauer der Dia¬ lyse-Intervalle auf einen konstanten Wert reduziert wer¬ den.
Im Hinblick auf eine Meßanordnung wird die eingangs ge- nannte Aufgabe dadurch gelöst, daß mindestens ein Glu- cosereservoir, welches gelöste Glucose in einer vorge¬ gebenen Ausgangskonzentration enthält, mit der Perfusat- leitung verbindbar ist. Um die Gewebeglucose bezüglich eines Unter- und Überzuckerungswertes zu erfassen, kön- nen zwei gesondert mit der Perfusatleitung verbindbare Glucosereservoire vorgesehen sein, welche gelöste Glu¬ cose in unterschiedlicher Konzentration enthalten.
Um die Perfusionslosung wahlweise in zeitlichen Abstän- den und/oder gegebenenfalls unterschiedlicher Konzen¬ tration mit Glucose versetzen zu können, ist es von Vor¬ teil, wenn das mindestens eine Glucosereservoir über ein Schaltventil mit der Perfusatleitung verbindbar ist
Eine definierte schubweise Förderung der gegebenenfalls mit Glucose angereicherten Perfusionslosung laßt sich dadurch erreichen, daß die Fordereinheit als eine vor¬ zugsweise intervallweise betreibbare Dosierpumpe ausge¬ bildet ist.
Im folgenden wird die Erfindung anhand eines m der Zeichnung in schematischer Weise dargestellten Ausfuh- rungsbeispiels naher erläutert. Es zeigen
Fig. 1 ein Mikrodialyseεystem zur Messung der subkuta¬ nen Glucosekonzentration;
Fig. 2 ein Zeitdiagramm des Volumenstroms der durch das System nach Fig. 1 fließenden Perfusionslo- sung.
Das erfindungsgemaße Verfahren zur subkutanen Messung der Gewebeglucose beruht auf dem Prinzip der Mikrodia- lyse-Technik und läßt sich mit einer in Fig. 1 gezeig- ten Meßanordnung durchfuhren. Die Meßanordnung besteht im wesentlichen aus einer in das Unterhautfettgewebe 10 eines Patienten implantierbaren Mikrodialysesonde 12, einer extrakorporal angeordneten Durchfluß-Meßzelle 14 und einer mit der Meßzelle 14 zusammenwirkenden Signal- Verarbeitungseinheit 16. Zur Probenentnahme aus dem Ge¬ webe 10 wird eine Perfusionslosung 18 aus einem Reser¬ voir 20 über eine Perfusatleitung 21 als kontinuier¬ liche Flussigkeitssaule unter Durchstromung der Mikro¬ dialysesonde 12 über eine Verbindungsleitung 22 durch die Meßzelle 14 hindurch in einen Auffangbehälter 24 gepumpt. Hierzu dient eine zweikanalige Rollendosier¬ pumpe 26, die in die Verbindungsleitung 22 eingeschal¬ tet ist. Der zweite Kanal der Rollendosierpumpe 26 ist eingangsseitig über eine Leitung 28 mit einer Enzymlö- sung 30 beaufschlagt, welche ausgangsseitig an einer
Mischstelle 32 in die Verbindungsleitung 22 eingeleitet wird.
Beim Durchfluß der Perfusionslosung 18 durch die Mikro- dialysesonde 12 findet an der glucosedurchlässigen Dia¬ lysemembran 34 ein Diffusionsaustausch von Glucose zwi¬ schen der Perfusionsflüssigkeit und der Gewebeflüssig¬ keit statt. In Abhängigkeit vom Konzentrationsgradient reichert sich die an der Membran 34 vorbeiströmende Per- fusionslösung 18 mit Gewebeglucose an. Anschließend wird der Glucosegehalt der Perfusionslosung in der Me߬ zelle 14 auf bekannte Weise mittels eines elektroche- misch-amperometrisch arbeitenden Sensors als Elektro¬ densignal erfaßt und in der Signalverarbeitungseinheit 16 ausgewertet. Die zugrundeliegenden, durch die Enzym- lösung 30 katalysierten Nachweisreaktionen sind im ein¬ zelnen in der DE-OS 44 01 400 beschrieben, worauf aus¬ drücklich Bezug genommen wird. Alternativ dazu ist es auch möglich, die Glucose mittels eines Enzymsensors nachzuweisen, wie er in der DE-OS 41 30 742 beschrieben ist .
Erfindungsgemäß erfolgt die Förderung der Perfusionslo¬ sung 18 durch die Pumpe 26 in vorgegebenen Zeitinter- vallen, wie sie in Fig. 2 dargestellt sind. Dazu wird die Perfusionslosung wahrend eines Dialyse-Intervalls T in mehreren, in zeitlichem Abstand voneinander er¬ folgenden Forderschuben 36 weitergefordert, wobei jeder Forderschub 36 im wesentlichen dem Volumeninhalt der Mikrodialysesonde 12 entspricht. Die Forderpausen 38 zwischen den Forderschuben 36 werden so bemessen, daß der Glucosegehalt des jeweils in der Mikrodialysesonde 12 befindlichen Volumens der Perfusionslosung 18 im we¬ sentlichen an die Konzentration der Gewebeglucose ange- glichen wird. Grundsatzlich ist es auch möglich, den
Volumenstrom der Perfusionslosung 18 für die Dauer des
Dialyse-Intervalls auf einen konstanten Wert Vo zu re- duzieren, so daß die Durchflußmenge der Perfusionslo¬ sung 18 wahrend des Intervalls T derjenigen bei der schubweisen Forderung entspricht. Allerdings muß hierzu die Pumpe 26 in ihrem Fόrderstrom einstellbar sein.
Das in der Sonde 12 während des Intervalls T angerei¬ cherte Volumen der Perfusionslosung 18 wird im Zuge des anschließenden Transportintervalls T mit konstantem, durch den Forderstrom der Pumpe 26 gegebenen Volumen¬ strom v zu der Meßzelle 14 gepumpt. Die in dieser Phase durch die Mikrodialysesonde 12 nachfließende Per¬ fusionslosung 18 wird aufgrund der höheren Fließge- schwindigkeit kaum noch mit Glucose aus dem Gewebe 10 befrachtet. Das an der Meßzelle 14 abgetastete Meßsi¬ gnal wird daher einen Spitzenwert aufweisen, wenn die angereicherten Abschnitte der Flussigkeitssaule vorbei¬ transportiert werden, und es wird einen Grundlinienwert aufweisen, wenn die mit kurzer Perfusionsdauer durch die Sonde 12 geleiteten Flussigkeitsvolumma vorbei¬ transportiert werden. Die Grundlinien- und Extremwerte lassen sich somit zu vorgegebenen Zeitpunkten im Zeit¬ abstand der Gesamtintervalldauer T 1 + T 2 abtasten. Ty- pische Forderstrome liegen für das Intervall T bei 0,3 - 1 μl/min, und für T bei 5 - 50 μl/min.
Eine verbesserte Auswertemoglichkeit insbesondere hin¬ sichtlich einer Überwachung der Signaldrift und Signal- gultigkeit bietet sich dadurch, daß die in dem Reser¬ voir 20 befindliche Perfusionslosung 18 mit Glucose ver¬ setzt wird. Hierzu wird eine im physiologischen Bereich liegende Ausgangskonzentration von beispielsweise 5 mMol/1 eingestellt. Alternativ dazu ist es auch möglich, die Glucoselösung getrennt von der Perfusionslosung in gesonderten Glucosereservoiren bereitzustellen, welche zweckmäßig über Schaltventile wahlweise mit der Perfusat¬ leitung 21 verbunden werden können.
Bei linearem Verhalten des Meßsensors ergibt sich die
Gewebeglucose dadurch, daß das Verhältnis des intervall¬ weise ermittelten Extremwerts und des zugehörigen Grund- linienwerts mit dem Wert der Glucose-Ausgangskonzentra¬ tion und gegebenenfalls mit einem vorgegebenen Kalibrier- faktor multipliziert wird. Der Kalibrierfaktor läßt sich durch eine einmalige In-vivo-Vergleichsmessung der Glu- cosespiegel im Blut und im Gewebe bestimmen. Zweckmäßig wird dabei ein Offset berücksichtigt, der durch eine einmalige In-vitro-Messung vor der Implantation unter Eintauchen der Sonde 12 in eine glucosefreie Meßlosung gewonnen werden kann. Die Glucosezugabe zur Perfusions¬ losung 18 ermöglicht somit nach einer Ausgangskalibrie¬ rung eine automatische Nachkalibrierung der Meßsignale.
Die Signalgultigkeit kann durch eine einfache Musterer¬ kennung überwacht werden. Bei einem im Vergleich zur eingestellten Konzentration höheren Glucosegehalt des Gewebes 10 ergibt sich ein Peak und bei einem geringe¬ ren Gehalt ein Dip. Eine beispielsweise aufgrund einer Nullpunktsdrift abweichende Signalform kann auf diese Weise als ungültig erkannt werden. Damit ist es auch möglich, den Glucosespiegel eines Patienten in einem quantitativ vorgegebenen Bereich durch einfache quali¬ tative Vergleichsmessungen zu überwachen. Beispielswei- se kann die Ausgangskonzentration der Glucose in der
Perfusionslosung 30 phasenweise alternierend auf einen Unterzuckerungswert und einen Überzuckerungswert einge¬ stellt werden, wobei bei einem Dip im Signalverlauf der Meßsignale während der Phase der eingestellten Unter- zuckerungskonzentration und bei einem Peak während der
Phase der eingestellten Überzuckerungskonzentration ein Warnsignal ausgelöst wird.
Die Erkennung der Signalform beschränkt sich dabei auf die Erfassung von jeweils zwei Meßwerten, namlich einem der hohen Glucoseausbeute während der Dialyse-Interval¬ le T zugeordneten Extremwert, und einem der geringen Glucoseausbeute (aufgrund hohem Volumenstrom V ) während der Transportintervalle T zugeordneten Grundlinienwert. Die beiden Meßwerte können jeweils zu vorgegebenen Zeit- punkten im Zeitabstand T + T abgetastet werden, wobei bei einem im Vergleich zum Grundlinienwert größeren Ex¬ tremwert ein Peak und bei einem kleineren Extremwert ein Dip als Signalform angenommen wird.
Zusammenfassend ist folgendes festzustellen: Die Erfin¬ dung betrifft ein Verfahren und die Anordnung zur Be¬ stimmung der Gewebeglucose, wobei eine Perfusionslosung als Flüssigkeitssäule unter Durchströmung einer im Ge- webe implantierten Mikrodialysesonde zu einer Meßzelle gefördert wird. Dabei wird zur Erhöhung der Ausbeute, Vermeidung von Konzentrationsgefällen und zur Verringe¬ rung der Totzeit vorgeschlagen, daß der Volumenstrom V der Perfusionslosung für die Dauer von Dialyse-Inter- vallen Tι im Zeitmittel auf einen Wert Vo reduziert wird, und daß das während eines jeden Dialyse-Inter¬ valls T durch die Mikrodialysesonde perfundierte Volu¬ men der Perfusionslosung in einem jeweils anschließen¬ den Transportintervall T 2 mit höherem Volumenstrom V1 zu der Meßzelle weitergefördert wird.

Claims

Patentansprüche
1. Verfahren zur Bestimmung und Überwachung der Konzen¬ tration von Gewebeglucose, bei welchem eine Perfu- sionslosung (18) als Flussigkeitssaule unter Durch- stromung einer im Gewebe (10) implantierten Mikro¬ dialysesonde (12) zu einer vorzugsweise extrakorpo- ral angeordneten Meßzelle (14) gefordert wird, und bei welchem der Glucosegehalt der Perfusionslosung (18) im Durchfluß durch die Meßzelle (14) aus konti¬ nuierlich abgetasteten Meßsignalen ermittelt wird, dadurch gekennzeichnet, daß der Volumenstrom der Perfusionslosung (18) für die Dauer von Dialyse- Intervallen (T ) im Zeitmittel reduziert wird (V ) , und daß das während eines jeden Dialyse- Intervalls (T ) durch die Mikrodialysesonde (12) perfundierte Volumen der Perfusionslosung (18) in einem jeweils anschließenden Transportintervall (T ) mit höherem Volumenstrom (V ) zu der Meßzelle (14) weiterge- fordert wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Perfusionslosung (18) vor dem Durchfluß durch die Mikrodialysesonde (12) mit Glucose ver- setzt wird, wobei eine vorbestimmte, vorzugsweise im physiologischen Bereich liegende Ausgangskonzen¬ tration eingestellt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekenn- zeichnet, daß der Volumenstrom (V ) der Perfusions- lösung (18) während der Transportintervalle (T ) so eingestellt wird, daß sich der Glucosegehalt der Perfusionslosung (18) beim Durchfluß durch die Mi¬ krodialysesonde (12) um weniger als 10%, vorzugswei- se weniger als 5% ändert.
4. Verfahren nach einem der Ansprüche 1 bis 3 , dadurch gekennzeichnet, daß der Volumenstrom (V ) der Perfusionslosung während der Dialyse-Intervalle (T ) so eingestellt wird, daß sich der Glucosegehalt der Perfusionslosung (18) beim Durchfluß durch die Mi¬ krodialysesonde (12) im wesentlichen an die Konzen¬ tration der Gewebeglucose angleicht.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß aus den beim Durchfluß des mit höherem Volumenstrom (V ) perfundierten Volumens der Perfusionslosung (18) an der Meßzelle (14) abge¬ tasteten Meßsignalen ein Grundlinienwert bestimmt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Konzentration der Gewebe¬ glucose aus dem Extremwert oder dem Integralwert der während eines jeden Transportintervalls (T ) an der Meßzelle (14) erfaßten Meßsignale bestimmt wird.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekenn¬ zeichnet, daß zur Bestimmung der Konzentration der Gewebeglucose das Verhältnis des Extremwerts und des Grundlinienwerts des als Peak oder Dip ausgebil¬ deten Signalverlaufs der Meßsignale gebildet wird, und daß das genannte Verhältnis mit dem Wert der Glucose-Ausgangskonzentration und gegebenenfalls einem vorgegebenen Kalibrierwert multipliziert wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß zur Gültigkeitsprüfung der Me߬ signale der durch den Zeitabstand (T + T ) der Transportintervalle (T ) vorgegebene zeitliche Ab¬ stand der Extremwerte der Meßsignale überwacht wird.
9. Verfahren nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, daß der Signalverlauf der wahrend eines jeden Transportintervalls (T 2) an der Meßzelle
(14) erfaßten Meßsignale zur Gültigkeitsprüfung des ermittelten Glucosegehalts ausgewertet wird, wobei bei einem im Vergleich zur eingestellten Glucose- Ausgangskonzentration höheren Konzentrationswert ein Peak und bei einem geringeren Konzentrationswert ein
Dip als gültige Signalform erwartet wird.
10. Verfahren nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, daß die Ausgangskonzentration der Glucose auf einen Unterzuckerungswert eingestellt wird, und daß bei einem Dip im Signalverlauf der Meßsignale ein Unterzuckerungsalarm ausgelost wird.
11. Verfahren nach einem der Ansprüche 2 bis 10, da- durch gekennzeichnet, daß die Ausgangskonzentration der Glucose phasenweise alternierend auf einen Un¬ terzuckerungswert und einen Uberzuckerungswert ein¬ gestellt wird, und daß bei einem Dip im Signalver¬ lauf der Meßsignale wahrend der Phase der einge- stellten Unterzuckerungskonzentration und bei einem Peak während der Phase der eingestellten Überzucke- rungskonzentration ein Warnsignal ausgelöst wird.
12. Verfahren nach einem der Ansprüche 1 bis 11, da- durch gekennzeichnet, daß zur qualitativen Muster¬ erkennung des Signalverlaufs der Meßsignale die im Zeitabstand (T 1 + T 7) der Transportintervalle (T 2) erfaßten Extremwerte mit dem jeweils zugeordneten Grundlinienwert verglichen werden, wobei bei einem im Vergleich zum Grundlinienwert größeren Extrem¬ wert ein Peak und bei einem kleineren Extremwert ein Dip als Signalform erkannt wird.
13. Verfahren nach einem der Ansprüche 1 bis 12 , da- durch gekennzeichnet, daß die Perfusionslosung (18) während der Dialyse-Intervalle (T ) jeweils in mehreren, in zeitlichem Abstand (38) voneinander erfolgenden Förderschüben (36) durch die Mikro¬ dialysesonde (12) gefördert wird.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß bei jedem Förderschub (36) ein dem Inhalt der Mikrodialysesonde (12) im wesentlichen entsprechen¬ des Volumen der Perfusionslosung (18) weitergeför- dert wird.
15. Verfahren nach Anspruch 13 oder 14, dadurch gekenn¬ zeichnet, daß die Forderpausen (38) zwischen den Forderschuben (36) so bemessen werden, daß der Glu- cosegehalt des momentan m der Mikrodialysesonde (12) befindlichen Volumens der Perfusionslosung (18) im wesentlichen an die Konzentration der Gewe¬ beglucose angeglichen wird.
16. Verfahren nach einem der Ansprüche 1 bis 15, da¬ durch gekennzeichnet, daß der Volumenstrom (V ) der Perfusionslosung (18) für die Dauer der Dialyse- Intervalle (Ti) auf einen konstanten Wert (Vo) re- duziert wird.
17. Meßanordnung zur Bestimmung und Überwachung der Kon¬ zentration von Gewebeglucose, mit einer in das Ge¬ webe (10) implantierbaren, eingangsseitig über eine Perfusatleitung (21) mit einer Perfusionslosung (18) beaufschlagbaren und ausgangsseitig über eine Dia- lysatleitung (22) mit einer Durchfluß-Meßzelle (14) verbindbaren Mikrodialysesonde (12) , und einer in der Perfusat- oder Dialysatleitung angeordneten For¬ dereinheit (26) zur Forderung der Perfusionslosung über die Mikrodialysesonde (12) zu der Meßzelle (14) gekennzeichnet durch mindestens ein mit der Perfu¬ satleitung (21) verbindbares Reservoir (20) , wel¬ ches gelöste Glucose in einer vorgegebenen Ausgangs- konzentration enthalt.
18. Meßanordnung nach Anspruch 17, gekennzeichnet durch zwei mit der Perfusatleitung verbindbare Glucose- reservoire, welche gelöste Glucose in voneinander verschiedener Konzentration enthalten.
19. Meßanordnung nach Anspruch 17 oder 18, dadurch ge¬ kennzeichnet, daß das Glucose enthaltende mindestens eine Reservoir (20) über ein Schaltventil mit der Perfusatleitung (21) verbindbar ist.
20. Meßanordnung nach einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, daß die Fördereinheit als eine vorzugsweise intervallweise betreibbare Dosier¬ pumpe (26) ausgebildet ist.
PCT/EP1997/001075 1996-05-09 1997-03-04 Bestimmung der konzentration von gewebeglucose WO1997042868A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP97908169A EP0898459A1 (de) 1996-05-09 1997-03-04 Bestimmung der konzentration von gewebeglucose
US09/147,207 US6091976A (en) 1996-05-09 1997-03-04 Determination of glucose concentration in tissue
JP54041897A JP3933206B2 (ja) 1996-05-09 1997-03-04 組織内グルコース濃度の決定

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19618597.1 1996-05-09
DE19618597A DE19618597B4 (de) 1996-05-09 1996-05-09 Verfahren zur Bestimmung der Konzentration von Gewebeglucose

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/588,231 Division US6434409B1 (en) 1996-05-09 2000-06-06 Determination of glucose concentration in tissue

Publications (1)

Publication Number Publication Date
WO1997042868A1 true WO1997042868A1 (de) 1997-11-20

Family

ID=7793775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/001075 WO1997042868A1 (de) 1996-05-09 1997-03-04 Bestimmung der konzentration von gewebeglucose

Country Status (5)

Country Link
US (2) US6091976A (de)
EP (1) EP0898459A1 (de)
JP (2) JP3933206B2 (de)
DE (1) DE19618597B4 (de)
WO (1) WO1997042868A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1072222A2 (de) * 1999-07-28 2001-01-31 Roche Diagnostics GmbH Verfahren und Anordnung zur Konzentrationsbestimmung von Glucose in einer Körperflüssigkeit
EP1177759A1 (de) * 2000-08-04 2002-02-06 Roche Diagnostics GmbH Mikrodialyseanordnung
DE10311452B4 (de) * 2003-03-15 2006-04-13 Roche Diagnostics Gmbh Analysesystem zur reagenzienfreien Bestimmung der Konzentration eines Analyten im lebenden Gewebe

Families Citing this family (195)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
DE19942898B4 (de) * 1999-09-08 2007-07-05 Disetronic Licensing Ag Dialysesonde
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
US7041468B2 (en) 2001-04-02 2006-05-09 Therasense, Inc. Blood glucose tracking apparatus and methods
US20030208113A1 (en) * 2001-07-18 2003-11-06 Mault James R Closed loop glycemic index system
US20030143746A1 (en) * 2002-01-31 2003-07-31 Sage Burton H. Self-calibrating body anayte monitoring system
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
US20040115754A1 (en) * 2002-12-11 2004-06-17 Umax Data Systems Inc. Method for establishing a long-term profile of blood sugar level aiding self-control of the same
US7811231B2 (en) 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US8771183B2 (en) 2004-02-17 2014-07-08 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
TW200411178A (en) * 2002-12-31 2004-07-01 Veutron Corp Method for determining the resolution of blood glucose by using rising time curve
TW592667B (en) * 2003-04-04 2004-06-21 Veutron Corp Method for determining the resolution of blood glucose
US7415299B2 (en) * 2003-04-18 2008-08-19 The Regents Of The University Of California Monitoring method and/or apparatus
US20040253736A1 (en) * 2003-06-06 2004-12-16 Phil Stout Analytical device with prediction module and related methods
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US20190357827A1 (en) 2003-08-01 2019-11-28 Dexcom, Inc. Analyte sensor
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US7299082B2 (en) 2003-10-31 2007-11-20 Abbott Diabetes Care, Inc. Method of calibrating an analyte-measurement device, and associated methods, devices and systems
USD914881S1 (en) 2003-11-05 2021-03-30 Abbott Diabetes Care Inc. Analyte sensor electronic mount
US8165651B2 (en) * 2004-02-09 2012-04-24 Abbott Diabetes Care Inc. Analyte sensor, and associated system and method employing a catalytic agent
US7699964B2 (en) 2004-02-09 2010-04-20 Abbott Diabetes Care Inc. Membrane suitable for use in an analyte sensor, analyte sensor, and associated method
US20060010098A1 (en) 2004-06-04 2006-01-12 Goodnow Timothy T Diabetes care host-client architecture and data management system
SE527196C2 (sv) * 2004-07-08 2006-01-17 Chemel Ab SIRE genomflödesdetektor
US7946984B2 (en) 2004-07-13 2011-05-24 Dexcom, Inc. Transcutaneous analyte sensor
CN100488444C (zh) * 2004-08-19 2009-05-20 迪拉莫有限公司 微分析系统
US10226207B2 (en) 2004-12-29 2019-03-12 Abbott Diabetes Care Inc. Sensor inserter having introducer
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US9636450B2 (en) 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
US8571624B2 (en) 2004-12-29 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for mounting a data transmission device in a communication system
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US8029441B2 (en) 2006-02-28 2011-10-04 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US7731657B2 (en) 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US7697967B2 (en) 2005-12-28 2010-04-13 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US9743862B2 (en) 2011-03-31 2017-08-29 Abbott Diabetes Care Inc. Systems and methods for transcutaneously implanting medical devices
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US20090105569A1 (en) 2006-04-28 2009-04-23 Abbott Diabetes Care, Inc. Introducer Assembly and Methods of Use
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
CA2602259A1 (en) 2005-03-29 2006-10-05 Arkal Medical, Inc. Devices, systems, methods and tools for continuous glucose monitoring
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US20080314395A1 (en) 2005-08-31 2008-12-25 Theuniversity Of Virginia Patent Foundation Accuracy of Continuous Glucose Sensors
US8880138B2 (en) 2005-09-30 2014-11-04 Abbott Diabetes Care Inc. Device for channeling fluid and methods of use
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US11298058B2 (en) 2005-12-28 2022-04-12 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
EP1968432A4 (de) 2005-12-28 2009-10-21 Abbott Diabetes Care Inc Einführung eines medizinischen gerätes
US8515518B2 (en) 2005-12-28 2013-08-20 Abbott Diabetes Care Inc. Analyte monitoring
US8160670B2 (en) 2005-12-28 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring: stabilizer for subcutaneous glucose sensor with incorporated antiglycolytic agent
US7736310B2 (en) 2006-01-30 2010-06-15 Abbott Diabetes Care Inc. On-body medical device securement
EP1993637A2 (de) * 2006-02-15 2008-11-26 Medingo Ltd. Systeme und verfahren zur messung von analyten und abgabe einer therapeutischen flüssigkeit
US7826879B2 (en) 2006-02-28 2010-11-02 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US7885698B2 (en) 2006-02-28 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
US20080154107A1 (en) * 2006-12-20 2008-06-26 Jina Arvind N Device, systems, methods and tools for continuous glucose monitoring
US8219173B2 (en) 2008-09-30 2012-07-10 Abbott Diabetes Care Inc. Optimizing analyte sensor calibration
US8346335B2 (en) 2008-03-28 2013-01-01 Abbott Diabetes Care Inc. Analyte sensor calibration management
US7618369B2 (en) 2006-10-02 2009-11-17 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US8473022B2 (en) 2008-01-31 2013-06-25 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
US8224415B2 (en) 2009-01-29 2012-07-17 Abbott Diabetes Care Inc. Method and device for providing offset model based calibration for analyte sensor
US8140312B2 (en) 2007-05-14 2012-03-20 Abbott Diabetes Care Inc. Method and system for determining analyte levels
US7653425B2 (en) 2006-08-09 2010-01-26 Abbott Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US8374668B1 (en) 2007-10-23 2013-02-12 Abbott Diabetes Care Inc. Analyte sensor with lag compensation
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US7801582B2 (en) 2006-03-31 2010-09-21 Abbott Diabetes Care Inc. Analyte monitoring and management system and methods therefor
US7630748B2 (en) 2006-10-25 2009-12-08 Abbott Diabetes Care Inc. Method and system for providing analyte monitoring
US9675290B2 (en) 2012-10-30 2017-06-13 Abbott Diabetes Care Inc. Sensitivity calibration of in vivo sensors used to measure analyte concentration
US9392969B2 (en) 2008-08-31 2016-07-19 Abbott Diabetes Care Inc. Closed loop control and signal attenuation detection
WO2007143225A2 (en) 2006-06-07 2007-12-13 Abbott Diabetes Care, Inc. Analyte monitoring system and method
US20080058726A1 (en) * 2006-08-30 2008-03-06 Arvind Jina Methods and Apparatus Incorporating a Surface Penetration Device
US20100298764A1 (en) * 2006-09-06 2010-11-25 Ofer Yodfat Fluid delivery system with optical sensing of analyte concentration levels
DK2083673T3 (da) * 2006-09-29 2012-09-24 Medingo Ltd System til fluiddistribution med elektrokemisk detektering af analytkoncentrationsniveauer
EP2106238A4 (de) 2006-10-26 2011-03-09 Abbott Diabetes Care Inc Verfahren, system und computerprogrammprodukt zur echtzeit-erkennung eines empfindlichkeitsabfalls in analytsensoren
EP2079828A4 (de) * 2006-11-09 2010-03-10 Sense Ltd G System und verfahren zur pseudo-kontinuierlichen messung von metabolitkonzentrationen in einem säugerkörper
US8121857B2 (en) 2007-02-15 2012-02-21 Abbott Diabetes Care Inc. Device and method for automatic data acquisition and/or detection
US20080199894A1 (en) 2007-02-15 2008-08-21 Abbott Diabetes Care, Inc. Device and method for automatic data acquisition and/or detection
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US7751864B2 (en) * 2007-03-01 2010-07-06 Roche Diagnostics Operations, Inc. System and method for operating an electrochemical analyte sensor
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
CA2683721C (en) 2007-04-14 2017-05-23 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
CA2683959C (en) 2007-04-14 2017-08-29 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
ES2817503T3 (es) 2007-04-14 2021-04-07 Abbott Diabetes Care Inc Procedimiento y aparato para proporcionar el procesamiento y control de datos en un sistema de comunicación médica
CA2683953C (en) 2007-04-14 2016-08-02 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
WO2008128210A1 (en) 2007-04-14 2008-10-23 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in medical communication system
EP2146625B1 (de) 2007-04-14 2019-08-14 Abbott Diabetes Care Inc. Verfahren und gerät zur bereitstellung von datenverarbeitung und kontrolle in einem medizinischen kommunikationssystem
WO2009056981A2 (en) * 2007-05-07 2009-05-07 Medingo Ltd. Reciprocating delivery of fluids to the body with analyte concentration monitoring
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US8600681B2 (en) 2007-05-14 2013-12-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US10002233B2 (en) 2007-05-14 2018-06-19 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8260558B2 (en) 2007-05-14 2012-09-04 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8560038B2 (en) 2007-05-14 2013-10-15 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US7996158B2 (en) 2007-05-14 2011-08-09 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8103471B2 (en) 2007-05-14 2012-01-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9125548B2 (en) 2007-05-14 2015-09-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8239166B2 (en) 2007-05-14 2012-08-07 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8444560B2 (en) 2007-05-14 2013-05-21 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
WO2008150917A1 (en) 2007-05-31 2008-12-11 Abbott Diabetes Care, Inc. Insertion devices and methods
US20080312518A1 (en) * 2007-06-14 2008-12-18 Arkal Medical, Inc On-demand analyte monitor and method of use
US8617069B2 (en) 2007-06-21 2013-12-31 Abbott Diabetes Care Inc. Health monitor
JP5680960B2 (ja) 2007-06-21 2015-03-04 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. 健康管理装置および方法
US8160900B2 (en) 2007-06-29 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
US7768386B2 (en) 2007-07-31 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8834366B2 (en) 2007-07-31 2014-09-16 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
US20090105562A1 (en) * 2007-10-19 2009-04-23 Taipei Veterans General Hospital System and methods for screening or analyzing targets
US8216138B1 (en) 2007-10-23 2012-07-10 Abbott Diabetes Care Inc. Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration
US8377031B2 (en) 2007-10-23 2013-02-19 Abbott Diabetes Care Inc. Closed loop control system with safety parameters and methods
US8409093B2 (en) 2007-10-23 2013-04-02 Abbott Diabetes Care Inc. Assessing measures of glycemic variability
EP2515109A3 (de) 2007-10-29 2012-11-14 Taipei Veterans General Hospital System und Verfahren zur Abtastung oder Analyse von Zielen
DK2224977T3 (en) 2007-11-21 2017-08-14 Hoffmann La Roche ANALYSIS MONITORING AND FLUID DISTRIBUTION SYSTEM
EP2227134A2 (de) * 2007-11-21 2010-09-15 Medingo Ltd. Hypoderme optische überwachung von körperanalyten
US20090164239A1 (en) 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Dynamic Display Of Glucose Information
WO2009103295A1 (en) * 2008-02-22 2009-08-27 Danfoss A/S An analysis apparatus for in-line monitoring of fluid
US8252229B2 (en) 2008-04-10 2012-08-28 Abbott Diabetes Care Inc. Method and system for sterilizing an analyte sensor
US8591410B2 (en) 2008-05-30 2013-11-26 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US7826382B2 (en) 2008-05-30 2010-11-02 Abbott Diabetes Care Inc. Close proximity communication device and methods
US8924159B2 (en) 2008-05-30 2014-12-30 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
WO2010009172A1 (en) 2008-07-14 2010-01-21 Abbott Diabetes Care Inc. Closed loop control system interface and methods
US20100051552A1 (en) * 2008-08-28 2010-03-04 Baxter International Inc. In-line sensors for dialysis applications
US20100057040A1 (en) 2008-08-31 2010-03-04 Abbott Diabetes Care, Inc. Robust Closed Loop Control And Methods
US8734422B2 (en) 2008-08-31 2014-05-27 Abbott Diabetes Care Inc. Closed loop control with improved alarm functions
US9943644B2 (en) 2008-08-31 2018-04-17 Abbott Diabetes Care Inc. Closed loop control with reference measurement and methods thereof
US8622988B2 (en) 2008-08-31 2014-01-07 Abbott Diabetes Care Inc. Variable rate closed loop control and methods
WO2010026570A2 (en) 2008-09-02 2010-03-11 Medingo Ltd. Remote control for fluid dispensing device with a echargeable power source
EP2334234A4 (de) 2008-09-19 2013-03-20 Tandem Diabetes Care Inc Vorrichtung zur messung der konzentration eines gelösten stoffs und entsprechende verfahren
US8986208B2 (en) 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
US9326707B2 (en) 2008-11-10 2016-05-03 Abbott Diabetes Care Inc. Alarm characterization for analyte monitoring devices and systems
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US9402544B2 (en) 2009-02-03 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
US8497777B2 (en) 2009-04-15 2013-07-30 Abbott Diabetes Care Inc. Analyte monitoring system having an alert
WO2010121229A1 (en) 2009-04-16 2010-10-21 Abbott Diabetes Care Inc. Analyte sensor calibration management
US9226701B2 (en) 2009-04-28 2016-01-05 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
US8483967B2 (en) 2009-04-29 2013-07-09 Abbott Diabetes Care Inc. Method and system for providing real time analyte sensor calibration with retrospective backfill
EP2424426B1 (de) 2009-04-29 2020-01-08 Abbott Diabetes Care, Inc. Verfahren und system zur datenübertragung in einem system für kontinuierliche glucoseüberwachung und glucosemanagement
US20100279418A1 (en) * 2009-05-04 2010-11-04 Loren Robert Larson Glucose meter adaptable for use with handheld devices, and associated communication network
US9184490B2 (en) 2009-05-29 2015-11-10 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
US8613892B2 (en) 2009-06-30 2013-12-24 Abbott Diabetes Care Inc. Analyte meter with a moveable head and methods of using the same
DK3689237T3 (da) 2009-07-23 2021-08-16 Abbott Diabetes Care Inc Fremgangsmåde til fremstilling og system til kontinuerlig analytmåling
WO2011014851A1 (en) 2009-07-31 2011-02-03 Abbott Diabetes Care Inc. Method and apparatus for providing analyte monitoring system calibration accuracy
ES2912584T3 (es) 2009-08-31 2022-05-26 Abbott Diabetes Care Inc Un sistema y procedimiento de monitorización de glucosa
WO2011026148A1 (en) 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
EP3923295A1 (de) 2009-08-31 2021-12-15 Abbott Diabetes Care, Inc. Medizinische vorrichtungen und verfahren
US9314195B2 (en) 2009-08-31 2016-04-19 Abbott Diabetes Care Inc. Analyte signal processing device and methods
WO2011041469A1 (en) 2009-09-29 2011-04-07 Abbott Diabetes Care Inc. Method and apparatus for providing notification function in analyte monitoring systems
WO2011041531A1 (en) 2009-09-30 2011-04-07 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
WO2011053881A1 (en) 2009-10-30 2011-05-05 Abbott Diabetes Care Inc. Method and apparatus for detecting false hypoglycemic conditions
ES2700734T3 (es) 2009-11-30 2019-02-19 Hoffmann La Roche Supervisión de analitos y sistemas de distribución de fluido
USD924406S1 (en) 2010-02-01 2021-07-06 Abbott Diabetes Care Inc. Analyte sensor inserter
WO2011112753A1 (en) 2010-03-10 2011-09-15 Abbott Diabetes Care Inc. Systems, devices and methods for managing glucose levels
ES2881798T3 (es) 2010-03-24 2021-11-30 Abbott Diabetes Care Inc Insertadores de dispositivos médicos y procedimientos de inserción y uso de dispositivos médicos
US8635046B2 (en) 2010-06-23 2014-01-21 Abbott Diabetes Care Inc. Method and system for evaluating analyte sensor response characteristics
US11064921B2 (en) 2010-06-29 2021-07-20 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US10092229B2 (en) 2010-06-29 2018-10-09 Abbott Diabetes Care Inc. Calibration of analyte measurement system
US11213226B2 (en) 2010-10-07 2022-01-04 Abbott Diabetes Care Inc. Analyte monitoring devices and methods
US10136845B2 (en) 2011-02-28 2018-11-27 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
CN103619255B (zh) 2011-02-28 2016-11-02 雅培糖尿病护理公司 与分析物监测装置关联的装置、系统和方法以及结合了它们的装置
DK3575796T3 (da) 2011-04-15 2021-01-18 Dexcom Inc Avanceret analytsensorkalibrering og fejldetektion
WO2013066849A1 (en) 2011-10-31 2013-05-10 Abbott Diabetes Care Inc. Model based variable risk false glucose threshold alarm prevention mechanism
WO2013066873A1 (en) 2011-10-31 2013-05-10 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
US9980669B2 (en) 2011-11-07 2018-05-29 Abbott Diabetes Care Inc. Analyte monitoring device and methods
US8710993B2 (en) 2011-11-23 2014-04-29 Abbott Diabetes Care Inc. Mitigating single point failure of devices in an analyte monitoring system and methods thereof
US9317656B2 (en) 2011-11-23 2016-04-19 Abbott Diabetes Care Inc. Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof
WO2013078426A2 (en) 2011-11-25 2013-05-30 Abbott Diabetes Care Inc. Analyte monitoring system and methods of use
FI3300658T3 (fi) 2011-12-11 2024-03-01 Abbott Diabetes Care Inc Analyyttianturimenetelmiä
EP3395252A1 (de) 2012-08-30 2018-10-31 Abbott Diabetes Care, Inc. Ausfallerkennung bei kontinuierlichen analytüberwachungsdaten bei datenabweichungen
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
US9907492B2 (en) 2012-09-26 2018-03-06 Abbott Diabetes Care Inc. Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data
US9474475B1 (en) 2013-03-15 2016-10-25 Abbott Diabetes Care Inc. Multi-rate analyte sensor data collection with sample rate configurable signal processing
WO2014152034A1 (en) 2013-03-15 2014-09-25 Abbott Diabetes Care Inc. Sensor fault detection using analyte sensor data pattern comparison
US10433773B1 (en) 2013-03-15 2019-10-08 Abbott Diabetes Care Inc. Noise rejection methods and apparatus for sparsely sampled analyte sensor data
CA2933166C (en) 2013-12-31 2020-10-27 Abbott Diabetes Care Inc. Self-powered analyte sensor and devices using the same
EP4151150A1 (de) 2014-03-30 2023-03-22 Abbott Diabetes Care, Inc. Verfahren und gerät zum bestimmen von mahlzeitenbeginn und peak-ereignissen in analytischen überwachungssystemen
US10213139B2 (en) 2015-05-14 2019-02-26 Abbott Diabetes Care Inc. Systems, devices, and methods for assembling an applicator and sensor control device
WO2016183493A1 (en) 2015-05-14 2016-11-17 Abbott Diabetes Care Inc. Compact medical device inserters and related systems and methods
DK3101571T3 (en) 2015-06-03 2018-06-14 Hoffmann La Roche MEASUREMENT SYSTEM FOR MEASURING THE CONCENTRATION OF AN ANALYST WITH A SUBCUTAN ANALYST SENSOR
WO2017011346A1 (en) 2015-07-10 2017-01-19 Abbott Diabetes Care Inc. System, device and method of dynamic glucose profile response to physiological parameters
WO2017174557A2 (en) * 2016-04-04 2017-10-12 Brains Online Holding B.V. Use of push pull microdialysis in combination with shotgun proteomics for analyzing the proteome in extracellular space of brain
JP6774097B2 (ja) * 2016-11-28 2020-10-21 国立研究開発法人物質・材料研究機構 化学センサ測定による試料識別方法、試料識別装置、及び入力パラメータ推定方法
CN110461217B (zh) 2017-01-23 2022-09-16 雅培糖尿病护理公司 用于分析物传感器插入的系统、装置和方法
US11596330B2 (en) 2017-03-21 2023-03-07 Abbott Diabetes Care Inc. Methods, devices and system for providing diabetic condition diagnosis and therapy
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
US20190120785A1 (en) 2017-10-24 2019-04-25 Dexcom, Inc. Pre-connected analyte sensors
USD1002852S1 (en) 2019-06-06 2023-10-24 Abbott Diabetes Care Inc. Analyte sensor device
USD999913S1 (en) 2020-12-21 2023-09-26 Abbott Diabetes Care Inc Analyte sensor inserter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0256415A2 (de) * 1986-08-15 1988-02-24 Gambro Ab Analysesystem
DE4130742A1 (de) * 1991-09-16 1993-03-18 Inst Diabetestechnologie Gemei Verfahren und anordnung zur bestimmung der konzentration von inhaltsstoffen in koerperfluessigkeiten
WO1994006019A1 (en) * 1992-08-28 1994-03-17 Via Medical Corporation Calibration solutions useful for analyses of biological fluids and methods employing same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902970A (en) * 1973-07-30 1975-09-02 Leeds & Northrup Co Flow-through amperometric measuring system and method
US4786372A (en) * 1985-07-22 1988-11-22 Amdev, Inc. Electrochemical measuring
NL8702370A (nl) * 1987-10-05 1989-05-01 Groningen Science Park Werkwijze en stelsel voor glucosebepaling en daarvoor bruikbaar meetcelsamenstel.
US5298022A (en) * 1989-05-29 1994-03-29 Amplifon Spa Wearable artificial pancreas
GB9226147D0 (en) * 1992-12-15 1993-02-10 Inst Of Neurology Dialysis probes
CN1043078C (zh) * 1993-04-29 1999-04-21 丹福斯有限公司 分析流体介质的装置
GB9320850D0 (en) * 1993-10-09 1993-12-01 Terwee Thomas H M Monitoring the concentration of a substance or a group of substances in a body fluid of a human or an animal
DE69322968T2 (de) * 1993-10-22 1999-07-08 Siemens Elema Ab Verfahren und Vorrichtung zur kontinuierlichen Überwachung eines Anolytpegels
DE4401400A1 (de) * 1994-01-19 1995-07-20 Ernst Prof Dr Pfeiffer Verfahren und Anordnung zur kontinuierlichen Überwachung der Konzentration eines Metaboliten
US5441481A (en) * 1994-05-27 1995-08-15 Mishra; Pravin Microdialysis probes and methods of use
DE4426694C2 (de) * 1994-07-28 1998-07-23 Boehringer Mannheim Gmbh Vorrichtung zur Langzeitbestimmung des Gehaltes von mindestens einer Substanz in Körperflüssigkeiten

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0256415A2 (de) * 1986-08-15 1988-02-24 Gambro Ab Analysesystem
DE4130742A1 (de) * 1991-09-16 1993-03-18 Inst Diabetestechnologie Gemei Verfahren und anordnung zur bestimmung der konzentration von inhaltsstoffen in koerperfluessigkeiten
WO1994006019A1 (en) * 1992-08-28 1994-03-17 Via Medical Corporation Calibration solutions useful for analyses of biological fluids and methods employing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1072222A2 (de) * 1999-07-28 2001-01-31 Roche Diagnostics GmbH Verfahren und Anordnung zur Konzentrationsbestimmung von Glucose in einer Körperflüssigkeit
EP1072222A3 (de) * 1999-07-28 2002-01-09 Roche Diagnostics GmbH Verfahren und Anordnung zur Konzentrationsbestimmung von Glucose in einer Körperflüssigkeit
US6852500B1 (en) 1999-07-28 2005-02-08 Roche Diagnostics Gmbh Method for determining the concentration of glucose in a body fluid with glucose-containing perfusate
US7169600B2 (en) 1999-07-28 2007-01-30 Roche Diagnostics Gmbh Device for determining a glucose concentration in a tissue fluid
EP1177759A1 (de) * 2000-08-04 2002-02-06 Roche Diagnostics GmbH Mikrodialyseanordnung
US6591126B2 (en) 2000-08-04 2003-07-08 Roche Diagnostics Corporation Microdialysis system
DE10311452B4 (de) * 2003-03-15 2006-04-13 Roche Diagnostics Gmbh Analysesystem zur reagenzienfreien Bestimmung der Konzentration eines Analyten im lebenden Gewebe
US7277740B2 (en) 2003-03-15 2007-10-02 Roche Diagnostics Operations, Inc. Analysis system for reagent-free determination of the concentration of an analyte in living tissue

Also Published As

Publication number Publication date
JP2007209745A (ja) 2007-08-23
DE19618597A1 (de) 1997-11-20
JP4057043B2 (ja) 2008-03-05
US6434409B1 (en) 2002-08-13
DE19618597B4 (de) 2005-07-21
JP3933206B2 (ja) 2007-06-20
EP0898459A1 (de) 1999-03-03
US6091976A (en) 2000-07-18
JP2000510588A (ja) 2000-08-15

Similar Documents

Publication Publication Date Title
WO1997042868A1 (de) Bestimmung der konzentration von gewebeglucose
EP0664989B1 (de) Anordnung zur kontinuierlichen Überwachung der Konzentration eines Metaboliten
EP1072222B1 (de) Anordnung zur Konzentrationsbestimmung von Glucose in einer Körperflüssigkeit
EP1733676B1 (de) Sensorsystem sowie Anordnung und Verfahren zur Überwachung eines Inhaltsstoffs, insbesondere Glucose in Körpergewebe
EP0534074B1 (de) Verfahren und Anordnung zur Bestimmung der Konzentration von Inhaltsstoffen in Körperflüssigkeiten
DE69817704T2 (de) Verfahren für Spülung und Kalibrierung eines Sensors für System zur Analyse einer körperlichen Flüssigkeit
DE2734247C2 (de) Vorrichtung zur fortlaufenden chemischen Analyse im lebenden Körper
EP0790499B1 (de) Verfahren zur Eichung von Gasmesssensoren für gelöste Gase und Verfahren zur Konzentrationsmessung von CO2 in Blut mit Hilfe eines solchen Eichverfahrens
EP1404217B1 (de) Messung der konzentration von substanzen in lebenden organismen mittels mikrodialyse
EP0773035B2 (de) Vorrichtung zur Ermittlung hämodynamischer Parameter während einer extrakorporalen Blutbehandlung
DE102004004031B4 (de) Abgleich von Sensoren oder Messsystemen
DE10392210T5 (de) Verfahren und Vorrichtung zum Überwachen einer analytischen Konzentration mittels einer Osmose-Differenz-Druckmessung
DE10010587A1 (de) System zur Bestimmung von Analytkonzentrationen in Körperflüssigkeiten
DE2849367B2 (de) Vorrichtung zur Regelung der Glucosekonzentration im Blutstrom einer Person
EP0367752B1 (de) Vorrichtung zur Bestimmung der Konzentration von zumindest einer in organischem Gewebe vorliegenden Substanz
EP1480695B1 (de) Vorrichtung zur bestimmung des hämatokrit und/oder blutvolumens
WO2008059050A2 (de) Probenahmevorrichtung und probenahmeverfahren
WO2006119914A2 (de) Verfahren und vorrichtung zur bestimmung der glucose-konzentration in gewebeflüssigkeit
DE4426694C2 (de) Vorrichtung zur Langzeitbestimmung des Gehaltes von mindestens einer Substanz in Körperflüssigkeiten
EP0958780B1 (de) Sensorsystem mit permanent implantiertem Zugang
DE3713060A1 (de) Messvorrichtung fuer einen fluessigkeitsgeloesten koerperbestandteil
DE19942898B4 (de) Dialysesonde
DD265001A1 (de) Schaltungsanordnung fuer glucosemonitoring waehrend der dialyse
DE8316017U1 (de) Gerät zur kontinuierlichen Gasmessung im Flüssigkeitskreislauf
DD284411A5 (de) Biosensitive infusionseinrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997908169

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09147207

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997908169

Country of ref document: EP