WO1997043388A2 - Detergent composition - Google Patents

Detergent composition Download PDF

Info

Publication number
WO1997043388A2
WO1997043388A2 PCT/US1997/008444 US9708444W WO9743388A2 WO 1997043388 A2 WO1997043388 A2 WO 1997043388A2 US 9708444 W US9708444 W US 9708444W WO 9743388 A2 WO9743388 A2 WO 9743388A2
Authority
WO
WIPO (PCT)
Prior art keywords
aqa
bis
surfactant
composition according
compositions
Prior art date
Application number
PCT/US1997/008444
Other languages
French (fr)
Other versions
WO1997043388A3 (en
Inventor
Kaori Asano
Jeffrey John Scheibel
Hajime Baba
Andre Cesar Baeck
Kaori Minamikawa
Richard Timothy Hartshorn
Speed, (Jones), Lynda, Anne
Rinko Katsuda
Frank Andrej Kvietok
Mark Hsiang-Kuen Mao
Michael Alan John Moss
Susumu Murata
Royohei Ohtani
Rajan Keshav Panandiker
Kakumanu Pramod
Khizar Mohamed Khan Sarnaik
Christian Arthur Jacques Kamiel Thoen
Kevin Lee Kott
Kenneth William Willman
Laura Cron
Thomas Anthony Cripe
John Downing Curry
Peter Robert Foley
Ian Martin Dodd
Sanjeev Krishnadas Manohar
Mitsuyo Okamoto
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to EP97924766A priority Critical patent/EP0912686A2/en
Priority to BR9710678A priority patent/BR9710678A/en
Priority to JP9541172A priority patent/JPH11510554A/en
Publication of WO1997043388A2 publication Critical patent/WO1997043388A2/en
Publication of WO1997043388A3 publication Critical patent/WO1997043388A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/042Acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/65Mixtures of anionic with cationic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0036Soil deposition preventing compositions; Antiredeposition agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0052Gas evolving or heat producing compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0063Photo- activating compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/06Phosphates, including polyphosphates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/10Carbonates ; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • C11D3/1273Crystalline layered silicates of type NaMeSixO2x+1YH2O
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/128Aluminium silicates, e.g. zeolites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2086Hydroxy carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3715Polyesters or polycarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3723Polyamines or polyalkyleneimines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3907Organic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3932Inorganic compounds or complexes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments
    • C11D3/42Brightening agents ; Blueing agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L4/00Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
    • D06L4/60Optical bleaching or brightening
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/005Compositions containing perfumes; Compositions containing deodorants
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/143Sulfonic acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/40Monoamines or polyamines; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/42Amino alcohols or amino ethers
    • C11D1/44Ethers of polyoxyalkylenes with amino alcohols; Condensation products of epoxyalkanes with amines

Definitions

  • the present invention relates to a detergent composition
  • a detergent composition comprising an enzyme, a non- AQA surfactant and a bis-alkoxylated quaternary ammonium (bis-AQA) cationic surfactant.
  • laundry detergents and other cleaning compositions presents a considerable challenge, since modern compositions are required to remove a variety of soils and stains from diverse substrates.
  • laundry detergents, hard surface cleaners, shampoos and other personal cleansing compositions, hand dishwashing detergents and detergent compositions suitable for use in automatic dishwashers all require the proper selection and combination of ingredients in order to function effectively.
  • such detergent compositions will contain one or more types of surfactants which are designed to loosen and remove different types of soils and stains. While a review of the literature would seem to indicate that a wide selection of surfactants and surfactant combinations are available to the detergent manufacturer, the reality is that many such ingredients are speciality chemicals which are not suitable in low unit cost items such as home-use laundry detergents.
  • soils and stains such as body soils, greasy/oily soils and certain food stains
  • soils comprise a mixture of triglycerides, lipids, complex polysaccharides, inorganic salts and
  • bis-alkoxylated quaternary ammonium (bis-AQA) compounds can be used in various detergent compositions to boost detergency performance on a variety of soil and stain types, particularly the hydrophobic soil types, commonly encountered.
  • compositions containing enzymes and a bis-AQA surfactant deliver not only superior cleaning and whiteness performance versus products containing either technology alone, but also provide improved fabric care.
  • the bis-AQA surfactants of the present invention provide substantial benefits to the formulator, over cationic surfactants previously known.
  • the bis-AQA surfactants used herein provide marked improvement in cleaning of "everyday" greasy/oily hydrophobic soils regularly encountered.
  • the bis-AQA surfactants are compatible with anionic surfactants commonly used in detergent compositions such as alkyl sulfate and alkyl benzene sulfonate; incompatibility with anionic components of the detergent composition has commonly been the limiting factor in the use of cationic surfactants to date.
  • Low levels (as low as 3 ppm in the laundering liquor) of bis-AQA surfactants gives rise to the benefits described herein.
  • Bis-AQA surfactants can be formulated over a broad pH range from 5 to 12.
  • the bis-AQA surfactants can be prepared as 30% (wt.) solutions which are pumpable, and therefore easy to handle in a
  • Bis-AQA surfactants with degrees of ethoxylation above 5 are sometimes present in a liquid form and can therefore be provided as 100% neat materials. In addition to their beneficial handling properties, the availability of bis-AQA surfactants as highly concentrated solutions provides a substantial economic advantage in transportation costs.
  • the bis-AQA surfactants are also compatible with various perfume ingredients, unlike some cationic surfactants known in the art .
  • One aspect of the present invention provides a means for enhancing the removal of greasy/oily soils by combining a lipase enzyme with an AQA surfactant.
  • Greasy/oily soils are comprised of a mixture of materials, including triglycerides.
  • triglycerides in the soil are convened by bacterial action to fatty acids; lipase enzymes can be used to convert any remaining triglycerides to fatty acids through-the-wash.
  • Fatty acids in the soil interact with the hardness ion in the wash water (e.g. Mg 2 + and Ca 2 + ions) to form insoluble magnesium/calcium fatty acid salts or lime- soaps.
  • Lime-soaps precipitate from the wash solution forming a layer of lime-soap deposit on the fabric. Successive washing results in the build-up of lime-soap deposits which entrap particulate dirt, hinder soil removal and enhance retension of soil residues on the fabric after the wash.
  • the glue acts as an ideal substrate for deposition/retention of greasy /oily hydrophobic body soils (e.g. , on collars and pillowcases).
  • the combined cellulytic/bis-AQA system also provides softness and fabric care benefits vs. either the cationic or enzyme alone, by effective depilling and ungluing of worn fibres.
  • U.S. Patent 5,441,541 issued August 15, 1995, to A. Mehreteab and F. J. Loprest, relates to anionic/cationic surfactant mixtures.
  • U.K. 2,040,990 issued 3 Sept., 1980, to A. P. Murphy, R.J.M. Smith and M. P. Brooks, relates to ethoxylated cationics in laundry detergents.
  • the present invention provides a composition
  • a composition comprising or prepared by combining an enzyme, a non-AQA surfactant and an effective amount of a bis-alkoxylated quaternary ammonium (bis-AQA) cationic surfactant of the formula: wherein R 1 is a linear, branched or substituted C 8 -C 18 alkyl, alkenyl, aryl, aikaryl, ether or glycityl ether moiety, R 2 is a C 1 -C 3 alkyl moiety, R 3 and R 4 can vary independently and are selected from hydrogen, methyl and ethyl, X is an anion, and A and A' can vary
  • compositions of the present invention include enzymes as essential components.
  • Enzymes can be included in the present detergent compositions for a variety of purposes, including removal of protein-based, carbohydrate-based, or triglyceride-based stains from substrates, for the prevention of refugee dye transfer in fabric laundering, and for fabric restoration.
  • Suitable enzymes include proteases, amylases, lipases, cellulases, peroxidases, and mixtures thereof of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. Preferred selections are influenced by factors such as pH-activity and/or stability optima, thermostability, and stability to active detergents, builders.
  • bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases.
  • proteases are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition.
  • AU Anson units
  • Suitable examples of proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. licheniformis.
  • protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold as ESPERASE ® by Novo Industries A/S of Denmark, hereinafter "Novo". The preparation of this enzyme and analogous enzymes is described in GB 1 ,243,784 to Novo.
  • suitable proteases include ALCALASE ® and SAVINASE ® from Novo and MAXATASE ® from International Bio-Synthetics, Inc. , The Netherlands; as well as Protease A as disclosed in EP 130,756 A, January 9, 1985 and Protease B as disclosed in EP 303,761 A, April 28, 1987 and EP 130,756 A, January 9, 1985.
  • protease from Bacillus sp. NCIMB 40338 described in WO 9318140 A to Novo.
  • Enzymatic detergents comprising protease, one or more other enzymes, and a reversible protease inhibitor are described in WO 9203529 A to Novo.
  • Other preferred proteases include those of WO 9510591 A to Procter & Gamble .
  • a protease having decreased adsorption and increased hydrolysis is available as described in WO 9507791 to Procter & Gamble.
  • a recombinant trypsin-like protease for detergents suitable herein is described in WO 9425583 to Novo.
  • an especially preferred protease is a carbonyl hydrolase variant having an amino acid sequence not found in nature, which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for a plurality of amino acid residues at a position in said carbonyl hydrolase equivalent to position +76, preferably also in combination with one or more amino acid residue positions equivalent to those selected from the group consisting of +99, + 101 , + 103, + 104, + 107, + 123, + 27, + 105, + 109, + 126, + 128, + 135, + 156, + 166, + 195, + 197, +204, +206, + 210, +216, +217, +218, +222, +260, +265, and/or +274 according to the numbering of Bacillus amyloliquefaciens subtilisin, as described in the patent applications of A.
  • Amylases suitable herein, especially for, but not limited to automatic dishwashing purposes include, for example, ⁇ -amylases described in GB 1 ,296,839 to Novo;
  • FUNGAMYL ® from Novo is especially useful.
  • Engineering of enzymes for improved stability e.g., oxidative stability, is known. See, for example J. Biological Chem. , Vol. 260, No. 11, June 1985, pp. 6518-6521.
  • Certain preferred embodiments of the present compositions can make use of amylases having improved stability in detergents such as automatic dishwashing types, especially improved oxidative stability as measured against a reference-point of TERMAMYL ® in commercial use in 1993.
  • oxidative stability e.g., to hydrogen peroxide/tetraacetylethylenediamine in buffered solution at pH 9-10
  • thermal stability e.g., at common wash temperatures such as 60°C
  • alkaline stability e.g., at a pH from 8 to 11 , measured versus the above-identified reference-point amylase.
  • Stability can be measured using any of the art-disclosed technical tests. See, for example, references disclosed in WO 9402597. Stability -enhanced amylases can be obtained from Novo or from Genencor International.
  • One class of highly preferred amylases herein have the
  • particularly preferred amylases herein include amylase variants having additional modification in the immediate parent as described in WO 9510603 A and are available from the assignee, Novo, as DURAMYL ® .
  • Other particularly preferred oxidative stability enhanced amylase include those described in WO 9418314 to Genencor International and WO 9402597 to Novo. Any other oxidative stability-enhanced amylase can be used, for example as derived by site-directed mutagenesis from known chimeric, hybrid or simple mutant parent forms of available amylases. Other preferred enzyme modifications are accessible. See WO 9509909 A to Novo.
  • amylase enzymes include those described in WO 95/26397 and in co-pending application by Novo Nordisk PCT/DK96/00056.
  • Specific amylase enzymes for use in the detergent compositions of the present invention include ⁇ -amylases characterized by having a specific activity at least 25% higher than the specific activity of Termamyl ® at a temperature range of 25°C to 55°C and at a pH value in the range of 8 to 10, measured by the Phadebas ® ⁇ -amylase activity assay.
  • compositions at a level from 0.00018% to 0.060% pure enzyme by weight of the total composition, more preferably from 0.00024% to 0.048% pure enzyme by weight of the total composition.
  • Cellulases usable herein include both bacterial and fungal types, preferably having a pH optimum between 5 and 9.5.
  • U.S. 4,435,307, Barbesgoard et al, March 6, 1984 discloses suitable fungal cellulases from Humicola insolens or Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusk, Dolabella Auricula Solander.
  • Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS- 2.247.832.
  • CAREZYME ® and CELLUZYME ® are especially useful. See also WO 9117243 to Novo.
  • Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in GB 1,372,034. See also lipases in Japanese Patent Application 53,20487, laid open Feb. 24, 1978. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano," or "Amano-P. " Other suitable commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolyticum NRRLB 3673 from Toyo Jozo Co. , Tagata, Japan;
  • Chromobacter viscosum lipases from U.S. Biochemical Corp. , U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli.
  • LIPOLASE ® enzyme derived from Humicola lanuginosa and commercially available from Novo, see also EP 341,947, is a preferred lipase for use herein. Lipase and amylase variants stabilized against peroxidase enzymes are described in WO 9414951 A to Novo. See also WO 9205249 and RD 94359044.
  • D96L lipase variant
  • the present invention provides the benefit of improved whiteness maintenance on fabrics using low levels of D96L variant in detergent compositions containing the bis-AQA surfactants in the manner disclosed herein, especially when the D96L is used at levels in the range of 50 LU to 8500 LU per liter of wash solution.
  • Cutinase enzymes suitable for use herein are described in WO 8809367 A to Genencor.
  • Peroxidase enzymes may be used in combination with oxygen sources, e.g. , percarbonate, perborate, hydrogen peroxide, etc. , for "solution bleaching" or prevention of transfer of dyes or pigments removed from substrates during the wash to other substrates present in the wash solution.
  • oxygen sources e.g. , percarbonate, perborate, hydrogen peroxide, etc.
  • Known peroxidases include horseradish peroxidase, ligninase, and haloperoxidases such as chloro- or bromo-peroxidase.
  • Peroxidase-containing detergent compositions are disclosed in WO 89099813 A, October 19, 1989 to Novo and WO
  • Enzymes for use in detergents can be stabilised by various techniques. Enzyme stabilisation techniques are disclosed and exemplified in U.S. 3,600,319, August 17, 1971, Gedge et al, EP 199,405 and EP 200,586, October 29, 1986, Venegas. Enzyme stabilisation systems are also described, for example, in U.S.
  • R 1 is a linear, branched or substituted alkyl, alkenyl, aryl. aikaryl, ether or glycityl ether moiety containing from 8 to 18 carbon atoms, preferably 8 to 16 carbon atoms, most preferably from 8 tol4 carbon atoms;
  • R 2 is an alkyl group containing from 1 to 3 carbon atoms, preferably methyl;
  • R 3 and R 4 can vary independently and are selected from the group consisiting of hydrogen (preferred), methyl and ethyl;
  • X- is an anion such as chloride, bromide, methyl sulfate, sulfate, sufficient to provide electrical neutrality.
  • a and A' can vary independently and are each selected from C 1 -C 4 alkoxy, especially ethoxy, propoxy, butoxy and mixtures thereof; p is from 1 to 30, preferably 1 to 15, more preferably 1 to 8, even more preferable 1 to 4 and q is from 1 to 30, preferably 1 to 15, more preferably 1 to 8, even more preferably 1 to 4 Most preferably both p and q are 1.
  • the levels of the bis-AQA surfactants used to prepare finished laundry detergent compositions can range from 0.1 % to 5% , typically from 0.45% to 2.5%, by weight.
  • percarbonate bleach is in the range of from 1:100 to 5 :1 , preferably from 1 :60 to 2 :1 , most preferably from 1 : 20 to 1:1.
  • the present invention employs an "effective amount" of the bis-AQA surfactants to improve the performance of cleaning compositions which contain other optional
  • an "effective amount" of the bis-AQA surfactants herein is meant an amount which is sufficient to improve, either directionally or significantly at the 90% confidence level, the performance of the cleaning composition against at least some of the target soils and stains.
  • an effective amount of the bis-AQA surfactants herein is meant an amount which is sufficient to improve, either directionally or significantly at the 90% confidence level, the performance of the cleaning composition against at least some of the target soils and stains.
  • the formulator will use sufficient bis-AQA to at least directionally improve cleaning performance against such stains.
  • the formulator will use sufficient bis-AQA to at least directionally improve cleaning performance against such soil.
  • the bis-AQA surfactants may be used in combination with other detersive surfactants at levels which are effective for achieving at least a directional improvement in cleaning performance.
  • usage levels can vary depending not only on the type and severity of the soils and stains, but also on the wash water temperature, the volume of wash water and the type of washing machine.
  • a wash cycle of 10 to 14 minutes and a wash water temperature of 10°C to 50°C it is preferred to include from 2 ppm to 50 ppm, preferably from 5 ppm to 25 ppm, of the bis-AQA surfactant in the wash liquor.
  • this translates into an in-product concentration (wt.) of the bis-AQA surfactant of from 0.1 % to 3.2%, preferably 0.3% to 1.5 % , for a heavy-duty liquid laundry detergent.
  • a wash cycle of 8 to 15 minutes and a wash water temperature of 5°C to 25°C it is preferred to include from 1.67 ppm to 66.67 ppm, preferably from 3 ppm to 6 ppm, of the bis-AQA surfactant in the wash liquor.
  • this translates into an in-product concentration (wt.) of the bis-AQA surfactant of from 0.25% to 10% , preferably 1.5% to 2% , for a heavy-duty liquid laundry detergent.
  • the amount of bis-AQA surfactant used in a machine- wash laundering context can vary, depending on the habits and practices of the user, the type of washing machine.
  • one heretofore unappreciated advantage of the bis-AQA surfactants is their ability to provide at least directional improvements in performance over a spectrum of soils and stains even when used at relatively low levels with respect to the other surfactants (generally anionics or
  • anionic/nonionic mixtures in the finished compositions. This is to be distinguished from other compositions of the art wherein various cationic surfactants are used with anionic surfactants at or near stoichiometric levels.
  • the weight ratio of bis-AQA: anionic surfactant in laundry compositions is in the range from
  • the weight ratio of bis-AQA:mixed anionic/nonionic is in the range from 1 :80 to 1 :2, preferably 1:50 to 1 :8.
  • the weight ratio of the bis-AQA surfactant to other surfactants present in such compositions is low, i.e., sub-stoichiometric in the case of anionics.
  • such cleaning compositions comprise bis-AQA/surfactant ratios as noted immediately above for machine-use laundry compositions.
  • the bis-alkoxylated cationics herein have sufficient solubility that they can be used in combination with mixed surfactant systems which are quite low in nonionic surfactants and which contain, for example, alkyl sulfate surfactants.
  • Reaction temperatures are typically in the range of 100-230°C. Reaction pressures are 50-1000 psig.
  • a base preferably sodium hydroxide, can be used to react with the HSO4-generated during the reaction, or an excess of the amine can be employed to also react with the acid.
  • the mole ratio of amine to alkyl sulfate is typically from 10: 1 to 1 : 1.5; preferably from 5: 1 to 1 : 1.1 ; more preferably from 2: 1 to 1 : 1.
  • the desired substituted amine is simply allowed to separate as a distinct phase from the aqueous reaction medium in which it is insoluble.
  • the second step of the process is conducted under conventional reaction conditions. Further ethoxylation and quaternization to provide bis-AQA surfactants are conducted under standard reaction conditions.
  • the funnel is shaken well for a few minutes and then allowed mixture to separate.
  • the lower chloroform layer is drained and the chloroform is evaporated off to obtain product.
  • the product is then reacted with 1 molar equivalent of ethylene oxide in the absence of base catalyst at 120-130°C to produce the desired final product.
  • the bis-substituted amines prepared in the foregoing Syntheses can be further ethoxylated in standard fashion. Quaternization with an alkyl halide to form the bis-AQA surfactants herein is routine. According to the foregoing, the following are nonlimiting, specific illustrations of bis-AQA surfactants used herein. It is to be understood that the degree of alkoxylation noted herein for the bis-AQA surfactants is reported as an average, following common practice for conventional ethoxylated nonionic surfactants. This is because the ethoxylation reactions typically yield mixtures of materials with differing degrees of ethoxylation. Thus, it is not uncommon to report total EO values other than as whole numbers, e.g., "EO2.5", "EO3.5" .
  • R 1 is C 8 -C 18 hydrocarbyl and mixtures thereof, preferably C 8 , C 10 , C 12 , C 14 alkyl and mixtures thereof.
  • X is any convenient anion to provide charge balance, preferably chloride.
  • bis-AQA surfactants useful herein include compounds of the formula:
  • R 1 is C 8 -C 18 hydrocarbyl, preferably C 8 -C 14 alkyl, independently p is 1 to 3 and q is 1 to 3, R 2 is C 1 -C 3 alkyl, preferably methyl, and X is an anion, especially chloride or bromide.
  • compositions of the present invention preferably further comprise a non-AQA surfactant.
  • Non-AQA surfactants may include essentially any anionic, nonionic or additional cationic surfactant.
  • Nonlimiting examples of anionic surfactants useful herein typically at levels from 1 % to 55%, by weight, include the conventional C 11 -C 18 alkyl benzene sulfonates ("LAS") and primary ("AS"), branched-chain and random C 10 -C 20 alkyl sulfates, the C 10 -C 18 secondary (2,3) alkyl sulfates of the formula CH 3 (CH 2 ) x (CHOSO 3 -M + ) CH 3 and CH 3 (CH 2 ) y (CHOSO 3 -M + ) CH 2 CH 3 where x and (y + 1) are integers of at least 7, preferably at least 9, and M is a water-solubilizing cation, especially sodium, unsaturated sulfates such as oleyl sulfate, the C 12 -C 18 alpha-sulfonated fatty acid esters, the C 10 -C 18 sulfated polyglycosides, the C 10 -C 18 alkyl
  • C 12 -C 18 betaines and sulfobetaines can also be included in the overall compositions.
  • C 10 -C 20 conventional soaps may also be used. If high sudsing is desired, the branched-chain C 10 -C 16 soaps may be used.
  • Other conventional useful surfactants are listed in standard texts.
  • Nonionic Surfactants typically at levels from 1 % to 55% , by weight include the alkoxylated alcohols (AE's) and alkyl phenols, polyhydroxy fatty acid amides (PFAA's), alkyl polyglycosides (APG's), C 10 -C 18 glycerol ethers.
  • AE alkoxylated alcohols
  • PFAA's polyhydroxy fatty acid amides
  • APG's alkyl polyglycosides
  • C 10 -C 18 glycerol ethers C 10 -C 18 glycerol ethers.
  • condensation products of primary and secondary aliphatic alcohols with from 1 to 25 moles of ethylene oxide (AE) are suitable for use as the nonionic surfactant in the present invention.
  • the alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 8 to 22 carbon atoms.
  • nonionic surfactants of this type include: TergitolTM 15-S-9 (the condensation product of C 1 1 -C 15 linear alcohol with 9 moles ethylene oxide) and TergitolTM 24-L-6 NMW (the condensation product of C 12 -C 14 primary alcohol with 6 moles ethylene oxide with a narrow molecular weight distribution), both marketed by Union Carbide Corporation; NeodolTM 45.9 (the condensation product of C 14 -C 15 linear alcohol with 9 moles of ethylene oxide), NeodolTM 23-3 (the condensation product of C 12 -C 13 linear alcohol with 3 moles of ethylene oxide),
  • NeodolTM 45.7 (the condensation product of C 14 -C 15 linear alcohol with 7 moles of ethylene oxide) and NeodolTM 45.5 (the condensation product of C 14 -C 15 linear alcohol with 5 moles of ethylene oxide) marketed by Shell Chemical Company; KyroTM EOB (the condensation product of C 13 -C 15 alcohol with 9 moles ethylene oxide), marketed by The Procter & Gamble Company; and Genapol LA O3O or O5O (the condensation product of C 12 -C 14 alcohol with 3 or 5 moles of ethylene oxide) marketed by Hoechst.
  • the preferred range of HLB in these AE nonionic surfactants is from 8-11 and most preferred from 8-10. Condensates with propylene oxide and butylene oxides may also be used.
  • R 1 is methyl
  • R 2 is a straight C 11 -15 alkyl or C 15-17 alkyl or alkenyl chain such as coconut alkyl or mixtures thereof
  • Z is derived from a reducing sugar such as glucose, fructose, maltose, lactose, in a reductive amination reaction.
  • Typical examples include the C 12 -C 18 and C 12 -C 14 N-methylglucamides. See U.S. 5, 194,639 and 5,298,636.
  • N-alkoxy polyhydroxy fatty acid amides can also be used; see U.S. 5,489,393.
  • alkylpolysaccharides such as those disclosed in U.S. Patent 4,565,647, Llenado, issued January 21 , 1986, having a hydrophobic group containing from 6 to 30 carbon atoms, preferably from 10 to 16 carbon atoms, and a polysaccharide, e.g. a polyglycoside, hydrophilic group containing from 1.3 to 10, preferably from 1.3 to 3, most preferably from 1.3 to 2.7 saccharide units.
  • Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substimted for the glucosyl moieties (optionally the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside).
  • the intersaccharide bonds can be, e.g. , between the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.
  • the preferred alkylpolyglycosides have the formula: R 2 O(C n H 2n O) t (glycosyl) x wherein R 2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkyIphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18, preferably from 12 to 14, carbon atoms; n is 2 or 3, preferably 2; t is from 0 to 10, preferably 0; and x is from 1.3 to 10, preferably from 1.3 to 3, most preferably from 1.3 to 2.7.
  • the glycosyl is preferably derived from glucose.
  • the alcohol or alkylpolyethoxy alcohol is formed first and then reacted with glucose, or a source of glucose, to form the glucoside (attachment at the 1-position).
  • the additional glycosyl units can then be attached between their 1-position and the preceding glycosyl units 2-, 3-, 4- and/or 6-position, preferably predominately the 2-position.
  • Polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols are also suitable for use as the nonionic surfactant of the surfactant systems of the present invention, with the polyethylene oxide condensates being preferred.
  • These compounds include the condensation products of alkyl phenols having an alkyl group containing from 6 to 14 carbon atoms, preferably from 8 to 14 carbon atoms, in either a straight-chain or branched-chain configuration with the alkylene oxide.
  • the ethylene oxide is present in an amount equal to from 2 to 25 moles, more preferably from 3 tol5 moles, of ethylene oxide per mole of alkyl phenol.
  • nonionic surfactants of this type include IgepalTM CO-630, marketed by the GAF Corporation; and TritonTM X-45, X-114, X-100 and X-102, all marketed by the Rohm & Haas Company.
  • alkylphenol alkoxy lates e.g., alkyl phenol ethoxylates
  • the condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol are also suitable for use as the additional nonionic surfactant in the present invention.
  • the hydrophobic portion of these compounds will preferably have a molecular weight of from 1500 to 1800 and will exhibit water insolubility.
  • polyoxyethylene moieties to this hydrophobic portion tends to increase the water solubility of the molecule as a whole, and the liquid character of the product is retained up to the point where the polyoxyethylene content is 50% of the total weight of the condensation product, which corresponds to condensation with up to 40 moles of ethylene oxide.
  • examples of compounds of this type include certain of the commercially-available PluronicTM surfactants, marketed by BASF.
  • nonionic surfactant of the nonionic surfactant system of the present invention are the condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine.
  • the hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from 2500 to 3000. This hydrophobic moiety is condensed with ethylene oxide to the extent that the condensation product contains from 40% to 80% by weight of polyoxyethylene and has a molecular weight of from 5,000 to 11,000.
  • this type of nonionic surfactant include certain of the commercially available TetronicTM compounds, marketed by BASF. Additional Cationic surfactants
  • Suitable cationic surfactants are preferably water dispersible compound having surfactant properties comprising at least one ester (ie -COO-) linkage and at least one cationically charged group.
  • Suitable cationic surfactants include the quaternary ammonium surfactants selected from mono C 6 -C 16 , preferably C 6 -C 10 N-alkyl or alkenyl ammonium surfactants wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
  • Other suitable cationic ester surfactants, including choline ester surfactants, have for example been disclosed in US Patents No s 4228042, 4239660 and 4260529.
  • Optional Detergent Ingredients The following illustrates various other optional ingredients which may be used in the compositions of this invention, but is not intended to be limiting thereof.
  • Enzyme Stabilizing System The enzyme-containing compositions herein preferably also comprise from 0.001 % to
  • the enzyme stabilizing system can be any stabilizing system which is compatible with the detersive enzyme. Such a system may be inherently provided by other formulation actives, or be added separately, e.g. , by the formulator or by a manufacturer of detergent-ready enzymes.
  • Such stabilizing systems can, for example, comprise calcium ion, boric acid, propylene glycol, short chain carboxylic acids, boronic acids, and mixtures thereof, and are designed to address different stabilization problems depending on the type and physical form of the detergent composition.
  • One stabilizing approach is the use of water-soluble sources of calcium and/or magnesium ions in the finished compositions which provide such ions to the enzymes.
  • Calcium ions are generally more effective than magnesium ions and are preferred herein if only one type of cation is being used.
  • Typical detergent compositions, especially liquids will comprise from 1 to 30, preferably from 2 to 20, more preferably from 8 to 12 millimoles of calcium ion per liter of finished detergent composition, though variation is possible depending on factors including the multiplicity, type and levels of enzymes incorporated.
  • Preferably water-soluble calcium or magnesium salts are employed, including for example calcium chloride, calcium hydroxide, calcium formate, calcium malate, calcium maleate, calcium hydroxide and calcium acetate; more generally, calcium sulfate or magnesium salts corresponding to the exemplified calcium salts may be used. Further increased levels of Calcium and/or Magnesium may of course be useful, for example for promoting the grease-cutting action of certain types of surfactant.
  • Borate stabilizers when used, may be at levels of up to 10% or more of the composition though more typically, levels of up to about 3 % by weight of boric acid or other borate compounds such as borax or orthoborate are suitable for liquid detergent use.
  • Substituted boric acids such as phenylboronic acid, butaneboronic acid, p-bromophenylboronic acid or the like can be used in place of boric acid and reduced levels of total boron in detergent compositions may be possible though the use of such substituted boron derivatives.
  • Stabilizing systems of certain cleaning compositions may further comprise from 0 to 10% , preferably from 0.01 % to 6% by weight, of chlorine bleach scavengers, added to prevent chlorine bleach species present in many water supplies from attacking and inactivating the enzymes, especially under alkaline conditions. While chlorine levels in water may be small, typically in the range from 0.5 ppm to 1.75 ppm, the available chlorine in the total volume of water that comes in contact with the enzyme, for example during dish- or fabric-washing, can be relatively large;
  • Suitable chlorine scavenger anions are widely known and readily available, and, if used, can be salts containing ammonium cations with sulfite, bisulfite, thiosulfite, thiosulfate, iodide, etc.
  • Antioxidants such as carbamate, ascorbate, etc., organic amines such as ethylenediaminetetracetic acid (EDTA) or alkali metal salt thereof, monoethanolamine (MEA), and mixtures thereof can likewise be used.
  • the detergent compositions herein may optionally comprise a bleaching agent.
  • bleaching agents will typically be at levels of from 1 % to 30% , more typically from 5% to 20% , of the detergent composition, especially for fabric laundering.
  • the bleaching agents used herein can be any of the bleaching agents useful for detergent compositions in textile cleaning, hard surface cleaning, or other cleaning purposes that are now known or become known. These include oxygen bleaches as well as other bleaching agents.
  • Perborate bleaches e.g. , sodium perborate (e.g. , mono- or tetra-hydrate) can be used herein.
  • bleaching agent that can be used without restriction encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of meta- chloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid.
  • Such bleaching agents are disclosed in U.S. Patent 4,483,781, Hartman, issued November 20, 1984, U.S. Patent Application 740,446, Burns et al, filed June 3, 1985, European Patent Application 0,133,354, Banks et al, published February 20. 1985, and U.S. Patent 4,412,934, Chung et al, issued November 1, 1983.
  • Highly preferred bleaching agents also include 6-nonylamino-6-oxoperoxycaproic acid as described in U.S. Patent 4,634,551 , issued January 6, 1987 to Burns et al.
  • Peroxygen bleaching agents can also be used. Suitable peroxygen bleaching compounds include sodium carbonate peroxyhydrate and equivalent "percarbonate" bleaches, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, and sodium peroxide.
  • Persulfate bleach e.g., OXONE, manufactured commercially by DuPont
  • OXONE manufactured commercially by DuPont
  • a preferred percarbonate bleach comprises dry particles having an average particle size in the range from 500 micrometers to 1 ,000 micrometers, not more than 10% by weight of said particles being smaller than 200 micrometers and not more than 10% by weight of said particles being larger than 1,250 micrometers.
  • the percarbonate can be coated with silicate, borate or water-soluble surfactants.
  • Percarbonate is available from various commercial sources such as FMC, Solvay and Tokai Denka.
  • Bleaching agents other than oxygen bleaching agents are also known in the an and can be utilized herein.
  • One type of non-oxygen bleaching agent of particular interest includes photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalo- cyanines. See U.S. Patent 4,033,718, issued July 5, 1977 to Holcombe et al. If used, detergent compositions will typically contain from 0.025% to 1.25% , by weight, of such bleaches, especially sulfonate zinc phthalocyanine.
  • Mixtures of bleaching agents can also be used.
  • Bleach Activator Bleach activators are preferred components of an oxygen bleach containing detergent composition. Bleach activator when present are typically present at levels of from 0.1 % to 60%, more typically from 0.5% to 40% of the bleaching composition comprising the bleaching agent-plus-bleach activator. Peroxygen bleaching agents, the perborates, etc., are preferably combined with bleach activators, which lead to the in situ production in aqueous solution (i.e. , during the washing process) of the peroxy acid or peracid corresponding to the bleach activator.
  • Various nonlimiting examples of activators are disclosed in U.S. Patent 4,915,854, issued April 10, 1990 to Mao et al, and U.S. Patent 4,412,934.
  • nonanoyloxybenzene sulfonate (NOBS) and tetraacetyl ethylene diamine (TAED) activators are typical, and mixtures thereof can also be used. See also U. S. 4,634.551 for other typical bleaches and activators useful herein.
  • bleach activators of the above formulae include (6-octanamido- caproyl)oxybenzenesulfonate, (6-nonanamidocaproyl)oxybenzenesulfonate, (6-decanamido- caproyl) oxybenzenesulfonate, and mixtures thereof as described in U.S. Patent 4,634,551 , incorporated herein by reference.
  • Another class of bleach activators comprises the benzoxazin-type activators disclosed by Hodge et al in U.S. Patent 4,966,723, issued October 30, 1990, incorporated herein by reference.
  • a highly preferred activator of the benzoxazin-type is:
  • Still another class of preferred bleach activators includes the acyl lactam activators, especially acyl caprolactams and acyl valerolactams of the formulae:
  • lactam activators include benzoyl caprolactam, octanoyl caprolactam, 3,5,5-trimethylhexanoyl caprolactam, nonanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, benzoyl valerolactam, octanoyl valerolactam, decanoyl valerolactam, undecenoyl valerolactam, nonanoyl valerolactam, 3,5,5- trimethylhexanoyl valerolactam and mixtures thereof. See also U.S. Patent 4,545,784, issued to Sanderson, October 8, 1985, incorporated herein by reference, which discloses acyl caprolactams, including benzoyl caprolactam, adsorbed into sodium perbor
  • Bleach Catalyst Bleach catalysts are optional components of the compositions of the present invention.
  • the bleaching compounds can be catalyzed by means of a manganese compound.
  • a manganese compound Such compounds are well known in the art and include, for example, the manganese-based catalysts disclosed in U.S. Pat. 5,246,621 , U.S. Pat. 5,244,594; U.S. Pat. 5, 194,416; U.S. Pat. 5, 114,606; and European Pat. App. Pub. Nos.
  • Preferred examples of these catalysts include Mn IV 2 (u-O) 3 (1 ,4,7- trimethyl-1 ,4,7-triazacyclononane) 2 (PF 6 ) 2 , Mn III 2 (u-O) 1 (u-OAc) 2 (1 ,4,7-trimethyl-1 ,4,7- triazacyclononane) 2 -(ClO 4 ) 2 , Mn IV 4 (u-O) 6 (1,4,7-triazacyclononane) 4 (ClO 4 ) 4 , Mn III- Mn IV 4 (u-O) 1 (u-OAc) 2 -(1,4,7-trimethyl-1 ,4,7-triazacyclononane) 2 (ClO 4 ) 3 , Mn IV (1,4,7- trimethyl-1,4,7-triazacyclononane)- (OCH 3 ) 3
  • Cobalt bleach catalysts useful herein are known, and are described, for example, in M. L. Tobe, "Base Hydrolysis of Transition-Metal Complexes", Adv. Inorg. Bioinorg. Mech. , (1983), 2, pages 1-94.
  • the most preferred cobalt catalyst useful herein are cobalt pentaamine acetate salts having the formula [Co(NH 3 ) 5 OAc] T y , wherein "OAc" represents an acetate moiety and "T y " is an anion, and especially cobalt pentaamine acetate chloride, [Co(NH 3 ) 5 OAc]Cl 2 ; as well as [Co(NH 3 ) 5 OAc](OAc) 2 ;
  • compositions and cleaning processes herein can be adjusted to provide on the order of at least one pan per hundred million of the active bleach catalyst species in the aqueous washing medium, and will preferably provide from 0.01 ppm to 25 ppm, more preferably from 0.05 ppm to 10 ppm, and most preferably from 0.1 ppm to 5 ppm, of the bleach catalyst species in the wash liquor.
  • typical automatic dishwashing compositions herein will comprise from 0.0005% to 0.2% , more preferably from 0.004% to 0.08% , of bleach catalyst, especially manganese or cobalt catalysts, by weight of the cleaning compositions.
  • Detergent builders can optionally but preferably be included in the compositions herein, for example to assist in controlling mineral, especially Ca and/or Mg, hardness in wash water or to assist in the removal of particulate soils from surfaces.
  • Builders can operate via a variety of mechanisms including forming soluble or insoluble complexes with hardness ions, by ion exchange, and by offering a surface more favorable to the precipitation of hardness ions than are the surfaces of articles to be cleaned.
  • Builder level can vary widely depending upon end use and physical form of the composition.
  • Built detergents typically comprise at least 1 % builder.
  • Liquid formulations typically comprise 5% to 50% , more typically 5 % to 35% of builder.
  • Granular formulations typically comprise from 10% to 80% , more typically 15% to 50% builder by weight of the detergent composition.
  • Lower or higher levels of builders are not excluded. For example, certain detergent additive or high-surfactant formulations can be unbuilt.
  • Suitable builders herein can be selected from the group consisting of phosphates and polyphosphates, especially the sodium salts; silicates including water-soluble and hydrous solid types and including those having chain-, layer-, or three-dimensional- structure as well as amorphous-solid or non-structured-liquid types; carbonates, bicarbonates, sesquicarbonates and carbonate minerals other than sodium carbonate or sesquicarbonate; aluminosilicates; organic mono-, di-, tri-, and tetracarboxylates especially water-soluble nonsurfactant carboxylates in acid, sodium, potassium or alkanolammonium salt form, as well as oligomeric or water-soluble low molecular weight polymer carboxylates including aliphatic and aromatic types; and phytic acid.
  • silicates including water-soluble and hydrous solid types and including those having chain-, layer-, or three-dimensional- structure as well as amorphous-solid or non-structured-liquid types
  • borates e.g., for pH-buffering purposes
  • sulfates especially sodium sulfate and any other fillers or carriers which may be important to the engineering of stable surfactant and/or builder-containing detergent compositions.
  • Builder mixtures sometimes termed “builder systems” can be used and typically comprise two or more conventional builders, optionally complemented by chelants, pH-buffers or fillers, though these latter materials are generally accounted for separately when describing quantities of materials herein.
  • preferred builder systems are typically formulated at a weight ratio of surfactant to builder of from 60: 1 to 1 :80.
  • Certain preferred laundry detergents have said ratio in the range 0.90:1.0 to 4.0: 1.0, more preferably from 0.95: 1.0 to 3.0: 1.0.
  • P-containing detergent builders often preferred where permitted by legislation include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of
  • NaSKS-6 is a crystalline layered aluminium-free ⁇ -Na 2 SiO 5 morphology silicate marketed by Hoechst and is preferred especially in granular laundry compositions. See preparative methods in German DE-A-3,417,649 and DE-A-3,742,043.
  • Other layered silicates such as those having the general formula NaMSi x O 2x + 1 ⁇ yH 2 O wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0, can also or alternately be used herein.
  • crystalline ion exchange materials or hydrates thereof having chain structure and a composition represented by the following general formula in an anhydride form: xM 2 O ⁇ ySiO 2 .zM'O wherein M is Na and/or K, M' is Ca and/or Mg; y/x is 0.5 to 2.0 and z/x is 0.005 to 1.0 as taught in U.S. 5,427,711,
  • Suitable carbonate builders include alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973, although sodium bicarbonate, sodium carbonate, sodium sesquicarbonate, and other carbonate minerals such as trona or any convenient multiple salts of sodium carbonate and calcium carbonate such as those having the composition 2Na 2 CO 3 .CaCO 3 when anhydrous, and even calcium carbonates including calcite, aragonite and vaterite, especially forms having high surface areas relative to compact calcite may be useful, for example as seeds or for use in synthetic detergent bars.
  • Aluminosilicate builders are especially useful in granular detergents, but can also be incorporated in liquids, pastes or gels. Suitable for the present purposes are those having empirical formula: [M 2 (AlO 2 ) z (SiO 2 ) v ] ⁇ xH 2 O wherein z and v are integers of at least 6, the molar ratio of z to v is in the range from 1.0 to 0.5, and x is an integer from 15 to 264.
  • Aluminosilicates can be crystalline or amorphous, naturally-occurring or synthetically derived. An aluminosilicate production method is in U.S. 3,985,669, Krummel, et al, October 12, 1976.
  • the aluminosilicate has a particle size of 0.1-10 microns in diameter.
  • Suitable organic detergent builders include polycarboxylate compounds, including water- soluble nonsurfactant dicarboxy lates and tricarboxy lates. More typically builder
  • polycarboxylates have a plurality of carboxylate groups, preferably at least 3 carboxylates.
  • Carboxylate builders can be formulated in acid, partially neutral, neutral or overbased form. When in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
  • Polycarboxylate builders include the ether polycarboxylates, such as oxydisuccinate, see Berg, U.S. 3, 128,287, April 7, 1964, and Lamberti et al, U.S. 3,635,830, January 18, 1972; "TMS/TDS" builders of U.S.
  • citric acid and soluble salts thereof are important carboxylate builders e.g. , for heavy duty liquid detergents, due to availability from renewable resources and biodegradability.
  • Citrates can also be used in granular compositions, especially in combination with zeolite and/or layered silicates.
  • Oxydisuccinates are also especially useful in such compositions and combinations.
  • alkali metal phosphates such as sodium tripolyphosphates, sodium
  • pyrophosphate and sodium orthophosphate can be used.
  • Phosphonate builders such as ethane-1-hydroxy-1, 1-diphosphonate and other known phosphonates, e.g. , those of U.S. 3,159,581; 3,213,030; 3,422,021; 3,400, 148 and 3,422,137 can also be used and may have desirable antiscaling properties.
  • Succinate builders also include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2- pentadecenylsuccinate.
  • Lauryl-succinates are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986.
  • Fatty acids e.g., C 12 - C 18 monocarboxylic acids, can also be incorporated into the compositions as surfactant/builder materials alone or in combination with the aforementioned builders, especially citrate and/or the succinate builders, to provide additional builder activity.
  • Other suitable polycarboxylates are disclosed in U.S. 4,144,226, Crutchfield et al, March 13, 1979 and in U.S. 3,308,067, Diehl, March 7, 1967. See also Diehl, U.S. 3,723,322.
  • Mineral Builders Waters of hydration or anions other than carbonate may be added provided that the overall charge is balanced or neutral.
  • a water-soluble cation selected from the group consisting of hydrogen, water- soluble metals, hydrogen, boron, ammonium, silicon, and mixtures thereof, more preferably, sodium, potassium, hydrogen, lithium, ammonium and mixtures thereof, sodium and potassium being highly preferred.
  • noncarbonate anions include those selected from the group consisting of chloride, sulfate, fluoride, oxygen, hydroxide, silicon dioxide, chromate, nitrate, borate and mixtures thereof.
  • NaKCa 2 (CO 3 ) 3 K 2 Ca 2 (CO 3 ) 3 , and combinations thereof.
  • An especially preferred material for the builder described herein is Na 2 Ca(CO 3 ) 2 in any of its crystalline modifications.
  • Suitable builders of the above-defined type are further illustrated by, and include, the natural or synthetic forms of any one or combinations of the following minerals:sammlungite, Andersonite, AshcroftineY, Beyerite, Borcarite, Burbankite,
  • Preferred SRA's typically have hydrophilic segments to hydrophilize the surface of hydrophobic fibers such as polyester and nylon, and hydrophobic segments to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles thereby serving as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with SRA to be more easily cleaned in later washing procedures.
  • SRA's can include a variety of charged, e.g. , anionic or even cationic (see U.S.
  • ester oligomers can be prepared by (a) ethoxylating allyl alcohol, (b) reacting the product of (a) with dimethyl terephthalate (“DMT”) and 1 ,2-propylene glycol (“PG”) in a two-stage transesterification/ oligomerization procedure and (c) reacting the product of (b) with sodium metabisulfite in water; the nonionic end-capped 1 ,2- propylene/polyoxyethylene terephthalate polyesters of U.S.
  • DMT dimethyl terephthalate
  • PG ,2-propylene glycol
  • Gosselink et al for example those produced by transesterification/oligomerization of poly(ethyleneglycol) methyl ether, DMT, PG and poly(ethyleneglycol) ("PEG"); the partly- and fully- anionic-end-capped oligomeric esters of U.S. 4,721,580, January 26, 1988 to Gosselink, such as oligomers from ethylene glycol ("EG "), PG, DMT and Na-3,6-dioxa-8- hydroxyoctanesulfonate; the nonionic-capped block polyester oligomeric compounds of U.S.
  • Gosselink for example produced from DMT, Me- capped PEG and EG and/or PG, or a combination of DMT, EG and/or PG, Me-capped PEG and Na-dimethyl-5-sulfoisophthalate; and the anionic, especially sulfoaroyl, end- capped terephthalate esters of U.S.
  • Gosselink et al 4,877,896, October 31, 1989 to Maldonado, Gosselink et al, the latter being typical of SRA's useful in both laundry and fabric conditioning products, an example being an ester composition made from m-sulfobenzoic acid monosodium salt, PG and DMT optionally but preferably further comprising added PEG, e.g. , PEG 3400.
  • Suitable SRA's characterised by poly(vinyl ester) hydrophobe segments include graft copolymers of poly(vinyl ester), e.g., C 1 -C 6 vinyl esters, preferably poly(vinyl acetate), grafted onto polyalkylene oxide backbones. See European Patent Application 0 219 048, published April 22, 1987 by Kud, et al.
  • SOKALAN SRA's such as SOKALAN HP-22, available from BASF, Germany.
  • Other SRA's are polyesters with repeat units containing 10-15% by weight of ethylene terephthalate together with 90-80% by weight of
  • polyoxyethylene terephthalate derived from a polyoxyethylene glycol of average molecular weight 300-5,000.
  • Commercial examples include ZELCON 5126 from Dupont and
  • SRA is an oligomer having empirical formula (CAP) 2 (EG/PG) 5 (T) 5 (SIP) 1 which comprises terephthaloyl (T), sulfoisophthaloyl (SEP), oxyethyleneoxy and oxy-1,2-propylene (EG/PG) units and which is preferably terminated with end-caps (CAP), preferably modified isethionates, as in an oligomer comprising one sulfoisophthaloyl unit, 5 terephthaloyl units, oxyethyleneoxy and oxy-1,2-propyleneoxy units in a defined ratio, preferably about 0.5: 1 to about 10: 1, and two end-cap units derived from sodium 2-(2-hydroxyethoxy)-ethanesulfonate.
  • CAP empirical formula
  • Said SRA preferably further comprises from 0.5% to 20%, by weight of the oligomer, of a crystallinity-reducing stabiliser, for example an anionic surfactant such as linear sodium dodecylbenzenesulfonate or a member selected from xylene-, cumene-, and toluene- sulfonates or mixtures thereof, these stabilizers or modifiers being introduced into the synthesis pot, all as taught in U.S. 5,415,807, Gosselink, Pan, Kellett and Hall, issued May 16, 1995.
  • Suitable monomers for the above SRA include Na 2-(2-hydroxyethoxy)-ethanesulfonate, DMT, Na- dimethyl 5- sulfoisophthalate, EG and PG.
  • oligomeric esters comprising: (1) a backbone comprising (a) at least one unit selected from me group consisting of dihydroxysulfonates, polyhydroxy sulfonates, a unit which is at least trifunctional whereby ester linkages are formed resulting in a branched oligomer backbone, and combinations thereof; (b) at least one unit which is a terephthaloyl moiety; and (c) at least one unsulfonated unit which is a 1,2-oxyalkyleneoxy moiety; and (2) one or more capping units selected from nonionic capping units, anionic capping units such as alkoxylated, preferably ethoxylated, isethionates, alkoxylated propanesulfonates, alkoxylated propanedisulfonates, alkoxylated phenolsulfonates, sulfoaroyl derivatives and mixtures thereof Preferred of such esters are those of empirical formula.
  • SEG and CAP monomers for the above esters include Na-2-(2-,3- dihydroxypropoxy)ethanesulfonate (“SEG”), Na-2- ⁇ 2-(2-hydroxyethoxy) ethoxy ⁇ ethanesulfonate (“SE3”) and its homologs and mixtures thereof and the products of ethoxylating and sulfonating allyl alcohol.
  • Preferred SRA esters in this class include the product of transesterifying and oligomerizing sodium 2- ⁇ 2-(2- hydroxyethoxy)ethoxy ⁇ ethanesulfonate and/or sodium 2-[2- ⁇ 2-(2-hydroxyethoxy)- ethoxy ⁇ ethoxy]ethanesulfonate, DMT, sodium 2-(2,3-dihydroxypropoxy) ethane sulfonate, EG, and PG using an appropriate Ti(IV) catalyst and can be designated as (CAP)2(T)5(EG/PG)1.4(SEG)2.5(B)0.13 wherein CAP is (Na+ -O 3 S[CH 2 CH 2 O]3.5)- and B is a unit from glycenn and the mole ratio EG/PG is about 1.7- 1 as measured by conventional gas chromatography after complete hydrolysis.
  • SRA's include (I) nonionic terephthalates using diisocyanate coupling agents to link up polymeric ester structures, see U S 4,201 ,824, Violland et al. and U.S 4,240,918 Lagasse et al; (II) SRA's with carboxylate terminal groups made by adding trimellitic anhydride to known SRA's to convert terminal hydroxyl groups to trimellitate esters. With a proper selection of catalyst, the trimellitic anhydride forms linkages to the terminals of the polymer through an ester of the isolated carboxylic acid of trimellitic anhydride rather than by opening of the anhydride linkage.
  • Either nonionic or anionic SRA's may be used as starting materials as long as they have hydroxyl terminal groups which may be esterified. See U.S. 4,525,524 Tung et al. ; (Ill) anionic terephthalate-based SRA's of the urethane-linked variety, see U.S. 4,201 ,824, Violland et al; (IV) poly(vinyl caprolactam) and related co-polymers with monomers such as vinyl pyrrolidone and/or dimethylaminoethyl methacrylate, including both nonionic and cationic polymers, see U.S.
  • compositions of the present invention can also optionally contain water-soluble ethoxylated amines having clay soil removal and antiredeposition properties.
  • Granular detergent compositions which contain these compounds typically contain from 0.01 % to 10.0% by weight of the water-soluble ethoxylates amines; liquid detergent compositions typically contain 0.01 % to 5%.
  • the most preferred soil release and anti-redeposition agent is ethoxylated tetraethylene- pentamine.
  • Exemplary ethoxylated amines are further described in U.S. Patent 4,597,898, VanderMeer, issued July 1, 1986.
  • Another group of preferred clay soil removal- antiredeposition agents are the cationic compounds disclosed in European Patent
  • Clay soil removal/antiredeposition agents which can be used include the ethoxylated amine polymers disclosed in European Patent Application 111 ,984, Gosselink, published June 27, 1984; the zwitterionic polymers disclosed in European Patent Application 112,592, Gosselink, published July 4, 1984; and the amine oxides disclosed in U.S. Patent 4,548,744, Connor, issued October 22, 1985.
  • Other clay soil removal and/or anti redeposition agents known in the art can also be utilized in the compositions herein. See U.S. Patent 4,891 ,160, VanderMeer, issued January 2, 1990 and WO 95/32272, published November 30, 1995.
  • Another type of preferred antiredeposition agent includes the carboxy methyl cellulose (CMC) materials. These materials are well known in the art.
  • Polymeric dispersing agents can advantageously be utilized at levels from 0.1 % to 7%, by weight, in the compositions herein, especially in the presence of zeolite and/or layered silicate builders.
  • Suitable polymeric dispersing agents include polymeric polycarboxylates and polyethylene glycols, although others known in the art can also be used. It is believed, though it is not intended to be limited by theory, that polymeric dispersing agents enhance overall detergent builder performance, when used in combination with other builders (including lower molecular weight polycarboxylates) by crystal growth inhibition, particulate soil release peptization, and anti-redeposition.
  • Polymeric polycarboxylate materials can be prepared by polymerizing or copolymerizing suitable unsaturated monomers, preferably in their acid form.
  • Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid.
  • the presence in the polymeric polycarboxylates herein or monomeric segments, containing no carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that such segments do not constitute more than 40% by weight.
  • Particularly suitable polymeric polycarboxylates can be derived from acrylic acid.
  • acrylic acid-based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid.
  • the average molecular weight of such polymers in the acid form preferably ranges from 2,000 to 10,000, more preferably from 4,000 to 7,000 and most preferably from 4,000 to 5,000.
  • Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammomum salts.
  • Soluble polymers of this type are known materials. Use of polyacrylates of this type in detergent compositions has been disclosed, for example, in Diehl, U.S. Patent 3,308,067, issued March 7, 1967.
  • Acrylic/maleic-based copolymers may also be used as a preferred component of the dispersing/anti-redeposition agent.
  • Such materials include the water-soluble salts of copolymers of acrylic acid and maleic acid.
  • the average molecular weight of such copolymers in the acid form preferably ranges from 2.000 to 100,000, more preferably from 5,000 to 75,000, most preferably from 7,000 to 65,000.
  • the ratio of acrylate to maleate segments in such copolymers will generally range from 30: 1 to 1: 1, more preferably from 10: 1 to 2: 1.
  • Water-soluble salts of such acrylic acid/maleic acid copolymers can include, for example, the alkali metal, ammonium and substituted ammomum salts.
  • Soluble acrylate/maleate copolymers of this type are known materials which are described in European Patent Application No. 66915, published December 15, 1982, as well as in EP 193,360, published September 3, 1986, which also describes such polymers comprising hydroxypropylacrylate.
  • Still other useful dispersing agents include the maleic/acry lie/vinyl alcohol terpolymers. Such materials are also disclosed in EP 193,360, including, for example, the 45/45/10 terpolymer of acrylic/maleic/vinyl alcohol.
  • PEG polyethylene glycol
  • PEG can exhibit dispersing agent performance as well as act as a clay soil removal-antiredeposition agent.
  • Typical molecular weight ranges for these purposes range from 500 to 100,000, preferably from 1 ,000 to 50,000, more preferably from 1 ,500 to 10,000.
  • Polyaspartate and polyglutamate dispersing agents may also be used, especially in conjunction with zeolite builders.
  • Dispersing agents such as polyaspartate preferably have a molecular weight (avg.) of 10,000.
  • Brightener Any optical brighteners or other brightening or whitening agents known in the art can be incorporated at levels typically from 0.01 % to 1.2% , by weight, into the detergent compositions herein.
  • Commercial optical brighteners which may be useful in the present invention can be classified into subgroups, which include, but are not necessarily limited to, derivatives of stilbene, pyrazoline, coumarin, carboxylic acid, methinecyanines, dibenzothiophene-5,5-dioxide, azoles, 5- and 6-membered-ring heterocycles, and other miscellaneous agents. Examples of such brighteners are disclosed in "The Production and Application of Fluorescent Brightening Agents" , M.
  • optical brighteners which are useful in the present compositions are those identified in U.S. Patent 4,790,856, issued to Wixon on December 13, 1988. These brighteners include the PHORWHITE series of brighteners from Verona.
  • Tinopal UNPA Tinopal CBS and Tinopal 5BM
  • Ciba-Geigy Artic White CC and Artic White CWD
  • 2-(4-styryl- phenyl)-2H-naptho[1 ,2-d]triazoles 4,4'-bis-(1 ,2,3-triazol-2-yl)-stilbenes
  • 4,4'- bis(styryl)bisphenyls 4,4'- bis(styryl)bisphenyls
  • aminocoumarins aminocoumarins.
  • Preferred poiyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrrolidine, piperidine and derivatives thereof.
  • the N-O group can be represented by the following general structures: wherein R 1 , R 2 , R 3 are aliphatic, aromatic, heterocyclic or alicyclic groups or
  • Any polymer backbone can be used as long as the amine oxide polymer formed is water- soluble and has dye transfer inhibiting properties.
  • suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof. These polymers include random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is an N-oxide.
  • the amine N-oxide polymers typically have a ratio of amine to the amine N-oxide of 10: 1 to 1 : 1 ,000,000.
  • the number of amine oxide groups present in the poiyamine oxide polymer can be varied by appropriate copolymerization or by an appropriate degree of N-oxidation.
  • the poiyamine oxides can be obtained in almost any degree of
  • the average molecular weight is within the range of 500 to 1,000,000; more preferred 1,000 to 500,000; most preferred 5,000 to 100,000.
  • This preferred class of materials can be referred to as "PVNO" .
  • the PVPVI copolymers typically have a molar ratio of N- vinylimidazole to N-vinylpyrrolidone from 1 : 1 to 0.2: 1 , more preferably from 0.8: 1 to 0.3: 1 , most preferably from 0.6:1 to 0.4: 1. These copolymers can be either linear or branched.
  • compositions also may employ a polyvinylpyrrolidone (“PVP”) having an average molecular weight of from 5,000 to 400,000, preferably from 5,000 to 200,000, and more preferably from 5,000 to 50,000.
  • PVP's are known to persons skilled in the detergent field; see, for example, EP-A-262,897 and EP-A-256,696, incorporated herein by reference.
  • Compositions containing PVP can also contain polyethylene glycol (“PEG”) having an average molecular weight from 500 to 100,000, preferably from 1 ,000 to 10,000.
  • PEG polyethylene glycol
  • the ratio of PEG to PVP on a ppm basis delivered in wash solutions is from 2:1 to 50: 1 , and more preferably from 3:1 to 10: 1.
  • hydrophilic optical brighteners useful in the present invention are those having the structural formula:
  • R 1 is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl
  • R 2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, morphilino, chloro and amino
  • M is a salt-forming cation such as sodium or potassium.
  • R 1 is anilino
  • R 2 is N-2-bis-hydroxyethyl and M is a cation such as sodium
  • the brightener is 4,4' ,-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine-2- yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX by Ciba-Geigy Corporation. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
  • R 1 is anilino
  • R 2 is N-2-hydroxyethyl-N-2-methylamino
  • M is a cation such as sodium
  • the brightener is 4,4'-bis[(4-anilino-6-(N-2-hydroxyethyl-N- methylamino)-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid disodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal 5BM- GX by Ciba-Geigy Corporation.
  • R 1 is anilino
  • R 2 is morphilino
  • M is a cation such as sodium
  • the brightener is 4,4'-bis[(4-anilino-6-morphilino-s-triazine-2-yl)amino]2,2'- stilbenedisulfonic acid, sodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX by Ciba Geigy Corporation.
  • the specific optical brightener species selected for use in the present invention provide especially effective dye transfer inhibition performance benefits when used in combination with the selected polymeric dye transfer inhibiting agents hereinbefore described.
  • the combination of such selected polymeric materials e.g.
  • PVNO and/or PVPVI with such selected optical brighteners (e.g., Tinopal UNPA-GX, Tinopal 5BM-GX and/or Tinopal AMS-GX) provides significantly better dye transfer inhibition in aqueous wash solutions than does either of these two detergent composition components when used alone.
  • selected optical brighteners e.g., Tinopal UNPA-GX, Tinopal 5BM-GX and/or Tinopal AMS-GX
  • the extent to which brighteners deposit on fabrics in the wash solution can be defined by a parameter called the "exhaustion coefficient" .
  • the exhaustion coefficient is in general as the ratio of a) the brightener material deposited on fabric to b) the initial brightener concentration in the wash liquor. Brighteners with relatively high exhaustion coefficients are the most suitable for inhibiting dye transfer in the context of the present invention.
  • the detergent compositions herein may also optionally contain one or more iron and/or manganese chelating agents.
  • chelating agents can be selected from the group consisting of amino carboxylates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures therein, all as hereinafter defined. Without intending to be bound by theory, it is believed that the benefit of these materials is due in part to their exceptional ability to remove iron and manganese ions from washing solutions by formation of soluble chelates.
  • Amino carboxylates useful as optional chelating agents include emylenedianiinetetraceta.es, N-hydroxyethy lethy lenediaminetriacetates, nitrilotriacetates, ethylenediamine
  • tetraproprionates triethylenetetraaminehexacetates, diethylenetriaminepentaacetates, and ethanoldiglycines, alkali metal, ammomum, and substimted ammonium salts therein and mixtures therein.
  • Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at least low levels of total phosphorus are permitted in detergent compositions, and include ethylenediaminetetrakis (methylenephosphonates) as DEQUEST. Preferred, these amino phosphonates to not contain alkyl or alkenyl groups with more than 6 carbon atoms.
  • Polyfunctionally-substituted aromatic chelating agents are also useful in the compositions herein. See U.S. Patent 3,812,044, issued May 21 , 1974, to Connor et al.
  • Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1 ,2-dihydroxy- 3,5-disulfobenzene.
  • a preferred biodegradable chelator for use herein is ethylenediamine disuccinate
  • EDDS especially the [S,S] isomer as described in U.S. Patent 4,704,233, November 3, 1987, to Hartman and Perkins.
  • compositions herein may also contain water-soluble methyl glycine diacetic acid (MGDA) salts (or acid form) as a chelant or co-builder useful with, for example, insoluble builders such as zeolites, layered silicates.
  • MGDA water-soluble methyl glycine diacetic acid
  • these chelating agents will generally comprise from 0 .1 % to 15 % by weight of the detergent compositions herein. More preferably, if utilized, the chelating agents will comprise from 0. 1 % to 3 .0% by weight of such compositions Suds Suppressors
  • suds suppressors A wide variety of materials may be used as suds suppressors, and suds suppressors are well known to those skilled in the art. See, for example, Kirk Othmer Encyclopedia of
  • One category of suds suppressor of particular interest encompasses monocarboxylic fatty acid and soluble salts therein. See U.S Patent 2,954,347, issued September 27, 1960 to Wayne St. John.
  • the monocarboxylic fatty acids and salts thereof used as suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms.
  • Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammomum and alkanolammonium salts.
  • the detergent compositions herein may also contain non-surfactant suds suppressors.
  • hydrocarbons such as paraffin, fatty acid esters (e.g. , fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C 18 -C 40 ketones (e.g , stearone), etc.
  • suds inhibitors include N-alkylated ammo triazines such as tri- to hexa-alkylmelamines or di- to tetra-alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, and monostearyl phosphates such as monostearyl alcohol phosphate ester and monostearyl di-alkali metal (e g , K, Na, and Li) phosphates and phosphate esters
  • the hydrocarbons such as paraffin and haloparaffin can be utilized in liquid form.
  • the liquid hydrocarbons will be liquid at room temperature and atmospheric pressure, and will have a pour point in the range of -40°C and 50°C, and a minimum boiling point not less thanl 10°C (atmospheric pressure). It is also known to utilize waxy hydrocarbons, preferably having a melting point below 100°C.
  • the hydrocarbons constitute a preferred category of suds suppressor for detergent compositions. Hydrocarbon suds suppressors are described, for example, in U.S. Patent 4,265.779, issued May 5, 1981 to Gandolfo et al.
  • the hydrocarbons thus, include aliphatic, alicyclic, aromatic, and heterocyclic saturated or unsaturated hydrocarbons having from 12 to 70 carbon atoms.
  • the term "paraffin,” as used in this suds suppressor discussion, is intended to include mixtures of true paraffins and cyclic hydrocarbons.
  • Non-surfactant suds suppressors comprises silicone suds suppressors.
  • This category includes the use of polyorganosiloxane oils, such as
  • Silicone suds suppressors are well known in the art and are, for example, disclosed in U.S. Patent 4,265,779, issued May 5, 1981 to Gandolfo et al and European Patent Application No. 89307851.9, published February 7, 1990, by Starch, M. S.
  • silicone suds suppressors are disclosed in U.S. Patent 3,455,839 which relates to compositions and processes for defoaming aqueous solutions by incorporating therein small amounts of polydimethylsiloxane fluids. Mixtures of silicone and silanated silica are described, for instance, in German Patent Application DOS 2,124,526. Silicone defoamers and suds controlling agents in granular detergent compositions are disclosed in U.S. Patent 3,933,672, Bartolotta et al, and in U.S. Patent 4,652,392, Baginski et al, issued March 24, 1987.
  • An exemplary silicone based suds suppressor for use herein is a suds suppressing amount of a suds controlling agent consisting essentially of:
  • polydimethylsiloxane fluid having a viscosity of from about 20 cs. to about
  • the solvent for a continuous phase is made up of certain polyethylene glycols or polyethylene-polypropylene glycol copolymers or mixtures thereof (preferred), or polypropylene glycol.
  • the primary silicone suds suppressor is branched/crosslinked and preferably not linear.
  • typical liquid laundry detergent compositions with controlled suds will optionally comprise from about 0.001 to about 1 , preferably from about 0.01 to about 0.7, most preferably from about 0.05 to about 0.5, weight % of said silicone suds suppressor, which comprises (1) a nonaqueous emulsion of a primary antifoam agent which is a mixture of (a) a polyorganosiloxane, (b) a resinous siloxane or a silicone resin-producing silicone compound, (c) a finely divided filler material, and (d) a catalyst to promote the reaction of mixture components (a), (b) and (c), to form silanolates; (2) at least one nonionic silicone surfactant; and (3) polyethylene glycol or a copolymer of polyethylene-polypropylene glycol having a solubility in water at room temperature of more than about 2 weight % ; and without polypropylene glycol.
  • a primary antifoam agent which is a mixture of (a) a polyorgan
  • the preferred silicone suds suppressors used herein do not contain polypropylene glycol, particularly of 4,000 molecular weight. They also preferably do not contain block copolymers of ethylene oxide and propylene oxide, like PLURONIC L101.
  • Other suds suppressors useful herein comprise the secondary alcohols (e.g., 2-alkyl alkanols) and mixtures of such alcohols with silicone oils, such as the silicones disclosed in U.S. 4,798.679, 4,075, 118 and EP 150,872.
  • the secondary alcohols include the C 6 -C 16 alkyl alcohols having a C 1 -C 16 chain.
  • a preferred alcohol is 2-butyl octanol, which is available from Condea under the trademark ISOFOL 12.
  • Suds suppressors typically comprise mixtures of alcohol + silicone at a weight ratio of 1 :5 to 5: 1.
  • suds should not form to the extent that they either overflow the washing machine or negatively affect the washing mechanism of the dishwasher.
  • Suds suppressors, when utilized, are preferably present in a "suds suppressing amount.
  • Suds suppressing amount is meant that the formulator of the composition can select an amount of this suds controlling agent that will sufficiently control the suds to result in a low-sudsing laundry or dishwashing detergents for use in automatic laundry or dishwashing machines.
  • compositions herein will generally comprise from 0% to 10% of suds suppressor.
  • monocarboxylic fatty acids, and salts therein will be present typically in amounts up to 5% , by weight, of the detergent composition.
  • Silicone suds suppressors are typically utilized in amounts up to 2.0% , by weight, of the detergent composition, although higher amounts may be used. This upper limit is practical in nature, due primarily to concern with keeping costs minimized and effectiveness of lower amounts for effectively controlling sudsing. Preferably from 0.01 % to 1 % of silicone suds suppressor is used, more preferably from 0.25 % to 0.5%. As used herein, these weight percentage values include any silica that may be utilized in combination with polyorganosiloxane, as well as any optional materials that may be utilized. Monostearyl phosphate suds suppressors are generally utilized in amounts ranging from 0.1 % to 2% , by weight, of the composition. Hydrocarbon suds suppressors are typically utilized in amounts ranging from 0.01 % to 5.0% , although higher levels can be used. The alcohol suds suppressors are typically used at 0.2%-3% by weight of the finished compositions.
  • Perfumes and perfumery ingredients useful in the present compositions and processes comprise a wide variety of natural and synthetic chemical ingredients, including, but not limited to, aldehydes, ketones, esters. Also included are various natural extracts and essences which can comprise complex mixtures of ingredients, such as orange oil, lemon oil, rose extract, lavender, musk, patchouli, balsamic essence, sandalwood oil, pine oil, cedar. Finished perfumes can comprise extremely complex mixtures of such ingredients. Finished perfumes typically comprise from 0.01 % to 2% , by weight, of the detergent compositions herein, and individual perfumery ingredients can comprise from 0.0001 % to 90% of a finished perfume composition.
  • Non-limiting examples of perfume ingredients useful herein include: 7-acetyl- 1 ,2,3,4,5,6,7,8-octahydro-1 , 1 ,6,7-tetramethyl naphthalene; ionone methyl; ionone gamma methyl; methyl cedrylone; methyl dihydrojasmonate; methyl 1 ,6, 10-trimethyl-2,5,9- cyclododecatrien-1-yl ketone; 7-acetyl-1 ,1 ,3,4,4,6-hexamethyl tetralin; 4-acetyl-6-tert- butyl-1 ,1-dimethyl indane; para-hydroxy-phenyl-butanone; benzophenone; methyl beta- naphthyl ketone; 6-acetyl-1, 1 ,2,3,3,5-hexamethyl indane; 5-acetyl-3-isopropyl-1 , 1,2,6- tetramethyl indane
  • Particularly preferred perfume materials are those that provide the largest odor
  • perfumes include but are not limited to: hexyl cinnamic aldehyde; 2-methyl-3-(para-tert- butylphenyl)-propionaldehyde; 7-acetyl-1 ,2,3,4,5,6,7,8-octahydro-1,1 ,6,7-tetramethyl naphthalene; benzyl salicylate; 7-acetyl-1,1,3,4,4,6-hexamethyl tetralin; para-tert-buryl cyclohexyl acetate; methyl dihydro jasmonate; beta-napthol methyl ether; methyl beta- naphthyl ketone; 2-methyl-2-(para-iso-propylphenyl)-propionaldehyde; 1,3,4,6,7,8- hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta-gamma-2-benz
  • perfume materials include essential oils, resinoids, and resins from a variety of sources including, but not limited to: Peru balsam, Olibanum resinoid, styrax, labdanum resin, nutmeg, cassia oil, benzoin resin, coriander and lavandin.
  • Still other perfume chemicals include phenyl ethyl alcohol, terpineol, linalool, linalyl acetate, geraniol, nerol, 2-(1, 1-dimethylethyl)-cyclohexanol acetate, benzyl acetate, and eugenol.
  • Carriers such as diethylphthalate can be used in the finished perfume compositions.
  • Other Ingredients such as diethylphthalate can be used in the finished perfume compositions.
  • compositions herein A wide variety of other ingredients useful in detergent compositions can be included in the compositions herein, including other active ingredients, carriers, hydrotropes, processing aids, dyes or pigments, solvents for liquid formulations, solid fillers for bar compositions, etc. If high sudsing is desired, suds boosters such as the C 10 -C 16 alkanolamides can be incorporated into the compositions, typically at 1 %-10% levels.
  • monoethanol and diethanol amides illustrate a typical class of such suds boosters.
  • Use of such suds boosters with high sudsing optional surfactants such as the amine oxides, betaines and sultaines noted above is also advantageous.
  • water-soluble magnesium and/or calcium salts such as MgCl 2 , MgSO 4 , CaCl 2 CaSO 4 , can be added at levels of, typically, 0.1 %-2%, to provide additional suds and to enhance grease removal performance.
  • Various detersive ingredients employed in the present compositions optionally can be further stabilized by absorbing said ingredients onto a porous hydrophobic substrate, then coating said substrate with a hydrophobic coating.
  • the detersive ingredient is admixed with a surfactant before being absorbed into the porous substrate.
  • the detersive ingredient is released from the substrate into the aqueous washing liquor, where it performs its intended detersive function.
  • SIPERNAT D10 DeGussa
  • a proteolytic enzyme solution containing 3 %- 5 % of C 13- 15 ethoxylated alcohol (EO 7) nonionic surfactant.
  • EO 7 ethoxylated alcohol
  • enzyme/surfactant solution is 2.5 X the weight of silica.
  • the resulting powder is dispersed with stirring in silicone oil (various silicone oil viscosities in the range of 500-12,500 can be used).
  • silicone oil various silicone oil viscosities in the range of 500-12,500 can be used.
  • the resulting silicone oil dispersion is emulsified or otherwise added to the final detergent matrix.
  • ingredients such as the aforementioned enzymes, bleaches, bleach activators, bleach catalysts, photoactivators, dyes, fluorescers, fabric conditioners and hydrolyzable surfactants can be "protected" for use in detergents, including liquid laundry detergent compositions.
  • Liquid detergent compositions can contain water and other solvents as carriers.
  • Low molecular weight primary or secondary alcohols exemplified by methanol, ethanol, propanol, and isopropanol are suitable.
  • Monohydric alcohols are preferred for solubilizing surfactant, but polyols such as those containing from 2 to 6 carbon atoms and from 2 to 6 hydroxy groups (e.g. , 1,3-propanediol, ethylene glycol, glycerine, and 1 ,2-propanediol) can also be used.
  • the compositions may contain from 5% to 90% . typically 10% to 50% of such carriers.
  • the detergent compositions herein will preferably be formulated such that, during use in aqueous cleaning operations, the wash water will have a pH of between 6.5 and 11, preferably between 7.5 and 10.5.
  • Liquid dishwashing product formulations preferably have a pH between 6.8 and 9.0.
  • Laundry products are typically at pH 9-11. Techniques for controlling pH at recommended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art.
  • Granules Manufacture Adding the bis-alkoxylated cationics of this invention into a crutcher mix, followed by conventional spray drying, helps remove any residual, potentially malodorous, short-chain amine contaminants.
  • the formulator wishes to prepare an admixable particle containing the alkoxylated cationics for use in, for example, a high density granular detergent, it is preferred that the particle composition not be highly alkaline. Processes for preparing high density (above 650 g/l) granules are described in U.S. Patent 5,366,652. Such particles may be formulated to have an effective pH in-use of 9, or below, to avoid the odor of impurity amines.
  • PEG4000 Polyethylene glycol; average molecular weight 4000
  • SRA-1 Soil release agent methyl cellulose; molecular weight about 13000, degree of substitution 1.8-1.9
  • Granular detergents are as follows in Examples A and B. Dosage - 20 g/30 L
  • AQA-1 (CocoMeEO2) surfactant of the Example may be replaced by an equivalent amount of any of surfactants AQA-2 through AQA-22 or other AQA surfactants herein.
  • the bis-AQA- 1 (CocoMeEO2) surfactant of the Example may be replaced by an equivalent amount of any of surfactants bis-AQA-2 through bis-AQA-22 or other bis-AQA surfactants herein.
  • the following illustrates a laboratory procedure and test results, over a variety of soils and stains, using compositions within the scope of the invention. As will be seen from the data, overall cleaning improvements are achieved with a wide variety of soils and stains on various fabrics.
  • the sample preparation basically involves following steps :
  • the individual surfactants are weighed and mixed in the following sequence :
  • This 500 ml mixture of surfactants is good for five washes, 100 mls of this stock solution are used for per wash. This 100 ml solution when added to 49 liters of tap water gives the corresponding wash concentrations for individual surfactants.
  • Silicate 148.32 gms per 900 ml of Distilled water; 50 mls of this solution are used per wash.
  • Granules Each granule component is weighed separately in the same beaker. Order of addition to the washing machine :
  • DKPE is double-knit polyester.
  • DMO dirty motor oil
  • Test Results I show the performance of compositions according to the present invention using CoCoMeEO2 plus a mixture of LAS/AS and Test Results II show the performance using CoCoMeEO10* plus LAS/AS, as compared with CoCoMeEO2/LAS.
  • performance is measured against various soil types, i.e., body soil, builder sensitive soil, bleach sensitive soil, surfactant sensitive soil and socks.
  • EO10 indicates two poly-EO chains with an overall average of 10 EO units in the molecule, typically (but not restricted to) about 5 er chain.
  • TAS Sodium tallow alkyl sulfate
  • Soap Sodium linear alkyl carboxylate derived from an 80/20 mixture of tallow and coconut oils.
  • TPKFA C 12 -C 14 topped whole cut fatty acids
  • STPP Anhydrous sodium tripolyphosphate
  • Zeolite A Hydrated Sodium Aluminosilicate of formula
  • Citric acid Anhydrous citric acid
  • Carbonate Anhydrous sodium carbonate with a particle size between 200 ⁇ m and 900 ⁇ m
  • Bicarbonate Anhydrous sodium bicarbonate with a particle size distribution between 400 ⁇ m and 1200 ⁇ m
  • Citrate Tri-sodium citrate dihydrate of activity 86.4% with a particle size distribution between
  • MA/AA Copolymer of 1 :4 maleic /acrylic acid
  • Protease Proteolytic enzyme of activity 4KNPU/g sold by NOVO Industries A/S under the tradename
  • Alcalase Proteolytic enzyme of activity 3AU/g sold by
  • Cellulase Cellulytic enzyme of activity 1000 CEVU/g sold by NOVO Industries A/S under the tradename Carezyme
  • Amylase Amylolytic enzyme of activity 60KNU/g sold by NOVO Industries A/S under the tradename
  • Lipase Lipolytic enzyme of activity 100kLU/g sold by NOVO Industries A/S under the tradename
  • Endolase Endoglunase enzyme of activity 3000 EVU/g sold by NOVO Industries A/S
  • PB4 Sodium perborate tetrahydrate of nominal formula NaBO 2 .3H 2 O.H 2 O 2
  • PB1 Anhydrous sodium perborate bleach of
  • NOBS Nonanoyloxybenzene sulfonate in the form of the sodium salt.
  • NACA-OBS (6 nonanamido caproyl) oxybenzene
  • Mn Catalyst Mn IV 2 (m-O) 3 (1 ,4,7-trimethyl-1 ,4,7- triazacyclononane) 2 -(PF 6 ) 2 as described in
  • Brightener 1 Disodium 4,4'-bis(2-sulphostyryl)biphenyl
  • Brightener 2 Disodium 4,4'-bis(4-anilino-6-morpholino-
  • PVNO Polyvinylpyridine N-oxide
  • PVPVI Copolymer of polyvinylpyrrolidone
  • Silicone antifoam Polydimethylsiloxane foam controller with
  • siloxane-oxyalkylene copolymer as dispersing
  • said dispersing agent of 10: 1 to 100:1.
  • a and C are phosphorus-containing detergent compositions and B is a zeolite- containing detergent composition.
  • the bis-AQA- 1 (CocoMeEO2) surfactant of the Example may be replaced by an equivalent amount of any of surfactants bis-AQA-2 through bis-AQA-22 or other bis-AQA surfactants herein.
  • nil bleach-containing detergent formulations are of particular use in washing colored clothing.
  • the bis-AQA- 1 (CocoMeEO2) surfactant of the Example may be replaced by an equivalent amount of any of surfactants bis-AQA-2 through bis-AQA-22 or other bis-AQA surfactants herein.
  • the bis-AQA-1 (CocoMeEO2) surfactant of the Example may be replaced by an equivalent amount of any of surfactants bis-AQA-2 through bis-AQA-22 or other bis-AQA surfactants herein.
  • the bis-AQA-1 (CocoMeEO2) surfactant of the Example may be replaced by an equivalent amount of any of surfactants bis-AQA-2 through bis-AQA-22 or other bis-AQA surfactants herein.
  • liquid detergent formulations according to the present invention are prepared:
  • the bis-AQA-1 (CocoMeEO2) surfactant of the Example may be replaced by an equivalent amount of any of surfactants bis-AQA-2 through bis-AQA-22 or other bis-AQA surfactants herein.
  • Any of the granular detergent compositions provided herein may be tabletted using known tabletting methods to provide detergent tablets.
  • compositions can contain various particulate detersive ingredients (e.g. , bleaching agents, as disclosed hereinabove) stably suspended therein.
  • Such non-aqueous compositions thus comprise a LIQUID PHASE and, optionally but preferably, a SOLID PHASE, all as described in more detail hereinafter and in the cited references.
  • the AQA surfactants are incorporated in the compositions at the levels and in the manner described hereinabove for the manufacture of other laundry detergent compositions.
  • the liquid phase will generally comprise from 35 % to 99% by weight of the detergent compositions herein. More preferably, the liquid phase will comprise from 50% to 95% by weight of the compositions. Most preferably, the liquid phase will comprise from 45% to 75% by weight of the compositions herein.
  • the liquid phase of the detergent compositions herein essentially contains relatively high concentrations of a certain type anionic surfactant combined with a certain type of nonaqueous, liquid diluent.
  • the anionic surfactant essentially utilized as an essential component of the nonaqueous liquid phase is one selected from the alkali metal salts of alkylbenzene sulfonic acids in which the alkyl group contains from 10 to 16 carbon atoms, in straight chain or branched chain configuration.
  • alkylbenzene sulfonic acids in which the alkyl group contains from 10 to 16 carbon atoms, in straight chain or branched chain configuration.
  • LAS sodium and potassium linear straight chain alkylbenzene sulfonates
  • the average number of carbon atoms in the alkyl group is from 11 to 14.
  • Sodium C 11 -C 14 LAS is especially preferred.
  • the alkylbenzene sulfonate anionic surfactant will be dissolved in the nonaqueous liquid diluent which makes up the second essential component of the nonaqueous phase.
  • me alkylbenzene sulfonate anionic surfactant is generally present to the extent of from 30% to 65% by weight of the liquid phase. More preferably, the alkylbenzene sulfonate anionic surfactant will comprise from 35% to 50% by weight of the nonaqueous liquid phase of the compositions herein. Utilization of this anionic surfactant in these concentrations corresponds to an anionic surfactant concentration in the total composition of from 15% to 60% by weight, more preferably from 20% to 40% by weight, of the composition.
  • the hereinbefore described alkylbenzene sulfonate anionic surfactant is combined with a nonaqueous liquid diluent which contains two essential components. These two components are a liquid alcohol alkoxylate material and a nonaqueous, low-polarity organic solvent,
  • Neodols include Neodol 1-5, an ethoxylated fatty alcohol averaging 11 carbon atoms in its alkyl chain with 5 moles of ethylene oxide; Neodol 23-9, an ethoxylated primary C 12 - C 13 alcohol having 9 moles of ethylene oxide and Neodol 91-10, an ethoxylated C 9 - C 11 primary alcohol having 10 moles of ethylene oxide. Alcohol ethoxylates of this type have also been marketed by Shell Chemical Company under the Dobanol tradename.
  • Dobanol 91-5 is an ethoxylated C 9 - C 11 fatty alcohol with an average of 5 moles ethylene oxide and Dobanol 25-7 is an ethoxylated C 12 -C 15 fatty alcohol with an average of 7 moles of ethylene oxide per mole of fatty alcohol.
  • the alcohol alkoxylate component which is essentially utilized as part of the liquid diluent in the nonaqueous compositions herein will generally be present to the extent of from 1 % to 60% of the liquid phase composition. More preferably, the alcohol alkoxylate component will comprise 5% to 40% of the liquid phase. Most preferably, the essentially utilized alcohol alkoxylate component will comprise from 5% to 30% of the detergent composition liquid phase. Utilization of alcohol alkoxylate in these concentrations in the liquid phase corresponds to an alcohol alkoxylate concentration in the total composition of from 1 % to 60% by weight, more preferably from 2% to 40% by weight, and most preferably from 5% to 25% by weight, of the composition. ii) Nonaqueous Low-Polarity Organic Solvent
  • a second essential component of the liquid diluent which forms part of the liquid phase of the detergent compositions herein comprises nonaqueous, low-polarity organic solvent(s).
  • solvent is used herein to connote the non-surface active carrier or diluent portion of the liquid phase of the composition. While some of the essential and/or optional components of the compositions herein may actually dissolve in the "solvent"-containing liquid phase, other components will be present as particulate material dispersed within the “solvent"-containing liquid phase. Thus the term “solvent” is not meant to require that the solvent material be capable of actually dissolving all of the detergent composition components added thereto.
  • the nonaqueous organic materials which are employed as solvents herein are those which are liquids of low polarity.
  • low-polarity liquids are those which have little, if any, tendency to dissolve one of the preferred types of particulate material used in the compositions herein, i.e., the peroxygen bleaching agents, sodium perborate or sodium percarbonate.
  • relatively polar solvents such as ethanol should not be utilized.
  • Suitable types of low-polarity solvents useful in the nonaqueous liquid detergent compositions herein do include non-vicinal C 4 -C 8 alkylene glycols, alkylene glycol mono lower alkyl ethers, lower molecular weight polyethylene glycols, lower molecular weight methyl esters and amides.
  • a preferred type of nonaqueous, low-polarity solvent for use in the compositions herein comprises the non-vicinal C 4 -C 8 branched or straight chain alkylene glycols.
  • Materials of this type include hexylene glycol (4-methyl-2,4-pentanediol), 1,6-hexanediol, 1 ,3-butylene glycol and 1,4-butylene glycol. Hexylene glycol is the most preferred.
  • nonaqueous, low-polarity solvent for use herein comprises the mono-, di-, tri-, or tetra- C 2 -C 3 alkylene glycol mono C 2 -C 6 alkyl ethers.
  • the specific examples of such compounds include diethylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, dipropylene glycol monoethyl ether, and dipropylene glycol monobutyl ether.
  • Diethylene glycol monobutyl ether and dipropylene glycol monobutyl ether are especially preferred.
  • Compounds of the type have been commercially marketed under the tradenames Dowanol, Carbitol, and Cellosolve.
  • nonaqueous, low-polarity organic solvent useful herein comprises the lower molecular weight polyethylene glycols (PEGs). Such materials are those having molecular weights of at least 150. PEGs of molecular weight ranging from 200 to 600 are most preferred.
  • PEGs of molecular weight ranging from 200 to 600 are most preferred.
  • Yet another preferred type of non-polar, nonaqueous solvent comprises lower molecular weight methyl esters. Such materials are those of the general formula: R 1 -C(O)-OCH 3 wherein R 1 ranges from 1 to 18. Examples of suitable lower molecular weight methyl esters include methyl acetate, methyl propionate, methyl octanoate, and methyl dodecanoate.
  • the nonaqueous, low-polarity organic solvent(s) employed should, of course, be compatible and non-reactive with other composition components, e.g. , bleach and/or activators, used in the liquid detergent compositions herein.
  • a solvent component will generally be utilized in an amount of from 1 % to 70% by weight of the liquid phase.
  • the nonaqueous, low-polarity organic solvent will comprise from 10% to 60% by weight of the liquid phase, most preferably from 20% to 50% by weight, of the liquid phase of the composition. Utilization of this organic solvent in these concentrations in the liquid phase corresponds to a solvent concentration in the total composition of from 1 % to 50% by weight, more preferably from 5% to 40% by weight, and most preferably from 10% to 30% by weight, of the composition.
  • the ratio of alcohol alkoxylate to organic solvent within the liquid diluent can be used to vary the rheological properties of the detergent compositions eventually formed.
  • the weight ratio of alcohol alkoxylate to organic solvent will range from 50: 1 to 1:50. More preferably, this ratio will range from 3: 1 to 1 :3.
  • the amount of total liquid diluent in the nonaqueous liquid phase herein will be determined by the type and amounts of other composition components and by me desired composition properties.
  • the liquid diluent will comprise from 35% to 70% of the nonaqueous liquid phase of the compositions herein. More preferably, the liquid diluent will comprise from 50% to 65% of the nonaqueous liquid phase. This corresponds to a nonaqueous liquid diluent concentration in the total composition of from 15% to 70% by weight, more preferably from 20% to 50% by weight, of the composition.
  • nonaqueous liquid detergent compositions herein can be prepared by combining the essential and optional components thereof in any convenient order and by mixing, e.g., agitating, the resulting component combination to form the phase stable compositions herein.
  • essential and certain preferred optional components will be combined in a particular order and under certain conditions.
  • a second process step the heated admixture formed as hereinbefore described is maintained under shear agitation at a temperature from 40°C to 100°C for a period of from 2 minutes to 20 hours.
  • a vacuum can be applied to the admixture at this point.
  • This second process step serves to completely dissolve the anionic surfactant in the nonaqueous liquid phase.
  • this liquid phase combination of materials is cooled to a temperature of from 0°C to 35 °C.
  • This cooling step serves to form a structured, surfactant-containing liquid base into which the particulate material of the detergent compositions herein can be added and dispersed.
  • Particulate material is added in a fourth process step by combining the particulate material with the liquid base which is maintained under conditions of shear agitation.
  • any optional surfactants in solid particulate form can be added in the form of particles ranging in size from 0.2 to 1,000 microns.
  • particles of substantially all of an organic builder, e.g. , citrate and/or fatty acid, and/or an alkalinity source, e.g., sodium carbonate can be added while continuing to maintain this admixture of composition components under shear agitation.
  • Other solid form optional ingredients can then be added to the composition at this point. Agitation of the mixture is continued, and if necessary, can be increased at this point to form a uniform dispersion of insoluble solid phase particulates within the liquid phase.
  • the particles of the highly preferred peroxygen bleaching agent can be added to the composition, again while the mixture is maintained under shear agitation.
  • the peroxygen bleaching agent material By adding the peroxygen bleaching agent material last, or after all or most of the otfier components, and especially after alkalinity source particles, have been added, desirable stability benefits for the peroxygen bleach can be realized. If enzyme prills are incorporated, they are preferably added to the nonaqueous liquid matrix last.
  • agitation of the mixture is continued for a period of time sufficient to form compositions having the requisite viscosity and phase stability characteristics.
  • one or more of the solid components may be added to the agitated mixture as a slurry of particles premixed with a minor portion of one or more of the liquid components.
  • a premix of a small fraction of the alcohol alkoxylate and/or nonaqueous, low-polarity solvent with particles of the organic builder material and/or the particles of the inorganic alkalinity source and/or particles of a bleach activator may be separately formed and added as a slurry to the agitated mixture of composition components.
  • compositions of this invention can be used to form aqueous washing solutions for use in the laundering and bleaching of fabrics.
  • an effective amount of such compositions is added to water, preferably in a conventional fabric laundering automatic washing machine, to form such aqueous laundering/bleaching solutions.
  • the aqueous washing/bleaching solution so formed is then contacted, preferably under agitation, with the fabrics to be laundered and bleached therewith.
  • An effective amount of the liquid detergent compositions herein added to water to form aqueous laundering/bleaching solutions can comprise amounts sufficient to form from 500 to 7,000 ppm of composition in aqueous solution. More preferably, from 800 to 3,000 ppm of the detergent compositions herein will be provided in aqueous washing/bleaching solution.
  • a non-limiting example of a bleach-containing nonaqueous liquid laundry detergent is prepared having the composition as set forth in Table I.
  • bis-AQA-1 may be replaced by bis-AQA surfactants 2-22 or other bis- AQA surfactants herein.
  • the composition is prepared by mixing the bis-AQA and LAS, then the hexylene glycol and alcohol ethoxylate, together at 54°C (130°F) for 1/2 hour. This mixture is then cooled to 29°C (85°F) whereupon the remaining components are added. The resulting composition is then stirred at 29°C (85°F) for another 1/2 hour.
  • the resulting composition is a stable anhydrous heavy duty liquid laundry detergent which provides excellent stain and soil removal performance when used in normal fabric laundering operations.
  • the following Examples A and B further illustrate the invention herein with respect to a laundry bar.
  • bis-AQA-1 may be replaced by an equivalent amount of bis-AQA surfactants bis-AQA2 through bis-AQA-22 or other bis-AQA surfactants herein.
  • the following hand wash detergent formulations are prepared by mixing the ingredients together in the percentage weight amounts as indicated below.
  • AQA-9* May be replaced by any AQA surfactant described herein.
  • Preferred AQA surfactants for use in this example are those with from 10 to 15 ethoxy groups; for example AQA-10, AQA-16.
  • Modern, high performance hand dishwashing compositions can contain ingredients which are designed to provide specific in-use product attributes such as grease cutting ability, high sudsing, mildness and skin feel benefits.
  • ingredients for use with the bis-AQA surfactants herein include, for example, amine oxide surfactants, betaine and/or sultaine surfactants, alkyl sulfate and alkyl ethoxy sulfate surfactants, liquid carriers, especially water and water/propylene glycol mixtures, natural oils such lemon oil.
  • preferred liquid and/or gel hand dishwashing compositions may also contain calcium ions, magnesium ions, or mixtures of calcium/magnesium ions, which afford additional grease cutting performance advantages especially when used in combination with detersive mixtures comprising the bis-AQA surfactant herein in combination with, for example, amine oxide, alkyl sulfates and alkyl ethoxy sulfates.
  • Magnesium or calcium or mixed Mg/Ca ion sources typically comprise from 0.01 % to 4% , preferably from 0.02% to 2% , by weight, of such compositions.
  • Various water-soluble sources of these ions include, for example, sulfate, chloride and acetate salts.
  • compositions may also contain nonionic surfactants, especially those of the polyhydroxy fatty acid amide and alkyl polyglucaside classes.
  • nonionic surfactants especially those of the polyhydroxy fatty acid amide and alkyl polyglucaside classes.
  • Preferred are the C 12 -C 14 (coconut alkyl) members of these classes.
  • An especially preferred nonionic surfactant for use in hand dishwashing liquids is C 12 -C 14 N-methylglucamide.
  • Preferred amine oxides include C 12 -C 14 dimemylamine oxide.
  • the alkyl sulfates and alkyl ethoxy sulfates are as described hereinabove. Usage levels for such surfactants in dishwashing liquids is typically in the range from 3% to 50% of the finished composition.
  • dishwashing liquid compositions has been described in more detail in various patent publications including U.S. 5,378,409, U.S. 5,376,310 and U.S. 5,417,893, incorporated herein by reference.
  • Modern automatic dishwashing detergents can contain bleaching agents such as hypochlorite sources; perborate, percarbonate or persulfate bleaches; enzymes such as proteases, lipases and amylases, or mixtures thereof; rinse-aids, especially nonionic surfactants; builders, including zeolite and phosphate builders; low-sudsing detersive surfactants, especially ethylene oxide/propylene oxide condensates.
  • Such compositions are typically in the form of granules or gels. If used in gel form, various gelling agents known in the literature can be employed.
  • Example further illustrates the invention herein with respect to a hand dishwashing liquid.
  • the bis-AQA-1 (CocoMeEO2) surfactant of the Example may be replaced by an equivalent amount of any of surfactants bis-AQA-2 through bis-AQA-22 or other bis-AQA surfactants herein.
  • compositions can be used in the compositions to provide varying degrees of viscosity or rigidity, according to the desires of the formulator.
  • mixtures of bis-AQA surfactants which can be substimted for the bis-AQA surfactants listed in any of the foregoing Examples.
  • such mixtures can be used to provide a spectrum of performance benefits and/or to provide cleaning compositions which are useful over a wide variety of usage conditions.
  • the bis-AQA surfactants in such mixtures differ by at least 1.5, preferably 2.5- 20, total EO units. Ratio ranges (wt.) for such mixtures are typically 10: 1-1 : 10.
  • Non- limiting examples of such mixtures are as follows.
  • compositions advantageously provide improved detergency performance (especially in a fabric laundering context) over a broader range of water hardness than do the cationic surfactants herein used individually.
  • shorter EO cationics e.g., EO2
  • higher EO cationics e.g., EO15
  • builders can optimize the performance "window" of anionic surfactants. Until now, however, broadening the window to encompass essentially all conditions of water hardness has been impossible to achieve.
  • This Example illustrates perfume formulations (A-C) made in accordance with the invention for incorporation into any of the foregoing Examples of bis-AQA-containing detergent compositions.
  • the various ingredients and levels are set forth below.

Abstract

A detergent composition comprising an enzyme, a non-AQA surfactant and a bis-alkoxylated quaternary ammonium (bis-AQA) cationic surfactant.

Description

DETERGENT COMPOSITION
Technical Field
The present invention relates to a detergent composition comprising an enzyme, a non- AQA surfactant and a bis-alkoxylated quaternary ammonium (bis-AQA) cationic surfactant.
Background to the Invention
The formulation of laundry detergents and other cleaning compositions presents a considerable challenge, since modern compositions are required to remove a variety of soils and stains from diverse substrates. Thus, laundry detergents, hard surface cleaners, shampoos and other personal cleansing compositions, hand dishwashing detergents and detergent compositions suitable for use in automatic dishwashers all require the proper selection and combination of ingredients in order to function effectively. In general, such detergent compositions will contain one or more types of surfactants which are designed to loosen and remove different types of soils and stains. While a review of the literature would seem to indicate that a wide selection of surfactants and surfactant combinations are available to the detergent manufacturer, the reality is that many such ingredients are speciality chemicals which are not suitable in low unit cost items such as home-use laundry detergents. The fact remains that most such home-use products such as laundry detergents still mainly comprise one or more of the conventional ethoxylated nonionic and/or sulfated or sulfonated anionic surfactants, presumably due to economic considerations and the need to formulate compositions which function reasonably well with a variety of soils and stains and a variety of fabrics.
The quick and efficient removal of different types of soils and stains such as body soils, greasy/oily soils and certain food stains, can be problematic. Such soils comprise a mixture of triglycerides, lipids, complex polysaccharides, inorganic salts and
proteinaceous matter all of which are, to some extent, composed of hydrophobic moieties and are thus notoriously difficult to remove. Low levels of hydrophobic soils and residual stains often remain on the surface of the fabric after washing. Successive washing and wearing coupled with limited hydrophobic soil removal in the wash culminates in a build up of residual soil and stain which further entraps particulate dirt leading to fabric yellowing. Eventually the fabric takes on a dingy appearance which is perceived as unwearable and discarded by the consumer.
The literature suggests that various nitrogen-containing cationic surfactants would be useful in a variety of cleaning compositions. Such materials, typically in the form of amino-, amido-, or quaternary ammonium or imidazolinium compounds, are often designed for speciality use. For example, various amino and quaternary ammonium surfactants have been suggested for use in shampoo compositions and are said to provide cosmetic benefits to hair. Other nitrogen-containing surfactants are used in some laundry detergents to provide a fabric softening and anti-static benefit. For the most part, however, the commercial use of such materials has been limited by the difficulty encountered in the large scale manufacture of such compounds. An additional limitation has been the potential precipitation of anionic active components of the detergent composition occasioned by their ionic interaction with cationic surfactants. The aforementioned nonionic and anionic surfactants remain the major surfactant components in today's laundry compositions. It has now been discovered that certain bis-alkoxylated quaternary ammonium (bis-AQA) compounds can be used in various detergent compositions to boost detergency performance on a variety of soil and stain types, particularly the hydrophobic soil types, commonly encountered. Unexpectedly, it has now been discovered that compositions containing enzymes and a bis-AQA surfactant deliver not only superior cleaning and whiteness performance versus products containing either technology alone, but also provide improved fabric care.
The bis-AQA surfactants of the present invention provide substantial benefits to the formulator, over cationic surfactants previously known. For example, the bis-AQA surfactants used herein provide marked improvement in cleaning of "everyday" greasy/oily hydrophobic soils regularly encountered. Moreover, the bis-AQA surfactants are compatible with anionic surfactants commonly used in detergent compositions such as alkyl sulfate and alkyl benzene sulfonate; incompatibility with anionic components of the detergent composition has commonly been the limiting factor in the use of cationic surfactants to date. Low levels (as low as 3 ppm in the laundering liquor) of bis-AQA surfactants gives rise to the benefits described herein. Bis-AQA surfactants can be formulated over a broad pH range from 5 to 12. The bis-AQA surfactants can be prepared as 30% (wt.) solutions which are pumpable, and therefore easy to handle in a
manufacturing plant. Bis-AQA surfactants with degrees of ethoxylation above 5 are sometimes present in a liquid form and can therefore be provided as 100% neat materials. In addition to their beneficial handling properties, the availability of bis-AQA surfactants as highly concentrated solutions provides a substantial economic advantage in transportation costs. The bis-AQA surfactants are also compatible with various perfume ingredients, unlike some cationic surfactants known in the art .
One aspect of the present invention provides a means for enhancing the removal of greasy/oily soils by combining a lipase enzyme with an AQA surfactant. Greasy/oily soils are comprised of a mixture of materials, including triglycerides. On storage of soiled garments before washing, triglycerides in the soil are convened by bacterial action to fatty acids; lipase enzymes can be used to convert any remaining triglycerides to fatty acids through-the-wash. Fatty acids in the soil interact with the hardness ion in the wash water (e.g. Mg2 + and Ca2 + ions) to form insoluble magnesium/calcium fatty acid salts or lime- soaps. Lime-soaps precipitate from the wash solution forming a layer of lime-soap deposit on the fabric. Successive washing results in the build-up of lime-soap deposits which entrap particulate dirt, hinder soil removal and enhance retension of soil residues on the fabric after the wash. A further problem exists in the degradation of the sheaths surrounding fibres of old/worn cotton fabrics or other cellulosic fabrics. The sheaths degrade to form gelatinous/amorphous cellulose "glues" which entrap dirt. In addition, the glue acts as an ideal substrate for deposition/retention of greasy /oily hydrophobic body soils (e.g. , on collars and pillowcases). Upon successive wearing/washing the build-up of residual soils, lime-soap deposits and dirt entrapped therein, leads to fabric yellowing. Eventually, the fabric becomes dingy and is perceived as unwearable, and are often discarded, by the consumer. It has now been found that detergent compositions containing bis-AQA surfactants and lipase enzyme deliver superior cleaning and whiteness performance vs. products containing either technology alone. It is believed that these benefits are the result of: (1) bis-AQA reducing lime-soap formation and thereby allowing lipase unhindered access to the soil; and (2) effective lifting off of fatty acids from the soil (by bis-AQA) to ensure maximum lipase activity (high levels of fatty acids in the soil inhibiting lipase action). Surprisingly, it has now been found that detergent compositions containing the bis-AQA surfactants and cellulytic enzymes (e.g. , cellulases and/or endoglucanases) deliver superior cleaning and whiteness performance vs. products containing either ingredient alone. These benefits appear to be the result of the effective penetration of hydrophobic body soils by the bis-AQA surfactants. This, in turn, boosts access of the cellulytic enzymes which degrade the amorphous cellulose glue (which binds the soil on the fabric) around the fibres. As the glue dissolves, the entrapped dirt is released and whiteness is restored. In addition to cleaning benefits, the combined cellulytic/bis-AQA system also provides softness and fabric care benefits vs. either the cationic or enzyme alone, by effective depilling and ungluing of worn fibres.
It has now further been discovered that detergent compositions containing a combination of the bis-AQA surfactants herein and amylase enzymes delivers superior cleaning and whiteness performance vs. compositions containing either technology alone. These benefits appear to be the result of improved degradation of the residual "glue" around the fibres (bis-AQA facilitating improved amylase access to sensitive soil components through effective soil solubilization). As the glue dissolves, whiteness is restored and entrapped paniculate dirt is released/made accessible to the decolourizing action of other wash actives.
Background Art
U.S. Patent 5,441,541 , issued August 15, 1995, to A. Mehreteab and F. J. Loprest, relates to anionic/cationic surfactant mixtures. U.K. 2,040,990, issued 3 Sept., 1980, to A. P. Murphy, R.J.M. Smith and M. P. Brooks, relates to ethoxylated cationics in laundry detergents.
Summary of the Invention
The present invention provides a composition comprising or prepared by combining an enzyme, a non-AQA surfactant and an effective amount of a bis-alkoxylated quaternary ammonium (bis-AQA) cationic surfactant of the formula:
Figure imgf000007_0001
wherein R1 is a linear, branched or substituted C8-C18 alkyl, alkenyl, aryl, aikaryl, ether or glycityl ether moiety, R2 is a C1-C3 alkyl moiety, R3 and R4 can vary independently and are selected from hydrogen, methyl and ethyl, X is an anion, and A and A' can vary
independently and are each C1-C4 alkoxy, p and q can vary independantly and are integers of from 1 to 30.
Detailed Description of the Invention
Enzymes
The compositions of the present invention include enzymes as essential components.
Enzymes can be included in the present detergent compositions for a variety of purposes, including removal of protein-based, carbohydrate-based, or triglyceride-based stains from substrates, for the prevention of refugee dye transfer in fabric laundering, and for fabric restoration. Suitable enzymes include proteases, amylases, lipases, cellulases, peroxidases, and mixtures thereof of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. Preferred selections are influenced by factors such as pH-activity and/or stability optima, thermostability, and stability to active detergents, builders. In this respect bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases.
"Detersive enzyme", as used herein, means any enzyme having a cleaning, stain removing or otherwise beneficial effect in a laundry, hard surface cleaning or personal care detergent composition. Preferred detersive enzymes are hydrolases such as proteases, amylases and lipases. Preferred enzymes for laundry purposes include, but are not limited to, proteases, cellulases, lipases and peroxidases. Highly preferred for automatic dishwashing are amylases and/or proteases.
Enzymes are normally incorporated into detergent or detergent additive compositions at levels sufficient to provide a "cleaning-effective amount". The term "cleaning effective amount" refers to any amount capable of producing a cleaning, stain removal, soil removal, whitening, deodorizing, or freshness improving effect on substrates such as fabrics, dishware. In practical terms for current commercial preparations, typical amounts are up to 5 mg by weight, more typically 0.01 mg to 3 mg, of active enzyme per gram of the detergent composition. Stated otherwise, the compositions herein will typically comprise from 0.001 % to 5 % , preferably 0.01 %-1 % by weight of a commercial enzyme
preparation. Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition. For certain detergents, such as in automatic dishwashing, it may be desirable to increase the active enzyme content of the commercial preparation in order to rninimize the total amount of non-catalytically active materials and thereby improve spotting/filming or other end-results. Higher active levels may also be desirable in highly concentrated detergent formulations. Suitable examples of proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. licheniformis. One suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold as ESPERASE® by Novo Industries A/S of Denmark, hereinafter "Novo". The preparation of this enzyme and analogous enzymes is described in GB 1 ,243,784 to Novo. Other suitable proteases include ALCALASE® and SAVINASE® from Novo and MAXATASE® from International Bio-Synthetics, Inc. , The Netherlands; as well as Protease A as disclosed in EP 130,756 A, January 9, 1985 and Protease B as disclosed in EP 303,761 A, April 28, 1987 and EP 130,756 A, January 9, 1985. See also a high pH protease from Bacillus sp. NCIMB 40338 described in WO 9318140 A to Novo. Enzymatic detergents comprising protease, one or more other enzymes, and a reversible protease inhibitor are described in WO 9203529 A to Novo. Other preferred proteases include those of WO 9510591 A to Procter & Gamble . When desired, a protease having decreased adsorption and increased hydrolysis is available as described in WO 9507791 to Procter & Gamble. A recombinant trypsin-like protease for detergents suitable herein is described in WO 9425583 to Novo.
In more detail, an especially preferred protease, referred to as "Protease D" is a carbonyl hydrolase variant having an amino acid sequence not found in nature, which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for a plurality of amino acid residues at a position in said carbonyl hydrolase equivalent to position +76, preferably also in combination with one or more amino acid residue positions equivalent to those selected from the group consisting of +99, + 101 , + 103, + 104, + 107, + 123, + 27, + 105, + 109, + 126, + 128, + 135, + 156, + 166, + 195, + 197, +204, +206, + 210, +216, +217, +218, +222, +260, +265, and/or +274 according to the numbering of Bacillus amyloliquefaciens subtilisin, as described in the patent applications of A. Baeck, et al, entitled "Protease-Containing Cleaning Compositions" having US Serial No. 08/322,676, and C. Ghosh, et al, "Bleaching Compositions Comprising Protease Enzymes" having US Serial No. 08/322,677, both filed October 13, 1994.
Amylases suitable herein, especially for, but not limited to automatic dishwashing purposes, include, for example, α-amylases described in GB 1 ,296,839 to Novo;
RAPID ASE®, International Bio-Synthetics, Inc. and TERMAMYL®, Novo.
FUNGAMYL® from Novo is especially useful. Engineering of enzymes for improved stability, e.g., oxidative stability, is known. See, for example J. Biological Chem. , Vol. 260, No. 11, June 1985, pp. 6518-6521. Certain preferred embodiments of the present compositions can make use of amylases having improved stability in detergents such as automatic dishwashing types, especially improved oxidative stability as measured against a reference-point of TERMAMYL® in commercial use in 1993. These preferred amylases herein share the characteristic of being "stability -enhanced" amylases, characterized, at a minimum, by a measurable improvement in one or more of: oxidative stability, e.g., to hydrogen peroxide/tetraacetylethylenediamine in buffered solution at pH 9-10; thermal stability, e.g., at common wash temperatures such as 60°C; or alkaline stability, e.g., at a pH from 8 to 11 , measured versus the above-identified reference-point amylase. Stability can be measured using any of the art-disclosed technical tests. See, for example, references disclosed in WO 9402597. Stability -enhanced amylases can be obtained from Novo or from Genencor International. One class of highly preferred amylases herein have the
commonality of being derived using site-directed mutagenesis from one or more of the Bacillus amylases, especially the Bacillus α-amylases, regardless of whether one, two or multiple amylase strains are the immediate precursors. Oxidative stability -enhanced amylases vs. the above-identified reference amylase are preferred for use, especially in bleaching, more preferably oxygen bleaching, as distinct from chlorine bleaching, detergent compositions herein. Such preferred amylases include (a) an amylase according to the hereinbefore incorporated WO 9402597, Novo, Feb. 3, 1994, as further illustrated by a mutant in which substitution is made, using alanine or threonine, preferably threonine, of the methionine residue located in position 197 of the B licheniformis alpha-amylase, known as TERMAMYL®, or the homologous position variation of a similar parent amylase, such as B. amyloliquefaciens, B. subtilis, or B. stearothermophilus; (b) stability-enhanced amylases as described by Genencor International in a paper entitled "Oxidatively Resistant alpha- Amylases" presented at the 207th American Chemical Society National Meeting, March 13-17 1994, by C. Mitchinson. Therein it was noted that bleaches in automatic dishwashing detergents inactivate alpha-amylases but that improved oxidative stability amylases have been made by Genencor from B. licheniformis NCIB8061. Methionine (Met) was identified as the most likely residue to be modified. Met was substituted, one at a time, in positions 8, 15, 197, 256, 304, 366 and 438 leading to specific mutants, particularly important being M197L and M197T with the M197T variant being the most stable expressed variant. Stability was measured in CASCADE® and SUNLIGHT®; (c) particularly preferred amylases herein include amylase variants having additional modification in the immediate parent as described in WO 9510603 A and are available from the assignee, Novo, as DURAMYL®. Other particularly preferred oxidative stability enhanced amylase include those described in WO 9418314 to Genencor International and WO 9402597 to Novo. Any other oxidative stability-enhanced amylase can be used, for example as derived by site-directed mutagenesis from known chimeric, hybrid or simple mutant parent forms of available amylases. Other preferred enzyme modifications are accessible. See WO 9509909 A to Novo. Other amylase enzymes include those described in WO 95/26397 and in co-pending application by Novo Nordisk PCT/DK96/00056. Specific amylase enzymes for use in the detergent compositions of the present invention include α-amylases characterized by having a specific activity at least 25% higher than the specific activity of Termamyl® at a temperature range of 25°C to 55°C and at a pH value in the range of 8 to 10, measured by the Phadebas® α-amylase activity assay. (Such Phadebas® α-amylase activity assay is described at pages 9-10, WO 95/26397.) Also included herein are α-amylases which are at least 80% homologous with the amino acid sequences shown in the SEQ ID listings in the references. These enzymes are preferably incorporated into laundry detergent
compositions at a level from 0.00018% to 0.060% pure enzyme by weight of the total composition, more preferably from 0.00024% to 0.048% pure enzyme by weight of the total composition.
Cellulases usable herein include both bacterial and fungal types, preferably having a pH optimum between 5 and 9.5. U.S. 4,435,307, Barbesgoard et al, March 6, 1984, discloses suitable fungal cellulases from Humicola insolens or Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusk, Dolabella Auricula Solander. Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS- 2.247.832. CAREZYME® and CELLUZYME® (Novo) are especially useful. See also WO 9117243 to Novo.
Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in GB 1,372,034. See also lipases in Japanese Patent Application 53,20487, laid open Feb. 24, 1978. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano," or "Amano-P. " Other suitable commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolyticum NRRLB 3673 from Toyo Jozo Co. , Tagata, Japan;
Chromobacter viscosum lipases from U.S. Biochemical Corp. , U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli. LIPOLASE® enzyme derived from Humicola lanuginosa and commercially available from Novo, see also EP 341,947, is a preferred lipase for use herein. Lipase and amylase variants stabilized against peroxidase enzymes are described in WO 9414951 A to Novo. See also WO 9205249 and RD 94359044.
In spite of the large number of publications on lipase enzymes, only the lipase derived from Humicola lanuginosa and produced in Aspergillus oryzae as host has so far found widespread application as additive for fabric washing products. It is available from Novo Nordisk under the tradename Lipolase™, as noted above. In order to optimize the stain removal performance of Lipolase, Novo Nordisk have made a number of variants. As described in WO 92/05249, the D96L variant of the native Humicola lanuginosa lipase improves the lard stain removal efficiency by a factor 4.4 over the wild-type lipase
(enzymes compared in an amount ranging from 0.075 to 2.5 mg protein per liter).
Research Disclosure No. 35944 published on March 10, 1994, by Novo Nordisk discloses that the lipase variant (D96L) may be added in an amount corresponding to 0.001-100- mg (5-500,000 LU/liter) lipase variant per liter of wash liquor. The present invention provides the benefit of improved whiteness maintenance on fabrics using low levels of D96L variant in detergent compositions containing the bis-AQA surfactants in the manner disclosed herein, especially when the D96L is used at levels in the range of 50 LU to 8500 LU per liter of wash solution. Cutinase enzymes suitable for use herein are described in WO 8809367 A to Genencor.
Peroxidase enzymes may be used in combination with oxygen sources, e.g. , percarbonate, perborate, hydrogen peroxide, etc. , for "solution bleaching" or prevention of transfer of dyes or pigments removed from substrates during the wash to other substrates present in the wash solution. Known peroxidases include horseradish peroxidase, ligninase, and haloperoxidases such as chloro- or bromo-peroxidase. Peroxidase-containing detergent compositions are disclosed in WO 89099813 A, October 19, 1989 to Novo and WO
8909813 A to Novo.
A range of enzyme materials and means for their incorporation into synthetic detergent compositions is also disclosed in WO 9307263 A and WO 9307260 A to Genencor
International, WO 8908694 A to Novo, and U.S. 3,553,139, January 5, 1971 to McCarty et al. Enzymes are further disclosed in U.S. 4,101 ,457, Place et al, July 18, 1978, and in U.S. 4,507,219, Hughes, March 26, 1985. Enzyme materials useful for liquid detergent formulations, and their incorporation into such formulations, are disclosed in U.S.
4,261,868, Hora et al, April 14, 1981. Enzymes for use in detergents can be stabilised by various techniques. Enzyme stabilisation techniques are disclosed and exemplified in U.S. 3,600,319, August 17, 1971, Gedge et al, EP 199,405 and EP 200,586, October 29, 1986, Venegas. Enzyme stabilisation systems are also described, for example, in U.S.
3,519,570. A useful Bacillus, sp. AC13 giving proteases, xylanases and cellulases, is described in WO 9401532 A to Novo. Bis-Alkoxylated Quaternary Ammonium (bis-AQA) Cationic Surfactant
The second essential component of the present invention comprises an effective amount of a bis-AQA surfactant of the formula:
Figure imgf000012_0001
wherein R1 is a linear, branched or substituted alkyl, alkenyl, aryl. aikaryl, ether or glycityl ether moiety containing from 8 to 18 carbon atoms, preferably 8 to 16 carbon atoms, most preferably from 8 tol4 carbon atoms; R2 is an alkyl group containing from 1 to 3 carbon atoms, preferably methyl; R3 and R4 can vary independently and are selected from the group consisiting of hydrogen (preferred), methyl and ethyl; X- is an anion such as chloride, bromide, methyl sulfate, sulfate, sufficient to provide electrical neutrality. A and A' can vary independently and are each selected from C1-C4 alkoxy, especially ethoxy, propoxy, butoxy and mixtures thereof; p is from 1 to 30, preferably 1 to 15, more preferably 1 to 8, even more preferable 1 to 4 and q is from 1 to 30, preferably 1 to 15, more preferably 1 to 8, even more preferably 1 to 4 Most preferably both p and q are 1.
Bis-AQA compounds wherein the hydrocarbyl substituent R1 is C8-C12, especially C8- C10, enhance the rate of dissolution of laundry granules, especially under cold water conditions, as compared with the higher chain length materials Accordingly, the C8-C12 bis- AQA surfactants may be preferred by some formulators. The levels of the bis-AQA surfactants used to prepare finished laundry detergent compositions can range from 0.1 % to 5% , typically from 0.45% to 2.5%, by weight. The weight ratio of bis-AQA to
percarbonate bleach is in the range of from 1:100 to 5 :1 , preferably from 1 :60 to 2 :1 , most preferably from 1 : 20 to 1:1.
The present invention employs an "effective amount" of the bis-AQA surfactants to improve the performance of cleaning compositions which contain other optional
ingredients. By an "effective amount" of the bis-AQA surfactants herein is meant an amount which is sufficient to improve, either directionally or significantly at the 90% confidence level, the performance of the cleaning composition against at least some of the target soils and stains. Thus, in a composition whose targets include certain food stains, the formulator will use sufficient bis-AQA to at least directionally improve cleaning performance against such stains. Likewise, in a composition whose targets include clay soil, the formulator will use sufficient bis-AQA to at least directionally improve cleaning performance against such soil.
The bis-AQA surfactants may be used in combination with other detersive surfactants at levels which are effective for achieving at least a directional improvement in cleaning performance. In the context of a fabric laundry composition, such "usage levels" can vary depending not only on the type and severity of the soils and stains, but also on the wash water temperature, the volume of wash water and the type of washing machine.
For example, in a top-loading, vertical axis U.S. -type automatic washing machine using 45 to 83 liters of water in the wash bath, a wash cycle of 10 to 14 minutes and a wash water temperature of 10°C to 50°C, it is preferred to include from 2 ppm to 50 ppm, preferably from 5 ppm to 25 ppm, of the bis-AQA surfactant in the wash liquor. On the basis of usage rates of from 50 ml to 150 ml per wash load, this translates into an in-product concentration (wt.) of the bis-AQA surfactant of from 0.1 % to 3.2%, preferably 0.3% to 1.5 % , for a heavy-duty liquid laundry detergent. On the basis of usage rates of from 60 g to 95 g per wash load, for dense ("compact") granular laundry detergents (density above 650 g/l) this translates into an in-product concentration (wt.) of the bis-AQA surfactant of from 0.2% to 5.0% , preferably from 0.5% to 2.5% . On the basis of usage rates of from 80 g to 100 g per load for spray-dried granules (i.e., "fluffy"; density below 650 g/l), this translates into an in-product concentration (wt.) of the bis-AQA surfactant of from 0.1 % to 3.5% , preferably from 0.3% to 1.5% .
For example, in a front-loading, horizontal-axis European-type automatic washing machine using 8 to 15 liters of water in the wash bath, a wash cycle of 10 to 60 minutes and a wash water temperature of 30°C to 95°C, it is preferred to include from 13 ppm to
900 ppm, preferably from 16 ppm to 390 ppm, of the bis-AQA surfactant in the wash liquor. On the basis of usage rates of from 45 ml to 270 ml per wash load, this translates into an in-product concentration (wt.) of the bis-AQA surfactant of from 0.4% to 2.64% , preferably 0.55% to 1.1 %, for a heavy-duty liquid laundry detergent. On the basis of usage rates of from 40 g to 210 g per wash load, for dense ("compact") granular laundry detergents (density above 650 g/l) this translates into an in-product concentration (wt.) of the bis-AQA surfactant of from 0.5 % to 3.5 % , preferably from 0.7 % to 1.5 % . On the basis of usage rates of from 140 g to 400 g per load for spray-dried granules (i.e. , "fluffy"; density below 650 g/l), this translates into an in-product concentration (wt.) of the bis- AQA surfactant of from 0.13% to 1.8% , preferably from 0.18% to 0.76% .
For example, in a top-loading, vertical-axis Japanese-type automatic washing machine using 26 to 52 liters of water in the wash bath, a wash cycle of 8 to 15 minutes and a wash water temperature of 5°C to 25°C, it is preferred to include from 1.67 ppm to 66.67 ppm, preferably from 3 ppm to 6 ppm, of the bis-AQA surfactant in the wash liquor. On the basis of usage rates of from 20 ml to 30 ml per wash load, this translates into an in-product concentration (wt.) of the bis-AQA surfactant of from 0.25% to 10% , preferably 1.5% to 2% , for a heavy-duty liquid laundry detergent. On the basis of usage rates of from 18 g to 35 g per wash load, for dense ("compact") granular laundry detergents (density above 650 g/l) this translates into an in-product concentration (wt.) of the bis-AQA surfactant of from 0.25% to 10% , preferably from 0.5% tol.0%. On the basis of usage rates of from 30 g to 40 g per load for spray-dried granules (i.e., "fluffy"; density below 650 g/l), this translates into an in-product concentration (wt.) of the bis-AQA surfactant of from 0.25% to 10%, preferably from 0.5% to 1 % .
As can be seen from the foregoing, the amount of bis-AQA surfactant used in a machine- wash laundering context can vary, depending on the habits and practices of the user, the type of washing machine. In this context, however, one heretofore unappreciated advantage of the bis-AQA surfactants is their ability to provide at least directional improvements in performance over a spectrum of soils and stains even when used at relatively low levels with respect to the other surfactants (generally anionics or
anionic/nonionic mixtures) in the finished compositions. This is to be distinguished from other compositions of the art wherein various cationic surfactants are used with anionic surfactants at or near stoichiometric levels. In general, in the practice of this invention, the weight ratio of bis-AQA: anionic surfactant in laundry compositions is in the range from
1 :70 to 1 :2, preferably from 1:40 to 1:6, preferably from 1 :30 to 1 :6, most preferably 1 : 15 to 1:8. In laundry compositions which comprise both anionic and nonionic surfactants, the weight ratio of bis-AQA:mixed anionic/nonionic is in the range from 1 :80 to 1 :2, preferably 1:50 to 1 :8.
Various other cleaning compositions which comprise an anionic surfactant, an optional nonionic surfactant and specialized surfactants such as betaines, sultaines, amine oxides can also be formulated using an effective amount of the bis-AQA surfactants in the manner of this invention. Such compositions include, but are not limited to, hand dishwashing products (especially liquids or gels), hard surface cleaners, shampoos, personal cleansing bars, laundry bars, and the like. Since the habits and practices of the users of such compositions show minimal variation, it is satisfactory to include from about 0.25 % to about 5% , preferably from about 0.45% to about 2%, by weight, of the bis-AQA surfactants in such compositions. Again, as in the case of the granular and liquid laundry compositions, the weight ratio of the bis-AQA surfactant to other surfactants present in such compositions is low, i.e., sub-stoichiometric in the case of anionics. Preferably, such cleaning compositions comprise bis-AQA/surfactant ratios as noted immediately above for machine-use laundry compositions. In contrast with other cationic surfactants known in the art, the bis-alkoxylated cationics herein have sufficient solubility that they can be used in combination with mixed surfactant systems which are quite low in nonionic surfactants and which contain, for example, alkyl sulfate surfactants. This can be an important consideration for formulators of detergent compositions of the type which are conventionally designed for use in top loading automatic washing machines, especially of the type used in North America, as well as under Japanese usage conditions. Typically, such compositions will comprise an anionic surfactant: nonionic surfactant weight ratio in the range from about 25:1 to about 1:25, preferably about 20: 1 to about 3: 1. This can be contrasted with European-type formulas which typically will comprise anionic: nonionic ratios in the range of about 10: 1 to 1: 10, preferably about 5: 1 to about 1: 1.
The preferred ethoxylated cationic surfactants herein are available under the trade name ETHOQUAD from Akzo Nobel Chemicals Company. Alternatively, such materials can be synthesized using a variety of different reaction schemes (wherein "EO" represents
-CH2CH2O- units), as follows.
Figure imgf000016_0001
Figure imgf000017_0001
Figure imgf000018_0001
The following parameters summarize the optional and preferred reaction conditions of Scheme 5. Step 1 of the reaction is preferably conducted in an aqueous medium. Reaction temperatures are typically in the range of 140-200°C. Reaction pressures are 50-1000 psig. A base catalyst, preferably sodium hydroxide can be used. The mole ratio of reactants are 2: 1 to 1: 1 amine to alkyl sulfate. The reaction is preferably conducted using C8-C14 alkyl sulfate, sodium salt. The ethoxylation and quaternization steps are carried out using conventional conditions and reactants.
Under some circumstances reaction Scheme 5 results in products which are sufficiently soluble in the aqueous reaction medium that gels may form. While the desired product can be recovered from the gel, an alternate, two-step synthesis Scheme 6, hereinafter, may be more desirable in some commercial circumstances. The first step in Scheme 6 is conducted as in Scheme 5. The second step (ethoxylation) is preferably conducted using ethylene oxide and an acid such as HCl which provides the quaternary surfactant. As shown below, chlorohydrin i.e., chloroethanol, can also be reacted to give the desired bishydroxyethyl derivative. For reaction Scheme 6, the following parameters summarize the optional and preferred reaction conditions for the first step. The first step is preferably conducted in an aqueous medium. Reaction temperatures are typically in the range of 100-230°C. Reaction pressures are 50-1000 psig. A base, preferably sodium hydroxide, can be used to react with the HSO4-generated during the reaction, or an excess of the amine can be employed to also react with the acid. The mole ratio of amine to alkyl sulfate is typically from 10: 1 to 1 : 1.5; preferably from 5: 1 to 1 : 1.1 ; more preferably from 2: 1 to 1 : 1. In the product recovery step, the desired substituted amine is simply allowed to separate as a distinct phase from the aqueous reaction medium in which it is insoluble. The second step of the process is conducted under conventional reaction conditions. Further ethoxylation and quaternization to provide bis-AQA surfactants are conducted under standard reaction conditions.
Scheme 7 can optionally be conducted using ethylene oxide under standard ethoxylation conditions, but without catalyst, to achieve monoethoxylation. The following illustrates these additional reaction schemes, wherein "EO" represents the -CH2CH2O- unit. In the reactions, either an inorganic base, an organic base or excess amine reactant is used to neutralize generated HSO4.
/
Figure imgf000019_0001
The following further illustrates several of the above reactions solely for the convenience of the formulator, but is not intended to be limiting thereof.
Synthesis A
Preparation of N,N-Bis(2-hydroxyethyl)dodecylamine
To a glass autoclave liner is added 19.96 g of sodium dodecyl sulfate (0.06921 moles), 14.55 g of diethanolamine (0.1384 moles), 7.6 g of 50 wt. % sodium hydroxide solution (0.095 moles) and 72 g of distilled H2O. The glass liner is sealed into a 500 ml, stainless steel, rocking autoclave and heated to 160-180°C under 300-400 psig nitrogen for 3-4 hours. The mixture is cooled to room temperature and the liquid contents of the glass liner are poured into a 250 ml separatory funnel along with 80 ml of chloroform. The funnel is shaken well for a few minutes and then the mixture is allowed to separate. The lower chloroform layer is drained and the chloroform evaporated off to obtain product. Synthesis B
Preparation of N,N-Bis(2-hydroxyethyl)dodecylamine
1 Mole of sodium dodecyl sulfate is reacted with 1 mole of ethanolamine in the presence of base in the manner described in Synthesis A. The resulting 2-hydroxyethyldodecylamine is recovered and reacted with 1-chloroethanol to prepare the title compound.
Synthesis C
Preparation of N,N-Bis(2-hydroxyethyl)dodecylamine To a glass autoclave liner is added 19.96 g of sodium dodecyl sulfate (0.06921 moles), 21.37g of ethanolamine (0.3460 moles), 7.6 g of 50 wt. % sodium hydroxide solution (0.095 moles) and 72 g of distilled H2O. The glass liner is sealed into a 500 ml, stainless steel, rocking autoclave and heated to 160-180°C under 300-400 psig nitrogen for 3-4 hours. The mixture is cooled to room temperature and the liquid contents of the glass liner are poured into a 250 ml separatory funnel along with 80 ml of chloroform. The funnel is shaken well for a few minutes and then allowed mixture to separate. The lower chloroform layer is drained and the chloroform is evaporated off to obtain product. The product is then reacted with 1 molar equivalent of ethylene oxide in the absence of base catalyst at 120-130°C to produce the desired final product.
The bis-substituted amines prepared in the foregoing Syntheses can be further ethoxylated in standard fashion. Quaternization with an alkyl halide to form the bis-AQA surfactants herein is routine. According to the foregoing, the following are nonlimiting, specific illustrations of bis-AQA surfactants used herein. It is to be understood that the degree of alkoxylation noted herein for the bis-AQA surfactants is reported as an average, following common practice for conventional ethoxylated nonionic surfactants. This is because the ethoxylation reactions typically yield mixtures of materials with differing degrees of ethoxylation. Thus, it is not uncommon to report total EO values other than as whole numbers, e.g., "EO2.5", "EO3.5" .
Figure imgf000021_0001
Figure imgf000022_0003
*Ethoxy, optionally end-capped with methyl or ethyl.
Highly preferred bis-AQA compounds for use herein are of the formula;
Figure imgf000022_0001
wherein R1 is C8-C18 hydrocarbyl and mixtures thereof, preferably C8, C 10, C12, C14 alkyl and mixtures thereof. X is any convenient anion to provide charge balance, preferably chloride. With reference to the general bis-AQA structure noted above, since in a preferred compound R1 is derived from coconut (C12-C14 alkyl) fraction fatty acids, R2 is methyl and ApR3 and A'qR4 are each monoethoxy, this preferred type of compound is referred to herein as "CocoMeEO2" or "bis-AQA-1 " in the above list.
Other bis-AQA surfactants useful herein include compounds of the formula:
Figure imgf000022_0002
wherein R1 is C8-C18 hydrocarbyl, preferably C8-C14 alkyl, independently p is 1 to 3 and q is 1 to 3, R2 is C1-C3 alkyl, preferably methyl, and X is an anion, especially chloride or bromide.
Other compounds of the foregoing type include those wherein the ethoxy (C H2CH2O) units (EO) are replaced by butoxy (Bu) isopropoxy [CH(CH3)CH2O] and [CH2CH(CH3O] units (i-Pr) or n-propoxy units (Pr), or mixtures of EO and/or Pr and/or i-Pr units. A highly preferred bis-AQA compound for use in under built formulations are of the formula wherein p and/or q are integers in the range of between 10 and 15. This compound is particularly useful in laundry handwash detergent compositions.
Non-AQA Detersive Surfactants
In addition to the bis-AQA surfactant, the compositions of the present invention preferably further comprise a non-AQA surfactant. Non-AQA surfactants may include essentially any anionic, nonionic or additional cationic surfactant. Anionic Surfactant
Nonlimiting examples of anionic surfactants useful herein typically at levels from 1 % to 55%, by weight, include the conventional C11-C18 alkyl benzene sulfonates ("LAS") and primary ("AS"), branched-chain and random C10-C20 alkyl sulfates, the C10-C18 secondary (2,3) alkyl sulfates of the formula CH3(CH2)x(CHOSO3-M+) CH3 and CH3 (CH2)y(CHOSO3-M+) CH2CH3 where x and (y + 1) are integers of at least 7, preferably at least 9, and M is a water-solubilizing cation, especially sodium, unsaturated sulfates such as oleyl sulfate, the C12-C18 alpha-sulfonated fatty acid esters, the C10-C18 sulfated polyglycosides, the C10-C18 alkyl alkoxy sulfates ("AEXS"; especially EO 1-7 ethoxy sulfates), and the C10-C18 alkyl alkoxy carboxylates (especially the EO 1-5
ethoxycarboxylates). The C12-C18 betaines and sulfobetaines ("sultaines"), C10-C18 amine oxides, can also be included in the overall compositions. C10-C20 conventional soaps may also be used. If high sudsing is desired, the branched-chain C10-C16 soaps may be used. Other conventional useful surfactants are listed in standard texts.
Nonionic Surfactants Nonlimiting examples of nonionic surfactants useful herein typically at levels from 1 % to 55% , by weight include the alkoxylated alcohols (AE's) and alkyl phenols, polyhydroxy fatty acid amides (PFAA's), alkyl polyglycosides (APG's), C10-C18 glycerol ethers.
More specifically, the condensation products of primary and secondary aliphatic alcohols with from 1 to 25 moles of ethylene oxide (AE) are suitable for use as the nonionic surfactant in the present invention. The alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 8 to 22 carbon atoms. Preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms, more preferably from 10 to 18 carbon atoms, with from 1 to 10 moles, preferably 2 to 7, most preferably 2 to 5, of ethylene oxide per mole of alcohol. Examples of commercially available nonionic surfactants of this type include: Tergitol™ 15-S-9 (the condensation product of C1 1-C15 linear alcohol with 9 moles ethylene oxide) and Tergitol™ 24-L-6 NMW (the condensation product of C12-C14 primary alcohol with 6 moles ethylene oxide with a narrow molecular weight distribution), both marketed by Union Carbide Corporation; Neodol™ 45.9 (the condensation product of C14-C15 linear alcohol with 9 moles of ethylene oxide), Neodol™ 23-3 (the condensation product of C12-C13 linear alcohol with 3 moles of ethylene oxide),
Neodol™ 45.7 (the condensation product of C14-C15 linear alcohol with 7 moles of ethylene oxide) and Neodol™ 45.5 (the condensation product of C14-C15 linear alcohol with 5 moles of ethylene oxide) marketed by Shell Chemical Company; Kyro™ EOB (the condensation product of C13-C15 alcohol with 9 moles ethylene oxide), marketed by The Procter & Gamble Company; and Genapol LA O3O or O5O (the condensation product of C12-C14 alcohol with 3 or 5 moles of ethylene oxide) marketed by Hoechst. The preferred range of HLB in these AE nonionic surfactants is from 8-11 and most preferred from 8-10. Condensates with propylene oxide and butylene oxides may also be used.
Another class of preferred nonionic surfactants for use herein are the polyhydroxy fatty acid amide surfactants of the formula.
Figure imgf000024_0001
wherein R1 is H, or C 1-4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl or a mixture thereof. R2 is C5-31 hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof. Preferably, R1 is methyl, R2 is a straight C11 -15 alkyl or C15-17 alkyl or alkenyl chain such as coconut alkyl or mixtures thereof, and Z is derived from a reducing sugar such as glucose, fructose, maltose, lactose, in a reductive amination reaction. Typical examples include the C12-C18 and C12-C14 N-methylglucamides. See U.S. 5, 194,639 and 5,298,636. N-alkoxy polyhydroxy fatty acid amides can also be used; see U.S. 5,489,393.
Also useful as the nonionic surfactant in the present invention are the alkylpolysaccharides such as those disclosed in U.S. Patent 4,565,647, Llenado, issued January 21 , 1986, having a hydrophobic group containing from 6 to 30 carbon atoms, preferably from 10 to 16 carbon atoms, and a polysaccharide, e.g. a polyglycoside, hydrophilic group containing from 1.3 to 10, preferably from 1.3 to 3, most preferably from 1.3 to 2.7 saccharide units. Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substimted for the glucosyl moieties (optionally the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside). The intersaccharide bonds can be, e.g. , between the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.
The preferred alkylpolyglycosides have the formula: R2O(CnH2nO)t(glycosyl)x wherein R2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkyIphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18, preferably from 12 to 14, carbon atoms; n is 2 or 3, preferably 2; t is from 0 to 10, preferably 0; and x is from 1.3 to 10, preferably from 1.3 to 3, most preferably from 1.3 to 2.7. The glycosyl is preferably derived from glucose. To prepare these compounds, the alcohol or alkylpolyethoxy alcohol is formed first and then reacted with glucose, or a source of glucose, to form the glucoside (attachment at the 1-position). The additional glycosyl units can then be attached between their 1-position and the preceding glycosyl units 2-, 3-, 4- and/or 6-position, preferably predominately the 2-position. Polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols are also suitable for use as the nonionic surfactant of the surfactant systems of the present invention, with the polyethylene oxide condensates being preferred. These compounds include the condensation products of alkyl phenols having an alkyl group containing from 6 to 14 carbon atoms, preferably from 8 to 14 carbon atoms, in either a straight-chain or branched-chain configuration with the alkylene oxide. In a preferred embodiment, the ethylene oxide is present in an amount equal to from 2 to 25 moles, more preferably from 3 tol5 moles, of ethylene oxide per mole of alkyl phenol. Commercially available nonionic surfactants of this type include Igepal™ CO-630, marketed by the GAF Corporation; and Triton™ X-45, X-114, X-100 and X-102, all marketed by the Rohm & Haas Company. These surfactants are commonly referred to as alkylphenol alkoxy lates (e.g., alkyl phenol ethoxylates). The condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol are also suitable for use as the additional nonionic surfactant in the present invention. The hydrophobic portion of these compounds will preferably have a molecular weight of from 1500 to 1800 and will exhibit water insolubility. The addition of polyoxyethylene moieties to this hydrophobic portion tends to increase the water solubility of the molecule as a whole, and the liquid character of the product is retained up to the point where the polyoxyethylene content is 50% of the total weight of the condensation product, which corresponds to condensation with up to 40 moles of ethylene oxide. Examples of compounds of this type include certain of the commercially-available Pluronic™ surfactants, marketed by BASF.
Also suitable for use as the nonionic surfactant of the nonionic surfactant system of the present invention, are the condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine. The hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from 2500 to 3000. This hydrophobic moiety is condensed with ethylene oxide to the extent that the condensation product contains from 40% to 80% by weight of polyoxyethylene and has a molecular weight of from 5,000 to 11,000. Examples of this type of nonionic surfactant include certain of the commercially available Tetronic™ compounds, marketed by BASF. Additional Cationic surfactants
Suitable cationic surfactants are preferably water dispersible compound having surfactant properties comprising at least one ester (ie -COO-) linkage and at least one cationically charged group.
Other suitable cationic surfactants include the quaternary ammonium surfactants selected from mono C6-C16, preferably C6-C10 N-alkyl or alkenyl ammonium surfactants wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups. Other suitable cationic ester surfactants, including choline ester surfactants, have for example been disclosed in US Patents No s 4228042, 4239660 and 4260529.
Optional Detergent Ingredients The following illustrates various other optional ingredients which may be used in the compositions of this invention, but is not intended to be limiting thereof.
Enzyme Stabilizing System The enzyme-containing compositions herein preferably also comprise from 0.001 % to
10%, preferably from 0.005% to 8% , most preferably from 0.01 % to 6% , by weight of an enzyme stabilizing system. The enzyme stabilizing system can be any stabilizing system which is compatible with the detersive enzyme. Such a system may be inherently provided by other formulation actives, or be added separately, e.g. , by the formulator or by a manufacturer of detergent-ready enzymes. Such stabilizing systems can, for example, comprise calcium ion, boric acid, propylene glycol, short chain carboxylic acids, boronic acids, and mixtures thereof, and are designed to address different stabilization problems depending on the type and physical form of the detergent composition. One stabilizing approach is the use of water-soluble sources of calcium and/or magnesium ions in the finished compositions which provide such ions to the enzymes. Calcium ions are generally more effective than magnesium ions and are preferred herein if only one type of cation is being used. Typical detergent compositions, especially liquids, will comprise from 1 to 30, preferably from 2 to 20, more preferably from 8 to 12 millimoles of calcium ion per liter of finished detergent composition, though variation is possible depending on factors including the multiplicity, type and levels of enzymes incorporated. Preferably water-soluble calcium or magnesium salts are employed, including for example calcium chloride, calcium hydroxide, calcium formate, calcium malate, calcium maleate, calcium hydroxide and calcium acetate; more generally, calcium sulfate or magnesium salts corresponding to the exemplified calcium salts may be used. Further increased levels of Calcium and/or Magnesium may of course be useful, for example for promoting the grease-cutting action of certain types of surfactant.
Another stabilizing approach is by use of borate species. See Severson, U.S. 4,537,706. Borate stabilizers, when used, may be at levels of up to 10% or more of the composition though more typically, levels of up to about 3 % by weight of boric acid or other borate compounds such as borax or orthoborate are suitable for liquid detergent use. Substituted boric acids such as phenylboronic acid, butaneboronic acid, p-bromophenylboronic acid or the like can be used in place of boric acid and reduced levels of total boron in detergent compositions may be possible though the use of such substituted boron derivatives.
Stabilizing systems of certain cleaning compositions, for example automatic dishwashing compositions, may further comprise from 0 to 10% , preferably from 0.01 % to 6% by weight, of chlorine bleach scavengers, added to prevent chlorine bleach species present in many water supplies from attacking and inactivating the enzymes, especially under alkaline conditions. While chlorine levels in water may be small, typically in the range from 0.5 ppm to 1.75 ppm, the available chlorine in the total volume of water that comes in contact with the enzyme, for example during dish- or fabric-washing, can be relatively large;
accordingly, enzyme stability to chlorine in-use is sometimes problematic. Since percarbonate has the ability to react with chlorine bleach the use of additional stabilizers against chlorine, may, most generally, not be essential, though improved results may be obtainable from their use. Suitable chlorine scavenger anions are widely known and readily available, and, if used, can be salts containing ammonium cations with sulfite, bisulfite, thiosulfite, thiosulfate, iodide, etc. Antioxidants such as carbamate, ascorbate, etc., organic amines such as ethylenediaminetetracetic acid (EDTA) or alkali metal salt thereof, monoethanolamine (MEA), and mixtures thereof can likewise be used. Likewise, special enzyme inhibition systems can be incorporated such that different enzymes have maximum compatibility. Other conventional scavengers such as bisulfate, nitrate, chloride, sources of hydrogen peroxide such as sodium perborate tetrahydrate, sodium perborate monohydrate and sodium percarbonate, as well as phosphate, condensed phosphate, acetate, benzoate, citrate, formate, lactate, malate, tartrate, salicylate, etc.. and mixtures thereof can be used if desired. In general, since the chlorine scavenger function can be performed by ingredients separately listed under better recognized functions, (e.g. , hydrogen peroxide sources), there is no absolute requirement to add a separate chlorine scavenger unless a compound performing that function to the desired extent is absent from an enzyme-containing embodiment of the invention; even then, the scavenger is added only for optimum results. Moreover, the formulator will exercise a chemist's normal skill in avoiding the use of any enzyme scavenger or stabilizer which is majorly incompatible, as formulated, with other reactive ingredients. In relation to the use of ammonium salts, such salts can be simply admixed with the detergent composition but are prone to adsorb water and/or liberate ammonia during storage. Accordingly, such materials, if present, are desirably protected in a panicle such as that described in US 4,652,392, Baginski et al.
Bleach
The detergent compositions herein may optionally comprise a bleaching agent. When present, such bleaching agents will typically be at levels of from 1 % to 30% , more typically from 5% to 20% , of the detergent composition, especially for fabric laundering. The bleaching agents used herein can be any of the bleaching agents useful for detergent compositions in textile cleaning, hard surface cleaning, or other cleaning purposes that are now known or become known. These include oxygen bleaches as well as other bleaching agents. Perborate bleaches, e.g. , sodium perborate (e.g. , mono- or tetra-hydrate) can be used herein.
Another category of bleaching agent that can be used without restriction encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of meta- chloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid. Such bleaching agents are disclosed in U.S. Patent 4,483,781, Hartman, issued November 20, 1984, U.S. Patent Application 740,446, Burns et al, filed June 3, 1985, European Patent Application 0,133,354, Banks et al, published February 20. 1985, and U.S. Patent 4,412,934, Chung et al, issued November 1, 1983. Highly preferred bleaching agents also include 6-nonylamino-6-oxoperoxycaproic acid as described in U.S. Patent 4,634,551 , issued January 6, 1987 to Burns et al. Peroxygen bleaching agents can also be used. Suitable peroxygen bleaching compounds include sodium carbonate peroxyhydrate and equivalent "percarbonate" bleaches, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, and sodium peroxide. Persulfate bleach (e.g., OXONE, manufactured commercially by DuPont) can also be used.
A preferred percarbonate bleach comprises dry particles having an average particle size in the range from 500 micrometers to 1 ,000 micrometers, not more than 10% by weight of said particles being smaller than 200 micrometers and not more than 10% by weight of said particles being larger than 1,250 micrometers. Optionally, the percarbonate can be coated with silicate, borate or water-soluble surfactants. Percarbonate is available from various commercial sources such as FMC, Solvay and Tokai Denka.
Bleaching agents other than oxygen bleaching agents are also known in the an and can be utilized herein. One type of non-oxygen bleaching agent of particular interest includes photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalo- cyanines. See U.S. Patent 4,033,718, issued July 5, 1977 to Holcombe et al. If used, detergent compositions will typically contain from 0.025% to 1.25% , by weight, of such bleaches, especially sulfonate zinc phthalocyanine.
Mixtures of bleaching agents can also be used.
Bleach Activator Bleach activators are preferred components of an oxygen bleach containing detergent composition. Bleach activator when present are typically present at levels of from 0.1 % to 60%, more typically from 0.5% to 40% of the bleaching composition comprising the bleaching agent-plus-bleach activator. Peroxygen bleaching agents, the perborates, etc., are preferably combined with bleach activators, which lead to the in situ production in aqueous solution (i.e. , during the washing process) of the peroxy acid or peracid corresponding to the bleach activator. Various nonlimiting examples of activators are disclosed in U.S. Patent 4,915,854, issued April 10, 1990 to Mao et al, and U.S. Patent 4,412,934. The nonanoyloxybenzene sulfonate (NOBS) and tetraacetyl ethylene diamine (TAED) activators are typical, and mixtures thereof can also be used. See also U. S. 4,634.551 for other typical bleaches and activators useful herein.
Highly preferred amido-derived bleach activators are those of the formulae:
R1N(R5)C(O)R2C(O)L or R1C(O)N(R5)R2C(O)L wherein R1 is an alkyl group containing from 6 to 12 carbon atoms, R2 is an alkylene containing from 1 to 6 carbon atoms, R5 is H or alkyl, aryl, or alkaryl containing from 1 to 10 carbon atoms, and L is any suitable leaving group. A ieaving group is any group that is displaced from the bleach activator as a consequence of the nucleophilic attack on the bleach activator by the perhydrolysis anion. A preferred Ieaving group is phenyl sulfonate.
Preferred examples of bleach activators of the above formulae include (6-octanamido- caproyl)oxybenzenesulfonate, (6-nonanamidocaproyl)oxybenzenesulfonate, (6-decanamido- caproyl) oxybenzenesulfonate, and mixtures thereof as described in U.S. Patent 4,634,551 , incorporated herein by reference.
Another class of bleach activators comprises the benzoxazin-type activators disclosed by Hodge et al in U.S. Patent 4,966,723, issued October 30, 1990, incorporated herein by reference. A highly preferred activator of the benzoxazin-type is:
Figure imgf000031_0001
Still another class of preferred bleach activators includes the acyl lactam activators, especially acyl caprolactams and acyl valerolactams of the formulae:
Figure imgf000031_0002
Figure imgf000032_0001
wherein R6 is H or an alkyl, aryl, alkoxyaryl, or aikaryl group containing from 1 to 12 carbon atoms. Highly preferred lactam activators include benzoyl caprolactam, octanoyl caprolactam, 3,5,5-trimethylhexanoyl caprolactam, nonanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, benzoyl valerolactam, octanoyl valerolactam, decanoyl valerolactam, undecenoyl valerolactam, nonanoyl valerolactam, 3,5,5- trimethylhexanoyl valerolactam and mixtures thereof. See also U.S. Patent 4,545,784, issued to Sanderson, October 8, 1985, incorporated herein by reference, which discloses acyl caprolactams, including benzoyl caprolactam, adsorbed into sodium perborate.
Bleach Catalyst Bleach catalysts are optional components of the compositions of the present invention. If desired, the bleaching compounds can be catalyzed by means of a manganese compound. Such compounds are well known in the art and include, for example, the manganese-based catalysts disclosed in U.S. Pat. 5,246,621 , U.S. Pat. 5,244,594; U.S. Pat. 5, 194,416; U.S. Pat. 5, 114,606; and European Pat. App. Pub. Nos. 549,271A1 , 549.272A1 , 544,440A2, and 544,490A1 ; Preferred examples of these catalysts include MnIV 2(u-O)3(1 ,4,7- trimethyl-1 ,4,7-triazacyclononane)2(PF6)2, MnIII 2(u-O)1(u-OAc)2(1 ,4,7-trimethyl-1 ,4,7- triazacyclononane)2-(ClO4)2, MnIV 4(u-O)6(1,4,7-triazacyclononane)4(ClO4)4, MnIII- MnIV 4(u-O)1(u-OAc)2-(1,4,7-trimethyl-1 ,4,7-triazacyclononane)2(ClO4)3, MnIV(1,4,7- trimethyl-1,4,7-triazacyclononane)- (OCH3)3(PF6), and mixtures thereof. Other metal- based bleach catalysts include those disclosed in U.S. Pat. 4,430,243 and U.S. Pat.
5, 114,611. The use of manganese with various complex ligands to enhance bleaching is also reported in the following United States Patents: 4,728,455; 5,284,944; 5,246,612; 5,256,779; 5,280, 117; 5,274,147; 5, 153, 161 ; and 5,227,084. As a practical matter, and not by way of limitation, the compositions and processes herein can be adjusted to provide on the order of at least one part per ten million of the active bleach catalyst species in the aqueous washing liquor, and will preferably provide from 0.1 ppm to 700 ppm, more preferably from 1 ppm to 500 ppm, of the catalyst species in the laundry liquor.
Cobalt bleach catalysts useful herein are known, and are described, for example, in M. L. Tobe, "Base Hydrolysis of Transition-Metal Complexes", Adv. Inorg. Bioinorg. Mech. , (1983), 2, pages 1-94. The most preferred cobalt catalyst useful herein are cobalt pentaamine acetate salts having the formula [Co(NH3)5OAc] Ty, wherein "OAc" represents an acetate moiety and "Ty" is an anion, and especially cobalt pentaamine acetate chloride, [Co(NH3)5OAc]Cl2; as well as [Co(NH3)5OAc](OAc)2;
[Co(NH3)5OAc](PF6)2; [Co(NH3)5OAc](SO4); [Co(NH3)5OAc](BF4)2; and
[Co(NH3)5OAc](NO3)2 (herein "PAC").
These cobalt catalysts are readily prepared by known procedures, such as taught for example in the Tobe article and the references cited therein, in U.S. Patent 4,810,410, to Diakun et al, issued March 7, 1989, J. Chem. Ed. (1989), 66 (12), 1043-45; The Synthesis and Characterization of Inorganic Compounds, W.L. Jolly (Prentice-Hall; 1970), pp. 461- 3; Inorg. Chem. , 18, 1497-1502 (1979); Inorg. Chem. , 21, 2881-2885 (1982); Inorg. Chem. , 18, 2023-2025 (1979); Inorg. Synthesis, 173-176 (1960); and Journal of Physical Chemistry, 56, 22-25 (1952).
As a practical matter, and not by way of limitation, the automatic dishwashing
compositions and cleaning processes herein can be adjusted to provide on the order of at least one pan per hundred million of the active bleach catalyst species in the aqueous washing medium, and will preferably provide from 0.01 ppm to 25 ppm, more preferably from 0.05 ppm to 10 ppm, and most preferably from 0.1 ppm to 5 ppm, of the bleach catalyst species in the wash liquor. In order to obtain such levels in the wash liquor of an automatic dishwashing process, typical automatic dishwashing compositions herein will comprise from 0.0005% to 0.2% , more preferably from 0.004% to 0.08% , of bleach catalyst, especially manganese or cobalt catalysts, by weight of the cleaning compositions.
Builders
Detergent builders can optionally but preferably be included in the compositions herein, for example to assist in controlling mineral, especially Ca and/or Mg, hardness in wash water or to assist in the removal of particulate soils from surfaces. Builders can operate via a variety of mechanisms including forming soluble or insoluble complexes with hardness ions, by ion exchange, and by offering a surface more favorable to the precipitation of hardness ions than are the surfaces of articles to be cleaned. Builder level can vary widely depending upon end use and physical form of the composition. Built detergents typically comprise at least 1 % builder. Liquid formulations typically comprise 5% to 50% , more typically 5 % to 35% of builder. Granular formulations typically comprise from 10% to 80% , more typically 15% to 50% builder by weight of the detergent composition. Lower or higher levels of builders are not excluded. For example, certain detergent additive or high-surfactant formulations can be unbuilt.
Suitable builders herein can be selected from the group consisting of phosphates and polyphosphates, especially the sodium salts; silicates including water-soluble and hydrous solid types and including those having chain-, layer-, or three-dimensional- structure as well as amorphous-solid or non-structured-liquid types; carbonates, bicarbonates, sesquicarbonates and carbonate minerals other than sodium carbonate or sesquicarbonate; aluminosilicates; organic mono-, di-, tri-, and tetracarboxylates especially water-soluble nonsurfactant carboxylates in acid, sodium, potassium or alkanolammonium salt form, as well as oligomeric or water-soluble low molecular weight polymer carboxylates including aliphatic and aromatic types; and phytic acid. These may be complemented by borates, e.g., for pH-buffering purposes, or by sulfates, especially sodium sulfate and any other fillers or carriers which may be important to the engineering of stable surfactant and/or builder-containing detergent compositions.
Builder mixtures, sometimes termed "builder systems" can be used and typically comprise two or more conventional builders, optionally complemented by chelants, pH-buffers or fillers, though these latter materials are generally accounted for separately when describing quantities of materials herein. In terms of relative quantities of surfactant and builder in the present detergents, preferred builder systems are typically formulated at a weight ratio of surfactant to builder of from 60: 1 to 1 :80. Certain preferred laundry detergents have said ratio in the range 0.90:1.0 to 4.0: 1.0, more preferably from 0.95: 1.0 to 3.0: 1.0.
P-containing detergent builders often preferred where permitted by legislation include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of
polyphosphates exemplified by the tripolyphosphates, pyrophosphates, glassy polymeric meta-phosphates; and phosphonates. Suitable silicate builders include alkali metal silicates, particularly those liquids and solids having a SiO2:Na2O ratio in the range 1.6: 1 to 3.2: 1 , including, particularly for automatic dishwashing purposes, solid hydrous 2-ratio silicates marketed by PQ Corp. under the tradename BRITESIL®, e.g., BRITESIL H2O; and layered silicates, e.g. , those described in U.S. 4,664,839, May 12, 1987, H. P. Rieck. NaSKS-6, sometimes abbreviated "SKS- 6", is a crystalline layered aluminium-free δ-Na2SiO5 morphology silicate marketed by Hoechst and is preferred especially in granular laundry compositions. See preparative methods in German DE-A-3,417,649 and DE-A-3,742,043. Other layered silicates, such as those having the general formula NaMSixO2x + 1 · yH2O wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0, can also or alternately be used herein. Layered silicates from Hoechst also include NaSKS-5, NaSKS-7 and NaSKS-11 , as the α, β and γ layer-silicate forms. Other silicates may also be useful, such as magnesium silicate, which can serve as a crispening agent in granules, as a stabilising agent for bleaches, and as a component of suds control systems.
Also suitable for use herein are synthesized crystalline ion exchange materials or hydrates thereof having chain structure and a composition represented by the following general formula in an anhydride form: xM2O·ySiO2.zM'O wherein M is Na and/or K, M' is Ca and/or Mg; y/x is 0.5 to 2.0 and z/x is 0.005 to 1.0 as taught in U.S. 5,427,711,
Sakaguchi et al, June 27, 1995.
Suitable carbonate builders include alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973, although sodium bicarbonate, sodium carbonate, sodium sesquicarbonate, and other carbonate minerals such as trona or any convenient multiple salts of sodium carbonate and calcium carbonate such as those having the composition 2Na2CO3.CaCO3 when anhydrous, and even calcium carbonates including calcite, aragonite and vaterite, especially forms having high surface areas relative to compact calcite may be useful, for example as seeds or for use in synthetic detergent bars.
Aluminosilicate builders are especially useful in granular detergents, but can also be incorporated in liquids, pastes or gels. Suitable for the present purposes are those having empirical formula: [M2(AlO2)z(SiO2)v] ·xH2O wherein z and v are integers of at least 6, the molar ratio of z to v is in the range from 1.0 to 0.5, and x is an integer from 15 to 264. Aluminosilicates can be crystalline or amorphous, naturally-occurring or synthetically derived. An aluminosilicate production method is in U.S. 3,985,669, Krummel, et al, October 12, 1976. Preferred synthetic crystalline aluminosilicate ion exchange materials are available as Zeolite A, Zeolite P (B), Zeolite X and, to whatever extent this differs from Zeolite P, the so-called Zeolite MAP. Natural types, including clinoptilolite, may be used. Zeolite A has the formula: Na12[(AlO2)12(SiO2)12]·xH2O wherein x is from 20 to 30, especially 27. Dehydrated zeolites (x = 0 - 10) may also be used. Preferably, the aluminosilicate has a particle size of 0.1-10 microns in diameter.
Suitable organic detergent builders include polycarboxylate compounds, including water- soluble nonsurfactant dicarboxy lates and tricarboxy lates. More typically builder
polycarboxylates have a plurality of carboxylate groups, preferably at least 3 carboxylates. Carboxylate builders can be formulated in acid, partially neutral, neutral or overbased form. When in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred. Polycarboxylate builders include the ether polycarboxylates, such as oxydisuccinate, see Berg, U.S. 3, 128,287, April 7, 1964, and Lamberti et al, U.S. 3,635,830, January 18, 1972; "TMS/TDS" builders of U.S.
4,663,071 , Bush et al. May 5, 1987; and ouier ether carboxylates including cyclic and alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163;
4, 158,635; 4, 120,874 and 4, 102,903.
Other suitable builders are the ether hydroxypolycarboxyla.es, copolymers of maleic anhydride with ethylene or vinyl methyl ether; 1 , 3, 5-trihydroxy benzene-2, 4, 6- trisulphonic acid; carboxymethyloxysuccinic acid; the various alkali metal, ammomum and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid; as well as mellitic acid, succinic acid, polymaleic acid, benzene 1 ,3,5- tricarboxylic acid, carboxymethyloxy succinic acid, and soluble salts thereof. Citrates, e.g. , citric acid and soluble salts thereof are important carboxylate builders e.g. , for heavy duty liquid detergents, due to availability from renewable resources and biodegradability. Citrates can also be used in granular compositions, especially in combination with zeolite and/or layered silicates. Oxydisuccinates are also especially useful in such compositions and combinations. Where permitted, and especially in the formulation of bars used for hand-laundering operations, alkali metal phosphates such as sodium tripolyphosphates, sodium
pyrophosphate and sodium orthophosphate can be used. Phosphonate builders such as ethane-1-hydroxy-1, 1-diphosphonate and other known phosphonates, e.g. , those of U.S. 3,159,581; 3,213,030; 3,422,021; 3,400, 148 and 3,422,137 can also be used and may have desirable antiscaling properties.
Certain detersive surfactants or their short-chain homologs also have a builder action. For unambiguous formula accounting purposes, when they have surfactant capability, these materials are summed up as detersive surfactants. Preferred types for builder functionality are illustrated by: 3,3-dicarboxy-4-oxa-1,6-hexanedioates and the related compounds disclosed in U.S. 4,566,984, Bush, January 28, 1986. Succinic acid builders include the C5-C20 alkyl and alkenyl succinic acids and salts thereof. Succinate builders also include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2- pentadecenylsuccinate. Lauryl-succinates are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986. Fatty acids, e.g., C12- C18 monocarboxylic acids, can also be incorporated into the compositions as surfactant/builder materials alone or in combination with the aforementioned builders, especially citrate and/or the succinate builders, to provide additional builder activity. Other suitable polycarboxylates are disclosed in U.S. 4,144,226, Crutchfield et al, March 13, 1979 and in U.S. 3,308,067, Diehl, March 7, 1967. See also Diehl, U.S. 3,723,322.
Other types of inorganic builder materials which can be used have the formula (Mx)i Cay (CO3)z wherein x and i are integers from 1 to 15, y is an integer from 1 to 10, z is an integer from 2 to 25, Mi are cations, at least one of which is a water-soluble, and the equation Σi = 1-15(xi multiplied by the valence of Mi) + 2y = 2z is satisfied such that the formula has a neutral or "balanced" charge. These builders are referred to herein as "Mineral Builders". Waters of hydration or anions other than carbonate may be added provided that the overall charge is balanced or neutral. The charge or valence effects of such anions should be added to the right side of the above equation. Preferably, there is present a water-soluble cation selected from the group consisting of hydrogen, water- soluble metals, hydrogen, boron, ammonium, silicon, and mixtures thereof, more preferably, sodium, potassium, hydrogen, lithium, ammonium and mixtures thereof, sodium and potassium being highly preferred. Nonlimiting examples of noncarbonate anions include those selected from the group consisting of chloride, sulfate, fluoride, oxygen, hydroxide, silicon dioxide, chromate, nitrate, borate and mixtures thereof.
Preferred builders of this type in their simplest forms are selected from the group consisting of Na2Ca(CO3)2, K2Ca(CO3)2, Na2Ca2(CO3)3, NaKCa(CO3)2,
NaKCa2(CO3)3, K2Ca2(CO3)3, and combinations thereof. An especially preferred material for the builder described herein is Na2Ca(CO3)2 in any of its crystalline modifications. Suitable builders of the above-defined type are further illustrated by, and include, the natural or synthetic forms of any one or combinations of the following minerals: Afghanite, Andersonite, AshcroftineY, Beyerite, Borcarite, Burbankite,
Butschliite, Cancrinite, Carbocernaite, Carletonite, Davyne, DonnayiteY, Fairchildite, Ferrisurite, Franzinite, Gaudefroyite, Gaylussite, Girvasite, Gregoryite, Jouravskite, KamphaugiteY, Kettnerite, Khanneshite, LepersonniteGd, Liottite, MckelveyiteY,
Microsommite, Mroseite, Natrofairchildite, Nyerereite, RemonditeCe, Sacrofanite, Schrockingerite, Shortite, Surite, Tunisite, Tuscanite, Tyrolite, Vishnevite, and Zemkorite. Preferred mineral forms include Nyererite, Fairchildite and Shortite.
Polymeric Soil Release Agent
Known polymeric soil release agents, hereinafter "SRA" or "SRA's" , can optionally be employed in the present detergent compositions. If utilized, SRA's will generally comprise from 0.01 % to 10.0% , typically from 0.1 % to 5%, preferably from 0.2% to 3.0% by weight, of the composition.
Preferred SRA's typically have hydrophilic segments to hydrophilize the surface of hydrophobic fibers such as polyester and nylon, and hydrophobic segments to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles thereby serving as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with SRA to be more easily cleaned in later washing procedures. SRA's can include a variety of charged, e.g. , anionic or even cationic (see U.S.
4,956,447), as well as noncharged monomer units and structures may be linear, branched or even star-shaped. They may include capping moieties which are especially effective in controlling molecular weight or altering the physical or surface-active properties.
Structures and charge distributions may be tailored for application to different fiber or textile types and for varied detergent or detergent additive products. Preferred SRA's include oligomeric terephthalate esters, typically prepared by processes involving at least one transesterification/oligomerization, often with a metal catalyst such as a titanium(IV) alkoxide. Such esters may be made using additional monomers capable of being incorporated into the ester structure through one, two, three, four or more positions, without of course forming a densely crosslinked overall structure.
Suitable SRA's include: a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and allyl-derived sulfonated terminal moieties covalently attached to the backbone, for example as described in U.S. 4,968,451, November 6, 1990 to J.J. Scheibel and E.P. Gosselink: such ester oligomers can be prepared by (a) ethoxylating allyl alcohol, (b) reacting the product of (a) with dimethyl terephthalate ("DMT") and 1 ,2-propylene glycol ("PG") in a two-stage transesterification/ oligomerization procedure and (c) reacting the product of (b) with sodium metabisulfite in water; the nonionic end-capped 1 ,2- propylene/polyoxyethylene terephthalate polyesters of U.S. 4,711,730, December 8, 1987 to Gosselink et al, for example those produced by transesterification/oligomerization of poly(ethyleneglycol) methyl ether, DMT, PG and poly(ethyleneglycol) ("PEG"); the partly- and fully- anionic-end-capped oligomeric esters of U.S. 4,721,580, January 26, 1988 to Gosselink, such as oligomers from ethylene glycol ("EG "), PG, DMT and Na-3,6-dioxa-8- hydroxyoctanesulfonate; the nonionic-capped block polyester oligomeric compounds of U.S. 4,702,857, October 27, 1987 to Gosselink, for example produced from DMT, Me- capped PEG and EG and/or PG, or a combination of DMT, EG and/or PG, Me-capped PEG and Na-dimethyl-5-sulfoisophthalate; and the anionic, especially sulfoaroyl, end- capped terephthalate esters of U.S. 4,877,896, October 31, 1989 to Maldonado, Gosselink et al, the latter being typical of SRA's useful in both laundry and fabric conditioning products, an example being an ester composition made from m-sulfobenzoic acid monosodium salt, PG and DMT optionally but preferably further comprising added PEG, e.g. , PEG 3400.
SRA's also include simple copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, see U.S.
3,959,230 to Hays, May 25, 1976 and U.S. 3,893,929 to Basadur, July 8, 1975; cellulosic derivatives such as the hydroxyether cellulosic polymers available as METHOCEL from Dow; and the C1-C4 alkylcelluloses and C4 hydroxyalkyl celluloses; see U.S. 4,000,093, December 28, 1976 to Nicol, et al. Suitable SRA's characterised by poly(vinyl ester) hydrophobe segments include graft copolymers of poly(vinyl ester), e.g., C1-C6 vinyl esters, preferably poly(vinyl acetate), grafted onto polyalkylene oxide backbones. See European Patent Application 0 219 048, published April 22, 1987 by Kud, et al.
Commercially available examples include SOKALAN SRA's such as SOKALAN HP-22, available from BASF, Germany. Other SRA's are polyesters with repeat units containing 10-15% by weight of ethylene terephthalate together with 90-80% by weight of
polyoxyethylene terephthalate, derived from a polyoxyethylene glycol of average molecular weight 300-5,000. Commercial examples include ZELCON 5126 from Dupont and
MILEASE T from ICl.
Another preferred SRA is an oligomer having empirical formula (CAP)2(EG/PG)5(T)5(SIP)1 which comprises terephthaloyl (T), sulfoisophthaloyl (SEP), oxyethyleneoxy and oxy-1,2-propylene (EG/PG) units and which is preferably terminated with end-caps (CAP), preferably modified isethionates, as in an oligomer comprising one sulfoisophthaloyl unit, 5 terephthaloyl units, oxyethyleneoxy and oxy-1,2-propyleneoxy units in a defined ratio, preferably about 0.5: 1 to about 10: 1, and two end-cap units derived from sodium 2-(2-hydroxyethoxy)-ethanesulfonate. Said SRA preferably further comprises from 0.5% to 20%, by weight of the oligomer, of a crystallinity-reducing stabiliser, for example an anionic surfactant such as linear sodium dodecylbenzenesulfonate or a member selected from xylene-, cumene-, and toluene- sulfonates or mixtures thereof, these stabilizers or modifiers being introduced into the synthesis pot, all as taught in U.S. 5,415,807, Gosselink, Pan, Kellett and Hall, issued May 16, 1995. Suitable monomers for the above SRA include Na 2-(2-hydroxyethoxy)-ethanesulfonate, DMT, Na- dimethyl 5- sulfoisophthalate, EG and PG.
Yet another group of preferred SRA's are oligomeric esters comprising: (1) a backbone comprising (a) at least one unit selected from me group consisting of dihydroxysulfonates, polyhydroxy sulfonates, a unit which is at least trifunctional whereby ester linkages are formed resulting in a branched oligomer backbone, and combinations thereof; (b) at least one unit which is a terephthaloyl moiety; and (c) at least one unsulfonated unit which is a 1,2-oxyalkyleneoxy moiety; and (2) one or more capping units selected from nonionic capping units, anionic capping units such as alkoxylated, preferably ethoxylated, isethionates, alkoxylated propanesulfonates, alkoxylated propanedisulfonates, alkoxylated phenolsulfonates, sulfoaroyl derivatives and mixtures thereof Preferred of such esters are those of empirical formula.
{(CAP)x(EG/PG)y'(DEG)y"(PEG)y"'(T)z(SIP)z'(SEG)q(B)m} wherein CAP, EG/PG, PEG, T and SIP are as defined hereinabove, (DEG) represents di(oxyethylene)oxy units; (SEG) represents units derived from the sulfoethyl ether of glycerin and related moiety units; (B) represents branching units which are at least trifunctional whereby ester linkages are formed resulting in a branched oligomer backbone; x is from about 1 to about 12; y' is from about 0.5 to about 25; y" is from 0 to about 12; y' " is from 0 to about 10; y' +y" +y' " totals from about 0.5 to about 25; z is from about 1.5 to about 25; z' is from 0 to about 12, z + z' totals from about 1.5 to about 25; q is from about 0.05 to about 12; m is from about 0.01 to about 10; and x, y' , y" , y"' , z, z' , q and m represent the average number of moles of the corresponding units per mole of said ester and said ester has a molecular weight ranging from about 500 to about 5,000.
Preferred SEG and CAP monomers for the above esters include Na-2-(2-,3- dihydroxypropoxy)ethanesulfonate ("SEG"), Na-2-{2-(2-hydroxyethoxy) ethoxy} ethanesulfonate ("SE3") and its homologs and mixtures thereof and the products of ethoxylating and sulfonating allyl alcohol. Preferred SRA esters in this class include the product of transesterifying and oligomerizing sodium 2-{2-(2- hydroxyethoxy)ethoxy}ethanesulfonate and/or sodium 2-[2-{2-(2-hydroxyethoxy)- ethoxy}ethoxy]ethanesulfonate, DMT, sodium 2-(2,3-dihydroxypropoxy) ethane sulfonate, EG, and PG using an appropriate Ti(IV) catalyst and can be designated as (CAP)2(T)5(EG/PG)1.4(SEG)2.5(B)0.13 wherein CAP is (Na+ -O3S[CH2CH2O]3.5)- and B is a unit from glycenn and the mole ratio EG/PG is about 1.7- 1 as measured by conventional gas chromatography after complete hydrolysis.
Additional classes of SRA's include (I) nonionic terephthalates using diisocyanate coupling agents to link up polymeric ester structures, see U S 4,201 ,824, Violland et al. and U.S 4,240,918 Lagasse et al; (II) SRA's with carboxylate terminal groups made by adding trimellitic anhydride to known SRA's to convert terminal hydroxyl groups to trimellitate esters. With a proper selection of catalyst, the trimellitic anhydride forms linkages to the terminals of the polymer through an ester of the isolated carboxylic acid of trimellitic anhydride rather than by opening of the anhydride linkage. Either nonionic or anionic SRA's may be used as starting materials as long as they have hydroxyl terminal groups which may be esterified. See U.S. 4,525,524 Tung et al. ; (Ill) anionic terephthalate-based SRA's of the urethane-linked variety, see U.S. 4,201 ,824, Violland et al; (IV) poly(vinyl caprolactam) and related co-polymers with monomers such as vinyl pyrrolidone and/or dimethylaminoethyl methacrylate, including both nonionic and cationic polymers, see U.S. 4,579,681 , Ruppert et al.; (V) graft copolymers, in addition to the SOKALAN types from BASF made, by grafting acrylic monomers on to sulfonated polyesters; these SRA's assertedly have soil release and anti-redeposition activity similar to known cellulose ethers: see EP 279, 134 A, 1988, to Rhone-Poulenc Chemie; (VI) grafts of vinyl monomers such as acrylic acid and vinyl acetate on to proteins such as caseins, see EP 457,205 A to BASF (1991); (VII) polyester-polyamide SRA's prepared by condensing adipic acid, caprolactam, and polyethylene glycol, especially for treating polyamide fabrics, see Bevan et al, DE 2,335,044 to Unilever N. V. , 1974. Other useful SRA's are described in U.S. Patents 4,240,918, 4,787,989, 4,525,524 and 4,877,896.
Clay Soil Removal/Anti-redeposition Agents
The compositions of the present invention can also optionally contain water-soluble ethoxylated amines having clay soil removal and antiredeposition properties. Granular detergent compositions which contain these compounds typically contain from 0.01 % to 10.0% by weight of the water-soluble ethoxylates amines; liquid detergent compositions typically contain 0.01 % to 5%.
The most preferred soil release and anti-redeposition agent is ethoxylated tetraethylene- pentamine. Exemplary ethoxylated amines are further described in U.S. Patent 4,597,898, VanderMeer, issued July 1, 1986. Another group of preferred clay soil removal- antiredeposition agents are the cationic compounds disclosed in European Patent
Application 111,965, Oh and Gosselink, published June 27, 1984. Other clay soil removal/antiredeposition agents which can be used include the ethoxylated amine polymers disclosed in European Patent Application 111 ,984, Gosselink, published June 27, 1984; the zwitterionic polymers disclosed in European Patent Application 112,592, Gosselink, published July 4, 1984; and the amine oxides disclosed in U.S. Patent 4,548,744, Connor, issued October 22, 1985. Other clay soil removal and/or anti redeposition agents known in the art can also be utilized in the compositions herein. See U.S. Patent 4,891 ,160, VanderMeer, issued January 2, 1990 and WO 95/32272, published November 30, 1995. Another type of preferred antiredeposition agent includes the carboxy methyl cellulose (CMC) materials. These materials are well known in the art.
Polymeric Dispersing Agents
Polymeric dispersing agents can advantageously be utilized at levels from 0.1 % to 7%, by weight, in the compositions herein, especially in the presence of zeolite and/or layered silicate builders. Suitable polymeric dispersing agents include polymeric polycarboxylates and polyethylene glycols, although others known in the art can also be used. It is believed, though it is not intended to be limited by theory, that polymeric dispersing agents enhance overall detergent builder performance, when used in combination with other builders (including lower molecular weight polycarboxylates) by crystal growth inhibition, particulate soil release peptization, and anti-redeposition. Polymeric polycarboxylate materials can be prepared by polymerizing or copolymerizing suitable unsaturated monomers, preferably in their acid form. Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid. The presence in the polymeric polycarboxylates herein or monomeric segments, containing no carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that such segments do not constitute more than 40% by weight.
Particularly suitable polymeric polycarboxylates can be derived from acrylic acid. Such acrylic acid-based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid. The average molecular weight of such polymers in the acid form preferably ranges from 2,000 to 10,000, more preferably from 4,000 to 7,000 and most preferably from 4,000 to 5,000. Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammomum salts.
Soluble polymers of this type are known materials. Use of polyacrylates of this type in detergent compositions has been disclosed, for example, in Diehl, U.S. Patent 3,308,067, issued March 7, 1967.
Acrylic/maleic-based copolymers may also be used as a preferred component of the dispersing/anti-redeposition agent. Such materials include the water-soluble salts of copolymers of acrylic acid and maleic acid. The average molecular weight of such copolymers in the acid form preferably ranges from 2.000 to 100,000, more preferably from 5,000 to 75,000, most preferably from 7,000 to 65,000. The ratio of acrylate to maleate segments in such copolymers will generally range from 30: 1 to 1: 1, more preferably from 10: 1 to 2: 1. Water-soluble salts of such acrylic acid/maleic acid copolymers can include, for example, the alkali metal, ammonium and substituted ammomum salts. Soluble acrylate/maleate copolymers of this type are known materials which are described in European Patent Application No. 66915, published December 15, 1982, as well as in EP 193,360, published September 3, 1986, which also describes such polymers comprising hydroxypropylacrylate. Still other useful dispersing agents include the maleic/acry lie/vinyl alcohol terpolymers. Such materials are also disclosed in EP 193,360, including, for example, the 45/45/10 terpolymer of acrylic/maleic/vinyl alcohol.
Another polymeric material which can be included is polyethylene glycol (PEG). PEG can exhibit dispersing agent performance as well as act as a clay soil removal-antiredeposition agent. Typical molecular weight ranges for these purposes range from 500 to 100,000, preferably from 1 ,000 to 50,000, more preferably from 1 ,500 to 10,000.
Polyaspartate and polyglutamate dispersing agents may also be used, especially in conjunction with zeolite builders. Dispersing agents such as polyaspartate preferably have a molecular weight (avg.) of 10,000.
Brightener Any optical brighteners or other brightening or whitening agents known in the art can be incorporated at levels typically from 0.01 % to 1.2% , by weight, into the detergent compositions herein. Commercial optical brighteners which may be useful in the present invention can be classified into subgroups, which include, but are not necessarily limited to, derivatives of stilbene, pyrazoline, coumarin, carboxylic acid, methinecyanines, dibenzothiophene-5,5-dioxide, azoles, 5- and 6-membered-ring heterocycles, and other miscellaneous agents. Examples of such brighteners are disclosed in "The Production and Application of Fluorescent Brightening Agents" , M. Zahradnik, Published by John Wiley & Sons, New York (1982). Specific examples of optical brighteners which are useful in the present compositions are those identified in U.S. Patent 4,790,856, issued to Wixon on December 13, 1988. These brighteners include the PHORWHITE series of brighteners from Verona. Other brighteners disclosed in this reference include: Tinopal UNPA, Tinopal CBS and Tinopal 5BM; available from Ciba-Geigy; Artic White CC and Artic White CWD, the 2-(4-styryl- phenyl)-2H-naptho[1 ,2-d]triazoles; 4,4'-bis-(1 ,2,3-triazol-2-yl)-stilbenes; 4,4'- bis(styryl)bisphenyls; and the aminocoumarins. Specific examples of these brighteners include 4-methyl-7-diethyl- amino coumarin; 1 ,2-bis(benzimidazol-2-yl)ethylene; 1 ,3- diphenyl-pyrazolines; 2,5-bis(benzoxazol-2-yl)thiophene; 2-styryl-naptho[1 ,2-d]oxazole; and 2-(stilben-4-yl)-2H-naphtho[1,2-d]triazole. See also U.S. Patent 3,646,015, issued February 29, 1972 to Hamilton.
Dye Transfer Inhibiting Agents The compositions of the present invention may also include one or more materials effective for inhibiting the transfer of dyes from one fabric to another during the cleaning process. Generally, such dye transfer inhibiting agents include polyvinyl pyrrolidone polymers, poiyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, manganese phthalocyanine, peroxidases, and mixtures thereof. If used, these agents typically comprise from 0.01 % to 10% by weight of the composition, preferably from 0.01 % to 5%, and more preferably from 0.05% to 2% .
More specifically, the poiyamine N-oxide polymers preferred for use herein contain units having me following structural formula: R-Ax-P; wherein P is a polymerizable unit to which an N-O group can be attached or the N-O group can form part of the polymerizable unit or the N-O group can be attached to both units; A is one of the following structures: - NC(O)-, -C(O)O-, -S-, -O-, -N = ; x is 0 or 1; and R is aliphatic, ethoxylated aliphatics, aromatics, heterocyclic or alicyclic groups or any combination thereof to which the nitrogen of the N-O group can be attached or the N-O group is part of these groups. Preferred poiyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrrolidine, piperidine and derivatives thereof.
The N-O group can be represented by the following general structures:
Figure imgf000046_0001
wherein R1 , R2, R3 are aliphatic, aromatic, heterocyclic or alicyclic groups or
combinations thereof; x, y and z are 0 or 1 ; and the nitrogen of the N-O group can be attached or form part of any of the aforementioned groups. The amine oxide unit of the poiyamine N-oxides has a pKa < 10, preferably pKa < 7, more preferred pKa <6.
Any polymer backbone can be used as long as the amine oxide polymer formed is water- soluble and has dye transfer inhibiting properties. Examples of suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof. These polymers include random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is an N-oxide. The amine N-oxide polymers typically have a ratio of amine to the amine N-oxide of 10: 1 to 1 : 1 ,000,000. However, the number of amine oxide groups present in the poiyamine oxide polymer can be varied by appropriate copolymerization or by an appropriate degree of N-oxidation. The poiyamine oxides can be obtained in almost any degree of
polymerization. Typically, the average molecular weight is within the range of 500 to 1,000,000; more preferred 1,000 to 500,000; most preferred 5,000 to 100,000. This preferred class of materials can be referred to as "PVNO" .
The most preferred poiyamine N-oxide useful in the detergent compositions herein is poly(4-vinylpyridine-N-oxide) which has an average molecular weight of 50,000 and an amine to amine N-oxide ratio of 1:4. Copolymers of N-vinylpyrrolidone and N-vinylimidazole polymers (referred to as a class as "PVPVI") are also preferred for use herein. Preferably the PVPVI has an average molecular weight range from 5,000 to 1 ,000,000, more preferably from 5,000 to 200,000, and most preferably from 10,000 to 20,000. (The average molecular weight range is determined by light scattering as described in Barth. et al. , Chemical Analysis, Vol 113. "Modern Methods of Polymer Characterization", the disclosures of which are incorporated herein by reference.) The PVPVI copolymers typically have a molar ratio of N- vinylimidazole to N-vinylpyrrolidone from 1 : 1 to 0.2: 1 , more preferably from 0.8: 1 to 0.3: 1 , most preferably from 0.6:1 to 0.4: 1. These copolymers can be either linear or branched.
The present invention compositions also may employ a polyvinylpyrrolidone ("PVP") having an average molecular weight of from 5,000 to 400,000, preferably from 5,000 to 200,000, and more preferably from 5,000 to 50,000. PVP's are known to persons skilled in the detergent field; see, for example, EP-A-262,897 and EP-A-256,696, incorporated herein by reference. Compositions containing PVP can also contain polyethylene glycol ("PEG") having an average molecular weight from 500 to 100,000, preferably from 1 ,000 to 10,000. Preferably, the ratio of PEG to PVP on a ppm basis delivered in wash solutions is from 2:1 to 50: 1 , and more preferably from 3:1 to 10: 1.
The detergent compositions herein may also optionally contain from 0.005% to 5% by weight of certain types of hydrophilic optical brighteners which also provide a dye transfer inhibition action. If used, the compositions herein will preferably comprise from 0.01 % to 1 % by weight of such optical brighteners.
The hydrophilic optical brighteners useful in the present invention are those having the structural formula:
Figure imgf000047_0001
wherein R1 is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl; R2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, morphilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium.
When in the above formula, R1 is anilino, R2 is N-2-bis-hydroxyethyl and M is a cation such as sodium, the brightener is 4,4' ,-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine-2- yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX by Ciba-Geigy Corporation. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
When in the above formula, R1 is anilino, R2 is N-2-hydroxyethyl-N-2-methylamino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-(N-2-hydroxyethyl-N- methylamino)-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal 5BM- GX by Ciba-Geigy Corporation. When in the above formula, R1 is anilino, R2 is morphilino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-morphilino-s-triazine-2-yl)amino]2,2'- stilbenedisulfonic acid, sodium salt. This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX by Ciba Geigy Corporation. The specific optical brightener species selected for use in the present invention provide especially effective dye transfer inhibition performance benefits when used in combination with the selected polymeric dye transfer inhibiting agents hereinbefore described. The combination of such selected polymeric materials (e.g. , PVNO and/or PVPVI) with such selected optical brighteners (e.g., Tinopal UNPA-GX, Tinopal 5BM-GX and/or Tinopal AMS-GX) provides significantly better dye transfer inhibition in aqueous wash solutions than does either of these two detergent composition components when used alone. Without being bound by theory, it is believed that such brighteners work this way because they have high affinity for fabrics in the wash solution and therefore deposit relatively quick on these fabrics. The extent to which brighteners deposit on fabrics in the wash solution can be defined by a parameter called the "exhaustion coefficient" . The exhaustion coefficient is in general as the ratio of a) the brightener material deposited on fabric to b) the initial brightener concentration in the wash liquor. Brighteners with relatively high exhaustion coefficients are the most suitable for inhibiting dye transfer in the context of the present invention.
Of course, it will be appreciated that other, conventional optical brightener types of compounds can optionally be used in the present compositions to provide conventional fabric "brightness" benefits, rather than a true dye transfer inhibiting effect. Such usage is conventional and well-known to detergent formulations. Chelating Agents
The detergent compositions herein may also optionally contain one or more iron and/or manganese chelating agents. Such chelating agents can be selected from the group consisting of amino carboxylates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures therein, all as hereinafter defined. Without intending to be bound by theory, it is believed that the benefit of these materials is due in part to their exceptional ability to remove iron and manganese ions from washing solutions by formation of soluble chelates.
Amino carboxylates useful as optional chelating agents include emylenedianiinetetraceta.es, N-hydroxyethy lethy lenediaminetriacetates, nitrilotriacetates, ethylenediamine
tetraproprionates, triethylenetetraaminehexacetates, diethylenetriaminepentaacetates, and ethanoldiglycines, alkali metal, ammomum, and substimted ammonium salts therein and mixtures therein.
Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at least low levels of total phosphorus are permitted in detergent compositions, and include ethylenediaminetetrakis (methylenephosphonates) as DEQUEST. Preferred, these amino phosphonates to not contain alkyl or alkenyl groups with more than 6 carbon atoms.
Polyfunctionally-substituted aromatic chelating agents are also useful in the compositions herein. See U.S. Patent 3,812,044, issued May 21 , 1974, to Connor et al. Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1 ,2-dihydroxy- 3,5-disulfobenzene.
A preferred biodegradable chelator for use herein is ethylenediamine disuccinate
("EDDS"), especially the [S,S] isomer as described in U.S. Patent 4,704,233, November 3, 1987, to Hartman and Perkins.
The compositions herein may also contain water-soluble methyl glycine diacetic acid (MGDA) salts (or acid form) as a chelant or co-builder useful with, for example, insoluble builders such as zeolites, layered silicates. If utilized, these chelating agents will generally comprise from 0 .1 % to 15 % by weight of the detergent compositions herein. More preferably, if utilized, the chelating agents will comprise from 0. 1 % to 3 .0% by weight of such compositions Suds Suppressors
Compounds for reducing or suppressing the formation of suds can be incorporated into the compositions of the present invention. Suds suppression can be of particular importance in the so-called "high concentration cleaning process" as described in U.S. 4,489,455 and 4,489,574 and in front-loading European-style washing machines.
A wide variety of materials may be used as suds suppressors, and suds suppressors are well known to those skilled in the art. See, for example, Kirk Othmer Encyclopedia of
Chemical Technology, Third Edition, Volume 7, pages 430-447 (John Wiley & Sons, Inc., 1979). One category of suds suppressor of particular interest encompasses monocarboxylic fatty acid and soluble salts therein. See U.S Patent 2,954,347, issued September 27, 1960 to Wayne St. John. The monocarboxylic fatty acids and salts thereof used as suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms. Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammomum and alkanolammonium salts.
The detergent compositions herein may also contain non-surfactant suds suppressors.
These include, for example: high molecular weight hydrocarbons such as paraffin, fatty acid esters (e.g. , fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C18-C40 ketones (e.g , stearone), etc. Other suds inhibitors include N-alkylated ammo triazines such as tri- to hexa-alkylmelamines or di- to tetra-alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, and monostearyl phosphates such as monostearyl alcohol phosphate ester and monostearyl di-alkali metal (e g , K, Na, and Li) phosphates and phosphate esters The hydrocarbons such as paraffin and haloparaffin can be utilized in liquid form. The liquid hydrocarbons will be liquid at room temperature and atmospheric pressure, and will have a pour point in the range of -40°C and 50°C, and a minimum boiling point not less thanl 10°C (atmospheric pressure). It is also known to utilize waxy hydrocarbons, preferably having a melting point below 100°C. The hydrocarbons constitute a preferred category of suds suppressor for detergent compositions. Hydrocarbon suds suppressors are described, for example, in U.S. Patent 4,265.779, issued May 5, 1981 to Gandolfo et al. The hydrocarbons, thus, include aliphatic, alicyclic, aromatic, and heterocyclic saturated or unsaturated hydrocarbons having from 12 to 70 carbon atoms. The term "paraffin," as used in this suds suppressor discussion, is intended to include mixtures of true paraffins and cyclic hydrocarbons.
Another preferred category of non-surfactant suds suppressors comprises silicone suds suppressors. This category includes the use of polyorganosiloxane oils, such as
polydimethylsiloxane, dispersions or emulsions of polyorganosiloxane oils or resins, and combinations of polyorganosiloxane with silica particles wherein the polyorganosiloxane is chemisorbed or fused onto the silica. Silicone suds suppressors are well known in the art and are, for example, disclosed in U.S. Patent 4,265,779, issued May 5, 1981 to Gandolfo et al and European Patent Application No. 89307851.9, published February 7, 1990, by Starch, M. S.
Other silicone suds suppressors are disclosed in U.S. Patent 3,455,839 which relates to compositions and processes for defoaming aqueous solutions by incorporating therein small amounts of polydimethylsiloxane fluids. Mixtures of silicone and silanated silica are described, for instance, in German Patent Application DOS 2,124,526. Silicone defoamers and suds controlling agents in granular detergent compositions are disclosed in U.S. Patent 3,933,672, Bartolotta et al, and in U.S. Patent 4,652,392, Baginski et al, issued March 24, 1987. An exemplary silicone based suds suppressor for use herein is a suds suppressing amount of a suds controlling agent consisting essentially of:
(i) polydimethylsiloxane fluid having a viscosity of from about 20 cs. to about
1 ,500 cs. at 25°C;
(ii) from about 5 to about 50 parts per 100 parts by weight of (i) of siloxane resin composed of (CH3)3SiO1/2 units of SiO2 units in a ratio of from (CH3)3
SiO1 /2 units and to SiO2 units of from about 0.6: 1 to about 1.2: 1 ; and
(iii) from about 1 to about 20 parts per 100 parts by weight of (i) of a solid silica gel.
In the preferred silicone suds suppressor used herein, the solvent for a continuous phase is made up of certain polyethylene glycols or polyethylene-polypropylene glycol copolymers or mixtures thereof (preferred), or polypropylene glycol. The primary silicone suds suppressor is branched/crosslinked and preferably not linear.
To illustrate this point further, typical liquid laundry detergent compositions with controlled suds will optionally comprise from about 0.001 to about 1 , preferably from about 0.01 to about 0.7, most preferably from about 0.05 to about 0.5, weight % of said silicone suds suppressor, which comprises (1) a nonaqueous emulsion of a primary antifoam agent which is a mixture of (a) a polyorganosiloxane, (b) a resinous siloxane or a silicone resin-producing silicone compound, (c) a finely divided filler material, and (d) a catalyst to promote the reaction of mixture components (a), (b) and (c), to form silanolates; (2) at least one nonionic silicone surfactant; and (3) polyethylene glycol or a copolymer of polyethylene-polypropylene glycol having a solubility in water at room temperature of more than about 2 weight % ; and without polypropylene glycol. Similar amounts can be used in granular compositions, gels, etc. See also U.S. Patents 4,978,471 , Starch, issued December 18, 1990, and 4,983,316, Starch, issued January 8, 1991 , 5,288,431, Huber et al., issued February 22, 1994, and U.S. Patents 4,639,489 and 4,749,740, Aizawa et al at column 1, line 46 through column 4, line 35.
The silicone suds suppressor herein preferably comprises polyethylene glycol and a copolymer of polyethylene glycol/polypropylene glycol, all having an average molecular weight of less than about 1 ,000, preferably between about 100 and 800. The polyethylene glycol and polyethylene/polypropylene copolymers herein have a solubility in water at room temperature of more than about 2 weight % , preferably more than about 5 weight % . The preferred solvent herein is polyethylene glycol having an average molecular weight of less than about 1 ,000, more preferably between about 100 and 800, most preferably between 200 and 400, and a copolymer of polyethylene glycol/polypropylene glycol, preferablv PPG 200/PEG 300. Preferred is a weight ratio of between about 1: 1 and 1 : 10, most preferably between 1 :3 and 1 :6, of polyethylene glycol:copolymer of polyethylene- polypropylene glycol.
The preferred silicone suds suppressors used herein do not contain polypropylene glycol, particularly of 4,000 molecular weight. They also preferably do not contain block copolymers of ethylene oxide and propylene oxide, like PLURONIC L101. Other suds suppressors useful herein comprise the secondary alcohols (e.g., 2-alkyl alkanols) and mixtures of such alcohols with silicone oils, such as the silicones disclosed in U.S. 4,798.679, 4,075, 118 and EP 150,872. The secondary alcohols include the C6-C16 alkyl alcohols having a C1-C16 chain. A preferred alcohol is 2-butyl octanol, which is available from Condea under the trademark ISOFOL 12. Mixtures of secondary alcohols are available under the trademark ISALCHEM 123 from Enichem. Mixed suds suppressors typically comprise mixtures of alcohol + silicone at a weight ratio of 1 :5 to 5: 1. For any detergent compositions to be used in automatic laundry or dishwashing machines, suds should not form to the extent that they either overflow the washing machine or negatively affect the washing mechanism of the dishwasher. Suds suppressors, when utilized, are preferably present in a "suds suppressing amount. By "suds suppressing amount" is meant that the formulator of the composition can select an amount of this suds controlling agent that will sufficiently control the suds to result in a low-sudsing laundry or dishwashing detergents for use in automatic laundry or dishwashing machines.
The compositions herein will generally comprise from 0% to 10% of suds suppressor. When utilized as suds suppressors, monocarboxylic fatty acids, and salts therein, will be present typically in amounts up to 5% , by weight, of the detergent composition.
Preferably, from 0.5% to 3 % of fatty monocarboxylate suds suppressor is utilized.
Silicone suds suppressors are typically utilized in amounts up to 2.0% , by weight, of the detergent composition, although higher amounts may be used. This upper limit is practical in nature, due primarily to concern with keeping costs minimized and effectiveness of lower amounts for effectively controlling sudsing. Preferably from 0.01 % to 1 % of silicone suds suppressor is used, more preferably from 0.25 % to 0.5%. As used herein, these weight percentage values include any silica that may be utilized in combination with polyorganosiloxane, as well as any optional materials that may be utilized. Monostearyl phosphate suds suppressors are generally utilized in amounts ranging from 0.1 % to 2% , by weight, of the composition. Hydrocarbon suds suppressors are typically utilized in amounts ranging from 0.01 % to 5.0% , although higher levels can be used. The alcohol suds suppressors are typically used at 0.2%-3% by weight of the finished compositions.
Alkoxylated Polycarboxylates Alkoxylated polycarboxylates such as those prepared from polyacrylates are useful herein to provide additional grease removal performance. Such materials are described in WO 91/08281 and PCT 90/01815 at p. 4 et seq., incorporated herein by reference.
Chemically, these materials comprise polyacrylates having one ethoxy side-chain per every 7-8 acrylate units. The side-chains are of the formula -(CH2CH2O)m(CH2)nCH3 wherein m is 2-3 and n is 6-12. The side-chains are ester-linked to the polyacrylate "backbone" to provide a "comb" polymer type structure. The molecular weight can vary, but is typically in the range of 2000 to 50,000. Such alkoxylated polycarboxylates can comprise from 0.05 % to 10% , by weight, of the compositions herein.
Fabric Softeners
Various through-the-wash fabric softeners, especially the impalpable smectite clays of U.S. Patent 4,062,647, Storm and Nirschl, issued December 13, 1977, as well as other softener clays known in the art, can optionally be used typically at levels of from 0.5% to 10% by weight in the present compositions to provide fabric softener benefits concurrently with fabric cleaning. Clay softeners can be used in combination with amine and cationic softeners as disclosed, for example, in U.S. Patent 4,375,416, Crisp et al, March 1 , 1983 and U.S. Patent 4,291 ,071 , Harris et al, issued September 22, 1981
Perfumes
Perfumes and perfumery ingredients useful in the present compositions and processes comprise a wide variety of natural and synthetic chemical ingredients, including, but not limited to, aldehydes, ketones, esters. Also included are various natural extracts and essences which can comprise complex mixtures of ingredients, such as orange oil, lemon oil, rose extract, lavender, musk, patchouli, balsamic essence, sandalwood oil, pine oil, cedar. Finished perfumes can comprise extremely complex mixtures of such ingredients. Finished perfumes typically comprise from 0.01 % to 2% , by weight, of the detergent compositions herein, and individual perfumery ingredients can comprise from 0.0001 % to 90% of a finished perfume composition.
Non-limiting examples of perfume ingredients useful herein include: 7-acetyl- 1 ,2,3,4,5,6,7,8-octahydro-1 , 1 ,6,7-tetramethyl naphthalene; ionone methyl; ionone gamma methyl; methyl cedrylone; methyl dihydrojasmonate; methyl 1 ,6, 10-trimethyl-2,5,9- cyclododecatrien-1-yl ketone; 7-acetyl-1 ,1 ,3,4,4,6-hexamethyl tetralin; 4-acetyl-6-tert- butyl-1 ,1-dimethyl indane; para-hydroxy-phenyl-butanone; benzophenone; methyl beta- naphthyl ketone; 6-acetyl-1, 1 ,2,3,3,5-hexamethyl indane; 5-acetyl-3-isopropyl-1 , 1,2,6- tetramethyl indane; 1-dodecanal, 4-(4-hydroxy-4-methyIpentyl)-3-cyclohexene-1- carboxaldehyde; 7-hydroxy-3,7-dimethyl ocatanal; 10-undecen-1-al; iso-hexenyl cyclohexyl carboxaldehyde; formyl tricyclodecane; condensation products of hydroxycitronellal and methyl anthranilate, condensation products of hydroxycitronellal and indol, condensation products of phenyl acetaldehyde and indol; 2-methyl-3-(para-tert-butylphenyl)- propionaldehyde; ethyl vanillin; heliotropin; hexyl cinnamic aldehyde; amyl cinnamic aldehyde; 2-methyl-2-(para-iso-propylphenyl)-propionaldehyde; coumarin; decalactone gamma; cyclopentadecanolide; 16-hydroxy-9-hexadecenoic acid lactone; 1 ,3,4,6,7,8- hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-gamma-2-benzopyrane; beta-naphthol methyl ether; ambroxane; dodecahydro-3a,6,6,9a-tetramethylnaphtho[2, 1b]furan; cedrol, 5-(2,2,3- trimethylcyclopent-3-enyl)-3-methylpentan-2-ol; 2-ethyl-4-(2,2,3-trimethyl-3-cyclopenten-1- yl)-2-buten-1-ol; caryophyllene alcohol; tricyclodecenyl propionate; tricyclodecenyl acetate; benzyl salicylate; cedryl acetate; and para-(tert-butyl) cyclohexyl acetate.
Particularly preferred perfume materials are those that provide the largest odor
improvements in finished product compositions containing cellulases. These perfumes include but are not limited to: hexyl cinnamic aldehyde; 2-methyl-3-(para-tert- butylphenyl)-propionaldehyde; 7-acetyl-1 ,2,3,4,5,6,7,8-octahydro-1,1 ,6,7-tetramethyl naphthalene; benzyl salicylate; 7-acetyl-1,1,3,4,4,6-hexamethyl tetralin; para-tert-buryl cyclohexyl acetate; methyl dihydro jasmonate; beta-napthol methyl ether; methyl beta- naphthyl ketone; 2-methyl-2-(para-iso-propylphenyl)-propionaldehyde; 1,3,4,6,7,8- hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta-gamma-2-benzopyrane; dodecahydro- 3a,6,6,9a-tetramethylnaphtho[2,1b]furan; anisaldehyde; coumarin; cedrol; vanillin;
cyclopentadecanolide; tricyclodecenyl acetate; and tricyclodecenyl propionate.
Other perfume materials include essential oils, resinoids, and resins from a variety of sources including, but not limited to: Peru balsam, Olibanum resinoid, styrax, labdanum resin, nutmeg, cassia oil, benzoin resin, coriander and lavandin. Still other perfume chemicals include phenyl ethyl alcohol, terpineol, linalool, linalyl acetate, geraniol, nerol, 2-(1, 1-dimethylethyl)-cyclohexanol acetate, benzyl acetate, and eugenol. Carriers such as diethylphthalate can be used in the finished perfume compositions. Other Ingredients
A wide variety of other ingredients useful in detergent compositions can be included in the compositions herein, including other active ingredients, carriers, hydrotropes, processing aids, dyes or pigments, solvents for liquid formulations, solid fillers for bar compositions, etc. If high sudsing is desired, suds boosters such as the C10-C16 alkanolamides can be incorporated into the compositions, typically at 1 %-10% levels. The C10-C14
monoethanol and diethanol amides illustrate a typical class of such suds boosters. Use of such suds boosters with high sudsing optional surfactants such as the amine oxides, betaines and sultaines noted above is also advantageous. If desired, water-soluble magnesium and/or calcium salts such as MgCl2, MgSO4, CaCl2 CaSO4, can be added at levels of, typically, 0.1 %-2%, to provide additional suds and to enhance grease removal performance. Various detersive ingredients employed in the present compositions optionally can be further stabilized by absorbing said ingredients onto a porous hydrophobic substrate, then coating said substrate with a hydrophobic coating. Preferably, the detersive ingredient is admixed with a surfactant before being absorbed into the porous substrate. In use, the detersive ingredient is released from the substrate into the aqueous washing liquor, where it performs its intended detersive function.
To illustrate this technique in more detail, a porous hydrophobic silica (trademark
SIPERNAT D10, DeGussa) is admixed with a proteolytic enzyme solution containing 3 %- 5 % of C13- 15 ethoxylated alcohol (EO 7) nonionic surfactant. Typically, the
enzyme/surfactant solution is 2.5 X the weight of silica. The resulting powder is dispersed with stirring in silicone oil (various silicone oil viscosities in the range of 500-12,500 can be used). The resulting silicone oil dispersion is emulsified or otherwise added to the final detergent matrix. By this means, ingredients such as the aforementioned enzymes, bleaches, bleach activators, bleach catalysts, photoactivators, dyes, fluorescers, fabric conditioners and hydrolyzable surfactants can be "protected" for use in detergents, including liquid laundry detergent compositions.
Liquid detergent compositions can contain water and other solvents as carriers. Low molecular weight primary or secondary alcohols exemplified by methanol, ethanol, propanol, and isopropanol are suitable. Monohydric alcohols are preferred for solubilizing surfactant, but polyols such as those containing from 2 to 6 carbon atoms and from 2 to 6 hydroxy groups (e.g. , 1,3-propanediol, ethylene glycol, glycerine, and 1 ,2-propanediol) can also be used. The compositions may contain from 5% to 90% . typically 10% to 50% of such carriers.
The detergent compositions herein will preferably be formulated such that, during use in aqueous cleaning operations, the wash water will have a pH of between 6.5 and 11, preferably between 7.5 and 10.5. Liquid dishwashing product formulations preferably have a pH between 6.8 and 9.0. Laundry products are typically at pH 9-11. Techniques for controlling pH at recommended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art.
Granules Manufacture Adding the bis-alkoxylated cationics of this invention into a crutcher mix, followed by conventional spray drying, helps remove any residual, potentially malodorous, short-chain amine contaminants. In the event the formulator wishes to prepare an admixable particle containing the alkoxylated cationics for use in, for example, a high density granular detergent, it is preferred that the particle composition not be highly alkaline. Processes for preparing high density (above 650 g/l) granules are described in U.S. Patent 5,366,652. Such particles may be formulated to have an effective pH in-use of 9, or below, to avoid the odor of impurity amines. This can be achieved by adding a small amount of acidity source such as boric acid, citric acid, or the like, or an appropriate pH buffer, to the particle. In an alternate mode, the prospective problems associated with amine malodors can be masked by use of perfume ingredients, as disclosed herein.
Examples
In the following Examples, the abbreviations for the various ingredients used for the compositions have the following meanings.
LAS C11.5 average chain length alkyl benzene sulfonate anionic surfactant, preferably sodium salt
AS C14-15 average chain length primary alkyl sulfate anionic surfactant.
preferably sodium salt
NI C12-15 ethoxylated alcohol with an average EO9 degree of ethoxylation (nonionic surfactant)
SKS-6 Layered silicate, ex. Hoechst
Copolymer Copolymer of acrylic/maleic acids, sodium salt
Zeolite 1-10 Micron zeolite A
PEG4000 Polyethylene glycol; average molecular weight 4000
NOBS Nonanoyloxybenzene sulfonate bleach activator
PB-1 Sodium perborate monohydrate
Protease Proteolytic detergent enzymes as disclosed above; including
BIOSAM 3.0.
Amylase Amylolytic detergent enzymes
SRA-1 Soil release agent; methyl cellulose; molecular weight about 13000, degree of substitution 1.8-1.9
SRA-2 Soil release agent per U.S. Patent 5,415,807
Brightener X Tinopal® CBS-X; Distyryl Biphenyl Disulfonate class; Ciba-Geigy Brightener Y Tinopal® UNPA-GX; Cynauric chloride/Diamino stilbene class;
Ciba-Geigy
Suds Control Silica/silicone suds suppressor
The following examples are illustrative of the present invention, but are not meant to limit or otherwise define its scope. All parts, percentages and ratios used herein are expressed as percent weight unless otherwise specified.
Granular detergents are as follows in Examples A and B.
Figure imgf000059_0001
Dosage - 20 g/30 L
*The AQA-1 (CocoMeEO2) surfactant of the Example may be replaced by an equivalent amount of any of surfactants AQA-2 through AQA-22 or other AQA surfactants herein.
Figure imgf000061_0001
*The bis-AQA- 1 (CocoMeEO2) surfactant of the Example may be replaced by an equivalent amount of any of surfactants bis-AQA-2 through bis-AQA-22 or other bis-AQA surfactants herein. The following illustrates a laboratory procedure and test results, over a variety of soils and stains, using compositions within the scope of the invention. As will be seen from the data, overall cleaning improvements are achieved with a wide variety of soils and stains on various fabrics. PERFORMANCE TEST PROCEDURE
SAMPLE PREPARATIONS :
The sample preparation basically involves following steps :
1. Preparation of premixed LAS + AS
2. Preparation of Premixed LAS + AS + Cationic
3. Preparation of stock nonionic (AE) surfactant
4. Preparation of builder solution
5. Preparation of Granules
Figure imgf000062_0001
Sequence of Product preparation for performance test :
Step I:
The individual surfactants are weighed and mixed in the following sequence :
1. 78.85 gms of LAS are weighed.
2. 34.55 gms of AS are weighed into the same beaker.
3. 498.10 mis of Distilled water are added to the mixture of LAS & AS.
4. LAS and AS are premixed until completely dissolved with heating at 40 deg C for about 30 minutes until completely dissolved. Step II:
1. 01.90 gms of the cationic are weighed into the same beaker containing LAS + AS premixed solution.
2. Total Volume of solution now is 500 mls.
This 500 ml mixture of surfactants is good for five washes, 100 mls of this stock solution are used for per wash. This 100 ml solution when added to 49 liters of tap water gives the corresponding wash concentrations for individual surfactants.
Step III:
1. 19.44 gms of AE are weighed separately.
2. 900 mis of distilled water are added to the AE .
3. This 900 ml solution are good for 18 washes.
4. 50 mls of this solution are used per wash.
Step IV:
Silicate: 148.32 gms per 900 ml of Distilled water; 50 mls of this solution are used per wash.
Copolymer: 92.88 gms per 900 ml of Distilled water; 50 mls of this solution are used per wash.
Granules : Each granule component is weighed separately in the same beaker. Order of addition to the washing machine :
With stirring the ingredients are added in following sequence :
1. Silicate (2.0 R)
2. Copolymer (as noted above)
3. Granules
Stirring is stopped here (to avoid sudsing during surfactant addition).
4. LAS + AS + Cationic solution
5. AE solution
Stirring for 15 sec.
Hardness : No extra hardness are added on top of tap water hardness.
Load : 2.4 kg of load of following composition are typically used,
Cotton dress shirt (1)
Worn T-shirts (from panelists) (3)
Large T-shirts (11)
DKPE T shirt (1)
P/C Short pants (2) Cotton short pants (1)
DKPE is double-knit polyester.
DMO is dirty motor oil.
Test Results I, hereinafter, show the performance of compositions according to the present invention using CoCoMeEO2 plus a mixture of LAS/AS and Test Results II show the performance using CoCoMeEO10* plus LAS/AS, as compared with CoCoMeEO2/LAS. In the Tests, performance is measured against various soil types, i.e., body soil, builder sensitive soil, bleach sensitive soil, surfactant sensitive soil and socks.* Following the "bis" terminology herein, "EO10" indicates two poly-EO chains with an overall average of 10 EO units in the molecule, typically (but not restricted to) about 5 er chain.
Figure imgf000064_0001
Figure imgf000065_0001
Figure imgf000066_0001
Figure imgf000067_0001
The following examples are illustrative of the present invention, but are not meant to limit or otherwise define its scope. All parts, percentages and ratios used herein are expressed as percent weight unless otherwise specified.
In the following examples, the abbreviated component identifications have the following meanings:
LAS : Sodium linear C12 alkyl benzene sulfonate
TAS : Sodium tallow alkyl sulfate
C45AS : Sodium C14-C15 linear alkyl sulfate
CxyEzS : Sodium C1x-C1y branched alkyl sulfate
condensed with z moles of ethylene oxide C45E7 : A C14- 15 predominantly linear primary alcohol condensed with an average of 7 moles of ethylene oxide
C25E3 : A C12- 15 branched primary alcohol
condensed with an average of 3 moles of ethylene oxide
C25E5 : A C12-15 branched primary alcohol
condensed with an average of 5 moles of ethylene oxide
CocoEO2 : R1.N + (CH3)(C2H4OH)2 with R1 = C12 -
C14
Soap : Sodium linear alkyl carboxylate derived from an 80/20 mixture of tallow and coconut oils.
TFAA : C16-C18 alkyl N-methyl glucamide
TPKFA : C12-C14 topped whole cut fatty acids STPP : Anhydrous sodium tripolyphosphate
Zeolite A : Hydrated Sodium Aluminosilicate of formula
Na12(AlO2SiO2)12- 27H2O having a primary particle size in the range from 0.1 to 10 micrometers
NaSKS-6 : Crystalline layered silicate of formula
δ -Na2Si2O5
Citric acid : Anhydrous citric acid
Carbonate : Anhydrous sodium carbonate with a particle size between 200μm and 900μm
Bicarbonate : Anhydrous sodium bicarbonate with a particle size distribution between 400μm and 1200μm
Silicate : Amorphous Sodium Silicate (SiO2:Na2O; 2.0 ratio)
Sodium sulfate : Anhydrous sodium sulfate
Citrate : Tri-sodium citrate dihydrate of activity 86.4% with a particle size distribution between
425 μm and 850 μm
MA/AA : Copolymer of 1 :4 maleic /acrylic acid,
average molecular weight 70,000. CMC : Sodium carboxymethyl cellulose
Protease : Proteolytic enzyme of activity 4KNPU/g sold by NOVO Industries A/S under the tradename
Savinase
Alcalase : Proteolytic enzyme of activity 3AU/g sold by
NOVO Industries A/S
Cellulase : Cellulytic enzyme of activity 1000 CEVU/g sold by NOVO Industries A/S under the tradename Carezyme
Amylase : Amylolytic enzyme of activity 60KNU/g sold by NOVO Industries A/S under the tradename
Termamyl 60T
Lipase : Lipolytic enzyme of activity 100kLU/g sold by NOVO Industries A/S under the tradename
Lipolase
Endolase : Endoglunase enzyme of activity 3000 EVU/g sold by NOVO Industries A/S
PB4 : Sodium perborate tetrahydrate of nominal formula NaBO2.3H2O.H2O2
PB1 : Anhydrous sodium perborate bleach of
nominal formula NaBO2.H2O2
Percarbonate : Sodium Percarbonate of nominal formula
2Na2CO3.3H2O2
NOBS : Nonanoyloxybenzene sulfonate in the form of the sodium salt.
TAED : Tetraacetylethylenediamine
NACA-OBS : (6 nonanamido caproyl) oxybenzene
sulphonate
DTPMP : Diethylene triamine penta (methylene
phosphonate), marketed by Monsanto under the Trade name Dequest 2060
Co Catalyst : Pentaamine acetate cobalt (III) salt
Mn Catalyst : MnIV 2(m-O)3(1 ,4,7-trimethyl-1 ,4,7- triazacyclononane)2-(PF6)2 as described in
U.S. pat. nos 5 246 621 and 5 244 594 Photoactivated : Sulfonated Zinc Phthalocyanine encapsulated
in bleach dextrin soluble polymer
Brightener 1 : Disodium 4,4'-bis(2-sulphostyryl)biphenyl
Brightener 2 : Disodium 4,4'-bis(4-anilino-6-morpholino-
1.3.5-triazin-2-yl)amino) stilbene-2:2'- disulfonate.
HEDP : 1 ,1-hydroxyethane diphosphonic acid
PVNO : Polyvinylpyridine N-oxide
PVPVI : Copolymer of polyvinylpyrrolidone and
vinylimidazole
SRA 1 : Sulfobenzoyl end capped esters with
oxyethylene
oxy and terephthaloyl backbone
SRA 2 : Diethoxylated poly (1, 2 propylene
terephthalate) short block polymer
Silicone antifoam : Polydimethylsiloxane foam controller with
siloxane-oxyalkylene copolymer as dispersing
agent with a ratio of said foam controller to
said dispersing agent of 10: 1 to 100:1.
In the following Examples all levels are quoted as % by weight of the composition.
EXAMPLE I
The following detergent formulations according to the present invention are prepared, where A and C are phosphorus-containing detergent compositions and B is a zeolite- containing detergent composition.
Figure imgf000070_0001
Figure imgf000071_0001
*The bis-AQA- 1 (CocoMeEO2) surfactant of the Example may be replaced by an equivalent amount of any of surfactants bis-AQA-2 through bis-AQA-22 or other bis-AQA surfactants herein.
EXAMPLE II
The following nil bleach-containing detergent formulations are of particular use in washing colored clothing.
Figure imgf000071_0002
Figure imgf000072_0001
Figure imgf000073_0001
*The bis-AQA- 1 (CocoMeEO2) surfactant of the Example may be replaced by an equivalent amount of any of surfactants bis-AQA-2 through bis-AQA-22 or other bis-AQA surfactants herein.
EXAMPLE III
The following detergent formulations, according to the present invention are repared:
Figure imgf000073_0002
*The bis-AQA- 1 (CocoMeEO2) surfactant of the Example may be replaced by an equivalent amount of any of surfactants bis-AQA-2 through bis-AQA-22 or other bis-AQA surfactants herein. EXAMPLE IV
The following high density and bleach-containing detergent formulations, according to the present invention are prepared:
Figure imgf000074_0001
Figure imgf000075_0001
*The bis-AQA-1 (CocoMeEO2) surfactant of the Example may be replaced by an equivalent amount of any of surfactants bis-AQA-2 through bis-AQA-22 or other bis-AQA surfactants herein.
EXAMPLE V
The following high density detergent formulations according to the present invention are prepared:
Figure imgf000075_0002
Figure imgf000076_0001
*The bis-AQA-1 (CocoMeEO2) surfactant of the Example may be replaced by an equivalent amount of any of surfactants bis-AQA-2 through bis-AQA-22 or other bis-AQA surfactants herein.
EXAMPLE VI
The following liquid detergent formulations, according to the present invention are prepared:
Figure imgf000076_0002
Figure imgf000077_0001
*The bis-AQA-1 (CocoMeEO2) surfactant of the Example may be replaced by an equivalent amount of any of surfactants bis-AQA-2 through bis-AQA-22 or other bis-AQA surfactants herein.
Any of the granular detergent compositions provided herein may be tabletted using known tabletting methods to provide detergent tablets.
The manufacture of heavy duty liquid detergent compositions, especially those designed for fabric laundering, which comprise a non-aqueous carrier medium can be conducted in the manner disclosed in more detail hereinafter. In an alternate mode, such non-aqueous compositions can be prepared according to the disclosures of U.S. Patents 4,753,570; 4,767,558; 4.772,413; 4,889,652; 4.892,673; GB-A-2, 158,838; GB-A-2, 195,125; GB-A- 2, 195,649; U.S. 4,988,462; U.S. 5,266,233; EP-A-225,654 (6/16/87); EP-A-510,762 (10/28/92); EP-A-540,089 (5/5/93); EP-A-540,090 (5/5/93); U.S. 4,615,820; EP-A- 565,017 (10/13/93); EP-A-030,096 (6/10/81), incorporated herein by reference. Such compositions can contain various particulate detersive ingredients (e.g. , bleaching agents, as disclosed hereinabove) stably suspended therein. Such non-aqueous compositions thus comprise a LIQUID PHASE and, optionally but preferably, a SOLID PHASE, all as described in more detail hereinafter and in the cited references. The AQA surfactants are incorporated in the compositions at the levels and in the manner described hereinabove for the manufacture of other laundry detergent compositions.
LIQUID PHASE
The liquid phase will generally comprise from 35 % to 99% by weight of the detergent compositions herein. More preferably, the liquid phase will comprise from 50% to 95% by weight of the compositions. Most preferably, the liquid phase will comprise from 45% to 75% by weight of the compositions herein. The liquid phase of the detergent compositions herein essentially contains relatively high concentrations of a certain type anionic surfactant combined with a certain type of nonaqueous, liquid diluent. (A) Essential Anionic Surfactant
The anionic surfactant essentially utilized as an essential component of the nonaqueous liquid phase is one selected from the alkali metal salts of alkylbenzene sulfonic acids in which the alkyl group contains from 10 to 16 carbon atoms, in straight chain or branched chain configuration. (See U.S. Patents 2,220,099 and 2,477,383, incorporated herein by reference.) Especially preferred are the sodium and potassium linear straight chain alkylbenzene sulfonates (LAS) in which the average number of carbon atoms in the alkyl group is from 11 to 14. Sodium C11-C14 LAS is especially preferred.
The alkylbenzene sulfonate anionic surfactant will be dissolved in the nonaqueous liquid diluent which makes up the second essential component of the nonaqueous phase. To form the structured liquid phase required for suitable phase stability and acceptable rheology, me alkylbenzene sulfonate anionic surfactant is generally present to the extent of from 30% to 65% by weight of the liquid phase. More preferably, the alkylbenzene sulfonate anionic surfactant will comprise from 35% to 50% by weight of the nonaqueous liquid phase of the compositions herein. Utilization of this anionic surfactant in these concentrations corresponds to an anionic surfactant concentration in the total composition of from 15% to 60% by weight, more preferably from 20% to 40% by weight, of the composition.
(B) Nonaqueous Liquid Diluent
To form the liquid phase of the detergent compositions, the hereinbefore described alkylbenzene sulfonate anionic surfactant is combined with a nonaqueous liquid diluent which contains two essential components. These two components are a liquid alcohol alkoxylate material and a nonaqueous, low-polarity organic solvent,
i) Alcohol Alkoxylates
One essential component of the liquid diluent used to form the compositions herein comprises an alkoxylated fatty alcohol material. Such materials are themselves also nonionic surfactants. Such materials correspond to the general formula:
R1(CmH2mO)nOH
wherein R1 is a C8 - C16 alkyl group, m is from 2 to 4, and n ranges from 2 to 12. Preferably R1 is an alkyl group, which may be primary or secondary, that contains from 9 to 15 carbon atoms, more preferably from 10 to 14 carbon atoms. Preferably also the alkoxylated fatty alcohols will be ethoxylated materials that contain from 2 to 12 ethylene oxide moieties per molecule, more preferably from 3 to 10 ethylene oxide moieties per molecule.
The alkoxylated fatty alcohol component of the liquid diluent will frequently have a hydrophiϋc-lipophilic balance (HLB) which ranges from 3 to 17. More preferably, the HLB of this material will range from 6 to 15, most preferably from 8 to 15. Examples of fatty alcohol alkoxylates useful as one of the essential components of the nonaqueous liquid diluent in the compositions herein will include those which are made from alcohols of 12 to 15 carbon atoms and which contain 7 moles of ethylene oxide. Such materials have been commercially marketed under the trade names Neodol 25-7 and Neodol 23-6.5 by Shell Chemical Company. Other useful Neodols include Neodol 1-5, an ethoxylated fatty alcohol averaging 11 carbon atoms in its alkyl chain with 5 moles of ethylene oxide; Neodol 23-9, an ethoxylated primary C12 - C13 alcohol having 9 moles of ethylene oxide and Neodol 91-10, an ethoxylated C9 - C11 primary alcohol having 10 moles of ethylene oxide. Alcohol ethoxylates of this type have also been marketed by Shell Chemical Company under the Dobanol tradename. Dobanol 91-5 is an ethoxylated C9- C11 fatty alcohol with an average of 5 moles ethylene oxide and Dobanol 25-7 is an ethoxylated C12-C15 fatty alcohol with an average of 7 moles of ethylene oxide per mole of fatty alcohol.
Other examples of suitable ethoxylated alcohols include Tergitol 15-S-7 and Tergitol 15-S-9 both of which are linear secondary alcohol ethoxylates that have been commercially marketed by Union Carbide Corporation. The former is a mixed emoxylation product of C1 1 to C15 linear secondary alkanol with 7 moles of ethylene oxide and the latter is a similar product but with 9 moles of ethylene oxide being reacted. Other types of alcohol ethoxylates useful in the present compositions are higher molecular weight nonionics, such as Neodol 45-11 , which are similar ethylene oxide condensation products of higher fatty alcohols, with the higher fatty alcohol being of 14-15 carbon atoms and the number of ethylene oxide groups per mole being 11. Such products have also been commercially marketed by Shell Chemical Company.
The alcohol alkoxylate component which is essentially utilized as part of the liquid diluent in the nonaqueous compositions herein will generally be present to the extent of from 1 % to 60% of the liquid phase composition. More preferably, the alcohol alkoxylate component will comprise 5% to 40% of the liquid phase. Most preferably, the essentially utilized alcohol alkoxylate component will comprise from 5% to 30% of the detergent composition liquid phase. Utilization of alcohol alkoxylate in these concentrations in the liquid phase corresponds to an alcohol alkoxylate concentration in the total composition of from 1 % to 60% by weight, more preferably from 2% to 40% by weight, and most preferably from 5% to 25% by weight, of the composition. ii) Nonaqueous Low-Polarity Organic Solvent
A second essential component of the liquid diluent which forms part of the liquid phase of the detergent compositions herein comprises nonaqueous, low-polarity organic solvent(s). The term "solvent" is used herein to connote the non-surface active carrier or diluent portion of the liquid phase of the composition. While some of the essential and/or optional components of the compositions herein may actually dissolve in the "solvent"-containing liquid phase, other components will be present as particulate material dispersed within the "solvent"-containing liquid phase. Thus the term "solvent" is not meant to require that the solvent material be capable of actually dissolving all of the detergent composition components added thereto. The nonaqueous organic materials which are employed as solvents herein are those which are liquids of low polarity. For purposes of this invention, "low-polarity" liquids are those which have little, if any, tendency to dissolve one of the preferred types of particulate material used in the compositions herein, i.e., the peroxygen bleaching agents, sodium perborate or sodium percarbonate. Thus relatively polar solvents such as ethanol should not be utilized. Suitable types of low-polarity solvents useful in the nonaqueous liquid detergent compositions herein do include non-vicinal C4-C8 alkylene glycols, alkylene glycol mono lower alkyl ethers, lower molecular weight polyethylene glycols, lower molecular weight methyl esters and amides.
A preferred type of nonaqueous, low-polarity solvent for use in the compositions herein comprises the non-vicinal C4-C8 branched or straight chain alkylene glycols. Materials of this type include hexylene glycol (4-methyl-2,4-pentanediol), 1,6-hexanediol, 1 ,3-butylene glycol and 1,4-butylene glycol. Hexylene glycol is the most preferred.
Another preferred type of nonaqueous, low-polarity solvent for use herein comprises the mono-, di-, tri-, or tetra- C2-C3 alkylene glycol mono C2-C6 alkyl ethers. The specific examples of such compounds include diethylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, dipropylene glycol monoethyl ether, and dipropylene glycol monobutyl ether. Diethylene glycol monobutyl ether and dipropylene glycol monobutyl ether are especially preferred. Compounds of the type have been commercially marketed under the tradenames Dowanol, Carbitol, and Cellosolve. Another preferred type of nonaqueous, low-polarity organic solvent useful herein comprises the lower molecular weight polyethylene glycols (PEGs). Such materials are those having molecular weights of at least 150. PEGs of molecular weight ranging from 200 to 600 are most preferred. Yet another preferred type of non-polar, nonaqueous solvent comprises lower molecular weight methyl esters. Such materials are those of the general formula: R1-C(O)-OCH3 wherein R1 ranges from 1 to 18. Examples of suitable lower molecular weight methyl esters include methyl acetate, methyl propionate, methyl octanoate, and methyl dodecanoate. The nonaqueous, low-polarity organic solvent(s) employed should, of course, be compatible and non-reactive with other composition components, e.g. , bleach and/or activators, used in the liquid detergent compositions herein. Such a solvent component will generally be utilized in an amount of from 1 % to 70% by weight of the liquid phase. More preferably, the nonaqueous, low-polarity organic solvent will comprise from 10% to 60% by weight of the liquid phase, most preferably from 20% to 50% by weight, of the liquid phase of the composition. Utilization of this organic solvent in these concentrations in the liquid phase corresponds to a solvent concentration in the total composition of from 1 % to 50% by weight, more preferably from 5% to 40% by weight, and most preferably from 10% to 30% by weight, of the composition. iii) Alcohol Alkoxylate To Solvent Ratio
The ratio of alcohol alkoxylate to organic solvent within the liquid diluent can be used to vary the rheological properties of the detergent compositions eventually formed. Generally, the weight ratio of alcohol alkoxylate to organic solvent will range from 50: 1 to 1:50. More preferably, this ratio will range from 3: 1 to 1 :3. iv) Liquid Diluent Concentration
As with the concentration of the alkylbenzene sulfonate anionic surfactant mixture, the amount of total liquid diluent in the nonaqueous liquid phase herein will be determined by the type and amounts of other composition components and by me desired composition properties. Generally, the liquid diluent will comprise from 35% to 70% of the nonaqueous liquid phase of the compositions herein. More preferably, the liquid diluent will comprise from 50% to 65% of the nonaqueous liquid phase. This corresponds to a nonaqueous liquid diluent concentration in the total composition of from 15% to 70% by weight, more preferably from 20% to 50% by weight, of the composition.
SOLID PHASE
The nonaqueous detergent compositions herein also essentially comprise from 1 % to 65 % by weight, more preferably from 5% to 50% by weight, of a solid phase of particulate material which is dispersed and suspended within the liquid phase. Generally such particulate material will range in size from 0.1 to 1500 microns. More preferably such material will range in size from 5 to 200 microns. The particulate material utilized herein can comprise one or more types of detergent composition components which in particulate form are substantially insoluble in the nonaqueous liquid phase of the composition. The types of particulate materials which can be utilized are described in detail as follows:
COMPOSITION PREPARATION AND USE
The nonaqueous liquid detergent compositions herein can be prepared by combining the essential and optional components thereof in any convenient order and by mixing, e.g., agitating, the resulting component combination to form the phase stable compositions herein. In a typical process for preparing such compositions, essential and certain preferred optional components will be combined in a particular order and under certain conditions.
In the first step of such a typical preparation process, an admixture of the alkylbenzene sulfonate anionic surfactant and the two essential components of the nonaqueous diluent is formed by heating a combination of these materials to a temperature from 30°C to 100°C.
In a second process step, the heated admixture formed as hereinbefore described is maintained under shear agitation at a temperature from 40°C to 100°C for a period of from 2 minutes to 20 hours. Optionally, a vacuum can be applied to the admixture at this point. This second process step serves to completely dissolve the anionic surfactant in the nonaqueous liquid phase.
In a third process step, this liquid phase combination of materials is cooled to a temperature of from 0°C to 35 °C. This cooling step serves to form a structured, surfactant-containing liquid base into which the particulate material of the detergent compositions herein can be added and dispersed.
Particulate material is added in a fourth process step by combining the particulate material with the liquid base which is maintained under conditions of shear agitation. When more than one type of particulate material is to be added, it is preferred that a certain order of addition be observed. For example, while shear agitation is maintained, essentially all of any optional surfactants in solid particulate form can be added in the form of particles ranging in size from 0.2 to 1,000 microns. After addition of any optional surfactant particles, particles of substantially all of an organic builder, e.g. , citrate and/or fatty acid, and/or an alkalinity source, e.g., sodium carbonate, can be added while continuing to maintain this admixture of composition components under shear agitation. Other solid form optional ingredients can then be added to the composition at this point. Agitation of the mixture is continued, and if necessary, can be increased at this point to form a uniform dispersion of insoluble solid phase particulates within the liquid phase.
After some or all of the foregoing solid materials have been added to this agitated mixture, the particles of the highly preferred peroxygen bleaching agent can be added to the composition, again while the mixture is maintained under shear agitation. By adding the peroxygen bleaching agent material last, or after all or most of the otfier components, and especially after alkalinity source particles, have been added, desirable stability benefits for the peroxygen bleach can be realized. If enzyme prills are incorporated, they are preferably added to the nonaqueous liquid matrix last. As a final process step, after addition of all of the particulate material, agitation of the mixture is continued for a period of time sufficient to form compositions having the requisite viscosity and phase stability characteristics. Frequently this will involve agitation for a period of from 1 to 30 minutes. As a variation of the composition preparation procedure hereinbefore described, one or more of the solid components may be added to the agitated mixture as a slurry of particles premixed with a minor portion of one or more of the liquid components. Thus a premix of a small fraction of the alcohol alkoxylate and/or nonaqueous, low-polarity solvent with particles of the organic builder material and/or the particles of the inorganic alkalinity source and/or particles of a bleach activator may be separately formed and added as a slurry to the agitated mixture of composition components. Addition of such slurry premixes should precede addition of peroxygen bleaching agent and/or enzyme particles which may themselves be part of a premix slurry formed in analogous fashion. The compositions of this invention, prepared as hereinbefore described, can be used to form aqueous washing solutions for use in the laundering and bleaching of fabrics. Generally, an effective amount of such compositions is added to water, preferably in a conventional fabric laundering automatic washing machine, to form such aqueous laundering/bleaching solutions. The aqueous washing/bleaching solution so formed is then contacted, preferably under agitation, with the fabrics to be laundered and bleached therewith.
An effective amount of the liquid detergent compositions herein added to water to form aqueous laundering/bleaching solutions can comprise amounts sufficient to form from 500 to 7,000 ppm of composition in aqueous solution. More preferably, from 800 to 3,000 ppm of the detergent compositions herein will be provided in aqueous washing/bleaching solution. EXAMPLE VII
A non-limiting example of a bleach-containing nonaqueous liquid laundry detergent is prepared having the composition as set forth in Table I.
Figure imgf000085_0001
*CocoMeEO2. bis-AQA-1 may be replaced by bis-AQA surfactants 2-22 or other bis- AQA surfactants herein. The composition is prepared by mixing the bis-AQA and LAS, then the hexylene glycol and alcohol ethoxylate, together at 54°C (130°F) for 1/2 hour. This mixture is then cooled to 29°C (85°F) whereupon the remaining components are added. The resulting composition is then stirred at 29°C (85°F) for another 1/2 hour.
The resulting composition is a stable anhydrous heavy duty liquid laundry detergent which provides excellent stain and soil removal performance when used in normal fabric laundering operations. The following Examples A and B further illustrate the invention herein with respect to a laundry bar.
Figure imgf000086_0001
3bis-AQA-1 may be replaced by an equivalent amount of bis-AQA surfactants bis-AQA2 through bis-AQA-22 or other bis-AQA surfactants herein.
4Balance comprises water (2% to 8% , including water of hydration), sodium
sulfate, calcium carbonate, and other minor ingredients.
EXAMPLE IX
The following hand wash detergent formulations, according to the present invention, are prepared by mixing the ingredients together in the percentage weight amounts as indicated below.
Figure imgf000087_0001
AQA-9*; May be replaced by any AQA surfactant described herein. Preferred AQA surfactants for use in this example are those with from 10 to 15 ethoxy groups; for example AQA-10, AQA-16. The foregoing Examples illustrate the present invention as it relates to fabric laundering compositions, whereas the following Examples are intended to illustrate other types of cleaning compositions according to this invention, but are not intended to be limiting thereof.
Modern, high performance hand dishwashing compositions can contain ingredients which are designed to provide specific in-use product attributes such as grease cutting ability, high sudsing, mildness and skin feel benefits. Such ingredients for use with the bis-AQA surfactants herein include, for example, amine oxide surfactants, betaine and/or sultaine surfactants, alkyl sulfate and alkyl ethoxy sulfate surfactants, liquid carriers, especially water and water/propylene glycol mixtures, natural oils such lemon oil. In addition, preferred liquid and/or gel hand dishwashing compositions may also contain calcium ions, magnesium ions, or mixtures of calcium/magnesium ions, which afford additional grease cutting performance advantages especially when used in combination with detersive mixtures comprising the bis-AQA surfactant herein in combination with, for example, amine oxide, alkyl sulfates and alkyl ethoxy sulfates. Magnesium or calcium or mixed Mg/Ca ion sources typically comprise from 0.01 % to 4% , preferably from 0.02% to 2% , by weight, of such compositions. Various water-soluble sources of these ions include, for example, sulfate, chloride and acetate salts. Moreover, these compositions may also contain nonionic surfactants, especially those of the polyhydroxy fatty acid amide and alkyl polyglucaside classes. Preferred are the C12-C14 (coconut alkyl) members of these classes. An especially preferred nonionic surfactant for use in hand dishwashing liquids is C12-C14 N-methylglucamide. Preferred amine oxides include C12-C14 dimemylamine oxide. The alkyl sulfates and alkyl ethoxy sulfates are as described hereinabove. Usage levels for such surfactants in dishwashing liquids is typically in the range from 3% to 50% of the finished composition. The formulation of dishwashing liquid compositions has been described in more detail in various patent publications including U.S. 5,378,409, U.S. 5,376,310 and U.S. 5,417,893, incorporated herein by reference. Modern automatic dishwashing detergents can contain bleaching agents such as hypochlorite sources; perborate, percarbonate or persulfate bleaches; enzymes such as proteases, lipases and amylases, or mixtures thereof; rinse-aids, especially nonionic surfactants; builders, including zeolite and phosphate builders; low-sudsing detersive surfactants, especially ethylene oxide/propylene oxide condensates. Such compositions are typically in the form of granules or gels. If used in gel form, various gelling agents known in the literature can be employed.
The following Example further illustrates the invention herein with respect to a hand dishwashing liquid.
Figure imgf000089_0001
The following Examples A and B further illustrate the invention herein with respect to a granular phosphate-containing automatic dishwashing detergent.
Figure imgf000089_0002
Figure imgf000090_0001
EXAMPLE XII
The following Examples further illustrate the invention herein with respect to a liquid-gel automatic dishwashing or other detergent with increased levels of stain removal benefits.
% b wei ht of active material
Figure imgf000090_0002
Figure imgf000091_0001
*The bis-AQA-1 (CocoMeEO2) surfactant of the Example may be replaced by an equivalent amount of any of surfactants bis-AQA-2 through bis-AQA-22 or other bis-AQA surfactants herein.
Various gelling agents such as CMC and clays, can be used in the compositions to provide varying degrees of viscosity or rigidity, according to the desires of the formulator.
EXAMPLE XIII
The following illustrates mixtures of bis-AQA surfactants which can be substimted for the bis-AQA surfactants listed in any of the foregoing Examples. As disclosed hereinabove, such mixtures can be used to provide a spectrum of performance benefits and/or to provide cleaning compositions which are useful over a wide variety of usage conditions. Preferably, the bis-AQA surfactants in such mixtures differ by at least 1.5, preferably 2.5- 20, total EO units. Ratio ranges (wt.) for such mixtures are typically 10: 1-1 : 10. Non- limiting examples of such mixtures are as follows.
Figure imgf000091_0002
Mixtures of the bis-AQA surfactants herein with the corresponding cationic surfactants which contain only a single ethoxylated chain can also be used. Thus, for example, mixtures of ethoxylated cationic surfactants of the formula R1N+CH3[EO]x[EO]yX- and R1N+(CH3)2[EO]zX-, wherein R1 and X are as disclosed above and wherein one of the cationics has (x+y) or z in the range 1-5 preferably 1-2 and the other has (x+y) or z in the range 3-100, preferably 10-20, most preferably 14-16, can be used herein. Such compositions advantageously provide improved detergency performance (especially in a fabric laundering context) over a broader range of water hardness than do the cationic surfactants herein used individually. It has now been discovered that shorter EO cationics (e.g., EO2) improve the cleaning performance of anionic surfactants in soft water, whereas higher EO cationics (e.g., EO15) act to improve hardness tolerance of anionic surfactants, thereby improving the cleaning performance of anionic surfactants in hard water. Conventional wisdom in the detergency art suggests that builders can optimize the performance "window" of anionic surfactants. Until now, however, broadening the window to encompass essentially all conditions of water hardness has been impossible to achieve.
EXAMPLE XIV
This Example illustrates perfume formulations (A-C) made in accordance with the invention for incorporation into any of the foregoing Examples of bis-AQA-containing detergent compositions. The various ingredients and levels are set forth below.
Figure imgf000092_0001
Figure imgf000093_0001
The foregoing perfume compositions are admixed or sprayed-onto (typically at levels up to about 2% by weight of the total detergent composition) any of the bis-AQA surfactant-containing cleaning (including bleaching) compositions disclosed herein.
Improved deposition and/or retention of the perfume or individual components thereof on the surface being cleaned (or bleached) is thus secured.

Claims

WHAT IS CLAIMED I S :
1. A detergent composition comprising, or prepared by combining an enzyme, a non-AQA surfactant and an effective amount of a bis-alkoxylated quaternary ammomum (bis-AQA) cationic surfactant of the formula:
Figure imgf000094_0001
wherein R1 is a linear, branched or substimted C8-C18 alkyl, alkenyl, aryl, alkaryl, ether of glycityl ether moiety, R2 is a C1-C3 alkyl moiety, R3 and R4 can vary independently and are selected from hydrogen, methyl and ethyl, X is an anion, and A and A' can vary independently and are each C1-C4 alkoxy, p and q can very independently and are integers in the range of from 1 to 30.
2. A composition according to Claim 1 wherein the enzyme is selected from the group consisting of lipase.
3. A composition according to either of Claims 1 or 2 wherein the enzyme is a protease.
4. A composition according to any of Claims 1 to 3 wherein the enzyme is a cellulase.
5. A composition according to any of Claims 1 to 4 wherein the enzyme is a
endoglucanase.
6. A composition according to any of Claims 1 to 5 wherein the enzyme is an amylase.
7. A composition according to any of Claims 1 to 6 wherein the enzyme is a peroxidase.
8. A composition according to either of Claims 1 or 7 additionally comprising an enzyme stabilising compound.
9. A composition according to any of Claims 1 to 8 which is prepared by mixing the non- AQA surfactant and the AQA surfactant.
10. A composition according to any of Claims 1 to 9 wherein the non-AQA surfactant is an anionic surfactant.
11. A composition according to any of Claims 1 to 10 wherein the ratio of bis-AQA to non-AQA surfactant is from 1:15 to 1 :8.
12. A composition according to any of claims 1 to 11 wherein in said bis-AQA surfactant, R1 is C8-C18 alkyl, R2 is methyl A and A' are ethoxy or propoxy groups and p and q are each intgers of 1 to 8.
13. A composition according to any of Claims 1 to 12 wherein in said bis-AQA surfactant, R1 is C8-C18 alkyl, R2 is methyl A and A' are ethoxy or propoxy groups and p and q are each integers of 1 to 4.
14. A composition according to any of Claims 1 to 13 wherein the formula of the bis-AQA cationic surfactant is such that p and/or q are integers in the range of from 10 to 15.
15. A composition according to any of Claims 1 to 14 comprising two or more bis-AQA surfactants, or a mixture of a bis-AQA surfactant and a mono-ethoxylated cationic surfactant.
16. A composition according to any of Claims 1 to 15 comprising two or more non-AQA surfactants and a mixture of two or more bis-AQA surfactants.
17. A composition according to any of Claims 1 to 16 which is substantially free of bleach.
18. A composition according to any of claims 1 to 17 in a granular, bar, aqueous liquid or non-aqueous liquid or tablet form.
19. A method for removing soils and stains by contacting said soils and stains with a detergent composition, or aqueous medium comprising said detergent composition according to any of Claims 1 to 18.
20. A method according to Claim 19 for removing enzyme-sensitive soils, greasy/oily soils or surfactant-sensitive soils from fabrics.
21. A method according to any of Claim 19 or 20 which is conducted by hand.
22. A method according to any of Claims 19 to 21 which is conducted in an automatic machine.
23. A method for enhancing the deposition or substantivity of perfumes or perfume ingredients onto fabrics or other surfaces, comprising contacting said surfaces with a perfume or perfume ingredient in the presence of a bis-AQA surfactant.
24. A method according to Claim 23 which is conducted using a perfume or perfume ingredient in combination with a detergent composition comprising a bis-AQA.
PCT/US1997/008444 1996-05-17 1997-05-16 Detergent composition WO1997043388A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP97924766A EP0912686A2 (en) 1996-05-17 1997-05-16 Detergent composition
BR9710678A BR9710678A (en) 1996-05-17 1997-05-16 Detergent composition
JP9541172A JPH11510554A (en) 1996-05-17 1997-05-16 Detergent composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US1788396P 1996-05-17 1996-05-17
US60/017,883 1996-05-17

Publications (2)

Publication Number Publication Date
WO1997043388A2 true WO1997043388A2 (en) 1997-11-20
WO1997043388A3 WO1997043388A3 (en) 1998-02-12

Family

ID=21785076

Family Applications (8)

Application Number Title Priority Date Filing Date
PCT/US1997/008315 WO1997044431A1 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008444 WO1997043388A2 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008373 WO1997044433A1 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008317 WO1997044419A2 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008372 WO1997044432A1 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008445 WO1997043394A2 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008314 WO1997044425A2 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008316 WO1997044418A1 (en) 1996-05-17 1997-05-16 Detergent composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US1997/008315 WO1997044431A1 (en) 1996-05-17 1997-05-16 Detergent composition

Family Applications After (6)

Application Number Title Priority Date Filing Date
PCT/US1997/008373 WO1997044433A1 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008317 WO1997044419A2 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008372 WO1997044432A1 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008445 WO1997043394A2 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008314 WO1997044425A2 (en) 1996-05-17 1997-05-16 Detergent composition
PCT/US1997/008316 WO1997044418A1 (en) 1996-05-17 1997-05-16 Detergent composition

Country Status (9)

Country Link
EP (7) EP0912686A2 (en)
JP (8) JPH11511795A (en)
CN (6) CN1225678A (en)
AR (2) AR014606A1 (en)
BR (8) BR9710667A (en)
CA (8) CA2254818A1 (en)
MX (8) MX9809675A (en)
WO (8) WO1997044431A1 (en)
ZA (1) ZA974226B (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999063038A1 (en) * 1998-06-03 1999-12-09 Henkel Kommanditgesellschaft Auf Aktien Detergents containing amylase and acetonitrile
WO2000060040A1 (en) * 1999-04-01 2000-10-12 The Procter & Gamble Company Detergent compositions
US6136769A (en) * 1996-05-17 2000-10-24 The Procter & Gamble Company Alkoxylated cationic detergency ingredients
WO2000077137A1 (en) * 1999-06-14 2000-12-21 Colgate-Palmolive Company Liquid laundry detergent composition containing ethoxylated quaternary surfactant
DE19948668A1 (en) * 1999-10-08 2001-04-19 Cognis Deutschland Gmbh Detergent tablets
WO2001027230A1 (en) * 1999-10-08 2001-04-19 Cognis Deutschland Gmbh Detergents
DE19948669A1 (en) * 1999-10-08 2001-04-19 Cognis Deutschland Gmbh Detergent tablets
WO2001034742A1 (en) * 1999-11-10 2001-05-17 Unilever Plc Automatic dishwashing compositions containing water soluble cationic surfactants
WO2001034745A1 (en) * 1999-11-10 2001-05-17 Unilever Plc Automatic dishwashing compositions containing water soluble cationic surfactants
WO2001088073A1 (en) * 2000-05-16 2001-11-22 Clariant International Ltd Light duty liquid cleaners
WO2002018527A1 (en) * 2000-09-01 2002-03-07 Unilever Plc Fabric care composition
WO2002022770A1 (en) * 2000-09-13 2002-03-21 Henkel Kommanditgesellschaft Auf Aktien Quick drying washing and cleaning agent, especially washing-up liquid
WO2002061026A1 (en) * 2001-02-01 2002-08-08 Ecolab Inc. Stable solid enzyme compositions and methods employing them
EP1323817A1 (en) * 2001-12-24 2003-07-02 Cognis Iberia, S.L. Cationic composition for hard surface cleaning
WO2003102119A1 (en) * 2002-05-31 2003-12-11 Akzo Nobel N.V. Cleaning and degreasing premix compositions with low voc
EP1418226A1 (en) * 2002-11-07 2004-05-12 Unilever N.V. Detergent composition
WO2004065535A1 (en) * 2003-01-14 2004-08-05 Ecolab Inc. Liquid detergent composition and methods for using it
WO2006037438A1 (en) * 2004-10-04 2006-04-13 Unilever N.V. Liquid detergent composition
WO2014012869A1 (en) * 2012-07-19 2014-01-23 Henkel Ag & Co. Kgaa Stable, liquid detergent with anti-redeposition action
EP3301160A1 (en) * 2016-10-03 2018-04-04 The Procter & Gamble Company Low ph laundry detergent composition
US20210277329A1 (en) * 2018-07-05 2021-09-09 Evonik Operations Gmbh Active compositions for highly viscous laundry and cleaning formulations
EP4053328A1 (en) * 2021-03-02 2022-09-07 CHT Germany GmbH Combined bleaching treatment for textiles
WO2023087194A1 (en) * 2021-11-18 2023-05-25 Ecolab Usa Inc. Manual detergent for pot and pan with destaining function
NL2032249B1 (en) * 2022-06-22 2024-01-08 Hg Int B V Composition for removing limescale from colored sanitary ware

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA974226B (en) * 1996-05-17 1998-12-28 Procter & Gamble Detergent composition
CA2347809C (en) * 1998-11-02 2007-04-24 The Procter & Gamble Company Fabric care compositions having reduced fabric abrasion
US6462014B1 (en) 2001-04-09 2002-10-08 Akzo Nobel N.V. Low foaming/defoaming compositions containing alkoxylated quaternary ammonium compounds
JP2003129099A (en) * 2001-10-24 2003-05-08 Kao Corp Powdered detergent composition for clothing
EP1715029B1 (en) * 2002-02-25 2015-09-23 Basf Se Process for the treatment of textile fibre materials
ES2391263T3 (en) 2002-12-04 2012-11-22 Clariant Finance (Bvi) Limited Procedure for preparing a quaternary ammonium composition
CN101448926B (en) * 2006-05-23 2011-06-08 西巴控股公司 A detergent composition for textile fibre materials
JP2009149775A (en) * 2007-12-20 2009-07-09 Lion Corp Cleaning agent composition for washing tub
TW201031743A (en) * 2008-12-18 2010-09-01 Basf Se Surfactant mixture comprising branched short-chain and branched long-chain components
JP5340821B2 (en) * 2009-06-22 2013-11-13 三洋化成工業株式会社 Kitchen cleaner composition
PL2333042T3 (en) * 2009-12-10 2015-12-31 Procter & Gamble Automatic dishwashing product and use thereof
CN102834170A (en) * 2010-03-10 2012-12-19 巴斯夫欧洲公司 Method for producing crude oil using cationic surfactants comprising a hydrophobic block having a chain length of 6 - 10 carbon atoms
JP5642533B2 (en) * 2010-12-24 2014-12-17 ライオン株式会社 Cleaning composition for automatic dishwasher
AU2013357704B2 (en) * 2012-12-12 2016-07-07 Unilever Plc Detergent composition
CN105102600A (en) * 2013-03-28 2015-11-25 宝洁公司 Cleaning compositions containing polyetheramine, soil release polymer, and carboxymethylcellulose
JP6184830B2 (en) * 2013-06-14 2017-08-23 花王株式会社 Bleach cleaning composition
EP2915873A1 (en) * 2014-03-06 2015-09-09 The Procter and Gamble Company Dishwashing composition
CN104059783B (en) * 2014-06-10 2017-10-03 深圳市新纶科技股份有限公司 A kind of preparation method of detergent use surfactant
EP3050955B2 (en) * 2015-02-02 2023-11-08 The Procter & Gamble Company Detergent pack
JP6684558B2 (en) * 2015-09-03 2020-04-22 ライオン株式会社 Liquid detergent for clothing
JP6732424B2 (en) * 2015-10-05 2020-07-29 花王株式会社 Liquid detergent composition for clothing
CN109983108A (en) * 2016-11-24 2019-07-05 荷兰联合利华有限公司 Liquid detergent composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0008142A1 (en) * 1978-08-10 1980-02-20 Procter &amp; Gamble European Technical Center Liquid detergent composition containing ternary surfactant system
GB2054635A (en) * 1979-06-29 1981-02-18 Kao Corp Detergent composition
EP0026013A1 (en) * 1979-09-21 1981-04-01 THE PROCTER &amp; GAMBLE COMPANY Washing and softening compositions and methods for their manufacture
EP0495554A1 (en) * 1991-01-16 1992-07-22 The Procter & Gamble Company Detergent compositions with high activity cellulase and quaternary ammonium compounds
US5290475A (en) * 1990-05-08 1994-03-01 Colgate Palmolive Liquid softening and anti-static nonionic detergent composition with soil release promoting PET-POET copolymer
US5441541A (en) * 1989-07-19 1995-08-15 Colgate Polmolive Co. Anionic/cationic surfactant mixtures
WO1995029218A1 (en) * 1994-04-25 1995-11-02 The Procter & Gamble Company Stable, aqueous laundry detergent composition having improved softening properties
WO1995033033A1 (en) * 1994-06-01 1995-12-07 The Procter & Gamble Company Laundry detergent compositions

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3668136A (en) * 1969-07-07 1972-06-06 Witco Chemical Corp Compatible anionic-catonic surfactant compositions
US4033718A (en) * 1973-11-27 1977-07-05 The Procter & Gamble Company Photoactivated bleaching process
GB2040990B (en) * 1977-11-17 1982-10-06 Procter & Gamble Granular detergent compositions for improved greasy soil removal
CA1104451A (en) * 1978-02-28 1981-07-07 Manuel Juan De Luque Detergent bleach composition and process
DE3069768D1 (en) * 1979-09-29 1985-01-17 Procter & Gamble Ltd Detergent compositions
MX155643A (en) * 1980-02-29 1988-04-11 Ciba Geigy Ag FABRIC WHITENING COMPOSITION
JPS5941672B2 (en) * 1981-02-20 1984-10-08 花王株式会社 cleaning composition
EP0087914B1 (en) * 1982-03-01 1986-10-08 The Procter & Gamble Company Detergent composition
JPS5959793A (en) * 1982-09-30 1984-04-05 ライオン株式会社 Granular detergent composition
DE3274747D1 (en) * 1982-11-05 1987-01-29 Reckitt & Colmann Sa Rinse compositions for laundry
DE3416472A1 (en) * 1984-05-04 1985-11-07 Hoechst Ag, 6230 Frankfurt DETERGENT CONTAINING SOFTENER
GB8421800D0 (en) * 1984-08-29 1984-10-03 Unilever Plc Detergent compositions
ZA862286B (en) * 1985-04-10 1987-11-25 Colgate Palmolive Co Softening and anti-static nonionic detergent composition
ATE98674T1 (en) * 1985-04-15 1994-01-15 Procter & Gamble STABLE LIQUID DETERGENT.
ZA865751B (en) * 1985-08-20 1988-03-30 Colgate Palmolive Co Built detergent compositions containing stabilizing agents
US4806260A (en) * 1986-02-21 1989-02-21 Colgate-Palmolive Company Built nonaqueous liquid nonionic laundry detergent composition containing acid terminated nonionic surfactant and quarternary ammonium softener and method of use
GB8619153D0 (en) * 1986-08-06 1986-09-17 Unilever Plc Fabric conditioning composition
US4704221A (en) * 1986-10-22 1987-11-03 The Procter & Gamble Company Granular detergents which contain high levels of anionic surfactant that forms a middle-phase, surface treated with a water soluble cationic surfactant
EP0294893A3 (en) * 1987-06-10 1989-11-02 The Procter & Gamble Company Conditioning agents and compositions containing same
US4913828A (en) * 1987-06-10 1990-04-03 The Procter & Gamble Company Conditioning agents and compositions containing same
US4877896A (en) * 1987-10-05 1989-10-31 The Procter & Gamble Company Sulfoaroyl end-capped ester of oligomers suitable as soil-release agents in detergent compositions and fabric-conditioner articles
GB8727659D0 (en) * 1987-11-26 1987-12-31 Unilever Plc Machine dishwashing compositions
GB8900807D0 (en) * 1989-01-14 1989-03-08 British Petroleum Co Plc Bleach compositions
AU7633491A (en) * 1990-05-08 1991-11-14 Colgate-Palmolive Company, The Liquid softening and anti-static nonionic detergent composition with soil release promoting pet-poet copolymer
DE69133035T2 (en) * 1991-01-16 2003-02-13 Procter & Gamble Compact detergent compositions with highly active cellulases
JP2908589B2 (en) * 1991-05-09 1999-06-21 花王株式会社 Bleach and bleach detergent composition
AU2244992A (en) * 1992-02-18 1993-09-03 Procter & Gamble Company, The Detergent compositions with high activity cellulase and quaternary ammonium compounds
US5415807A (en) * 1993-07-08 1995-05-16 The Procter & Gamble Company Sulfonated poly-ethoxy/propoxy end-capped ester oligomers suitable as soil release agents in detergent compositions
JP2813112B2 (en) * 1993-08-30 1998-10-22 花王株式会社 Liquid detergent composition for clothing
WO1995029217A1 (en) * 1994-04-25 1995-11-02 The Procter & Gamble Company Stable, aqueous laundry detergent composition having improved softening properties
JPH07292389A (en) * 1994-04-29 1995-11-07 Lion Corp Cleaning agent composition for clothes
EP0688859A1 (en) * 1994-06-22 1995-12-27 The Procter & Gamble Company A process for treating textiles and compositions therefore
MA25183A1 (en) * 1996-05-17 2001-07-02 Arthur Jacques Kami Christiaan DETERGENT COMPOSITIONS
ZA974226B (en) * 1996-05-17 1998-12-28 Procter & Gamble Detergent composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0008142A1 (en) * 1978-08-10 1980-02-20 Procter &amp; Gamble European Technical Center Liquid detergent composition containing ternary surfactant system
GB2054635A (en) * 1979-06-29 1981-02-18 Kao Corp Detergent composition
EP0026013A1 (en) * 1979-09-21 1981-04-01 THE PROCTER &amp; GAMBLE COMPANY Washing and softening compositions and methods for their manufacture
US5441541A (en) * 1989-07-19 1995-08-15 Colgate Polmolive Co. Anionic/cationic surfactant mixtures
US5290475A (en) * 1990-05-08 1994-03-01 Colgate Palmolive Liquid softening and anti-static nonionic detergent composition with soil release promoting PET-POET copolymer
EP0495554A1 (en) * 1991-01-16 1992-07-22 The Procter & Gamble Company Detergent compositions with high activity cellulase and quaternary ammonium compounds
WO1995029218A1 (en) * 1994-04-25 1995-11-02 The Procter & Gamble Company Stable, aqueous laundry detergent composition having improved softening properties
WO1995033033A1 (en) * 1994-06-01 1995-12-07 The Procter & Gamble Company Laundry detergent compositions

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136769A (en) * 1996-05-17 2000-10-24 The Procter & Gamble Company Alkoxylated cationic detergency ingredients
WO1999063038A1 (en) * 1998-06-03 1999-12-09 Henkel Kommanditgesellschaft Auf Aktien Detergents containing amylase and acetonitrile
WO2000060040A1 (en) * 1999-04-01 2000-10-12 The Procter & Gamble Company Detergent compositions
WO2000077137A1 (en) * 1999-06-14 2000-12-21 Colgate-Palmolive Company Liquid laundry detergent composition containing ethoxylated quaternary surfactant
DE19948668A1 (en) * 1999-10-08 2001-04-19 Cognis Deutschland Gmbh Detergent tablets
WO2001027230A1 (en) * 1999-10-08 2001-04-19 Cognis Deutschland Gmbh Detergents
DE19948669A1 (en) * 1999-10-08 2001-04-19 Cognis Deutschland Gmbh Detergent tablets
WO2001034745A1 (en) * 1999-11-10 2001-05-17 Unilever Plc Automatic dishwashing compositions containing water soluble cationic surfactants
US6334452B1 (en) 1999-11-10 2002-01-01 Unilever Home & Personal Care Automatic dishwashing compositions containing water soluble cationic surfactants
US6345633B1 (en) 1999-11-10 2002-02-12 Unilever Home & Personal Care Usa Division Of Conopco, Inc. Automatic dishwashing compositions containing water soluble cationic surfactants
WO2001034742A1 (en) * 1999-11-10 2001-05-17 Unilever Plc Automatic dishwashing compositions containing water soluble cationic surfactants
US6897187B2 (en) 2000-05-16 2005-05-24 Clariant International Ltd. Light duty liquid cleaners comprising a monoalkoxylated quaternary ammonium surfactant
WO2001088073A1 (en) * 2000-05-16 2001-11-22 Clariant International Ltd Light duty liquid cleaners
EP1158040A1 (en) * 2000-05-16 2001-11-28 Clariant International Ltd. Light duty liquid cleaners
WO2002018527A1 (en) * 2000-09-01 2002-03-07 Unilever Plc Fabric care composition
WO2002022770A1 (en) * 2000-09-13 2002-03-21 Henkel Kommanditgesellschaft Auf Aktien Quick drying washing and cleaning agent, especially washing-up liquid
US7186675B2 (en) 2000-09-13 2007-03-06 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Quick drying washing and cleaning agent, comprising an anionic/cationic/amphoteric surfactant mixture
WO2002061026A1 (en) * 2001-02-01 2002-08-08 Ecolab Inc. Stable solid enzyme compositions and methods employing them
EP1323817A1 (en) * 2001-12-24 2003-07-02 Cognis Iberia, S.L. Cationic composition for hard surface cleaning
WO2003102119A1 (en) * 2002-05-31 2003-12-11 Akzo Nobel N.V. Cleaning and degreasing premix compositions with low voc
EP1418226A1 (en) * 2002-11-07 2004-05-12 Unilever N.V. Detergent composition
WO2004065535A1 (en) * 2003-01-14 2004-08-05 Ecolab Inc. Liquid detergent composition and methods for using it
CN100352901C (en) * 2003-01-14 2007-12-05 埃科莱布有限公司 Liquid detergent composition and methods for using
AU2004206217B2 (en) * 2003-01-14 2009-01-08 Ecolab Inc. Liquid detergent composition and methods for using it
WO2006037438A1 (en) * 2004-10-04 2006-04-13 Unilever N.V. Liquid detergent composition
WO2014012869A1 (en) * 2012-07-19 2014-01-23 Henkel Ag & Co. Kgaa Stable, liquid detergent with anti-redeposition action
EP3301160A1 (en) * 2016-10-03 2018-04-04 The Procter & Gamble Company Low ph laundry detergent composition
US20210277329A1 (en) * 2018-07-05 2021-09-09 Evonik Operations Gmbh Active compositions for highly viscous laundry and cleaning formulations
US11692153B2 (en) * 2018-07-05 2023-07-04 Evonik Operations Gmbh Long-chain alkyl esterquats for highly viscous laundry and cleaning formulations
EP4053328A1 (en) * 2021-03-02 2022-09-07 CHT Germany GmbH Combined bleaching treatment for textiles
WO2022184584A1 (en) * 2021-03-02 2022-09-09 CHT Germany GmbH Combined bleaching treatment for textiles
WO2023087194A1 (en) * 2021-11-18 2023-05-25 Ecolab Usa Inc. Manual detergent for pot and pan with destaining function
NL2032249B1 (en) * 2022-06-22 2024-01-08 Hg Int B V Composition for removing limescale from colored sanitary ware

Also Published As

Publication number Publication date
WO1997044432A1 (en) 1997-11-27
BR9710445A (en) 1999-08-17
ZA974226B (en) 1998-12-28
CA2254947A1 (en) 1997-11-27
MX9809674A (en) 1999-03-01
EP0906405A1 (en) 1999-04-07
CA2254820A1 (en) 1997-11-27
CA2255003A1 (en) 1997-11-27
BR9709321A (en) 1999-08-10
CN1225678A (en) 1999-08-11
BR9710675A (en) 1999-08-17
WO1997044425A2 (en) 1997-11-27
JPH11511799A (en) 1999-10-12
EP0907705A1 (en) 1999-04-14
AR007169A1 (en) 1999-10-13
CA2255005A1 (en) 1997-11-20
EP0912669A2 (en) 1999-05-06
WO1997043394A3 (en) 1997-12-24
MX9809628A (en) 1999-02-01
BR9710678A (en) 1999-08-17
EP0918833A1 (en) 1999-06-02
WO1997044433A1 (en) 1997-11-27
WO1997043394A2 (en) 1997-11-20
EP0912686A2 (en) 1999-05-06
WO1997044418A1 (en) 1997-11-27
WO1997044419A3 (en) 1997-12-31
CN1225675A (en) 1999-08-11
JPH11511794A (en) 1999-10-12
EP0906392A2 (en) 1999-04-07
WO1997044419A2 (en) 1997-11-27
BR9710676A (en) 1999-08-17
WO1997043388A3 (en) 1998-02-12
BR9710444A (en) 1999-08-17
JPH11511795A (en) 1999-10-12
MX9809681A (en) 1999-03-01
MX9809683A (en) 1999-03-01
CN1168812C (en) 2004-09-29
BR9710667A (en) 1999-08-17
MX9809684A (en) 1999-03-01
CA2254818A1 (en) 1997-11-27
JPH11512782A (en) 1999-11-02
JPH11511797A (en) 1999-10-12
CA2255006A1 (en) 1997-11-20
CN1225673A (en) 1999-08-11
CN1230213A (en) 1999-09-29
WO1997044425A3 (en) 1997-12-24
WO1997044431A1 (en) 1997-11-27
BR9709587A (en) 2000-04-25
EP0906403A1 (en) 1999-04-07
JPH11510554A (en) 1999-09-14
CA2254961A1 (en) 1997-11-27
MX9809679A (en) 1999-03-01
MX9809624A (en) 1999-03-01
CN1225677A (en) 1999-08-11
CN1232489A (en) 1999-10-20
JP2000504061A (en) 2000-04-04
AR014606A1 (en) 2001-03-28
JPH11511796A (en) 1999-10-12
CA2254948A1 (en) 1997-11-27
MX9809675A (en) 1999-03-01

Similar Documents

Publication Publication Date Title
US6136769A (en) Alkoxylated cationic detergency ingredients
WO1997043388A2 (en) Detergent composition
US5958858A (en) Low anionic surfactant detergent compositions
WO1998005749A1 (en) Detergent compositions containing dianionic esters
WO1997044420A2 (en) Detergent composition
GB2314339A (en) Cleaning compositions containing amido surfactants derived from amido furandiones
EP0996700A1 (en) Detergent compositions
WO1998000503A1 (en) Bleaching detergent compositions containing selected dianionic or alkoxylated dianionic surfactants

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97196494.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): BR CA CN CZ HU JP MX TR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 1997 541172

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2255006

Country of ref document: CA

Ref document number: 2255006

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/1998/009674

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1997924766

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997924766

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997924766

Country of ref document: EP