WO1997043948A1 - Hybrid catheter guide wire apparatus - Google Patents

Hybrid catheter guide wire apparatus Download PDF

Info

Publication number
WO1997043948A1
WO1997043948A1 PCT/US1997/008734 US9708734W WO9743948A1 WO 1997043948 A1 WO1997043948 A1 WO 1997043948A1 US 9708734 W US9708734 W US 9708734W WO 9743948 A1 WO9743948 A1 WO 9743948A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide wire
hybrid catheter
catheter guide
tubular body
solid
Prior art date
Application number
PCT/US1997/008734
Other languages
French (fr)
Inventor
Stephen C. Jacobsen
Clark Davis
John Lippert
Original Assignee
Sarcos, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sarcos, Inc. filed Critical Sarcos, Inc.
Priority to AU31395/97A priority Critical patent/AU3139597A/en
Publication of WO1997043948A1 publication Critical patent/WO1997043948A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09175Guide wires having specific characteristics at the distal tip

Definitions

  • This invention relates to a hybrid catheter guide wire apparatus with improved torque and flexure characteristics.
  • Catheter guide wires have been used for many years to "lead” or “guide” catheters to desired target locations in the human body's vasculature.
  • the typical guide wire is from about 135 centimeters to 195 centimeters in length, and is made from two primary pieces--a stainless steel core wire, and a platinum alloy coil spring.
  • the core wire is tapered on the distal end to increase its flexibility.
  • the coil spring is typically soldered to the core wire at a point where the inside diameter of the coil spring matches the outside diameter of the core wire. Platinum is selected for the coil spring because it provides radiopacity for X-ray viewing during navigation of the guide wire in the body, and it is biocompatible.
  • the coil spring also provides softness for the tip of the guide wire to reduce the likelihood of puncture of the anatomy.
  • Navigation through the anatomy is achieved by viewing the guide wire in the body using X-ray fluoroscopy.
  • the guide wire is inserted into a catheter so the guide wire protrudes out the end, and then the wire and catheter are inserted into a vessel or duct and moved therethrough until the guide wire tip reaches a desired vessel or duct branch.
  • the proximal end of the guide wire is then rotated or torqued to point the curved tip into the desired branch and then advanced further.
  • the catheter is advanced over the guide wire to follow or track the wire to the desired location, and provide additional support for the wire.
  • the guide wire may be withdrawn, depending upon the therapy to be performed. Oftentimes, such as in the case of balloon angioplasty, the guide wire is left in place during the procedure and will be used to exchange catheters.
  • a hybrid catheter guide wire apparatus formed of a thin elongate solid body of material which tapers to a distal termination, and a thin elongate tubular body of material attached co-linearly to the distal end of the solid body.
  • the tubular body is constructed to have greater lateral flexibility than the solid body, while retaining torsional stiffness. Cuts may be formed in the tubular body, transversely thereof to give the guide wire flexibility without significantly reducing torsional stiffness or strength.
  • the drawing shows a side, fragmented, partially cross-sectional, view of one embodiment of a hybrid guide wire 200 made in accordance with the present invention.
  • a pin vise type torquing chuck 206 is shown attached to a proximal end 204 in the usual manner.
  • the guide wire 200 also includes a distal end 208 which tapers to a thin, narrow section 212.
  • Mounted over the thin, narrow section 212 is a tubular section 216 whose proximal end 218 abuts the sloping portion 222 of the distal end 208 of the proximal guide wire segment, and whose distal end 226 is rounded to reduce the chance of damage and trauma to the vasculature when the guide wire is being threaded therein.
  • the guide wire 200 is constructed of stainless steel and the tubular section 216 is constructed of nickel-titanium alloy to provide for greater lateral flexibility. Additional lateral flexibility can be achieved by providing cuts, slots, gaps or openings 230 along at least a portion of the exterior surface of the tubular section 216. These cuts may be formed by saw cutting (e.g., diamond grit embedded semiconductor dicing blade) , etching (for example using the etching process described in U.S. Patent No. 5,106,455) , laser cutting, or electron discharge machining. Provision of the cuts in the tubular section increases lateral flexibility in the guide wire, while maintaining torsional stiffness.
  • saw cutting e.g., diamond grit embedded semiconductor dicing blade
  • etching for example using the etching process described in U.S. Patent No. 5,106,455
  • Provision of the cuts in the tubular section increases lateral flexibility in the guide wire, while maintaining torsional stiffness.
  • the thin, narrow section 212 of the guide wire 200 is shown in the drawing as being an extension of the larger part of the body and thus made of the same material, the section 212 could also be made of a carbon fiber or polymer strand, attached to the larger part of the body 200 (for example, by a suitable adhesive) , and this would provide excellent longitudinal strength with very little lateral stiffness.
  • the diameter of the larger proximal part of the catheter guide wire 200 would be .014 inches, as would be the outside diameter of the tubular section 216, with the interior diameter of the hollow of the tubular section 216 being about .0085 inches.
  • the distal end of the tubular section 216 may be preshaped with a curve to allow for directing the guide wire around curves and bends. Also formed on the distal end 226 of the tubular section 216 is a radiopaque or 8 PC17US97/08734
  • the band 234 may be gold or platinum alloy (for X-ray fluoroscopy) or gadolinium or dysprosium, or compounds thereof (for MRI) and may be formed on the distal end 226 by deposition, wrapping or use of shape memory alloy (NiTi) effect to "lock" the band around the end.
  • a radiopaque or MRI sensitive plug 238 could be disposed in the distal end 226 of the tubular section 216 and attached to the distal end of the thin, narrow section 212 of the solid body portion of the guide wire 200 (or to the carbon fiber or polymer strand) to both serve as a marker and to assist in holding the tubular section 216 in place over the thin, narrow section 212.
  • Glue or other adhesives could also be used to hold the tubular section 216 in place, including radiopaque glue.
  • the exterior surface of the guide wire including tubular section 216, could be sandblasted, beadblasted, sodium bicarbonate-blasted, electropolished and/or coated with a lubricious coating such as a silicon based oil and/or polymer or a hydrophilic polymer.
  • a sleeve could be disposed over the entire length of the guide wire where the sleeve were also made of a hydrophilic or other polymer, and then coated.
  • Cuts 230 of various shapes may be selectively spaced along and about the tubular section 216 to provide for selective bending of the tubular section, while maintaining good torsional stiffness.
  • the cuts could be formed at circumferentially- spaced locations about the tubular section 216 and could be formed with various shapes, the depth and thickness of which could be chosen to again allow for preferential bending of the section.
  • the guide wire 200 can be made "flow directable” by providing a highly flexible distal end. "Flow directability" means that the distal end of the guide wire tends to "flow” with the blood around curves and bends in a vasculature passageway.

Abstract

A hybrid catheter guide wire (200) includes an elongate solid body (204) having a tapered distal end (208) over which is disposed a tubular section (216)--about which a catheter may be threaded for guidance to a target location in a vasculature passageway of a body. Cuts (230) are formed either by saw-cutting, laser cutting or etching at spaced-apart locations along at least a portion of the tubular section to increase its lateral flexibity, while maintaining its rotational torquability, and to control the direction and degree of flexure.

Description

HYBRID CATHETER GUIDE WIRE APPARATUS
BACKGROUND OF THE INVENTION This invention relates to a hybrid catheter guide wire apparatus with improved torque and flexure characteristics.
Catheter guide wires have been used for many years to "lead" or "guide" catheters to desired target locations in the human body's vasculature. The typical guide wire is from about 135 centimeters to 195 centimeters in length, and is made from two primary pieces--a stainless steel core wire, and a platinum alloy coil spring. The core wire is tapered on the distal end to increase its flexibility. The coil spring is typically soldered to the core wire at a point where the inside diameter of the coil spring matches the outside diameter of the core wire. Platinum is selected for the coil spring because it provides radiopacity for X-ray viewing during navigation of the guide wire in the body, and it is biocompatible. The coil spring also provides softness for the tip of the guide wire to reduce the likelihood of puncture of the anatomy.
Navigation through the anatomy is achieved by viewing the guide wire in the body using X-ray fluoroscopy. The guide wire is inserted into a catheter so the guide wire protrudes out the end, and then the wire and catheter are inserted into a vessel or duct and moved therethrough until the guide wire tip reaches a desired vessel or duct branch. The proximal end of the guide wire is then rotated or torqued to point the curved tip into the desired branch and then advanced further. The catheter is advanced over the guide wire to follow or track the wire to the desired location, and provide additional support for the wire. Once the catheter is in place, the guide wire may be withdrawn, depending upon the therapy to be performed. Oftentimes, such as in the case of balloon angioplasty, the guide wire is left in place during the procedure and will be used to exchange catheters.
As the guide wire is advanced into the anatomy, internal resistance from the typically numerous turns, and surface contact, decreases the ability to advance the guide wire further. This, in turn, may lead to a more difficult and prolonged procedure, or, more seriously, failure to access the desired anatomy and thus a failed procedure. A guide wire with both flexibility and good torque characteristics (torsional stiffness) would, of course, help overcome problems created by the internal resistance.
Among the approaches suggested in the prior art for increasing the flexibility of the tip of a guide wire is that of cutting axially spaced grooves in and near the tip, with the depths of the grooves increasing toward the tip. See U.S. Patent No. 5,437,288. The use of cuts to increase flexibility on one side only of a tubular guide wire is disclosed in U.S. Patent No. 5,411,483.
SUMMARY OF THE INVENTION
It is an object of the invention to provide an improved catheter guide wire apparatus.
It is also an object of the invention to provide such apparatus which exhibits both torsional stiffness, bending flexibility, and longitudinal strength. It is a further object of the invention to provide such apparatus which is simple in design and construction.
It is another object of the invention, in accordance with one aspect thereof, to provide a catheter guide wire apparatus with improved flow directability characteristics.
The above and other objects of the invention are realized in a specific illustrative embodiment of a hybrid catheter guide wire apparatus formed of a thin elongate solid body of material which tapers to a distal termination, and a thin elongate tubular body of material attached co-linearly to the distal end of the solid body. The tubular body is constructed to have greater lateral flexibility than the solid body, while retaining torsional stiffness. Cuts may be formed in the tubular body, transversely thereof to give the guide wire flexibility without significantly reducing torsional stiffness or strength. BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objects, features and advantages of the invention will become apparent from a consideration of the following detailed description presented in connection with the accompanying drawing which shows a side, fragmented, partially cross- sectional view of one embodiment of a catheter guide wire apparatus made in accordance with the principles of the present invention.
DETAILED DESCRIPTION
The drawing shows a side, fragmented, partially cross-sectional, view of one embodiment of a hybrid guide wire 200 made in accordance with the present invention. A pin vise type torquing chuck 206 is shown attached to a proximal end 204 in the usual manner. The guide wire 200 also includes a distal end 208 which tapers to a thin, narrow section 212. Mounted over the thin, narrow section 212 is a tubular section 216 whose proximal end 218 abuts the sloping portion 222 of the distal end 208 of the proximal guide wire segment, and whose distal end 226 is rounded to reduce the chance of damage and trauma to the vasculature when the guide wire is being threaded therein.
Advantageously, the guide wire 200 is constructed of stainless steel and the tubular section 216 is constructed of nickel-titanium alloy to provide for greater lateral flexibility. Additional lateral flexibility can be achieved by providing cuts, slots, gaps or openings 230 along at least a portion of the exterior surface of the tubular section 216. These cuts may be formed by saw cutting (e.g., diamond grit embedded semiconductor dicing blade) , etching (for example using the etching process described in U.S. Patent No. 5,106,455) , laser cutting, or electron discharge machining. Provision of the cuts in the tubular section increases lateral flexibility in the guide wire, while maintaining torsional stiffness.
The thin, narrow section 212 of the guide wire 200 is shown in the drawing as being an extension of the larger part of the body and thus made of the same material, the section 212 could also be made of a carbon fiber or polymer strand, attached to the larger part of the body 200 (for example, by a suitable adhesive) , and this would provide excellent longitudinal strength with very little lateral stiffness. Advantageously, the diameter of the larger proximal part of the catheter guide wire 200 would be .014 inches, as would be the outside diameter of the tubular section 216, with the interior diameter of the hollow of the tubular section 216 being about .0085 inches.
The distal end of the tubular section 216 may be preshaped with a curve to allow for directing the guide wire around curves and bends. Also formed on the distal end 226 of the tubular section 216 is a radiopaque or 8 PC17US97/08734
5
MRI sensitive marker or band 234. The band 234 may be gold or platinum alloy (for X-ray fluoroscopy) or gadolinium or dysprosium, or compounds thereof (for MRI) and may be formed on the distal end 226 by deposition, wrapping or use of shape memory alloy (NiTi) effect to "lock" the band around the end. Alternatively, a radiopaque or MRI sensitive plug 238 could be disposed in the distal end 226 of the tubular section 216 and attached to the distal end of the thin, narrow section 212 of the solid body portion of the guide wire 200 (or to the carbon fiber or polymer strand) to both serve as a marker and to assist in holding the tubular section 216 in place over the thin, narrow section 212. Glue or other adhesives could also be used to hold the tubular section 216 in place, including radiopaque glue.
To improve slidability of the guide wire 200 in a vasculature passageway, the exterior surface of the guide wire, including tubular section 216, could be sandblasted, beadblasted, sodium bicarbonate-blasted, electropolished and/or coated with a lubricious coating such as a silicon based oil and/or polymer or a hydrophilic polymer. Alternatively, a sleeve could be disposed over the entire length of the guide wire where the sleeve were also made of a hydrophilic or other polymer, and then coated.
Cuts 230 of various shapes may be selectively spaced along and about the tubular section 216 to provide for selective bending of the tubular section, while maintaining good torsional stiffness. For example, the cuts could be formed at circumferentially- spaced locations about the tubular section 216 and could be formed with various shapes, the depth and thickness of which could be chosen to again allow for preferential bending of the section. In the embodiment of the drawing, the guide wire 200 can be made "flow directable" by providing a highly flexible distal end. "Flow directability" means that the distal end of the guide wire tends to "flow" with the blood around curves and bends in a vasculature passageway.
It is to be understood that the above-described arrangements are only illustrative of the application of the principles of the present invention. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the present invention and the appended claims are intended to cover such modifications and arrangements.

Claims

CLAIMS What is claimed is:
1. A hybrid catheter guide wire for introduction into a vessel pathway to guide a catheter to a predetermined location, comprising a thin elongate solid body of material which tapers to a thinner distal termination, and a thin elongate tubular body of material attached co-linearly to the distal end of the solid body, at least some portion of the tubular body having greater lateral flexibility than the solid body.
2. A hybrid catheter guide wire as in Claim 1 wherein the exterior surface of the tubular body includes a plurality of cuts spaced apart along at least a portion of the length of the tubular body to increase lateral flexibility thereof.
3. A hybrid catheter guide wire as in Claim 2 wherein the longitudinal spacing between cuts is selectively varied to thereby selectively vary flexibility along at least a portion of the length of the tubular body.
4. A hybrid catheter guide wire as in Claim 2 wherein the depth of the cuts is selectively varied to thereby selectively vary flexibility along at least a portion of the length of the tubular body.
5. A hybrid catheter guide wire as in Claim 2 wherein at least some of the cuts are formed near the end of the tubular body farthest from the distal end of the solid body.
6. A hybrid catheter guide wire as in Claim 2 wherein said cuts are formed by saw-cutting.
7. A hybrid catheter guide wire as in Claim 2 wherein said cuts are formed by etching.
8. A hybrid catheter guide wire as in Claim 2 wherein said cuts are formed by laser cutting.
9. A hybrid catheter guide wire as in Claim 2 wherein said cuts are formed by electron discharge machining.
10. A hybrid catheter guide wire as in Claim 1 wherein the tubular elongate body has a proximal end attached to the distal end of the solid elongate body, and distal end, and wherein the guide wire further includes a radiopaque and/or MRI detectable element disposed at the distal end of the tubular elongate body.
11. A hybrid catheter guide wire as in Claim 1 wherein the solid body of material and tubular body of material are generally cylindrical.
12. A hybrid catheter guide wire as in Claim 11 wherein the diameters of the solid body and tubular body are substantially the same.
13. A hybrid catheter guide wire as in Claim 12 wherein said diameters are about .014 inches.
14. A hybrid catheter guide wire as in Claim 13 wherein the diameter of the hollow of the tubular body is about .0085 inches.
15. A hybrid catheter guide wire as in Claim 1 wherein the solid body is made of stainless steel, and wherein the tubular body is made of nickel-titanium alloy. 16. A hybrid catheter guide wire as in Claim 1 further including a lubricious coating disposed over the exterior of the tubular body.
17. A hybrid catheter guide wire as in Claim 1 further including a lubricious sleeve disposed about the exterior of the solid body and tubular body.
18. A hybrid catheter guide wire as in Claim 1 further including a sleeve disposed about the exterior of the solid body and tubular body, and a lubricious coating disposed over the exterior of the sleeve.
19. A hybrid catheter guide wire as in Claim 1 wherein the tapered thinner distal termination of the solid body is co-extensive with and extends through the hollow of the tubular body.
20. A hybrid catheter guide wire as in Claim 19 further including a plug disposed in a distal end of the tubular body and on the termination of the tapered thinner portion of the solid body.
21. A hybrid catheter guide wire as in Claim 20 wherein said plug is made of a radiopaque or MRI detectable material .
22. A hybrid catheter guide wire as in Claim 19 wherein the tapered thinner distal termination of the solid body is made of a material selected from the group consisting of polymers and fiber-reinforced materials. AMENDED CLAIMS
[received by the International Bureau on 23 September 1997 (23.09.97); original claims 6 - 9 cancelled; original claims 1, 10, 14, 19 and
20 amended; new claims 23 - 25 added; remaining claims unchanged
(3 pages)]
1. A hybrid catheter guide wire for introduction into a vessel pathway to guide a catheter to a predetermined location, comprising a thin elongate solid body of material which tapers to a narrow section having a thinner distal termination, and a thin elongate tubular body of material attached co-linearly to the distal end of the solid body such that a hollow is formed between the tubular body and the narrow section, at least some portion of the tubular body having greater lateral flexibility than the solid body.
2. A hybrid catheter guide wire as in Claim 1 wherein the exterior surface of the tubular body includes a plurality of cuts spaced apart along at least a portion of the length of the tubular body to increase lateral flexibility thereof.
3. A hybrid catheter guide wire as in Claim 2 wherein the longitudinal spacing between cuts is selectively varied to thereby selectively vary flexibility along at least a portion of the length of the tubular body.
4. A hybrid catheter guide wire as in Claim 2 wherein the depth of the cuts is selectively varied to thereby selectively vary flexibility along at least a portion of the length of the tubular body.
5. A hybrid catheter guide wire as in Claim 2 wherein at least some of the cuts are formed near the end of the tubular body farthest from the distal end of the solid body.
10. A hybrid catheter guide wire as in Claim 1 wherein the tubular elongate body has a distal end attached to the distal end of the solid elongate body, and a proximal end which abuts the solid elongate body adjacent a proximal end of the narrow section, and wherein the guide wire further includes a radiopaque and/or MRI detectable element disposed at the distal end of the tubular elongate body.
11. A hybrid catheter guide wire as in Claim 1 wherein the solid body of material and tubular body of material are generally cylindrical .
12. A hybrid catheter guide wire as in Claim 11 wherein the diameters of the solid body and tubular body are substantially the same.
13. A hybrid catheter guide wire as in Claim 12 wherein said diameters are about .014 inches.
14. A hybrid catheter guide wire as in Claim 1 wherein the diameter of the hollow of the tubular body is about .0085 inches.
15. A hybrid catheter guide wire as in Claim 1 wherein the solid body is made of stainless steel, and wherein the tubular body is made of nickel-titanium alloy.
16. A hybrid catheter guide wire as in Claim 1 further including a lubricious coating disposed over the exterior of the tubular body.
17. A hybrid catheter guide wire as in Claim 1 further including a lubricious sleeve disposed about the exterior of the solid body and tubular body.
18. A hybrid catheter guide wire as in Claim 1 further including a sleeve disposed about the exterior of the solid body and tubular body, and a lubricious coating disposed over the exterior of the sleeve.
19. A hybrid catheter guide wire as in Claim 1 wherein the narrow section forming the tapered thinner distal termination of the solid body is co-extensive with and extends through the hollow of the tubular body.
20. A hybrid catheter guide wire as in Claim 19 further including a plug disposed in a distal end of the tubular body and on the narrow section forming the termination of the tapered thinner portion of the solid body for connecting the tubular body to the narrow section.
21. A hybrid catheter guide wire as in Claim 20 wherein said plug is made of a radiopaque or MRI detectable material.
22. A hybrid catheter guide wire as in Claim 19 wherein the tapered thinner distal termination of the solid body is made of a material selected from the group consisting of polymers and fiber-reinforced materials.
23. The hybrid catheter of claim 1, wherein the solid body and the tubular body are formed from different materials, the tubular body having greater flexibility than the solid body proximal from the narrow section.
24. The hybrid catheter of claim 1, wherein the tubular body is attached to the distal end of the narrow section, and defines a hollow about the narrow section.
25. The hybrid catheter of claim 1, wherein the tubular body has a distal end attached to the narrow section adjacent the distal termination of the narrow section, and a proximal end which abuts but is not attached to the solid body.
PCT/US1997/008734 1996-05-24 1997-05-21 Hybrid catheter guide wire apparatus WO1997043948A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU31395/97A AU3139597A (en) 1996-05-24 1997-05-21 Hybrid catheter guide wire apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/653,199 US5690120A (en) 1996-05-24 1996-05-24 Hybrid catheter guide wire apparatus
US08/653,199 1996-05-24

Publications (1)

Publication Number Publication Date
WO1997043948A1 true WO1997043948A1 (en) 1997-11-27

Family

ID=24619898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/008734 WO1997043948A1 (en) 1996-05-24 1997-05-21 Hybrid catheter guide wire apparatus

Country Status (4)

Country Link
US (1) US5690120A (en)
AU (1) AU3139597A (en)
TW (1) TW362022B (en)
WO (1) WO1997043948A1 (en)

Families Citing this family (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030069522A1 (en) * 1995-12-07 2003-04-10 Jacobsen Stephen J. Slotted medical device
US6440088B1 (en) 1996-05-24 2002-08-27 Precision Vascular Systems, Inc. Hybrid catheter guide wire apparatus and method
US6458088B1 (en) 1997-03-27 2002-10-01 Cordis Corporation Glass core guidewire compatible with magnetic resonance
NL1005662C2 (en) * 1997-03-27 1998-09-29 Cordis Europ Guide wire.
NL1006254C2 (en) * 1997-06-06 1998-12-08 Cordis Europ MRI-compatible guidewire.
US8668737B2 (en) 1997-10-10 2014-03-11 Senorx, Inc. Tissue marking implant
US7637948B2 (en) 1997-10-10 2009-12-29 Senorx, Inc. Tissue marking implant
US6159195A (en) * 1998-02-19 2000-12-12 Percusurge, Inc. Exchange catheter and method of use
US6340368B1 (en) 1998-10-23 2002-01-22 Medtronic Inc. Implantable device with radiopaque ends
US6862470B2 (en) 1999-02-02 2005-03-01 Senorx, Inc. Cavity-filling biopsy site markers
US9820824B2 (en) 1999-02-02 2017-11-21 Senorx, Inc. Deployment of polysaccharide markers for treating a site within a patent
US7983734B2 (en) 2003-05-23 2011-07-19 Senorx, Inc. Fibrous marker and intracorporeal delivery thereof
US6725083B1 (en) 1999-02-02 2004-04-20 Senorx, Inc. Tissue site markers for in VIVO imaging
US8361082B2 (en) 1999-02-02 2013-01-29 Senorx, Inc. Marker delivery device with releasable plug
US7651505B2 (en) 2002-06-17 2010-01-26 Senorx, Inc. Plugged tip delivery for marker placement
US8498693B2 (en) 1999-02-02 2013-07-30 Senorx, Inc. Intracorporeal marker and marker delivery device
US20090216118A1 (en) 2007-07-26 2009-08-27 Senorx, Inc. Polysaccharide markers
US6361557B1 (en) 1999-02-05 2002-03-26 Medtronic Ave, Inc. Staplebutton radiopaque marker
US6575991B1 (en) 1999-06-17 2003-06-10 Inrad, Inc. Apparatus for the percutaneous marking of a lesion
CA2775170C (en) 2000-11-20 2017-09-05 Senorx, Inc. An intracorporeal marker delivery system for marking a tissue site
US20030208142A1 (en) * 2001-06-12 2003-11-06 Boudewijn Alexander C Vascular guidewire for magnetic resonance and /or fluoroscopy
ATE347393T1 (en) 2001-07-05 2006-12-15 Precision Vascular Systems Inc MEDICAL DEVICE HAVING A TORQUE-TRANSMITTING SOFT END PIECE AND METHOD FOR SHAPING IT
US6807440B2 (en) * 2001-11-09 2004-10-19 Scimed Life Systems, Inc. Ceramic reinforcement members for MRI devices
US7914467B2 (en) 2002-07-25 2011-03-29 Boston Scientific Scimed, Inc. Tubular member having tapered transition for use in a medical device
EP1545680B1 (en) 2002-07-25 2010-09-08 Boston Scientific Limited Medical device for navigation through anatomy
US20060036158A1 (en) 2003-11-17 2006-02-16 Inrad, Inc. Self-contained, self-piercing, side-expelling marking apparatus
US8377035B2 (en) 2003-01-17 2013-02-19 Boston Scientific Scimed, Inc. Unbalanced reinforcement members for medical device
US7169118B2 (en) 2003-02-26 2007-01-30 Scimed Life Systems, Inc. Elongate medical device with distal cap
US7001369B2 (en) 2003-03-27 2006-02-21 Scimed Life Systems, Inc. Medical device
US7877133B2 (en) 2003-05-23 2011-01-25 Senorx, Inc. Marker or filler forming fluid
US7758520B2 (en) * 2003-05-27 2010-07-20 Boston Scientific Scimed, Inc. Medical device having segmented construction
US6921397B2 (en) * 2003-05-27 2005-07-26 Cardia, Inc. Flexible delivery device
US20050273002A1 (en) 2004-06-04 2005-12-08 Goosen Ryan L Multi-mode imaging marker
US7824345B2 (en) 2003-12-22 2010-11-02 Boston Scientific Scimed, Inc. Medical device with push force limiter
US8267985B2 (en) 2005-05-25 2012-09-18 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
ES2607402T3 (en) 2004-05-25 2017-03-31 Covidien Lp Flexible vascular occlusion device
US20060206200A1 (en) 2004-05-25 2006-09-14 Chestnut Medical Technologies, Inc. Flexible vascular occluding device
US8628564B2 (en) 2004-05-25 2014-01-14 Covidien Lp Methods and apparatus for luminal stenting
KR101300437B1 (en) 2004-05-25 2013-08-26 코비디엔 엘피 Vascular stenting for aneurysms
US8617234B2 (en) 2004-05-25 2013-12-31 Covidien Lp Flexible vascular occluding device
US7989042B2 (en) * 2004-11-24 2011-08-02 Boston Scientific Scimed, Inc. Medical devices with highly flexible coated hypotube
US7632242B2 (en) 2004-12-09 2009-12-15 Boston Scientific Scimed, Inc. Catheter including a compliant balloon
US10357328B2 (en) 2005-04-20 2019-07-23 Bard Peripheral Vascular, Inc. and Bard Shannon Limited Marking device with retractable cannula
US8273101B2 (en) 2005-05-25 2012-09-25 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
AU2005332044B2 (en) 2005-05-25 2012-01-19 Covidien Lp System and method for delivering and deploying and occluding device within a vessel
US9445784B2 (en) 2005-09-22 2016-09-20 Boston Scientific Scimed, Inc Intravascular ultrasound catheter
US8052658B2 (en) 2005-10-07 2011-11-08 Bard Peripheral Vascular, Inc. Drug-eluting tissue marker
US7850623B2 (en) 2005-10-27 2010-12-14 Boston Scientific Scimed, Inc. Elongate medical device with continuous reinforcement member
US8152833B2 (en) 2006-02-22 2012-04-10 Tyco Healthcare Group Lp Embolic protection systems having radiopaque filter mesh
US20080294039A1 (en) * 2006-08-04 2008-11-27 Senorx, Inc. Assembly with hemostatic and radiographically detectable pellets
JP2010503484A (en) 2006-09-13 2010-02-04 ボストン サイエンティフィック リミテッド Transverse guide wire
EP2079385B1 (en) 2006-10-23 2013-11-20 C.R.Bard, Inc. Breast marker
WO2008073965A2 (en) 2006-12-12 2008-06-19 C.R. Bard Inc. Multiple imaging mode tissue marker
US8556914B2 (en) 2006-12-15 2013-10-15 Boston Scientific Scimed, Inc. Medical device including structure for crossing an occlusion in a vessel
ES2432572T3 (en) 2006-12-18 2013-12-04 C.R. Bard, Inc. Biopsy marker with imaging properties generated in situ
WO2008098191A2 (en) 2007-02-08 2008-08-14 C. R. Bard, Inc. Shape memory medical device and methods of manufacturing
US8409114B2 (en) 2007-08-02 2013-04-02 Boston Scientific Scimed, Inc. Composite elongate medical device including distal tubular member
US8105246B2 (en) 2007-08-03 2012-01-31 Boston Scientific Scimed, Inc. Elongate medical device having enhanced torque and methods thereof
US8821477B2 (en) 2007-08-06 2014-09-02 Boston Scientific Scimed, Inc. Alternative micromachined structures
US9808595B2 (en) 2007-08-07 2017-11-07 Boston Scientific Scimed, Inc Microfabricated catheter with improved bonding structure
US9034007B2 (en) 2007-09-21 2015-05-19 Insera Therapeutics, Inc. Distal embolic protection devices with a variable thickness microguidewire and methods for their use
US20090112186A1 (en) * 2007-10-02 2009-04-30 Adams Mark L Catheter assembly with increased torsional stiffness
US20090118704A1 (en) * 2007-11-02 2009-05-07 Boston Scientific Scimed, Inc. Interconnected ribbon coils, medical devices including an interconnected ribbon coil, and methods for manufacturing an interconnected ribbon coil
US7841994B2 (en) 2007-11-02 2010-11-30 Boston Scientific Scimed, Inc. Medical device for crossing an occlusion in a vessel
US8311610B2 (en) 2008-01-31 2012-11-13 C. R. Bard, Inc. Biopsy tissue marker
US8376961B2 (en) 2008-04-07 2013-02-19 Boston Scientific Scimed, Inc. Micromachined composite guidewire structure with anisotropic bending properties
US9675482B2 (en) 2008-05-13 2017-06-13 Covidien Lp Braid implant delivery systems
US8535243B2 (en) 2008-09-10 2013-09-17 Boston Scientific Scimed, Inc. Medical devices and tapered tubular members for use in medical devices
US9327061B2 (en) 2008-09-23 2016-05-03 Senorx, Inc. Porous bioabsorbable implant
US10363389B2 (en) * 2009-04-03 2019-07-30 Scientia Vascular, Llc Micro-fabricated guidewire devices having varying diameters
CN102639303B (en) 2008-12-08 2015-09-30 血管科学有限公司 For forming micro-cutting machine of otch in the product
US11406791B2 (en) 2009-04-03 2022-08-09 Scientia Vascular, Inc. Micro-fabricated guidewire devices having varying diameters
US8795254B2 (en) 2008-12-10 2014-08-05 Boston Scientific Scimed, Inc. Medical devices with a slotted tubular member having improved stress distribution
ES2560515T3 (en) 2008-12-30 2016-02-19 C.R. Bard, Inc. Marker administration device for tissue marker placement
US20100249655A1 (en) * 2009-03-30 2010-09-30 C. R. Bard, Inc. Tip-Shapeable Guidewire
US20100256604A1 (en) * 2009-04-03 2010-10-07 Scientia Vascular, Llc Micro-fabricated Catheter Devices Formed Having Elastomeric Compositions
US9067333B2 (en) * 2009-04-03 2015-06-30 Scientia Vascular, Llc Micro-fabricated guidewire devices having elastomeric fill compositions
US9072873B2 (en) * 2009-04-03 2015-07-07 Scientia Vascular, Llc Micro-fabricated guidewire devices having elastomeric compositions
US9950137B2 (en) * 2009-04-03 2018-04-24 Scientia Vascular, Llc Micro-fabricated guidewire devices formed with hybrid materials
US20100256603A1 (en) * 2009-04-03 2010-10-07 Scientia Vascular, Llc Micro-fabricated Catheter Devices Formed Having Elastomeric Fill Compositions
US9616195B2 (en) * 2009-04-03 2017-04-11 Scientia Vascular, Llc Micro-fabricated catheter devices having varying diameters
US8137293B2 (en) 2009-11-17 2012-03-20 Boston Scientific Scimed, Inc. Guidewires including a porous nickel-titanium alloy
WO2011123689A1 (en) 2010-03-31 2011-10-06 Boston Scientific Scimed, Inc. Guidewire with a flexural rigidity profile
WO2012106628A1 (en) 2011-02-04 2012-08-09 Boston Scientific Scimed, Inc. Guidewires and methods for making and using the same
US9072874B2 (en) 2011-05-13 2015-07-07 Boston Scientific Scimed, Inc. Medical devices with a heat transfer region and a heat sink region and methods for manufacturing medical devices
US9408671B2 (en) 2011-12-08 2016-08-09 Parker Laboratories, Inc. Biopsy grid
US9155647B2 (en) 2012-07-18 2015-10-13 Covidien Lp Methods and apparatus for luminal stenting
US9114001B2 (en) 2012-10-30 2015-08-25 Covidien Lp Systems for attaining a predetermined porosity of a vascular device
US9452070B2 (en) 2012-10-31 2016-09-27 Covidien Lp Methods and systems for increasing a density of a region of a vascular device
US9943427B2 (en) 2012-11-06 2018-04-17 Covidien Lp Shaped occluding devices and methods of using the same
US9157174B2 (en) 2013-02-05 2015-10-13 Covidien Lp Vascular device for aneurysm treatment and providing blood flow into a perforator vessel
US8690907B1 (en) 2013-03-15 2014-04-08 Insera Therapeutics, Inc. Vascular treatment methods
US8715314B1 (en) * 2013-03-15 2014-05-06 Insera Therapeutics, Inc. Vascular treatment measurement methods
CN105228688B (en) 2013-03-15 2019-02-19 伊瑟拉医疗公司 Vascular treatment device and method
US8679150B1 (en) 2013-03-15 2014-03-25 Insera Therapeutics, Inc. Shape-set textile structure based mechanical thrombectomy methods
KR101697908B1 (en) 2013-07-01 2017-01-18 쥬어리크 메디컬 코퍼레이션 Apparatus and method for intravascular measurements
US10835183B2 (en) 2013-07-01 2020-11-17 Zurich Medical Corporation Apparatus and method for intravascular measurements
USD716450S1 (en) 2013-09-24 2014-10-28 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD716451S1 (en) 2013-09-24 2014-10-28 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD715942S1 (en) 2013-09-24 2014-10-21 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD715442S1 (en) 2013-09-24 2014-10-14 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
US9901706B2 (en) 2014-04-11 2018-02-27 Boston Scientific Scimed, Inc. Catheters and catheter shafts
US11351048B2 (en) 2015-11-16 2022-06-07 Boston Scientific Scimed, Inc. Stent delivery systems with a reinforced deployment sheath
EP3416568A4 (en) 2016-02-16 2019-10-16 Insera Therapeutics, Inc. Aspiration devices and anchored flow diverting devices
US11052228B2 (en) 2016-07-18 2021-07-06 Scientia Vascular, Llc Guidewire devices having shapeable tips and bypass cuts
US11207502B2 (en) 2016-07-18 2021-12-28 Scientia Vascular, Llc Guidewire devices having shapeable tips and bypass cuts
US10821268B2 (en) 2016-09-14 2020-11-03 Scientia Vascular, Llc Integrated coil vascular devices
US11452541B2 (en) 2016-12-22 2022-09-27 Scientia Vascular, Inc. Intravascular device having a selectively deflectable tip
EP3842091B1 (en) 2017-05-26 2023-09-13 Scientia Vascular, Inc. Micro-fabricated medical device having a non-helical cut arrangement
EP3717922A2 (en) 2017-12-03 2020-10-07 Cook Medical Technologies, LLC Mri compatible interventional wireguide
US11305095B2 (en) 2018-02-22 2022-04-19 Scientia Vascular, Llc Microfabricated catheter having an intermediate preferred bending section

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5040543A (en) * 1990-07-25 1991-08-20 C. R. Bard, Inc. Movable core guidewire
US5437288A (en) * 1992-09-04 1995-08-01 Mayo Foundation For Medical Education And Research Flexible catheter guidewire

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS171544B1 (en) * 1974-09-03 1976-10-29
US4545390A (en) * 1982-09-22 1985-10-08 C. R. Bard, Inc. Steerable guide wire for balloon dilatation procedure
US4989608A (en) * 1987-07-02 1991-02-05 Ratner Adam V Device construction and method facilitating magnetic resonance imaging of foreign objects in a body
US5273042A (en) * 1987-10-28 1993-12-28 Medical Parameters, Inc. Guidewire advancement method
US4884579A (en) * 1988-04-18 1989-12-05 Target Therapeutics Catheter guide wire
US4994069A (en) * 1988-11-02 1991-02-19 Target Therapeutics Vaso-occlusion coil and method
EP0420993B1 (en) * 1989-04-13 1995-02-15 Mitsubishi Cable Industries, Ltd. Catheter
US4955862A (en) * 1989-05-22 1990-09-11 Target Therapeutics, Inc. Catheter and catheter/guide wire device
US5095915A (en) * 1990-03-19 1992-03-17 Target Therapeutics Guidewire with flexible distal tip
US5158537A (en) * 1990-10-29 1992-10-27 Alza Corporation Iontophoretic delivery device and method of hydrating same
US5329923A (en) * 1991-02-15 1994-07-19 Lundquist Ingemar H Torquable catheter
US5306252A (en) * 1991-07-18 1994-04-26 Kabushiki Kaisha Kobe Seiko Sho Catheter guide wire and catheter
US5376084A (en) * 1991-10-17 1994-12-27 Imagyn Medical, Inc. Catheter with internal mandrel and method
US5441483A (en) * 1992-11-16 1995-08-15 Avitall; Boaz Catheter deflection control
ES2102187T3 (en) * 1992-11-18 1997-07-16 Spectrascience Inc DIAGNOSTIC DEVICE FOR IMAGE FORMATION.
US5460187A (en) * 1994-07-01 1995-10-24 Boston Scientific Corp. Fluoroscopically viewable guidewire
US5520645A (en) * 1994-10-28 1996-05-28 Intelliwire, Inc. Low profile angioplasty catheter and/or guide wire and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5040543A (en) * 1990-07-25 1991-08-20 C. R. Bard, Inc. Movable core guidewire
US5437288A (en) * 1992-09-04 1995-08-01 Mayo Foundation For Medical Education And Research Flexible catheter guidewire

Also Published As

Publication number Publication date
US5690120A (en) 1997-11-25
AU3139597A (en) 1997-12-09
TW362022B (en) 1999-06-21

Similar Documents

Publication Publication Date Title
US5690120A (en) Hybrid catheter guide wire apparatus
US6440088B1 (en) Hybrid catheter guide wire apparatus and method
EP0921754B1 (en) Hybrid tubular guide wire for catheters
US5833632A (en) Hollow guide wire apparatus catheters
JP4845313B2 (en) Torque guide member system
EP0778039A1 (en) Catheter guide wire
US8409114B2 (en) Composite elongate medical device including distal tubular member
EP0556316B1 (en) Guidewire for crossing occlusions in blood vessels
US5333620A (en) High performance plastic coated medical guidewire
US20020013540A1 (en) Coronary guidewire system
US20040215109A1 (en) Helical guidewire
WO1997044086A1 (en) Flexible balloon catheter/guide wire apparatus and method
US20020091338A1 (en) Medical guidewire and method for making
MXPA98009815A (en) Wire tubular guide hybrid for son

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97542746

Format of ref document f/p: F

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA