WO1998001217A1 - Method and equipment for decomposing fluorocarbons - Google Patents

Method and equipment for decomposing fluorocarbons Download PDF

Info

Publication number
WO1998001217A1
WO1998001217A1 PCT/JP1996/001857 JP9601857W WO9801217A1 WO 1998001217 A1 WO1998001217 A1 WO 1998001217A1 JP 9601857 W JP9601857 W JP 9601857W WO 9801217 A1 WO9801217 A1 WO 9801217A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reaction vessel
reaction
carbon
treated
Prior art date
Application number
PCT/JP1996/001857
Other languages
French (fr)
Japanese (ja)
Inventor
Chiaki Izumikawa
Kazumasa Tezuka
Kazuto Ito
Hitoshi Atobe
Toraichi Kaneko
Original Assignee
Dowa Mining Co., Ltd.
Dowa Iron Powder Co. Ltd.
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co., Ltd., Dowa Iron Powder Co. Ltd., Showa Denko K.K. filed Critical Dowa Mining Co., Ltd.
Priority to PCT/JP1996/001857 priority Critical patent/WO1998001217A1/en
Publication of WO1998001217A1 publication Critical patent/WO1998001217A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Definitions

  • the present invention relates to a method for efficiently decomposing fluorocarbons, especially perfluorocarbon or hydrofluorocarbon having about 1 to 5 carbon atoms, and a simple apparatus therefor.
  • Japanese Unexamined Patent Publication No. Hei 6-293350 discloses that magnets are heated by applying a microwave to the inside of the applicator, and the fluorocarbon is decomposed by contacting the gas with the heated magnets. A method for doing so is disclosed.
  • Japanese Unexamined Patent Application Publication No. Hei 7-244255 discloses that a mixture of a carbonaceous material and an oxide or salt of an alkaline earth metal is irradiated with a microphone mouth wave to generate heat, and the heat is generated. Disclosed is a method for decomposing alpha by contacting fluorocarbon gas with the mixture. Purpose of the invention
  • an object of the present invention is to develop an industrial method for efficiently decomposing carbon fluorides having no chlorine group, such as perfluorocarbon and hide-mouth fluorocarbon. Disclosure of the invention
  • the above-mentioned problem is that the gas of perfluorocarbon or hydrofluorocarbon is added to a reactant composed of a carbonaceous solid material and an alkaline earth metal compound at a temperature of 300 or more and at a temperature of 200 or more. It was found that the solution can be achieved by contacting in the presence of gaseous oxygen of vol.% or less (not including 0%). More specifically, a gas to be treated containing perfluorocarbon or fluorocarbon is continuously placed in a reaction vessel that is fully immersed in a reaction (1) consisting of a carbonaceous solid material and an alkaline earth metal compound.
  • the exhaust gas after the reaction is continuously or intermittently discharged from the reaction vessel while being transported intermittently or intermittently, so that the oxygen concentration in the gas to be treated becomes 20 vol.% Or less.
  • Oxygen into the gas to be treated before entering the reaction vessel (1), and transferring the heat required to decompose the perfluorocarbon or the hydrofluorocarbon from the outside of the reaction vessel to the reaction zone, or Inside the container It was found that the carbon fluoride gas could be efficiently decomposed by transmitting it from the side to the reaction zone.
  • CO may coexist in the exhaust gas.
  • a heat-resistant alloy or a corrosion-resistant alloy such as stainless steel or a nickel-based alloy can be used. If the material is resistant to fluorine or hydrogen fluoride, the ceramic can be used. Boxes (for example, ceramics using aluminum fluoride) can also be used. Then, this reactor is installed in a furnace that can maintain the temperature of the furnace atmosphere at a required temperature, and the heat in the furnace can be transferred to the reactants in the container through the container wall.
  • a reaction vessel loaded with a reaction ⁇ ⁇ composed of a carbonaceous solid material and an alkaline earth metal compound is provided.
  • a gas inlet for gas to be treated provided in the reactor, a gas outlet provided for discharging gas after reaction from inside the reaction vessel, a furnace for accommodating the reaction vessel, and an atmosphere temperature in the furnace.
  • an exhaust gas oxidizer connected to piping and a device for decomposing carbon fluorides consisting of As the reaction vessel, one composed of a heat-resistant alloy or a corrosion-resistant alloy as described above can be used.
  • a carbon fluoride-containing gas source for example, a carbon fluoride-containing gas generated in a semiconductor manufacturing process and containing an appropriate amount of oxygen can be used.
  • Figure 1 is an equipment layout diagram showing an example of an apparatus for implementing the method of the present invention.
  • Fig. 2 shows another example of the exhaust gas path section of the device for implementing the method of the present invention. It is a device arrangement system diagram.
  • FIG. 3 is a device arrangement system diagram showing another example of the target gas introduction section for implementing the method of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a reaction vessel part showing an example of heating a reaction vessel from inside the reaction vessel according to the method of the present invention.
  • FIG. 5 is a schematic sectional view of a reaction vessel part showing another example of heating a reactant from inside the reaction vessel according to the method of the present invention.
  • FIG. 6 is a diagram showing an example of performing heat exchange between the gas to be treated before entering the reaction vessel and the exhaust gas flowing out of the reaction vessel in carrying out the present invention.
  • Fig. 7 shows the inflow of CFC and the amount of CFC when the trifluorene (CFC) is decomposed in the case where the oxygen concentration in the gas to be treated is 0% and 10%. It is a figure showing the relation of the decomposition rate.
  • Figure 8 shows the flow rate of PFC and the decomposition rate of PFC when perfluoroethane (PFC) was decomposed when the oxygen concentration in the gas to be treated was 0% or 10%.
  • FIG. 8 shows the flow rate of PFC and the decomposition rate of PFC when perfluoroethane (PFC) was decomposed when the oxygen concentration in the gas to be treated was 0% or 10%.
  • FIG 9 shows the difference in the decomposition rate of perfluoroethane (PFC) when the heating method for the reactants is electric heater heating and when microwave heating is used.
  • PFC perfluoroethane
  • the present invention is a method for decomposing perfluoro-open carbon or hydrofluorocarbon having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, wherein the decomposed fluorine is absorbed by a reactant and the decomposed carbon ( Furthermore, hydrogen) migrates into the exhaust gas.
  • the perfluorocarbon or hydrofluorocarbon which can be suitably decomposed in the present invention is, for example, a substance which can be easily vaporized at room temperature (for example, a substance which is vaporized by accompanying an inert gas such as nitrogen gas). including) where, CF 4, C 2 F s , C 3 F 8, C - C 4 F 8 Etc., or a CHF 3.
  • a gas of perfluorocarbon or hydrofluorocarbon is added to a reactant composed of a carbonaceous solid material and an alkaline earth metal compound. It is important that the contact be made at a temperature of 0 ° C or higher and in the presence of 2 Ovol.% Or less (excluding 0%) of gaseous oxygen.
  • the carbonaceous solid material, one of the materials constituting the reactant is one or two selected from the group consisting of coke powder, charcoal charcoal, coal, raw pitch, charcoal, activated carbon, and carbon black. The above can be used, and the form is preferably powdery.
  • Alkaline earth metal compounds which are the other materials constituting the reactant include calcium, magnesium, rhodium or strontium oxide, calcium, magnesium, barium or strontium hydroxide, and One or two or more compounds selected from the group consisting of calcium carbonate, magnesium, barium and stomium carbonate or nitrate can be used, and preferably, calcium oxide is used. , Hydroxide, carbonate, or nitrate. Of these, quicklime, slaked lime, and limestone are advantageous because they are easy to handle.
  • reactants can be used by directly charging a powdery or granular carbonaceous solid material and a powdery or granular alkaline earth metal compound in a reaction vessel. It is preferable that the solid material and the powdered alkaline earth metal compound are mixed and this mixture is granulated into granules of a size that is easy to handle. As a result, the carbon and the alkaline earth metal compound are brought close to each other, and the specific surface area (surface area per unit weight) of the reactant is increased, thereby increasing the chance of contact with the gas to be treated. it can. For granulation, water or an organic binder is used, and the granulated product is dried or fired to obtain a granulated product having sufficient strength and porosity.
  • the coal used as raw material Solid carbon and alkaline earth metal are present in the granulated product, even though they may change to a solid material or a powdered alkaline earth metal compound or its morphology and compound type or other. As long as the components are present in the required ratio, they can contribute to the decomposition reaction of the present invention.
  • charcoal is used as a carbonaceous solid material
  • slaked lime is used as a raw earth metal compound
  • these powders are blended in a required ratio.
  • Water is added and kneaded.
  • Particle size eg 1 to 1 Omm, preferably!
  • pellets are produced during the firing process.
  • Most of the volatile components are removed, and slaked lime is completely transformed into oxidized calcium, so that highly pure pellets containing carbon (C) and calcium oxide (CaO) as main components can be obtained.
  • the thus obtained reactant composed of C and Ca0 has sufficient strength and is a porous material having a large specific surface area, so that it can be suitably used for carrying out the method of the present invention.
  • the weight ratio of the two materials is determined. Speaking of which, it is better to have the latter half more.
  • the molar ratio of carbon (C) in the carbonaceous solid material to the oxide (MO) of alkaline earth metal (M) in the alkaline earth metal compound 0.9 to 2,3, preferably 0.9 to 1.9, more preferably 4 to 1.9.
  • perfluorocarbon or hydrofluorocarbon is a compound that is more stable than fluorofluorocarbon and hydrofluorocarbon, and is not easily decomposed.
  • perfluorocarbon or hydrofluorocarbon is brought into contact with the reactant according to the present invention at a temperature of 300 ° C. or more in the presence of oxygen, it can be decomposed efficiently.
  • the lower limit of the required temperature is perfluorocarbon It depends on the type of bonfire or hydrofluor. If the required temperature is maintained, some decomposition occurs even in the absence of oxygen, but the decomposition efficiency is poor.
  • chlorine-containing fluorocarbon gas such as fluorocarbons, the presence of oxygen does not significantly contribute to the decomposition even when the same reactant is used. There is a phenomenon in which decomposition proceeds more.
  • the oxygen concentration in the gas to be treated is 0.5 to 20 vol.%, Preferably 2 to 15 vol.%, And more preferably 5 to 10 vol.%.
  • Air can be used as the oxygen source in the gas to be treated. Sometimes it may be a source of oxygen for oxygen C 0 2.
  • an inert gas such as nitrogen gas is used. It is convenient to supply the reactants continuously or intermittently as a carrier.
  • the carbon fluoride is diluted with an inert gas, which acts to carry away heat but does not substantially participate in the reaction.
  • oxygen concentration in the gas to be treated means the oxygen concentration in the total gas containing such an inert carrier gas when the gas contains such an inert carrier gas.
  • FIG. 1 shows an example of an apparatus for implementing the method of the present invention.
  • 1 in the figure is a metal reaction vessel (tube), which contains carbonaceous solid material and aluminum.
  • Reactant 2 consisting of lithium earth metal compound is loaded.
  • a reaction vessel 1 having a tubular shape is a vertical type, and a reactant 2 is mounted on a permeable floor 3 fixed in the vessel.
  • a tube made of stainless steel or nickel alloy can be used as the metal tube of the reaction vessel 1.
  • the reaction vessel 1 is set in a ripening furnace 4.
  • the heating furnace 4 shown in the figure uses an electric heater 5 that uses a heating element that generates heat when energized as a heat source.
  • the electric heater 5 raises the temperature of the furnace / atmosphere 6 to a required temperature.
  • the heat in the furnace is transferred to the reactant 2 via the metal reaction vessel wall.
  • the heat source is not limited to electric heaters as long as the temperature of furnace-atmosphere 6 can be raised to the required temperature.
  • high-temperature gas such as combustion exhaust gas can be used as the heat source.
  • the reaction vessel 1 installed in the heating furnace 4 is provided with the gas to be treated 7, and the gas to be treated 7 is connected by piping to the carbon fluoride vessel 8 containing PFC or HFC. Is done.
  • the carbon fluoride container 8 can be indirectly heated by the heating means 9 if necessary, and this heating increases the gas pressure in the carbon fluoride container 8.
  • the gas discharge pipe 10 from the container 8 is provided with a flow control valve 11.
  • an oxygen gas cylinder 12 and a nitrogen gas cylinder 13 are separately provided. From these, oxygen gas and nitrogen gas are supplied to flow control valves 14 and 15, respectively.
  • Oxygen gas is added to the carbon fluoride gas by leading it to the gas header 118 via the interposed gas discharge pipes 16 and 17 and leading the carbon fluoride to this header 118.
  • nitrogen gas as a carrier is mixed, and the gas to be treated mixed by the header 18 is sent to the gas to be treated inlet 7 of the reaction vessel 1 through the gas supply pipe 19. .
  • the present invention is not limited to this example, and a mixed gas obtained by premixing carbon fluoride, nitrogen and oxygen is prepared in one container, and this mixed gas is directly sent to the gas inlet 7 to be treated. Okay, put nitrogen gas in carbon fluoride container 8 The carbon fluoride is forcibly sent out of the container by this nitrogen gas. Oxygen gas may be added to the discharge line. In any case, the oxygen gas introduction pipe is connected to the vessel 8 itself or to the pipe from the vessel 8 to the gas guide 7 to be treated.
  • an exhaust gas pipe 21 is connected to the gas outlet 20 of the reaction vessel 1, and the exhaust gas pipe 21 is connected to a halogen absorption bin 22.
  • a gas discharge pipe 23 is attached to this bin 22.
  • a sampling pipe 24 is attached to the exhaust gas pipe 21, and the gas sampled by the sampling pipe 4 is sent to the gas separator 25.
  • FIG. 2 shows an example in which an exhaust gas oxidizer 26 is connected to the exhaust gas pipe 21 of the exhaust gas coming out of the reaction vessel 1. It is those substantially entire amount of the exhaust gas passing through the exhaust gas oxidizing apparatus 2 6 Yoko was made to pass through the catalyst layer 2 7, promoting the oxidation reaction from C 0 to C 0 2 in the catalyst layer 2 7 Oxidizing catalyst is installed.
  • a catalyst in which a noble metal catalyst such as platinum or palladium is supported on a heat-resistant carrier, or a hopcalite catalyst can be used.
  • an oxygen introduction pipe 28 for adding oxygen to the exhaust gas before entering the exhaust gas oxidizing apparatus 26 is connected, and a flow control valve 29 of the oxygen introduction pipe 28 causes a flow from the oxygen source 30 to be stopped.
  • a line 35 for introducing nitrogen gas 34 is provided in the exhaust gas line 21 upstream of the position where oxygen is introduced, and nitrogen gas 34 is mixed in the exhaust gas from this line 35. by the so as to introduce a C 0 concentration lower to whether we oxygen in the exhaust gas, even if the C 0 concentration in the exhaust gas was high summer, such as burns C 0 or C 0 2 oxygen introduction position The phenomenon can be suppressed.
  • Air can be used as the oxygen source 30 added to the exhaust gas.
  • the exhaust gas that has passed through the exhaust gas oxidizer 26 is sent to the halogen absorption bin 2 along the same route as in Fig. 1.
  • the temperature of the furnace atmosphere 6 in 4 is also detected by the temperature sensor 33, and the temperature of the heating furnace itself is appropriately controlled based on the detected value.
  • Fig. 3 shows an example in which used PFC or HFC used in the semiconductor manufacturing process is decomposed according to the present invention. Spent PFC or HFC from the semiconductor manufacturing process is usually extracted as carbon fluoride containing oxygen and nitrogen. This oxygen-containing carbon fluoride 37 is generally sent via a line 38 to a routine treatment step 36. To apply the present invention, the carbon fluoride supply pipe 38 is connected to the gas inlet 7 of the reaction vessel 1.
  • a branch pipe 40 is attached from the supply pipe 38 via a three-way valve 39, and this branch pipe 40 is connected to the gas inlet 7 to be processed.
  • a nitrogen gas supply pipe 41 is connected to the branch pipe 40 so that nitrogen gas can be sent from the nitrogen gas source 42 into the branch pipe 40 at a variable flow rate.
  • the source gas is supplied by supplying a necessary amount of nitrogen gas from the nitrogen gas source 42. It can be conveyed toward the processing gas inlet 7 at substantially the same flow rate.
  • the used PFC or HFC is usually extracted as a gas containing oxygen and nitrogen, and the oxygen content in the used gas does not usually exceed 20% by volume. Therefore, the method of the present invention is very advantageous for the decomposition of used PFC or HFC discharged in the semiconductor manufacturing process.
  • FIGS. 4 and 5 show an example of the present invention in which a heating source is installed inside the reaction vessel 1 so that ripening is transmitted to the reactant 2 from inside the vessel.
  • reference numeral 44 denotes a heat-resistant furnace material surrounding the reaction vessel 1
  • reference numeral 7 denotes an inlet for the gas to be treated into the vessel
  • reference numeral 20 denotes a gas outlet from the vessel.
  • a heating element 43 which generates heat when energized, is arranged inside a layer of the reactant 2, and the heating element 43 is covered with a corrosion-resistant heat-resistant cover. According to this example, since heat is transferred from the inside of the packed bed of the reactant 2, the heating rate for raising the reactant to the desired temperature can be increased, and the heat loss is reduced.
  • the inside of the reaction vessel 1 is divided into a packed bed of the reactant 2 and a heating bed, and the gas to be treated introduced into the vessel 1 passes through the heating bed and then to the packed bed of the reactant. It is made to flow.
  • a heating element 46 that generates heat when energized is attached to the container lid 45.
  • the gas to be treated is given heat when passing through the heating layer and is also transferred to the reactant 2.
  • the electric heater since the electric heater is placed in the container, there is an advantage that the heat utilization efficiency is high and the heat generating body 46 does not contact the reactant or the gas after the reaction, so that the deterioration is small.
  • Fig. 6 shows an example of the present invention in which a heat exchanger 48 for exchanging heat between the gas to be treated before being introduced into the reaction vessel 1 having a heating source and the exhaust gas discharged from the reaction vessel 2 is arranged. It is a thing. By arranging this heat exchanger 48, the sensible heat of the exhaust gas is imparted to the gas to be treated, so that the maturation can be recovered, so that the heat consumption of the heating source can be reduced.
  • the decomposition reaction 1 is terminated. The end point of the reaction can be known from the time when the detection of carbon fluorides or other fluorine compounds in the exhaust gas has started.
  • Fig. 7 shows that, as in the comparative example described later, trichloro-trifluorethane (CFC) containing chlorine as a constituent was converted to a concentration of 10 vol.% Of CFC and a gas flow rate of 0.15 liter. Torno content, molar ratio of CZC a0 in the reactant: 1.6 7. Maximum temperature of the reactant: 800 ° C, when the oxygen concentration in the gas to be treated is 0% and 1 ()% This shows the relationship between the inflow of CFC and the CFC decomposition rate during the decomposition treatment of.
  • CFC trichloro-trifluorethane
  • the decomposition rate of CFC is as described below, and the inflow of CFC is the integrated amount (g) of CFC that has flowed into the reaction vessel until the indicated decomposition rate. From the results shown in Fig. 7, it can be seen that in the decomposition treatment of chlorofluorocarbon containing chlorine as a component, the decomposition rate drops sharply if the target gas contains oxygen.
  • Fig. 8 shows that, as in Example 1 described later, perfluoroethane (PFC) was mixed with PFC concentration: 10 vo%, gas flow rate: 0.15 liter / min, and C Assuming that the Ca ratio is 1.67 and the maximum temperature of the reactant is 800, the PFC is decomposed when the oxygen concentration in the gas to be treated is 0% and 10%. The relationship between the inflow of PFC and the decomposition rate of PFC was shown. Things.
  • the reaction conditions in Fig. 8 are the same as those in Fig. 7, except that trichloro-trifluorene is replaced by perfluorene as the gas to be decomposed.
  • the decomposition rate drops sharply if the gas to be treated does not contain oxygen.
  • Fig. 9 shows the difference in the decomposition rate of perfluoroethane (PFC) when the heating method is electric heater heating as in the example and when the heating method is microphone mouth wave separately. It is.
  • the reaction conditions were as follows: concentration of carbon fluoride: 1 Ovol.%, Gas flow rate: 0.15 liter Z, oxygen concentration: 10 vol.%, CZC of reactant The molar ratio of a0 is set to 1.67.
  • Microwave o-wave heating is performed by forming the reaction tube of the later-described embodiment from a ceramic material having microphone mouth-wave transmission, and applying this to an microwave oven.
  • the reactor had the same capacity as the example described later, except that it was installed inside the reactor.
  • the method of the present invention was carried out using an apparatus having the same principle as that shown in FIG.
  • a tubular furnace electric capacity 20 KW
  • a heating element using a Kanthal alloy
  • an austenitic system with an inner diameter of 28 mm and a length of 100 Omm was used.
  • a reaction tube made of stainless steel (SUS304) was penetrated, and 100 g of a granular reactant prepared using charcoal and slaked lime as raw materials was charged into the furnace center of the reaction tube.
  • This reactant was prepared by mixing charcoal with a particle size of 250 m or less and slaked lime with a particle size of 250 or less at a weight ratio of 1: 3, mixing with a Henschel mixer, adding water, and granulating. After drying at 110 ° C for 4 hours, heat-treating at 800 ° C for 8 hours in a nitrogen atmosphere, and dehydrating and firing. It is a pelletized pellet.
  • the raw material used was charcoal with a fixed carbon content of 78%, volatile matter of 9%, ash content of 3% and water content of 10%, and slaked lime used as a raw material of JIS 9001 standard.
  • Table 1 shows the reaction conditions and reaction results of each test (Na 1 to 5).
  • the decomposition rate after 30 minutes the amount of decomposition of carbon fluoride, and the Ca ⁇ consumption rate of the reactant shown in the column of reaction results were determined as follows.
  • the amount of carbon fluoride remaining in the exhaust gas was measured from the exhaust gas sample 30 minutes after the start of the reaction, and the amount of carbon fluoride in the exhaust gas with respect to the amount of carbon fluoride in the gas to be treated was 100 minutes. Expressed as a percentage.
  • the amount of carbon fluoride decomposed by the end of the reaction was the time when the decomposition rate dropped to 95%.
  • the decomposition rate every 30 minutes was calculated from the exhaust gas analysis value every 30 minutes, and the value obtained by multiplying the amount of carbon fluoride that flowed in each 30 minutes by the decomposition rate at that time was used for that 30 minutes.
  • the amount of decomposition of carbon fluoride (g) was defined as the integrated value of the amount of decomposition from the start of the reaction until the decomposition rate decreased to 95%.
  • Example 1 The same tests as in Example 1 (Nos. 6 to 9) were performed, except that the oxygen concentration in the gas to be treated was kept constant at 5 vol.% And the reactants were used with different molar ratios of CZCaO. .
  • the molar ratio of CZC a0 in the reactant was determined by analyzing the pellets produced in the same manner as in Example 1 by changing the blending amounts of charcoal and slaked lime. The amount was measured and determined from these measurements.
  • the test results are also shown in Table 1. This result indicates that the amount of decomposition of perfluoroethane up to the end of the reaction is affected by the molar ratio of C7Ca0. In this example, it can be seen that the best results were obtained when the molar ratio of C / Ca0 was about 1.7.
  • Example 1 The same test as in Example 1 was conducted except that perfluoromethane was used instead of perfluoroethane. At that time, the oxygen concentration was changed to 0% (No. 10) and 10% (No. 11). Table 1 shows the test results. It can also be seen that the amount of decomposition up to the end of the reaction was significantly increased by the addition of oxygen.
  • Example 2 The same test as in Example 1 was performed except that trifluoromethane (CHF 3 ) was used instead of perfluoroethane.
  • CHF 3 trifluoromethane
  • the concentration of carbon fluoride and the concentration of oxygen were both constant at 5 vol.%
  • the gas flow rate was 0.12 liter Z
  • the maximum temperature of the reactants was changed ( ⁇ 12 to 17) using the sample No. 7 (Fig. 7). The results are shown in Table 1.
  • the maximum reaction temperature was 40 (decomposition rate after 30 minutes was lower than TC, whereas almost 100% was degraded at 400 ° C or higher. [Comparative Example]
  • Trichlorotrifluoroethane containing chlorine as a constituent was subjected to the same decomposition treatment as in Example 1.
  • Table 1 also shows the reaction conditions and the reaction results. In this case, the amount of decomposition increased when oxygen was not present in the gas to be treated (Comparative Example No. 1), and the amount of decomposition was rather reduced when oxygen was present (Comparative Example 2).
  • Example 4 The same test as in Example 4 was carried out except that 1,1,1,2 tetrafluoroethane (C 2 H 2 F 4 ) was used instead of trifluoromethane (C HF 3 ) (Test # ⁇ 20) . At that time, the maximum temperature of the reactant was set to 35 (TC. The results are shown in Table 1. The decomposition rate was close to 100% even at 350 ° C.
  • perfluorocarbon or hydrofluorocarbon can be completely decomposed by a simple treatment method, and the decomposed fluorine can be fixed as a harmless substance.
  • the method for decomposing carbon fluorides of the present invention is simple because of the simplicity of the decomposer, the high efficiency of decomposition, the ease of post-treatment of decomposition products, and the low cost of the reactants. It has an effect that is not available in particular, and can make a great contribution to the decomposition of used perfluorocarbon or hydrofluorocarbon generated in the semiconductor manufacturing process.

Abstract

A method for decomposing fluorocarbons by bringing perfluorocarbon or hydrofluorocarbon gas into contact with a reactant comprising a solid carbonaceous materials and an alkaline earth metal compound at a temperature of 300 °C or above in the presence of 20 vol.% or less (exclusive of 0 %) oxygen gas.

Description

明 細 書 弗化炭素類の分解法および装置 技術分野  Description Decomposition method and equipment for fluorocarbons
本発明は, 弗化炭素類類とりわけ炭素数が 1 〜 5程度のパーフルォロ カーボンまたはハイ ドロフルォロカーボンを効率よく分解する方法およ びそのための簡易な装置に関する。  The present invention relates to a method for efficiently decomposing fluorocarbons, especially perfluorocarbon or hydrofluorocarbon having about 1 to 5 carbon atoms, and a simple apparatus therefor.
背景技術 Background art
特開平 6— 2 9 3 5 0 1 号公報は, アプリケータ内でマィク口波をあ ててマグネタイ 卜を発熱させ, この発熱状態にあるマグネタイ 卜にフ口 ンガスを接触させることによってフロンを分解する方法を開示する。 ま た, 特開平 7 - 2 4 2 5 5号公報は. 炭素質材料とアルカ リ土類金属の 酸化物または塩類とからなる混合物にマイク口波を照射して発熱させ, この発熱状態にある混合物にフロンガスを接触させることによってフ α ンを分解する方法を開示する。 発明の目的  Japanese Unexamined Patent Publication No. Hei 6-293350 discloses that magnets are heated by applying a microwave to the inside of the applicator, and the fluorocarbon is decomposed by contacting the gas with the heated magnets. A method for doing so is disclosed. Japanese Unexamined Patent Application Publication No. Hei 7-244255 discloses that a mixture of a carbonaceous material and an oxide or salt of an alkaline earth metal is irradiated with a microphone mouth wave to generate heat, and the heat is generated. Disclosed is a method for decomposing alpha by contacting fluorocarbon gas with the mixture. Purpose of the invention
前記の公報に記載のフロン分解法は, いずれもマイク口波を利用する ものであるから, 高価なマイク口波発生装置を必要とし且つ反応容器も マイク口波がよく透過する耐熱材質に制限されるという問題があった。 マイ クロ波がよく透過する耐熱材料にはセラ ミックス系のものがあるが, これらはフッ素と反応して材質が劣化するものが多い。 したがって, ェ 業的に安価に且つ安定してフロン分解を行うにはいま一つ問題かあつた ( そこで, マイ クロ波によらずにフロンを分解する技術として, 同一出 願人に^る平成 7年特許願第 28619号 (未公開) て, 非酸化性雰囲気中 において加熱された炭素質材料とアル力 リ土類金属化合物を含有する物 質にフロンガスを接触させて反応させるフ口ン分解法を提案した。 この 先願方法によれば, 電気ヒ—タを用いた通常の加然炉を用いてもフロ ン を分解できるという利点があり, 当明細書に記載されているように R — 1 1 3等のクロ口フルォロカ一ボン類を効率よく分解できる。 Since the chlorofluorocarbon decomposition method described in the above-mentioned publications all uses a microphone mouth wave, an expensive microphone mouth wave generator is required, and the reaction vessel is limited to a heat-resistant material through which the microphone mouth wave is well transmitted. Problem. Some heat-resistant materials that allow microwaves to penetrate well are ceramic materials, but many of these materials react with fluorine to deteriorate the material. Therefore, there was still another problem in performing industrially inexpensive and stable CFC decomposition. ( Therefore, as a technology for decomposing CFCs without using microwaves, the same applicant has 7-year patent application No. 28619 (not disclosed) in a non-oxidizing atmosphere In this paper, we proposed a phantom decomposition method in which fluorocarbon gas is brought into contact with a material containing a heated carbonaceous material and an alkaline earth metal compound to cause a reaction. According to this prior application method, there is an advantage that the front can be decomposed even by using an ordinary heating furnace using an electric heater, and as described in this specification, R-113 etc. Can be efficiently decomposed.
し力、し, その後の試験研究によると, この先願方法によってあらゆる 種類の弗化炭素類が分解できる訳ではなく, 該先願明細書には記載のな いパーフルォロカーボンやハイ ド口フルォロカ一ボン等の塩素基を持た ない弗化炭素類に対しては分解効率が必ずしも^好ではないことが判明 した。  According to subsequent studies, not all types of fluorocarbons can be decomposed by this prior application method, and perfluorocarbons and hide ports not described in the prior application specification can be decomposed. It was found that the decomposition efficiency was not always good for fluorocarbons such as fluorocarbons which do not have chlorine groups.
したがって, 本発明は, パーフルォロカ一ボンやハイ ド口フルォロカ —ボン等の塩素基を持たない弗化炭素類を効率よく分解する工業的方法 の開発を課題としたものである。 発明の開示  Accordingly, an object of the present invention is to develop an industrial method for efficiently decomposing carbon fluorides having no chlorine group, such as perfluorocarbon and hide-mouth fluorocarbon. Disclosure of the invention
前記の課題は, パーフルォロカ一ボンまたはハイ ドロフルォロカーボ ンの気体を, 炭素質固体材料とアル力 リ土類金属化合物とからなる反応 剤に, 3 0 0て以上の温度で且つ 2 0 vo l . %以下 ( 0 %を含まず) の気 体酸素の存在下で接触させることによって解決できることがわかった。 より具体的には, 炭素質固体材料とアル力 リ土類金属化合物とからな る反応剂を装堪した反応容器内に, パ一フルォロカ一ボンまたはハイ ド 口フルォロカーボンを含む被処理ガスを連続的または間欠的に搬送する と共に, 反応後の排ガスを該反応容器から連続的または間欠的に排出さ せ, そのさい, 該被処理ガス中の酸素濃度が 2 0 vo l . %以下となるよう に反応容器內に入る前の被処理ガスに酸素を含有させること, および該 パーフルォロカ一ボンまたはハイ ド□フルォロカーボンが分解するに必 要な熱を反応容器の外側から反応帯域に伝達するかまたは反応容器の内 側から反応帯域に伝達することにより, 当該弗化炭素ガスを効率よく分 解することができることかわかった。 The above-mentioned problem is that the gas of perfluorocarbon or hydrofluorocarbon is added to a reactant composed of a carbonaceous solid material and an alkaline earth metal compound at a temperature of 300 or more and at a temperature of 200 or more. It was found that the solution can be achieved by contacting in the presence of gaseous oxygen of vol.% or less (not including 0%). More specifically, a gas to be treated containing perfluorocarbon or fluorocarbon is continuously placed in a reaction vessel that is fully immersed in a reaction (1) consisting of a carbonaceous solid material and an alkaline earth metal compound. The exhaust gas after the reaction is continuously or intermittently discharged from the reaction vessel while being transported intermittently or intermittently, so that the oxygen concentration in the gas to be treated becomes 20 vol.% Or less. Oxygen into the gas to be treated before entering the reaction vessel (1), and transferring the heat required to decompose the perfluorocarbon or the hydrofluorocarbon from the outside of the reaction vessel to the reaction zone, or Inside the container It was found that the carbon fluoride gas could be efficiently decomposed by transmitting it from the side to the reaction zone.
また, 本発明法では排ガス中に C Oが共存することかある。 この場合, 排ガス中の C 0を C 0 2に酸化処理する工程を設けるのがよい。 さらに 本発明法では反応容器を構成する材料としては耐熱合金や耐食合金例え ぱステンレス鋼ゃ二ッケル基合金などを使用することができるし, フッ 素や弗化水素に耐えるものてあればセラ ミ ッ クス (例えば弗化アルミ二 ゥ厶を用いたセラ ミックス) も使用できる。 そして, 炉内雰囲気の温度 を所要の温度に維持できる炉内にこの反応容器を設置し, 炉内の熱を容 器壁を通じて容器内の反応剤に伝達させることができる。 In the method of the present invention, CO may coexist in the exhaust gas. In this case, preferably provided a step of oxidizing the C 0 in the exhaust gas to the C 0 2. Further, in the method of the present invention, as a material constituting the reaction vessel, a heat-resistant alloy or a corrosion-resistant alloy such as stainless steel or a nickel-based alloy can be used. If the material is resistant to fluorine or hydrogen fluoride, the ceramic can be used. Boxes (for example, ceramics using aluminum fluoride) can also be used. Then, this reactor is installed in a furnace that can maintain the temperature of the furnace atmosphere at a required temperature, and the heat in the furnace can be transferred to the reactants in the container through the container wall.
さらに本発明によれば, 前記の分解法を好適に実施する装置として, 炭素質固体材料とアル力 リ土類金属化合物とからなる反応剂を装填した 反応容器と, この反応容器内に通ずるように設けられた被処理ガス導人 口と, 該反応容器内から反応後のガスを排出するように設けられたガス 排出口と, この反応容器を収容する炉と, この炉内の雰囲気温度を 3 0 0で以上に高めるための熱源と, 前記の被処理ガス導入口と弗化炭素含 有ガス源とを接続する管路と, さらに必要に応じて前記のガス排出口に 連通するように配管接続された排ガス酸化器と, からなる弗化炭素類の 分解装置を提供する。 反応容器は前記のように耐熱合金または耐食合金 で構成したものが使用することができる。 弗化炭素含有ガス源としては 適量の酸素が含有している例えば半導体製造工程で発生する弗化炭素含 有ガスが適用できる。 図面の簡単な説明  Further, according to the present invention, as a device for suitably performing the above-mentioned decomposition method, a reaction vessel loaded with a reaction か ら composed of a carbonaceous solid material and an alkaline earth metal compound is provided. A gas inlet for gas to be treated provided in the reactor, a gas outlet provided for discharging gas after reaction from inside the reaction vessel, a furnace for accommodating the reaction vessel, and an atmosphere temperature in the furnace. A heat source for increasing the temperature to 300 or more, a pipe connecting the gas to be treated inlet and the gas containing carbon fluoride gas, and, if necessary, communicating with the gas outlet. Provided are an exhaust gas oxidizer connected to piping and a device for decomposing carbon fluorides consisting of As the reaction vessel, one composed of a heat-resistant alloy or a corrosion-resistant alloy as described above can be used. As a carbon fluoride-containing gas source, for example, a carbon fluoride-containing gas generated in a semiconductor manufacturing process and containing an appropriate amount of oxygen can be used. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は, 本発明法を実施する装置の一例を示した機器配置系統図で あ o  Figure 1 is an equipment layout diagram showing an example of an apparatus for implementing the method of the present invention.
第 2図は, 本発明法を実施する装置の排ガス経路部の他の例を示した 機器配置系統図である。 Fig. 2 shows another example of the exhaust gas path section of the device for implementing the method of the present invention. It is a device arrangement system diagram.
第 3図は, 本発明法を実施する被処理ガス導入部の他の例を示した機 器配置系統図である。  FIG. 3 is a device arrangement system diagram showing another example of the target gas introduction section for implementing the method of the present invention.
第 4図は, 本発明法に従い反応剂を反応容器内から加熱する例を示す 反応容器部の略断面図である。  FIG. 4 is a schematic cross-sectional view of a reaction vessel part showing an example of heating a reaction vessel from inside the reaction vessel according to the method of the present invention.
第 5図は, 本発明法に従い反応剤を反応容器内から加熱する他の例を 示す反応容器部の略断面図である。  FIG. 5 is a schematic sectional view of a reaction vessel part showing another example of heating a reactant from inside the reaction vessel according to the method of the present invention.
第 6図は, 本発明の実施にさいし, 反応容器に人る前の被処理ガスと 反応容器を出た排ガスを熱交換する例を示す図である。  FIG. 6 is a diagram showing an example of performing heat exchange between the gas to be treated before entering the reaction vessel and the exhaust gas flowing out of the reaction vessel in carrying out the present invention.
第 7図は, ト リ クロ口— ト リ フルォロェタン ( C F C ) を, 被処理ガ ス中の酸素濃度が 0 %の場合と 1 0 %の場合について分解処理したさい の, C F Cの流入量と C F C分解率の関係を示した図である。  Fig. 7 shows the inflow of CFC and the amount of CFC when the trifluorene (CFC) is decomposed in the case where the oxygen concentration in the gas to be treated is 0% and 10%. It is a figure showing the relation of the decomposition rate.
第 8図は, パーフルォロェタン ( P F C ) を, 被処理ガス中の酸素濃 度か 0 %の場合と 1 0 %の場合について分解処理したさいの, P F Cの 流人量と P F C分解率の関係を示した図である。  Figure 8 shows the flow rate of PFC and the decomposition rate of PFC when perfluoroethane (PFC) was decomposed when the oxygen concentration in the gas to be treated was 0% or 10%. FIG.
第 9図は, 反応剤の加熱方式を電気ヒーター加熱とした場合と, マイ クロ波加熱とした場合のパーフルォロェタン ( P F C ) の分解率の違い を示した図である。 発明の好ましい形態  Figure 9 shows the difference in the decomposition rate of perfluoroethane (PFC) when the heating method for the reactants is electric heater heating and when microwave heating is used. Preferred embodiments of the invention
本発明は, 炭素数が 1 〜 5, 好ましくは炭素数が 1 〜 3のパーブルォ 口カーボンまたはハイ ドロフルォロカ一ボンを分解する方法であり, 分 解したフッ素は反応剤に吸収され, 分解した炭素 (更には水素) は排ガ ス中に移行する。 本発明で好適に分解処理できるパーフルォロカーボン またはハイ ドロフルォロカ一ボンとしては. 例えば常温で容易に気化さ せることができる (窒素ガス等の不活性ガスを同伴することによって気 化するものを含む) ところの, C F 4 , C 2 F s , C 3 F 8 , C - C 4 F 8 等, または C H F 3. C H 2 F C 2 H F C 2 H 2 F 4 等がある。 これらの分解反応を行わせるには, パ一フルォロ力一ポンまたはハィ ドロフルォロカーボンの気体を, 炭素質固体材料とアル力リ土類金属化 合物とからなる反応剤に, 3 0 0 °C以上の温度で且つ 2 O vo l . %以下 ( 0 %を含まず) の気体酸素の存在下で接触させることが肝要である。 ここで, 反応剤を構成する一方の材料である炭素質固体材料としては, コークス粉, チヤ一炭, 石炭, 生ピッチ, 木炭, 活性炭, カーボンブラ ッ クからなる群から選ばれる一種または二種以上を使用することができ, その形態としては粉状のものが好ましい。 反応剤を構成する他方の材料 であるアルカ リ土類金属化合物としては, カルシウム, マグネシウム, リ ウ厶またはス トロ ンチウムの酸化物, カルシウム, マグネシウム, バリ ウムまたはス トロ ンチウムの水酸化物, およびカルシゥ厶, マグネ シゥ厶, バリ ウムまたはス ト口 ンチウ厶の炭酸塩または硝酸塩からなる 群から選ばれた一種または二種以上の化合物を使用することができ, 好 ま しく は, カルシウムの酸化物, 水酸化物, 炭酸塩または硝酸塩があり, これらのうち, 生石灰, 消石灰, 石灰石が取扱いが容易である で有利 でめる。 The present invention is a method for decomposing perfluoro-open carbon or hydrofluorocarbon having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, wherein the decomposed fluorine is absorbed by a reactant and the decomposed carbon ( Furthermore, hydrogen) migrates into the exhaust gas. The perfluorocarbon or hydrofluorocarbon which can be suitably decomposed in the present invention is, for example, a substance which can be easily vaporized at room temperature (for example, a substance which is vaporized by accompanying an inert gas such as nitrogen gas). including) where, CF 4, C 2 F s , C 3 F 8, C - C 4 F 8 Etc., or a CHF 3. CH 2 FC 2 HFC 2 H 2 F 4 , and the like. To carry out these decomposition reactions, a gas of perfluorocarbon or hydrofluorocarbon is added to a reactant composed of a carbonaceous solid material and an alkaline earth metal compound. It is important that the contact be made at a temperature of 0 ° C or higher and in the presence of 2 Ovol.% Or less (excluding 0%) of gaseous oxygen. Here, the carbonaceous solid material, one of the materials constituting the reactant, is one or two selected from the group consisting of coke powder, charcoal charcoal, coal, raw pitch, charcoal, activated carbon, and carbon black. The above can be used, and the form is preferably powdery. Alkaline earth metal compounds which are the other materials constituting the reactant include calcium, magnesium, rhodium or strontium oxide, calcium, magnesium, barium or strontium hydroxide, and One or two or more compounds selected from the group consisting of calcium carbonate, magnesium, barium and stomium carbonate or nitrate can be used, and preferably, calcium oxide is used. , Hydroxide, carbonate, or nitrate. Of these, quicklime, slaked lime, and limestone are advantageous because they are easy to handle.
これらの反応剤は, 粉状または粒状の炭素質固体材料と粉状または粒 状のアル力 リ土類金属化合物をそのまま反応容器に装塡して使用するこ ともできるが, 粉状の炭素質固体材料と粉状のアル力リ土類金属化合物 を混合し, この混合物を取扱易い大きさの粒状物に造粒したものである のがよい。 これによつて, 炭素とアルカ リ土類金属化合物が互いに近接 した状態となり且つ反応剤の比表面積 (単位重量当りの表面積) が大き くなって被処理ガスとの接触の機会を大きくすることができる。 造粒に あたっては水または有機バインダ一を使用し, その造粒物を乾燥もしく は焼成することにより, 充分な強度と気孔率を有する造粒品とすること もできる。 このような造粒品を製造する過程で, 原料として使用した炭 素質固体材料または粉状のアルカ リ土類金属化合物かその形態およひ化 合物の種類か他のものに変化することがあっても, 造粒品中に固体炭素 とアルカ リ土類金属成分か所要の割合で存在している限り, 本発明の分 解反応に寄与することができる。 These reactants can be used by directly charging a powdery or granular carbonaceous solid material and a powdery or granular alkaline earth metal compound in a reaction vessel. It is preferable that the solid material and the powdered alkaline earth metal compound are mixed and this mixture is granulated into granules of a size that is easy to handle. As a result, the carbon and the alkaline earth metal compound are brought close to each other, and the specific surface area (surface area per unit weight) of the reactant is increased, thereby increasing the chance of contact with the gas to be treated. it can. For granulation, water or an organic binder is used, and the granulated product is dried or fired to obtain a granulated product having sufficient strength and porosity. In the process of manufacturing such granulated products, the coal used as raw material Solid carbon and alkaline earth metal are present in the granulated product, even though they may change to a solid material or a powdered alkaline earth metal compound or its morphology and compound type or other. As long as the components are present in the required ratio, they can contribute to the decomposition reaction of the present invention.
例えば炭素質固体材料としてチヤ一炭を, そして了ルカ リ土類金属化 合物として消石灰を原料とし, これらの粉体を所要の割合で配合し, 水 を加えて混練したあと, 取扱い易い大きさの粒径例えば 1〜 1 O m m, 好ま しくは! 〜 5 m mに造粒し, これを非酸化性雰囲気下で焼成 (例え ば 5 0 0〜 8 5 0 °Cで焼成) してペレ ッ トとした場合, この焼成の過程 でチヤ一炭中の揮発成分は殆んど除去され, また消石灰は完全に酸化力 ルシゥムに変化するので, 炭素 (C ) と酸化カルシウム ( C a O ) を主 成分とした純度の高いぺレツ 卜が得られる。 このようにして得られる C と C a 0からなる反応剤は充分な強度を有し且つ比表面積の大きな多孔 質となるので, 本発明法の実施に好適に使用できる。  For example, charcoal is used as a carbonaceous solid material, slaked lime is used as a raw earth metal compound, and these powders are blended in a required ratio. Water is added and kneaded. Particle size, eg 1 to 1 Omm, preferably! When the pellets are granulated to a size of ~ 5 mm and baked in a non-oxidizing atmosphere (for example, baked at 500 to 850 ° C), pellets are produced during the firing process. Most of the volatile components are removed, and slaked lime is completely transformed into oxidized calcium, so that highly pure pellets containing carbon (C) and calcium oxide (CaO) as main components can be obtained. The thus obtained reactant composed of C and Ca0 has sufficient strength and is a porous material having a large specific surface area, so that it can be suitably used for carrying out the method of the present invention.
反応剤を構成する炭素質固体材料とアル力リ土類金属化合物の相対割 合は, 使用するこれらの材料や化合物の種類にもよるが, 本発明者らの 経験によると, 両者の重量比で言えば, 半々か後者の方が多めの方がよ い。 炭素質固体材料中の炭素 (C ) と, アルカ リ土類金属化合物中のァ ルカ リ土類金属 (M ) の酸化物 (M O ) とのモル比で言えば, C / M O のモル比 = 0 . 9〜 2 , 3 , 好ま しくは 0 . 9〜 1 . 9, さらに好ましくは に 4〜 1 . 9である。  Although the relative proportion of the carbonaceous solid material and the alkaline earth metal compound constituting the reactant depends on the type of these materials and compounds used, according to the experience of the present inventors, the weight ratio of the two materials is determined. Speaking of which, it is better to have the latter half more. In terms of the molar ratio of carbon (C) in the carbonaceous solid material to the oxide (MO) of alkaline earth metal (M) in the alkaline earth metal compound, the molar ratio of C / MO = 0.9 to 2,3, preferably 0.9 to 1.9, more preferably 4 to 1.9.
一股に, パーフルォロカ一ボンまたはハイ ドロフルォロカ一ボンは, クロ口フルォロカーボンゃハィ ドロクロ口フルォロカーボンに比べてよ り安定な化合物であるから, 分解が容易ではないと考えられている。 し かし, パーフルォロカーボンまたはハイ ドロフルォロカーボンを本発明 に従う反応剤に酸素の存在下で 3 0 0 °C以上の温度で接触させると効率 よく分解させることができる。 必要な温度の下限はパーフルォロカーボ ンまたはハイ ドロフルォ□力一ボンの種類によって異なる。 必要な温度 を維持すれば, 酸素が存在しない場合にも或る程度分解するが, 分解効 率が悪い。 他方, クロ口フルォロカーボン等の塩素含有のフロ ンガスの 場合には, 同じ反応剤を用いて同じように分解処理を行っても, 酸素の 存在はそれほど寄与することなく, 非酸化性雰囲気の方がより分解が進 行する現象が見られる。 It is considered that perfluorocarbon or hydrofluorocarbon is a compound that is more stable than fluorofluorocarbon and hydrofluorocarbon, and is not easily decomposed. However, when perfluorocarbon or hydrofluorocarbon is brought into contact with the reactant according to the present invention at a temperature of 300 ° C. or more in the presence of oxygen, it can be decomposed efficiently. The lower limit of the required temperature is perfluorocarbon It depends on the type of bonfire or hydrofluor. If the required temperature is maintained, some decomposition occurs even in the absence of oxygen, but the decomposition efficiency is poor. On the other hand, in the case of chlorine-containing fluorocarbon gas such as fluorocarbons, the presence of oxygen does not significantly contribute to the decomposition even when the same reactant is used. There is a phenomenon in which decomposition proceeds more.
したがって, 本発明法では被処理ガス中に適量の酸素ガスが存在する ことが不可欠であり, その酸素濃度は低くても或る程度の効果が現れる 力, 5 vo l . %以上であるのがよい。 しかし, 2 0 vo l .? を超えるような 高濃度の酸素量となると, 反応剤中の炭素の消費が多くなり, また分解 反応を促進する効果も飽和するようになる。 したがって, 被処理ガス中 の酸素濃度は 0 . 5〜 2 0 vo l . % , 好ましくは 2〜 1 5 vo l . %, さらに 好ましく は, 5〜 1 0 vo l . %とするのがよい。 この酸素の存在によりパ 一フルォロカーボンまたはハイ ドロフルォロカ一ボンの分解が効率よく 進行する理由については現在のところ必ずしも明らかではない。 なお被 処理ガス中の酸素源としては空気を用いることができる。 場合によって は C 0 2の酸素を酸素源とすることもできる。 Therefore, in the method of the present invention, it is essential that an appropriate amount of oxygen gas is present in the gas to be treated, and the oxygen concentration is at least 5 vol. Good. However, 20 vol.? If the oxygen concentration is too high, the consumption of carbon in the reactant increases, and the effect of accelerating the decomposition reaction becomes saturated. Therefore, the oxygen concentration in the gas to be treated is 0.5 to 20 vol.%, Preferably 2 to 15 vol.%, And more preferably 5 to 10 vol.%. The reason why the decomposition of perfluorocarbon or hydrofluorcarbon proceeds efficiently due to the presence of this oxygen is not always clear at present. Air can be used as the oxygen source in the gas to be treated. Sometimes it may be a source of oxygen for oxygen C 0 2.
この反応剤にパ一フルォロカーボンまたはハィ ドロフルォロカーボン (以下, P F Cまたは H F Cと略称する力、, 又は単に弗化炭素と言うこ ともある) を接触させるには, 不活性ガス例えば窒素ガスをキヤ リャと して反応剤に連続的または間欠的にに供給するようにするのが便宜であ る。 この場合, 弗化炭素は不活性ガスで希釈されるが, 不活性ガスは熱 を運び去る働きをするが, 反応には実質的に関与しない。 本明細書にお いて被処理ガス中の酸素濃度とは, かような不活性キヤ リャガスを含む 場合には, かようなガスを含む全ガス量中の酸素濃度を意味する。  In order to bring perfluorocarbon or hydrofluorocarbon (hereinafter abbreviated as PFC or HFC, or simply referred to as carbon fluoride) into contact with this reactant, an inert gas such as nitrogen gas is used. It is convenient to supply the reactants continuously or intermittently as a carrier. In this case, the carbon fluoride is diluted with an inert gas, which acts to carry away heat but does not substantially participate in the reaction. In the present specification, the term “oxygen concentration in the gas to be treated” means the oxygen concentration in the total gas containing such an inert carrier gas when the gas contains such an inert carrier gas.
第 1図は, 本発明法を実施する装置の一例を示したものである。 図中 の 1 は金属製の反応容器 (管) であり, この中に炭素質固体材料とアル 力 リ土類金属化合物とからなる反応剤 2が装墳される。 図例のものは管 伏の反応容器 1 を縱型にしたものであり, 反応剤 2は容器内に固定した 通気性床 3の上に装塡されている。 反応容器 1 の金属管としてはステン レス鋼または二ッケル棊合金からなる管を使用することができる。 FIG. 1 shows an example of an apparatus for implementing the method of the present invention. 1 in the figure is a metal reaction vessel (tube), which contains carbonaceous solid material and aluminum. Reactant 2 consisting of lithium earth metal compound is loaded. In the example shown in the figure, a reaction vessel 1 having a tubular shape is a vertical type, and a reactant 2 is mounted on a permeable floor 3 fixed in the vessel. As the metal tube of the reaction vessel 1, a tube made of stainless steel or nickel alloy can be used.
反応容器 1 は加熟炉 4内に設置される。 図示の加熱炉 4は, 通電によ り発熱する発熱体を用いた電気ヒー夕 5を熱源としたもので, この電気 ヒー夕 5によって炉內雰囲気 6の温度が所要の温度に昇温し, この炉内 の熱が金属製反応容器壁を介して反応剤 2に伝達される。 炉內雰囲気 6 の温度を所要の温度に高めることができるものであれば, 熱源としては 電気ヒータに限られるものではない。 例えば燃焼排ガスなどの高温ガス を熱源とすることもできる。  The reaction vessel 1 is set in a ripening furnace 4. The heating furnace 4 shown in the figure uses an electric heater 5 that uses a heating element that generates heat when energized as a heat source. The electric heater 5 raises the temperature of the furnace / atmosphere 6 to a required temperature. The heat in the furnace is transferred to the reactant 2 via the metal reaction vessel wall. The heat source is not limited to electric heaters as long as the temperature of furnace-atmosphere 6 can be raised to the required temperature. For example, high-temperature gas such as combustion exhaust gas can be used as the heat source.
このようにして加熱炉 4内に設置される反応容器 1 には被処理ガス導 人口 7が設けられ, この被処理ガス導人口 7は P F Cまたは H F Cを入 れた弗化炭素容器 8に配管接続される。 弗化炭素容器 8は必要に応じて 加熱手段 9により間接加熱できるようにしておき, この加熱により弗化 炭素容器 8内のガス圧を高める。 また, 容器 8からのガス放出管 1 0に は流量調整弁 1 1 を介装する。 図 1 の実施例では, 弗化炭素容器 8に加 えて, 酸素ガスボンベ 1 2 と窒素ガスボンベ 1 3を別置きし, これらか ら, 酸素ガスと窒素ガスをそれぞれ流量調整弁 1 4 , 1 5を介装したガ ス放出管 1 6 , 1 7を経ていつたんガスへッダ一 1 8に導く と共にこの ヘッダ一 1 8に弗化炭素を導く ことににより, 弗化炭素ガスに酸素ガス を添加すると共にキヤ リャとしての窒素ガスを混合し, このへッダ一 1 8で混合された被処理ガスをガス供給管 1 9を経て反応容器 1 の被処理 ガス導入口 7に送り込むようにしてある。  In this way, the reaction vessel 1 installed in the heating furnace 4 is provided with the gas to be treated 7, and the gas to be treated 7 is connected by piping to the carbon fluoride vessel 8 containing PFC or HFC. Is done. The carbon fluoride container 8 can be indirectly heated by the heating means 9 if necessary, and this heating increases the gas pressure in the carbon fluoride container 8. The gas discharge pipe 10 from the container 8 is provided with a flow control valve 11. In the embodiment shown in Fig. 1, in addition to the carbon fluoride container 8, an oxygen gas cylinder 12 and a nitrogen gas cylinder 13 are separately provided. From these, oxygen gas and nitrogen gas are supplied to flow control valves 14 and 15, respectively. Oxygen gas is added to the carbon fluoride gas by leading it to the gas header 118 via the interposed gas discharge pipes 16 and 17 and leading the carbon fluoride to this header 118. At the same time, nitrogen gas as a carrier is mixed, and the gas to be treated mixed by the header 18 is sent to the gas to be treated inlet 7 of the reaction vessel 1 through the gas supply pipe 19. .
なおこの例に限らず, 弗化炭素, 窒素および酸素を予め混合してなる 混合ガスを一つの容器内に準備し, この混合ガスを直接的に被処理ガス 導入口 7に送り込むようにしてもよいし, 弗化炭素容器 8に窒素ガスを 送り込み, この窒素ガスによって弗化炭素を容器から強制的に送り出し. その放出管路に酸素ガスを添加するようにしてもよい。 いずれにしても, 酸素ガス導入管を容器 8 自身または容器 8から被処理ガス導人 7 に至る までの配管に接続するようにする。 The present invention is not limited to this example, and a mixed gas obtained by premixing carbon fluoride, nitrogen and oxygen is prepared in one container, and this mixed gas is directly sent to the gas inlet 7 to be treated. Okay, put nitrogen gas in carbon fluoride container 8 The carbon fluoride is forcibly sent out of the container by this nitrogen gas. Oxygen gas may be added to the discharge line. In any case, the oxygen gas introduction pipe is connected to the vessel 8 itself or to the pipe from the vessel 8 to the gas guide 7 to be treated.
他方, 反応容器 1 のガス排出口 2 0には排ガス管路 2 1 が接続され, この排ガス管路 2 1 はハロゲン吸収ビン 2 2 に接続され, このビン 2 2 にガス放出管 2 3が取付けられている。 また, 排ガス管路 2 1 にはサン プリ ング管 2 4が取付けられ, このサンプリ ング管 4でサンブリ ング された俳ガスはガス分折器 2 5に送られる。  On the other hand, an exhaust gas pipe 21 is connected to the gas outlet 20 of the reaction vessel 1, and the exhaust gas pipe 21 is connected to a halogen absorption bin 22. A gas discharge pipe 23 is attached to this bin 22. Have been. A sampling pipe 24 is attached to the exhaust gas pipe 21, and the gas sampled by the sampling pipe 4 is sent to the gas separator 25.
第 2図は, 反応容器 1 から出る排ガスの排ガス管路 2 1 に, 排ガス酸 化装置 2 6を接続した例を示したものである。 排ガス酸化装置 2 6はこ の中を通過する排ガスの実質的全量が触媒層 2 7を通過するようにした ものであり, 触媒層 2 7 には C 0から C 0 2への酸化反応を促進する酸 化触媒が装塡してある。 この触媒としては, 白金. パラジウム等のよう な貴金属触媒を耐熱性の担体に担持させたものや, ホプカライ 卜触媒が 使用できる。 また, この排ガス酸化装置 2 6に入る前の排ガスに酸素を 添加するための酸素導入管 2 8か接続してあり, この酸素導入管 2 8の 流量調節弁 2 9によって, 酸素源 3 0からの排ガスへの酸素添加量を調 節する。 なお, この酸素を導入する位置よりも上流側の排ガス管路 2 1 に窒素ガス 3 4を導入する管路 3 5を設け, この管路 3 5から窒素ガス 3 4を排ガス中の混合することにより排ガス中の C 0濃度を低く してか ら酸素を導入するようにすると, 排ガス中の C 0濃度が高くなつた場合 にも, 酸素導入位置で C 0か C 0 2に燃焼するような現象を抑制するこ とができる。 排ガスに添加する酸素源 3 0 として空気を用いることもで きる。 排ガス酸化装置 2 6を通過した排ガスは, 第 1図と同様の経路で ハロゲン吸収ビン 2に送られる。 Figure 2 shows an example in which an exhaust gas oxidizer 26 is connected to the exhaust gas pipe 21 of the exhaust gas coming out of the reaction vessel 1. It is those substantially entire amount of the exhaust gas passing through the exhaust gas oxidizing apparatus 2 6 Yoko was made to pass through the catalyst layer 2 7, promoting the oxidation reaction from C 0 to C 0 2 in the catalyst layer 2 7 Oxidizing catalyst is installed. As this catalyst, a catalyst in which a noble metal catalyst such as platinum or palladium is supported on a heat-resistant carrier, or a hopcalite catalyst can be used. Further, an oxygen introduction pipe 28 for adding oxygen to the exhaust gas before entering the exhaust gas oxidizing apparatus 26 is connected, and a flow control valve 29 of the oxygen introduction pipe 28 causes a flow from the oxygen source 30 to be stopped. Adjust the amount of oxygen added to the exhaust gas. A line 35 for introducing nitrogen gas 34 is provided in the exhaust gas line 21 upstream of the position where oxygen is introduced, and nitrogen gas 34 is mixed in the exhaust gas from this line 35. by the so as to introduce a C 0 concentration lower to whether we oxygen in the exhaust gas, even if the C 0 concentration in the exhaust gas was high summer, such as burns C 0 or C 0 2 oxygen introduction position The phenomenon can be suppressed. Air can be used as the oxygen source 30 added to the exhaust gas. The exhaust gas that has passed through the exhaust gas oxidizer 26 is sent to the halogen absorption bin 2 along the same route as in Fig. 1.
第 1図および第 2図の装置において, 反応容器 1内の反応剤 2には加 熱炉 4内の雰囲気温度が容器壁を通じて伝達されるが, 分解反応や反応 剤中の炭素の酸化反応等の反 による熱収支と, 導入ガスと排出ガスに よって出入する熱容量の収支によって温度が変化するか, 図示のように, 反応剂 2のほほ中心に揷入された温度センサー (熱電対) 3 1 によって, 反応帯域の温度を温度測定器 3 2で検出し続け, この温度が所定の温度 に維持されるように, 熱源 5からの供給熱量を制御する。 また, 加熱炉In the apparatus shown in Fig. 1 and Fig. 2, The temperature of the atmosphere inside the furnace 4 is transmitted through the vessel wall. As shown in the figure, the temperature of the reaction zone continues to be detected by the temperature sensor 32 by the temperature sensor (thermocouple) 31 inserted near the center of the reaction cell 2 as shown in the figure. The amount of heat supplied from the heat source 5 is controlled so that the temperature is maintained. In addition, heating furnace
4内の炉内雰囲気 6の温度も温度センサー 3 3によって検出しその検出 値に基づいて加熱炉自体の温度制御も適宜行う。 The temperature of the furnace atmosphere 6 in 4 is also detected by the temperature sensor 33, and the temperature of the heating furnace itself is appropriately controlled based on the detected value.
このようにして, 被処理ガス中の P F Cまたは H F Cはほぼ完全に ( Thus, the PFC or HFC in the gas to be treated is almost completely (
1 0 0 %近い分解率) で分解し, 分解したフッ素は反応剤中のアルカリ 土類金属と反応してフッ化アル力 リ土類金属となり, 排ガス中にはこれ らの弗化炭素類およびフッ素は残存しなくなる。 また排ガス酸化装置 2 6によって排ガス中の C 0の全てを C 0 2に酸化させることかできる。 第 3図は, 半導体製造工程で使用された使用済 P F Cまたは H F Cを 本発明によって分解処理する場合の例を示したものである。 半導体製造 工程から出る使用済 P F Cまたは H F Cは, 通常は酸素と窒素を含有し た弗化炭素として取り出される。 この酸素含有弗化炭素 3 7は一般に管 路 3 8を経てルーチンな処理工程 3 6に送られている。 本発明の適用に さいし, この弗化炭素供給管 3 8を反応容器 1 の被処理ガス導入口 7に 接続する。 図示の例では, 該供給管 3 8から三方弁 3 9を介して分岐管 4 0を取付け, この分岐管 4 0を被処理ガス導入口 7 に接続したもので ある。 そして, この分岐管 4 0に窒素ガス供給管 4 1 を連結し, 窒素ガ ス源 4 2から窒素ガスを分岐管 4 0内に流量可変に E送できるようにし てある。 これにより, 三方弁 3 9を切り換えたさいに, 分岐管 4 0の側 に原料ガスが流れ難くても, 窒素ガス源 4 2から必要量の窒素ガスを送 気することにより, 原料ガスを被処理ガス導入口 7に向けてを実質的に 同一流量で搬送することができる。 前記の使用済 P F Cまたは H F Cは通常は酸素および窒素を含有した ガスとして取り出され, しかも, この使用済ガス中の酸素含有量は 2 0 容量%を超えることは通常はない。 したがって, 半導体製造工程で排出 する使用済 P F Cまたは H F Cの分解処理に対して, 本発明法は非常に 有利である。 At a decomposition rate of nearly 100%), and the decomposed fluorine reacts with the alkaline earth metal in the reactant to form an alkaline earth metal fluoride. Fluorine no longer remains. Moreover it or be oxidized by the exhaust gas oxidizing apparatus 2 6 all C 0 in the exhaust gas to the C 0 2. Fig. 3 shows an example in which used PFC or HFC used in the semiconductor manufacturing process is decomposed according to the present invention. Spent PFC or HFC from the semiconductor manufacturing process is usually extracted as carbon fluoride containing oxygen and nitrogen. This oxygen-containing carbon fluoride 37 is generally sent via a line 38 to a routine treatment step 36. To apply the present invention, the carbon fluoride supply pipe 38 is connected to the gas inlet 7 of the reaction vessel 1. In the illustrated example, a branch pipe 40 is attached from the supply pipe 38 via a three-way valve 39, and this branch pipe 40 is connected to the gas inlet 7 to be processed. A nitrogen gas supply pipe 41 is connected to the branch pipe 40 so that nitrogen gas can be sent from the nitrogen gas source 42 into the branch pipe 40 at a variable flow rate. As a result, when the three-way valve 39 is switched, even if the source gas is difficult to flow toward the branch pipe 40, the source gas is supplied by supplying a necessary amount of nitrogen gas from the nitrogen gas source 42. It can be conveyed toward the processing gas inlet 7 at substantially the same flow rate. The used PFC or HFC is usually extracted as a gas containing oxygen and nitrogen, and the oxygen content in the used gas does not usually exceed 20% by volume. Therefore, the method of the present invention is very advantageous for the decomposition of used PFC or HFC discharged in the semiconductor manufacturing process.
第 4図と第 5図は, 反応容器 1 の内部に加熱源を設置して, 容器の内 部から反応剤 2に熟を伝達するようにした本発明例を示したものである。 両図において, 4 4は反応容器 1 を取り巻く耐熱性の炉材, 7は容器へ の被処理ガス導入口, 2 0は容器からのガス排出口である。  FIGS. 4 and 5 show an example of the present invention in which a heating source is installed inside the reaction vessel 1 so that ripening is transmitted to the reactant 2 from inside the vessel. In both figures, reference numeral 44 denotes a heat-resistant furnace material surrounding the reaction vessel 1, reference numeral 7 denotes an inlet for the gas to be treated into the vessel, and reference numeral 20 denotes a gas outlet from the vessel.
第 4図の場合には, 反応剤 2の充塡層の内部に, 通電により発熱する 発熱体 4 3を配置したものであり, 発熱体 4 3は耐食耐熱性のカバーで 被覆してある。 本例によると, 反応剤 2の充塡層内部から熱が伝達され るので, 反応剤を所望の温度まで高めるための舁温速度を高めることが できまた熱損失も少なくなる。  In the case of Fig. 4, a heating element 43, which generates heat when energized, is arranged inside a layer of the reactant 2, and the heating element 43 is covered with a corrosion-resistant heat-resistant cover. According to this example, since heat is transferred from the inside of the packed bed of the reactant 2, the heating rate for raising the reactant to the desired temperature can be increased, and the heat loss is reduced.
第 5図の場合には, 反応容器 1 の内部を, 反応剤 2の充塡層と加熱層 に分け, 容器 1内に導入された被処理ガスは加熱層を経てから反応剤充 塡層に流れるようにしたものである。 加熱層では, 通電により発熱する 発熱体 4 6を容器蓋 4 5に取付けてある。 被処理ガスは加熱層を通過す るさいに熱を付与されると共に反応剤 2にも熱が伝達される。 本例では, 容器内に電気ヒータ一を入れたので, 熱の利用効率が高くなると共に発 熱体 4 6が反応剤や反応後のガスに接触しないので劣化が少ないという 利点がある。  In the case of Fig. 5, the inside of the reaction vessel 1 is divided into a packed bed of the reactant 2 and a heating bed, and the gas to be treated introduced into the vessel 1 passes through the heating bed and then to the packed bed of the reactant. It is made to flow. In the heating layer, a heating element 46 that generates heat when energized is attached to the container lid 45. The gas to be treated is given heat when passing through the heating layer and is also transferred to the reactant 2. In this example, since the electric heater is placed in the container, there is an advantage that the heat utilization efficiency is high and the heat generating body 46 does not contact the reactant or the gas after the reaction, so that the deterioration is small.
第 6図は, 加熱源をもつ反 容器 1 に導入する前の被処理ガスと, 反 応容器 2から出た排ガスとを熱交換するための熱交換器 4 8を配置した 本発明例を示したものである。 この熱交換器 4 8を配置することにより, 排ガスが有する顕熱を被処理ガスに付与することにより, 熟の回収が図 られるので, 加熱源の熱消費を低くすることができる。 上に説明した本発明装置の場合, 装塡した反応剤が消耗し尽きると, 分解反 1 は終了する。 この反応終点は排ガス中に弗化炭素類若しくはそ の他のフッ素化合物か検出され始めた時点をもつて知ることができる。 反応が終了すれば, 装置の稼働を停止し, 新たに反^剤を装埴して反応 を開始するというバッチ方式で, 同一装置で順次弗化炭素類の分解を行 う こ とができる。 このバッチ方式を連続化するために, 複数の同様の装 置を並設し, 一方の装置が稼働している間に他の装置の反応剤の入れ換 えを行ない, 一方の装置が停止したときに他方の装置にガス流路を切り 替えるという複塔切替方式を採用こともできる。 また, 反応容器内への 反応剤の連続または断続供給と使用済反応剤の反応容器内からの連続ま たは断続排出ができるようにしたものを使用すれば, 同一装置で長時間 連続稼働ができる。 Fig. 6 shows an example of the present invention in which a heat exchanger 48 for exchanging heat between the gas to be treated before being introduced into the reaction vessel 1 having a heating source and the exhaust gas discharged from the reaction vessel 2 is arranged. It is a thing. By arranging this heat exchanger 48, the sensible heat of the exhaust gas is imparted to the gas to be treated, so that the maturation can be recovered, so that the heat consumption of the heating source can be reduced. In the case of the above-described apparatus of the present invention, when the charged reactants are exhausted, the decomposition reaction 1 is terminated. The end point of the reaction can be known from the time when the detection of carbon fluorides or other fluorine compounds in the exhaust gas has started. When the reaction is completed, the operation of the equipment is stopped, and the reaction is started by adding a new reactant. This allows the decomposition of carbon fluorides sequentially using the same equipment. In order to make this batch system continuous, multiple similar units were installed side by side, and while one unit was operating, the reactants in the other unit were replaced, and one unit stopped. Sometimes, a double-tower switching system in which the gas flow path is switched to the other device can be adopted. In addition, if a continuous or intermittent supply of the reactant into the reaction vessel and a continuous or intermittent discharge of the used reactant from the reaction vessel are used, the same device can be operated continuously for a long time. it can.
第 7図は, 後記の比較例と同じく, 塩素を構成成分とする 卜 リ クロロ — ト リ フルォロェタ ン (C F C) を, C F Cの濃度 : 1 0 vol. %, ガス 流量 : 0. 1 5 リ ッ トルノ分, 反応剤の CZC a 0のモル比 : 1 . 6 7. 反応剤最高温度 : 8 0 0 °Cとして, 被処理ガス中の酸素濃度が 0 %の場 合と 1 () %の場合について分解処理したさいの, C F Cの流入量と C F C分解率の関係を示したものである。 ここで, C F Cの分解率は後述の とおりのものであり, C F Cの流入量は表示の分解率になるまでに反応 容器に流入した C F Cの積算量 (g) である。 第 7図の結果から, 塩素 を構成成分とする塩化弗化炭素の分解処理では, 被処理ガス中に酸素が 含有されると分解率は急激に低下することがわかる。  Fig. 7 shows that, as in the comparative example described later, trichloro-trifluorethane (CFC) containing chlorine as a constituent was converted to a concentration of 10 vol.% Of CFC and a gas flow rate of 0.15 liter. Torno content, molar ratio of CZC a0 in the reactant: 1.6 7. Maximum temperature of the reactant: 800 ° C, when the oxygen concentration in the gas to be treated is 0% and 1 ()% This shows the relationship between the inflow of CFC and the CFC decomposition rate during the decomposition treatment of. Here, the decomposition rate of CFC is as described below, and the inflow of CFC is the integrated amount (g) of CFC that has flowed into the reaction vessel until the indicated decomposition rate. From the results shown in Fig. 7, it can be seen that in the decomposition treatment of chlorofluorocarbon containing chlorine as a component, the decomposition rate drops sharply if the target gas contains oxygen.
一方, 第 8図は, 後記の実施例 1 と同じく, パーフルォロェタ ン ( P F C) を, P F Cの濃度 : 1 0 voし %, ガス流量 : 0. i 5 リ ッ トル / 分, 反応剂の Cノ C a〇の乇ル比: 1 . 6 7 , 反応剤最高温度 : 8 0 0 として, 被処理ガス中の酸素濃度が 0 %の場合と 1 0 %の場合につい て分解処理したさいの, P F Cの流入量と P F C分解率の関係を示した ものである。 すなわち, 第 8図のものは, 分解に供するガスとして ト リ クロ口— ト リ フルォロェタ ンをパーフルォロェタ ンに代えた以外は, 第 7図のものと同じ反応条件である。 第 8図では, 第 7図のものとは逆に, 被処理ガス中に酸素が含有されないと分解率は急激に低下することがわ 力、る。 On the other hand, Fig. 8 shows that, as in Example 1 described later, perfluoroethane (PFC) was mixed with PFC concentration: 10 vo%, gas flow rate: 0.15 liter / min, and C Assuming that the Ca ratio is 1.67 and the maximum temperature of the reactant is 800, the PFC is decomposed when the oxygen concentration in the gas to be treated is 0% and 10%. The relationship between the inflow of PFC and the decomposition rate of PFC was shown. Things. In other words, the reaction conditions in Fig. 8 are the same as those in Fig. 7, except that trichloro-trifluorene is replaced by perfluorene as the gas to be decomposed. In Fig. 8, contrary to the one in Fig. 7, it is clear that the decomposition rate drops sharply if the gas to be treated does not contain oxygen.
第 9図は, 加熱方式を実施例のように電気ヒーター加熱とした場合と, これとは別にマイク口波加熱とした場合のパーフルォロエタン ( P F C ) の分解率の違いを示したものである。 反応条件としては, いずれの場合 も, 弗化炭素の濃度 : 1 O vo l . %, ガス流量 : 0 . 1 5 リ ツ トル Z分, 酸素濃度 : 1 0 vo l . % , 反応剤の C Z C a 0のモル比 : 1 . 6 7 とし, マイク o波加熱は後記実施例の反応管をマイク口波透過性のセラ ミ ッ ク ス材料で構成し, これをマイクロ波を照射するアプリケ一夕内に設置し た以外は, 後記実施例と同じ容量の反応装置としたものである。  Fig. 9 shows the difference in the decomposition rate of perfluoroethane (PFC) when the heating method is electric heater heating as in the example and when the heating method is microphone mouth wave separately. It is. In each case, the reaction conditions were as follows: concentration of carbon fluoride: 1 Ovol.%, Gas flow rate: 0.15 liter Z, oxygen concentration: 10 vol.%, CZC of reactant The molar ratio of a0 is set to 1.67. Microwave o-wave heating is performed by forming the reaction tube of the later-described embodiment from a ceramic material having microphone mouth-wave transmission, and applying this to an microwave oven. The reactor had the same capacity as the example described later, except that it was installed inside the reactor.
第 9図の結果に見られるように, 電気ヒーター加熱の場合には, 反応 管内の反応剤最高温度は 8 0 0 °Cに始終維持され, P F Cの積算流入量 が 4 0 g程度になるまでは分解率が 1 0 0 %近い値となり, 該流人量が 5 5 g程度となったところで分解率は 9 5 %に低下した。 他方, マイク 口波加熱の場合には, P F Cの積算流入量が 2 0 g程度のところで分解 率が低下し始め, 反応剤温度も 8 0 0 °Cを維持できなくなり, その後は 分解率, 反応剤温度も急激に低下した。 すなわち P F Cの積算流入量が 2 9 gの時点で分解率 9 5 %, 反応剤温度 6 0 0 °Cとなり, その後は両 値とも急激に低下し, 分解処理は実効を示さなくなった。 このことは, マイクロ波加熱の場合には, 被処理ガスに酸素が含まれると反応剤 (特 に炭素) が酸化し, マイクロ波加熱では反応剤温度を意図する温度に長 時間維持できなくなるからであろうと推察される。 実施例 As can be seen from the results in Fig. 9, in the case of electric heater heating, the maximum temperature of the reactants in the reaction tube was maintained at 800 ° C throughout, and until the cumulative inflow of PFC became about 40 g. The decomposition rate was close to 100%, and when the flow rate was about 55 g, the decomposition rate was reduced to 95%. On the other hand, in the case of microphone mouth-wave heating, the decomposition rate began to drop when the integrated inflow of PFC was about 20 g, and the temperature of the reactant could not be maintained at 800 ° C. The agent temperature also dropped sharply. In other words, when the cumulative inflow of PFC was 29 g, the decomposition rate was 95%, and the temperature of the reactant was 600 ° C. Thereafter, both values dropped sharply, and the decomposition treatment became ineffective. This is because, in the case of microwave heating, if the gas to be treated contains oxygen, the reactant (particularly carbon) is oxidized, and the microwave cannot maintain the reactant temperature at the intended temperature for a long time. It is presumed to be. Example
〔実施例 1 〕  (Example 1)
第 1図に示したものと同じ原理の装置を使用して本発明法を実施した。 すなわち通電により発熱する発熱体 (カンタル合金を使用) を装着した 管状炉 (電気容量 2 0 KW) の軸中心に沿って, 内 ί圣 2 8 mm, 長さ 1 0 0 O mmのオーステナイ ト系ステン レス鋼 (S U S 3 0 4 ) からなる 反応管を貫通させ, この反応管内の炉中心部に, 原料としてチヤ一炭と 消石灰を用いて作製した粒状の反応剤 1 0 0 gを装填した。 この反応剤 は, 粒度 2 5 0 m以下のチヤ一炭と粒度 2 5 0 以下の消石灰を重 量比で 1 対 3の割合で配合し, ヘンシェルミキサ一で混合し水を添加し て造粒したあと, 1 1 0てで 4時間の乾燥処理し, 窒素雰囲気中で 8 0 0てで 8時間の熱処理を行って脱水焼成し, 得られた焼成品をし 4〜 4. 0 mmのものに整粒したもの (ペレ ツ ト) である。 原料のチヤ一炭 は, 固定炭素 7 8 %, 揮発分 9 %, 灰分 3 %, 水分 1 0 %のものを使用 し, 原料の消石灰は J I S R 9 0 0 1 の規格品を使用した。 製造され たペレ ッ トを分析したところ, この反応剤ペレッ トは炭素 ( C) と酸化 カルシウム (C a〇) が主成分であり, CZC a 0のモル比は 1 . 6 7 であった。 この反応剤の装塡中心部に熱電対を揷人し, 反応の間, 反応 剤の温度を計測した。  The method of the present invention was carried out using an apparatus having the same principle as that shown in FIG. In other words, along the axis of a tubular furnace (electrical capacity 20 KW) equipped with a heating element (using a Kanthal alloy) that generates heat when energized, an austenitic system with an inner diameter of 28 mm and a length of 100 Omm was used. A reaction tube made of stainless steel (SUS304) was penetrated, and 100 g of a granular reactant prepared using charcoal and slaked lime as raw materials was charged into the furnace center of the reaction tube. This reactant was prepared by mixing charcoal with a particle size of 250 m or less and slaked lime with a particle size of 250 or less at a weight ratio of 1: 3, mixing with a Henschel mixer, adding water, and granulating. After drying at 110 ° C for 4 hours, heat-treating at 800 ° C for 8 hours in a nitrogen atmosphere, and dehydrating and firing. It is a pelletized pellet. The raw material used was charcoal with a fixed carbon content of 78%, volatile matter of 9%, ash content of 3% and water content of 10%, and slaked lime used as a raw material of JIS 9001 standard. Analysis of the produced pellets revealed that the reactant pellets were composed mainly of carbon (C) and calcium oxide (Ca〇), and the molar ratio of CZC a0 was 1.67. A thermocouple was placed at the center of the reactant and the temperature of the reactant was measured during the reaction.
分解に供する弗化炭素としてパーフルォロエタン (C 2F e)を使用し, 第 1図に示したように, このパ一フルォロエタンに酸素ガスを添加する と共に, 窒素ガスをキヤ リャとして前記の反応管に導人した。 そのさい, この被処理ガスの流量は 0. 1 5 リ ツ トルダ分の一定として, 酸素ガス の添加量だけを変えた 5例の試験 (Να 1〜5 ) を行った。 どの例でも, 被処理ガス中の弗化炭素の量は 1 0 vol. %の一定とした。 いずれの例で も被処理ガスの導入にさいしては, 発熱体への通電を開始し, 反応剤の 中心部の温度が 8 0 0 °Cとなったことを確かめた上で行なった。 反応の 間は, 反応剤の中心部 (反応剤の嵩のうち ¾も高温となる部位) に挿入 した熱電対で計測される温度が 8 0 0 °Cが維持されるように管状炉の通 電量を制御した。 反応のあいだ維持したこの温度のことを以後に 「反応 剤最高温度」 と呼ぶ。 Using the per full O b ethane (C 2 F e) as fluorocarbon subjected to decomposition, as shown in Figure 1, with the addition of oxygen gas to the path one Furuoroetan, the nitrogen gas as a wire carrier Rya Led to the reaction tube. At that time, the flow rate of the gas to be treated was fixed at 0.15 liters, and five tests (Να1 to 5) were performed with only the amount of oxygen gas added. In each case, the amount of carbon fluoride in the gas to be treated was kept constant at 10 vol.%. In each case, the introduction of the gas to be treated was performed after the energization of the heating element was started and the temperature at the center of the reactant reached 800 ° C. Responsive During this time, the capacity of the tubular furnace was adjusted so that the temperature measured by a thermocouple inserted at the center of the reactant (the part of the bulk of the reactant where the temperature became high) was maintained at 800 ° C. Controlled. This temperature maintained during the reaction is hereinafter referred to as "reactant maximum temperature".
反応管から排出される排ガスの一部は第 1図に示したようにサンプリ ングし続けてガス分析器に導き, 残部は苛性ソ―ダ溶液を人れたフッ素 吸収ビンを通じたあと系外に排出した。 排ガスの分析は, 排ガス中に含 まれる弗化炭素, その他のフッ素化合物, 0 2. N 2 , C〇2 , C Oに ついて行った。 弗化炭素, 0 2 , N 2. C 0 2 についてはガスクロマ ト グラフィを使用し, C〇については C 0ガス検知管を使用し, そしてそ の他のフッ素化合物についてはイオンクロマ トグラフィを用いた。 A part of the exhaust gas discharged from the reaction tube continues to be sampled as shown in Fig. 1 and led to the gas analyzer, and the rest goes out of the system after passing the caustic soda solution through the separated fluorine absorption bottle. Discharged. Analysis of exhaust gas, containing Murrell fluorocarbon in the exhaust gas, and other fluorine compounds, 0 2. N 2, was performed on C_〇 2, CO. Fluorocarbon, for 0 2, N 2. C 0 2 uses Gasukuroma preparative graphics, using C 0 gas detecting tube for C_〇, and for other fluorine compounds of that were using ion chroma Togurafi .
各試験 (Na 1 〜 5 ) の反応条件と反応結果を表 1 に示した。 表 1 にお いて, 反応結果の欄に示した 3 0分後の分解率, 弗化炭素の分解量, 反 応剤の C a〇消費率は, 次のようにして求めたものである。  Table 1 shows the reaction conditions and reaction results of each test (Na 1 to 5). In Table 1, the decomposition rate after 30 minutes, the amount of decomposition of carbon fluoride, and the Ca〇 consumption rate of the reactant shown in the column of reaction results were determined as follows.
〔 3 0分後の分解率%〕  [Decomposition rate% after 30 minutes]
反応開始から 3 0分経過した時点の排ガスサンプルから, 排ガス中に 残存している弗化炭素量を測定し, 被処理ガス中の弗化炭素に対する排 ガス中の弗化炭素の 1 0 0分率をもって表した。  The amount of carbon fluoride remaining in the exhaust gas was measured from the exhaust gas sample 30 minutes after the start of the reaction, and the amount of carbon fluoride in the exhaust gas with respect to the amount of carbon fluoride in the gas to be treated was 100 minutes. Expressed as a percentage.
〔弗化炭素の分解量 (g ) 〕  [Decomposition amount of carbon fluoride (g)]
反応終点までに分解した弗化炭素の量である。 反応終点は, 分解率が 9 5 %に低下した時点とした。 実際には, 3 0分毎の排ガス分析値から, 3 0分毎の分解率を求め, 各 3 0分間に流入した弗化炭素量にそのとき の分解率を掛けた値をその 3 0分間の分解量とし, 反応開始から分解率 か 9 5 %に低下する時点までの分解量の積算値をもって, 弗化炭素の分 解量 ( g ) とした。  This is the amount of carbon fluoride decomposed by the end of the reaction. The end point of the reaction was the time when the decomposition rate dropped to 95%. Actually, the decomposition rate every 30 minutes was calculated from the exhaust gas analysis value every 30 minutes, and the value obtained by multiplying the amount of carbon fluoride that flowed in each 30 minutes by the decomposition rate at that time was used for that 30 minutes. The amount of decomposition of carbon fluoride (g) was defined as the integrated value of the amount of decomposition from the start of the reaction until the decomposition rate decreased to 95%.
〔反応剤の C a 0消費率%〕  [C a 0 consumption rate of reactant%]
前記の反応終点に至るまでに消費した反応剤中の C a 0量の百分率で ある。 じ 30の消費はじ 3 2 の生成で起きると仮定し, 反応終点まで に分解した弗化炭素中のフッ素量の積算値と, 排ガス中に検出されるフ ッ素量の積算値とから, C aに固定されたフッ素量の積算値を求め, 反 応終点までに消費した C a 0量を算出した。 As a percentage of the amount of C a 0 in the reactants consumed up to the reaction end point is there. Flip assumed to occur in the generation of consumed Haji 3 2 30, from the integrated value of the amount of fluorine fluoride in the carbon decomposed by the reaction end point, the accumulated value of the full Tsu quantal detected in the exhaust gas, C The integrated value of the amount of fluorine fixed to a was determined, and the amount of C a 0 consumed up to the end of the reaction was calculated.
表 1 の結果から, 被処理ガス中の酸素濃度が 0 %の Να 1では, 3 0分 後の分解率はほほ 1 0 0 %に達しているか, 反応終点までに分解した弗 化炭素の分解量は 1 3 gであったところ, No.2〜4のように酸素濃度が 高くなるにつれて, 3 0分後の分解率は同じく 1 0 0 %に達するととも に, 反応終点までに分解した弗化炭素の分解量は 3 し 5 1. 5 2 gと 増大していることがわかる。 No.5のように更に酸素濃度が高くなると, 反応終点までの弗化炭素分解量はやや低下するようになる。 また, Να 3 および 4のじ 0測定に見られるように, 酸素添加量が多い方の No.4は Να 3のものよりも排ガス中の C 0量が多くなつている。  From the results in Table 1, it can be seen that at で は α1 where the oxygen concentration in the gas to be treated is 0%, the decomposition rate after 30 minutes has reached almost 100%, or the decomposition of carbon fluoride decomposed by the end of the reaction. Although the amount was 13 g, as the oxygen concentration increased as in Nos. 2 to 4, the decomposition rate after 30 minutes also reached 100% and decomposed by the end of the reaction. It can be seen that the decomposition amount of carbon fluoride has increased to 3-5. When the oxygen concentration is further increased as in No. 5, the amount of decomposition of carbon fluoride up to the end of the reaction slightly decreases. In addition, as can be seen from the measurements of Να3 and の 0, the amount of C0 in the exhaust gas of No. 4 with the larger amount of added oxygen was larger than that of Να3.
〔実施例 2〕  (Example 2)
被処理ガス中の酸素濃度を 5 vol. %の一定とし, CZC a Oのモル比 を変えた反応剤を使用した以外は, 実施例 1 と同様の試験 (No.6〜 9 ) を行った。 反応剤の CZC a 0のモル比は, チヤ一炭と消石灰の配合量 を変えて, 実施例 1 と同様にして製造したペレ ツ 卜を分析し, ペレ ッ ト 中の C量, C a 0量を測定し, これらの測定値から求めたものである。 試験結果を表 1 に併記した。 この結果から, パーフルォ oェタンの反応 終点までの分解量は C7C a 0のモル比によって影響を受けることがわ かる。 本例では C/C a 0のモル比が約 1. 7付近で最も良好な成績が 得られていることがわかる。  The same tests as in Example 1 (Nos. 6 to 9) were performed, except that the oxygen concentration in the gas to be treated was kept constant at 5 vol.% And the reactants were used with different molar ratios of CZCaO. . The molar ratio of CZC a0 in the reactant was determined by analyzing the pellets produced in the same manner as in Example 1 by changing the blending amounts of charcoal and slaked lime. The amount was measured and determined from these measurements. The test results are also shown in Table 1. This result indicates that the amount of decomposition of perfluoroethane up to the end of the reaction is affected by the molar ratio of C7Ca0. In this example, it can be seen that the best results were obtained when the molar ratio of C / Ca0 was about 1.7.
〔実施例 3〕  (Example 3)
パーフルォロェタ ンに代えてパーフルォロ メ タ ンを使用した以外は実 施例 1 と同様の試験を行なった。 そのさい酸素濃度を 0 % (No.1 0 ) と 1 0 % (No.1 1 ) と変化させた。 試験結果を表 1 に併記したが, 本例で も反応終点までの分解量は酸素の添加によって顕著に増大することがわ かる。 The same test as in Example 1 was conducted except that perfluoromethane was used instead of perfluoroethane. At that time, the oxygen concentration was changed to 0% (No. 10) and 10% (No. 11). Table 1 shows the test results. It can also be seen that the amount of decomposition up to the end of the reaction was significantly increased by the addition of oxygen.
〔実施例 4〕  (Example 4)
パ一フルォロェタンに代えてト リフルォ^メタン (C H F 3 )を使用し た以外は実施例 1 と同様の試験を行なった。 そのさい, 弗化炭素濃度と 酸素濃度はいずれも 5 vo l . %の一定とし, ガス流量は 0 . 1 2 リ ッ トル Z分とし, 反応剤は C / C a 0のモル = 1 . 6 7 のものを使用し, 反応 剤最高温度を変えた (Να 1 2〜 1 7 ) 。 その結果を表 1 に示したが, 反 応剤最高温度が 4 0 (TC未満では 3 0分後の分解率が低いのに対し, 4 0 0 °C以上となるとほぼ 1 0 0 %の分解率が得られることかわかる。 〔比較例〕 The same test as in Example 1 was performed except that trifluoromethane (CHF 3 ) was used instead of perfluoroethane. At that time, the concentration of carbon fluoride and the concentration of oxygen were both constant at 5 vol.%, The gas flow rate was 0.12 liter Z, and the reactant was C / C a0 mole = 1.6. The maximum temperature of the reactants was changed (Να12 to 17) using the sample No. 7 (Fig. 7). The results are shown in Table 1. The maximum reaction temperature was 40 (decomposition rate after 30 minutes was lower than TC, whereas almost 100% was degraded at 400 ° C or higher. [Comparative Example]
塩素を構成成分とする トリ クロロー ト リ フルォロエタンを実施例 1 と 同様の分解処理に供した。 その反応条件と反応結果を表 1 に併記した。 この場合には, 被処理ガス中に酸素が存在しない方 (比較例 No. 1 ) が分 解量が多くなり, 酸素が存在すると (比較例 Να 2 ) 分解量はむしろ低下 した。  Trichlorotrifluoroethane containing chlorine as a constituent was subjected to the same decomposition treatment as in Example 1. Table 1 also shows the reaction conditions and the reaction results. In this case, the amount of decomposition increased when oxygen was not present in the gas to be treated (Comparative Example No. 1), and the amount of decomposition was rather reduced when oxygen was present (Comparative Example 2).
〔実施例 5〕  (Example 5)
実施例 1 および 2の試験 Να 3 と同一の反応条件でパーフルォロェ夕ン を分解処理したが, そのさいの排ガス (C O濃度 : 2 0 % ) に, 第 2図 に示したように, 窒素を添加したあと酸素を添加したうえで, 排ガス酸 化装置 2 6に導き, 触媒層 2 7を通過させた (試験 No. 18 ) 。 窒素添加量 は 5 . 0 リ ッ トル Z分, 酸素添加量は 1 . 5 リ ツ トル/分であり, 触媒は アルミナに白金を 0 . 5 %担持させた市販品 (日揮化学株式会社製) を 使用した。 その結果を表 1 に示したが, 排ガス中の C 0濃度は 0 %とな つた。  Tests in Examples 1 and 2 パ ー Perfluorobenzene was decomposed under the same reaction conditions as α3. At that time, nitrogen was added to the exhaust gas (CO concentration: 20%) as shown in Fig. 2. After adding oxygen, the mixture was guided to an exhaust gas oxidation unit 26 and passed through a catalyst layer 27 (Test No. 18). The amount of nitrogen added was 5.0 liters Z, the amount of oxygen added was 1.5 liters / minute, and the catalyst was a commercial product containing 0.5% platinum supported on alumina (manufactured by Nikki Chemical Co., Ltd.). It was used. The results are shown in Table 1, and the C0 concentration in the exhaust gas was 0%.
〔実施例 6〕  (Example 6)
反 温度を 7 0 0 とした以外は実施例 1 の試験 No. 3 と同一の反応条 件でパーフルォロェタンを分解処理した (試験 Να19) 。 反応結果を表 1 に示したが, 8 0 0 °Cの Να 3に比べて成績は若干劣る力、. それでも充分 な分解が行われた。 The same reaction conditions as in Test No. 3 of Example 1 except that the reaction temperature was set to 700 In this case, perfluoroethane was decomposed (Test # α19). The reaction results are shown in Table 1. The results were slightly inferior to those of Να3 at 800 ° C. However, sufficient decomposition was performed.
〔実施例 7〕  (Example 7)
ト リ フルォロ メタン (C HF 3)に代えて, 1, 1, 1,2 テトラフルォロェ タン (C 2H2F4)を使用した以外は, 実施例 4 と同様の試験を行った (試験 Να20) 。 そのさい反応剤最高温度は 3 5 (TCとした。 その結果を 表 1 に示したが, 3 5 0 °Cでも 1 0 0 %近い分解率が得られた。 The same test as in Example 4 was carried out except that 1,1,1,2 tetrafluoroethane (C 2 H 2 F 4 ) was used instead of trifluoromethane (C HF 3 ) (Test # α20) . At that time, the maximum temperature of the reactant was set to 35 (TC. The results are shown in Table 1. The decomposition rate was close to 100% even at 350 ° C.
¾ 1 ¾ 1
試 反 応 条 件 反 応 桔 果  Test reaction condition Reaction result
実謂 験 So-called experiment
Να 弗化炭素の種類 ¾ ^炭素の 酸素濃度 反応剤の C/CaO 反応 ¾^ 3 0分後の ; [匕 素の 排ガスの 度 vol. % vol. % のモル比 、 分解率 % rfk (g) coi 度 ¾ 種類 Kind of α-carbon fluoride ¾ ^ Oxygen concentration of carbon C / CaO reaction of reactant ¾ ^ After 30 minutes; [Molar ratio of degas exhaust gas vol.% Vol.%, Decomposition rate% rfk (g ) coi degree ¾
1 74才[)エ ン C z F , 10 () 0.15 1.67 800 99.9 13 22 1 74 years old [) e emissions C z F, 10 () 0.15 1.67 800 99.9 13 22
2 同上 同上 1 同上 同上 同上 99.9 31 53  2 Same as above 1 Same as above Same as above 99.9 31 53
(1)  (1)
3 同上 同上 同上 同上 同上 99.9 51 88 20 3 Same as above Same as above Same as above 99.9 51 88 20
4 同上 同上 10 同上 同上 同上 99.9 52 90 304 Same as above 10 Same as above Same as above 99.9 52 90 30
5 同上 20 同上 同上 同上 99.9 31 53 5 Same as above 20 Same as above Same as above 99.9 31 53
6 パーフル ェタン C2F(j 10 5 0.15 0.78 800 97.3 13 20 6 Perfluoroethane C 2 F (j 10 5 0.15 0.78 800 97.3 13 20
7 [5j卜 [ ,5"J]— 同上 同上 1.17 同上 99.9 39 63  7 [5j [, 5 "J] — Same as above 1.17 Same as above 99.9 39 63
実施例 Example
(2) (3) ί^Ι卜 [51ト 同上 1. G了 99.9 51 88 20 (2) (3) ί ^ Ι [51 G Same as above 1. G 99.9 51 88 20
8 f5l卜 [Hi卜 回ト 同上 2.06 [1]上 99.9 39 72 8 f5l [[Hi 回 同 同 same as above 2.06 [1] above 99.9 39 72
9 [s Jiト Jト I JIト 同上 卜 99 6 26 53  9 [s Ji J J I IJ Ditto 99 6 26 53
施例 1 π u 0.15 QQ 13  Example 1 π u 0.15 QQ 13
(3)  (3)
11 fHl Jト in l Γ ln!l .Jト- ト gg 9 Q 11 fHl J-t in l Γ l n ! L .J-t gg 9 Q
12 1·リフルれ 1タン CHF3 5 5 fi 1.67 300 34.3 12 1 ・ Rifle 1tan CHF 3 5 5 fi 1.67 300 34.3
13 同上 同上 同上 同上 同上 350 56.9  13 Same as above Same as above Same as above 350 56.9
14 同上 同上 同上 同上 同上 385 85.6  14 Same as above Same as above Same as above 385 85.6
 鰂
15 (g。l 1=1 J J inn Rfi  15 (g. L 1 = 1 J J inn Rfi
16 同上 同上 同上 同上 同上 410 99.7 60 94  16 Same as above Same as above Same as above 410 99.7 60 94
IT 同上 同上 同上 同上 同上 450 99.9 61 95  IT Same as above Same as above Same as above 450 99.9 61 95
1 222- け B口- 112- リ 10 0 0.15 1.67 860 99.9 55 70  1 222- ke B-112- l 10 0 0.15 1.67 860 99.9 55 70
i タン C2C13F3 i Tan C 2 C1 3 F 3
比幸交例 Hiko example
2 同上 同上 10 同上 同上 同上 99, 9 13 16  2 Same as above 10 Same as above Same as above 99, 9 13 16
 Out
(5) 18 バ- 71 αιίン C2F,i 10 5 0.15 1. C7 800 9D.9 51 83 0(5) 18 bar - 71 αιί emissions C 2 F, i 10 5 0.15 1. C7 800 9D.9 51 83 0
(6) 19 '1 - 7| 0ェ?ン C Fu 10 5 0.15 1.67 700 89.5 (6) 19 '1-7 | 0? C Fu 10 5 0.15 1.67 700 89.5
実施 1.1.1.2 Implementation 1.1.1.2
(7) 20 I J C2H2F, 5 5 0.12 1.67 350 96.8 56 82 (7) 20 IJC 2 H 2 F, 5 5 0.12 1.67 350 96.8 56 82
以上説明したように, 本発明によるとパーフルォロカ一ボンまたはハ ィ ドロフルォロカ一ボンが簡単な処法で完全に分解することができ, 分 解したフッ素も無害物として固定できる。 このため, 本発明の弗化炭素 類の分解法は, 分解装置の簡易さ. 分解効率の高さ, 分解生成物の後処 理の簡易性および反応剤の廉価性の点でこれまでのものにはない効果を 奏し, とく に, 半導体製造工程で発生する使用済パーフルォロカーボン またはハイ ドロフルォロカーボンの分解に多大の貢献ができる。 As described above, according to the present invention, perfluorocarbon or hydrofluorocarbon can be completely decomposed by a simple treatment method, and the decomposed fluorine can be fixed as a harmless substance. For this reason, the method for decomposing carbon fluorides of the present invention is simple because of the simplicity of the decomposer, the high efficiency of decomposition, the ease of post-treatment of decomposition products, and the low cost of the reactants. It has an effect that is not available in particular, and can make a great contribution to the decomposition of used perfluorocarbon or hydrofluorocarbon generated in the semiconductor manufacturing process.

Claims

請求の範囲 The scope of the claims
1. パーフルォロカーボンまたはハイ ドロフルォロカ一ボンの気体を, 炭素質固体材料とアル力 リ土類金属化合物とからなる反応剤に, 3 0 0 °C以上の温度で且つ 2 0 vo l . %以下 ( 0 %を含まず) の気体酸素の存在 下で接触させることからなる弗化炭素類の分解法。  1. A gas of perfluorocarbon or hydrofluorocarbon is added to a reactant composed of a carbonaceous solid material and an alkaline earth metal compound at a temperature of 300 ° C or more and 20 vol. A method for decomposing carbon fluorides, comprising contacting in the presence of gaseous oxygen of not more than 0% (excluding 0%).
2. 炭素質固体材料とアル力 リ土類金属化合物とからなる反応剂を装壙 した反応容器内に, パーフルォロカーボンまたはハイ ドロフルォ口カー ボンを含む被処理ガスを連続的または間欠的に搬送すると共に, 反応後 の排ガスを該反応容器から連続的または間欠的に排出させ, そのさい, 該被処理ガス中の酸素濃度が 2 0 vo l . 以下となるように反応容器内に 入る前の被処理ガスに酸素を含有させること, および該パ一フルォロカ —ボンまたはハイ ド口フルォロカーボンが分解するに必要な熱を反応容 器の外側から反応帯域に伝達するかまたは反応容器の内側から反応帯域 に伝達すること, からなる弗化炭素類の分解法。  2. Continuously or intermittently feed gas to be treated containing perfluorocarbon or hydrofluorocarbon into a reaction vessel into which a reaction (2) consisting of a carbonaceous solid material and an alkaline earth metal compound is loaded. And the exhaust gas after the reaction is continuously or intermittently discharged from the reaction vessel. At that time, the exhaust gas is introduced into the reaction vessel so that the oxygen concentration in the gas to be treated becomes 20 vol. To include oxygen in the previous gas to be treated, and to transfer the heat necessary to decompose the perfluorocarbon or fluorocarbon at the outside of the reaction vessel to the reaction zone or from the inside of the reaction vessel; A method for decomposing carbon fluorides, which is transmitted to the reaction zone.
3. 炭素質固体材料とアルカリ土類金属化合物とからなる反 剤を装墳 した反応容器内に, パーフルォ α力一ボンまたはハイ ドロフルォロカー ボンを含む被処理ガスを連続的または間欠的に搬送すると共に, 反応後 の排ガスを該反応容器から連続的または間欠的に排出させ, そのさい, 該被処理ガス中の酸素濃度が 2 0 vo l . %以下となるように反応容器内に 入る前の被処理ガスに酸素を含有させること, 該パーフルォロカーボン またはハイ ドロフルォロカーボンが分解するに必要な熱を反応容器の外 側から反応帯域に伝達するかまたは反応容器の内側から反応帯域に伝達 すること, および前記排ガス中の C〇を C〇2に酸化処理すること, 力、 らなる弗化炭素類の分解法。 3. To continuously or intermittently transport the gas to be treated, including perfluoro-α-carbon and hydrofluorocarbon, into a reaction vessel equipped with a reaction composed of a carbonaceous solid material and an alkaline earth metal compound. After the reaction, the exhaust gas is discharged continuously or intermittently from the reaction vessel. In this case, the exhaust gas before entering the reaction vessel is controlled so that the oxygen concentration in the gas to be treated becomes 20 vol.% Or less. The process gas contains oxygen, and the heat required to decompose the perfluorocarbon or hydrofluorocarbon is transferred from the outside of the reaction vessel to the reaction zone or from the inside of the reaction vessel to the reaction zone. be transmitted to, and C_〇 in the exhaust gas be oxidized to C_〇 2, force, decomposition of Ranaru fluorinated carbons.
4. 反応帯域に伝達する熱は, 通電により発熱する発熱体を用いた電気 ヒ一ターで発生させる請求項 2に記載の弗化炭素類の分解法。  4. The method for decomposing carbon fluorides according to claim 2, wherein the heat transmitted to the reaction zone is generated by an electric heater using a heating element that generates heat when energized.
5. 反応剤は, 金属製またはセラ ミ ッ クス製の反応容器内に装塡されて いる請求項 2に記載の弗化炭素類の分解法。 5. The reactants are placed in a metal or ceramic reaction vessel. 3. The method for decomposing carbon fluorides according to claim 2.
6. パーフルォロカ一ボンまたはハイ ドロフルォロカ一ボンは炭素数が 6. Perfluorocarbon or Hydrofluorcarbon has a low carbon number
1〜 5の弗化炭素である請求項 1 または 2に記載の弗化炭素類の分解法。3. The method for decomposing carbon fluorides according to claim 1 or 2, which is 1 to 5 carbon fluorides.
7. 炭素質固体材料はコークス粉, チヤ一 , 石炭, 生ピッチ, 木炭, 活性炭, カーボンブラッ クからなる群から選ばれる一種または二種以上 であり, アルカ リ土類金属化合物はカルシウム, マグネシウム, バリウ ムまたはス トロンチウムの酸化物, 水酸化物, 炭酸塩または硝酸塩であ る請求項 1 または 2に記載の弗化炭素類の分解法。 7. The carbonaceous solid material is one or more selected from the group consisting of coke powder, charcoal, coal, raw pitch, charcoal, activated carbon, and carbon black. The alkaline earth metal compounds are calcium, magnesium, 3. The method for decomposing carbon fluoride according to claim 1, which is an oxide, hydroxide, carbonate or nitrate of barium or strontium.
8. 反応剤は, 粉状の炭素質固体材料と粉状のアルカ リ土類金属化合物 を混合し, この混合物を造粒してなる粒状物である請求項 1 または 2に 記載の弗化炭素類の分解法。  8. The carbon fluoride according to claim 1, wherein the reactant is a granular material obtained by mixing a powdery carbonaceous solid material and a powdery alkaline earth metal compound, and granulating the mixture. Classification method.
9. 酸化処理は, 酸化触媒または反応剤を利用して行う請求項 3に記載 の弗化炭素類の分解法。  9. The method for decomposing carbon fluorides according to claim 3, wherein the oxidation treatment is performed using an oxidation catalyst or a reactant.
1 0. 炭素質固体材料とアル力リ土類金属化合物とからなる反応剤を装 塡した反応容器と, この反応容器内に通ずるように設けられた被処理ガ ス導入口と, 該反応容器内から反応後のガスを排出するように設けられ たガス排出口と, この反応容器を収容する炉と, 二の炉内の雰囲気温度 を 3 0 0て以上に高めるための熱源と, 前記の被処理ガス導入口と弗化 炭素含有ガス源とを接続する管路と. からなる弗化炭素類の分解装置。 10. A reaction vessel equipped with a reactant composed of a carbonaceous solid material and an alkaline earth metal compound, a gas inlet to be treated provided in the reaction vessel, and the reaction vessel A gas outlet provided to discharge the gas after the reaction from the inside, a furnace accommodating the reaction vessel, a heat source for increasing the ambient temperature in the two furnaces to 300 or more, An apparatus for decomposing carbon fluorides, comprising: a pipe connecting the gas to be treated inlet and a carbon fluoride-containing gas source.
1 1. 炭素質固体材料とアルカリ土類金属化合物とからなる反応剂を装 ¾した反応容器と, この反応容器内に通ずるように設けられた被処理ガ ス導入口と, 該反応容器内から反応後のガスを排出するように設けられ たガス排出口と, この反応容器を収容する炉と, この炉內の雰囲気温度 を 3 0 0 以上に高めるための熱源と, 前記の被処理ガス導入口と弗化 炭素含有ガス源とを接続する管路と, 前記のガス排出口に連通するよう に配管接続された排ガス酸化器と, からなる弗化炭素類の分解装置。1 1. A reaction vessel equipped with a reaction vessel composed of a carbonaceous solid material and an alkaline earth metal compound, a gas inlet to be treated provided in the reaction vessel, A gas outlet provided to discharge the gas after the reaction, a furnace for accommodating the reaction vessel, a heat source for increasing the ambient temperature of the furnace to 300 or more, An apparatus for decomposing carbon fluorides, comprising: a pipe connecting the port to a carbon fluoride-containing gas source; and an exhaust gas oxidizer connected to the pipe so as to communicate with the gas outlet.
1 2. 弗化炭素含有ガス源は, 半導体製造工程で発生するものである請 求項 1 0 または 1 1 に記載のの弗化炭素類の分解装置 < 1 2. Gas sources containing carbon fluoride are generated in the semiconductor manufacturing process. An apparatus for decomposing carbon fluorides according to claim 10 or 11
PCT/JP1996/001857 1996-07-04 1996-07-04 Method and equipment for decomposing fluorocarbons WO1998001217A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/001857 WO1998001217A1 (en) 1996-07-04 1996-07-04 Method and equipment for decomposing fluorocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/001857 WO1998001217A1 (en) 1996-07-04 1996-07-04 Method and equipment for decomposing fluorocarbons

Publications (1)

Publication Number Publication Date
WO1998001217A1 true WO1998001217A1 (en) 1998-01-15

Family

ID=14153499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001857 WO1998001217A1 (en) 1996-07-04 1996-07-04 Method and equipment for decomposing fluorocarbons

Country Status (1)

Country Link
WO (1) WO1998001217A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7138551B2 (en) 2004-11-05 2006-11-21 E. I. Du Pont De Nemours And Company Purification of fluorinated alcohols
JP2007153733A (en) * 2005-11-14 2007-06-21 Kenichi Akishika Carbon-containing alkaline-earth metal oxide and decomposition treatment method for organic halide using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135849A (en) * 1984-07-27 1986-02-20 Ube Ind Ltd Treatment agent of dry etching exhaust gas
JPH0312220A (en) * 1989-06-09 1991-01-21 Du Pont Mitsui Fluorochem Co Ltd Contact decomposition of chlorofluoroalkane
JPH08187302A (en) * 1995-01-06 1996-07-23 Dowa Mining Co Ltd Fluorocarbon cracking

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135849A (en) * 1984-07-27 1986-02-20 Ube Ind Ltd Treatment agent of dry etching exhaust gas
JPH0312220A (en) * 1989-06-09 1991-01-21 Du Pont Mitsui Fluorochem Co Ltd Contact decomposition of chlorofluoroalkane
JPH08187302A (en) * 1995-01-06 1996-07-23 Dowa Mining Co Ltd Fluorocarbon cracking

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7138551B2 (en) 2004-11-05 2006-11-21 E. I. Du Pont De Nemours And Company Purification of fluorinated alcohols
JP2007153733A (en) * 2005-11-14 2007-06-21 Kenichi Akishika Carbon-containing alkaline-earth metal oxide and decomposition treatment method for organic halide using the same

Similar Documents

Publication Publication Date Title
JP3713333B2 (en) Decomposing carbon fluorides
US6146606A (en) Reactive agent and process for decomposing nitrogen fluoride
JP3789277B2 (en) Reagent for decomposing fluorine compounds, decomposing method and use thereof
JP4264076B2 (en) Carbon fluoride decomposition equipment
JP3592886B2 (en) Decomposition method and reactant for decomposition of carbon fluorides
JP3249986B2 (en) CFC decomposition treatment method and equipment
US6416726B2 (en) Method for decomposing nitrogen fluoride or sulfur fluoride and decomposing reagent used therefor
JP3190225B2 (en) CFC decomposition method
WO1998001217A1 (en) Method and equipment for decomposing fluorocarbons
TW201111030A (en) Reaction device and reaction method
JP3718739B2 (en) Decomposition method and decomposition agent for sulfur fluoride
JP3713366B2 (en) Method for decomposing nitrogen fluoride and reagent for decomposition
KR100356305B1 (en) Reactive agent and process for decomposing nitrogen fluoride
JP3919328B2 (en) Decomposing agent for fluorine-containing compound gas and method for producing the same
JP2004167403A (en) Method and apparatus for dry treating acidic gas
JP2008136932A (en) Selective removing method of fluorocarbon having unsaturated bond, treatment unit and sample treatment system using treatment unit
JP2009226398A (en) Decomposition agent
JP2795837B2 (en) Method and apparatus for decomposing organic halogen compounds using lime kiln
JPH0312219A (en) Removal of toxic component
JPH0924242A (en) Chlorofluorocarbon(cfc) decomposition apparatus
JP2018202332A (en) Catalyst for manufacturing synthetic gas, manufacturing method of synthetic gas, reactor, and synthetic gas manufacturing system
JP2005095730A (en) Decomposition agent and decomposition method for fluorine compound
JP5342805B2 (en) Method for detoxifying HFC-134a and method for producing calcium carbonate
JP2008142696A (en) Carrier supporting sulfur-containing zirconium oxide catalyst for fluorine-containing compound gas decomposition, and decomposition method of waste gas containing fluorine-containing compound gas or fluorine compound-containing compound gas using this catalyst
JPH0924243A (en) Cfc decomposing agent

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase