WO1998011504A1 - Passiver transponder - Google Patents

Passiver transponder Download PDF

Info

Publication number
WO1998011504A1
WO1998011504A1 PCT/DE1996/001761 DE9601761W WO9811504A1 WO 1998011504 A1 WO1998011504 A1 WO 1998011504A1 DE 9601761 W DE9601761 W DE 9601761W WO 9811504 A1 WO9811504 A1 WO 9811504A1
Authority
WO
WIPO (PCT)
Prior art keywords
transponder
circuit
load
modulation
switch
Prior art date
Application number
PCT/DE1996/001761
Other languages
English (en)
French (fr)
Inventor
Pourang Mahdavi
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to PCT/DE1996/001761 priority Critical patent/WO1998011504A1/de
Publication of WO1998011504A1 publication Critical patent/WO1998011504A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/75Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors
    • G01S13/751Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors wherein the responder or reflector radiates a coded signal
    • G01S13/758Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors wherein the responder or reflector radiates a coded signal using a signal generator powered by the interrogation signal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs

Definitions

  • the present invention relates to a transponder and in particular to a passive transponder and a modulation method for modulating the data sent from the transponder to a reading station.
  • Microtransponder technology is increasingly used in the field of applied microelectronics and microsystem technology.
  • a transponder is generally used to refer to a unit that is spatially separated from a basic system and that can receive, send, store and possibly also process data.
  • Microtransponders are spatially separated system components that are made possible by microtechnology, i.e. Microelectronics or microsystem technology are realized.
  • the distance between the transponder and the base unit can be divided into areas between a few millimeters, a few meters and even a few hundred meters. The different distance ranges are referred to as close range, middle range and wide range.
  • a microtransponder can contain a memory with an identification code and / or sensors for various physical and / or chemical quantities as sources of information.
  • FIG. 1 A schematic representation of an arrangement consisting of a reading station and a transponder is shown in FIG.
  • transponders which do not have their own energy source and which obtain their energy by means of a resonance circuit Lr, C ⁇ from an incident query field 10, which is obtained by an antenna of the reading station, which is caused by a coil L s .
  • Lr resonance circuit
  • C ⁇ incident query field 10
  • an antenna of the reading station which is caused by a coil L s
  • passive transponders Passive transponders can be built very small and have a theoretically unlimited lifespan.
  • FIG. 2 A more precise illustration of the typical arrangement of the known transponder in the query field of a reading station is shown in FIG. 2.
  • the reading station generates a high-frequency interrogation field 10 via the antenna Lg.
  • the transponder has a resonance circuit L T / c ⁇ which is matched to the frequency of the interrogation field and which takes energy from the high-frequency interrogation field 10 and thereby generates a voltage.
  • the voltage is rectified by a rectifier device, in the illustration in FIG. 2, the diode D, and also smoothed by a capacitor C s , which is connected in parallel with the resonant circuit.
  • the voltage U obtained in this way from the query field then represents the supply voltage for the actual transponder circuit 20, which can have, for example, a read-only memory and a control circuit.
  • the resistance of the transponder circuit can be modeled by the useful resistance R L shown in broken lines.
  • a voltage in the form of a returning wave is now generated by the transponder coil Iüp at the reading station, the amount of the voltage generated at the reading station being proportional to the current flowing through the transponder coil L ⁇ .
  • the data transmission from the transponder to the reading station takes place by switching on or off an additional modulation resistor R M lying parallel to the resonant circuit L ⁇ , C ⁇ by means of an electronic switch S.
  • This switch is controlled by the actual transponder circuit 20.
  • the transponder data which are stored in the read-only memory, for example, the switch S being controlled by the control circuit of the actual transponder circuit 20, are determined by processing this signal U S i gna ; Li.
  • the method of absorption modulation has the disadvantage of the additional load on the energy source of the transponder, namely the resonant circuit L ⁇ , C ⁇ , due to the modulation resistance R M.
  • This causes a reduction in the supply voltage U c and thus a reduction in the reading distance.
  • the modulation resistance R M of the transponder circuit is large compared to the useful resistance, which is modeled by the resistance R L.
  • the greater the useful resistance RL the weaker the signals Usignall 'arriving in the reading station, which increases the sensitivity of the system to interference, which in turn results in a reduction in the reading distance.
  • the absorption modulation method remains disadvantageous in that the absorption modulation destroys valuable energy in the modulation resistance R M , with the result that the range of the transponder system is always smaller than that of a pure one Energy transfer would be possible.
  • the present invention is based on the object of a passive To provide a transponder that allows data to be transferred from the transponder to a reading station with a reduced sensitivity to interference and an increased reading distance.
  • Another object of the present invention is to provide a modulation method for data transmission from a transponder to a reading station with a reduced sensitivity to interference and an increased reading distance.
  • the present invention provides a passive transponder with a resonance circuit having a transponder coil, a control logic, a switch controlled by the control logic, a supply voltage capacitor, a load lying in parallel with the supply voltage generator and a rectifier circuit for charging the supply voltage capacitor on account of one of the transponder coil Resonance circuit induced voltage, wherein the switch in its closed state connects the load and the supply voltage capacitor via the rectifier circuit with the resonance circuit and separates the load in its open state from the resonance circuit.
  • the passive transponder according to the invention solves the problem of additional energy destruction in the modulation resistor R jf according to the prior art and the low efficiency of the modulation in the case of conventional absorption modulation.
  • the modulation method according to the invention for data transmission from a transponder to a reading station is characterized in that the modulation of the data transmitted from the transponder to the reading station is carried out by switching between a payload of the transponder and a load with a higher impedance with respect to the payload. This switching is carried out in the preferred embodiment of the present invention by opening a switch which is connected between the resonance circuit of the transponder and the payload. Because of the effect generated by this switching, the method according to the invention can be referred to as idle modulation.
  • the modulation losses of the transponder are minimized by the method of idling modulation for the transponder. Since this reduces the energy consumption of the transponder and the necessary strength of the query field, the reading distance of the transponder system increases. Furthermore, the transponder signals arriving in the reading station are stronger when using the idle modulation than is the case when using the absorption modulation method. This results in greater immunity to interference and a lower error rate in the transmission. With the same range, the antennas, i.e. the coils of the transponder constructed according to the invention can be made smaller. This in turn means that the transponders can be built smaller and cheaper.
  • Figure 1 is a rough schematic representation of an arrangement of reading station and transponder.
  • FIG. 2 shows a schematic illustration of a reading station and a transponder which is operated according to the method of Sorption modulation works
  • FIG. 3 shows a schematic illustration of a reading station and a transponder according to the invention
  • FIG. 5 shows diagrams of the "transponder supply voltage" U c and of the signals u signal and u signal 2 present at the reading station.
  • FIG. 3 A preferred exemplary embodiment of the present invention is explained in more detail below with reference to FIGS. 3 to 5. Elements of the reading station / transponder arrangement shown in FIG. 3, which correspond to those of the arrangement shown in FIG. 2, are identified by the same reference numerals as in FIG. 2.
  • the reading station of the arrangement shown in FIG. 3 corresponds to the reading station of FIG. 2 and generates a high-frequency interrogation field 10 by means of the coil L s .
  • the transponder has a parallel resonance circuit consisting of a coil Lr and a capacitor C ⁇ .
  • An output of the resonance circuit is connected to the input terminal of a rectifier device, which in the preferred embodiment is formed by a diode D.
  • the second connection of the diode D is connected to the first connection of a switch S.
  • the second connection of the switch S is connected via a capacitor C s to the second output of the parallel resonance circuit Lp, C ⁇ .
  • the capacitor C s serves as the supply voltage capacitor of the trans ponders.
  • the payload of the transponder can be represented as a resistor R L , which is connected in parallel with the capacitor C s .
  • the transponder also has an actual transponder circuit 20, which essentially corresponds to the transponder circuit described above with reference to FIG. 2. Such circuits are well known in the art.
  • the modulation resistance R M is missing compared to the known transponder shown in FIG. 2. Furthermore, the switch S is no longer connected in parallel to the resonant circuit L ⁇ , Cm, but is connected in series with the same.
  • the difference between the known absorption modulation method and the idling modulation method according to the invention is described below with reference to the characteristic field, which is shown in FIG. 4.
  • the characteristic curves shown in FIG. 4 are each shown in a standardized form depending on the useful resistance of the transponder circuit R L.
  • P LC corresponds to the reactive power taken from the interrogation field in the resonance circuit of the transponder
  • P ⁇ corresponds to the active power consumed by the transponder
  • U R corresponds to the amplitude of the voltage generated by the transponder at the reading station in the reading direction.
  • the operating point of the transponder is usually selected close to point (A), since there is a power adjustment for the transponder circuit.
  • the switch S is closed in the initial state, so that the transponder can be supplied with energy via the high-frequency interrogation field and the resonant circuit m, C ⁇ .
  • the switch S is switched on and off in the rhythm of the data to be transmitted by the circuit 20, which contains, for example, a read-only memory and a control circuit.
  • the circuit 20 contains, for example, a read-only memory and a control circuit.
  • the transponder resonance circuit is not damped. With an open switch S, the resonance circuit can oscillate much more up to the open circuit voltage and thus draw the maximum energy from the query field.
  • the transponder according to the invention therefore only produces capacitive recharge losses and no ohmic losses. Therefore, the efficiency of energy transmission in this circuit is higher than in the known circuit of FIG. 2.
  • point (C) can be selected at a greater distance from point (A) in the method according to the invention.
  • the voltage u signal2 ' d ⁇ - e arriving at the reading station also corresponds to the data transmitted from the transponder to the reading station, stronger than in the known method of absorption modulation, in which the modulation is effected by damping the transponder resonance circuit.
  • FIG. 5 A comparison of these voltages is shown in FIG. 5. 5, the voltage u Siqnall ' ⁇ - by the conventional absorption modulation is generated.
  • the voltage at the transponder circuit U c in the known transponder is shown in the lower left diagram.
  • the upper right diagram shows the voltage Usi q nal 2 generated by the idle modulation method according to the invention at the reading station.
  • the voltage U c present on the transponder according to the invention is shown in the lower right diagram of FIG.
  • the modulation frequency that controls the switchover of the switch S is shown in the lower diagrams. This modulation frequency was chosen in such a way that, with the same component values, the minimum permissible voltage at the respective transponder circuit, for example 9 volts, is not fallen below.
  • the determined diagrams shown in FIG. 5 show that the transponder signal at the reading station in the inventive method of idle modulation is approximately four times larger than the signal that is generated in the known method of absorption modulation.

Abstract

Ein passiver Transponder weist einen eine Transponderspule (LT) aufweisenden Resonanzkreis (LT, CT), eine Ansteuerlogik (20), einen von der Ansteuerlogik angesteuerten Schalter (S), einen Versorgungsspannungskondensator (CS), eine parallel zu dem Versorgungsspannungskondensator (CS) liegende Last (RL) und eine Gleichrichterschaltung (D) zum Laden des Versorgungsspannungskondensators (CS) aufgrund einer von der Transponderspule (LT) in den Resonanzkreis induzierten Spannung auf. Der Schalter (S) verbindet in seinem geschlossenen Zustand die Last (RL) und den Versorgungsspannungskondensator (CS) über die Gleichrichterschaltung (D) mit dem Resonanzkreis (LT, CT) und trennt in seinem geöffneten Zustand die Last (RL) und den Versorgungsspannungskondensator (CS) von dem Resonanzkreis (LT, CT).

Description

Passiver Transponder
Beschreibung
Die vorliegende Erfindung bezieht sich auf einen Transponder und insbesondere auf einen passiven Transponder und ein Modulationsverfahren zum Modulieren der von dem Transponder zu einer Lesestation gesendeten Daten.
Auf dem Gebiet der angewandten Mikroelektronik und Mikrosy- stemtechnik findet die Mikrotranspondertechnik zunehmend Einsatz. Mit Transponder wird allgemein eine von einem Basissystem räumlich abgesetzte Einheit bezeichnet, die Daten empfangen, senden, speichern und eventuell auch verarbeiten kann. Mikrotransponder sind räumlich abgesetzte Systemkomponenten, die durch Mikrotechnologie, d.h. Mikroelektronik oder Mikrosyste technik, realisiert sind. Die Entfernung zwischen dem Transponder und der Basiseinheit kann dabei in Bereiche zwischen wenigen Millimetern, einigen Metern und sogar einigen hundert Metern eingeteilt werden. Die unterschiedlichen Entfernungsbereiche werden mit Nahbereich, Mittelbereich und Weitbereich bezeichnet. Ein Mikrotransponder kann einen Speicher mit einem Identifikationscode und/oder Sensoren für diverse physikalische und/oder chemische Größen als Informationsquellen beinhalten.
Eine schematische Darstellung einer Anordnung, die aus einer Lesestation und einem Transponder besteht, ist in Fig. l dargestellt. Von besonderem Interesse sind dabei Transponder, die keine eigene Energiequelle besitzen und ihre Energie mittels eines Resonanzkreises Lr, Cτ aus einem einfallenden Abfragefeld 10, das durch eine Antenne der Lesestation, die durch eine Spule Ls bewirkt wird, beziehen. In diesem Fall spricht man von passiven Transpondern. Passive Transponder können sehr klein gebaut werden und haben eine theoretisch unbegrenzte Lebensdauer. Die Anwendungsbereiche passiver Transponder sind äußerst breit gestreut und reichen von der Medizintechnik, beispielsweise Implantate mit HF-Datenkopplung, über die Sicherheitstechnik, beispielsweise Zugangskontrollen mit kontaktloser Chipkarte, bis hin zu CIM-Anwendungen (CIM = com- puterized integrated manufacturing = Computer-integrierte Herstellung) , beispielsweise einer Werkstückidentifikation.
Eine genauere Darstellung der typischen Anordnung des bekannten Transponders im Abfragefeld einer Lesestation ist in Fig. 2 dargestellt. Die Lesestation erzeugt über die Antenne Lg ein Hochfrequenz-Abfragefeld 10. Der Transponder weist einen auf die Frequenz des Abfragefeldes abgestimmten Resonanzkreis LT/ cτ auf, der Energie aus dem Hochfrequenz-Abfragefeld 10 entnimmt und dadurch eine Spannung erzeugt. Die Spannung wird durch eine Gleichrichtereinrichtung, bei der Darstellung in Fig. 2 die Diode D, gleichgerichtet und ferner durch einen Kondensator Cs, der parallel zu dem Resonanzkreis geschaltet ist, geglättet. Die hierdurch aus dem Abfragefeld gewonnene Spannung U stellt dann die Versorgungsspannung für die eigentliche Transponderschaltung 20, die beispielsweise einen Festwertspeicher und eine Steuerschaltung aufweisen kann, dar. Der Widerstand der Transponderschaltung kann durch den gestrichelt dargestellten Nutzwiderstand RL modelliert werden.
Entsprechend dem Überlagerungssatz wird nun durch die Transponderspule Iüp eine Spannung in der Form einer rücklaufenden Welle an der Lesestation erzeugt, wobei der Betrag der an der Lesestation erzeugten Spannung proportional zu dem Strom, der durch die Transponderspule Lτ fließt, ist.
Die Datenübertragung von dem Transponder zu der Lesestation erfolgt durch das Ein- bzw. Ausschalten eines parallel zu dem Schwingkreis Lτ, Cτ liegenden, zusätzlichen Modulationswiderstandes RM durch einen elektronischen Schalter S. Dieser Schalter wird durch die eigentliche Transponderschaltung 20 gesteuert. Durch das Schalten des Schalters S wird dem durch die Antenne Ls ausgestrahlten Abfragefeld im Rhythmus des Schalters S mehr oder weniger Energie entnommen, wodurch an der Antenne der Lesestation eine Wechselsignalspannung uSignali erzeugt wird. Die Transponderdaten, die beispielsweise in dem Festwertspeicher gespeichert sind, wobei der Schalter S durch die Steuerschaltung der eigentlichen Transponderschaltung 20 gesteuert wird, werden durch die Verarbeitung dieses Signals USigna;Li ermittelt. Dieses Verfahren zur Übertragung von Daten von dem Transponder zu der Lesestation ist als Absorptionsmodulation bekannt und beispielsweise bei P. Neukomm, H. Baggentos, "Passive Telemetrie mit Absorptionsmodulation" , ETH Zürich, Design & Elektronik, 18.9.1990, ausführlich beschrieben.
Das Verfahren der Absorptionsmodulation hat den Nachteil der zusätzlichen Belastung der Energiequelle des Transponders, nämlich des Resonanzkreises Lτ, Cτ, durch den Modulationswiderstand RM. Dadurch wird eine Verringerung der Versorgungsspannung Uc und somit eine Verminderung des Leseabstandes bewirkt. Minimale Modulationsverluste liegen dann vor, wenn der Modulationswiderstand RM im Vergleich zum Nutzwiderstand, der durch den Widerstand RL modelliert ist, der Transponderschaltung groß ist. Je größer jedoch der Nutzwiderstand RL ist, desto schwächer werden die in der Lesestation ankommenden Signale Usignall' wodurch die Störempfindlichkeit des Systems erhöht wird, was wiederum eine Verringerung des Leseabstands zur Folge hat.
Unabhängig von den im letzten Absatz durchgeführten Überlegungen bleibt das Verfahren der Absorptionsmodulation nachteilig dahingehend, daß durch die Absorptionsmodulation wertvolle Energie im Modulationswiderstand RM vernichtet wird, was zur Folge hat, daß die Reichweite des Transponder- systems immer kleiner ist, als es bei einer reinen Energieübertragung möglich wäre.
Ausgehend von dem genannten Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, einen passiven Transponder zu schaffen, der eine Übertragung von Daten von dem Transponder zu einer Lesestation mit einer verringerten Störempfindlichkeit und einem vergrößerten Leseabstand ermöglicht.
Diese Aufgabe wird durch einen passiven Transponder gemäß Anspruch 1 gelöst.
Eine weitere Aufgabe der vorliegenden Erfindung besteht darin, ein Modulationsverfahren für eine Datenübertragung von einem Transponder zu einer Lesestation mit einer verringerten Störempfindlichkeit und einem erhöhten Leseabstand zu schaffen.
Diese Aufgabe wird durch ein Modulationsverfahren gemäß Anspruch 6 gelöst.
Die vorliegende Erfindung schafft einen passiven Transponder mit einem eine Transponderspule aufweisenden Resonanzkreis, einer Ansteuerlogik, einem von der Ansteuerlogik angesteuerten Schalter, einem Versorgungsspannungskondensator, einer parallel zu dem Versorgungsspannungsgenerator liegenden Last und einer Gleichrichterschaltung zum Laden des Versorgungs- spannungskondensators aufgrund einer von der Transponderspule in den Resonanzkreis induzierten Spannung, wobei der Schalter in seinem geschlossenen Zustand die Last und den Versorgungsspannungskondensator über die Gleichrichterschaltung mit dem Resonanzkreis verbindet und die Last in seinem geöffneten Zustand von dem Resonanzkreis trennt.
Durch den erfindungsgemäßen passiven Transponder wird das Problem der zusätzlichen Energievernichtung im Modulationswiderstand Rjf gemäß dem Stand der Technik und des geringen Wirkungsgrads der Modulation im Fall der herkömmlichen Absorptionsmodulation gelöst.
Das erfindungsgemäße Modulationsverfahren für die Datenübertragung von einem Transponder zu einer Lesestation ist da- durch gekennzeichnet, daß die Modulation der von dem Transponder zu der Lesestation übertragenen Daten durch das Umschalten zwischen einer Nutzlast des Transponders und einer bezüglich der Nutzlast hochohmigeren Last erfolgt. Dieses Umschalten wird bei dem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung durch das Öffnen eines Schalters, der zwischen den Resonanzkreis des Transponders und die Nutzlast geschaltet ist, durchgeführt. Aufgrund der durch dieses Umschalten erzeugten Wirkung kann das erfindungsgemäße Verfahren als Leerlaufmodulation bezeichnet werden.
Durch das Verfahren der Leerlaufmodulation für den Transponder werden die Modulationsverluste des Transponders minimiert. Da dadurch der Energieverbrauch des Transponders und die notwendige Stärke des Abfragefeldes gesenkt werden, erhöht sich der Leseabstand des Transpondersystems. Ferner sind die in der Lesestation ankommenden Transpondersignale bei Verwendung der Leerlaufmodulation stärker als es bei der Verwendung des Absorptionsmodulationsverfahrens der Fall ist. Dies hat eine größere Störunempfindlichkeit und eine kleinere Fehlerrate der Übertragung zur Folge. Bei gleicher Reichweite können somit die Antennen, d.h. die Spulen, der gemäß der Erfindung aufgebauten Transponder kleiner realisiert werden. Dies heißt wiederum, daß die Transponder kleiner und billiger gebaut werden können.
Weiterbildungen der vorliegenden Erfindung sind in den abhängigen Ansprüche dargelegt.
Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend bezugnehmend auf die beiliegenden Zeichnungen näher erläutert. Es zeigen:
Fig. 1 eine grobe schematische Darstellung einer Anordnung von Lesestation und Transponder;
Fig. 2 eine schematische Darstellung einer Lesestation und eines Transponders, der nach dem Verfahren der Ab- Sorptionsmodulation arbeitet;
Fig. 3 eine schematische Darstellung einer Lesestation und eines erfindungsgemäßen Transponders;
Fig. 4 ein Diagramm, das die Kennlinien der von dem Resonanzkreis dem Abfragefeld entnommenen Blindleistung PLc» der von dem Transponder aufgenommenen Wirkleistung Pip und der von dem Transponder an der Lesestation erzeugten Spannung UR in Abhängigkeit vom Nutzwiderstand RL des Transponders zeigt; und
Fig. 5 Diagramme der "Transponder-Versorgungsspannung" Uc sowie der an der Lesestation anliegenden Signale uSignall und uSignal2-
Nachfolgend wird bezugnehmend auf die Fig. 3 bis 5 ein bevorzugtes Ausführungsbeispiel der vorliegenden Erfindung näher erläutert. Elemente der in Fig. 3 dargestellten Lesesta- tion/Transponder-Anordnung, die denen der in Fig. 2 dargestellten Anordnung entsprechen, sind mit gleichen Bezugszeichen wie in Fig. 2 gekennzeichnet.
Die Lesestation der in Fig. 3 dargestellten Anordnung entspricht der Lesestation von Fig. 2 und erzeugt mittels der Spule Ls ein Hochfrequenzabfragefeld 10.
Der Transponder weist gemäß dem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung einen Parallelresonanzkreis bestehend aus einer Spule Lr und einem Kondensator Cτ auf . Ein Ausgang des Resonanzkreises ist mit dem Eingangsanschluß einer Gleichrichtervorrichtung, die bei dem bevorzugten Ausführungsbeispiel durch eine Diode D gebildet ist, verbunden. Der zweite Anschluß der Diode D ist mit dem ersten Anschluß eines Schalter S verbunden. Der zweite Anschluß des Schalters S ist über einen Kondensator Cs mit dem zweiten Ausgang des Parallelresonanzkreises Lp, Cτ verbunden. Der Kondensator Cs dient als Versorgungsspannungskondensator des Trans- ponders. Wie in Fig. 3 gestrichelt dargestellt ist, kann die Nutzlast des Transponders als ein Widerstand RL dargestellt werden, der parallel zu dem Kondensator Cs geschaltet ist.
Der Transponder weist ferner eine eigentliche Transponderschaltung 20 auf, die im wesentlichen der oben bezugnehmend auf Fig. 2 beschriebenen Transponderschaltung entspricht. Derartige Schaltungen sind im Stand der Technik gut bekannt.
Bei dem in Fig. 3 dargestellten erfindungsgemäßen Transponder fehlt verglichen mit dem in Fig. 2 dargestellten bekannten Transponder der Modulationswiderstand RM. Ferner ist der Schalter S nicht mehr parallel zu dem Resonanzkreis Lτ, Cm verschaltet, sondern seriell mit demselben verbunden.
Anhand des Kennlinienfeldes, das in Fig. 4 dargestellt ist, wird nachfolgend der Unterschied des bekannten Absorptions- modulationsverfahrens und des erfindungsgemäßen Leerlaufmodulationsverfahrens beschrieben. Die in Fig. 4 dargestellten Kennlinien sind jeweils in Abhängigkeit vom Nutzwiderstand der Transponderschaltung RL in normierter Form dargestellt. PLC entspricht der dem Abfragefeld entnommenen Blindleistung in dem Resonanzkreis des Transponders, Pτ entspricht der von dem Transponder aufgenommenen Wirkleistung, und UR entspricht der Amplitude der vom Transponder an der Lesestation erzeugten Spannung in der Leserichtung. Der Arbeitspunkt des Transponders wird in der Regel nahe am Punkt (A) gewählt, da hier eine Leistungsanpassung für die Transponderschaltung vorliegt.
Ausgehend von dem Arbeitspunkt (A) , bei dem gemäß dem bekannten Transponder, der in Fig. 2 dargestellt ist, der Schalter S geöffnet ist, hat ein Schließen des Schalters bei dem bekannten Transponder eine Umschaltung vom Arbeitspunkt (A) zu dem in Fig. 4 dargestellten Punkt (B) zur Folge, wodurch an der Lesestation ein Signal Us^gnall erzeugt wird. Das Signal USj„naιι stellt die durch die Absorptionsmodulation von dem Transponder zu der Lesestation übertragenen Da- ten dar .
Bei dem erfindungsgemäßen Transponder gemäß Fig. 3 ist der Schalter S im Ausgangszustand geschlossen, so daß der Transponder über das Abfragehochfrequenzfeld und den Resonanzkreis m, Cτ mit Energie versorgt werden kann. Zu Beginn der Modulationsphase wird der Schalter S im Rhythmus der zu sendenden Daten durch die Schaltung 20, die beispielsweise einen Festwertspeicher und eine Steuerschaltung enthält, ein- und ausgeschaltet. In der Kennlinie der Spannung UR, die in Fig. 4 dargestellt ist, bedeutet dies eine Umschaltung vom Arbeitspunkt (A) zum Arbeitspunkt (C) . Im Gegensatz zur bekannten Methode der Absorptionsmodulation erfolgt somit keine Dämpfung des Transponderresonanzkreises. Viel mehr kann der Resonanzkreis bei einem offenen Schalter S bis auf die LeerlaufSpannung hochschwingen und dem Abfragefeld somit die maximale Energie entnehmen. Wird der Schalter S aus diesem Zustand geschlossen, wird diese Energie in Form der Spannung aus dem Kondensator Cτ in den Versorgungsspannungskondensa- tor Cs umgeladen. Im Laufe eines Modulationszyklusses entstehen bei dem erfindungsgemäßen Transponder somit lediglich kapazitive Umladeverluste und keine ohmschen Verluste. Daher ist der Wirkungsgrad der Energieübertragung bei dieser Schaltung höher als bei der bekannten Schaltung von Fig. 2.
Infolge der günstigeren Energiebilanz kann bei dem erfindungsgemäßen Verfahren der Punkt (C) in einer größeren Entfernung von dem Punkt (A) gewählt werden. Aus diesem Grund ist auch die an der Lesestation ankommende Spannung uSignal2' d^-e den von dem Transponder zu der Lesestation übertragenden Daten entspricht, stärker als bei dem bekannten Verfahren der Absorptionsmodulation, bei dem die Modulation durch eine Dämpfung des Transponderresonanzkreises bewirkt wird.
Ein Vergleich dieser Spannungen ist in Fig. 5 dargestellt. Im linken oberen Diagramm von Fig. 5 ist die Spannung uSiqnall' ^ - durch die herkömmliche Absorptionsmodulation erzeugt wird, dargestellt. Im linken unteren Diagramm ist die Spannung an der Transponderschaltung Uc bei dem bekannten Transponder dargestellt. Im rechten oberen Diagramm ist die durch das erfindungsgemäße Leerlaufmodulationsverfahren an der Lesestation erzeugte Spannung Usiqnal2 dargestellt. Im rechten unteren Diagramm von Fig. 5 ist die am erfindungsgemäßen Transponder vorliegende Spannung Uc dargestellt. Ferner ist in den unteren Diagrammen jeweils die Modulationsfrequenz gezeigt, die das Umschalten des Schalters S steuert. Diese Modulationsfrequenz wurde derart gewählt, daß bei gleichen Bauelementwerten die minimal zulässige Spannung an der jeweiligen Transponderschaltung, beispielsweise 9 Volt, nicht unterschritten wird.
Die in Fig. 5 dargestellten, ermittelten Diagramme zeigen, daß das Transpondersignal an der Lesestation bei dem erfindungsgemäßen Verfahren der Leerlaufmodulation etwa um den Faktor vier größer ist als das Signal, das bei dem bekannten Verfahren der Absorptionsmodulation erzeugt wird.

Claims

Patentansprüche
1. Passiver Transponder mit
einem eine Transponderspule (Lτ) aufweisenden Resonanzkreis (Lτ, cτ) , einer Ansteuerlogik (20) , einem von der Ansteuerlogik angesteuerten Schalter (S) , einem Versor- gungsspannungskondensator (Cs) , einer parallel zu dem Versorgungsspannungskondensator (Cs) liegenden Last (RL) und einer Gleichrichterschaltung (D) zum Laden des Versorgungsspannungskondensators (Cs) aufgrund einer von der Transponderspule (Lτ) in den Resonanzkreis induzierten Spannung, dadurch gekennzeichnet,
daß der Schalter (S) in seinem geschlossenen Zustand die Last (RL) und den Versorgungsspannungskondensator (Cs) über die Gleichrichterschaltung (D) mit dem Resonanzkreis (Lτ, Cτ) verbindet und die Last (RL) und den Versorgungsspannungskondensator (Cs) in seinem geöffneten Zustand von dem Resonanzkreis (Lτ, Cτ) trennt.
2. Passiver Transponder gemäß Anspruch 1, dadurch gekennzeichnet,
daß die Gleichrichterschaltung (D) eine Diode ist.
3. Passiver Transponder gemäß Anspruch 1 oder 2, dadurch gekennzeichnet,
daß der Resonanzkreis (Lτ, cτ) ein Parallelresonanzkreis bestehend aus der Parallelschaltung einer Transponderspule (Lτ) und eines Kondensators (Cτ) ist.
4. Passiver Transponder gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet. daß die Last (RL) durch den Nutzwiderstand des passiven Transponders gebildet ist.
5. Passiver Transponder gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet,
daß der Schalter (S) seriell zu dem Resonanzkreis (Lτ, Cτ) geschaltet ist.
6. Modulationsverfahren für die Datenübertragung von einem Transponder zu einer Lesestation, dadurch gekennzeichnet,
daß die Modulation der von dem Transponder zu der Lesestation übertragenen Daten durch das Umschalten zwischen einer Nutzlast des Transponders und einer bezüglich der Nutzlast hochohmigeren Last erfolgt.
7. Modulationsverfahren gemäß Anspruch 6, dadurch gekennzeichnet,
daß das Umschalten zwischen der Normallast des Transponders und der bezüglich der Normallast hochohmigeren Last durch das Öffnen eines Schalters (S) , der zwischen einen Resonanzkreis (Lτ, cτ) des Transponders und die Nutzlast (RL) des Transponders geschaltet ist, durchgeführt wird.
PCT/DE1996/001761 1996-09-12 1996-09-12 Passiver transponder WO1998011504A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/DE1996/001761 WO1998011504A1 (de) 1996-09-12 1996-09-12 Passiver transponder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE1996/001761 WO1998011504A1 (de) 1996-09-12 1996-09-12 Passiver transponder

Publications (1)

Publication Number Publication Date
WO1998011504A1 true WO1998011504A1 (de) 1998-03-19

Family

ID=6918385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/001761 WO1998011504A1 (de) 1996-09-12 1996-09-12 Passiver transponder

Country Status (1)

Country Link
WO (1) WO1998011504A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060509A1 (de) * 1998-05-15 1999-11-25 Infineon Technologies Ag Vorrichtung zur kontaktlosen übertragung von daten
EP0974798A2 (de) * 1998-07-20 2000-01-26 Liebherr-Hausgeräte Gmbh Gefriergerät
FR2787655A1 (fr) * 1998-12-21 2000-06-23 St Microelectronics Sa Modulation capacitive dans un transpondeur electromagnetique
WO2002047592A2 (en) * 2000-12-12 2002-06-20 Kimberly-Clark Worldwide, Inc. Wetness signaling device
KR100341578B1 (ko) * 1999-12-30 2002-06-22 박종섭 고주파 트랜스폰더의 발진 회로
WO2005006246A2 (en) * 2003-07-02 2005-01-20 Ge Medical Systems Global Technology Company, Llc Wireless electromagnetic tracking system using a nonlinear passive transponder
EP1760639A1 (de) * 2000-11-30 2007-03-07 ZIH Corporation Eingangsimpedanzanordnung für RF Transponder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0242906A1 (de) * 1986-04-22 1987-10-28 N.V. Nederlandsche Apparatenfabriek NEDAP Elektromagnetisches Identifizierungssystem
US4918416A (en) * 1987-03-18 1990-04-17 Sielox Systems, Inc. Electronic proximity identification system
EP0492569A2 (de) * 1990-12-28 1992-07-01 On Track Innovations Ltd. System und Verfahren zur kontaktlosen Datenübertragung
DE4434240C1 (de) * 1994-09-24 1995-11-30 Norbert H L Dr Ing Koster Dynamische Modulationsvorrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0242906A1 (de) * 1986-04-22 1987-10-28 N.V. Nederlandsche Apparatenfabriek NEDAP Elektromagnetisches Identifizierungssystem
US4918416A (en) * 1987-03-18 1990-04-17 Sielox Systems, Inc. Electronic proximity identification system
EP0492569A2 (de) * 1990-12-28 1992-07-01 On Track Innovations Ltd. System und Verfahren zur kontaktlosen Datenübertragung
DE4434240C1 (de) * 1994-09-24 1995-11-30 Norbert H L Dr Ing Koster Dynamische Modulationsvorrichtung

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1164532A3 (de) * 1998-05-15 2002-01-02 Infineon Technologies AG Vorrichtung zur kontaktlosen Übertragung von Daten
US6533178B1 (en) 1998-05-15 2003-03-18 Infineon Technologies Ag Device for contactless transmission of data
WO1999060509A1 (de) * 1998-05-15 1999-11-25 Infineon Technologies Ag Vorrichtung zur kontaktlosen übertragung von daten
EP1164532A2 (de) * 1998-05-15 2001-12-19 Infineon Technologies AG Vorrichtung zur kontaktlosen Übertragung von Daten
EP0974798A2 (de) * 1998-07-20 2000-01-26 Liebherr-Hausgeräte Gmbh Gefriergerät
EP0974798A3 (de) * 1998-07-20 2000-11-02 Liebherr-Hausgeräte Gmbh Gefriergerät
EP1014300A1 (de) * 1998-12-21 2000-06-28 STMicroelectronics SA Kapazitive Modulation in einem elektomagnetischen Transponder
US6356198B1 (en) 1998-12-21 2002-03-12 Stmicroelectronics S.A. Capacitive modulation in an electromagnetic transponder
FR2787655A1 (fr) * 1998-12-21 2000-06-23 St Microelectronics Sa Modulation capacitive dans un transpondeur electromagnetique
KR100341578B1 (ko) * 1999-12-30 2002-06-22 박종섭 고주파 트랜스폰더의 발진 회로
EP1760639A1 (de) * 2000-11-30 2007-03-07 ZIH Corporation Eingangsimpedanzanordnung für RF Transponder
WO2002047592A2 (en) * 2000-12-12 2002-06-20 Kimberly-Clark Worldwide, Inc. Wetness signaling device
WO2002047592A3 (en) * 2000-12-12 2003-04-03 Kimberly Clark Co Wetness signaling device
WO2005006246A2 (en) * 2003-07-02 2005-01-20 Ge Medical Systems Global Technology Company, Llc Wireless electromagnetic tracking system using a nonlinear passive transponder
WO2005006246A3 (en) * 2003-07-02 2006-06-08 Ge Med Sys Global Tech Co Llc Wireless electromagnetic tracking system using a nonlinear passive transponder

Similar Documents

Publication Publication Date Title
EP1482647B1 (de) Schaltungsanordnung zur Phasenmodulation für rückstreubasierte Transponder
EP1691320B1 (de) Schaltungsanordnung und Verfahren zur Spannungsversorgung eines Transponders
DE60032049T2 (de) Entfernungsbestimmung zwischen einem elektromagnetischen Transponder und einem Terminal
EP0925551B1 (de) Verfahren zum abgleich eines empfangsschwingkreises eines transponders in einem rfid system
DE69933405T2 (de) Induktiv gekoppeltes Fernübertragungsgerät
DE69729816T2 (de) Verbesserung für Vollweggleichrichter
DE19705301C1 (de) Einrichtung zur berührungslosen Informations- und Energieübertragung
DE60215382T2 (de) Doppelantennenspulentranspondersystem
DE69630843T2 (de) Anlage zum Fernaustausch von Informationen zwischen einem tragbaren passiven Objekt und einer Station, entsprechendes Objekt und Station
EP0774144A2 (de) Chipkarte
EP1538555A2 (de) Transponder mit zwei unterschiedlichen Modulationsverfahren
DD269478A5 (de) Elektronisches datenverarbeitungssystem
EP0990221B1 (de) Chipkarte mit mindestens zwei spulenanordnungen zur übertragung von daten und/oder energie
EP1499034B1 (de) Schaltungsanordnung und Verfahren zur Phasenmodulation für rückstreubasierte Transponder
DE60307318T2 (de) Verfahren zum erkennen einer gruppenzugehörigkeit von transpondern
DE19602316C1 (de) Vorrichtung zum Übertragen von Daten oder Energie
EP1344178B1 (de) Vorrichtung und verfahren zum gleichzeitigen auslesen von passiven induktiven transpondern
WO1998011504A1 (de) Passiver transponder
DE60036319T2 (de) Leser mit Einrichtung zur Bestimmung des Abstandes zwischen dem Leser und einem Transponder
AT401127B (de) Kontaktloses datenübertragungssystem
DE69834607T2 (de) Radiofrequenzsignaldetektor für kontaktlose IC-Karte
EP1639526B1 (de) Elektronisches bauelement für identifikationsmarken
DE3412588A1 (de) Verfahren zur datenuebertragung und datenuebertragungssystem
DE4031692C1 (en) Electronic key circuit in contactless chip=card - forms interface working with prim. electronic integrated circuit using interactive coils with ferrite cores buried in substrate
EP1090370A1 (de) Verfahren zur kommunikation zwischen berührungslos arbeitenden datenträgern und endgeräten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase