WO1998012296A1 - Color care compositions - Google Patents

Color care compositions Download PDF

Info

Publication number
WO1998012296A1
WO1998012296A1 PCT/US1997/016546 US9716546W WO9812296A1 WO 1998012296 A1 WO1998012296 A1 WO 1998012296A1 US 9716546 W US9716546 W US 9716546W WO 9812296 A1 WO9812296 A1 WO 9812296A1
Authority
WO
WIPO (PCT)
Prior art keywords
units
mixtures
alkyl
group
alkylene
Prior art date
Application number
PCT/US1997/016546
Other languages
French (fr)
Inventor
Linda Josefina Anna Leurentop
Axel Masschelein
Janet Sue Littig
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to BR9713203-9A priority Critical patent/BR9713203A/en
Priority to EP97941682A priority patent/EP0931133B1/en
Priority to AT97941682T priority patent/ATE293672T1/en
Priority to US09/269,097 priority patent/US6020302A/en
Priority to DE69733072T priority patent/DE69733072T2/en
Priority to CA002265740A priority patent/CA2265740C/en
Priority to JP10514865A priority patent/JP2000503063A/en
Priority to CZ99947A priority patent/CZ94799A3/en
Priority to AU43541/97A priority patent/AU4354197A/en
Publication of WO1998012296A1 publication Critical patent/WO1998012296A1/en
Priority to NO991298A priority patent/NO991298L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3792Amine oxide containing polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0021Dye-stain or dye-transfer inhibiting compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3723Polyamines or polyalkyleneimines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38645Preparations containing enzymes, e.g. protease or amylase containing cellulase

Definitions

  • the present invention relates to compositions which provide care to the colors of fabrics in laundry treatment.
  • the present invention is a composition comprising a dye fixing agent and an amino-functional polymer comprising a polyamine backbone corresponding to the formula:
  • V units are terminal units having the formula:
  • W units are backbone units having the formula:
  • Y units are branching units having the formula:
  • iv)Y' units are branch point for a backbone or branch ring having the formula:
  • v) Z units are terminal units having the formula:
  • backbone linking R units are selected from the group consisting of C2-C12 a'kylene, C4-C12 alkenylene, C3-C12 hydroxyalkylene, C4- C12 dihydroxyalkylene, C8-C12 dialkylarylene, -(R 1 0) x R 1 -, (R10) X R 5 (0R1 ) X -
  • R ⁇ is selected from the group consisting of C2-C6 alkylene and mixtures thereof;
  • R ⁇ js selected from the group consisting of hydrogen, -(Rl ⁇ ) x B, and mixtures thereof;
  • R 4 is selected from the group consisting of C1 -C12 alkylene, C4-C12 alkenylene, C8-C12 arylalkylene, Ce-Ci fj arylene, and mixtures thereof;
  • R ⁇ is selected from the group consisting of C1-C12 alkylene, C3- 12 hydroxyalkylene, C4-C12 dihydroxy-alkylene, C8-C12 dialkylarylene, -C(O)- , -C(0)NHR6
  • the composition further comprises a fabric softener component.
  • a method for providing color care to fabrics upon domestic laundering treatments which comprise the step of contacting the fabrics with an aqueous medium comprising said composition.
  • a method for providing color care on treated fabrics upon domestic treatment which comprises the step of contacting the fabrics with said composition, wherein said composition is applied on a substrate, preferably a dryer-sheet.
  • Dye fixing agents are well-known, commercially available materials which are designed to improve the appearance of dyed fabrics by minimizing the loss of dye from fabrics due to washing. Not included within this definition are components which are fabric softeners or those described hereinafter as amino-functional polymers.
  • Cationic fixatives are available under various trade names from several suppliers. Representative examples include: CROSCOLOR PMF (July 1981 , Code No. 7894) and CROSCOLOR NOFF (January 1988, Code No. 8544) from Crosfield; INDOSOL E-50 (February 27, 1984, Ref. No.
  • SANDOFIX TPS which is also available from Sandoz and is a preferred polycationic fixative for use herein and SANDOFIX SWE (cationic resinous compound), REWIN SRF, REWIN SRF-0 and REWIN DWR from CHT-Beitlich GMBH, Tinofix® ECO, Tinofix®FRD and Solfin® available from Ciba-Geigy.
  • Dye fixing agents suitable for use in the present invention are ammonium compounds such as fatty acid - diamine condensates e.g.
  • a typical amount of the dye fixing agent to be employed in the composition of the invention is preferably up to 90% by weight, preferably up to 50% by weight, more preferably from 0.001 % to 10% by weight, most preferably from 0.5% to 5% active by weight of the composition.
  • the other essential component of the invention is an amino-functional polymer comprising a polyamine backbone.
  • the amino-functional polymers of the present invention are water-soluble or dispersible, polyamines.
  • the amino-functional polymers for use herein have a molecular weight between 200 and 10 ⁇ , preferably between 600 and 20,000, most preferably between 1000 and 10,000.
  • These polyamines comprise backbones that can be either linear or cyclic.
  • the polyamine backbones can also comprise polyamine branching chains to a greater or lesser degree.
  • the polyamine backbones described herein are modified in such a manner that at least each nitrogen of the polyamine chain is thereafter described in terms of a unit that is substituted, quatemized, oxidized, or combinations thereof.
  • the term "modification" as it relates to the chemical structure of the polyamines is defined as replacing a backbone -NH hydrogen atom by an R' unit (substitution), quaternizing a backbone nitrogen (quatemized) or oxidizing a backbone nitrogen to the N-oxide (oxidized).
  • substitution and “substitution” are used interchangably when referring to the process of replacing a hydrogen atom attached to a backbone nitrogen with an R' unit. Quaternization or oxidation may take place in some circumstances without substitution, but substitution is preferably accompanied by oxidation or quaternization of at least one backbone nitrogen.
  • linear or non-cyclic polyamine backbones that comprise the amino- functional polymer have the general formula:
  • the above backbones prior to optional but preferred subsequent modification comprise primary, secondary and tertiary amine nitrogens connected by R "linking" units.
  • primary amine nitrogens comprising the backbone or branching chain once modified are defined as V or Z "terminal" units.
  • a primary amine moiety located at the end of the main polyamine backbone or branching chain having the structure H 2 N-RJ-
  • secondary amine nitrogens comprising the backbone or branching chain once modified are defined as W "backbone" units.
  • W backbone
  • H the major constituent of the backbones and branching chains of the present invention, having the structure H
  • tertiary amine nitrogens comprising the backbone or branching chain once modified are further referred to as Y "branching" units.
  • Y branch point of either the polyamine backbone or other branching chains or rings, having the structure
  • [N-R]- is modified according to the present invention, it is thereafter defined as a Y. "branching" unit, or simply a Y unit. However, for the purposes of the present invention, some or all of the tertiary amine moieties can remain unmodified. These unmodified tertiary amine moieties by virtue of their position in the backbone chain remain “branching" units.
  • the R units associated with the V, W and Y unit nitrogens which serve to connect the polyamine nitrogens, are described hereinbelow.
  • the polyamine backbone has the formula
  • polyamine backbones of the present invention comprise no rings.
  • a fully non-branched linear modified polyamine according to the present invention has the formula
  • n is equal to 0.
  • the value for m ranges from a minimum value of 2 to 700, preferably 4 to 400, however, larger values of m are also preferred, especially when the value of the index n is very low or nearly 0.
  • Each polyamine nitrogen whether primary, secondary or tertiary, once modified according to the present invention, is further defined as being a member of one of three general classes; simple substituted, quatemized or oxidized. Those polyamine nitrogen units not modified are classed into V, W, Y, Y' or Z units depending on whether they are primary, secondary or tertiary nitrogens. That is unmodified primary amine nitrogens are V or Z units, unmodified secondary amine nitrogens are W units or Y' units and unmodified tertiary amine nitrogens are Y units for the purposes of the present invention.
  • V "terminal" units having one of three forms:
  • X is a suitable counter ion providing charge balance
  • Modified secondary amine moieties are defined as W "backbone" units having one of three forms:
  • R' b quatemized units having the structure:
  • X is a suitable counter ion providing charge balance
  • modified secondary amine moieties are defined as Y' units having one of three forms:
  • X is a suitable counter ion providing charge balance
  • Modified tertiary amine moieties are defined as Y "branching" units having one of three forms:
  • a primary amine unit comprising one R' unit in the form of a hydroxyethyl moiety is a V terminal unit having the formula (HOCH2CH2)HN-.
  • the Z "terminal” unit derives from a terminal primary amino moiety of the structure - H2- Non-cyclic polyamine backbones according to the present invention comprise only one Z unit whereas cyclic polyamines can comprise no Z units.
  • the Z "terminal” unit can be substituted with any of the R' units described further herein below, except when the Z unit is modified to form an N- oxide. In the case where the Z unit nitrogen is oxidized to an N-oxide, the nitrogen must be modified and therefore R' cannot be a hydrogen.
  • the polyamines of the present invention comprise backbone R "linking" units that serve to connect the nitrogen atoms of the backbone.
  • R units comprise units that for the purposes of the present invention are referred to as “hydrocarbyl R” units and “oxy R” units.
  • the "hydrocarbyl" R units are C2-C12 alkylene, C4-C12 alkenylene, C3-C12 hydroxyalkylene wherein the hydroxyl moiety may, take any position on the R unit chain except the carbon atoms directly connected to the polyamine backbone nitrogens; C4-C-
  • a dialkylarylene unit has the formula
  • the "oxy" R units comprise
  • R units are selected from the group consisting of C2-C12 alkylene, C3-C12 hydroxyalkylene, C4-C12 dihydroxyalkylene, C8-C12 dialkylarylene, - (RToJxR 1 -, -CH 2 CH(OR2)CH 2 -,
  • R units are C2-C12 alkylene, C3-C12 hydroxy-alkylene , C4-C 12 dihydroxyalkylene , -(R 1 O) x R 1 - , -(R 1 O) X R5(OR1) X -, -(CH 2 CH(OH)CH2 ⁇ ) z (R 1 0) y Rl(OCH2CH-(OH)CH2)w-' and mixtures thereof, even more preferred R units are C2-C12 alkylene, C3 hydroxyalkylene, and mixtures thereof, most preferred are C2-Cg alkylene.
  • the most preferred backbones of the present invention comprise at least 50% R units that are ethylene.
  • R1 units are C2-C5 alkylene, and mixtures thereof, preferably ethylene.
  • R2 is hydrogen, and -(R 1 0) x B, preferably hydrogen.
  • R3 is C1-C18 alkyl, C7-C12 arylalkylene, C7-C12 a 'M substituted aryl, Cg-C-]2 aryl, and mixtures thereof , preferably C1-C12 alkyl, C7-C12 arylalkylene, more preferably C-j-Ci2 alkyl, most preferably methyl.
  • R3 units serve as part of R' units described herein below.
  • R4 is C1-C12 alkylene, C4-Ci2 alkenylene, C8-C12 arylalkylene, Cg- C-jo arylene, preferably CI-C-JQ alkylene, C8-C-J2 arylalkylene, more preferably C2-C8 alkylene, most preferably ethylene or butylene.
  • R 5 is C ⁇
  • R 1 OCH2CH(OH)CH2-, -C(0)(R 4 ) r C(0)-, CH2CH(OH)CH2- ,
  • R 5 is preferably ethylene , -C(O)- , - C(0)NHR6NHC(0>- , -R (OR 1 )-, -CH 2 CH(OH)CH 2 -,
  • R ⁇ is C2-C12 alkylene or CQ-C- ⁇ 2 arylene.
  • the preferred "oxy" R units are further defined in terms of the R ⁇ , R , and R5 units.
  • Preferred "oxy" R units comprise the preferred R 1 , R2, and R5 units.
  • the preferred cotton soil release agents of the present invention comprise at least 50% R 1 units that are ethylene.
  • Preferred R 1 , R2, and R ⁇ units are combined with the "oxy" R units to yield the preferred "oxy” R units in the following manner.
  • R' units are selected from the group consisting of hydrogen, C1 -C22 alkyl, C3-C22 alkenyl, C7-C22 arylalkyl, C2-C22 hydroxyalkyl, - (CH2) p CO 2 M, -(CH 2 )qS0 3 M, -CH(CH2CO 2 M)CO 2 M, -(CH 2 ) p P0 3 M, - (R 1 0) m B, -C(0)R 3 , preferably hydrogen, C2-C22 hydroxyalkylene, benzyl, C1 -C22 alkylene, -(R 1 0) m B, -C(0)R 3 , -(CH2) p C0 2 M, - (CH2) q S03M, -CH(CH2C02 )C02M, more preferably C1 -C22 alkylene, -(R 1 0) x B, -C(O)R 3 , -(CH 2
  • CH(CH2CO2M)CO2M most preferably C1 -C22 alkylene, -(R 1 O) x B, and -C(0)R 3 .
  • R' When no modification or substitution is made on a nitrogen then the hydrogen atom will remain as the moiety representing R'.
  • R' units do not comprise a hydrogen atom when the V, W or Z units are oxidized, that is the nitrogens are N-oxides.
  • the backbone chain or branching chains do not comprise units of the following structure:
  • R' units do not comprise carbonyl moieties directly bonded to a nitrogen atom when the V, W or Z units are oxidized, that is, the nitrogens are N-oxides.
  • the R' unit - C(0)R 3 moiety is not bonded to an N-oxide modified nitrogen, that is, there are no N-oxide amides having the structure
  • B is hydrogen, C-
  • M is hydrogen or a water-soluble cation in sufficient amount to satisfy charge balance.
  • a sodium cation equally satisfies (CH2) p C02M, and -(CH2> q SO3M, thereby resulting in - (CH2) p C02 a, and -(CH2) q SO3Na moieties.
  • More than one monovalent cation, (sodium, potassium, etc.) can be combined to satisfy the required chemical charge balance.
  • more than one anionic group may be charge-balanced by a divalent cation, or more than one mono-valent cation may be necessary to satisfy the charge requirements of a poly- anionic radical.
  • a -(CH2>pPO3M moiety substituted with sodium atoms has the formula -(CH2)p O3Na3- Divalent cations such as calcium (Ca2 + ) or magnesium (Mg2 + ) may be substituted for or combined with other suitable mono-valent water-soluble cations.
  • Preferred cations are sodium and potassium, more preferred is sodium.
  • X is a water-soluble anion such as chlorine (Cl “ ), bromine (Br) and iodine (I " ) or X can be any negatively-charged radical such as sulfate (SO4 -) and methosulfate (CH3SO3-).
  • indices have the following values: p has the value from 1 to 6, q has the value from 0 to 6; r has the value 0 or 1 ; w has the value 0 or 1 , x has the value from 1 to 100; y has the value from 0 to 100; z haa the value 0 or 1 ; m has the value from 2 to 700, preferably from 4 to 400, n has the value from 0 to 350, preferably from 0 to 200; m + n has the value of at least 5.
  • x has a value lying in the range of from 1 to 20, preferably from 1 to 10.
  • the preferred amino-functional polymers of the present invention comprise polyamine backbones wherein less than 50% of the R groups comprise "oxy" R units, preferably less than 20% , more preferably less than 5%, most preferably the R units comprise no "oxy" R units.
  • the most preferred amino-functional polymers which comprise no "oxy" R units comprise polyamine backbones wherein less than 50% of the R groups comprise more than 3 carbon atoms.
  • ethylene, 1 ,2- propylene, and 1 ,3-propylene comprise 3 or less carbon atoms and are the preferred "hydrocarbyl" R units. That is when backbone R units are C 2" C 1 2 alkylene, preferred is C2-C3 alkylene, most preferred is ethylene.
  • the amino-functional polymers of the present invention comprise modified homogeneous and non-homogeneous polyamine backbones, wherein 100% or less of the -NH units are modified.
  • the term "homogeneous polyamine backbone” is defined as a polyamine backbone having R units that are the same (i.e., all ethylene).
  • this sameness definition does not exclude polyamines that comprise other extraneous units comprising the polymer backbone which are present due to an artifact of the chosen method of chemical synthesis.
  • ethanolamine may be used as an "initiator” in the synthesis of polyethyleneimines, therefore a sample of polyethyleneimine that comprises one hydroxyethyl moiety resulting from the polymerization "initiator” would be considered to comprise a homogeneous polyamine backbone for the purposes of the present invention.
  • a polyamine backbone comprising all ethylene R units wherein no branching Y units are present is a homogeneous backbone.
  • a polyamine backbone comprising all ethylene R units is a homogeneous backbone regardless of the degree of branching or the number of cyclic branches present.
  • non-homogeneous polymer backbone refers to polyamine backbones that are a composite of various R unit lengths and R unit types.
  • a non- homogeneous backbone comprises R units that are a mixture of ethylene and 1 ,2-propylene units.
  • a mixture of "hydrocarbyl” and “oxy” R units is not necessary to provide a non-homogeneous backbone.
  • Preferred amino-functional polymers of the present invention comprise homogeneous polyamine backbones that are totally or partially substituted by polyethyl ⁇ neoxy moieties, totally or partially quatemized amines, nitrogens totally or partially oxidized to N-oxides, and mixtures thereof.
  • polyethyl ⁇ neoxy moieties totally or partially quatemized amines
  • nitrogens totally or partially oxidized to N-oxides
  • Preferred amino-functional polymers of the present invention comprise homogeneous polyamine backbones that are totally or partially substituted by polyethyl ⁇ neoxy moieties, totally or partially quatemized amines, nitrogens totally or partially oxidized to N-oxides, and mixtures thereof.
  • backbone amine nitrogens must be modified in the same manner, the choice of modification being left to the specific needs of the formulator.
  • the degree of ethoxylation is also determined by the specific requirements of the formulator.
  • the preferred polyamines that comprise the backbone of the compounds of the present invention are generally polyalkyleneimines (PAI's), preferably polyethyleneimines (PEI's), or PEI's connected by moieties having longer R units than the parent PAI's or PEI's.
  • PAI's polyalkyleneimines
  • PEI's polyethyleneimines
  • PEI's polyethyleneimines
  • Preferred amine polymer backbones comprise R units that are C2 alkylene (ethylene) units, also known as poiyethylenimines (PEI's).
  • Preferred PEI's have at least moderate branching, that is the ratio of m to n is less than 4: 1 , however PEI's having a ratio of m to n of 2: 1 are most preferred.
  • Preferred backbones, prior to modification have the general formula:
  • PEI's will have a molecular weight greater than 200 daltons.
  • the relative proportions of primary, secondary and tertiary amine units in the polyamine backbone will vary, depending on the manner of preparation.
  • Each hydrogen atom attached to each nitrogen atom of the polyamine backbone chain represents a potential site for subsequent substitution, quaternization or oxidation.
  • polyamines can be prepared, for example, by polymerizing ethyleneimine in the presence of a catalyst such as carbon dioxide, sodium bisulfite, sulfuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, etc.
  • a catalyst such as carbon dioxide, sodium bisulfite, sulfuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, etc.
  • Specific methods for preparing these polyamine backbones are disclosed in U.S. Patent 2, 1 82,306, Ulrich et al., issued December 5, 1 939; U.S. Patent 3,033,746, Mayle et al., issued May 8, 1962; U.S. Patent 2,208,095, Esselmann et al., issued July 1 6, 1 940; U.S. Patent 2,806,839, Crowther, issued September 17, 1 957; and U.S. Patent 2,553,696, Wilson, issued May 21 , 1 951 ; all herein incorporated by reference.
  • Formula I depicts an amino-functional polymer comprising a PEI backbone wherein all substitutable nitrogens are modified by replacement of hydrogen with a polyoxyalkyleneoxy unit, -(CH2CH2 ⁇ )7H, having the formula
  • Formula II depicts an amino-functional polymer comprising a PEI backbone wherein all substitutable primary amine nitrogens are modified by replacement of hydrogen with a polyoxyalkyleneoxy unit, - (CH2CH2 ⁇ )7H, the molecule is then modified by subsequent oxidation of all oxidizable primary and secondary nitrogens to N-oxides, said polymer having the formula
  • Formula III depicts an amino-functional polymer comprising a PEI backbone wherein all backbone hydrogen atoms are substituted and some backbone amine units are quatemized.
  • the substituents are polyoxyalkyleneoxy units, -(CH2CH2O>7H, or methyl groups.
  • the modified PEI has the formula
  • Formula IV depicts an amino-functional polymer comprising a PEI backbone wherein the backbone nitrogens are modified by substitution (i.e. by -(CH2CH2 ⁇ )7H or methyl), quatemized, oxidized to N-oxides or combinations thereof.
  • the resulting polymer has the formula
  • not all nitrogens of a unit class comprise the same modification.
  • the present invention allows the formulator to have a portion of the secondary amine nitrogens ethoxylated while having other secondary amine nitrogens oxidized to N-oxides.
  • This also applies to the primary amine nitrogens, in that the formulator may choose to modify all or a portion of the primary amine nitrogens with one or more substituents prior to oxidation or quaternization. Any possible combination of R' groups can be substituted on the primary and secondary amine nitrogens, except for the restrictions described hereinabove.
  • amino-functional polymer suitable for use herein are poly(ethyleneimine) with a MW1200, hydroxyethylated poly(ethyleneimine) from Polysciences, with a. MW2000, and 80% hydroxyethylated poly(ethyleneimine) from Aldrich.
  • a typical amount of amino-functional polymer to be employed in the composition of the invention is preferably up to 90% by weight, preferably from 0.01 % to 50% active by weight, more preferably from 0.1 % to 20% by weight and most preferably from 0.5% to 5% by weight of the composition.
  • the composition may also contain optional components which may be suitable for further improving the aesthetic appearance of the fabrics treated therewith. Suitable optional components include a polyolefin dispersion, a fabric softener component, additional components and mixtures thereof.
  • the compositions of the invention comprise the dye fixing agent and the amino-functional polymer in a weight ratio of dye fixing agent to amino-functional polymer of from 100:1 to 0.01 :1 , preferably of from 10: 1 to 0.1 : 1 , more preferably of from 2:1 to 0.5: 1 .
  • a polyolefin dispersion may optionally be used in the composition of the invention in order to provide anti-wrinkles and improved water absorbency benefits to the fabrics.
  • the polyolefin is a polyethylene, polypropylene or mixtures thereof.
  • the polyolefin may be at least partially modified to contain various functional groups, such as carboxyl, carbonyl, ester, ether, alkylamide, sulfonic acid or amide groups. More preferably, the polyolefin employed in the present invention is at least partially carboxyl modified or, in other words, oxidized. In particular, oxidized or carboxyl modified polyethylene is preferred in the compositions of the present invention.
  • the polyolefin is preferably introduced as a suspension or an emulsion of polyolefin dispersed by use of an emulsifing agent.
  • the polyolefin suspension or emulsion preferably has from 1 % to 50%, more preferably from 10% to 35% by weight, and most preferably from 15% to 30% by weight of polyolefin in the emulsion.
  • the polyolefin preferably has a molecular weight of from 1 ,000 to 15,000 and more preferably from 4,000 to 10,000.
  • the emulsifier may be any suitable emulsification or suspending agent.
  • the emulsifier is a cationic, nonionic, zwitterionic or anionic surfactant or mixtures thereof.
  • any suitable cationic, nonionic or anionic surfactant may be employed as the emulsifier.
  • Preferred emulsifiers are cationic surfactants such as the fatty amine surfactants and in particular the ethoxylated fatty amine surfactants.
  • the cationic surfactants are preferred as emulsifiers in the present invention.
  • the polyolefin is dispersed with the emulsifier or suspending agent in a ratio of emulsifier to polyolefin of from 1 : 10 to 3: 1.
  • the emulsion includes from 0.1 % to 50%, more preferably from 1 % to 20% and most preferably from 2.5% to 10% by weight of emulsifier in the polyolefin emulsion.
  • Polyethylene emulsions and suspensions suitable for use in the present invention are available under the tradename VELUSTROL from HOECHST Aktiengesellschaft of Frankfurt am Main, Germany.
  • the polyethylene emulsions sold under the tradename VELUSTROL PKS, VELUSTROL KPA, or VELUSTROL P-40 may be employed in the compositions of the present invention.
  • compositions of the present invention contain from 0.01 % to 8% by weight of the dispersible polyolefin. More preferably, the compositions include from 0.1 % to 5% by weight and most preferably from 0.1 % to 3% by weight of the polyolefin.
  • the polyolefin is added to the compositions of the present invention as an emulsion or suspension, the emulsion or suspension is added at sufficient enough quantities to provide the above noted levels of dispersible polyolefin in the compositions.
  • a fabric softener component may also suitably be used in the composition of the invention so as to provide softness and antistastic properties to the treated fabrics.
  • the fabric softener component will typically be present at a level sufficient to provide softening and antistatic properties. Typical levels are those conventionally used in fabric softening compositions, i.e from 1 % to 99% by weight of the composition.
  • the composition will preferably comprise a level of fabric softening components for liquid compositions of from 1 % to 5% by weight for the diluted compositions or from 5% to 80%, more preferably 10% to 50%, most preferably 15% to 35% by weight for concentrated compositions.
  • the level of nonionic softener component in the composition will typically be from 0.1 % to 10%, preferably from 1 % to 5% by weight.
  • the preferred level of fabric softener component will preferably be from 20% to 99%, more preferably from 30% to 90% by weight, and even more preferably from 35% to 85% by weight.
  • Said fabric softening component may be selected from cationic, nonionic, amphoteric or anionic fabric softening component.
  • the preferred, typical cationic fabric softening components include the water-insoluble quaternary-ammonium fabric softening actives, the most commonly used having been di-long alkyl chain ammonium chloride or methyl sulfate.
  • Preferred cationic softeners among these include the following:
  • DTDMAC ditallow dimethylammonium chloride
  • DSOEDMAC di(stearoyloxyethyl) dimethylammonium chloride
  • the quaternary ammonium compounds and amine precursors herein have the formula (I) or (II), below :
  • Q is selected from -O-C(O)-, -C(0)-0-, -0-C(0)-0-, -NR 4 -C(0)-, C(0)-NR 4 -;
  • R2 is (CH 2 ) m -Q-T4 or T ⁇ or R 3 ;
  • R 3 is C1 -C4 alkyl or C1 -C4 hydroxyalkyl or H;
  • R 4 is H or C1 -C4 alkyl or C1 -C4 hydroxyalkyl;
  • T 1 , T 2 , T 3 , T 4 , T 5 are independently C 1 1 -C22 alkyl or alkenyl;
  • n and m are integers from 1 to 4;
  • X" is a softener-compatible anion.
  • Non-limiting examples of softener-compatible anions include chloride or methyl sulfate.
  • the alkyl, or alkenyl, chain T ⁇ , T , T 3 , T 4 , T ⁇ must contain at least 1 1 carbon atoms, preferably at least 16 carbon atoms.
  • the chain may be straight or branched.
  • Tallow is a convenient and inexpensive source of long chain alkyl and alkenyl material.
  • the compounds wherein T ⁇ , ⁇ , T 3 , T 4 , T ⁇ represent the mixture of long chain materials typical for tallow are particularly preferred.
  • quaternary ammonium compounds suitable for use in the aqueous fabric softening compositions herein include :
  • compounds 1 -7 are examples of compounds of Formula (I); compound 8 is a compound of Formula (II).
  • N,N-di(tallowyl-oxy-ethyl)-N,N-dimethyl ammonium chloride where the tallow chains are at least partially unsaturated.
  • the level of unsaturation of the tallow chain can be measured by the Iodine Value (IV) of the corresponding fatty acid, which in the present case should preferably be in the range of from 5 to 100 with two categories of compounds being distinguished, having a IV below or above 25.
  • IV Iodine Value
  • the anion is merely present as a counterion of the positively charged quaternary ammonium compounds.
  • the nature of the counterion is not critical at all to the practice of the present invention. The scope of this invention is not considered limited to any particular anion.
  • amine precursors thereof is meant the secondary or tertiary amines corresponding to the above quaternary ammonium compounds, said amines being substantially protonated in the present compositions due to the pH values.
  • Additional fabric softening materials may be used in addition or alternatively to the cationic fabric softener. These may be selected from nonionic, amphoteric or anionic fabric softening material. Disclosure of such materials may be found in US 4,327,133; US 4,421 ,792; US
  • nonionic fabric softener materials typically have an HLB of from 2 to 9, more typically from 3 to 7.
  • Such nonionic fabric softener materials tend to be readily dispersed either by themselves, or when combined with other materials such as singie-long-chain alkyl cationic surfactant described in detail hereinafter.
  • Dispersibilit ⁇ can be improved by using more single-long-chain alkyl cationic surfactant, mixture with other materials as set forth hereinafter, use of hotter water, and/or more agitation.
  • the materials selected should be relatively crystalline, higher melting, (e.g. > 40°C) and relatively water-insoluble.
  • Preferred nonionic softeners are fatty acid partial esters of polyhydric alcohols, or anhydrides thereof, wherein the alcohol, or anhydride, contains from 2 to 18, preferably from 2 to 8, carbon atoms, and each fatty acid moiety contains from 12 to 30, preferably from 16 to 20, carbon atoms.
  • such softeners contain from one to 3, preferably 2 fatty acid groups per molecule.
  • the polyhydric alcohol portion of the ester can be ethylene glycol, glycerol, poly (e.g., di-, tri-, tetra, penta-, and/or hexa-) glycerol, xylitol, sucrose, erythritol, pentaerythritol, sorbitol or sorbitan. Sorbitan esters and poiygl ⁇ cerol monostearate are particularly preferred.
  • the fatty acid portion of the ester is normally derived from fatty acids having from 12 to 30, preferably from 16 to 20, carbon atoms, typical examples of said fatty acids being lauric acid, m ⁇ ristic acid, palmitic acid, stearic acid and behenic acid.
  • Highly preferred optional nonionic softening agents for use in the present invention are the sorbitan esters, which are esterified dehydration products of sorbitol, and the glycerol esters.
  • Commercial sorbitan monostearate is a suitable material.
  • Mixtures of sorbitan stearate and sorbitan palmitate having stearate/palmitate weight ratios varying between 1 0: 1 and 1 : 1 0, and 1 ,5-sorbitan esters are also useful.
  • Glycerol and polyglycerol esters especially glycerol, diglycerol, triglycerol, and polyglycerol mono- and/or di-esters, preferably mono-, are preferred herein (e.g. polyglycerol monostearate with a trade name of Radiasurf 7248).
  • Useful glycerol and polyglycerol esters include mono-esters with stearic, oleic, palmitic, lauric, isostearic, myristic, and/or behenic acids and the diesters of stearic, oleic, palmitic, lauric, isostearic, behenic, and/or myristic acids. It is understood that the typical mono-ester contains some di- and tri-ester, etc.
  • the "glycerol esters” also include the polyglycerol, e.g., diglycerol through octaglycerol esters.
  • the polyglycerol polyols are formed by condensing glycerin or epichlorohydrin together to link the glycerol moieties via ether linkages.
  • the mono- and/or diesters of the polyglycerol polyols are preferred, the fatty acyl groups typically being those described hereinbefore for the sorbitan and glycerol esters.
  • softening clays such as the low ion-exchange-capacity ones described in EP-A-0, 150,531 .
  • the pH of the liquid compositions herein is an essential parameter of the present invention. Indeed, it influences the stability of the quaternary ammonium or amine precursors compounds, especially in prolonged storage conditions.
  • the pH as defined in the present context, is measured in the neat compositions at 20°C.
  • the neat pH measured in the above-mentioned conditions, must be in the range of from 2.0 to 4.5.
  • the pH of the neat composition is in the range of 2.0 to 3.5, while if it is in a diluted form, the pH of the neat composition is in the range of 2.0 to 3.0.
  • the pH of these compositions herein can be regulated by the addition of a Bronsted acid.
  • Suitable acids include the inorganic mineral acids, carboxylic acids, in particular the low molecular weight (C1 -C5) carboxylic acids, and alkylsulfonic acids.
  • Suitable inorganic acids include HCl, H2SO4, HNO3 and H3PO4.
  • Suitable organic acids include formic, acetic, citric, methylsulfonic and ethylsulfonic acid.
  • Preferred acids are citric, hydrochloric, phosphoric, formic, methylsulfonic acid, and benzoic acids.
  • composition may also optionally contain additional components such as enzymes, surfactant concentration aids, electrolyte concentration aids, stabilisers, such as well-known antioxidants and reductive agents, soil release polymers, emulsifiers, bacteriocides, colorants, perfumes, preservatives, optical brighteners, anti-ionisation agents, and antifoam agents and mixtures thereof.
  • additional components such as enzymes, surfactant concentration aids, electrolyte concentration aids, stabilisers, such as well-known antioxidants and reductive agents, soil release polymers, emulsifiers, bacteriocides, colorants, perfumes, preservatives, optical brighteners, anti-ionisation agents, and antifoam agents and mixtures thereof.
  • carrier materials such as zeolites, starch, cyclodextrin, wax, etc.
  • composition herein can optionally employ one or more enzymes such as lipases, proteases, cellulase, amylases and peroxidases.
  • a preferred enzyme for use herein is a cellulase enzyme. Indeed, this type of enzyme will further provide a color care benefit to the treated fabric.
  • Cellulases usable herein include both bacterial and fungal types, preferably having a pH optimum between 5 and 9.5. U.S.
  • compositions herein will typically comprise from 0.001 % to 5%, preferably 0.01 %-1 % by weight of a commercial enzyme preparation.
  • activity units are preferred (e.g. CEVU or cellulase Equivalent Viscosity Units).
  • the compositions of the present invention can contain cellulase enzymes at a level equivalent to an activity from about 0.5 to 1000 CEVU/gram of composition.
  • Cellulase enzyme preparations used for the purpose of formulating the compositions of this invention typically have an activity comprised between 1 ,000 and 10,000 CEVU/gram in liquid form, around 1 ,000 CEVU/gram in solid form.
  • Surfactant concentration aids may also optionally be used. When used, said surfactant concentration aid will help achieving the desired finished product viscosity as well as stabilising the finished product upon storage.
  • Surfactant concentration aids are typically selected from single long chain alkyl cationic surfactants, nonionic alkoxylated surfactants, amine oxides, fatty acids, and mixtures thereof, typically used at a level of from 0 to 15% by weight of the composition.
  • Such mono-long-chain-alkyl cationic surfactants useful in the present invention are, preferably, quaternary ammonium salts of the general formula : [R N + R 3 ] X-
  • R group is C-
  • a fatty acid ester of choline preferably C12-C14 (coco) choline ester and/or C16-C18 tallow choline ester at from 0.1 % to 20% by weight of the softener active.
  • Each R is a C1 -C4 alkyl or substituted (e.g., hydroxy) alkyl, or hydrogen, preferably methyl, and the counterion X" is a softener compatible anion, for example, chloride, bromide, methyl sulfate, etc.
  • cationic materials with ring structures such as alkyl imidazoline, imidazolinium, pyridine, and pyridinium salts having a single C12-C30 alkyl chain can also be used. Very low pH is required to stabilize, e.g., imidazoline ring structures.
  • alkyl imidazolinium salts and their imidazoline precursors useful in the. present invention have the general formula :
  • Y 2 is -C(0)-0-, -0-(O)C-, -C(0)-N(R 5 )-, or -N(R 5 )-C(O)- in which R5 is hydrogen or a C1 -C4 alkyl radical; R 6 is a C1 -C4 alkyl radical or H (for imidazoline precursors); R? and R ⁇ are each independently selected from R and R as defined hereinbefore for the single-long-chain cationic surfactant with only one being R2,
  • alkyl pyridinium salts useful in the present invention have the general formula :
  • R2 and X- are as defined above.
  • a typical material of this type is cetyl pyridinium chloride.
  • Suitable nonionic alkoxylated surfactants for use herein include addition products of ethylene oxide and, optionally, propylene oxide, with fatty alcohols, fatty acids and fatty amines.
  • Suitable compounds are substantially water-soluble surfactants of the general formula :
  • R2 is selected from primary, secondary and branched chain alkyl and/or acyl hydrocarbyl groups; primary, secondary and branched chain alkenyl hydrocarbyl groups; and primary, secondary and branched chain alkyl- and alkenyl-substituted phenolic hydrocarbyl groups; said hydrocarbyl groups having a hydrocarbyl chain length of up to 20, preferably from 10 to 18 carbon atoms.
  • Y is typically -0-, -C(O)O-, -C(O)N(R)-, or -C(0)N(R)R-, in which R 2 and R, when present, have the meanings given hereinbefore, and/or R can be hydrogen, and z is of from 5 to 50, preferably of from 1 - to 30.
  • nonionic surfactants herein are characterized by an HLB (hydrophilic- lipophilic balance) of from 7 to 20, preferably from 8 to 15.
  • HLB hydrophilic- lipophilic balance
  • nonionic surfactants examples include buthionic surfactants
  • Olefinic Alkoxylates and Branched Chain Alkoxylates such as branched chain primary and secondary alcohols which are available from the well-known "OXO" process.
  • Suitable amine oxides include those with one alkyl or hydroxyalkyl moiety of 8 to 28 carbon atoms, preferably from 8 to 16 carbon atoms, and two alkyl moieties selected from alkyl groups and hydroxyalkyl groups with 1 to 3 carbon atoms.
  • Examples include dimethyloctylamine oxide, diethyldecylamine oxide, bis- (2-hydroxyethyl)dodecylamine oxide, dimethyldodecyl-amine oxide, dipropyltetradecylamine oxide, methylethylhexadecylamine oxide, dimethyl-2-hydroxyoctadecylamine oxide, and coconut fatty alkyl dimethylamine oxide.
  • Suitable fatty acids include those containing from 12 to 25, preferably from 16 to 20 total carbon atoms, with the fatty moiety containing from 10 to 22, preferably from 15 to 17 (mid cut), carbon atoms.
  • a preferred surfactant concentration aid for use herein is a nonionic alkoxylated surfactant.
  • such nonionic alkoxylated surfactant will be present in an amount of 0.01 % to 10% by weight, preferably from 0.05% to 2% by weight of the composition.
  • the composition of the invention has a weight ratio of amino-functional polymer to nonionic alkoxylated surfactant of from 500:1 to 0.5: 1 , preferably of from 30:1 to 1 : 1.
  • Inorganic viscosity control agents which can also act like or augment the effect of the surfactant concentration aids, include water-soluble, ionizable salts which can also optionally be incorporated into the compositions of the present invention. Incorporation of these components to the composition must be processed at a very slow rate.
  • ionizable salts can be used.
  • suitable salts are the halides of the Group IA and HA metals of the Periodic Table of the Elements, e.g., calcium chloride, magnesium chloride, sodium chloride, potassium bromide, and lithium chloride.
  • the ionizable salts are particularly useful during the process of mixing the ingredients to make the compositions herein, and later to obtain the desired viscosity.
  • the amount of ionizable salts used depends on the amount of active ingredients used in the compositions and can be adjusted according to the desires of the formulator. Typical levels of salts used to control the composition viscosity are from 20 to 20,000 parts per million (ppm), preferably from 20 to 1 1 ,000 ppm, by weight of the composition.
  • Alkylene polyammonium salts can be incorporated into the composition to give viscosity control in addition to or in place of the water-soluble, ionizable salts above.
  • these agents can act as scavengers, forming ion pairs with anionic detergent carried over from the main wash, in the rinse, and on the fabrics, and may improve softness performance. These agents may stabilise the viscosity over a broader range of temperature, especially at low temperatures, compared to the inorganic electrolytes.
  • alkylene polyammonium salts include l-lysine monohydrochloride and 1 ,5-diammonium 2-methyl pentane dihydrochloride.
  • Suitable liquid carriers are selected from water, organic solvents and mixtures thereof.
  • the liquid carrier employed in the instant compositions is preferably at least primarily water due to its low cost relative availability, safety, and environmental compatibility.
  • the level of water in the liquid carrier is preferably at least 50%, most preferably at least 60%, by weight of the carrier.
  • Mixtures of water and low molecular weight, e.g., ⁇ 200, organic solvent, e.g., lower alcohol such as ethanol, propanol, isopropanol or butanol are useful as the carrier liquid.
  • Low molecular weight alcohols include monohydric, dihydric (glycol, etc.) trihydric (glycerol, etc.), and higher polyhydric (polyols) alcohols.
  • a method for providing color care to fabrics upon domestic laundering treatment which comprises the step of contacting the fabrics with an aqueous medium comprising a composition as defined hereinbefore.
  • said aqueous medium is at a temperature between 2°C to 40°C, more preferably between 5°C to 25°C.
  • the composition of the invention may be applied on a substrate, such as a dryer-sheet.
  • a method for providing color care on treated fabrics upon domestic treatment which comprises the step of contacting the fabrics with a composition as defined hereinbefore, wherein said composition is applied on a substrate, preferably a dryer-sheet.
  • the compositions are used in tumble-drying processes.
  • color care is meant that fabrics which have been in contact with an aqueous solution of a composition comprising a combination of a dye fixing agent and an amino-functional polymer, as defined hereinbefore, and after, and/or prior and/or simultaneously washed with a detergent composition exhibit a better fabric color appearance compared to fabrics which have not been contacted with said composition.
  • compositions of the invention are suitable for use in different applications such as a pre-treatment composition prior to the laundering of the fabrics, as a wash additive, as a composition suitable for use in the rinse-cycle of the laundry cycle or applied on a dryer-sheet.
  • the compositions of the invention may also be in a spray, foam, or aerosol form which for example can be suitable for use while ironing, or applied on the surfaces of the tumble dryer.
  • the color care benefit may either be assessed visually or by determination of the so-called delta-E values.
  • PSU panel score unit
  • Delta E is the computed color difference as defined in ASTM D2244, i.e the magnitude and direction of the difference between two psychophysical color stimuli defined by tristimulus values, or by chromaticity coordinates and luminance factor, as computed by means of a specified set of color-difference equations defined in the CIE 1 976 CIELAB opponent-color space, the Hunter opponent-color space, the Friele-Mac Adam-Chickering color space or any equivalent color space.
  • DOEQA Di-(oleyloxyethyl) dimethyl ammonium methylsulfate
  • DTDMAC Ditallow dimethylammonium chloride
  • DHEQA Di-(soft-tallowyl-oxy-ethyl) hydroxyethyl methyl ammonium methylsulfate
  • Neodol 45-13 C14-C15 linear primary alcohol ethoxylate sold by
  • Dye Fix 1 Cationic dye fixing agent (50% active) available under the tradename Tinofix Eco from Ciba-Geigy Dye Fix 2 Emulsified cationic dye fixative (30% active) available under the tradename Rewin SRF-O from CHT-Beitlich Carezyme cellul ⁇ tic enzyme sold by NOVO Industries A/S
  • the ethoxylation is conducted in a 2 gallon stirred stainless steel autoclave equipped for temperature measurement and control, pressure measurement, vacuum and inert gas purging, sampling, and for introduction of ethylene oxide as a liquid.
  • a - 20 lb. net cylinder of ethylene oxide (ARC) is set up to deliver ethylene oxide as a liquid by a pump to the autoclave with the cylinder placed on a scale so that the weight change of the cylinder could be monitored.
  • PEI polyethyleneimine
  • the autoclave is then sealed and purged of air (by applying vacuum to minus 28" Hg followed by pressurization with nitrogen to 250 psia, then venting to atmospheric pressure).
  • the autoclave contents are heated to 130 °C while applying vacuum.
  • the autoclave is charged with nitrogen to about 250 psia while cooling the autoclave to about 105 °C.
  • Ethylene oxide is then added to the autoclave incrementally over time while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate.
  • the ethylene oxide pump is turned off and cooling is applied to limit any temperature increase resulting from any reaction exotherm.
  • the temperature is maintained between 100°C and 1 10°C while the total pressure is allowed to gradually increase during the course of the reaction.
  • After a total of 750 grams of ethylene oxide has been charged to the autoclave (roughly equivalent to one mole ethylene oxide per PEI nitrogen function), the temperature is increased to 1 10°C and the autoclave is allowed to stir for an additional hour. At this point, vacuum is applied to remove any residual unreacted ethylene oxide.
  • reaction mixture is then deodorized by passing about 100 cu. ft. of inert gas (argon or nitrogen) through a gas dispersion frit and through the reaction mixture while agitating and heating the mixture to 130°C.
  • inert gas argon or nitrogen
  • the final reaction product is cooled slightly and collected in glass containers purged with nitrogen. In other preparations the neutralization and deodorization is accomplished in the reactor before discharging the product.
  • Step A If a PEI 1 800 E7 is desired, the following step of catalyst addition will be included between Step A and B.
  • Vacuum is continuously applied while the autoclave is cooled to about 50°C while introducing 376g of a 25% sodium methoxide in methanol solution ( 1 .74 moles, to achieve a 10% catalyst loading based upon PEI nitrogen functions).
  • the methoxide solution is sucked into the autoclave under vacuum and then the autoclave temperature controller setpoint is increased to 1 30°C.
  • a device is used to monitor the power consumed by the agitator.
  • the agitator power is monitored along with the temperature and pressure. Agitator power and temperature values gradually increase as methanol is removed from the autoclave and the viscosity of the mixture increases and stabilizes in about 1 hour indicating that most of the methanol has been removed.
  • the mixture is further heated and agitated under vacuum for an additional 30 minutes.
  • Vacuum is removed and the autoclave is cooled to 1 05°C while it is being charged with nitrogen to 250 psia and then vented to ambient pressure.
  • the autoclave is charged to 200 psia with nitrogen.
  • Ethylene oxide is again added to the autoclave incrementally as before while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate while maintaining the temperature between 100°C and 1 10°C and limiting any temperature increases due to reaction exotherm.
  • 4,500g of ethylene oxide resulting in a total of 7 moles of ethylene oxide per mole of PEI nitrogen function
  • the temperature is increased to 1 10°C and the mixture stirred for an additional hour.
  • Dimethyl sulfate (Aldrich, 3.8g, 0.030 mol) is added all at once to the rapidly stirring solution, which is then stoppered and stirred at room temperature overnight.
  • acetonitrile is evaporated on the rotary evaporator at ⁇ 60°C, followed by a Kugelrohr apparatus (Aldrich) at ⁇ 80°C to afford ⁇ 220g of the desired material as a dark brown viscous liquid.
  • a 1 3 C-NMR (D2O) spectrum shows the absence of a peak at ⁇ 58ppm corresponding to dimethyl sulfate.
  • a 1 H-NMR (D2O) spectrum shows the partial shifting of the peak at 2.5ppm (methylenes attached to unquatemized nitrogens) to ⁇ 3.0ppm.
  • polyethyleneimine having a molecular weight of 1 800 and ethoxylated to a degree of about 7 ethoxy groups per nitrogen (PEI-
  • the ethoxylation is conducted in a 2 gallon stirred stainless steel autoclave equipped for temperature measurement and control, pressure measurement, vacuum and inert gas purging, sampling, and for introduction of ethylene oxide as a liquid.
  • a - 20 lb. net cylinder of ethylene oxide (ARC) is set up to deliver ethylene oxide as a liquid by a pump to the autoclave with the cylinder placed on a scale so that the weight change of the cylinder could be monitored.
  • PEI polyethyleneimine
  • the autoclave is then sealed and purged of air (by applying vacuum to minus 28" Hg followed by pressurization with nitrogen to 250 psia, then venting to atmospheric pressure).
  • the autoclave contents are heated to 1 30°C while applying vacuum.
  • the autoclave is charged with nitrogen to about 250 psia while cooling the autoclave to about 105°C.
  • Ethylene oxide is then added to the autoclave incrementally over time while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate.
  • the ethylene oxide pump is turned off and cooling is applied to limit any temperature increase resulting from any reaction exotherm.
  • the temperature is maintained between 100°C and 1 10°C while the total pressure is allowed to gradually increase during the course of the reaction.
  • reaction mixture is then deodorized by passing about 100 cu. ft. of inert gas (argon or nitrogen) through a gas dispersion frit and through the reaction mixture while agitating and heating the mixture to 130°C.
  • inert gas argon or nitrogen
  • the final reaction product is cooled slightly and collected in glass containers purged with nitrogen.
  • Step A If a PEI 1200 E7 is desired, the following step of catalyst addition will be included between Step A and B.
  • Vacuum is continuously applied while the autoclave is cooled to about 50°C while introducing 376g of a 25% sodium methoxide in methanol solution (1.74 moles, to achieve a 10% catalyst loading based upon PEI nitrogen functions).
  • the methoxide solution is sucked into the autoclave under vacuum and then the autoclave temperature controller setpoint is increased to 130°C.
  • a device is used to monitor the power consumed by the agitator.
  • the agitator power is monitored along with the temperature and pressure. Agitator power and temperature values gradually increase as methanol is removed from the autoclave and the viscosity of the mixture increases and stabilizes in about 1 hour indicating that most of the methanol has been removed.
  • the mixture is further heated and agitated under vacuum for an additional 30 minutes. Vacuum is removed and the autoclave is cooled to 105°C while it is being charged with nitrogen to 250 psia and then vented to ambient pressure. The autoclave is charged to 200 psia with nitrogen.
  • Ethylene oxide is again added to the autoclave incrementally as before while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate while maintaining the temperature between 100°C and 1 10°C and limiting any temperature increases due to reaction exotherm.
  • 4,500g of ethylene oxide resulting in a total of 7 moles of ethylene oxide per mole of PEI nitrogen function
  • the temperature is increased to 1 10°C and the mixture stirred for an additional hour.
  • reaction mixture is then collected in nitrogen purged containers and eventually transferred into a 22 L three neck round bottomed flask equipped with heating and agitation.
  • the strong alkali catalyst is neutralized by adding 1 67g methanesulfonic acid (1 .74 moles).
  • PEI 1 200 E1 5 and PEI 1 200 E20 can be prepared by the above method by adjusting the reaction time and the relative amount of ethylene oxide used in the reaction.
  • NMR (D2O) spectrum shows the partial shifting of the peak at 2.5ppm (methylenes attached to unquaternized nitrogens) to ⁇ 3.0ppm.
  • a ⁇ H-NMR (D2O) spectrum shows the total shifting of the methylene peaks at 2.5-3.0ppm to ⁇ 3.5ppm.
  • To the solution is added just enough sodium bisulfite as a 40% water solution to bring the residual peroxide level down to 1 -5ppm.
  • the sodium sulfate which forms causes an aqueous phase to separate which contains salts, but little or no organics.
  • the aqueous salt phase is removed and the desired oxidized polyethyleneimine derivative is obtained and stored as a 52% solution in water.
  • compositions for use as dryer-added sheets are in accordance with the invention.

Abstract

The present invention is a composition comprising a dye fixing agent and a specific amino-functional polymer, said composition providing an improved color care on fabrics upon laundry treatments.

Description

COLOR CARE COMPOSITIONS
Field of the invention
The present invention relates to compositions which provide care to the colors of fabrics in laundry treatment.
Background of the invention
The appearance of colored fabrics, e.g., clothing, bedding, household fabrics like table linens is one of the areas of concern to consumers. Indeed, upon typical consumer's uses of the fabrics such as wearing, washing, rinsing and/or tumble-drying of fabrics, a loss in the fabric appearance, which is at least partly due to loss of color fidelity and color definition, is observed. Such a problem of color loss is even more acute in laundry treatment after multiwash cycles.
It is therefore an object of the invention to provide a composition which provides improved color appearance of the laundered fabrics, especially after multiwash cycles.
The Applicant has now surprisingly found that the combination of a dye fixing agent and an amino-functional polymer overcomes the problem.
Summary of the invention
The present invention is a composition comprising a dye fixing agent and an amino-functional polymer comprising a polyamine backbone corresponding to the formula:
R' I
[R2N-R]n+1 -[N-R]m-[N-R]n-NR2 having a polyamine formula V(n + 1 )WmYnZ or a polyamine backbone corresponding to the formula:
I R' | R
[R2N-R]ιrk+1— [N-R]m-[N-R]n-fN-R]k-NR, 2 having a polyamine formula V(n.| + i
Figure imgf000004_0001
wherein k is less than or equal to n, said polyamine backbone has a molecular weight greater than 200 daltons, wherein
i) V units are terminal units having the formula:
Ri_N-R— R--N u-xR — or R'-N t-R —
I ° I or I
R' R' R' r
ii) W units are backbone units having the formula:
Figure imgf000004_0002
iii) Y units are branching units having the formula:
0 X
— N-R— or —N-R — or -N-R —
; and
iv)Y' units are branch point for a backbone or branch ring having the formula:
—N-R— or —N-R— or — N-R— R R R
v) Z units are terminal units having the formula:
Figure imgf000005_0001
wherein backbone linking R units are selected from the group consisting of C2-C12 a'kylene, C4-C12 alkenylene, C3-C12 hydroxyalkylene, C4- C12 dihydroxyalkylene, C8-C12 dialkylarylene, -(R10)xR1 -, (R10)XR5(0R1 )X-
(CH2CH(OR2)CH2O)z(Rl O)yR1 (OCH2CH{OR2)CH2)w- . -C(0)(R )rC(O)-
-CH2CH(OR2)CH2-, and mixtures thereof; wherein R^ is selected from the group consisting of C2-C6 alkylene and mixtures thereof; R^ js selected from the group consisting of hydrogen, -(Rl θ)xB, and mixtures thereof; R4 is selected from the group consisting of C1 -C12 alkylene, C4-C12 alkenylene, C8-C12 arylalkylene, Ce-Ci fj arylene, and mixtures thereof; R^ is selected from the group consisting of C1-C12 alkylene, C3- 12 hydroxyalkylene, C4-C12 dihydroxy-alkylene, C8-C12 dialkylarylene, -C(O)- , -C(0)NHR6|\IHC(0)- , -R^OR1 )-, -C(0)(R4)rC(0)-, -CH2CH(OH)CH2-, -CH CH(OH)CH2θ(R1 O}y R1 OCH2CH(OH)CH2-, and mixtures thereof; R^ is selected from the group consisting of C2-C12 alkylene or C6-C12 arylene; R' units are selected from the group consisting of hydrogen, C1 -C22 alkyl, C3-C22 alkenyl, C7-C22 arylalkyl , C2-C22 hydroxyalkyl , -(CH2)pC02M , -(CH2)qS03M , -CH(CH2CO2M)CO2M, -(CH2)pP03M, -(R10)xB, -C(0)R3, and mixtures thereof; oxide; B is selected from the group consisting of hydrogen, C1 - C6 alkyl, -(CH2)qSO3lv1, -{CH2)pC02M, -(CH2)q(CHSθ3M)CH2Sθ3M, - (CH2)q-(CHSθ2M)CH2Sθ3M, -(CH2)pPO3M, -PO3M, and mixtures thereof; R3 is selected from the group consisting of C-| -Ci 8 alkyl, C7- C12 arylalkyl, C7-C12 alkyl substituted aryl, C6-C12 arγl, and mixtures thereof; M is hydrogen or a water-soluble cation in sufficient amount to satisfy charge balance; X is a water-soluble anion; m has the value from 2 to 700; n has the value from 0 to 350; p has the value from 1 to 6, q has the value from 0 to 6; r has the value of 0 or 1 ; w has the value 0 or 1 ; x has the value from 1 to 100; y has the value from 0 to 100; z has the value 0 or 1 .
In a preferred embodiment of the invention, the composition further comprises a fabric softener component. In another aspect of the invention, there is provided a method for providing color care to fabrics upon domestic laundering treatments which comprise the step of contacting the fabrics with an aqueous medium comprising said composition.
In a further aspect, there is provided a method for providing color care on treated fabrics upon domestic treatment which comprises the step of contacting the fabrics with said composition, wherein said composition is applied on a substrate, preferably a dryer-sheet.
Detailed description of the invention
Dve fixing agent
An essential component of the invention is a dye fixing agent. Dye fixing agents, or "fixatives", are well-known, commercially available materials which are designed to improve the appearance of dyed fabrics by minimizing the loss of dye from fabrics due to washing. Not included within this definition are components which are fabric softeners or those described hereinafter as amino-functional polymers.
Many dye fixing agents are cationic, and are based on various quatemized or otherwise cationically charged organic nitrogen compounds. Cationic fixatives are available under various trade names from several suppliers. Representative examples include: CROSCOLOR PMF (July 1981 , Code No. 7894) and CROSCOLOR NOFF (January 1988, Code No. 8544) from Crosfield; INDOSOL E-50 (February 27, 1984, Ref. No. 6008.35.84; poiyethyleneamine-based) from Sandoz; SANDOFIX TPS, which is also available from Sandoz and is a preferred polycationic fixative for use herein and SANDOFIX SWE (cationic resinous compound), REWIN SRF, REWIN SRF-0 and REWIN DWR from CHT-Beitlich GMBH, Tinofix® ECO, Tinofix®FRD and Solfin® available from Ciba-Geigy.
Other cationic dye fixing agents are described in "Aftertreatments for improving the fastness of dyes on textile fibres" by Christopher C. Cook (REV. PROG. COLORATION Vol. 12, 1982). Dye fixing agents suitable for use in the present invention are ammonium compounds such as fatty acid - diamine condensates e.g. the hydrochloride, acetate, metosulphate and benzyl hydrochloride of oleyldiethyl aminoethylamide, oleylmethyl- diethylenediaminemethosulphate, monostearyl-ethylene diaminotrimethylammonium methosuiphate and oxidized products of tertiary amines; derivatives of polymeric alkyldiamines, polyamine- cyanuric chloride condensates and aminated glycerol dichlorohydrins.
A typical amount of the dye fixing agent to be employed in the composition of the invention is preferably up to 90% by weight, preferably up to 50% by weight, more preferably from 0.001 % to 10% by weight, most preferably from 0.5% to 5% active by weight of the composition.
Amino-functional polymer
The other essential component of the invention is an amino-functional polymer comprising a polyamine backbone. The amino-functional polymers of the present invention are water-soluble or dispersible, polyamines. Typically, the amino-functional polymers for use herein have a molecular weight between 200 and 10^, preferably between 600 and 20,000, most preferably between 1000 and 10,000. These polyamines comprise backbones that can be either linear or cyclic. The polyamine backbones can also comprise polyamine branching chains to a greater or lesser degree. Preferably, the polyamine backbones described herein are modified in such a manner that at least each nitrogen of the polyamine chain is thereafter described in terms of a unit that is substituted, quatemized, oxidized, or combinations thereof.
For the purposes of the present invention the term "modification" as it relates to the chemical structure of the polyamines is defined as replacing a backbone -NH hydrogen atom by an R' unit (substitution), quaternizing a backbone nitrogen (quatemized) or oxidizing a backbone nitrogen to the N-oxide (oxidized). The terms "modification" and "substitution" are used interchangably when referring to the process of replacing a hydrogen atom attached to a backbone nitrogen with an R' unit. Quaternization or oxidation may take place in some circumstances without substitution, but substitution is preferably accompanied by oxidation or quaternization of at least one backbone nitrogen.
The linear or non-cyclic polyamine backbones that comprise the amino- functional polymer have the general formula:
*' I
[R2N-R]n+1 -[N-R]m-[N-R]n-NR2 The cyclic polyamine backbones that comprise the amino-functional polymer have the general formula:
I R' i R
[R2N-R]n-k+r-l -R]m-[N-R]n-(N-R]k-NR2
The above backbones prior to optional but preferred subsequent modification, comprise primary, secondary and tertiary amine nitrogens connected by R "linking" units.
For the purpose of the present invention, primary amine nitrogens comprising the backbone or branching chain once modified are defined as V or Z "terminal" units. For example, when a primary amine moiety, located at the end of the main polyamine backbone or branching chain having the structure H2N-RJ-
is modified according to the present invention, it is thereafter defined as a V "terminal" unit, or simply a V unit. However, for the purposes of the present invention, some or all of the primary amine moieties can remain unmodified subject to the restrictions further described herein below. These unmodified primary amine moieties by virtue of their position in the backbone chain remain "terminal" units. Likewise, when a primary amine moiety, located at the end of the main polyamine backbone having the structure
-NH2
is modified according to the present invention, it is thereafter defined as a Z "terminal" unit, or simply a Z unit. This unit can remain unmodified subject to the restrictions further described hereinbeiow.
In a similar manner, secondary amine nitrogens comprising the backbone or branching chain once modified are defined as W "backbone" units. For example, when a secondary amine moiety, the major constituent of the backbones and branching chains of the present invention, having the structure H
— [N-R]-
is modified according to the present invention, it is thereafter defined as a W "backbone" unit, or simply a W unit. However, for the purposes of the present invention, some or all of the secondary amine moieties can remain unmodified. These unmodified secondary amine moieties by virtue of their position in the backbone chain remain "backbone" units.
In a further similar manner, tertiary amine nitrogens comprising the backbone or branching chain once modified are further referred to as Y "branching" units. For example, when a tertiary amine moiety, which is a chain branch point of either the polyamine backbone or other branching chains or rings, having the structure
— [N-R]- is modified according to the present invention, it is thereafter defined as a Y. "branching" unit, or simply a Y unit. However, for the purposes of the present invention, some or all of the tertiary amine moieties can remain unmodified. These unmodified tertiary amine moieties by virtue of their position in the backbone chain remain "branching" units. The R units associated with the V, W and Y unit nitrogens which serve to connect the polyamine nitrogens, are described hereinbelow.
The final modified structure of the polyamines of the present invention can therefore be represented by the general formula
V(n + 1 )WmYnZ
for linear amino-functional polymer and by the general formula
V(n-k + 1 )WmYnY'kZ
for cyclic amino-functional polymer. For the case of polyamines comprising rings, a Y' unit of the formula R
— [N-R]—
serves as a branch point for a backbone or branch ring. For every Y' unit there is a Y unit having the formula
— [N-R]-
that will form the connection point of the ring to the main polymer chain or branch. In the unique case where the backbone is a complete ring, the polyamine backbone has the formula
R' I
[R2N-R]n-[N-R]m-[N-R]n—
therefore comprising no Z terminal unit and having the formula
Vn.kWmYnY'k
wherein k is the number of ring forming branching units. Preferably the polyamine backbones of the present invention comprise no rings.
In the case of non-cyclic polyamines, the ratio of the index n to the index m relates to the relative degree of branching. A fully non-branched linear modified polyamine according to the present invention has the formula
VWmZ
that is, n is equal to 0. The greater the value of n (the lower the ratio of m to n), the greater the degree of branching in the molecule. Typically, the value for m ranges from a minimum value of 2 to 700, preferably 4 to 400, however, larger values of m are also preferred, especially when the value of the index n is very low or nearly 0.
Each polyamine nitrogen whether primary, secondary or tertiary, once modified according to the present invention, is further defined as being a member of one of three general classes; simple substituted, quatemized or oxidized. Those polyamine nitrogen units not modified are classed into V, W, Y, Y' or Z units depending on whether they are primary, secondary or tertiary nitrogens. That is unmodified primary amine nitrogens are V or Z units, unmodified secondary amine nitrogens are W units or Y' units and unmodified tertiary amine nitrogens are Y units for the purposes of the present invention.
Modified primary amine moieties are defined as V "terminal" units having one of three forms:
a) simple substituted units having the structure:
R^-N-R —
I R'
b) quatemized units having the structure:
R' X "
R^N-R — I R*
wherein X is a suitable counter ion providing charge balance; and
c) oxidized units having the structure:
Figure imgf000012_0001
Modified secondary amine moieties are defined as W "backbone" units having one of three forms:
a) simple substituted units having the structure:
-N I -R—
R' b) quatemized units having the structure:
Figure imgf000013_0001
wherein X is a suitable counter ion providing charge balance; and
c) oxidized units having the structure:
Figure imgf000013_0002
Other modified secondary amine moieties are defined as Y' units having one of three forms:
a) simple substituted units having the structure:
-N I -R-
R
b) quatemized units having the structure:
—N-R — I R
wherein X is a suitable counter ion providing charge balance; and
c) oxidized units having the structure:
Figure imgf000013_0003
Modified tertiary amine moieties are defined as Y "branching" units having one of three forms:
a) unmodified units having the structure:
— N-R— I
b) quatemized units having the structure:
Figure imgf000014_0001
wherein X is a suitable counter ion providing charge balance; and c) oxidized units having the structure:
Figure imgf000014_0002
Certain modified primary amine moieties are defined as Z "terminal" units having one of three forms:
a) simple substituted units having the structure:
-N I -R*
R'
b) quatemized units having the structure:
" x -
N-R
R*
wherein X is a suitable counter ion providing charge balance; and c) oxidized units having the structure:
O t
— N-R"
I
R'
When any position on a nitrogen is unsubstituted of unmodified, it is understood that hydrogen will substitute for R'. For example, a primary amine unit comprising one R' unit in the form of a hydroxyethyl moiety is a V terminal unit having the formula (HOCH2CH2)HN-.
For the purposes of the present invention there are two types of chain terminating units, the V and Z units. The Z "terminal" unit derives from a terminal primary amino moiety of the structure - H2- Non-cyclic polyamine backbones according to the present invention comprise only one Z unit whereas cyclic polyamines can comprise no Z units. The Z "terminal" unit can be substituted with any of the R' units described further herein below, except when the Z unit is modified to form an N- oxide. In the case where the Z unit nitrogen is oxidized to an N-oxide, the nitrogen must be modified and therefore R' cannot be a hydrogen.
The polyamines of the present invention comprise backbone R "linking" units that serve to connect the nitrogen atoms of the backbone. R units comprise units that for the purposes of the present invention are referred to as "hydrocarbyl R" units and "oxy R" units. The "hydrocarbyl" R units are C2-C12 alkylene, C4-C12 alkenylene, C3-C12 hydroxyalkylene wherein the hydroxyl moiety may, take any position on the R unit chain except the carbon atoms directly connected to the polyamine backbone nitrogens; C4-C-| 2 dihydroxyalkylene wherein the hydroxyl moieties may occupy any two of the carbon atoms of the R unit chain except those carbon atoms directly connected to the polyamine backbone nitrogens; C8-C12 dialkylarylene which for the purpose of the present invention are arylene moieties having two alkyl substituent groups as part of the linking chain. For example, a dialkylarylene unit has the formula
Figure imgf000016_0001
although the unit need not be 1,4-substituted, but can also be 1,2 or 1,3 substituted C2-C12 alkylene, preferably ethylene, 1,2-propylene, and mixtures thereof, more preferably ethylene. The "oxy" R units comprise
-(R10)XR5(OR1)X-,
CH2CH(OR2)CH20)Z(R10)yRl (OCH2CH(OR2)CH2)w-, CH2CH(OR )CH2", -(R10)xR1-, and mixtures thereof. Preferred R units are selected from the group consisting of C2-C12 alkylene, C3-C12 hydroxyalkylene, C4-C12 dihydroxyalkylene, C8-C12 dialkylarylene, - (RToJxR1-, -CH2CH(OR2)CH2-,
(CH2CH(OH)CH2θ)z(R10)yRl(OCH2CH-(OH)CH2)w-' -(R10)XR5(0R1)X- , more preferred R units are C2-C12 alkylene, C3-C12 hydroxy-alkylene , C4-C 12 dihydroxyalkylene , -(R1O)xR1- , -(R1O)XR5(OR1)X-, -(CH2CH(OH)CH2θ)z(R10)yRl(OCH2CH-(OH)CH2)w-' and mixtures thereof, even more preferred R units are C2-C12 alkylene, C3 hydroxyalkylene, and mixtures thereof, most preferred are C2-Cg alkylene.
The most preferred backbones of the present invention comprise at least 50% R units that are ethylene.
R1 units are C2-C5 alkylene, and mixtures thereof, preferably ethylene.
R2 is hydrogen, and -(R10)xB, preferably hydrogen.
R3 is C1-C18 alkyl, C7-C12 arylalkylene, C7-C12 a'M substituted aryl, Cg-C-]2 aryl, and mixtures thereof , preferably C1-C12 alkyl, C7-C12 arylalkylene, more preferably C-j-Ci2 alkyl, most preferably methyl. R3 units serve as part of R' units described herein below.
R4 is C1-C12 alkylene, C4-Ci2 alkenylene, C8-C12 arylalkylene, Cg- C-jo arylene, preferably CI-C-JQ alkylene, C8-C-J2 arylalkylene, more preferably C2-C8 alkylene, most preferably ethylene or butylene. R5 is C<| -Ci 2 alkylene, C3-C12 hydroxyalkylene, C4-C12 dihydroxyalkylene, C8-C12 dialkylarylene , -C(O)- , -C(0)NHR6NHC(0)-
-C(O)(R4)rC(0)- , -R1 (0R1 )-,
CH2CH(OH)CH 0(R10)yR1 OCH2CH(OH)CH2-, -C(0)(R4)rC(0)-, CH2CH(OH)CH2- , R5 is preferably ethylene , -C(O)- , - C(0)NHR6NHC(0>- , -R (OR1 )-, -CH2CH(OH)CH2-,
CH2CH(OH)CH20(R1 O)yR1 OCH2CH-{OH)CH2-, more preferably - CH CH(OH)CH2-.
Rβ is C2-C12 alkylene or CQ-C-\ 2 arylene.
The preferred "oxy" R units are further defined in terms of the R^ , R , and R5 units. Preferred "oxy" R units comprise the preferred R1 , R2, and R5 units. The preferred cotton soil release agents of the present invention comprise at least 50% R1 units that are ethylene. Preferred R1 , R2, and R^ units are combined with the "oxy" R units to yield the preferred "oxy" R units in the following manner.
i) . Substituting more preferred R5 into -(CH2CH2θ)xR5(OCH2CH2)x- yields -(CH2CH2θ)xCH2CHOHCH2(OCH2CH2)x-.
ii) Substituting preferred R1 and R into -(CH2CH(OR2)CH2θ)z- (R O)yRl θ(CH2CH(OR2)CH2)w- yields -(CH2CH(OH)CH20)z- (CH2CH2θ)yCH2CH2O(CH2CH(OH)CH2)w-.
iii) Substituting preferred R2 into -CH2CH(0R )CH2- yields -CH2CH(0H)CH2-.
R' units are selected from the group consisting of hydrogen, C1 -C22 alkyl, C3-C22 alkenyl, C7-C22 arylalkyl, C2-C22 hydroxyalkyl, - (CH2)pCO2M, -(CH2)qS03M, -CH(CH2CO2M)CO2M, -(CH2)pP03M, - (R10)mB, -C(0)R3, preferably hydrogen, C2-C22 hydroxyalkylene, benzyl, C1 -C22 alkylene, -(R10)mB, -C(0)R3, -(CH2)pC02M, - (CH2)qS03M, -CH(CH2C02 )C02M, more preferably C1 -C22 alkylene, -(R10)xB, -C(O)R3, -(CH2)PC02M, -{CH2)qSO3M,
CH(CH2CO2M)CO2M, most preferably C1 -C22 alkylene, -(R1 O)xB, and -C(0)R3. When no modification or substitution is made on a nitrogen then the hydrogen atom will remain as the moiety representing R'.
R' units do not comprise a hydrogen atom when the V, W or Z units are oxidized, that is the nitrogens are N-oxides. For example, the backbone chain or branching chains do not comprise units of the following structure:
Figure imgf000018_0001
Additionally, R' units do not comprise carbonyl moieties directly bonded to a nitrogen atom when the V, W or Z units are oxidized, that is, the nitrogens are N-oxides. According to the present invention, the R' unit - C(0)R3 moiety is not bonded to an N-oxide modified nitrogen, that is, there are no N-oxide amides having the structure
O 0 0 t 9 t ) o
— N— R or R3-C— N— R or — N~ C-R3
I I I
C=O R' R'
R3
or combinations thereof.
B is hydrogen, C-| -C6 alkyl, -(CH2)qSO3M, -(CH2)pC02M, -(CH2>q- (CHS03M)CH2Sθ3M, -(CH2)q(CHS02M)CH2S03M, -(CH2)pP03M, - PO3M, preferably hydrogen, -(CH2>qSO3M, (CH2)q(CHSO3M)CH2SO3M, -(CH2)q-(CHS02M)CH2S03M, more preferably hydrogen or -(CH2>qSO3 .
M is hydrogen or a water-soluble cation in sufficient amount to satisfy charge balance. For example, a sodium cation equally satisfies (CH2)pC02M, and -(CH2>qSO3M, thereby resulting in - (CH2)pC02 a, and -(CH2)qSO3Na moieties. More than one monovalent cation, (sodium, potassium, etc.) can be combined to satisfy the required chemical charge balance. However, more than one anionic group may be charge-balanced by a divalent cation, or more than one mono-valent cation may be necessary to satisfy the charge requirements of a poly- anionic radical. For example, a -(CH2>pPO3M moiety substituted with sodium atoms has the formula -(CH2)p O3Na3- Divalent cations such as calcium (Ca2 + ) or magnesium (Mg2 + ) may be substituted for or combined with other suitable mono-valent water-soluble cations. Preferred cations are sodium and potassium, more preferred is sodium.
X is a water-soluble anion such as chlorine (Cl"), bromine (Br) and iodine (I") or X can be any negatively-charged radical such as sulfate (SO4 -) and methosulfate (CH3SO3-).
The formula indices have the following values: p has the value from 1 to 6, q has the value from 0 to 6; r has the value 0 or 1 ; w has the value 0 or 1 , x has the value from 1 to 100; y has the value from 0 to 100; z haa the value 0 or 1 ; m has the value from 2 to 700, preferably from 4 to 400, n has the value from 0 to 350, preferably from 0 to 200; m + n has the value of at least 5.
Preferably, x has a value lying in the range of from 1 to 20, preferably from 1 to 10.
The preferred amino-functional polymers of the present invention comprise polyamine backbones wherein less than 50% of the R groups comprise "oxy" R units, preferably less than 20% , more preferably less than 5%, most preferably the R units comprise no "oxy" R units.
The most preferred amino-functional polymers which comprise no "oxy" R units comprise polyamine backbones wherein less than 50% of the R groups comprise more than 3 carbon atoms. For example, ethylene, 1 ,2- propylene, and 1 ,3-propylene comprise 3 or less carbon atoms and are the preferred "hydrocarbyl" R units. That is when backbone R units are C2"C 1 2 alkylene, preferred is C2-C3 alkylene, most preferred is ethylene. The amino-functional polymers of the present invention comprise modified homogeneous and non-homogeneous polyamine backbones, wherein 100% or less of the -NH units are modified. For the purpose of the present invention the term "homogeneous polyamine backbone" is defined as a polyamine backbone having R units that are the same (i.e., all ethylene). However, this sameness definition does not exclude polyamines that comprise other extraneous units comprising the polymer backbone which are present due to an artifact of the chosen method of chemical synthesis. For example, it is known to those skilled in the art that ethanolamine may be used as an "initiator" in the synthesis of polyethyleneimines, therefore a sample of polyethyleneimine that comprises one hydroxyethyl moiety resulting from the polymerization "initiator" would be considered to comprise a homogeneous polyamine backbone for the purposes of the present invention. A polyamine backbone comprising all ethylene R units wherein no branching Y units are present is a homogeneous backbone. A polyamine backbone comprising all ethylene R units is a homogeneous backbone regardless of the degree of branching or the number of cyclic branches present.
For the purposes of the present invention the term "non-homogeneous polymer backbone" refers to polyamine backbones that are a composite of various R unit lengths and R unit types. For example, a non- homogeneous backbone comprises R units that are a mixture of ethylene and 1 ,2-propylene units. For the purposes of the present invention a mixture of "hydrocarbyl" and "oxy" R units is not necessary to provide a non-homogeneous backbone.
Preferred amino-functional polymers of the present invention comprise homogeneous polyamine backbones that are totally or partially substituted by polyethylβneoxy moieties, totally or partially quatemized amines, nitrogens totally or partially oxidized to N-oxides, and mixtures thereof. However, not all backbone amine nitrogens must be modified in the same manner, the choice of modification being left to the specific needs of the formulator. The degree of ethoxylation is also determined by the specific requirements of the formulator. The preferred polyamines that comprise the backbone of the compounds of the present invention are generally polyalkyleneimines (PAI's), preferably polyethyleneimines (PEI's), or PEI's connected by moieties having longer R units than the parent PAI's or PEI's.
Preferred amine polymer backbones comprise R units that are C2 alkylene (ethylene) units, also known as poiyethylenimines (PEI's). Preferred PEI's have at least moderate branching, that is the ratio of m to n is less than 4: 1 , however PEI's having a ratio of m to n of 2: 1 are most preferred. Preferred backbones, prior to modification have the general formula:
[ R'2NCH2CH2 ] n — I NCH CH 1 m _ I NCH2CH2 1 n — NR*2
wherein R', m and n are the same as defined hereinabove. Preferred PEI's will have a molecular weight greater than 200 daltons.
The relative proportions of primary, secondary and tertiary amine units in the polyamine backbone, especially in the case of PEI's, will vary, depending on the manner of preparation. Each hydrogen atom attached to each nitrogen atom of the polyamine backbone chain represents a potential site for subsequent substitution, quaternization or oxidation.
These polyamines can be prepared, for example, by polymerizing ethyleneimine in the presence of a catalyst such as carbon dioxide, sodium bisulfite, sulfuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, etc. Specific methods for preparing these polyamine backbones are disclosed in U.S. Patent 2, 1 82,306, Ulrich et al., issued December 5, 1 939; U.S. Patent 3,033,746, Mayle et al., issued May 8, 1962; U.S. Patent 2,208,095, Esselmann et al., issued July 1 6, 1 940; U.S. Patent 2,806,839, Crowther, issued September 17, 1 957; and U.S. Patent 2,553,696, Wilson, issued May 21 , 1 951 ; all herein incorporated by reference. Examples of amino-functional polymers comprising PEI's, are illustrated in Formulas I - IV:
Formula I depicts an amino-functional polymer comprising a PEI backbone wherein all substitutable nitrogens are modified by replacement of hydrogen with a polyoxyalkyleneoxy unit, -(CH2CH2θ)7H, having the formula
Figure imgf000022_0001
Formula I
This is an example of an amino-functional polymer that is fully modified by one type of moiety.
Formula II depicts an amino-functional polymer comprising a PEI backbone wherein all substitutable primary amine nitrogens are modified by replacement of hydrogen with a polyoxyalkyleneoxy unit, - (CH2CH2θ)7H, the molecule is then modified by subsequent oxidation of all oxidizable primary and secondary nitrogens to N-oxides, said polymer having the formula
Figure imgf000023_0001
Formula
Formula III depicts an amino-functional polymer comprising a PEI backbone wherein all backbone hydrogen atoms are substituted and some backbone amine units are quatemized. The substituents are polyoxyalkyleneoxy units, -(CH2CH2O>7H, or methyl groups. The modified PEI has the formula
Figure imgf000023_0002
Formula
Formula IV depicts an amino-functional polymer comprising a PEI backbone wherein the backbone nitrogens are modified by substitution (i.e. by -(CH2CH2θ)7H or methyl), quatemized, oxidized to N-oxides or combinations thereof. The resulting polymer has the formula
Figure imgf000024_0001
Formula IV
In the above examples, not all nitrogens of a unit class comprise the same modification. The present invention allows the formulator to have a portion of the secondary amine nitrogens ethoxylated while having other secondary amine nitrogens oxidized to N-oxides. This also applies to the primary amine nitrogens, in that the formulator may choose to modify all or a portion of the primary amine nitrogens with one or more substituents prior to oxidation or quaternization. Any possible combination of R' groups can be substituted on the primary and secondary amine nitrogens, except for the restrictions described hereinabove.
Commercially available amino-functional polymer suitable for use herein are poly(ethyleneimine) with a MW1200, hydroxyethylated poly(ethyleneimine) from Polysciences, with a. MW2000, and 80% hydroxyethylated poly(ethyleneimine) from Aldrich.
A typical amount of amino-functional polymer to be employed in the composition of the invention is preferably up to 90% by weight, preferably from 0.01 % to 50% active by weight, more preferably from 0.1 % to 20% by weight and most preferably from 0.5% to 5% by weight of the composition. The composition may also contain optional components which may be suitable for further improving the aesthetic appearance of the fabrics treated therewith. Suitable optional components include a polyolefin dispersion, a fabric softener component, additional components and mixtures thereof.
For optimum performance of the compositions, the compositions of the invention comprise the dye fixing agent and the amino-functional polymer in a weight ratio of dye fixing agent to amino-functional polymer of from 100:1 to 0.01 :1 , preferably of from 10: 1 to 0.1 : 1 , more preferably of from 2:1 to 0.5: 1 .
Polyolefin dispersion
A polyolefin dispersion may optionally be used in the composition of the invention in order to provide anti-wrinkles and improved water absorbency benefits to the fabrics. Preferably, the polyolefin is a polyethylene, polypropylene or mixtures thereof. The polyolefin may be at least partially modified to contain various functional groups, such as carboxyl, carbonyl, ester, ether, alkylamide, sulfonic acid or amide groups. More preferably, the polyolefin employed in the present invention is at least partially carboxyl modified or, in other words, oxidized. In particular, oxidized or carboxyl modified polyethylene is preferred in the compositions of the present invention. For ease of formulation, the polyolefin is preferably introduced as a suspension or an emulsion of polyolefin dispersed by use of an emulsifing agent. The polyolefin suspension or emulsion preferably has from 1 % to 50%, more preferably from 10% to 35% by weight, and most preferably from 15% to 30% by weight of polyolefin in the emulsion. The polyolefin preferably has a molecular weight of from 1 ,000 to 15,000 and more preferably from 4,000 to 10,000.
When an emulsion is employed, the emulsifier may be any suitable emulsification or suspending agent. Preferably, the emulsifier is a cationic, nonionic, zwitterionic or anionic surfactant or mixtures thereof. Most preferably, any suitable cationic, nonionic or anionic surfactant may be employed as the emulsifier. Preferred emulsifiers are cationic surfactants such as the fatty amine surfactants and in particular the ethoxylated fatty amine surfactants. In particular, the cationic surfactants are preferred as emulsifiers in the present invention. The polyolefin is dispersed with the emulsifier or suspending agent in a ratio of emulsifier to polyolefin of from 1 : 10 to 3: 1. Preferably, the emulsion includes from 0.1 % to 50%, more preferably from 1 % to 20% and most preferably from 2.5% to 10% by weight of emulsifier in the polyolefin emulsion. Polyethylene emulsions and suspensions suitable for use in the present invention are available under the tradename VELUSTROL from HOECHST Aktiengesellschaft of Frankfurt am Main, Germany. In particular, the polyethylene emulsions sold under the tradename VELUSTROL PKS, VELUSTROL KPA, or VELUSTROL P-40 may be employed in the compositions of the present invention.
The compositions of the present invention contain from 0.01 % to 8% by weight of the dispersible polyolefin. More preferably, the compositions include from 0.1 % to 5% by weight and most preferably from 0.1 % to 3% by weight of the polyolefin. When the polyolefin is added to the compositions of the present invention as an emulsion or suspension, the emulsion or suspension is added at sufficient enough quantities to provide the above noted levels of dispersible polyolefin in the compositions.
Fabric softener component
A fabric softener component may also suitably be used in the composition of the invention so as to provide softness and antistastic properties to the treated fabrics. When used, the fabric softener component will typically be present at a level sufficient to provide softening and antistatic properties. Typical levels are those conventionally used in fabric softening compositions, i.e from 1 % to 99% by weight of the composition. Depending on the composition execution, i.e liquid or solid, the composition will preferably comprise a level of fabric softening components for liquid compositions of from 1 % to 5% by weight for the diluted compositions or from 5% to 80%, more preferably 10% to 50%, most preferably 15% to 35% by weight for concentrated compositions. Where nonionic fabric softener components are present, the level of nonionic softener component in the composition will typically be from 0.1 % to 10%, preferably from 1 % to 5% by weight.
Where the composition comprising the softener component is applied on a substrate such as a dryer-sheet, the preferred level of fabric softener component will preferably be from 20% to 99%, more preferably from 30% to 90% by weight, and even more preferably from 35% to 85% by weight.
Said fabric softening component may be selected from cationic, nonionic, amphoteric or anionic fabric softening component.
The preferred, typical cationic fabric softening components include the water-insoluble quaternary-ammonium fabric softening actives, the most commonly used having been di-long alkyl chain ammonium chloride or methyl sulfate.
Preferred cationic softeners among these include the following:
1 ) ditallow dimethylammonium chloride (DTDMAC);
2) dihydrogenated tallow dimethylammonium chloride;
3) dihydrogenated tallow dimethylammonium methylsulfate;
4) distearyl dimethylammonium chloride; 5) dioleyl dimethylammonium chloride;
6) dipalmityl hydroxyethyl methylammonium chloride;
7) stearyl benzyl dimethylammonium chloride;
8) tallow trimethylammonium chloride;
9) hydrogenated tallow trimethylammonium chloride; 10) Ci 2"14 alkyl hydroxyethyl dimethylammonium chloride;
1 1 ) C-j 2-18 a"<Y' dihydroxyethyl methylammonium chloride;
12) di(stearoyloxyethyl) dimethylammonium chloride (DSOEDMAC);
13) di(tallowoyloxyethyl) dimethylammonium chloride; 14) ditallow imidazolinium methylsulfate;
15) 1 -(2-tallowylamidoethyl)-2-tallowyl imidazolinium methylsulfate. However, in recent years, the need has arisen for more environmental- friendly materials, and rapidly biodegradable quaternary ammonium compounds have been presented as alternatives to the traditionally used di-long alkyl chain ammonium chlorides and methyl sulfates. Said materials and fabric softening compositions containing them are disclosed in numerous publications such as EP-A-0,040,562, and EP-A- 0,239,910.
The quaternary ammonium compounds and amine precursors herein have the formula (I) or (II), below :
Figure imgf000028_0001
(I) or
Figure imgf000028_0002
(ID
wherein Q is selected from -O-C(O)-, -C(0)-0-, -0-C(0)-0-, -NR4-C(0)-, C(0)-NR4-;
Figure imgf000028_0003
R2 is (CH2)m-Q-T4 or Tδ or R3; R3 is C1 -C4 alkyl or C1 -C4 hydroxyalkyl or H; R4 is H or C1 -C4 alkyl or C1 -C4 hydroxyalkyl; T1 , T2, T3, T4, T5 are independently C 1 1 -C22 alkyl or alkenyl; n and m are integers from 1 to 4; and X" is a softener-compatible anion. Non-limiting examples of softener-compatible anions include chloride or methyl sulfate.
The alkyl, or alkenyl, chain T^ , T , T3, T4, T^ must contain at least 1 1 carbon atoms, preferably at least 16 carbon atoms. The chain may be straight or branched.
Tallow is a convenient and inexpensive source of long chain alkyl and alkenyl material. The compounds wherein T^ , τ , T3, T4, T^ represent the mixture of long chain materials typical for tallow are particularly preferred.
Specific examples of quaternary ammonium compounds suitable for use in the aqueous fabric softening compositions herein include :
1 ) N,N-di(tallowyl-oxy-ethyl)-N,N-dimethyl ammonium chloride;
2) N,N-di(tallowyl-oxy-ethyl)-N-methyl, N-(2-hydroxyethyl) ammonium methyl sulfate;
3) N,N-di(2-tallowyl-oxγ-2-oxo-ethyl)-N,N-dimethyl ammonium chloride;
4) .N,N-di(2-tallowyl-oxy-ethylcarbonyl-oxy-ethγl)-N,N-dimethyl ammonium chloride;
5) N-(2-tallowyl-oxy-2-ethyl)-N-(2-tallowyl-oxy-2-oxo-ethyi)-N,N- dimethyl ammonium chloride;
6) N,N,N-tri(tallowyl-oxy-ethyl)-N-methyl ammonium chloride;
7) N-(2-tallowyl-oxy-2-oxo-ethyl)-N-(tallowyl-N,N-dimethyl-ammonium chloride; and
8) 1 ,2-ditallowyl-oxy-3-trimethylammoniopropane chloride; and mixtures of any of the above materials.
Of these, compounds 1 -7 are examples of compounds of Formula (I); compound 8 is a compound of Formula (II).
Particularly preferred is N,N-di(tallowyl-oxy-ethyl)-N,N-dimethyl ammonium chloride, where the tallow chains are at least partially unsaturated.
The level of unsaturation of the tallow chain can be measured by the Iodine Value (IV) of the corresponding fatty acid, which in the present case should preferably be in the range of from 5 to 100 with two categories of compounds being distinguished, having a IV below or above 25.
Indeed, for compounds of Formula (I) made from tallow fatty acids having a IV of from 5 to 25, preferably 1 5 to 20, it has been found that a cis/trans isomer weight ratio greater than 30/70, preferably greater than 50/50 and more preferably greater than 70/30 provides optimal concentrability.
For compounds of Formula (I) made from tallow fatty acids having a IV of above 25, the ratio of cis to trans isomers has been found to be less critical unless very high concentrations are needed.
Other examples of suitable quaternary ammoniums of Formula (I) and (II) are obtained by, e.g. :
- replacing "tallow" in the above compounds with, for example, coco, palm, lauryl, oleyl, ricinoleyl, stearyl, palmityl, or the like, said fatty acyl chains being either fully saturated, or preferably at least partly unsaturated;
- replacing "methyl" in the above compounds with ethyl, ethoxy, propyl, propoxy, isopropyl, butyl, isobutyl or t-butyl;
- replacing "chloride" in the above compounds with bromide, methylsulfate, formate, sulfate, nitrate, and the like.
In fact, the anion is merely present as a counterion of the positively charged quaternary ammonium compounds. The nature of the counterion is not critical at all to the practice of the present invention. The scope of this invention is not considered limited to any particular anion.
By "amine precursors thereof" is meant the secondary or tertiary amines corresponding to the above quaternary ammonium compounds, said amines being substantially protonated in the present compositions due to the pH values.
Additional fabric softening materials may be used in addition or alternatively to the cationic fabric softener. These may be selected from nonionic, amphoteric or anionic fabric softening material. Disclosure of such materials may be found in US 4,327,133; US 4,421 ,792; US
4,426,299 US 4,460,485; US 3,644,203; US 4,661,269; U.S 4,439,335 U.S 3,861,870; US 4,308,151; US 3,886,075; US 4,233,164 US 4,401,578; US 3,974,076; US 4,237,016 and EP 472,178.
Typically, such nonionic fabric softener materials have an HLB of from 2 to 9, more typically from 3 to 7. Such nonionic fabric softener materials tend to be readily dispersed either by themselves, or when combined with other materials such as singie-long-chain alkyl cationic surfactant described in detail hereinafter. Dispersibilitγ can be improved by using more single-long-chain alkyl cationic surfactant, mixture with other materials as set forth hereinafter, use of hotter water, and/or more agitation. In general, the materials selected should be relatively crystalline, higher melting, (e.g. > 40°C) and relatively water-insoluble.
Preferred nonionic softeners are fatty acid partial esters of polyhydric alcohols, or anhydrides thereof, wherein the alcohol, or anhydride, contains from 2 to 18, preferably from 2 to 8, carbon atoms, and each fatty acid moiety contains from 12 to 30, preferably from 16 to 20, carbon atoms. Typically, such softeners contain from one to 3, preferably 2 fatty acid groups per molecule.
The polyhydric alcohol portion of the ester can be ethylene glycol, glycerol, poly (e.g., di-, tri-, tetra, penta-, and/or hexa-) glycerol, xylitol, sucrose, erythritol, pentaerythritol, sorbitol or sorbitan. Sorbitan esters and poiyglγcerol monostearate are particularly preferred.
The fatty acid portion of the ester is normally derived from fatty acids having from 12 to 30, preferably from 16 to 20, carbon atoms, typical examples of said fatty acids being lauric acid, mγristic acid, palmitic acid, stearic acid and behenic acid.
Highly preferred optional nonionic softening agents for use in the present invention are the sorbitan esters, which are esterified dehydration products of sorbitol, and the glycerol esters. Commercial sorbitan monostearate is a suitable material. Mixtures of sorbitan stearate and sorbitan palmitate having stearate/palmitate weight ratios varying between 1 0: 1 and 1 : 1 0, and 1 ,5-sorbitan esters are also useful.
Glycerol and polyglycerol esters, especially glycerol, diglycerol, triglycerol, and polyglycerol mono- and/or di-esters, preferably mono-, are preferred herein (e.g. polyglycerol monostearate with a trade name of Radiasurf 7248).
Useful glycerol and polyglycerol esters include mono-esters with stearic, oleic, palmitic, lauric, isostearic, myristic, and/or behenic acids and the diesters of stearic, oleic, palmitic, lauric, isostearic, behenic, and/or myristic acids. It is understood that the typical mono-ester contains some di- and tri-ester, etc.
The "glycerol esters" also include the polyglycerol, e.g., diglycerol through octaglycerol esters. The polyglycerol polyols are formed by condensing glycerin or epichlorohydrin together to link the glycerol moieties via ether linkages. The mono- and/or diesters of the polyglycerol polyols are preferred, the fatty acyl groups typically being those described hereinbefore for the sorbitan and glycerol esters.
Further fabric softening components suitable for use herein are the softening clays, such as the low ion-exchange-capacity ones described in EP-A-0, 150,531 .
For the preceding fabric softening agents, especially with biodegradable fabric softening agents, the pH of the liquid compositions herein is an essential parameter of the present invention. Indeed, it influences the stability of the quaternary ammonium or amine precursors compounds, especially in prolonged storage conditions. The pH, as defined in the present context, is measured in the neat compositions at 20°C. For optimum hydrolytic stability of these compositions, the neat pH, measured in the above-mentioned conditions, must be in the range of from 2.0 to 4.5. Preferably, where the liquid fabric softening compositions of the invention are in a concentrated form, the pH of the neat composition is in the range of 2.0 to 3.5, while if it is in a diluted form, the pH of the neat composition is in the range of 2.0 to 3.0. The pH of these compositions herein can be regulated by the addition of a Bronsted acid.
Examples of suitable acids include the inorganic mineral acids, carboxylic acids, in particular the low molecular weight (C1 -C5) carboxylic acids, and alkylsulfonic acids. Suitable inorganic acids include HCl, H2SO4, HNO3 and H3PO4. Suitable organic acids include formic, acetic, citric, methylsulfonic and ethylsulfonic acid. Preferred acids are citric, hydrochloric, phosphoric, formic, methylsulfonic acid, and benzoic acids.
Additional components
The composition may also optionally contain additional components such as enzymes, surfactant concentration aids, electrolyte concentration aids, stabilisers, such as well-known antioxidants and reductive agents, soil release polymers, emulsifiers, bacteriocides, colorants, perfumes, preservatives, optical brighteners, anti-ionisation agents, and antifoam agents and mixtures thereof. These ingredients, especially the minor ingredients, and especially perfume, can be usefully added with, and preferably protected by, "carrier materials" such as zeolites, starch, cyclodextrin, wax, etc.
Enzymes
The composition herein can optionally employ one or more enzymes such as lipases, proteases, cellulase, amylases and peroxidases. A preferred enzyme for use herein is a cellulase enzyme. Indeed, this type of enzyme will further provide a color care benefit to the treated fabric. Cellulases usable herein include both bacterial and fungal types, preferably having a pH optimum between 5 and 9.5. U.S. 4,435,307, Barbesgoard et al, March 6, 1 984, discloses suitable fungal cellulases from Humicola insolens or Humicola strain DSM1 800 or a cellulase 21 2-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusk, Dolabella Auricula Solander. Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A- 2.095.275 and DE-OS-2.247.832. CAREZYME® and CELLUZYME® (Novo) are especially useful. Other suitable cellulases are also disclosed in WO 91 /17243 to Novo, WO 96/34092, WO 96/34945 and EP-A- 0,739,982.
In practical terms for current commercial preparations, typical amounts are up to about 5 mg by weight, more typically 0.01 mg to 3 mg, of active enzyme per gram of the composition. Stated otherwise, the compositions herein will typically comprise from 0.001 % to 5%, preferably 0.01 %-1 % by weight of a commercial enzyme preparation. In the particular cases where activity of the enzyme preparation can be defined otherwise such as with cellulases, corresponding activity units are preferred (e.g. CEVU or cellulase Equivalent Viscosity Units). For instance, the compositions of the present invention can contain cellulase enzymes at a level equivalent to an activity from about 0.5 to 1000 CEVU/gram of composition. Cellulase enzyme preparations used for the purpose of formulating the compositions of this invention typically have an activity comprised between 1 ,000 and 10,000 CEVU/gram in liquid form, around 1 ,000 CEVU/gram in solid form.
Surfactant concentration aids
Surfactant concentration aids may also optionally be used. When used, said surfactant concentration aid will help achieving the desired finished product viscosity as well as stabilising the finished product upon storage. Surfactant concentration aids are typically selected from single long chain alkyl cationic surfactants, nonionic alkoxylated surfactants, amine oxides, fatty acids, and mixtures thereof, typically used at a level of from 0 to 15% by weight of the composition.
Single long chain alkyl cationic surfactants
Such mono-long-chain-alkyl cationic surfactants useful in the present invention are, preferably, quaternary ammonium salts of the general formula : [R N + R3] X-
wherein the R group is C-| o- 22 hydrocarbon group, preferably C12- C-| 8 alkyl group of the corresponding ester linkage interrupted group with a short alkylene (C1 -C4) group between the ester linkage and the N, and having a similar hydrocarbon group, e.g., a fatty acid ester of choline, preferably C12-C14 (coco) choline ester and/or C16-C18 tallow choline ester at from 0.1 % to 20% by weight of the softener active. Each R is a C1 -C4 alkyl or substituted (e.g., hydroxy) alkyl, or hydrogen, preferably methyl, and the counterion X" is a softener compatible anion, for example, chloride, bromide, methyl sulfate, etc.
Other cationic materials with ring structures such as alkyl imidazoline, imidazolinium, pyridine, and pyridinium salts having a single C12-C30 alkyl chain can also be used. Very low pH is required to stabilize, e.g., imidazoline ring structures.
Some alkyl imidazolinium salts and their imidazoline precursors useful in the. present invention have the general formula :
Figure imgf000035_0001
wherein Y2 is -C(0)-0-, -0-(O)C-, -C(0)-N(R5)-, or -N(R5)-C(O)- in which R5 is hydrogen or a C1 -C4 alkyl radical; R6 is a C1 -C4 alkyl radical or H (for imidazoline precursors); R? and R^ are each independently selected from R and R as defined hereinbefore for the single-long-chain cationic surfactant with only one being R2,
Some alkyl pyridinium salts useful in the present invention have the general formula :
Figure imgf000035_0002
wherein R2 and X- are as defined above. A typical material of this type is cetyl pyridinium chloride.
Nonionic Alkoxylated Surfactant
Suitable nonionic alkoxylated surfactants for use herein include addition products of ethylene oxide and, optionally, propylene oxide, with fatty alcohols, fatty acids and fatty amines.
Suitable compounds are substantially water-soluble surfactants of the general formula :
R2 - Y - (C2H4θ)z - C2H4OH
wherein R2 is selected from primary, secondary and branched chain alkyl and/or acyl hydrocarbyl groups; primary, secondary and branched chain alkenyl hydrocarbyl groups; and primary, secondary and branched chain alkyl- and alkenyl-substituted phenolic hydrocarbyl groups; said hydrocarbyl groups having a hydrocarbyl chain length of up to 20, preferably from 10 to 18 carbon atoms.
Y is typically -0-, -C(O)O-, -C(O)N(R)-, or -C(0)N(R)R-, in which R2 and R, when present, have the meanings given hereinbefore, and/or R can be hydrogen, and z is of from 5 to 50, preferably of from 1 - to 30.
The nonionic surfactants herein are characterized by an HLB (hydrophilic- lipophilic balance) of from 7 to 20, preferably from 8 to 15.
Examples of particularly suitable nonionic surfactants include
Straight-Chain, Primary Alcohol Alkoxylates such as tallow alcohol- E0(1 1 ), tallow alcohol-EO(18), and tallow alcohol-EO(25);
- Straight-Chain, Secondary Alcohol Alkoxylates such as 2-C-| 5E0(1 1 ); 2-C2θEO(1 1 ); and 2-C1 6EO(14); Alkyl Phenol Alkoxylates, such as p-tridecylphenol EO(1 1 ) and p- pentadecylphenol EO(18), as well as
Olefinic Alkoxylates, and Branched Chain Alkoxylates such as branched chain primary and secondary alcohols which are available from the well-known "OXO" process.
Amine Oxides
Suitable amine oxides include those with one alkyl or hydroxyalkyl moiety of 8 to 28 carbon atoms, preferably from 8 to 16 carbon atoms, and two alkyl moieties selected from alkyl groups and hydroxyalkyl groups with 1 to 3 carbon atoms.
Examples include dimethyloctylamine oxide, diethyldecylamine oxide, bis- (2-hydroxyethyl)dodecylamine oxide, dimethyldodecyl-amine oxide, dipropyltetradecylamine oxide, methylethylhexadecylamine oxide, dimethyl-2-hydroxyoctadecylamine oxide, and coconut fatty alkyl dimethylamine oxide.
Fattv Acids
Suitable fatty acids include those containing from 12 to 25, preferably from 16 to 20 total carbon atoms, with the fatty moiety containing from 10 to 22, preferably from 15 to 17 (mid cut), carbon atoms.
A preferred surfactant concentration aid for use herein is a nonionic alkoxylated surfactant. When used, such nonionic alkoxylated surfactant will be present in an amount of 0.01 % to 10% by weight, preferably from 0.05% to 2% by weight of the composition. Most preferably, for optimum stabilisation of the composition, the composition of the invention has a weight ratio of amino-functional polymer to nonionic alkoxylated surfactant of from 500:1 to 0.5: 1 , preferably of from 30:1 to 1 : 1. Electrolyte Concentration Aids
Inorganic viscosity control agents which can also act like or augment the effect of the surfactant concentration aids, include water-soluble, ionizable salts which can also optionally be incorporated into the compositions of the present invention. Incorporation of these components to the composition must be processed at a very slow rate.
A wide variety of ionizable salts can be used. Examples of suitable salts are the halides of the Group IA and HA metals of the Periodic Table of the Elements, e.g., calcium chloride, magnesium chloride, sodium chloride, potassium bromide, and lithium chloride. The ionizable salts are particularly useful during the process of mixing the ingredients to make the compositions herein, and later to obtain the desired viscosity. The amount of ionizable salts used depends on the amount of active ingredients used in the compositions and can be adjusted according to the desires of the formulator. Typical levels of salts used to control the composition viscosity are from 20 to 20,000 parts per million (ppm), preferably from 20 to 1 1 ,000 ppm, by weight of the composition.
Alkylene polyammonium salts can be incorporated into the composition to give viscosity control in addition to or in place of the water-soluble, ionizable salts above. In addition, these agents can act as scavengers, forming ion pairs with anionic detergent carried over from the main wash, in the rinse, and on the fabrics, and may improve softness performance. These agents may stabilise the viscosity over a broader range of temperature, especially at low temperatures, compared to the inorganic electrolytes.
Specific examples of alkylene polyammonium salts include l-lysine monohydrochloride and 1 ,5-diammonium 2-methyl pentane dihydrochloride.
Another optional ingredient is a liquid carrier. Suitable liquid carriers are selected from water, organic solvents and mixtures thereof. The liquid carrier employed in the instant compositions is preferably at least primarily water due to its low cost relative availability, safety, and environmental compatibility. The level of water in the liquid carrier is preferably at least 50%, most preferably at least 60%, by weight of the carrier. Mixtures of water and low molecular weight, e.g., < 200, organic solvent, e.g., lower alcohol such as ethanol, propanol, isopropanol or butanol are useful as the carrier liquid. Low molecular weight alcohols include monohydric, dihydric (glycol, etc.) trihydric (glycerol, etc.), and higher polyhydric (polyols) alcohols.
Method
In another aspect of the invention, there is provided a method for providing color care to fabrics upon domestic laundering treatment which comprises the step of contacting the fabrics with an aqueous medium comprising a composition as defined hereinbefore. Preferably, said aqueous medium is at a temperature between 2°C to 40°C, more preferably between 5°C to 25°C.
In a further aspect of the invention, the composition of the invention may be applied on a substrate, such as a dryer-sheet. Accordingly, there is also provided a method for providing color care on treated fabrics upon domestic treatment which comprises the step of contacting the fabrics with a composition as defined hereinbefore, wherein said composition is applied on a substrate, preferably a dryer-sheet. Preferably, where the composition of the invention is applied on a dryer-sheet, the compositions are used in tumble-drying processes.
By "color care" is meant that fabrics which have been in contact with an aqueous solution of a composition comprising a combination of a dye fixing agent and an amino-functional polymer, as defined hereinbefore, and after, and/or prior and/or simultaneously washed with a detergent composition exhibit a better fabric color appearance compared to fabrics which have not been contacted with said composition.
Applications
The compositions of the invention are suitable for use in different applications such as a pre-treatment composition prior to the laundering of the fabrics, as a wash additive, as a composition suitable for use in the rinse-cycle of the laundry cycle or applied on a dryer-sheet. The compositions of the invention may also be in a spray, foam, or aerosol form which for example can be suitable for use while ironing, or applied on the surfaces of the tumble dryer.
The color care benefit may either be assessed visually or by determination of the so-called delta-E values.
When the visual assessment is used, a panel of expert graders visually compare, according to the established panel score unit (PSU) scales, fabrics treated with and without the composition according to the present invention. A positive PSU value indicates a better performance (PSU scale: 0 = no difference, 1 = I think there is a difference, 2 = I know there is a difference, 3 = I know there is a lot of difference, 4 = I know there is a whole lot of difference).
Another method for the assessment of the color care benefit to fabrics is the. determination of the so-called delta-E values. Delta E's are defined, for instance, in ASTM D2244. Delta E is the computed color difference as defined in ASTM D2244, i.e the magnitude and direction of the difference between two psychophysical color stimuli defined by tristimulus values, or by chromaticity coordinates and luminance factor, as computed by means of a specified set of color-difference equations defined in the CIE 1 976 CIELAB opponent-color space, the Hunter opponent-color space, the Friele-Mac Adam-Chickering color space or any equivalent color space.
The invention is illustrated in the following non-limiting examples, in which all percentages are on an active weight basis unless otherwise stated.
In the examples, the abbreviated component identifications have the following meanings:
DEQA Di-(tallowyl-oxy-ethyl) dimethyl ammonium chloride
DOEQA Di-(oleyloxyethyl) dimethyl ammonium methylsulfate DTDMAC Ditallow dimethylammonium chloride DHEQA Di-(soft-tallowyl-oxy-ethyl) hydroxyethyl methyl ammonium methylsulfate
Fatty acid Stearic acid of IV = 0 Electrolyte Calcium chloride DTDMAMS Ditallow dimethyl ammonium methylsulfate SDASA 1 :2 Ratio of stearyldimethyl amine:triple-pressed stearic acid
Giycosperse S-20 Polyethoxylated sorbitan monostearate available from
Lonza
Clay Calcium Bentonite Clay, Bentonite L, sold by
Southern Clay Products
Neodol 45-13 C14-C15 linear primary alcohol ethoxylate, sold by
Shell Chemical Co
TAE25 Tallow alcohol ethoxylated with 25 moles of ethylene oxide per mole of alcohol
PEG Polyethylene Glycol 4000 PEI Solution of polyethylene imine (MW 2000, at 50% active) available under the tradename Lupasol G35 from BASF
PEI 1800 E1 Ethoxylated polyethylene imine (MW 1800, at 50% active) as synthesised in Synthesis example 1 PEI 1200 E1 Ethoxylated polyethylene imine (MW 1200, at 50% active in water) as synthesised in Synthesis example
5
Dye Fix 1 Cationic dye fixing agent (50% active) available under the tradename Tinofix Eco from Ciba-Geigy Dye Fix 2 Emulsified cationic dye fixative (30% active) available under the tradename Rewin SRF-O from CHT-Beitlich Carezyme cellulγtic enzyme sold by NOVO Industries A/S
Synthesis Example 1 -Preparation of PEI 1800 E-\
Step A)
The ethoxylation is conducted in a 2 gallon stirred stainless steel autoclave equipped for temperature measurement and control, pressure measurement, vacuum and inert gas purging, sampling, and for introduction of ethylene oxide as a liquid. A - 20 lb. net cylinder of ethylene oxide (ARC) is set up to deliver ethylene oxide as a liquid by a pump to the autoclave with the cylinder placed on a scale so that the weight change of the cylinder could be monitored.
A 750 g portion of polyethyleneimine (PEI) (Nippon Shokubai, Epomin SP-018 having a listed average molecular weight of 1800 equating to 0.417 moles of polymer and 17.4 moles of nitrogen functions) is added to the autoclave. The autoclave is then sealed and purged of air (by applying vacuum to minus 28" Hg followed by pressurization with nitrogen to 250 psia, then venting to atmospheric pressure). The autoclave contents are heated to 130 °C while applying vacuum. After about one hour, the autoclave is charged with nitrogen to about 250 psia while cooling the autoclave to about 105 °C. Ethylene oxide is then added to the autoclave incrementally over time while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate. The ethylene oxide pump is turned off and cooling is applied to limit any temperature increase resulting from any reaction exotherm. The temperature is maintained between 100°C and 1 10°C while the total pressure is allowed to gradually increase during the course of the reaction. After a total of 750 grams of ethylene oxide has been charged to the autoclave (roughly equivalent to one mole ethylene oxide per PEI nitrogen function), the temperature is increased to 1 10°C and the autoclave is allowed to stir for an additional hour. At this point, vacuum is applied to remove any residual unreacted ethylene oxide.
Step B)
The reaction mixture is then deodorized by passing about 100 cu. ft. of inert gas (argon or nitrogen) through a gas dispersion frit and through the reaction mixture while agitating and heating the mixture to 130°C.
The final reaction product is cooled slightly and collected in glass containers purged with nitrogen. In other preparations the neutralization and deodorization is accomplished in the reactor before discharging the product.
If a PEI 1 800 E7 is desired, the following step of catalyst addition will be included between Step A and B.
Vacuum is continuously applied while the autoclave is cooled to about 50°C while introducing 376g of a 25% sodium methoxide in methanol solution ( 1 .74 moles, to achieve a 10% catalyst loading based upon PEI nitrogen functions). The methoxide solution is sucked into the autoclave under vacuum and then the autoclave temperature controller setpoint is increased to 1 30°C. A device is used to monitor the power consumed by the agitator. The agitator power is monitored along with the temperature and pressure. Agitator power and temperature values gradually increase as methanol is removed from the autoclave and the viscosity of the mixture increases and stabilizes in about 1 hour indicating that most of the methanol has been removed. The mixture is further heated and agitated under vacuum for an additional 30 minutes.
Vacuum is removed and the autoclave is cooled to 1 05°C while it is being charged with nitrogen to 250 psia and then vented to ambient pressure. The autoclave is charged to 200 psia with nitrogen. Ethylene oxide is again added to the autoclave incrementally as before while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate while maintaining the temperature between 100°C and 1 10°C and limiting any temperature increases due to reaction exotherm. After the addition of 4,500g of ethylene oxide (resulting in a total of 7 moles of ethylene oxide per mole of PEI nitrogen function) is achieved over several hours, the temperature is increased to 1 10°C and the mixture stirred for an additional hour.
The reaction mixture is then collected in nitrogen purged containers and eventually transferred into a 22 L three neck round bottomed flask equipped with heating and agitation. The strong alkali catalyst is neutralized by adding 1 67 g methanesulfonic acid (1 .74 moles). Synthesis Example 2 -4.7% Quaternization of PEI 1 800 E7
To a 500ml erlenmeyer flask equipped with a magnetic stirring bar is added poly(ethyleneimine), MW 1 800 ethoxylated to a degree of 7 (224g, 0.637 mol nitrogen, prepared as in Synthesis Example 1 ) and acetonitrile (Baker, 1 50g, 3.65 mol). Dimethyl sulfate (Aldrich, 3.8g, 0.030 mol) is added all at once to the rapidly stirring solution, which is then stoppered and stirred at room temperature overnight. The acetonitrile is evaporated on the rotary evaporator at ~ 60°C, followed by a Kugelrohr apparatus (Aldrich) at ~ 80°C to afford ~ 220g of the desired material as a dark brown viscous liquid. A 1 3C-NMR (D2O) spectrum shows the absence of a peak at ~ 58ppm corresponding to dimethyl sulfate. A 1 H-NMR (D2O) spectrum shows the partial shifting of the peak at 2.5ppm (methylenes attached to unquatemized nitrogens) to ~ 3.0ppm.
Synthesis Example 3 -Oxidation of 4.7% Quatemized PEI 1800 E7
To a 500ml erlenmeyer flask equipped with a magnetic stirring bar is added poly(ethyleneimine), MW 1 800 which has been ethoxylated to a degree of 7, and -4.7% quatemized with dimethyl sulfate (121 .7g,
— 0.32 mol oxidizeable nitrogen, prepared as in Synthesis Example 2), hydrogen peroxide (Aldrich, 40g of a 50 wt% solution in water, 0.588 mol), and water (109.4g). The flask is stoppered, and after an initial exotherm the solution is stirred at room temperature overnight. A 1 H-
NMR (D2O) spectrum shows the total shifting of the methylene peaks at
2.5-3.0ppm to ~ 3.5ppm. To the solution is added ~ 5g of 0.5% Pd on alumina pellets, and the solution is allowed to stand at room temperature for - 3 days. Peroxide indicator paper shows that no peroxide is left in the system. The material is stored as a 46.5% solution in water.
Synthesis Example 4 -Formation of amine oxide of PEI 1 800 E7
To a 500 mL Erlenmeyer flask equipped with a magnetic stirring bar is added polyethyleneimine having a molecular weight of 1 800 and ethoxylated to a degree of about 7 ethoxy groups per nitrogen (PEI-
1800, E7) (209 g, 0.595 mol nitrogen, prepared as in Synthesis Example I), and hydrogen peroxide ( 1 20 g of a 30 wt % solution in water, 1 .06 mol). The flask is stoppered, and after an initial exotherm the solution is stirred at room temperature overnight. ^ H-NMR (D2O) spectrum obtained on a sample of the reaction mixture indicates complete conversion. The resonances ascribed to methylene protons adjacent to unoxidized nitrogens have shifted from the original position at - 2.5 ppm to - 3.5 ppm. To the reaction solution is added approximately 5 g of 0.5% Pd on alumina pellets, and the solution is allowed to stand at room temperature for approximately 3 days. The solution is tested and found to be negative for peroxide by indicator paper. The material as obtained is suitably stored as a 51 .1 % active solution in water.
Synthesis Example 5 -Preparation of PEI 1200 E-|
Step A)
The ethoxylation is conducted in a 2 gallon stirred stainless steel autoclave equipped for temperature measurement and control, pressure measurement, vacuum and inert gas purging, sampling, and for introduction of ethylene oxide as a liquid. A - 20 lb. net cylinder of ethylene oxide (ARC) is set up to deliver ethylene oxide as a liquid by a pump to the autoclave with the cylinder placed on a scale so that the weight change of the cylinder could be monitored.
A 750 g portion of polyethyleneimine (PEI) ( having a listed average molecular weight of 1200 equating to about 0.625 moles of polymer and 1 7.4 moles of nitrogen functions) is added to the autoclave. The autoclave is then sealed and purged of air (by applying vacuum to minus 28" Hg followed by pressurization with nitrogen to 250 psia, then venting to atmospheric pressure). The autoclave contents are heated to 1 30°C while applying vacuum. After about one hour, the autoclave is charged with nitrogen to about 250 psia while cooling the autoclave to about 105°C. Ethylene oxide is then added to the autoclave incrementally over time while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate. The ethylene oxide pump is turned off and cooling is applied to limit any temperature increase resulting from any reaction exotherm. The temperature is maintained between 100°C and 1 10°C while the total pressure is allowed to gradually increase during the course of the reaction. After a total of 750 grams of ethylene oxide has been charged to the autoclave (roughly equivalent to one mole ethylene oxide per PEI nitrogen function), the temperature is increased to 1 10°C and the autoclave is allowed to stir for an additional hour. At this point, vacuum is applied to remove any residual unreacted ethylene oxide. Step B)
The reaction mixture is then deodorized by passing about 100 cu. ft. of inert gas (argon or nitrogen) through a gas dispersion frit and through the reaction mixture while agitating and heating the mixture to 130°C.
The final reaction product is cooled slightly and collected in glass containers purged with nitrogen.
In other preparations the neutralization and deodorization is accomplished in the reactor before discharging the product.
If a PEI 1200 E7 is desired, the following step of catalyst addition will be included between Step A and B.
Vacuum is continuously applied while the autoclave is cooled to about 50°C while introducing 376g of a 25% sodium methoxide in methanol solution (1.74 moles, to achieve a 10% catalyst loading based upon PEI nitrogen functions).
The methoxide solution is sucked into the autoclave under vacuum and then the autoclave temperature controller setpoint is increased to 130°C. A device is used to monitor the power consumed by the agitator. The agitator power is monitored along with the temperature and pressure. Agitator power and temperature values gradually increase as methanol is removed from the autoclave and the viscosity of the mixture increases and stabilizes in about 1 hour indicating that most of the methanol has been removed. The mixture is further heated and agitated under vacuum for an additional 30 minutes. Vacuum is removed and the autoclave is cooled to 105°C while it is being charged with nitrogen to 250 psia and then vented to ambient pressure. The autoclave is charged to 200 psia with nitrogen. Ethylene oxide is again added to the autoclave incrementally as before while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate while maintaining the temperature between 100°C and 1 10°C and limiting any temperature increases due to reaction exotherm. After the addition of 4,500g of ethylene oxide (resulting in a total of 7 moles of ethylene oxide per mole of PEI nitrogen function) is achieved over several hours, the temperature is increased to 1 10°C and the mixture stirred for an additional hour.
The reaction mixture is then collected in nitrogen purged containers and eventually transferred into a 22 L three neck round bottomed flask equipped with heating and agitation. The strong alkali catalyst is neutralized by adding 1 67g methanesulfonic acid (1 .74 moles).
Other preferred examples such as PEI 1 200 E1 5 and PEI 1 200 E20 can be prepared by the above method by adjusting the reaction time and the relative amount of ethylene oxide used in the reaction.
Synthesis Example 6 -9.7% Quaternization of PEI 1200 E7
To a 500ml erlenmeyer flask equipped with a magnetic stirring bar is added poly(ethyleneimine), MW 1 200 ethoxylated to a degree of 7
(248.4g, 0.707 mol nitrogen, prepared as in Synthesis Example 5) and acetonitrile (Baker, 200 mL). Dimethyl sulfate (Aldrich, 8.48g, 0.067 mol) is added all at once to the rapidly stirring solution, which is then stoppered and stirred at room temperature overnight. The acetonitrile is evaporated on the rotary evaporator at - 60°C, followed by a Kugelrohr apparatus (Aldrich) at ~ 80°C to afford ~ 220g of the desired material as a dark brown viscous liquid. A 1 C-NMR (D2O) spectrum shows the absence of a peak at - 58ppm corresponding to dimethyl sulfate. A 1 H-
NMR (D2O) spectrum shows the partial shifting of the peak at 2.5ppm (methylenes attached to unquaternized nitrogens) to ~ 3.0ppm.
Synthesis Example 7-4.7% Oxidation of 9.5% Quatemized PEI 1 200 E7 To a 500ml erlenmeyer flask equipped with a magnetic stirring bar is added poly(ethyleneimine), MW 1200 which has been ethoxylated to a degree of 7, and - 9.5% quatemized with dimethyl sulfate (144g, - 0.37 mol oxidizeable nitrogen, prepared as in Example 6), hydrogen peroxide (Aldrich, 35.4g of a 50 wt% solution in water, 0.52 mol), and water (100g). The flask is stoppered, and after an initial exotherm the solution is stirred at room temperature overnight. A ^ H-NMR (D2O) spectrum shows the total shifting of the methylene peaks at 2.5-3.0ppm to ~ 3.5ppm. To the solution is added just enough sodium bisulfite as a 40% water solution to bring the residual peroxide level down to 1 -5ppm. The sodium sulfate which forms causes an aqueous phase to separate which contains salts, but little or no organics. The aqueous salt phase is removed and the desired oxidized polyethyleneimine derivative is obtained and stored as a 52% solution in water.
Example 1
The following compositions are in accordance with the present invention
Figure imgf000049_0001
Figure imgf000049_0002
Carezyme 50 CEVU/g of composition
Water and minors to balance to 100
Example 2
The following compositions for use as dryer-added sheets are in accordance with the invention
Figure imgf000050_0001

Claims

WHAT IS CLAIMED IS:
1 . A composition comprising a dye fixing agent and an amino- functional polymer comprising a polyamine backbone corresponding to the formula:
? I
[RfeN-RJttH -[N-R]m-[N-R]n-NR'2
having a polyamine formula V(n + -j )WmYnZ or a polyamine backbone corresponding to the formula:
I R' | R
[R2N-R]rrk+r-[N-R]m-[N-R]n-{N-R]k-NR'2
having a polyamine formula V[n-k + 1 )WmYnY |<Z, wherein k is less than or equal to n, said polyamine backbone has a molecular weight greater than 200 daltons, wherein
i) V units are terminal units having the formula:
Figure imgf000051_0001
ii) W units are backbone units having the formula:
Figure imgf000051_0002
iii) Y units are branching units having the formula: —N-R— or —N-R— or —N-R—
and
iv)Y' units are branch point for a backbone or branch ring having the formula:
Figure imgf000052_0001
v) Z units are terminal units having the formula:
Figure imgf000052_0002
wherein backbone linking R units are selected from the group consisting of C2-C12 alkylene, C4-C12 alkenylene, C3-C12 hydroxyalkylene, C4-C12 dihydroxy-alkylene,C8-Ci 2 dialkylarylene,-(Rl θ)xRl -, -(R10)XR5(0R1 )X-,-
-(CH2CH(OR2)CH2O)Z(R1 O)yR1 (OCH2CH(OR2)CH2)W-' -C(O)(R )rC(O)-, -CH2CH(OR2)CH2-, and mixtures thereof; wherein R^ is selected from the group consisting of C2-C6 alkylene and mixtures thereof ; R2 is selected from the group consisting of hydrogen , -(R^ O)xB, and mixtures thereof; R4 is selected from the group consisting of C -C 2 alkylene, C4-C12 alkenylene, C8-C12 arylalkylene, Cβ-C o arylene, and mixtures thereof; R > is selected from the group consisting of C1-C12 alkylene, C3-C12 hydroxyalkylene, C4-C12 dihydroxy-alkylene, C8-C12 dialkylarylene , -C(O)- , - C(O)NHR6NHC(O) - , - R1 (OR1 ) - , -C(O)(R4)rC(0)-,-
CH2CH(OH)CH2- , -CH2CH(OH)CH2O(Rl θ)y R1 OCH2 CH(OH)CH2-, and mixtures thereof; R6 is selected from the group consisting of C2-C12 alkylene or C6-C12 arylene; R' units are selected from the group consisting of hydrogen, C1 -C22 alkyl, C3- C22 alkenyl, C7-C22 arylalkyl, C2-C22 hydroxyalkyl, (CH2)pCO2M, -(CH2)qSθ3M, -CH(CH2C02M)CO2M,
(CH2)pP03M, -(Rl θ)xB, -C(O)R3, and mixtures thereof; B is selected from the group consisting of hydrogen, Ci -Cø alkyl, - (CH2)qSO3M, -(CH2)pCO2M, -(CH2)q(CHS03M)CH2S03M, - (CH2)q-(CHSO2M)CH2SO3M, -(CH2)pPO3M, -PO3M, and mixtures thereof; R3 is selected from the group consisting of C1 -C18 alkyl, C7-C12 arylalkyl, C7-C12 alkyl substituted aryl, C6-C12 aryl, and mixtures thereof; M is hydrogen or a water-soluble cation in sufficient amount to satisfy charge balance; X is a water-soluble anion; m has the value from 2 to 700; n has the value from 0 to 350; p has the value from 1 to 6, q has the value from 0 to 6; r has the value of 0 or 1 ; w has the value 0 or 1 ; x has the value from 1 to 100; y has the value from 0 to 100; z has the value 0 or 1.
- A composition according to Claim 1 , wherein the R units of said amino-functional polymer backbone are selected from the group consisting of C2-C12 alkylene, C3-C12 hydroxyalkylene, C4-C12 dihydroxyalkylene, -(R1 O)xRl -, -(R10)XR5-(0R1 )X-,
(CH2CH(OH)CH2θ)z(R1 O)yR1 (OCH2CH(OH)CH2)w-. and mixtures thereof, preferably selected from the group consisting of C2-C6 alkylene.
- A composition according to either one of Claim 1 or 2, wherein R^ is at least 50% ethylene, preferably R1 is ethylene.
- A composition according to any one of Claims 1 -3, wherein R is hydrogen.
- A composition according to any one of Claims 1-4, wherein R3 is selected from the group consisting of C1-C12 alkyl, C7-C12 alkylarylene, and mixtures thereof, preferably R3 is C1 -C 2 alkyl and mixtures thereof, more preferably R3 is C -C6 alkyl and mixtures thereof.
- A composition according to any one of Claims 1 -5, wherein R4 is selected from the group consisting of C2-C12 alkylene, C8-C12 arylalkylene, and mixtures thereof, preferably R4 is C2-C12 alkylene and mixtures thereof, more preferably R4 is C2-C6 alkylene and mixtures thereof.
- A composition according to any one of Claims 1 -6, wherein R^ is ethylene, -C(O)-, -C(O)NHR6NHC(O)-, -Rl (ORl )y-, (CH2CH(OH)CH2O)z(R10)yR1 -(OCH2CH(OH)CH2)w CH2CH(OH)CH2-, and mixtures thereof, preferably R5 js - CH2CH(OH)CH2-.
- A composition according to any one of Claims 1 -7, wherein R' units are selected from the group consisting of hydrogen, C3-C22 hydroxyalkyl, benzyl, C1-C22 alkyl* -(R1 O)xB, -C(0)R3, - (CH2)pCO2-M + , -(CH2)qS03-M + , -CH(CH2C02M)CO2M and mixtures thereof, preferably R' units are selected from the group consisting of hydrogen, C -C22 alkyl, -{R10)XB, -C(O)R3, and mixtures thereof, more preferably R' units are -(R1 O)xB.
- . A composition according to any one of Claims 1-8, wherein x has a value lying in the range of from 1 to 20, preferably from 1 to 10.
0- A composition according to any one of Claims 1 -9, wherein said dye fixing agent is a cationic dye fixing agent, preferably a polycationic dye fixing agent.
1 - A composition according to any one of Claim 1-10, wherein said composition further comprises a dispersible polyolefin.
2- A composition according to any one of Claims 1 -1 1 , wherein said composition further comprises one or more fabric softening component.
3- A composition according to Claim 12, wherein said fabric softening component is a cationic fabric softening component, preferably a biodegradable cationic fabric softener selected from quaternary ammonium compounds and amine precursors having the formula (I) or (II), below :
Figure imgf000055_0001
(I)
Figure imgf000055_0002
(II) wherein Q is selected from -O-C(O)-, -C(O)-O-, -O-C(0)-O-, -NR4- C(O)-, -C(O)-NR4-; R1 is (CH2)n-Q-T2 or T3; R2 is (CH2)m-Q-T4 or T5 or R3; R3 is C1-C4 alkyl or C1 -C4 hydroxyalkyl or H; R4 is H or C1 -C4 alkyl or C1 -C4 hydroxyalkyl; T1 , T2, T3, T4, T5 are independently C1 1 -C22 alkyl or alkenyl; n and m are integers from 1 to 4; and X" is a softener-compatible anion.
14. A composition according to any one of Claims 1 -13, wherein said composition further comprises a surfactant concentration aid, preferably a nonionic alkoxylated surfactant.
15. A composition according to any one of Claims 1 -14, wherein said composition further comprises an enzyme, preferably a cellulase.
16. A composition according to any one of Claims 1 -15, wherein said composition is in a liquid form.
17. A composition according to any one of Claim 1 -15, wherein said composition is applied on a substrate, preferably a dryer-sheet.
18. A method for providing color care on treated fabrics upon domestic laundering treatment which comprises the step of contacting the fabrics with an aqueous medium comprising a composition as defined in any one of Claim 1 -16.
19. A method according to Claim 18, wherein said aqueous medium is at a temperature between 2°C to 40°C, preferably between 5°C to 25°C.
20. A method for providing color care on treated fabrics upon domestic treatment which comprises the step of contacting the fabrics with a composition as defined in Claim 17.
PCT/US1997/016546 1996-09-19 1997-09-18 Color care compositions WO1998012296A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
BR9713203-9A BR9713203A (en) 1996-09-19 1997-09-18 Color protection compositions
EP97941682A EP0931133B1 (en) 1996-09-19 1997-09-18 Color care compositions
AT97941682T ATE293672T1 (en) 1996-09-19 1997-09-18 COLOR-FRIENDLY COMPOSITIONS
US09/269,097 US6020302A (en) 1997-09-18 1997-09-18 Color care compositions
DE69733072T DE69733072T2 (en) 1996-09-19 1997-09-18 COLOR-EFFECTIVE COMPOSITIONS
CA002265740A CA2265740C (en) 1996-09-19 1997-09-18 Color care compositions comprising a dye fixing agent and a polyamine
JP10514865A JP2000503063A (en) 1996-09-19 1997-09-18 Color care composition
CZ99947A CZ94799A3 (en) 1996-09-19 1997-09-18 Agent and process ensuring treatment of dyestuff of made-up textile materials
AU43541/97A AU4354197A (en) 1996-09-19 1997-09-18 Color care compositions
NO991298A NO991298L (en) 1996-09-19 1999-03-17 Color preservative compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
USPCT/US96/15052 1996-09-19
PCT/US1996/015052 WO1998012295A1 (en) 1996-09-19 1996-09-19 Color care compositions

Publications (1)

Publication Number Publication Date
WO1998012296A1 true WO1998012296A1 (en) 1998-03-26

Family

ID=22255825

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US1996/015052 WO1998012295A1 (en) 1996-09-19 1996-09-19 Color care compositions
PCT/US1997/016546 WO1998012296A1 (en) 1996-09-19 1997-09-18 Color care compositions

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US1996/015052 WO1998012295A1 (en) 1996-09-19 1996-09-19 Color care compositions

Country Status (11)

Country Link
EP (1) EP0931133B1 (en)
JP (1) JP2000503063A (en)
KR (1) KR100336148B1 (en)
AR (1) AR009089A1 (en)
AT (1) ATE293672T1 (en)
AU (1) AU7162796A (en)
BR (1) BR9713203A (en)
CA (1) CA2265740C (en)
CZ (1) CZ94799A3 (en)
DE (1) DE69733072T2 (en)
WO (2) WO1998012295A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075000A (en) * 1997-07-02 2000-06-13 The Procter & Gamble Company Bleach compatible alkoxylated polyalkyleneimines
US6127331A (en) * 1998-06-23 2000-10-03 The Procter & Gamble Company Laundry compositions comprising alkoxylated polyalkyleneimine dispersants
US6383655B1 (en) 1998-06-12 2002-05-07 3M Innovative Properties Company Low odor polymerizable compositions useful for bonding low surface energy substrates
US6410667B1 (en) 1999-11-04 2002-06-25 3M Innovative Properties Company Initiator/amidine complexes, systems comprising the complexes, and polymerized compositions made therewith
US6479602B1 (en) 2000-03-15 2002-11-12 3M Innovative Properties Polymerization initiator systems and bonding compositions comprising vinyl aromatic compounds
US6486090B1 (en) 1999-11-04 2002-11-26 3M Innovative Properties Company Initiator/hydroxide and initiator/alkoxide complexes, systems comprising the complexes, and polymerized compositions made therewith
US6525013B1 (en) * 1998-09-15 2003-02-25 The Procter & Gamble Company Fabric care and laundry compositions comprising low molecular weight linear or cyclic polyamines
US6531438B1 (en) * 1998-09-15 2003-03-11 The Procter & Gamble Company Rinse-added fabric care compositions comprising low molecular weight linear and cyclic polyamines
US6566323B1 (en) * 1999-02-19 2003-05-20 The Procter & Gamble Company Laundry detergent compositions comprising fabric enhancement polyamines
US6750189B1 (en) * 1999-02-19 2004-06-15 The Procter & Gamble Company Fabric enhancement compositions
US6812308B2 (en) 2000-11-21 2004-11-02 3M Innovative Properties Company Initiator systems and adhesive compositions made therewith
US6830593B1 (en) 1998-08-03 2004-12-14 The Procter & Gamble Company Fabric care compositions
US6858570B2 (en) 2001-03-03 2005-02-22 Clariant Gmbh Laundry detergents and laundry treatment compositions comprising one or more dye-transfer-inhibiting dye fixatives
US7091167B2 (en) 2001-03-03 2006-08-15 Clariant Gmbh Laundry detergents and laundry treatment compositions comprising dye-transfer-inhibiting dye fixatives
WO2011131412A1 (en) 2010-04-22 2011-10-27 Unilever Plc Improvements relating to fabric conditioners

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE284947T1 (en) * 1998-08-03 2005-01-15 Procter & Gamble FABRIC CARE PRODUCTS
US6228783B1 (en) * 1998-12-31 2001-05-08 National Starch And Chemical Investment Holding Corporation Laundry article which attracts soil and dyes
EP1238138A1 (en) * 1999-10-22 2002-09-11 The Procter & Gamble Company Non-reactive fabric enhancement treatment
AU1906500A (en) * 1999-10-29 2001-05-14 Procter & Gamble Company, The Laundry detergent compositions with fabric care
US6956017B1 (en) 1999-10-29 2005-10-18 The Procter & Gamble Company Laundry detergent compositions with fabric care
CA2429646C (en) 2000-12-11 2011-10-18 Unilever Plc Improvements relating to fabric care

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB583031A (en) * 1943-03-08 1946-12-05 Du Pont Surface-active compounds
GB729656A (en) * 1951-07-13 1955-05-11 Bradford Dyers Ass Ltd Improvements in the fastness of coloured textile materials
DE1900002A1 (en) * 1969-01-02 1970-07-30 Henkel & Cie Gmbh Washing powder
EP0111984A2 (en) * 1982-12-23 1984-06-27 THE PROCTER &amp; GAMBLE COMPANY Ethoxylated amine polymers having clay soil removal/anti-redeposition properties useful in detergent compositions
EP0135217A1 (en) * 1983-07-22 1985-03-27 THE PROCTER &amp; GAMBLE COMPANY Ethoxylated amine oxides having clay soil removal/anti-redeposition properties useful in detergent compositions
EP0269169A2 (en) * 1986-11-21 1988-06-01 The Procter & Gamble Company Detergent compositions containing cellulase
EP0462806A2 (en) * 1990-06-20 1991-12-27 Unilever Plc Process and composition for treating fabrics
EP0581753A1 (en) * 1992-07-15 1994-02-02 The Procter & Gamble Company Dye transfer inhibiting compositions comprising polymeric dispersing agents
WO1996027649A1 (en) * 1995-03-03 1996-09-12 The Procter & Gamble Company Laundry composition containing dye fixatives and cellulase

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB583031A (en) * 1943-03-08 1946-12-05 Du Pont Surface-active compounds
GB729656A (en) * 1951-07-13 1955-05-11 Bradford Dyers Ass Ltd Improvements in the fastness of coloured textile materials
DE1900002A1 (en) * 1969-01-02 1970-07-30 Henkel & Cie Gmbh Washing powder
EP0111984A2 (en) * 1982-12-23 1984-06-27 THE PROCTER &amp; GAMBLE COMPANY Ethoxylated amine polymers having clay soil removal/anti-redeposition properties useful in detergent compositions
EP0135217A1 (en) * 1983-07-22 1985-03-27 THE PROCTER &amp; GAMBLE COMPANY Ethoxylated amine oxides having clay soil removal/anti-redeposition properties useful in detergent compositions
EP0269169A2 (en) * 1986-11-21 1988-06-01 The Procter & Gamble Company Detergent compositions containing cellulase
EP0462806A2 (en) * 1990-06-20 1991-12-27 Unilever Plc Process and composition for treating fabrics
EP0581753A1 (en) * 1992-07-15 1994-02-02 The Procter & Gamble Company Dye transfer inhibiting compositions comprising polymeric dispersing agents
WO1996027649A1 (en) * 1995-03-03 1996-09-12 The Procter & Gamble Company Laundry composition containing dye fixatives and cellulase

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075000A (en) * 1997-07-02 2000-06-13 The Procter & Gamble Company Bleach compatible alkoxylated polyalkyleneimines
US6383655B1 (en) 1998-06-12 2002-05-07 3M Innovative Properties Company Low odor polymerizable compositions useful for bonding low surface energy substrates
US7189303B2 (en) 1998-06-12 2007-03-13 3M Innovative Properties Company Initiator systems and adhesive compositions made therewith
US6127331A (en) * 1998-06-23 2000-10-03 The Procter & Gamble Company Laundry compositions comprising alkoxylated polyalkyleneimine dispersants
US6830593B1 (en) 1998-08-03 2004-12-14 The Procter & Gamble Company Fabric care compositions
US6525013B1 (en) * 1998-09-15 2003-02-25 The Procter & Gamble Company Fabric care and laundry compositions comprising low molecular weight linear or cyclic polyamines
US6531438B1 (en) * 1998-09-15 2003-03-11 The Procter & Gamble Company Rinse-added fabric care compositions comprising low molecular weight linear and cyclic polyamines
US6750189B1 (en) * 1999-02-19 2004-06-15 The Procter & Gamble Company Fabric enhancement compositions
US6566323B1 (en) * 1999-02-19 2003-05-20 The Procter & Gamble Company Laundry detergent compositions comprising fabric enhancement polyamines
US6410667B1 (en) 1999-11-04 2002-06-25 3M Innovative Properties Company Initiator/amidine complexes, systems comprising the complexes, and polymerized compositions made therewith
US6740717B2 (en) 1999-11-04 2004-05-25 3M Innovative Properties Company Initiator/amidine complexes, systems comprising the complexes, and polymerized compositions made therewith
US6762256B2 (en) 1999-11-04 2004-07-13 3M Innovative Properties Company Initiator/amidine complexes, systems comprising the complexes, and polymerized compositions made therewith
US6486090B1 (en) 1999-11-04 2002-11-26 3M Innovative Properties Company Initiator/hydroxide and initiator/alkoxide complexes, systems comprising the complexes, and polymerized compositions made therewith
US6479602B1 (en) 2000-03-15 2002-11-12 3M Innovative Properties Polymerization initiator systems and bonding compositions comprising vinyl aromatic compounds
US6812308B2 (en) 2000-11-21 2004-11-02 3M Innovative Properties Company Initiator systems and adhesive compositions made therewith
US6858570B2 (en) 2001-03-03 2005-02-22 Clariant Gmbh Laundry detergents and laundry treatment compositions comprising one or more dye-transfer-inhibiting dye fixatives
US7091167B2 (en) 2001-03-03 2006-08-15 Clariant Gmbh Laundry detergents and laundry treatment compositions comprising dye-transfer-inhibiting dye fixatives
WO2011131412A1 (en) 2010-04-22 2011-10-27 Unilever Plc Improvements relating to fabric conditioners

Also Published As

Publication number Publication date
EP0931133B1 (en) 2005-04-20
CA2265740C (en) 2007-12-18
DE69733072T2 (en) 2006-03-09
KR100336148B1 (en) 2002-05-09
KR20010029510A (en) 2001-04-06
CA2265740A1 (en) 1998-03-26
EP0931133A1 (en) 1999-07-28
DE69733072D1 (en) 2005-05-25
BR9713203A (en) 2000-04-04
AU7162796A (en) 1998-04-14
AR009089A1 (en) 2000-03-08
CZ94799A3 (en) 1999-08-11
WO1998012295A1 (en) 1998-03-26
JP2000503063A (en) 2000-03-14
ATE293672T1 (en) 2005-05-15

Similar Documents

Publication Publication Date Title
EP0931133B1 (en) Color care compositions
WO1998020102A1 (en) Perfume compositions
WO1998020098A1 (en) Color care compositions
US6020302A (en) Color care compositions
US6316402B1 (en) Fabric softening compositions
EP0831144B1 (en) Fabric softening compositions
AU765389B2 (en) Rinse-added fabric care compositions comprising low molecular weight linear and cyclic polyamines
EP0979861B1 (en) Fabric care compositions
EP1036149A1 (en) Fabric care compositions
EP0864642A1 (en) Fabric care compositions
CA2257199C (en) Fabric softening compositions
CA2270383C (en) Fabric softening compositions
EP1100857A1 (en) Fabric care compositions
MXPA99004307A (en) Perfume compositions
MXPA01001149A (en) Fabric care compositions
MXPA01001323A (en) Fabric care compositions

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2265740

Country of ref document: CA

Kind code of ref document: A

Ref document number: 2265740

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PV1999-947

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 1019997002296

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/1999/002712

Country of ref document: MX

Ref document number: 09269097

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997941682

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1997941682

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1999-947

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1019997002296

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997002296

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997941682

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: PV1999-947

Country of ref document: CZ