WO1998046149A1 - Steerable catheter with rotatable tip electrode and method of use - Google Patents

Steerable catheter with rotatable tip electrode and method of use Download PDF

Info

Publication number
WO1998046149A1
WO1998046149A1 PCT/CA1997/000243 CA9700243W WO9846149A1 WO 1998046149 A1 WO1998046149 A1 WO 1998046149A1 CA 9700243 W CA9700243 W CA 9700243W WO 9846149 A1 WO9846149 A1 WO 9846149A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
impedance
tip
tip electrode
catheter
Prior art date
Application number
PCT/CA1997/000243
Other languages
French (fr)
Inventor
Leslie Organ
Original Assignee
Taccor, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taccor, Inc. filed Critical Taccor, Inc.
Priority to EP97915234A priority Critical patent/EP1006905A1/en
Priority to CA002286656A priority patent/CA2286656A1/en
Priority to AU22844/97A priority patent/AU2284497A/en
Priority to PCT/CA1997/000243 priority patent/WO1998046149A1/en
Publication of WO1998046149A1 publication Critical patent/WO1998046149A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00071Electrical conductivity
    • A61B2018/00083Electrical conductivity low, i.e. electrically insulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00184Moving parts
    • A61B2018/00202Moving parts rotating
    • A61B2018/00208Moving parts rotating actively driven, e.g. by a motor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/0091Handpieces of the surgical instrument or device
    • A61B2018/00916Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1861Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument inserted into a body lumen or cavity, e.g. a catheter

Definitions

  • This invention relates to an improved catheter which can be used both for applying a radio frequency (RF) ablation current to a body part, and for electrogram recording.
  • the invention also relates to a method of applying an RF ablation current and a method of electrogram recording.
  • An important application of the invention is in the field of cardiology.
  • a healthy heart is normally caused to contract and relax in an orderly fashion by a spreading wave of electrical excitation originating from the sinoatrial (SA) node in the right upper atrium.
  • SA sinoatrial
  • AV atrio ventricular
  • the AV node then relays the wave over specialized cardiac fibers known as the bundle of His, to the ventricles.
  • the cardiac fibers over which the impulses are conducted have a refractory period, so that once stimulated they cannot be restimulated for a short time period. This normally serves as a protective mechanism.
  • some people are born with an accessory pathway of cardiac fibers extending from the ventricle near the area of the AV node back to the atrium.
  • the accessory pathway allows the excitation wave from the AV node to retrograde or travel back to the atrium.
  • the retrograde wave if it reaches the atrium just after the end of a refractory period, it can then travel back to the AV node, stimulating the AV node prematurely and producing an oscillatory loop.
  • Various other mechanisms e.g. partial damage to atrial or ventricular heart muscle, can also result in an oscillatory loop.
  • the oscillatory loop causes abnormally rapid heart action (tachycardia). This is usually self limiting, but in cases where it is not, it may be fatal. Therefore the condition requires treatment.
  • Tachycardia and other arrhythmias have sometimes been treated with medication.
  • medication is not always effective and may have serious side effects.
  • a second method of treating the condition has been open heart surgery, to cut the tissue (e.g. the accessory pathway) which forms part of the feedback loop, thus opening the feedback loop.
  • open heart surgery is a serious and costly operation.
  • cardiologists have attempted to deal with the condition by inserting catheters containing electrodes into the interior of the heart. They have attempted to locate the accessory pathway or other tissue in question and then to apply RF energy to ablate the tissue by coagulation.
  • the catheters are pushable and steerable, and are guided to the approximate location by x-rays for general guidance, and then by the use of electrograms to the exact location for fine localization.
  • the fibers known as the bundle of His, emanating from the AV node are close to the accessory pathway, so cardiologists often look for electrograms with His activity to determine that the catheter is close to the accessory pathway.
  • Numerous catheters have been designed to perform the above functions. Examples are shown in U.S. patent 5,242,441 to Avitall, U.S. patent 5,125,896 to Hojeibane, and U.S. patent 5,190,050 to Nitzsche. Various designs compete on the basis of which is more easily steerable.
  • the invention provides a catheter comprising:
  • said tip electrode having a conductive portion and an insulated portion
  • a first control extending from said handle through said shaft and connected to said distal end and being operable for bending said distal end relative to said shaft
  • a second control extending from said handle through said shaft to said tip electrode and being operable for axially rotating said tip electrode, so that said conductive portion of said tip electrode may be placed against tissue and said insulated portion may be oriented to face a patient's bloodstream.
  • the invention provides a method of positioning a catheter in a desired manner over selected tissue within a patient, said catheter having a handle, a longitudinally elongated shaft connected to said handle, a bendable distal end connected to said shaft, a first control connected to said distal end for bending said distal end relative to said shaft to steer said catheter, an axially rotatable electrode on said distal end, and a second control connected to said electrode for axially rotating said electrode, said electrode having a conductive portion and an insulated portion, said method comprising:
  • Fig. 1 is a top plan view of a catheter according to the invention
  • Fig. 2 is a side view of the catheter of Fig. 1;
  • Fig. 3 is a side view of a portion of the distal end of the catheter of Fig. 1;
  • Fig. 4 is a view similar to that of Fig. 3 but with the pull wires included;
  • Fig. 5 is a top plan view of the portion of Fig. 4;
  • Fig. 6 is an enlarged view of the tip of the catheter of Fig. i;
  • Fig. 7 is a side sectional view of the distal end of the catheter of Fig. 1;
  • Fig. 8 is a top plan sectional view of the distal end of the catheter of Fig. 1;
  • Fig. 8A shows a modification of the arrangement of Figs. 7 and 8;
  • Fig. 9 is a cross-sectional view of the distal end of the catheter of Fig. 1, taken along lines 9-9 of Fig. 8;
  • Fig. 10 is a cross-sectional view of the catheter of Fig. 1, taken along lines 10-10 of Fig. 8;
  • Fig. 11 is a cross-sectional view of the shaft of the catheter of Fig. 1;
  • Fig. 12 is a diagrammatic top plan view, partly in section, of the handle for the catheter of Fig. 1;
  • Fig. 13 is a side view, partly in section, of the handle of Fig. 12;
  • Fig. 14 is a diagrammatic view of a computer display and control for the catheter of Fig. 1;
  • Fig. 15 is a graph showing variation of impedance versus rotation angle of the catheter tip
  • Fig. 16 is a top plan view of a modified handle for the catheter of Fig 1;
  • Fig. 17 is a side sectional view of the handle of Fig. 16;
  • Fig. 18 shows a visual control display for the catheter of Fig. 1;
  • Fig. 19 is a side view of a modified ring electrode for the catheter of Fig. 1;
  • Fig. 20 is a plot showing variation of impedance with heartbeat.
  • Fig. 21 is a diagrammatic view of a modification of the computer display and control shown in Fig. 14.
  • An ablation catheter according to the invention is shown generally at 10 in Figs. 1 and 2.
  • Catheter 10 has three sections, namely a control handle 12, a shaft 14, and a distal or free end 16.
  • the shaft 14 may typically be about 100 cm long and the distal end 16 may typically be about 8 cm long.
  • the distal end 16 typically contains four platinum- iridium alloy electrodes, namely a tip electrode 18 (which may be e.g. 4 mm long) and three ring electrodes 20.
  • the ring electrodes are typically 1.5 mm long, with 2.5 mm spacing between their edges. However all dimensions mentioned can be varied as required.
  • Both the shaft 14 and the distal end 16 typically have an outside diameter of 7 French (2.34 mm) so that they can be guided through blood vessels into the heart.
  • the handle 12 contains a J-bending control knob 22 and an axial rotation control knob 24. Using knob 22 the distal end 16 can be deflected laterally into a J-shape (as shown in dotted lines in Fig. 1) to assist in steering the catheter toward a desired location.
  • a portion of the tip 18 of the catheter is insulated, and the axial rotation control knob 24 is used to rotate the tip, to bring the bare (uninsulated) portion of the tip against the heart wall and the insulation toward the bloodstream once a desired location has been reached.
  • the catheter distal end 16 is shown in more detail in Figs. 3 to 10 inclusive.
  • Middle ribbon 32 is larger than ribbons 30, 34 and thus has a projecting proximal end 36 and a projecting distal end 38.
  • Central ribbon 32 is also welded on each side to the proximal ends of upper ribbon 30 and lower ribbon 34, the weld locations being indicated at 40.
  • the ribbons are not connected to each other except at the welds 40, so that they may slide at their distal ends.
  • the ribbons thus determine a preferred bending direction (in a plane orthogonal to their flat surfaces) for the distal end 16 (i.e. J-bending).
  • the projecting proximal end 36 of the middle ribbon 32 narrows into an elongated tab 42 (Fig. 5) which inserts into a stainless steel coil 44 (Figs. 7 and 8).
  • Three retainer rings 46, 48, 50 are attached (welded) to the ribbon assembly. Rings 46, 48 are attached to the upper ribbon 30 while ring 50 is attached to the projecting distal end 38 of middle ribbon 32.
  • the rings 46, 48, 50 form a guide channel for a stainless steel torque wire 52 (Figs. 7 to 10) which is coated with polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • the use of the rings results in minimal friction and column stiffness and yet allows free rotation of wire 52 as torque is applied to it (as will be described) to produce axial tip rotation.
  • a length of polyimide or similar tubing 51 (Fig. 8A), attached e.g. by glue to upper ribbon 30, can be used in place of rings 46, 48, 50 to provide similar benefits.
  • Torque wire 52 also serves as an electrical connection to the tip electrode 18.
  • the extent of tip rotation is made sufficient to bring the insulated portion (to be described) of the tip 18 to face the blood and then slightly beyond, regardless of the starting position of the tip and its direction of rotation.
  • Figs. 6 to 8 inclusive As shown in Fig. 6, the tip electrode 18 is partially covered with an electrically insulating coating 56 (typically a polyimide coating), which coats more than 50% of the electrode surface.
  • an electrically insulating coating 56 typically a polyimide coating
  • the arc describing the lateral edges of the bare portion 58 will be less than 180° and is typically between 90° and 120°. However it can be less than 90°.
  • the shape of the bare area may be modified, e.g. hourglass instead of rectangular.
  • the tip 18 is generally bullet shaped but at its proximal end includes a reduced diameter proximally extending portion 60 (Figs. 7, 8) having a circumferential groove 62 therein.
  • the groove 62 retains a sealing ring 64 made of silicone.
  • An outer silicone sleeve 66 which forms a jacket for the catheter distal end, is pushed over sealing ring 64 to abut the proximal end of tip 18 and is then glued in position to provide a fluid tight seal against the tip 18.
  • the tip 18 also includes a central channel 68 in which the torque wire 52 is firmly soldered.
  • Central channel 68 also houses a thermocouple heat sensor 72 (Fig. 7) , from which lead wires 73 protrude. Alternatively, a thermistor heat sensor could be used.
  • the ring electrodes 20 (not shown in Figs. 7 and 8 for simplicity) are glued to the outer silicone sleeve 66, and indent the sleeve so that their outer surfaces form a relatively smooth surface with that of the outer sleeve.
  • ring electrode wires 74 (Fig. 9) which have been threaded through sleeve 66 and out appropriately positioned holes (not shown) in the sleeve are soldered to the ring electrodes.
  • the wires 74 are pulled from the handle end of the sleeve leaving some slack in the wires 74 (as in thermocouple wires 73) to allow for bending and rotation. This operation is of course performed before the tip electrode 18 is attached.
  • PTFE coated pull wires 76, 78, 80, 82 are provided, each terminating in an enlarged disk 76a, 78a, 80a, 82a.
  • the enlarged disks are welded to the projecting distal end 38 of the middle stainless steel ribbon 32.
  • Two pull wires are located on each side of the ribbon assembly as best shown in cross section in Fig. 9.
  • the pull wires 76- 82 serve to bend the assembly of ribbon 30, 32, 34, and hence the catheter distal end 16, in either of its two preferred directions for bending. It will be apparent that the bending will be in a J-shape.
  • torque wire 52 tapers in diameter at its distal end to provide increased flexibility to permit easier lateral deflection of the distal end 16 of the catheter.
  • the pull wires 76-82, the tab section 42 of middle stainless steel ribbon 32, and the torque wire 52 are all inserted into the end of the stainless steel coil 44.
  • the pull wires 76-82, the ribbon assembly 30, 32, 34 and the torque wire 52 are held together adjacent the catheter distal end 16 with three layers of material (which for clarity are not shown in Figs. 7 and 8). These layers consist of an inner layer of PTFE shrink tubing 86, a middle wrapping 88 of aramid fiber to provide strength against tearing during bending, and an outer layer of PTFE shrink tubing 90.
  • the three layer covering extends distally about 0.025 inch beyond the ribbon assembly 30, 32, 34 and extends proximally to butt against the end of the stainless steel coil 44.
  • thermocouple wires 73 and ring electrode wires 74 Located between the outer PTFE shrink tubing 90 and the silicone outer sleeve 66 are the thermocouple wires 73 and ring electrode wires 74 (Fig. 9).
  • a polyimide sleeve 92 shown in Figs. 7 and 8 and in cross section in Fig. 10, bridges the junction of the catheter shaft 14 with the distal end 16, for reinforcing purposes.
  • the sleeve 92 extends over the proximal end of the three layers 86, 88, 90 (which as mentioned are for clarity not shown in Figs. 7, 8).
  • the proximal end 94 of thin silicone sleeve 66 extends over a recessed area 95 of the catheter outer shaft wall 96 (which wall is described below).
  • Fig. 10 which is a cross section close to the junction of the shaft 14 with the catheter distal end 16, shows the tab section 42 of the middle stainless steel ribbon 32 inside the stainless steel coil 44.
  • the outer shaft wall 96 (Figs. 10 and 11) is constructed of a stainless steel braid coated with a polyether block amide (PEBA)/ nylon compound. This construction confers pushability and column stiffness to the shaft 14, while still allowing shaft flexibility.
  • Wall 96 is fixed to the handle 12 and extends to a position over sleeve 92 (Fig. 7), to abut and support proximal end 94 of silicone sleeve 66 as described above.
  • Stainless steel coil 44 runs from inside the catheter handle 12, where it is rigidly fixed, along the entire length of the shaft
  • the distal end of the stainless steel coil 44 is the point against which the pull wires 76-82 produce the lateral bending of the catheter distal end 16.
  • thermocouple wires 73 and ring electrode wires 74 are located between the stainless steel coil 44 and the outer shaft wall 96.
  • the four pull wires 76-82 and the torque wire 52 are as mentioned contained within the coil 44.
  • the J-bending control knob 22 includes a fluted or ridged shaft 98 rotatably mounted on handle wall 100 and having an interior shaft portion 102.
  • the pull wires 76-82 are secured as shown to projections 104 from the interior shaft portion 102, so that turning of the knob 22 produces equal winding and unwinding of pull wire pairs.
  • the resultant J-bending of the catheter distal end 16 is maintained with a locking lever 106.
  • Lever 106 is adapted to slide forwardly in slots 107, 108 in the handle wall 100, to engage with the fluted or ridged control knob shaft 98. Locking lever 106 is then locked in position in the laterally extending portion 109 of slots 107 (which is L-shaped) to maintain the selected bend.
  • a wire bundle 110 consisting of the thermocouple wires 73 and ring electrode wires 74, extends through the handle 12 and terminates in a male electrical connector 112 which may be connected by an appropriate female conductor and cable 113 to a computer based instrument 114 (Fig. 14).
  • Torque wire 52 passes through an axial opening 115 in the acrylic (non-electrically conductive) shaft 116 of axial rotation control knob 24. Torque wire 52 is fixed to shaft 116 by a set screw 116a.
  • torque wire 52 After passing through shaft 116, torque wire 52 terminates in a metal pin 117 which rotates within a fixed socket 118 which in turn is attached to the electrical connector 112. Electrical continuity of torque wire 52 is preserved in this manner, but other suitable methods of providing a rotating electrical connection may be provided.
  • Ablation current typically 500 KHz
  • RF radio frequency
  • the tip electrode 18 can be rotated through a considerable angle, essentially without altering the location of the tip electrode. In other words, if the tip electrode 18 is over particular tissue section, it will normally remain there even when the tip electrode 18 is rotated. The rotation does twist silicone sleeve 66, which is flexible and resilient for this purpose.
  • the Computer Instrument 114
  • Instrument 114 contains, in addition to the RF section 119, an impedance section 200.
  • Impedance section 200 is conventional and generates a 50 KHz excitation current required to measure the impedance. It also produces an impedance measurement which is transmitted to a computer section 146 containing a CPU (not shown).
  • Switch 119a allows the user to add RF current to the tip electrode to begin lesion making. However, impedance monitoring continues during application of the RF current, because a high frequency blocking filter 202 is located after the impedance section to filter out the RF current.
  • Instrument 114 also includes a standard electrogram amplifier 204 which is connected through a high frequency blocking filter 206 directly to leads 52, 74.
  • Amplifier 204 receives the electrogram signals (whose frequency spectrum is all under 1 KHz, and mostly under 500 Hz), and amplifies these signals, and transmits them to the computer section 146 for recording and display.
  • Filter 206 removes the higher frequencies of the impedance current and the ablation current.
  • the electronic signals and the impedance can be, and preferably are, monitored simultaneously, e.g. on monitor 147. (Note that the impedance section 200 need not be protected from the electrogram signals because their upper frequency limit (1 KHz) is appreciably lower than the 50 KHz used by the impedance section.)
  • instrument 114 includes a conventional thermocouple section 208 connected to thermocouple leads 73.
  • Section 208 receives the thermocouple current, amplifies it, and transmits an appropriate signal to computer section 146 for recording and display. The use of the catheter 10 will now be described.
  • Fig. 15 shows a curve 120 of impedance (on the vertical axis) versus tip angle rotation (on the horizontal axis), for various angles of rotation of the catheter tip electrode 18. Shown above the plot in Fig. 15 are representations 121a to 121d of the catheter tip electrode 18 showing the bare (uninsulated) portion 58 of the tip in various positions with respect to the myocardial wall 122. The impedance shown is that between a reference electrode (not shown) connected to the patient and the wire 52 connected to the tip electrode 18.
  • the impedance shown at 124, 125 is relatively low since blood is more conductive than myocardium.
  • the impedance reaches a peak as indicated at 126. Therefore the rotational position of the bare portion 58 of the catheter can be readily determined.
  • the impedance reaches a peak, then (assuming the catheter has been properly positioned over the arrhythmic pathway), RF energy can be efficiently and reliably applied to form the desired lesion.
  • the impedance between catheter tip electrode 18 and the reference electrode can be continually read on a graphic display such as that shown in Fig. 15.
  • a graphic display such as that shown in Fig. 15.
  • the physician rotates the catheter tip using knob 24, meanwhile watching the display of Fig. 15, until the impedance has reached a peak.
  • Impedance can also be displayed numerically or as a rising bar graph or other increasing graphical display. It can also be input to an audio source whose frequency increases as impedance increases, or can be displayed in any other desired manner.
  • RF power is applied to the tip electrode 18 when impedance is greatest.
  • potentiometers may be connected to knobs 22, 24 as shown in Figs. 16, 17, where double primed reference numerals indicate parts corresponding to those of Figs. 1 to 13.
  • a spur gear 130 is formed on the end of shaft 116 " of the axial rotation knob 24 " .
  • Gear 130 drives a gear 132 on the shaft of potentiometer 134 mounted on wall 100 " .
  • Potentiometer 134 has two leads 136 connected to connector 112 " .
  • a semi-circular ring gear 138 is formed on interior shaft portion 102 " of J-bending central knob 22 " .
  • Gear 138 drives a bevel gear 140 connected to the shaft of a second potentiometer 142 having leads 143 connected to connector 112 " .
  • the resistances of the potentiometers 134, 142 will indicate the axial rotation position of tip electrode 18 and the degree of J-bending of distal catheter end 16, respectively.
  • the relationship between the position of knob 24 and rotation of the tip electrode is not linear because friction on torque wire 52 within the distal catheter end 16 increases as J- bending increases.
  • one unit of rotation of knob 24 produces approximately one unit of axial rotation of the tip electrode 18.
  • the catheter distal end is bent into a J-shape, there are significant torque losses and it may take (for example) two units of rotation of knob 24 to produce one unit of tip rotation.
  • the actual relationships can be determined after the catheter has been manufactured, and can then be provided in the form of a look-up table in the read-only memory (ROM) 144 of the computer section 146 of the computer based instrument 114.
  • the look-up table provides to the CPU in the computer section 146 the data representative of the actual degree of axial rotation, so that true tip rotation may be displayed graphically and /or numerically on a monitor 147.
  • the tip electrode 18 may be displayed in cross-section as icon 150 with an arrow 152 indicating the number of degrees of rotation of the uninsulated portion 58 from a reference (unrotated) position 154 marked as 0°.
  • the tip can as mentioned be rotated in either direction from the 0° position.
  • the impedance display consists of a shaded bar 162 which rises and falls as the impedance varies, with an ohm scale beside it on the vertical axis, and with the numeric value of the impedance at any given time displayed at 164.
  • the operator of the catheter can see exactly how far the tip electrode 18 has been rotated from its 0° or reference position, and at the same time can see from display 160 (by rotating the tip electrode 18 back and forth) when the impedance reaches a peak.
  • the graphic display of Fig. 18 can also include a display 168 showing the amount of J-bending. This is indicated by an icon 170 representing the catheter distal end 16 and showing the amount of J- bending in the distal end 16. The amount of J-bending to the left or right is reproduced in the icon, with the alphanumeric value and the direction of bending displayed at 172.
  • An alternative or additional form of display for the rotational position of the tip electrode 18 is shown as icon 174 in Fig. 18.
  • the icon 174 is simply one of the displays 121a to 121d from Fig. 15 and displays the rotational relationship of the tip 18 relative to the tissue wall 122. As the impedance rises or falls, the displayed position of the tip 18 rotates.
  • Such display can be generated by the computer instrument 114, which can be programmed to rotate the representation of tip 18 dependent on whether the impedance (indicated by graph 120) is at a peak or valley, or between those two extremes.
  • the orientation of the insulated portion 56 can be determined by the program from whether the impedance rises or falls when the tip is rotated clockwise or counterclockwise.
  • the impedance is normally measured between the tip electrode 18 and a reference electrode connected elsewhere to the patient, the impedance can if desired be measured between the tip electrode 18 and any of the ring electrodes 20. However it is preferred to use a larger reference electrode located elsewhere on the patient for more consistent results.
  • the catheter described is particularly useful for ablation purposes, it may also be used simply for monitoring purposes, to detect signals from any of its electrodes (to record electrograms), i.e. it may be used as a diagnostic catheter.
  • Diagnostic catheters are normally identical to ablation catheters except that the tip electrode 18 is shorter (e.g. only 2 mm long) in a diagnostic catheter. There may also be more than four electrodes. In diagnostic mode electrograms may be recorded between the tip electrode 18 and a reference electrode, or between the tip electrode 18 and any of the ring electrodes 20, or between any ring electrode and any other ring electrode or a reference electrode.
  • one or all of the ring electrodes 20 may be partially insulated, such insulation being shown at 176 in Fig. 19.
  • the arcuate extent of the uninsulated portion 178 may have the same range as the uninsulated portion 58 of the catheter tip electrode 18.
  • a four channel read-out can be displayed on a multichannel monitor or on monitor 147. If one of the ring electrodes 20, for example, begins picking up an electrogram feature of interest, indicating that such ring electrode is over a desired site, then the catheter as a whole, or simply that ring electrode, can be switched to impedance mode. Alternatively as mentioned, by use of the electronic filtering described, impedance and electrograms can be monitored simultaneously.
  • the frequency spectrum for the electrogram is under 1 KHz, while the impedance excitation current is 50 KHz, filtering suffices in each section to remove unwanted signal.
  • impedance mode the impedance is read between the catheter electrode in question and the reference electrode (or between each catheter electrode and the reference electrode if all four channels are switched to impedance mode).
  • the impedance between the selected ring and the reference electrode is displayed, or four channels of impedance can be displayed, between each catheter electrode and the reference electrode.
  • the catheter distal end 16 is then rotated to bring the uninsulated portion 178 of the ring in question as fully as possible against the tissue wall, at which time the impedance will be a maximum and the signal being picked up by the ring in question will be optimized in size and quality, i.e. more detail will be visible in the wave form of the electrogram signal.
  • the increase in size and detail of the electrogram signal as the catheter is rotated confirm the information from the impedance signal that the uninsulated portion 178 is fully against the tissue wall.
  • the electrogram signal from tip electrode 18 will show an increase in size and quality when the tip is rotated so that its uninsulated portion is fully against the tissue wall, and this will constitute confirmation that the tip has been rotated to the correct position.
  • one channel of impedance and four channels of electrograms can be displayed simultaneously (where only the tip is partially insulated), or (where the rings are also partially insulated) several impedance channels (up to four) and up to four channels of electrograms can all be simultaneously displayed.
  • tip rotation For a diagnostic catheter a major advantage of tip rotation is that the signal detected can be optimized. In all cases the use of impedance readings allows the operator to rotate the distal end to the desired axial position. Rotation is realized best with tip electrode 18, and progressively less with ring electrodes 20 as their distance from the tip increases since their rotation is produced by twisting of the outer silicone sleeve 66, to which they are attached.
  • Impedance readings are dependent on waveform frequency and current magnitude. (The current magnitude dependence can be eliminated if a tetrapolar impedance measurement system is used, but this would be difficult within the body.)
  • the 50 KHz waveform from impedance section 200 is supplied at a constant current level by constant current source 200a to prevent variations in impedance due to current magnitude, thereby making this system more accurate. This can be useful during RF ablations using ablation catheters with either insulated or non- insulated electrode tips where changes in impedance will be followed or observed as a method of determining whether or not a satisfactory lesion has been produced.
  • the heating from RF current produces an initial liquefaction of tissue, causing a slight decrease in impedance (e.g.
  • the initial fall in impedance is an important signal that good lesion formation will follow, indicating the desirability of monitoring impedance before application of the RF current because the decrease is often small and could be missed if no pre-lesion value was available.
  • Current use is to obtain impedance measurements only during lesion making by taking the ratio of rms (root-mean-square) RF voltage to rms RF current. Typically, RF current changes during lesion making ⁇ this factor itself affecting impedance readings — and therefore is likely to obscure the initial true fall in impedance.
  • impedance measuring current is supplied at a different frequency (e.g. 50 KHz) from the ablation current (e.g. 500 KHz), and because of the filter 202, impedance can be monitored both before and during the lesion making process, as described above.
  • a different frequency e.g. 50 KHz
  • the ablation current e.g. 500 KHz
  • the impedance as measured by the impedance section 200 and transmitted to the computer section 146 will be subject to variability.
  • This variability has two components. One component is due to the motion or beating of the heart. It is found that the measured impedance will vary as the heart wall moves with each beat. A typical variation is shown in Fig. 20, which is a plot of impedance against time. In Fig. 20, curve 300 shows the impedance measured by impedance section 200 as varying (typically) between 200 and 220 ohms as the heart beats. It is assumed that the heart is beating at the rate of 90 beats per minute, so the time between each peak in curve 300 is .667 seconds.
  • One method is to measure and display impedance only at the peaks 302 of curve 300. This can be accomplished by using a conventional electronic peak detector (not shown). Alternatively, and preferably, the impedance section 200 can sample the impedance at a frequency much higher than the heartbeat, e.g. 10 times per second. These impedance measurements are directed to a peak detection software function indicated at 304 in Fig. 21 (where corresponding reference numerals indicate parts corresponding to those of Fig. 14). The peak detection software function 302 causes the display monitor 147 to display only the peak impedances.
  • Another alternative is simply to display impedance at the occurrence of the troughs 306, using a trough detector software function as indicated at 308 in Fig. 21. Peak and trough detector software functions are well known to those skilled in the art.
  • the time of the impedance measurement, or of an impedance display can be synchronized with an event within the heart cycle.
  • the R wave of the electrocardiogram generally the largest wave in the electrocardiogram
  • the time of the impedance measurement can be synchronized with a cardiac-related non-electrical event, for example the pressure wave recorded in an arterial catheter, or with pulse or volume change recorded by various means on the body surface, or by changes in optical density recorded at the fingertip (or by using other suitable synchronizing events).
  • a cardiac-related non-electrical event for example the pressure wave recorded in an arterial catheter, or with pulse or volume change recorded by various means on the body surface, or by changes in optical density recorded at the fingertip (or by using other suitable synchronizing events).
  • the second component of impedance variation can be caused by respiratory motion. This is a much slower variation than that caused by movement of the beating heart, although the two components are superimposed together.
  • the reason for impedance variation due to respiratory motion is that impedance is typically measured between the catheter tip (in contact with the heart wall) and a distant, large reference electrode. A common position for this reference electrode is against the trunk or abdomen. The current used for measuring tip impedance must therefore flow through at least part of the lungs in order to reach the reference electrode. The impedance of this pathway varies as the air content of the lungs changes during respiration, becoming maximum at peak inspiration.
  • the impedance variability caused by respiratory motion can be eliminated in various ways.
  • One preferred way is to measure the impedance between the tip electrode 18 and one of the ring electrodes 20. This limits the current used for measuring impedance to a local circuit, avoiding its flow through the lungs and thereby eliminating this source of variability.

Abstract

A catheter, used e.g. for cardiac ablation, has a handle, a shaft, and a J-bendable distal end containing tip and ring electrodes. The tip electrode is axially rotatable and has insulated and uninsulated portions. As the tip electrode is rotated, the impedance between it and a reference level is observed. When the impedance reaches a maximum, this indicates that the uninsulated portion lies against the tissue and the insulated portion faces the bloodstream. An electrogram can be taken from the electrode, or an ablation current can then be applied to it. Short circuiting of the signal or current through the blood is thus reduced.

Description

Title: STEERABLE CATHETER WITH ROT AT ABLE TIP
ELECTRODE AND METHOD OF USE
FIELD OF THE INVENTION
This invention relates to an improved catheter which can be used both for applying a radio frequency (RF) ablation current to a body part, and for electrogram recording. The invention also relates to a method of applying an RF ablation current and a method of electrogram recording. An important application of the invention is in the field of cardiology.
BACKGROUND OF THE INVENTION
A healthy heart is normally caused to contract and relax in an orderly fashion by a spreading wave of electrical excitation originating from the sinoatrial (SA) node in the right upper atrium. The wave initiated at the SA node spreads over cardiac fibers until it reaches the atrio ventricular (AV) node. The AV node then relays the wave over specialized cardiac fibers known as the bundle of His, to the ventricles. The cardiac fibers over which the impulses are conducted have a refractory period, so that once stimulated they cannot be restimulated for a short time period. This normally serves as a protective mechanism. However some people are born with an accessory pathway of cardiac fibers extending from the ventricle near the area of the AV node back to the atrium. The accessory pathway allows the excitation wave from the AV node to retrograde or travel back to the atrium.
In some cases, if the retrograde wave reaches the atrium just after the end of a refractory period, it can then travel back to the AV node, stimulating the AV node prematurely and producing an oscillatory loop. Various other mechanisms, e.g. partial damage to atrial or ventricular heart muscle, can also result in an oscillatory loop. The oscillatory loop causes abnormally rapid heart action (tachycardia). This is usually self limiting, but in cases where it is not, it may be fatal. Therefore the condition requires treatment.
Tachycardia and other arrhythmias have sometimes been treated with medication. However the medication is not always effective and may have serious side effects. A second method of treating the condition has been open heart surgery, to cut the tissue (e.g. the accessory pathway) which forms part of the feedback loop, thus opening the feedback loop. However open heart surgery is a serious and costly operation.
Therefore, for about the last fifteen years cardiologists have attempted to deal with the condition by inserting catheters containing electrodes into the interior of the heart. They have attempted to locate the accessory pathway or other tissue in question and then to apply RF energy to ablate the tissue by coagulation. The catheters are pushable and steerable, and are guided to the approximate location by x-rays for general guidance, and then by the use of electrograms to the exact location for fine localization. For example, the fibers known as the bundle of His, emanating from the AV node, are close to the accessory pathway, so cardiologists often look for electrograms with His activity to determine that the catheter is close to the accessory pathway. Numerous catheters have been designed to perform the above functions. Examples are shown in U.S. patent 5,242,441 to Avitall, U.S. patent 5,125,896 to Hojeibane, and U.S. patent 5,190,050 to Nitzsche. Various designs compete on the basis of which is more easily steerable.
In an article by L.T. Blouin and F.I. Marcus, in Pace, Vol. 12, January, 1989, part 2, pages 136 to 143, it was disclosed that by insulating part of the tip of the catheter, and applying the bare (conductive) portion of the tip against dog ventricular muscle in vitro, larger lesions could be produced with lower RF power. However so far as is known, this technique has not been used to date in any practical catheters in animal or human subjects.
Regardless of which catheter is used to date, a serious problem has existed and currently exists in determining whether the catheter is in the right location to form an ablation. It is common for the surgeon to guide an ablation catheter to a location which is believed to be correct, then to apply RF power to create an ablation, and then to observe that nothing has happened. In that case the surgeon then moves the catheter elsewhere and tries again. In many of these cases, the catheter may in fact have been properly positioned, but because most of the tip of the catheter is bathed in blood rather than lying against the tissue, and since blood has a lower electrical impedance than the tissue, the RF power has effectively been short circuited through the blood and an adequate ablation has not been formed. Problems of this kind can greatly increase the time required for catheterization procedures and can decrease the likelihood of a successful result.
BRIEF SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention in one of its aspects to provide an improved catheter which can more readily be guided so that its tip can be placed in the desired location. In one aspect the invention provides a catheter comprising:
(a) a handle, (b) a longitudinally extended shaft connected to said handle,
(c) a distal end connected to said shaft, said distal end being bendable with respect to said shaft,
(d) a tip electrode mounted on said distal end for axial rotation thereon, and at least one ring electrode mounted on said distal end adjacent to said tip,
(e) said tip electrode having a conductive portion and an insulated portion,
(f) a first control extending from said handle through said shaft and connected to said distal end and being operable for bending said distal end relative to said shaft, (g) a second control extending from said handle through said shaft to said tip electrode and being operable for axially rotating said tip electrode, so that said conductive portion of said tip electrode may be placed against tissue and said insulated portion may be oriented to face a patient's bloodstream.
In another aspect the invention provides a method of positioning a catheter in a desired manner over selected tissue within a patient, said catheter having a handle, a longitudinally elongated shaft connected to said handle, a bendable distal end connected to said shaft, a first control connected to said distal end for bending said distal end relative to said shaft to steer said catheter, an axially rotatable electrode on said distal end, and a second control connected to said electrode for axially rotating said electrode, said electrode having a conductive portion and an insulated portion, said method comprising:
(h) steering said catheter so that said electrode is positioned over said selected tissue, (i) operating said second control to axially rotate said electrode while said electrode is positioned over said selected tissue, (j) monitoring the impedance between said electrode and a reference level as said electrode is axially rotated, (k) determining when said impedance reaches a peak value, said peak value being indicative that said conductive portion of said electrode is lying against said tissue, and; (1) thereby positioning said electrode with said conductive portion lying against said tissue.
Further objects and advantages of the invention will appear from the following description, taken together with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
In the drawings: Fig. 1 is a top plan view of a catheter according to the invention;
Fig. 2 is a side view of the catheter of Fig. 1;
Fig. 3 is a side view of a portion of the distal end of the catheter of Fig. 1; Fig. 4 is a view similar to that of Fig. 3 but with the pull wires included;
Fig. 5 is a top plan view of the portion of Fig. 4;
Fig. 6 is an enlarged view of the tip of the catheter of Fig. i; Fig. 7 is a side sectional view of the distal end of the catheter of Fig. 1;
Fig. 8 is a top plan sectional view of the distal end of the catheter of Fig. 1;
Fig. 8A shows a modification of the arrangement of Figs. 7 and 8;
Fig. 9 is a cross-sectional view of the distal end of the catheter of Fig. 1, taken along lines 9-9 of Fig. 8;
Fig. 10 is a cross-sectional view of the catheter of Fig. 1, taken along lines 10-10 of Fig. 8; Fig. 11 is a cross-sectional view of the shaft of the catheter of Fig. 1;
Fig. 12 is a diagrammatic top plan view, partly in section, of the handle for the catheter of Fig. 1;
Fig. 13 is a side view, partly in section, of the handle of Fig. 12;
Fig. 14 is a diagrammatic view of a computer display and control for the catheter of Fig. 1;
Fig. 15 is a graph showing variation of impedance versus rotation angle of the catheter tip;
Fig. 16 is a top plan view of a modified handle for the catheter of Fig 1;
Fig. 17 is a side sectional view of the handle of Fig. 16;
Fig. 18 shows a visual control display for the catheter of Fig. 1;
Fig. 19 is a side view of a modified ring electrode for the catheter of Fig. 1;
Fig. 20 is a plot showing variation of impedance with heartbeat; and
Fig. 21 is a diagrammatic view of a modification of the computer display and control shown in Fig. 14.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS Organization of Catheter
An ablation catheter according to the invention is shown generally at 10 in Figs. 1 and 2. Catheter 10 has three sections, namely a control handle 12, a shaft 14, and a distal or free end 16. The shaft 14 may typically be about 100 cm long and the distal end 16 may typically be about 8 cm long.
The distal end 16 typically contains four platinum- iridium alloy electrodes, namely a tip electrode 18 (which may be e.g. 4 mm long) and three ring electrodes 20. The ring electrodes are typically 1.5 mm long, with 2.5 mm spacing between their edges. However all dimensions mentioned can be varied as required.
Both the shaft 14 and the distal end 16 typically have an outside diameter of 7 French (2.34 mm) so that they can be guided through blood vessels into the heart. The handle 12 contains a J-bending control knob 22 and an axial rotation control knob 24. Using knob 22 the distal end 16 can be deflected laterally into a J-shape (as shown in dotted lines in Fig. 1) to assist in steering the catheter toward a desired location. As will be explained, a portion of the tip 18 of the catheter is insulated, and the axial rotation control knob 24 is used to rotate the tip, to bring the bare (uninsulated) portion of the tip against the heart wall and the insulation toward the bloodstream once a desired location has been reached. Distal Catheter End 16
The catheter distal end 16 is shown in more detail in Figs. 3 to 10 inclusive. Reference is first made to Figs. 3 to 5, which show that the distal end 16 includes an assembly of three very thin planar stainless steel ribbons 30, 32, 34. Middle ribbon 32 is larger than ribbons 30, 34 and thus has a projecting proximal end 36 and a projecting distal end 38. Central ribbon 32 is also welded on each side to the proximal ends of upper ribbon 30 and lower ribbon 34, the weld locations being indicated at 40. The ribbons are not connected to each other except at the welds 40, so that they may slide at their distal ends. The ribbons thus determine a preferred bending direction (in a plane orthogonal to their flat surfaces) for the distal end 16 (i.e. J-bending).
The projecting proximal end 36 of the middle ribbon 32 narrows into an elongated tab 42 (Fig. 5) which inserts into a stainless steel coil 44 (Figs. 7 and 8).
Three retainer rings 46, 48, 50 are attached (welded) to the ribbon assembly. Rings 46, 48 are attached to the upper ribbon 30 while ring 50 is attached to the projecting distal end 38 of middle ribbon 32. The rings 46, 48, 50 form a guide channel for a stainless steel torque wire 52 (Figs. 7 to 10) which is coated with polytetrafluoroethylene (PTFE). The use of the rings results in minimal friction and column stiffness and yet allows free rotation of wire 52 as torque is applied to it (as will be described) to produce axial tip rotation. A length of polyimide or similar tubing 51 (Fig. 8A), attached e.g. by glue to upper ribbon 30, can be used in place of rings 46, 48, 50 to provide similar benefits. (In Fig. 8A primed reference numerals indicate parts corresponding to those of Figs. 7 and 8.) Torque wire 52 also serves as an electrical connection to the tip electrode 18.
The extent of tip rotation is made sufficient to bring the insulated portion (to be described) of the tip 18 to face the blood and then slightly beyond, regardless of the starting position of the tip and its direction of rotation. Preferably there is a range of axial rotation of ±300°.
Reference is next made to Figs. 6 to 8 inclusive. As shown in Fig. 6, the tip electrode 18 is partially covered with an electrically insulating coating 56 (typically a polyimide coating), which coats more than 50% of the electrode surface. This leaves a single rectangular bare area 58, whose length is the length of the tip electrode (typically 4 mm) and whose width can be described in cross section by the extent of the arc in a direction circumferentially of the bare portion. The arc describing the lateral edges of the bare portion 58 will be less than 180° and is typically between 90° and 120°. However it can be less than 90°. The shape of the bare area may be modified, e.g. hourglass instead of rectangular.
The tip 18 is generally bullet shaped but at its proximal end includes a reduced diameter proximally extending portion 60 (Figs. 7, 8) having a circumferential groove 62 therein. The groove 62 retains a sealing ring 64 made of silicone. An outer silicone sleeve 66, which forms a jacket for the catheter distal end, is pushed over sealing ring 64 to abut the proximal end of tip 18 and is then glued in position to provide a fluid tight seal against the tip 18.
The tip 18 also includes a central channel 68 in which the torque wire 52 is firmly soldered. Central channel 68 also houses a thermocouple heat sensor 72 (Fig. 7) , from which lead wires 73 protrude. Alternatively, a thermistor heat sensor could be used.
The ring electrodes 20 (not shown in Figs. 7 and 8 for simplicity) are glued to the outer silicone sleeve 66, and indent the sleeve so that their outer surfaces form a relatively smooth surface with that of the outer sleeve. Before gluing, ring electrode wires 74 (Fig. 9) which have been threaded through sleeve 66 and out appropriately positioned holes (not shown) in the sleeve are soldered to the ring electrodes. As the ring electrodes 20 are then moved into position over the sleeve 66, the wires 74 are pulled from the handle end of the sleeve leaving some slack in the wires 74 (as in thermocouple wires 73) to allow for bending and rotation. This operation is of course performed before the tip electrode 18 is attached.
Four stainless steel PTFE coated pull wires 76, 78, 80, 82 are provided, each terminating in an enlarged disk 76a, 78a, 80a, 82a. The enlarged disks are welded to the projecting distal end 38 of the middle stainless steel ribbon 32. Two pull wires are located on each side of the ribbon assembly as best shown in cross section in Fig. 9. The pull wires 76- 82 serve to bend the assembly of ribbon 30, 32, 34, and hence the catheter distal end 16, in either of its two preferred directions for bending. It will be apparent that the bending will be in a J-shape. Although not specifically shown in the drawings, torque wire 52 tapers in diameter at its distal end to provide increased flexibility to permit easier lateral deflection of the distal end 16 of the catheter.
As best shown in Figs. 7, 8 and 10, the pull wires 76-82, the tab section 42 of middle stainless steel ribbon 32, and the torque wire 52 are all inserted into the end of the stainless steel coil 44.
As shown in Fig. 9, the pull wires 76-82, the ribbon assembly 30, 32, 34 and the torque wire 52 are held together adjacent the catheter distal end 16 with three layers of material (which for clarity are not shown in Figs. 7 and 8). These layers consist of an inner layer of PTFE shrink tubing 86, a middle wrapping 88 of aramid fiber to provide strength against tearing during bending, and an outer layer of PTFE shrink tubing 90. The three layer covering extends distally about 0.025 inch beyond the ribbon assembly 30, 32, 34 and extends proximally to butt against the end of the stainless steel coil 44. Located between the outer PTFE shrink tubing 90 and the silicone outer sleeve 66 are the thermocouple wires 73 and ring electrode wires 74 (Fig. 9). A polyimide sleeve 92, shown in Figs. 7 and 8 and in cross section in Fig. 10, bridges the junction of the catheter shaft 14 with the distal end 16, for reinforcing purposes. The sleeve 92 extends over the proximal end of the three layers 86, 88, 90 (which as mentioned are for clarity not shown in Figs. 7, 8). As shown in Figs. 7 and 8, the proximal end 94 of thin silicone sleeve 66 extends over a recessed area 95 of the catheter outer shaft wall 96 (which wall is described below). Catheter Shaft
The catheter shaft 14 is shown in cross section in Figs. 10 and 11. Fig. 10, which is a cross section close to the junction of the shaft 14 with the catheter distal end 16, shows the tab section 42 of the middle stainless steel ribbon 32 inside the stainless steel coil 44.
The outer shaft wall 96 (Figs. 10 and 11) is constructed of a stainless steel braid coated with a polyether block amide (PEBA)/ nylon compound. This construction confers pushability and column stiffness to the shaft 14, while still allowing shaft flexibility. Wall 96 is fixed to the handle 12 and extends to a position over sleeve 92 (Fig. 7), to abut and support proximal end 94 of silicone sleeve 66 as described above.
Stainless steel coil 44 runs from inside the catheter handle 12, where it is rigidly fixed, along the entire length of the shaft
(within wall 96) and slightly into the catheter distal end 16 (Figs. 7 and 8).
The distal end of the stainless steel coil 44 is the point against which the pull wires 76-82 produce the lateral bending of the catheter distal end 16.
As shown in Fig. 10, thermocouple wires 73 and ring electrode wires 74 are located between the stainless steel coil 44 and the outer shaft wall 96. The four pull wires 76-82 and the torque wire 52 are as mentioned contained within the coil 44. Control Handle
The details of the control handle 12 are shown in Figs. 12 and 13. As shown, the J-bending control knob 22 includes a fluted or ridged shaft 98 rotatably mounted on handle wall 100 and having an interior shaft portion 102. The pull wires 76-82 are secured as shown to projections 104 from the interior shaft portion 102, so that turning of the knob 22 produces equal winding and unwinding of pull wire pairs. The resultant J-bending of the catheter distal end 16 is maintained with a locking lever 106. Lever 106 is adapted to slide forwardly in slots 107, 108 in the handle wall 100, to engage with the fluted or ridged control knob shaft 98. Locking lever 106 is then locked in position in the laterally extending portion 109 of slots 107 (which is L-shaped) to maintain the selected bend.
A wire bundle 110, consisting of the thermocouple wires 73 and ring electrode wires 74, extends through the handle 12 and terminates in a male electrical connector 112 which may be connected by an appropriate female conductor and cable 113 to a computer based instrument 114 (Fig. 14). Torque wire 52 passes through an axial opening 115 in the acrylic (non-electrically conductive) shaft 116 of axial rotation control knob 24. Torque wire 52 is fixed to shaft 116 by a set screw 116a.
After passing through shaft 116, torque wire 52 terminates in a metal pin 117 which rotates within a fixed socket 118 which in turn is attached to the electrical connector 112. Electrical continuity of torque wire 52 is preserved in this manner, but other suitable methods of providing a rotating electrical connection may be provided. Ablation current (typically 500 KHz) when needed is supplied, under instrument 114 control, from radio frequency (RF) section 119 and through switch 119a to wire 52 and hence to tip electrode 18.
It will be seen from the above that whether the catheter distal end 16 is bent into a J-shape or is straight, the tip electrode 18 can be rotated through a considerable angle, essentially without altering the location of the tip electrode. In other words, if the tip electrode 18 is over particular tissue section, it will normally remain there even when the tip electrode 18 is rotated. The rotation does twist silicone sleeve 66, which is flexible and resilient for this purpose. The Computer Instrument 114
Instrument 114 contains, in addition to the RF section 119, an impedance section 200. Impedance section 200 is conventional and generates a 50 KHz excitation current required to measure the impedance. It also produces an impedance measurement which is transmitted to a computer section 146 containing a CPU (not shown). Switch 119a allows the user to add RF current to the tip electrode to begin lesion making. However, impedance monitoring continues during application of the RF current, because a high frequency blocking filter 202 is located after the impedance section to filter out the RF current.
Instrument 114 also includes a standard electrogram amplifier 204 which is connected through a high frequency blocking filter 206 directly to leads 52, 74. Amplifier 204 receives the electrogram signals (whose frequency spectrum is all under 1 KHz, and mostly under 500 Hz), and amplifies these signals, and transmits them to the computer section 146 for recording and display. Filter 206 removes the higher frequencies of the impedance current and the ablation current. Thus the electronic signals and the impedance can be, and preferably are, monitored simultaneously, e.g. on monitor 147. (Note that the impedance section 200 need not be protected from the electrogram signals because their upper frequency limit (1 KHz) is appreciably lower than the 50 KHz used by the impedance section.)
Finally, instrument 114 includes a conventional thermocouple section 208 connected to thermocouple leads 73. Section 208 receives the thermocouple current, amplifies it, and transmits an appropriate signal to computer section 146 for recording and display. The use of the catheter 10 will now be described.
Use
Reference is made to Fig. 15, which shows a curve 120 of impedance (on the vertical axis) versus tip angle rotation (on the horizontal axis), for various angles of rotation of the catheter tip electrode 18. Shown above the plot in Fig. 15 are representations 121a to 121d of the catheter tip electrode 18 showing the bare (uninsulated) portion 58 of the tip in various positions with respect to the myocardial wall 122. The impedance shown is that between a reference electrode (not shown) connected to the patient and the wire 52 connected to the tip electrode 18.
As shown, when the uninsulated portion 58 faces the bloodstream (representations 121a and 121d), the impedance shown at 124, 125 is relatively low since blood is more conductive than myocardium. When the bare portion 58 is fully shielded from the bloodstream by lying directly against the myocardial wall 122 (representation 121c), the impedance reaches a peak as indicated at 126. Therefore the rotational position of the bare portion 58 of the catheter can be readily determined. When the impedance reaches a peak, then (assuming the catheter has been properly positioned over the arrhythmic pathway), RF energy can be efficiently and reliably applied to form the desired lesion.
In use, the impedance between catheter tip electrode 18 and the reference electrode (not shown) can be continually read on a graphic display such as that shown in Fig. 15. When the catheter has advanced to the desired location, as determined by electrograms picked up by ring electrodes 20 or tip electrode 18, the physician rotates the catheter tip using knob 24, meanwhile watching the display of Fig. 15, until the impedance has reached a peak. Impedance can also be displayed numerically or as a rising bar graph or other increasing graphical display. It can also be input to an audio source whose frequency increases as impedance increases, or can be displayed in any other desired manner. RF power is applied to the tip electrode 18 when impedance is greatest.
If desired, potentiometers may be connected to knobs 22, 24 as shown in Figs. 16, 17, where double primed reference numerals indicate parts corresponding to those of Figs. 1 to 13. In Figs. 16, 17 a spur gear 130 is formed on the end of shaft 116" of the axial rotation knob 24". Gear 130 drives a gear 132 on the shaft of potentiometer 134 mounted on wall 100". Potentiometer 134 has two leads 136 connected to connector 112".
Similarly, a semi-circular ring gear 138 is formed on interior shaft portion 102" of J-bending central knob 22". Gear 138 drives a bevel gear 140 connected to the shaft of a second potentiometer 142 having leads 143 connected to connector 112". The resistances of the potentiometers 134, 142 will indicate the axial rotation position of tip electrode 18 and the degree of J-bending of distal catheter end 16, respectively.
It will be realized that the relationship between the position of knob 24 and rotation of the tip electrode is not linear because friction on torque wire 52 within the distal catheter end 16 increases as J- bending increases. For example when the catheter distal end 16 is straight (no J-bending), one unit of rotation of knob 24 produces approximately one unit of axial rotation of the tip electrode 18. However when the catheter distal end is bent into a J-shape, there are significant torque losses and it may take (for example) two units of rotation of knob 24 to produce one unit of tip rotation. The actual relationships can be determined after the catheter has been manufactured, and can then be provided in the form of a look-up table in the read-only memory (ROM) 144 of the computer section 146 of the computer based instrument 114. The look-up table provides to the CPU in the computer section 146 the data representative of the actual degree of axial rotation, so that true tip rotation may be displayed graphically and /or numerically on a monitor 147.
Several forms of display are possible, e.g. on the monitor 147. For example, as shown in Fig. 18, the tip electrode 18 may be displayed in cross-section as icon 150 with an arrow 152 indicating the number of degrees of rotation of the uninsulated portion 58 from a reference (unrotated) position 154 marked as 0°. The tip can as mentioned be rotated in either direction from the 0° position.
Above or beside the icon 150 for the tip rotation is a display 160 showing impedance. The impedance display consists of a shaded bar 162 which rises and falls as the impedance varies, with an ohm scale beside it on the vertical axis, and with the numeric value of the impedance at any given time displayed at 164. Thus, the operator of the catheter can see exactly how far the tip electrode 18 has been rotated from its 0° or reference position, and at the same time can see from display 160 (by rotating the tip electrode 18 back and forth) when the impedance reaches a peak.
The graphic display of Fig. 18 can also include a display 168 showing the amount of J-bending. This is indicated by an icon 170 representing the catheter distal end 16 and showing the amount of J- bending in the distal end 16. The amount of J-bending to the left or right is reproduced in the icon, with the alphanumeric value and the direction of bending displayed at 172. An alternative or additional form of display for the rotational position of the tip electrode 18 is shown as icon 174 in Fig. 18. The icon 174 is simply one of the displays 121a to 121d from Fig. 15 and displays the rotational relationship of the tip 18 relative to the tissue wall 122. As the impedance rises or falls, the displayed position of the tip 18 rotates. Such display can be generated by the computer instrument 114, which can be programmed to rotate the representation of tip 18 dependent on whether the impedance (indicated by graph 120) is at a peak or valley, or between those two extremes. The orientation of the insulated portion 56 (whether it is at the top or bottom of the drawing) can be determined by the program from whether the impedance rises or falls when the tip is rotated clockwise or counterclockwise.
While the impedance is normally measured between the tip electrode 18 and a reference electrode connected elsewhere to the patient, the impedance can if desired be measured between the tip electrode 18 and any of the ring electrodes 20. However it is preferred to use a larger reference electrode located elsewhere on the patient for more consistent results.
While the catheter described is particularly useful for ablation purposes, it may also be used simply for monitoring purposes, to detect signals from any of its electrodes (to record electrograms), i.e. it may be used as a diagnostic catheter. Diagnostic catheters are normally identical to ablation catheters except that the tip electrode 18 is shorter (e.g. only 2 mm long) in a diagnostic catheter. There may also be more than four electrodes. In diagnostic mode electrograms may be recorded between the tip electrode 18 and a reference electrode, or between the tip electrode 18 and any of the ring electrodes 20, or between any ring electrode and any other ring electrode or a reference electrode.
Further, if desired one or all of the ring electrodes 20 may be partially insulated, such insulation being shown at 176 in Fig. 19. The arcuate extent of the uninsulated portion 178 may have the same range as the uninsulated portion 58 of the catheter tip electrode 18. In use of this last version, as the catheter is being positioned a four channel read-out can be displayed on a multichannel monitor or on monitor 147. If one of the ring electrodes 20, for example, begins picking up an electrogram feature of interest, indicating that such ring electrode is over a desired site, then the catheter as a whole, or simply that ring electrode, can be switched to impedance mode. Alternatively as mentioned, by use of the electronic filtering described, impedance and electrograms can be monitored simultaneously. Since as mentioned the frequency spectrum for the electrogram is under 1 KHz, while the impedance excitation current is 50 KHz, filtering suffices in each section to remove unwanted signal. In impedance mode, the impedance is read between the catheter electrode in question and the reference electrode (or between each catheter electrode and the reference electrode if all four channels are switched to impedance mode).
When impedance mode is activated, the impedance between the selected ring and the reference electrode is displayed, or four channels of impedance can be displayed, between each catheter electrode and the reference electrode. The catheter distal end 16 is then rotated to bring the uninsulated portion 178 of the ring in question as fully as possible against the tissue wall, at which time the impedance will be a maximum and the signal being picked up by the ring in question will be optimized in size and quality, i.e. more detail will be visible in the wave form of the electrogram signal. The increase in size and detail of the electrogram signal as the catheter is rotated confirm the information from the impedance signal that the uninsulated portion 178 is fully against the tissue wall.
Even if the rings are not partially insulated, the electrogram signal from tip electrode 18 will show an increase in size and quality when the tip is rotated so that its uninsulated portion is fully against the tissue wall, and this will constitute confirmation that the tip has been rotated to the correct position. Thus, if desired, one channel of impedance and four channels of electrograms (one electrogram channel for each electrode) can be displayed simultaneously (where only the tip is partially insulated), or (where the rings are also partially insulated) several impedance channels (up to four) and up to four channels of electrograms can all be simultaneously displayed.
It will be seen that rotating the partially insulated tip so that no uninsulated portion is exposed to the circulating blood prior to applying lesion current has a number of advantages for an ablation catheter. The procedure prevents loss of RF current to the blood and thereby increases the efficiency of the lesion making process. It also improves the reliability of the process because of the greater certainty that a lesion has been made. In addition, because less RF current is needed, it reduces the risk of blood clot formation from the RF current, and it also reduces possible risk of changes in blood coagulation factors produced by exposure to the RF current.
For a diagnostic catheter a major advantage of tip rotation is that the signal detected can be optimized. In all cases the use of impedance readings allows the operator to rotate the distal end to the desired axial position. Rotation is realized best with tip electrode 18, and progressively less with ring electrodes 20 as their distance from the tip increases since their rotation is produced by twisting of the outer silicone sleeve 66, to which they are attached.
Impedance readings are dependent on waveform frequency and current magnitude. (The current magnitude dependence can be eliminated if a tetrapolar impedance measurement system is used, but this would be difficult within the body.) The 50 KHz waveform from impedance section 200 is supplied at a constant current level by constant current source 200a to prevent variations in impedance due to current magnitude, thereby making this system more accurate. This can be useful during RF ablations using ablation catheters with either insulated or non- insulated electrode tips where changes in impedance will be followed or observed as a method of determining whether or not a satisfactory lesion has been produced. Typically the heating from RF current produces an initial liquefaction of tissue, causing a slight decrease in impedance (e.g. from an initial 150 ohms down to 130 ohms), followed by a larger impedance rise as the liquefied tissue coagulates into a solid (e.g. up to 300 ohms.) The initial fall in impedance is an important signal that good lesion formation will follow, indicating the desirability of monitoring impedance before application of the RF current because the decrease is often small and could be missed if no pre-lesion value was available. Current use is to obtain impedance measurements only during lesion making by taking the ratio of rms (root-mean-square) RF voltage to rms RF current. Typically, RF current changes during lesion making ~ this factor itself affecting impedance readings — and therefore is likely to obscure the initial true fall in impedance.
With the invention, where impedance measuring current is supplied at a different frequency (e.g. 50 KHz) from the ablation current (e.g. 500 KHz), and because of the filter 202, impedance can be monitored both before and during the lesion making process, as described above.
Finally, it has been discovered that even when the electrode tip has been properly rotated against the heart wall so that only the uninsulated portion 58 contacts the heart wall, nevertheless the impedance as measured by the impedance section 200 and transmitted to the computer section 146 will be subject to variability. This variability has two components. One component is due to the motion or beating of the heart. It is found that the measured impedance will vary as the heart wall moves with each beat. A typical variation is shown in Fig. 20, which is a plot of impedance against time. In Fig. 20, curve 300 shows the impedance measured by impedance section 200 as varying (typically) between 200 and 220 ohms as the heart beats. It is assumed that the heart is beating at the rate of 90 beats per minute, so the time between each peak in curve 300 is .667 seconds.
Conventional methods of measuring the impedance are to cause impedance section 200, under software controlled by computer section 146, to sample single values of the impedance at constant intervals and to display each value, or alternatively to take the average of a fixed number of samples during regular intervals such as AB, BC, CD, etc. (Fig. 20) and to display the average values. In either case, an apparent random variability in impedance due to the heartbeat will be observed, making it difficult to follow the impedance variation caused by rotation of the partially insulated tip.
Various methods can be adopted to solve the problem of impedance variability due to the heartbeat. One method is to measure and display impedance only at the peaks 302 of curve 300. This can be accomplished by using a conventional electronic peak detector (not shown). Alternatively, and preferably, the impedance section 200 can sample the impedance at a frequency much higher than the heartbeat, e.g. 10 times per second. These impedance measurements are directed to a peak detection software function indicated at 304 in Fig. 21 (where corresponding reference numerals indicate parts corresponding to those of Fig. 14). The peak detection software function 302 causes the display monitor 147 to display only the peak impedances.
Another alternative is simply to display impedance at the occurrence of the troughs 306, using a trough detector software function as indicated at 308 in Fig. 21. Peak and trough detector software functions are well known to those skilled in the art.
Other alternatives may also be used. For example, the time of the impedance measurement, or of an impedance display, can be synchronized with an event within the heart cycle. Typically the R wave of the electrocardiogram (generally the largest wave in the electrocardiogram) may be used as a synchronizing event. This may be accomplished under software control by connecting a synchronizing software function 310 (Fig. 21) an ECG signal obtained from the body surface, so that the impedance section 200 will measure and the monitor will display (or the monitor will simply display) the impedance when the synchronizing software function 310 determines that an R wave event has occurred.
Alternatively, the time of the impedance measurement can be synchronized with a cardiac-related non-electrical event, for example the pressure wave recorded in an arterial catheter, or with pulse or volume change recorded by various means on the body surface, or by changes in optical density recorded at the fingertip (or by using other suitable synchronizing events).
The second component of impedance variation can be caused by respiratory motion. This is a much slower variation than that caused by movement of the beating heart, although the two components are superimposed together. The reason for impedance variation due to respiratory motion is that impedance is typically measured between the catheter tip (in contact with the heart wall) and a distant, large reference electrode. A common position for this reference electrode is against the trunk or abdomen. The current used for measuring tip impedance must therefore flow through at least part of the lungs in order to reach the reference electrode. The impedance of this pathway varies as the air content of the lungs changes during respiration, becoming maximum at peak inspiration.
The impedance variability caused by respiratory motion can be eliminated in various ways. One preferred way is to measure the impedance between the tip electrode 18 and one of the ring electrodes 20. This limits the current used for measuring impedance to a local circuit, avoiding its flow through the lungs and thereby eliminating this source of variability.
While preferred embodiments of the invention have been described, it will be appreciated that various changes may be made within the scope of the invention without departing from the invention itself.

Claims

I CLAIM;
1. A catheter comprising:
(a) a handle,
(b) a longitudinally extended shaft connected to said handle,
(c) a distal end connected to said shaft, said distal end being bendable with respect to said shaft,
(d) a tip electrode mounted on said distal end for axial rotation thereon, and at least one ring electrode mounted on said distal end adjacent to said tip,
(e) said tip electrode having a conductive portion and an insulated portion,
(f) a first control extending from said handle through said shaft and connected to said distal end and being operable for bending said distal end relative to said shaft,
(g) a second control extending from said handle through said shaft to said tip electrode and being operable for axially rotating said tip electrode, so that said conductive portion of said tip electrode may be placed against tissue and said insulated portion may be oriented to face a patient's bloodstream.
2. A catheter according to claim 1 wherein said tip electrode is generally bullet shaped and has a circumference, said conductive portion extending over not more than 180┬░ of said circumference.
3. A catheter according to claim 2 wherein said conductive portion extends over between 90┬░ and 120┬░ of said circumference.
4. A catheter according to claim 2 wherein said conductive portion extends over not more than 90┬░ of said circumference.
5. A catheter according to claim 1 wherein said distal end is covered with a resilient flexible sleeve and said tip electrode is connected to said sleeve, so that the portion of said sleeve adjacent said tip electrode rotates with said tip electrode and so that the connection between said tip and said sleeve reduces the likelihood of fluid leakage into said catheter.
6. A catheter according to claim 1 and including impedance measuring means adapted to be coupled to said tip electrode and to a reference electrode which is adapted to be connected to said patient, for measuring the impedance between said tip electrode and said reference electrode.
7. A catheter according to claim 6 and including means coupled to said impedance measuring means for displaying said impedance on a visual display.
8. A catheter according to claim 7 and including axial rotation measurement means coupled to said second control for determining from the operation of said second control the degree of axial rotation of said tip electrode from a reference position, and means coupling said axial rotation measurement means to said visual display for displaying on said visual display said impedance and an indication of the degree of axial rotation of said tip electrode from said reference position.
9. A catheter according to claim 7 and including computer means coupled to said impedance measuring means for determining from said impedance measuring means the axial rotational position of said tip electrode relative to a tissue surface against which said tip electrode lies, said computer means being coupled to said visual display for displaying on said visual display said impedance and an indication of said axial rotational position of said tip electrode relative to said tissue surface against which said tip electrode lies.
10. A catheter according to claim 1 and including means coupled to said tip electrode for measuring the impedance between said tip electrode and a reference level and for determining from said impedance the axial rotational position of said tip electrode relative to a tissue surface against which said tip electrode lies, a visual display, said means coupled to said tip electrode being coupled to said visual display for displaying on said visual display an indication of said axial rotational position of said tip electrode relative to said tissue surface against which said tip electrode lies.
11. A catheter according to claim 1 or 6 and including means coupled to said tip electrode for supplying an ablation current to said tip electrode.
12. A catheter according to claim 6 or 7 wherein said tip electrode has a circumference and said conductive portion extends over not more than 120 degrees of said circumference.
13. A catheter according to claim 7, 8 or 9 and including bending measurement means coupled to said first control for determining from the operation of said first control the amount of bending of said distal end, and means coupling said bending measurement means to said visual display for displaying on said visual display an indication of said amount of bending of said distal end.
14. A catheter according to claim 1 wherein said handle includes measuring means connected to said first and said second controls to monitor operation of said first and second controls, and computer means connected to said measuring means for determining therefrom the amount of axial rotation of said tip electrode and for determining the amount of bending of said distal end.
15. A catheter according to claim 6 and including display means, and computer means coupled between said display means and said impedance measuring means for causing said display means to display in one of an alternative and a simultaneous manner, the impedance between said tip electrode and a reference level, and an electrogram signal received from said tip electrode.
16. A catheter according to claim 1 wherein said distal end includes three ring electrodes, said catheter further including computer means coupled to at least some of said ring electrodes and said tip electrode, said catheter further including display means coupled to said computer means for providing a multi channel display, one channel for said at least some ring electrodes, said computer means including means for controlling said display means for said display means to display in one of an alternative and a simultaneous manner, the impedance between at least one of said ring and tip electrodes and a reference level, and an electrogram signal received from between any pair of electrodes selected from said ring and tip electrodes.
17. A catheter according to claim 1 and including electrogram receiving means connected to at least one of said electrodes for receiving electrogram signals of a first frequency range therefrom, and impedance signal means connected to at least said tip electrode for generating and applying thereto an impedance measuring signal of a second frequency outside said first frequency range, and first filter means connected between said electrogram receiving means and the electrodes to which said electrogram receiving means is connected for blocking said impedance signal from said electrogram receiving means.
18. A catheter according to claim 17 and including means connected to said tip electrode for supplying an ablation current to said tip electrode, said ablation current being of a frequency outside said first frequency range and different from said second frequency, and second filter means connected between said impedance signal means and said electrodes to which said impedance signal means is connected, for blocking said ablation current from reaching said impedance signal means, said first filter means also blocking said ablation current from reaching said electrogram measuring means.
19. A catheter according to claim 18 and including display means, and computer means coupled to said display means and to said impedance signal means and to at least some of said electrodes for controlling said display means for displaying simultaneously the impedance between at least said tip electrode and a reference level, and at least one of said electrogram signals.
20. A catheter according to claim 1 wherein said distal end includes a plurality of thin ribbons having flat surfaces and having proximal ends connected together and coupled to said shaft and distal ends free to slide relative to each other, to constrain bending of said distal end to a plane orthogonal to said flat surfaces, and wherein said means for rotating said tip includes a plurality of rings mounted on said ribbon assembly, and a torque wire extending through said shaft and through said rings and connected to said tip.
21. A catheter according to claim 1 wherein said distal end includes a plurality of thin ribbons having flat surfaces and having proximal ends connected together and coupled to said shaft and distal ends free to slide relative to each other, to constrain bending of said distal end to a plane orthogonal to said flat surfaces, and wherein said means for rotating said tip includes a flexible tube mounted on said ribbon assembly, and a torque wire extending through said shaft and through said tube and connected to said tip.
22. A catheter according to claim 21 wherein said torque wire is electrically conductive and is electrically connected to said tip for carrying electrical signals from said tip and for conducting lesion current to said tip.
23. A catheter according to any of claims 6 to 10 and including means coupled to said impedance measuring means for substantially eliminating variability in said impedance caused by heartbeat.
24. A catheter according to any of claims 7 to 10 and including means coupled to said impedance measuring means for determining periodic peaks or troughs in said impedance caused by heartbeat and for substantially eliminating the effect of said peaks and troughs on said visual display.
25. A catheter according to any of claims 7 to 10 and including means coupled to said impedance measuring means for monitoring an event within the heart cycle and for synchronizing said visual display with said event, whereby to eliminate variability in measured impedance due to heartbeat.
26. A catheter according to any of claims 6 to 10 and including at least one electrode spaced from said tip electrode, and wherein said means for measuring said impedance is coupled between said tip electrode and said ring electrode, whereby said ring electrode provides said reference level, whereby to substantially eliminate variability in measured impedance due to respiration.
27. A method of positioning a catheter in a desired manner over selected tissue within a patient, said catheter having a handle, a longitudinally elongated shaft connected to said handle, a bendable distal end connected to said shaft, a first control connected to said distal end for bending said distal end relative to said shaft to steer said catheter, an axially rotatable electrode on said distal end, and a second control connected to said electrode for axially rotating said electrode, said electrode having a conductive portion and an insulated portion, said method comprising: (a) steering said catheter so that said electrode is positioned over said selected tissue, (b) operating said second control to axially rotate said electrode while said electrode is positioned over said selected tissue, (c) monitoring the impedance between said electrode and a reference level as said electrode is axially rotated,
(d) determining when said impedance reaches a peak value, said peak value being indicative that said conductive portion of said electrode is lying against said tissue, and;
(e) thereby positioning said electrode with said conductive portion lying against said tissue.
28. A method according to claim 27 wherein said electrode is a catheter tip electrode.
29. A method according to claim 28 and including the step, after said step (e), of applying an ablation current to said tip electrode.
30. A method according to claim 27 and including the step of observing an electrogram signal received from said electrode during said step (a), and when a desired signal is received, then performing said steps (b) to (e), and after said step (e), then again observing said signal received from said electrode.
31. A method according to claim 29 wherein said electrode is a catheter tip electrode.
32. A method according to claim 29 wherein said electrode is a ring electrode.
33. A method according to claim 27 or 29 wherein said tissue is heart tissue.
34. A method according to claim 28 and including the step of controlling said impedance measurement to eliminate variability therein due to heartbeat.
35. A method according to claim 28 and including the step of controlling said impedance measurement to eliminate variability therein due to heartbeat and respiration.
PCT/CA1997/000243 1997-04-11 1997-04-11 Steerable catheter with rotatable tip electrode and method of use WO1998046149A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP97915234A EP1006905A1 (en) 1997-04-11 1997-04-11 Steerable catheter with rotatable tip electrode and method of use
CA002286656A CA2286656A1 (en) 1997-04-11 1997-04-11 Steerable catheter with rotatable tip electrode and method of use
AU22844/97A AU2284497A (en) 1997-04-11 1997-04-11 Steerable catheter with rotatable tip electrode and method of use
PCT/CA1997/000243 WO1998046149A1 (en) 1997-04-11 1997-04-11 Steerable catheter with rotatable tip electrode and method of use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CA1997/000243 WO1998046149A1 (en) 1997-04-11 1997-04-11 Steerable catheter with rotatable tip electrode and method of use

Publications (1)

Publication Number Publication Date
WO1998046149A1 true WO1998046149A1 (en) 1998-10-22

Family

ID=4173206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA1997/000243 WO1998046149A1 (en) 1997-04-11 1997-04-11 Steerable catheter with rotatable tip electrode and method of use

Country Status (4)

Country Link
EP (1) EP1006905A1 (en)
AU (1) AU2284497A (en)
CA (1) CA2286656A1 (en)
WO (1) WO1998046149A1 (en)

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2241279A1 (en) * 2009-04-13 2010-10-20 Biosense Webster, Inc. Epicardial mapping and ablation catheter
US8317783B2 (en) 2005-12-06 2012-11-27 St. Jude Medical, Atrial Fibrillation Division, Inc. Assessment of electrode coupling for tissue ablation
US8353956B2 (en) 2009-02-17 2013-01-15 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US8369922B2 (en) 2005-12-06 2013-02-05 St. Jude Medical Atrial Fibrillation Division, Inc. Method for displaying catheter electrode-tissue contact in electro-anatomic mapping and navigation system
EP2601903A1 (en) * 2011-12-08 2013-06-12 Biosense Webster (Israel), Ltd. Prevention of incorrect catheter rotation
US8940044B2 (en) 2011-06-23 2015-01-27 Valtech Cardio, Ltd. Closure element for use with an annuloplasty structure
EP2839776A1 (en) * 2013-08-20 2015-02-25 Biosense Webster (Israel), Ltd. Graphical user interface for medical imaging system
US8998890B2 (en) 2005-12-06 2015-04-07 St. Jude Medical, Atrial Fibrillation Division, Inc. Assessment of electrode coupling for tissue ablation
US9119719B2 (en) 2009-05-07 2015-09-01 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US9173586B2 (en) 2005-12-06 2015-11-03 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing coupling between an electrode and tissue
US9192472B2 (en) 2008-06-16 2015-11-24 Valtec Cardio, Ltd. Annuloplasty devices and methods of delivery therefor
US9204927B2 (en) 2009-05-13 2015-12-08 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for presenting information representative of lesion formation in tissue during an ablation procedure
US9216057B2 (en) 2013-03-15 2015-12-22 Kyphon Sarl Steerable catheter system and method of using a steerable catheter system to dissect and evacuate tissue
US9254163B2 (en) 2005-12-06 2016-02-09 St. Jude Medical, Atrial Fibrillation Division, Inc. Assessment of electrode coupling for tissue ablation
US9265608B2 (en) 2011-11-04 2016-02-23 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
US9339325B2 (en) 2005-12-06 2016-05-17 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing lesions in tissue
US9474606B2 (en) 2009-05-04 2016-10-25 Valtech Cardio, Ltd. Over-wire implant contraction methods
US9492226B2 (en) 2005-12-06 2016-11-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Graphical user interface for real-time RF lesion depth display
US9526613B2 (en) 2005-03-17 2016-12-27 Valtech Cardio Ltd. Mitral valve treatment techniques
US9610119B2 (en) 2005-12-06 2017-04-04 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing the formation of a lesion in tissue
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant
US9622861B2 (en) 2009-12-02 2017-04-18 Valtech Cardio, Ltd. Tool for actuating an adjusting mechanism
US9662209B2 (en) 2008-12-22 2017-05-30 Valtech Cardio, Ltd. Contractible annuloplasty structures
US9713530B2 (en) 2008-12-22 2017-07-25 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
JP2017131736A (en) * 2013-03-13 2017-08-03 スパイレーション インコーポレイテッド Catheter heated by mechanical method
US9724192B2 (en) 2011-11-08 2017-08-08 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US9730793B2 (en) 2012-12-06 2017-08-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
US9883943B2 (en) 2006-12-05 2018-02-06 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US9949828B2 (en) 2012-10-23 2018-04-24 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US9968454B2 (en) 2009-10-29 2018-05-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of artificial chordae
US9968452B2 (en) 2009-05-04 2018-05-15 Valtech Cardio, Ltd. Annuloplasty ring delivery cathethers
US10098737B2 (en) 2009-10-29 2018-10-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US10195030B2 (en) 2014-10-14 2019-02-05 Valtech Cardio, Ltd. Leaflet-restraining techniques
US10226342B2 (en) 2016-07-08 2019-03-12 Valtech Cardio, Ltd. Adjustable annuloplasty device with alternating peaks and troughs
US10231831B2 (en) 2009-12-08 2019-03-19 Cardiovalve Ltd. Folding ring implant for heart valve
US10299793B2 (en) 2013-10-23 2019-05-28 Valtech Cardio, Ltd. Anchor magazine
US10362959B2 (en) 2005-12-06 2019-07-30 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing the proximity of an electrode to tissue in a body
US10376266B2 (en) 2012-10-23 2019-08-13 Valtech Cardio, Ltd. Percutaneous tissue anchor techniques
US10449333B2 (en) 2013-03-14 2019-10-22 Valtech Cardio, Ltd. Guidewire feeder
US10470882B2 (en) 2008-12-22 2019-11-12 Valtech Cardio, Ltd. Closure element for use with annuloplasty structure
US10517719B2 (en) 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US10555685B2 (en) 2007-12-28 2020-02-11 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for determining tissue morphology based on phase angle
US10682232B2 (en) 2013-03-15 2020-06-16 Edwards Lifesciences Corporation Translation catheters, systems, and methods of use thereof
US10695046B2 (en) 2005-07-05 2020-06-30 Edwards Lifesciences Corporation Tissue anchor and anchoring system
US10702274B2 (en) 2016-05-26 2020-07-07 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
US10751182B2 (en) 2015-12-30 2020-08-25 Edwards Lifesciences Corporation System and method for reshaping right heart
US10765514B2 (en) 2015-04-30 2020-09-08 Valtech Cardio, Ltd. Annuloplasty technologies
US10792152B2 (en) 2011-06-23 2020-10-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US10828160B2 (en) 2015-12-30 2020-11-10 Edwards Lifesciences Corporation System and method for reducing tricuspid regurgitation
US10835221B2 (en) 2017-11-02 2020-11-17 Valtech Cardio, Ltd. Implant-cinching devices and systems
US10918374B2 (en) 2013-02-26 2021-02-16 Edwards Lifesciences Corporation Devices and methods for percutaneous tricuspid valve repair
US10918373B2 (en) 2013-08-31 2021-02-16 Edwards Lifesciences Corporation Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US10925610B2 (en) 2015-03-05 2021-02-23 Edwards Lifesciences Corporation Devices for treating paravalvular leakage and methods use thereof
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US11123191B2 (en) 2018-07-12 2021-09-21 Valtech Cardio Ltd. Annuloplasty systems and locking tools therefor
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
US11259924B2 (en) 2006-12-05 2022-03-01 Valtech Cardio Ltd. Implantation of repair devices in the heart
US11395648B2 (en) 2012-09-29 2022-07-26 Edwards Lifesciences Corporation Plication lock delivery system and method of use thereof
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US11660191B2 (en) 2008-03-10 2023-05-30 Edwards Lifesciences Corporation Method to reduce mitral regurgitation
US11666442B2 (en) 2018-01-26 2023-06-06 Edwards Lifesciences Innovation (Israel) Ltd. Techniques for facilitating heart valve tethering and chord replacement
US11779463B2 (en) 2018-01-24 2023-10-10 Edwards Lifesciences Innovation (Israel) Ltd. Contraction of an annuloplasty structure
US11779458B2 (en) 2016-08-10 2023-10-10 Cardiovalve Ltd. Prosthetic valve with leaflet connectors
US11801135B2 (en) 2015-02-05 2023-10-31 Cardiovalve Ltd. Techniques for deployment of a prosthetic valve
US11819411B2 (en) 2019-10-29 2023-11-21 Edwards Lifesciences Innovation (Israel) Ltd. Annuloplasty and tissue anchor technologies
US11844691B2 (en) 2013-01-24 2023-12-19 Cardiovalve Ltd. Partially-covered prosthetic valves
US11937795B2 (en) 2016-02-16 2024-03-26 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1981003272A1 (en) * 1980-05-13 1981-11-26 American Hospital Supply Corp A multipolar electrosurgical device
WO1985003859A1 (en) * 1984-03-07 1985-09-12 Kharkovskaya Oblastnaya Klinicheskaya Bolnitsa Bipolar double-acting electrocoagulator
US5242441A (en) * 1992-02-24 1993-09-07 Boaz Avitall Deflectable catheter with rotatable tip electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1981003272A1 (en) * 1980-05-13 1981-11-26 American Hospital Supply Corp A multipolar electrosurgical device
WO1985003859A1 (en) * 1984-03-07 1985-09-12 Kharkovskaya Oblastnaya Klinicheskaya Bolnitsa Bipolar double-acting electrocoagulator
US5242441A (en) * 1992-02-24 1993-09-07 Boaz Avitall Deflectable catheter with rotatable tip electrode

Cited By (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11497605B2 (en) 2005-03-17 2022-11-15 Valtech Cardio Ltd. Mitral valve treatment techniques
US10561498B2 (en) 2005-03-17 2020-02-18 Valtech Cardio, Ltd. Mitral valve treatment techniques
US9526613B2 (en) 2005-03-17 2016-12-27 Valtech Cardio Ltd. Mitral valve treatment techniques
US10695046B2 (en) 2005-07-05 2020-06-30 Edwards Lifesciences Corporation Tissue anchor and anchoring system
US11517372B2 (en) 2005-12-06 2022-12-06 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing lesions in tissue
US9610119B2 (en) 2005-12-06 2017-04-04 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing the formation of a lesion in tissue
US8369922B2 (en) 2005-12-06 2013-02-05 St. Jude Medical Atrial Fibrillation Division, Inc. Method for displaying catheter electrode-tissue contact in electro-anatomic mapping and navigation system
US8728077B2 (en) 2005-12-06 2014-05-20 St. Jude Medical, Atrial Fibrillation Division, Inc. Handle set for ablation catheter with indicators of catheter and tissue parameters
US10182860B2 (en) 2005-12-06 2019-01-22 St. Jude Medical, Atrial Fibrillation Division, Inc. Assessment of electrode coupling for tissue ablation
US9492226B2 (en) 2005-12-06 2016-11-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Graphical user interface for real-time RF lesion depth display
US8317783B2 (en) 2005-12-06 2012-11-27 St. Jude Medical, Atrial Fibrillation Division, Inc. Assessment of electrode coupling for tissue ablation
US10201388B2 (en) 2005-12-06 2019-02-12 St. Jude Medical, Atrial Fibrillation Division, Inc. Graphical user interface for real-time RF lesion depth display
US8998890B2 (en) 2005-12-06 2015-04-07 St. Jude Medical, Atrial Fibrillation Division, Inc. Assessment of electrode coupling for tissue ablation
US9271782B2 (en) 2005-12-06 2016-03-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Assessment of electrode coupling of tissue ablation
EP1962708B1 (en) * 2005-12-06 2015-09-09 St. Jude Medical, Atrial Fibrillation Division, Inc. Assessment of electrode coupling for tissue ablation
US9173586B2 (en) 2005-12-06 2015-11-03 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing coupling between an electrode and tissue
US9339325B2 (en) 2005-12-06 2016-05-17 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing lesions in tissue
US9283025B2 (en) 2005-12-06 2016-03-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Assessment of electrode coupling for tissue ablation
US9283026B2 (en) 2005-12-06 2016-03-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Assessment of electrode coupling for tissue ablation
US9254163B2 (en) 2005-12-06 2016-02-09 St. Jude Medical, Atrial Fibrillation Division, Inc. Assessment of electrode coupling for tissue ablation
US10362959B2 (en) 2005-12-06 2019-07-30 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing the proximity of an electrode to tissue in a body
US11344414B2 (en) 2006-12-05 2022-05-31 Valtech Cardio Ltd. Implantation of repair devices in the heart
US10363137B2 (en) 2006-12-05 2019-07-30 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US9351830B2 (en) 2006-12-05 2016-05-31 Valtech Cardio, Ltd. Implant and anchor placement
US10357366B2 (en) 2006-12-05 2019-07-23 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US11259924B2 (en) 2006-12-05 2022-03-01 Valtech Cardio Ltd. Implantation of repair devices in the heart
US9872769B2 (en) 2006-12-05 2018-01-23 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US9974653B2 (en) 2006-12-05 2018-05-22 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US9883943B2 (en) 2006-12-05 2018-02-06 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US10555685B2 (en) 2007-12-28 2020-02-11 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for determining tissue morphology based on phase angle
US11660191B2 (en) 2008-03-10 2023-05-30 Edwards Lifesciences Corporation Method to reduce mitral regurgitation
US9192472B2 (en) 2008-06-16 2015-11-24 Valtec Cardio, Ltd. Annuloplasty devices and methods of delivery therefor
EP3628362A1 (en) 2008-06-16 2020-04-01 Valtech Cardio, Ltd. Annuloplasty devices and methods of delivery therefor
US9713530B2 (en) 2008-12-22 2017-07-25 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US9662209B2 (en) 2008-12-22 2017-05-30 Valtech Cardio, Ltd. Contractible annuloplasty structures
US10470882B2 (en) 2008-12-22 2019-11-12 Valtech Cardio, Ltd. Closure element for use with annuloplasty structure
US11116634B2 (en) 2008-12-22 2021-09-14 Valtech Cardio Ltd. Annuloplasty implants
US10517719B2 (en) 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US10856986B2 (en) 2008-12-22 2020-12-08 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US8353956B2 (en) 2009-02-17 2013-01-15 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US11202709B2 (en) 2009-02-17 2021-12-21 Valtech Cardio Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US9561104B2 (en) 2009-02-17 2017-02-07 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US10350068B2 (en) 2009-02-17 2019-07-16 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
EP2241279A1 (en) * 2009-04-13 2010-10-20 Biosense Webster, Inc. Epicardial mapping and ablation catheter
AU2010201269B2 (en) * 2009-04-13 2014-04-17 Biosense Webster, Inc. Epicardial mapping and ablation catheter
US8287532B2 (en) 2009-04-13 2012-10-16 Biosense Webster, Inc. Epicardial mapping and ablation catheter
US11076958B2 (en) 2009-05-04 2021-08-03 Valtech Cardio, Ltd. Annuloplasty ring delivery catheters
US9968452B2 (en) 2009-05-04 2018-05-15 Valtech Cardio, Ltd. Annuloplasty ring delivery cathethers
US11766327B2 (en) 2009-05-04 2023-09-26 Edwards Lifesciences Innovation (Israel) Ltd. Implantation of repair chords in the heart
US11844665B2 (en) 2009-05-04 2023-12-19 Edwards Lifesciences Innovation (Israel) Ltd. Deployment techniques for annuloplasty structure
US10548729B2 (en) 2009-05-04 2020-02-04 Valtech Cardio, Ltd. Deployment techniques for annuloplasty ring and over-wire rotation tool
US9474606B2 (en) 2009-05-04 2016-10-25 Valtech Cardio, Ltd. Over-wire implant contraction methods
US11185412B2 (en) 2009-05-04 2021-11-30 Valtech Cardio Ltd. Deployment techniques for annuloplasty implants
US9937042B2 (en) 2009-05-07 2018-04-10 Valtech Cardio, Ltd. Multiple anchor delivery tool
US9592122B2 (en) 2009-05-07 2017-03-14 Valtech Cardio, Ltd Annuloplasty ring with intra-ring anchoring
US10856987B2 (en) 2009-05-07 2020-12-08 Valtech Cardio, Ltd. Multiple anchor delivery tool
US11723774B2 (en) 2009-05-07 2023-08-15 Edwards Lifesciences Innovation (Israel) Ltd. Multiple anchor delivery tool
US9119719B2 (en) 2009-05-07 2015-09-01 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US9204927B2 (en) 2009-05-13 2015-12-08 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for presenting information representative of lesion formation in tissue during an ablation procedure
US10675086B2 (en) 2009-05-13 2020-06-09 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for presenting information representative of lesion formation in tissue during an ablation procedure
US10751184B2 (en) 2009-10-29 2020-08-25 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US9968454B2 (en) 2009-10-29 2018-05-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of artificial chordae
US11617652B2 (en) 2009-10-29 2023-04-04 Edwards Lifesciences Innovation (Israel) Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US11141271B2 (en) 2009-10-29 2021-10-12 Valtech Cardio Ltd. Tissue anchor for annuloplasty device
US10098737B2 (en) 2009-10-29 2018-10-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US11602434B2 (en) 2009-12-02 2023-03-14 Edwards Lifesciences Innovation (Israel) Ltd. Systems and methods for tissue adjustment
US10492909B2 (en) 2009-12-02 2019-12-03 Valtech Cardio, Ltd. Tool for actuating an adjusting mechanism
US9622861B2 (en) 2009-12-02 2017-04-18 Valtech Cardio, Ltd. Tool for actuating an adjusting mechanism
US10660751B2 (en) 2009-12-08 2020-05-26 Cardiovalve Ltd. Prosthetic heart valve with upper skirt
US10548726B2 (en) 2009-12-08 2020-02-04 Cardiovalve Ltd. Rotation-based anchoring of an implant
US11839541B2 (en) 2009-12-08 2023-12-12 Cardiovalve Ltd. Prosthetic heart valve with upper skirt
US11141268B2 (en) 2009-12-08 2021-10-12 Cardiovalve Ltd. Prosthetic heart valve with upper and lower skirts
US10231831B2 (en) 2009-12-08 2019-03-19 Cardiovalve Ltd. Folding ring implant for heart valve
US11351026B2 (en) 2009-12-08 2022-06-07 Cardiovalve Ltd. Rotation-based anchoring of an implant
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
US10792152B2 (en) 2011-06-23 2020-10-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US8940044B2 (en) 2011-06-23 2015-01-27 Valtech Cardio, Ltd. Closure element for use with an annuloplasty structure
US10363136B2 (en) 2011-11-04 2019-07-30 Valtech Cardio, Ltd. Implant having multiple adjustment mechanisms
US9265608B2 (en) 2011-11-04 2016-02-23 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
US11197759B2 (en) 2011-11-04 2021-12-14 Valtech Cardio Ltd. Implant having multiple adjusting mechanisms
US9775709B2 (en) 2011-11-04 2017-10-03 Valtech Cardio, Ltd. Implant having multiple adjustable mechanisms
US10568738B2 (en) 2011-11-08 2020-02-25 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US9724192B2 (en) 2011-11-08 2017-08-08 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US11857415B2 (en) 2011-11-08 2024-01-02 Edwards Lifesciences Innovation (Israel) Ltd. Controlled steering functionality for implant-delivery tool
US8876726B2 (en) 2011-12-08 2014-11-04 Biosense Webster (Israel) Ltd. Prevention of incorrect catheter rotation
EP2601903A1 (en) * 2011-12-08 2013-06-12 Biosense Webster (Israel), Ltd. Prevention of incorrect catheter rotation
US11395648B2 (en) 2012-09-29 2022-07-26 Edwards Lifesciences Corporation Plication lock delivery system and method of use thereof
US10376266B2 (en) 2012-10-23 2019-08-13 Valtech Cardio, Ltd. Percutaneous tissue anchor techniques
US10893939B2 (en) 2012-10-23 2021-01-19 Valtech Cardio, Ltd. Controlled steering functionality for implant delivery tool
US11890190B2 (en) 2012-10-23 2024-02-06 Edwards Lifesciences Innovation (Israel) Ltd. Location indication system for implant-delivery tool
US9949828B2 (en) 2012-10-23 2018-04-24 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US11344310B2 (en) 2012-10-23 2022-05-31 Valtech Cardio Ltd. Percutaneous tissue anchor techniques
US11583400B2 (en) 2012-12-06 2023-02-21 Edwards Lifesciences Innovation (Israel) Ltd. Techniques for guided advancement of a tool
US10610360B2 (en) 2012-12-06 2020-04-07 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
US9730793B2 (en) 2012-12-06 2017-08-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
US11844691B2 (en) 2013-01-24 2023-12-19 Cardiovalve Ltd. Partially-covered prosthetic valves
US11793505B2 (en) 2013-02-26 2023-10-24 Edwards Lifesciences Corporation Devices and methods for percutaneous tricuspid valve repair
US10918374B2 (en) 2013-02-26 2021-02-16 Edwards Lifesciences Corporation Devices and methods for percutaneous tricuspid valve repair
JP2017131736A (en) * 2013-03-13 2017-08-03 スパイレーション インコーポレイテッド Catheter heated by mechanical method
US11534583B2 (en) 2013-03-14 2022-12-27 Valtech Cardio Ltd. Guidewire feeder
US10449333B2 (en) 2013-03-14 2019-10-22 Valtech Cardio, Ltd. Guidewire feeder
US10682232B2 (en) 2013-03-15 2020-06-16 Edwards Lifesciences Corporation Translation catheters, systems, and methods of use thereof
US9468496B2 (en) 2013-03-15 2016-10-18 Kyphon SÀRL Steerable catheter system having at least one cavity defined in an outer surface thereof and method of using same
US9216057B2 (en) 2013-03-15 2015-12-22 Kyphon Sarl Steerable catheter system and method of using a steerable catheter system to dissect and evacuate tissue
US11890194B2 (en) 2013-03-15 2024-02-06 Edwards Lifesciences Corporation Translation catheters, systems, and methods of use thereof
US11324419B2 (en) 2013-08-20 2022-05-10 Biosense Webster (Israel) Ltd. Graphical user interface for medical imaging system
CN104414748A (en) * 2013-08-20 2015-03-18 韦伯斯特生物官能(以色列)有限公司 Graphical user interface for medical imaging system
EP2839776A1 (en) * 2013-08-20 2015-02-25 Biosense Webster (Israel), Ltd. Graphical user interface for medical imaging system
US11744573B2 (en) 2013-08-31 2023-09-05 Edwards Lifesciences Corporation Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US10918373B2 (en) 2013-08-31 2021-02-16 Edwards Lifesciences Corporation Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US10299793B2 (en) 2013-10-23 2019-05-28 Valtech Cardio, Ltd. Anchor magazine
US11065001B2 (en) 2013-10-23 2021-07-20 Valtech Cardio, Ltd. Anchor magazine
US11766263B2 (en) 2013-10-23 2023-09-26 Edwards Lifesciences Innovation (Israel) Ltd. Anchor magazine
US10265170B2 (en) 2013-12-26 2019-04-23 Valtech Cardio, Ltd. Implantation of flexible implant
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant
US10973637B2 (en) 2013-12-26 2021-04-13 Valtech Cardio, Ltd. Implantation of flexible implant
US10195030B2 (en) 2014-10-14 2019-02-05 Valtech Cardio, Ltd. Leaflet-restraining techniques
US11071628B2 (en) 2014-10-14 2021-07-27 Valtech Cardio, Ltd. Leaflet-restraining techniques
US11801135B2 (en) 2015-02-05 2023-10-31 Cardiovalve Ltd. Techniques for deployment of a prosthetic valve
US10925610B2 (en) 2015-03-05 2021-02-23 Edwards Lifesciences Corporation Devices for treating paravalvular leakage and methods use thereof
US11020227B2 (en) 2015-04-30 2021-06-01 Valtech Cardio, Ltd. Annuloplasty technologies
US10765514B2 (en) 2015-04-30 2020-09-08 Valtech Cardio, Ltd. Annuloplasty technologies
US10828160B2 (en) 2015-12-30 2020-11-10 Edwards Lifesciences Corporation System and method for reducing tricuspid regurgitation
US11660192B2 (en) 2015-12-30 2023-05-30 Edwards Lifesciences Corporation System and method for reshaping heart
US11890193B2 (en) 2015-12-30 2024-02-06 Edwards Lifesciences Corporation System and method for reducing tricuspid regurgitation
US10751182B2 (en) 2015-12-30 2020-08-25 Edwards Lifesciences Corporation System and method for reshaping right heart
US11937795B2 (en) 2016-02-16 2024-03-26 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US11540835B2 (en) 2016-05-26 2023-01-03 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
US10702274B2 (en) 2016-05-26 2020-07-07 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
US10226342B2 (en) 2016-07-08 2019-03-12 Valtech Cardio, Ltd. Adjustable annuloplasty device with alternating peaks and troughs
US10959845B2 (en) 2016-07-08 2021-03-30 Valtech Cardio, Ltd. Adjustable annuloplasty device with alternating peaks and troughs
US11779458B2 (en) 2016-08-10 2023-10-10 Cardiovalve Ltd. Prosthetic valve with leaflet connectors
US11883611B2 (en) 2017-04-18 2024-01-30 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US11832784B2 (en) 2017-11-02 2023-12-05 Edwards Lifesciences Innovation (Israel) Ltd. Implant-cinching devices and systems
US10835221B2 (en) 2017-11-02 2020-11-17 Valtech Cardio, Ltd. Implant-cinching devices and systems
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
US11779463B2 (en) 2018-01-24 2023-10-10 Edwards Lifesciences Innovation (Israel) Ltd. Contraction of an annuloplasty structure
US11666442B2 (en) 2018-01-26 2023-06-06 Edwards Lifesciences Innovation (Israel) Ltd. Techniques for facilitating heart valve tethering and chord replacement
US11123191B2 (en) 2018-07-12 2021-09-21 Valtech Cardio Ltd. Annuloplasty systems and locking tools therefor
US11890191B2 (en) 2018-07-12 2024-02-06 Edwards Lifesciences Innovation (Israel) Ltd. Fastener and techniques therefor
US11819411B2 (en) 2019-10-29 2023-11-21 Edwards Lifesciences Innovation (Israel) Ltd. Annuloplasty and tissue anchor technologies

Also Published As

Publication number Publication date
EP1006905A1 (en) 2000-06-14
CA2286656A1 (en) 1998-10-22
AU2284497A (en) 1998-11-11

Similar Documents

Publication Publication Date Title
US5643255A (en) Steerable catheter with rotatable tip electrode and method of use
WO1998046149A1 (en) Steerable catheter with rotatable tip electrode and method of use
JP4796713B2 (en) Bipolar depiction of intracardiac potential
US20200221966A1 (en) Catheter having closed electrode assembly with spines of uniform length
JP6165475B2 (en) Flower catheter for mapping and cauterizing veins and other tubular locations
US6319250B1 (en) Tricuspid annular grasp catheter
AU2013205790B2 (en) Catheter with helical end section for vessel ablation
EP1169975B1 (en) Catheter with tip electrode having a recessed ring electrode mounted thereon
AU2012203756B2 (en) Catheter with variable arcuate distal section
US6477396B1 (en) Mapping and ablation catheter
US10143518B2 (en) Catheter with distal section having side-by-side loops
US11844912B2 (en) Method for visualizing a catheterization guidewire

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2286656

Country of ref document: CA

Kind code of ref document: A

Ref document number: 2286656

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1997915234

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref document number: 1998543314

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1997915234

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997915234

Country of ref document: EP