WO1998053504A1 - Ein-elektron-speicherbauelement - Google Patents

Ein-elektron-speicherbauelement Download PDF

Info

Publication number
WO1998053504A1
WO1998053504A1 PCT/AT1998/000105 AT9800105W WO9853504A1 WO 1998053504 A1 WO1998053504 A1 WO 1998053504A1 AT 9800105 W AT9800105 W AT 9800105W WO 9853504 A1 WO9853504 A1 WO 9853504A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
matrices
memory component
memory
matrix
Prior art date
Application number
PCT/AT1998/000105
Other languages
English (en)
French (fr)
Inventor
Christoph Wasshuber
Original Assignee
Christoph Wasshuber
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Christoph Wasshuber filed Critical Christoph Wasshuber
Priority to AU70122/98A priority Critical patent/AU7012298A/en
Publication of WO1998053504A1 publication Critical patent/WO1998053504A1/de
Priority to US09/444,243 priority patent/US6487112B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7888Transistors programmable by two single electrons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7883Programmable transistors with only two possible levels of programmation charging by tunnelling of carriers, e.g. Fowler-Nordheim tunnelling
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2216/00Indexing scheme relating to G11C16/00 and subgroups, for features not directly covered by these groups
    • G11C2216/02Structural aspects of erasable programmable read-only memories
    • G11C2216/08Nonvolatile memory wherein data storage is accomplished by storing relatively few electrons in the storage layer, i.e. single electron memory
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/936Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
    • Y10S977/937Single electron transistor

Definitions

  • the invention relates to a one-electron memory device based on a node matrix.
  • CMOS complementary metal-oxide-semiconductor
  • CMOS complementary metal-oxide-semiconductor
  • new technologies and components are increasingly being proposed to meet the trend of "smaller - faster - less powerful - cheaper”.
  • So-called “single-electron devices” are particularly promising.
  • One-electron components and their mode of operation are generally described in the article "Electronics with Single Electrons” by Konstantin Lickharev and Tord Claeson in “Spectrum of Science", August 1992, page 62.
  • One-electron components and circuits have nodes (electrically conductive areas, e.g. metal strips or grains) that are separated from one another by tunnel junctions (potential barriers, e.g. oxide layers).
  • other electrical components such as capacitors, resistors and voltage sources are used.
  • Nodes can only be reloaded through quantum mechanical tunneling through tunnel junctions or a thermally activated crossing via tunnel junctions. Such a transhipment is suppressed by the so-called Coulomb blockade under certain conditions, and especially with very small nodes and tunnel junctions. With the help of the Coulomb blockade and quantum mechanical tunneling, individual electrons can be transported in a targeted manner. Hence the name "one-electron" component or circuit.
  • the Coulomb blockade is the central physical effect that makes one-electron devices possible.
  • the one-electron memory component according to the invention is characterized in that at least two node matrices are provided which are capacitively coupled to one another.
  • the present invention solves all of the above problems for a digital memory device in a simple manner.
  • the nanometer structure size can be achieved with node matrices, in particular in the form of granular films, preferably granular metal or semiconductor films in the form of thin-film areas, which are already using established, industrially used lithography processes (for example optical lithography, electron beam lithography) and can of course also be further structured using lithography processes (X-rays, ion beams, near field, scanning tunneling microscope, etc.) that will be increasingly used in the future.
  • lithography processes for example optical lithography, electron beam lithography
  • lithography processes X-rays, ion beams, near field, scanning tunneling microscope, etc.
  • node matrices allow grain sizes down to 1 nm, which ensures the Coulomb blockage and thus the functionality of the circuit at room temperature; on the other hand, the use of entire node matrices means that the individual node and tunnel transition no longer need to be lithographically resolved.
  • lithography methods can be used which have a resolution of a few 10 nm up to a few 100 nm.
  • Knot matrices can therefore have dimensions larger than individual knots by a few orders of magnitude. This permits problem-free industrial production using today's lithography methods.
  • an averaging effect is achieved by using node matrices. Contaminants that disrupt a node or a small area of the node matrix do not have to render the entire node matrix inoperable for a long time. As a result, such node matrices are much less sensitive to contamination, imperfections and production errors.
  • the effect of the Coulomb oscillations for reading out the memory cell can be used.
  • This effect is insensitive to interference charges. This further alleviates the problem of inevitable imperfections and contamination.
  • the fact that only node matrices are used in accordance with the invention brings about, as already mentioned, a strong resistance to production errors.
  • Another advantageous possibility for reading out the memory cell, the stored information not being destroyed, is that the memory content of the memory component is read out by changing the current-voltage characteristic of the one node matrix.
  • a non-volatile memory cell can be easily implemented.
  • the granular film or thin-film zone for this purpose should generally be very high-resistance for this purpose.
  • the node matrices in the present memory component are formed in particular by granular films or thin layers, which can be produced by known application techniques, such as vapor deposition or epitaxial growth on a substrate, depending on the material, in conjunction with the aforementioned lithography processes. It is not only conceivable to use thin granular films, i.e. Films with conductive grains or the like as a node to be attached to a substrate, but the present node matrices can also be installed in semiconductor bodies in a manner known per se.
  • the control electrode which can also be referred to as a storage or coupling electrode, is connected to the one node matrix, namely that which is intended for storing charge carriers, and collects the charge carriers which are tunneled by this node matrix; the control electrode is separated from the other node matrix by an insulating layer in order to realize the capacitive coupling.
  • the node matrices are capacitively coupled by mutual overlapping.
  • the node matrices that overlap each other are again separated from each other by an insulating layer.
  • a reduction of the one and / or other node matrix to a one-dimensional quantum line or even to a single node can be expedient with appropriate miniaturization specifications, in which case a greater outlay in the production with regard to the smaller structures (for example 1 nm structures) is required.
  • Fig.l schematically and diagrammatically a one-electron memory device with two node matrices capacitively coupled via a control electrode;
  • FIG. 2 shows another memory component in a representation similar to FIG. 1, in which two node matrices overlap one another for the purpose of capacitive coupling;
  • FIG. 3 shows schematically a top view of part of a block arrangement with memory cells arranged in rows and columns, which are designed according to FIG. 1;
  • FIG. 6 shows an electrical equivalent circuit diagram of a memory cell according to FIG.
  • Fig.l is a memory device (a Memory cell) is shown, which has a node matrix 1, which is provided for storing charge carriers and is provided with a connection electrode 2. Via a control electrode 3, a capacitive coupling with another, provided with two connection electrodes 4, 5 and isolated via a non-conductive layer 6, for example made of oxide, is realized.
  • this second node matrix 7 runs transversely to the first node matrix 1, so that a T arrangement is obtained.
  • the two node matrices 1, 7 can be implemented in a conventional manner (cf. for example EP 727 820 AI) and are formed in particular by granular films, as will be explained in more detail below with reference to FIGS. 4 and 5.
  • FIG. 2 shows a modified embodiment of the memory cell.
  • the individual parts correspond to those of Fig.l and are also designated identically, with the difference that no control electrode 3 is provided.
  • the two node matrices 1, 7 directly overlap one another and thus effect the capacitive coupling directly between them via the insulating layer 6.
  • FIG. 3 illustrates a possible block arrangement of bit-addressable memory cells, in particular according to FIG. 10 denotes a word line, 11 denotes a + bit line and 12 denotes a bit line.
  • the present bit-addressable one-electron memory component with the capacitively coupled node matrices (granular films) 1.7 and with the three connection electrodes 2.4.5 allows writing and reading, for example, in the following way:
  • a negative voltage pulse on the (writing) electrode 2 or in combination a negative voltage pulse on the electrode 2 and a positive voltage pulse on the electrodes 4 and 5 causes electrons to tunnel through the one node matrix 1 and to accumulate in the control electrode 3 (FIG. 1) or collect in the overlap area of the node matrices 1,7 (Fig. 2). This corresponds, for example, to writing a logical "1". If the polarity of the voltages is reversed, then electrons are drawn off from the control electrode 3 (FIG. 1) or from the overlapping area of the granular films 1, 7 (FIG. 2). This then corresponds, for example, to writing a logical "0".
  • the writing The process can be monitored by observing the current through the other node matrix 7. If the write process does not produce the desired result, the write pulse height and duration can be changed adaptively.
  • the voltage pulse is over and all electrodes have assumed zero potential again, then a certain number of charge carriers remain stored in the control electrode 3 (FIG. 1) or in the overlap area of the granular films 1, 7 (FIG. 2).
  • the number can range from a single charge carrier (electron) to many thousands or millions of charge carriers. How many charge carriers are actually stored depends on the one hand on the nature of the node matrices (i.e. the granular films) 1,7 and their capacitive coupling and on the other hand on the magnitude of the voltage pulse. In general, attempts will be made to store as few charge carriers as possible so that the power consumption is as low as possible and the speed of the writing process is as high as possible.
  • the service life of the charge carriers on the control electrode 3 or in the overlap region of the node matrices 1, 7 is again dependent on the nature of the node matrix 1.
  • Charge carriers can namely be thermally activated or migrate out of the storage area again through the node matrix 1 due to the so-called co-tunnel effect. This can lead to falsification of the stored information.
  • the lifespan of the charge carriers in the storage zone (electrode 3 or overlap area of the node matrices 1,7) can be from a few picoseconds to hours, days or years. Accordingly, one can also speak of a non-volatile memory cell (non-volatile memory). But even with a relatively short lifespan, a memory cell can be produced on the principle of "dynamic memory", where the content of the memory cell is refreshed at regular intervals.
  • the memory content can be read out in the following ways, for example:
  • the stored charge on the control electrode 3 (FIG. 1) or in the overlap area of the node matrices 1,7 (FIG. 2) changes the current-voltage characteristic of the one node matrix 7. If charge is stored, another current flows through the node matrix 7 compared to the situation when no charge is stored. This makes it possible to distinguish at least two charge states. This way of reading the stored information does not destroy the stored information.
  • Another advantageous readout option is that the same voltage pulses as e.g. when writing a logical "0".
  • a voltage difference is applied between the -t bit line 11 and the bit line 12, i.e. A logical "0" is written in the memory cell.
  • the current through the node matrix 7 is measured.
  • Fig. 4 is a schematic representation of a small node matrix consisting of nodes 8 and tunnel junctions 9.
  • the actual arrangement of the nodes 8 and tunnel junctions 9 is not critical. In general, there will also be no regular node arrangement, cf. in principle also EP 727 820 AI or EP 642 173 AI. 5 shows an electrical equivalent circuit diagram of a part of such a node matrix, the nodes being shown at 8 and the tunnel transitions at 9 with a conventional switching symbol.
  • FIG. 6 illustrates an electrical equivalent circuit diagram of the memory cell according to the invention.
  • the actual connections of the nodes 8 in the node matrices 1,7 are assumed arbitrarily and have no influence on the basic functioning of the memory cell. It is crucial that (at least) two node matrices 1,7 are capacitively coupled. Furthermore, stray capacities that are not important for the mode of operation are not illustrated.
  • the material from which the respective node matrix is made is arbitrary.
  • the only condition that is set is that conductive areas, namely the nodes 8, are separated from areas that are not or very poorly conductive, the tunnel junctions 9.
  • the non-conductive or poorly conductive regions 9 are designed such that the tunneling of charge carriers from one node 8 to another is possible.
  • a node matrix can e.g. from metal particles embedded in an oxide, or from metal bodies that are first manufactured, then surrounded with an insulating layer and then applied to a substrate.
  • the node matrix can consist of semiconducting layers, e.g. made of polycrystalline silicon, but also from polymers or organic layers.
  • the node matrices 1,7 can be relatively small or relatively large, depending on the technological circumstances. In particular, they can be reduced to one-dimensional granular lines, i.e. to a single line from node 8 with tunnel transitions 9 in between. Finally, for extreme miniaturization, it is even possible to reduce the node matrix 1 or 7 to a single node (stripes, grain, atom).
  • An advantage of the present memory cell is that the use of naturally shaped node matrices (granular films) enables room temperature operation, since nodes and tunnel junctions down to atomic dimensions can be created.
  • the use of capacitively coupled node matrices in contrast to individual nodes and Tunnel junctions in a single arrangement make production easier, since the smallest dimensions that can be produced artificially can be orders of magnitude larger than those of the individual nodes and tunnel junctions.
  • node matrices which consist of many nodes 8 and tunnel junctions 9
  • an averaging effect is brought about which compensates for individual defects, impurities and production errors very well.

Abstract

Das Ein-Elektron-Speicherbauelement weist zumindest zwei Knotenmatrizen (granulare Filme) (1, 7) auf, die über eine Steuerelektrode (3) oder durch direktes gegenseitiges Überlappen kapazitiv gekoppelt sind und deren Speicherinhalt durch die Veränderung der Strom-Spannungskennlinie der einen Knotenmatrix (7) oder durch das Vorhanden- oder Nichtvorhandensein von Stromoszillationen in dieser Knotenmatrix (7) ausgelesen werden kann.

Description

Ein-Elektron-Speiche bauelement
'Die Erfindung betrifft ein Ein-Elektron-Speicherbauelement auf Knotenmatrix-Basis .
Integrierte Schaltungen wurden in den letzten zwanzig Jahren stetig kleiner und schneller, und sie benötigen für ihren Betrieb immer weniger elektrische Leistung. Neben der Weiterentwicklung der etablierten CMOS-Technologie , die zunehmend an ihre Grenzen stößt, werden vermehrt neue Technologien und Bauelemente vorgeschlagen, um dem Trend, "kleiner - schneller - leistungsärmer - billiger" zu entsprechen. Besonders erfolgsversprechend sind sog. "Ein-Elektron" -Bauelemente (single- electron devices) . Ein-Elektron-Bauelemente und deren Funktionsweise sind allgemein in dem Aufsatz "Elektronik mit einzelnen Elektronen" von Konstantin Lickharev und Tord Claeson in "Spektrum der Wissenschaft", August 1992, Seite 62, beschrieben.
Ein-Elektron-Bauelemente und -Schaltungen weisen Knoten (elektrisch leitende Bereiche, z.B. Metallstreifen oder -körner) auf, die durch Tunnelübergänge (Potentialbarrieren, z.B. Oxydschichten) voneinander getrennt werden. Zusätzlich finden andere elektrische Bauelemente, wie Kapazitäten, Widerstände und Spannungsquellen, Verwendung. Knoten können nur durch das quantenmechanische Tunneln durch Tunnelübergänge oder einen thermisch aktivierten Übertritt über Tunnelübergänge umgeladen werden. Eine solche Umladung wird unter bestimmten Bedingungen, und insbesondere bei sehr kleinen Knoten und Tunnelübergängen, von der sog. Coulomb-Blockade unterdrückt. Mit Hilfe der Coulomb-Blockade und des quantenmechanischen Tunnelns können einzelne Elektronen gezielt transportiert werden. Daher kommt auch der Name "Ein-Elektron" -Bauelement oder -Schaltung. Die Coulomb-Blockade ist der zentrale physikalische Effekt, der Ein- Elektron-Bauelemente möglich macht.
Es wurden bereits verschiedenste Ein-Elektron-Bauelemente (Transistoren, Speicher, Logik-Gatter, Elektron Pumpen, Elektrometer, ... ) sowie Verfahren zu ihrer Herstellung vorgeschlagen und zum Teil auch schon experimentell verwirklicht; vgl. z.B. WO 94/15340, EP 0 642 173 AI, EP 0 727 820 AI, EP 0 675 546 A2 , EP 0 718 894 A2 , EP 0 750 353 A2 , WO 96/16448 und EP 0 649 174 AI.
Entscheidend für eine breite industrielle Umsetzung von EinElektron-Bauelementen ist ihre Funktionstüchtigkeit bei Raumtemperatur, ihre Herstellbarkeit mit kostengünstigen, erprobten und reproduzierbaren Methoden und ihre Robustheit gegenüber Herstellungstoleranzen und unvermeidbaren Verunreinigungen im verwendeten Material. Alle bisher veröffentlichten Ein-Elektron- Bauelemente und ihre Herstellungsverfahren verletzen jedoch eine oder mehrere der zuvor erwähnten Bedingungen (Funktionstüchtigkeit bei Raumtemperatur, industrielle Massenfertigung, Produktionsfehlertoleranz) , die für eine kommerzielle Umsetzung unentbehrlich sind.
Um eine Funktionstüchtigkeit bei Raumtemperatur zu gewährleisten, wären Strukturen kleiner 10 nm notwendig. Großtechnische Fertigungsanlagen für integrierte Schaltungen mit derart kleinen Strukturen sind noch nicht realisiert. Verunreinigungen bringen unkontrollierbare Ladungen ein, die das Ausmaß der Coulomb-Blockade verändern oder diese sogar vollständig unterdrücken können. Da die Coulomb-Blockade, wie erwähnt, der grundlegende Effekt ist auf dem jedes Ein-Elektron- Bauelement basiert, wird durch die Unterdrückung der Coulomb- Blockade die Funktionstüchtigkeit von Ein-Elektron-Bauelementen verhindert .
Es ist demgemäß Aufgabe der Erfindung, ein Ein-Elektron- Speicherbauelement vorzusehen, welches unempfindlich gegenüber Produktionsfehlern und funktionstüchtig bei Raumtemperatur ist sowie mit an sich herkömmlich, erprobten Techniken kostengünstig und in großen Stückzahlen hergestellt werden kann.
Das erfindungsgemäße Ein-Elektron-Speicherbauelement ist dadurch gekennzeichnet, daß zumindest zwei Knotenmatrizen vorgesehen sind, die miteinander kapazitiv gekoppelt sind.
Die vorliegende Erfindung löst alle die vorstehend erläuterten Probleme für ein digitales Speicherbauelement in einer einfachen Art und Weise. Die Nanometer-Strukturgröße kann mit Knotenmatrizen, insbesondere in Form von granulären Filmen, vorzugsweise granulären Metall- oder Halbleiterfilmen in Form von Dünnschicht-Bereichen, erreicht werden, die bereits mit etablierten, industriell eingesetzten Lithographieverfahren (z.B. optische Lithographie, Elektronstrahllithographie) und natürlich auch mit in der Zukunft vermehrt eingesetzten Lithographieverfahren (Röntgenstrahlen, Ionenstrahlen, Nahfeld, Rastertunnelmikroskop, ...) weiter strukturiert werden können. Das kleinste Element, mit dem eine Schaltung entworfen werden kann, ist also nicht mehr unbedingt der einzelne Knoten oder der einzelne Tunnelübergang, sondern eine Matrix von natürlich geformten Knoten und Tunnelübergängen. Einerseits erlauben granuläre Filme oder Dünnschichten Korngrößen bis hinunter zu 1 nm, wodurch die Coulomb-Blockade und damit die Funktionstüchtigkeit der Schaltung bei Raumtemperatur gewährleistet ist, andererseits braucht durch die Verwendung von ganzen Knotenmatrizen der einzelne Knoten und Tunnelübergang nicht mehr lithographisch aufgelöst werden. Somit können Lithographie- verfahren verwendet werden, die eine Auflösung von einigen 10 nm bis hin zu einigen 100 nm aufweisen. Knotenmatrizen können also um einige Grδßenordungen größere Abmessungen als individuelle Knoten haben. Dies gestattet eine problemlose industrielle Herstellung mit heutigen Lithographiemethoden. Weiters wird durch die Verwendung von Knotenmatrizen ein Mittelungseffekt erreicht. Verunreinigungen, die einen Knoten oder einen kleinen Bereich der Knotenmatrix stören, müssen hoch lange nicht die gesamte Knotenmatrix funktionsuntüchtig machen. Dadurch sind derartige Knotenmatrizen viel unempfindlicher gegenüber Verunreinigungen, Störstellen und Produktionsfehlern.
Zusätzlich kann beim erfindungsgemäßen Speicherelement, wie nachstehend noch mehr im Detail erläutert, der Effekt der Coulomb-Oszillationen zum Auslesen der Speicherzelle ausgenutzt werden. Dieser Effekt ist unempfindlich gegenüber Störladungen. Dadurch wird das Problem der unvermeidbaren Störstellen und Verunreinigungen weiter entschärft. Die Tatsache, daß erfindungsgemäß ausschließlich Knotenmatrizen eingesetzt werden, bewirkt, wie bereits erwähnt, eine starke Resistenz gegenüber Produktionsfehlern .
Eine andere vorteilhafte Möglichkeit zum Auslesen der Speicherzelle, wobei die gespeicherte Information nicht zerstört wird, besteht darin, daß der Speicherinhalt des Speicherbauelements durch die Veränderung der Strom-Spannungskennlinie der einen Knotenmatrix ausgelesen wird.
Im Gegensatz zu den Anordnungen gemäß EP 0 642 173 AI und EP 0 727 820 AI, wo sich in ein und derselben granulären Schicht die Stellen, in denen Ladungsträger gespeichert werden, und der Strompfad, der ein Auslesen ermöglicht, befinden, sind diese zwei fundamentalen Teile einer Speicherzelle im vorliegenden Speicherbauelement getrennt vorgesehen. Dadurch können beide Teile, der Teil zur Speicherung von Ladungsträgern und der Teil zum Auslesen des Speicherzustandes, getrennt optimiert werden. Es können also die Knotenmatrix, die Ladungsträger speichert, und die Knotenmatrix, die den Speicherzustand ausliest, aus völlig unterschiedlichen Materialien hergestellt oder unterschiedlichen Prozeßschritten unterworfen werden.
Bei einer entsprechenden Beschaffenheit der Speicher- Knotenmatrix kann ohne weiteres eine nicht-flüchtige Speicherzelle realisiert werden. Der granuläre Film bzw. die Dünnschicht-Zone hierfür sollte zu diesem Zweck im allgemeinen sehr hochohmig sein.
Wie erwähnt werden die Knotenmatrizen beim vorliegenden Speicherbauelement insbesondere durch granuläre Filme bzw. Dünnschichten gebildet, welche durch bekannte Aufbring- Techniken, wie Aufdampfen oder epitaxiales Aufwachsen auf ein Substrat, je nach Material, in Verbindung mit den erwähnten Lithographieverfahren erzeugt werden können. Dabei ist es nicht nur denkbar, dünne granuläre Filme, d.h. Filme mit leitenden Körnern oder dergl . als Knoten, auf einem Substrat anzubringen, sondern es können die vorliegenden Knotenmatrizen auch in Halbleiterkörpern in an sich bekannter Weise eingebaut sein.
Als vorteilhaft hat es sich erwiesen, wenn die Knotenmatrizen über eine Steuerelektrode kapazitiv gekoppelt sind. Die Steuerelektrode, die auch als Speicher- oder Kopplungselektrode bezeichnet werden kann, ist dabei mit der einen Knotenmatrix, nämlich jener, die zur Speicherung von Ladungsträgern vorgesehen ist, verbunden und sammelt die durch diese Knotenmatrix getun- nelten Ladungsträger; von der anderen Knotenmatrix ist die Steuerelektrode durch eine isolierende Schicht getrennt, um so die kapazitive Kopplung zu realisieren.
Im Hinblick auf eine baulich besonders einfache und kompakte Anordnung ist es aber auch günstig, wenn die Knotenmatrizen durch gegenseitiges Überlappen kapazitiv gekoppelt sind. Die Knotenmatrizen, die einander überlappen, sind dabei wiederum durch eine isolierende Schicht voneinander getrennt.
Denkbar wäre es aber auch, die kapazitive Kopplung über eine Anordnung zu erzielen, bei der über der einen Knotenmatrix, getrennt von ihr durch eine isolierende Schicht, eine Metallschicht als "schwebende" Elektrode und darüber, wieder durch eine isolierende Schicht getrennt, die zweite Knotenmatrix angebracht sind, so daß praktisch zwei Kapazitäten in Serie geschaltet sind. Auch wäre eine kapazitive Kopplung in der Weise möglich, daß eine mehr oder weniger zu einer "eindimensionalen" Quantenleitung reduzierte Knotenmatrix in der selben Ebene wie die andere Knotenmatrix, jedoch in Abstand von deren Stirnseite, angeordnet wird, wobei über den Abstand, wo eine isolierende Schicht vorliegt, die kapazitive Kopplung gegeben ist.
Eine Reduktion der einen und/oder anderen Knotenmatrix zu einer eindimensionalen Quantenleitung oder gar zu einem einzelnen Knoten kann bei entsprechenden Miniaturisierungs- vorgaben zweckmäßig sein, wobei dann gegebenenfalls ein größerer Aufwand bei der Herstellung im Hinblick auf die kleineren Strukturen (z.B. 1 nm-Strukturen) erforderlich ist.
Die Erfindung wird nachstehend anhand von in der Zeichnung dargestellten, besonders bevorzugten Ausführungsbeispielen, auf die sie jedoch nicht beschränkt sein soll, noch weiter erläutert. Es zeigen:
Fig.l schematisch und schaubildlich ein Ein-Elektron- Speicherbauelement mit zwei über eine Steuerelektrode kapazitiv gekoppelten Knotenmatrizen;
Fig.2 in einer Darstellung ähnlich Fig.l ein anderes Speicherbauelement, bei dem zwei Knotenmatrizen einander zwecks kapazitiver Kopplung überlappen;
Fig.3 schematisch in Draufsicht einen Teil einer Blockanordnung mit in Zeilen und Spalten angeordneten Speicherzellen, die gemäß Fig.l ausgebildet sind;
Fig.4 eine schematische Darstellung einer kleinen Knotenmatrix in Draufsicht;
Fig.5 ein elektrisches Ersatz-Schaltbild eines Teiles einer solchen Knotenmatrix; und
Fig.6 ein elektrisches Ersatzschaltbild einer Speicherzelle gemäß Fig.l. In Fig.l ist schematisch ein Speicherbauelement (eine Speicherzelle) gezeigt, die eine Knotenmatrix 1 aufweist, die zur Speicherung von Ladungsträgern vorgesehen und mit einer Anschlußelektrode 2 versehen ist. Über eine Steuerelektrode 3 wird eine kapazitive Kopplung mit einer weiteren, mit zwei Anschlußelektroden 4,5 versehenen und über eine nichtleitende Schicht 6, z.B. aus Oxid, isolierten zweiten Knotenmatrix 7 realisiert. Diese zweite Knotenmatrix 7 verläuft dabei in Draufsicht quer zur ersten Knotenmatrix 1, so daß eine T- Anordnung erhalten wird. Die beiden Knotenmatrizen 1,7 können in an sich herkömmlicher Weise (vgl. z.B. EP 727 820 AI) realisiert werden und sind insbesondere durch granuläre Filme gebildet, wie nachstehend anhand der Fig.4 und 5 noch näher erläutert werden wird.
Fig. 2 zeigt eine modifizierte Ausführungsvariante der Speicherzelle. Die einzelnen Teile entsprechen denen von Fig.l und sind auch gleich bezeichnet, mit dem Unterschied, daß keine Steuerelektrode 3 vorgesehen ist. Die beiden Knotenmatrizen 1,7 überlappen einander direkt und bewirken damit die kapazitive Kopplung direkt zwischen ihnen über die isolierende Schicht 6.
Fig. 3 veranschaulicht eine mögliche Blockanordnung von bitadressierbaren Speicherzellen, insbesondere gemäß Fig.l. Mit 10 ist dabei eine Wortleitung, mit 11 eine +Bitleitung und mit 12 eine -Bitleitung bezeichnet.
Das vorliegende bitadressierbare Ein-Elektron Speicherbauelement (Speicherzelle) , mit den kapazitiv gekoppelten Knotenmatrizen (granulären Filmen) 1,7 und mit den drei Anschlußelektroden 2,4,5 gestattet ein Schreiben und Lesen beispielsweise auf folgende Art:
Ein negativer Spannungsimpuls auf der (Schreib-) Elektrode 2 oder in Kombination ein negativer Spannungsimpuls auf der Elektrode 2 und ein positiver Spannungsimpuls auf den Elektroden 4 und 5 bewirkt, daß Elektronen durch die eine Knotenmatrix 1 tunneln und sich in der Steuerelektrode 3 (Fig. 1) oder im Überlappungsbereich der Knotenmatrizen 1,7 (Fig. 2) sammeln. Dies entspricht z.B. dem Schreiben einer logischen "1". Wird die Polarität der Spannungen umgedreht, dann werden Elektronen von der Steuerelektrode 3 (Fig. 1) bzw. vom Überlappungsbereich der granulären Filme 1,7 (Fig.2) abgesaugt. Dies entspricht dann beispielsweise dem Schreiben einer logischen "0". Der Schreib- Vorgang kann durch Beobachtungen des Stromes durch die andere Knotenmatrix 7 überwacht werden. Sollte der Schreibvorgang nicht das gewünschte Ergebnis bringen, können Schreibimpulshöhe und -dauer adaptiv verändert werden.
Ist der Spannungsimpuls vorbei und haben alle Elektroden wieder Nullpotential angenommen, dann verbleibt eine gewisse Anzahl Ladungsträger in der Steuerelektrode 3 (Fig.l) oder im Überlappungsbereich der granulären Filme 1,7 (Fig.2) gespeichert. Die Anzahl kann von einem einzigen Ladungsträger (Elektron) bis hin zu vielen Tausenden oder Millionen von Ladungsträgern reichen. Wieviele Ladungsträger tatsächlich gespeichert werden, hängt einerseits von der Beschaffenheit der Knotenmatrizen (d.h. der granulären Filme) 1,7 und deren kapazitiver Kopplung und andererseits von der Höhe des Spannungsimpulses ab. Im allgemeinen wird man versuchen, so wenig Ladungsträger wie möglich zu speichern, damit der Leistungsverbrauch möglichst gering und die Geschwindigkeit des Schreibvorganges möglichst hoch ist.
Wiederum abhängig von der Beschaffenheit insbesondere der Knotenmatrix 1 ist die Lebensdauer der Ladungsträger auf der Steuerelektrode 3 bzw. im Überlappungsbereich der Knotenmatrizen 1,7. Ladungsträger können nämlich thermisch aktiviert oder durch den sog. Co-Tunneleffekt wieder durch die Knotenmatrix 1 aus dem Speicherbereich wegwandern. Dies kann zu einer Verfälschung der gespeicherten Information führen. Die Lebensdauer der Ladungsträger in der Speicherzone (Elektrode 3 bzw. Überlappungsbereich der Knotenmatrizen 1,7) kann von wenigen Pikosekunden bis hin zu Stunden, Tagen oder Jahren betragen. Dementsprechend kann dann auch von einer nichtflüchtigen Speicherzelle (non-volatile memory) gesprochen werden. Aber selbst bei relativ kurzer Lebensdauer kann eine Speicherzelle auf dem Prinzip der "Dynamischen Speicher" , wo in regelmäßigen Abständen der Inhalt der Speicherzelle aufgefrischt wird, hergestellt werden.
Das Auslesen des Speicherinhaltes kann beispielsweise auf folgende Arten geschehen:
Die gespeicherte Ladung auf der Steuerelektrode 3 (Fig.l) oder im Überlappungsbereich der Knotenmatrizen 1,7 (Fig.2) verändert die Strom-Spannungskennlinie der einen Knotenmatrix 7. Ist also Ladung gespeichert, dann fließt ein anderer Strom durch die Knotenmatrix 7, verglichen mit der Situation, wenn keine Ladung gespeichert ist. Dadurch lassen sich zumindest zwei Ladungszustände unterscheiden. Diese Art des Auslesens der gespeicherten Information zerstört die gespeicherte Information nicht .
Eine andere vorteilhafte Auslesemöglichkeit besteht darin, daß die gleichen Spannungsimpulse wie z.B. beim Schreiben einer logischen "0" angelegt werden. Zusätzlich wird eine Spannungsdifferenz zwischen der -t-Bitleitung 11 und der -Bitleitung 12 aufgebracht, d.h. in die Speicherzelle wird eine logische "0" geschrieben. Gleichzeitig wird der Strom durch die Knotenmatrix 7 gemessen. Es können jetzt zwei Fälle unterschieden werden: Entweder befand sich vor dem Auslesen (Schreiben der logischen "0") bereits eine logische "0" in der Speicherzelle, oder es befand sich vor dem Auslesen (Schreiben der logischen "0") eine logische "1" in der Speicherzelle. Abhängig davon sieht der Strom durch die eine Knotenmatrix 7 unterschiedlich aus. Befand sich bereits eine logische "0" in der Speicherzelle, dann wird durch den neuerlichen "0 " -Schreibvorgang die Ladung in der Steuerelektrode 3 oder im Überlappungsbereich der Knotenmatrizen 1,7 praktisch nicht geändert. Der Strom durch die Knotenmatrix 7 wird daher keine Oszillationen (sog. Coulomb-Oszillationen) zeigen. Befand sich jedoch eine logische "1" in der Speicherzelle, dann wird durch den " 0 " -Schreibvorgang beim Auslesen der Ladungszustand der Steuerelektrode 7 bzw. des Überlappungsbereiches 1/7 verändert, und es zeigen sich Oszillationen im Strom durch die Knotenmatrix 7. Das Vorhandensein von Oszillationen im Strom durch den granulären Film 7 läßt somit erkennen, ob eine logische "0" oder eine logische "1" gespeichert war. Es handelt sich hier um ein zerstörendes Auslesen. Daher muß der Inhalt der Speicherzelle, sofern er sich durch den Lesevorgang geändert hat, durch einen neuerlichen Schreibvorgang wiederhergestellt werden.
Fig. 4 ist eine schematische Darstellung einer kleinen Knotenmatrix bestehend aus Knoten 8 und Tunnelübergängen 9. Die tatsächliche Anordnung der Knoten 8 und Tunnelübergänge 9 ist nicht entscheidend. Im allgemeinen wird auch keine regelmäßige Knotenanordnung vorliegen, vgl. hierzu im Prinzip auch die EP 727 820 AI oder EP 642 173 AI. In Fig.5 ist ein elektrisches Ersatzschaltbild eines Teiles einer solchen Knotenmatrix veranschaulicht, wobei bei 8 die Knoten und bei 9 mit einem üblichen Schaltsymbol die Tunnelübergänge gezeigt sind.
In vergleichbarer Weise veranschaulicht Fig.6 ein elektrisches Ersatzschaltbild der erfindungsgemäßen Speicherzelle. Die tatsächlichen Verbindungen der Knoten 8 in den Knoten-matrizen 1,7 sind willkürlich angenommen und haben auf die prinzipielle Funktionsweise der Speicherzelle keinen Einfluß. Entscheidend ist, daß (zumindest) zwei Knotenmatrizen 1,7 kapazitiv gekoppelt sind. Für die Funktionsweise unwichtige Streukapazitäten sind weiters nicht veranschaulicht.
Das Material, aus dem die jeweilige Knotenmatrix besteht, ist beliebig. Die einzige Bedingung, die gestellt wird, ist, daß leitende Bereiche, nämlich die Knoten 8, von nicht oder sehr schlecht leitenden Bereichen, den Tunnelübergängen 9, getrennt sind. Die nicht oder schlecht leitenden Bereiche 9 sind so ausgeführt, daß das Tunneln von Ladungsträgern von einem Knoten 8 zum anderen möglich ist. Eine Knotenmatrix kann z.B. aus Metallpartikeln, die in einem Oxyd eingebettet sind, oder aus Metallkörpern bestehen, die zuerst gefertigt werden, dann mit einer isolierenden Schicht umgeben werden und danach auf ein Substrat aufgebracht werden. Ebenso kann die Knotenmatrix aus halbleitenden Schichten bestehen, z.B. aus polykristallinem Silizium, oder aber auch aus Polymeren oder organischen Schichten.
Die Knotenmatrizen 1,7 können je nach technologischen Gegebenheiten relativ klein oder relativ groß sein. Insbesondere können sie zu eindimensionalen granulären Leitungen reduziert werden, d.h. zu einer Einzelzeile vom Knoten 8 mit Tunnelübergängen 9 dazwischen. Für eine extreme Miniaturisierung ist schließlich sogar eine Reduktion der Knotenmatrix 1 bzw. 7 zu einem einzigen Knoten (Streifen, Korn, Atom) möglich.
Von Vorteil ist bei der vorliegenden Speicherzelle, daß die Verwendung von natürlich geformten Knotenmatrizen (granulären Filmen) den Raumtemperaturbetrieb ermöglicht, da Knoten und Tunnelübergänge bis hin zu atomaren Dimensionen erzeugt werden können. Außerdem gestattet die Verwendung von kapazitiv gekoppelten Knotenmatrizen im Gegensatz zu einzelnen Knoten und Tunnelübergängen in einer einzelnen Anordnung eine erleichterte Herstellung, da die kleinsten künstlich zu erzeugenden Abmessungen um Größenordnungen größer sein können als die der einzelnen Knoten und Tunnelübergänge. Überdies wird, wenn Knotenmatrizen verwendet werden, die aus vielen Knoten 8 und Tunnelübergängen 9 bestehen, ein Mittelungseffekt bewirkt, der individuelle Störstellen, Verunreinigungen und Produktionsfehler sehr gut ausgleicht.
Durch die mögliche Verwendung der Coulomb-Oszillationen zum Auslesen des Speicherinhaltes wird eine weitere Verbesserung der Unempfindlichkeit gegenüber Störladungen erreicht.

Claims

PATENTANSPRÜCHE :
1 Ein-Elektron-Speicherbauelement auf Knotenmatrix-Basis, dadurch gekennzeichnet, daß zumindest zwei Knotenmatrizen (1,7) vorgesehen sind, die miteinander kapazitiv gekoppelt sind.
2. Speicherbauelement nach Anspruch 1, dadurch gekennzeichnet, daß die Knotenmatrizen (1,7) durch granuläre Filme gebildet sind.
3. Speicherbauelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Knotenmatrizen (1,7) über eine Steuerelektrode (3) kapazitiv gekoppelt sind.
4. Speicherbauelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Knotenmatrizen (1,7) durch gegenseitiges Überlappen kapazitiv gekoppelt sind.
5. Speicherbauelement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zumindest eine der Knotenmatrizen (1,7) zu einer eindimensionalen Quantenleitung reduziert ist.
6. Speicherbauelement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zumindest eine der Knotenmatrizen (1,7) zu einem einzelnen Knoten reduziert ist.
7. Speicherbauelement nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Speicherinhalt des Speicherbauelements durch die Veränderung der Strom-Spannungskennlinie der einen Knotenmatrix (7) ausgelesen wird.
8. Speicherbauelement nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Speicherinhalt des Speicherbauelements durch das Vorhanden- oder NichtVorhandensein von Stromoszillationen in der einen Knotenmatrix (7) ausgelesen wird.
PCT/AT1998/000105 1997-05-21 1998-04-22 Ein-elektron-speicherbauelement WO1998053504A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU70122/98A AU7012298A (en) 1997-05-21 1998-04-22 Single-electron memory component
US09/444,243 US6487112B1 (en) 1997-05-21 1999-11-19 Single-electron memory

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0086197A AT405109B (de) 1997-05-21 1997-05-21 Ein-elektron speicherbauelement
ATA861/97 1997-05-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/444,243 Continuation-In-Part US6487112B1 (en) 1997-05-21 1999-11-19 Single-electron memory

Publications (1)

Publication Number Publication Date
WO1998053504A1 true WO1998053504A1 (de) 1998-11-26

Family

ID=3501507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT1998/000105 WO1998053504A1 (de) 1997-05-21 1998-04-22 Ein-elektron-speicherbauelement

Country Status (4)

Country Link
US (1) US6487112B1 (de)
AT (1) AT405109B (de)
AU (1) AU7012298A (de)
WO (1) WO1998053504A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6487112B1 (en) 1997-05-21 2002-11-26 Christoph Wasshuber Single-electron memory
US7936500B2 (en) 2007-03-02 2011-05-03 Ravenbrick Llc Wavelength-specific optical switch
US7939398B2 (en) 2003-12-19 2011-05-10 Texas Instruments Incorporated Method to manufacture silicon quantum islands and single-electron devices
US7977621B2 (en) 2006-09-12 2011-07-12 Ravenbrick Llc Thermochromic optical filter in which transition wavelength is variable and controllable by adjustable temperature of a chosen quantum well layer
US8363307B2 (en) 2007-02-28 2013-01-29 Ravenbrick, Llc Multicolor light emitting device incorporating tunable quantum confinement devices
US8947760B2 (en) 2009-04-23 2015-02-03 Ravenbrick Llc Thermotropic optical shutter incorporating coatable polarizers

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1170799A3 (de) * 2000-07-04 2009-04-01 Infineon Technologies AG Elektronisches Bauelement und Verfahren zum Herstellen eines elektronischen Bauelements
JP4049988B2 (ja) * 2000-11-24 2008-02-20 株式会社東芝 論理回路
TW531890B (en) * 2002-02-27 2003-05-11 Ind Tech Res Inst Single electron device fabricated from nanoparticle derivatives
JP3974429B2 (ja) * 2002-02-28 2007-09-12 株式会社東芝 乱数発生素子
US7742322B2 (en) * 2005-01-07 2010-06-22 Invisage Technologies, Inc. Electronic and optoelectronic devices with quantum dot films
US7746681B2 (en) * 2005-01-07 2010-06-29 Invisage Technologies, Inc. Methods of making quantum dot films
US7773404B2 (en) * 2005-01-07 2010-08-10 Invisage Technologies, Inc. Quantum dot optical devices with enhanced gain and sensitivity and methods of making same
CA2519608A1 (en) * 2005-01-07 2006-07-07 Edward Sargent Quantum dot-polymer nanocomposite photodetectors and photovoltaics
US7585721B2 (en) * 2005-05-09 2009-09-08 The Hong Kong Polytechnic University Process and apparatus for fabricating nano-floating gate memories and memory made thereby
JP5399923B2 (ja) 2007-01-24 2014-01-29 レイブンブリック,エルエルシー 温度応答切換型光ダウンコンバーティングフィルタ
KR101324196B1 (ko) * 2007-06-05 2013-11-06 삼성전자주식회사 커패시터리스 디램 및 그의 제조방법
KR101265393B1 (ko) 2007-07-11 2013-05-20 라벤브릭 엘엘씨 열적 절환식 반사형 광학 셔터
CN101868738B (zh) 2007-09-19 2013-05-15 雷文布里克有限责任公司 包含纳米线栅的低辐射率窗膜和涂层
US8169685B2 (en) 2007-12-20 2012-05-01 Ravenbrick, Llc Thermally switched absorptive window shutter
CN102066992B (zh) 2008-04-23 2013-11-13 雷文布里克有限责任公司 反射性和热反射性表面的眩光管理
US9116302B2 (en) 2008-06-19 2015-08-25 Ravenbrick Llc Optical metapolarizer device
US8665414B2 (en) 2008-08-20 2014-03-04 Ravenbrick Llc Methods for fabricating thermochromic filters
US8581317B2 (en) * 2008-08-27 2013-11-12 Texas Instruments Incorporated SOI MuGFETs having single gate electrode level
CN102460238A (zh) 2009-04-10 2012-05-16 雷文布里克有限责任公司 结合有宾主型结构的热切换滤光器
US8867132B2 (en) * 2009-10-30 2014-10-21 Ravenbrick Llc Thermochromic filters and stopband filters for use with same
WO2011062708A2 (en) 2009-11-17 2011-05-26 Ravenbrick Llc Thermally switched optical filter incorporating a refractive optical structure
CN103038701B (zh) 2010-03-29 2017-01-18 雷文布里克有限责任公司 聚合物稳定的热致液晶装置
EP2576934A4 (de) 2010-06-01 2014-01-01 Ravenbrick Llc Multifunktionelles konstruktionsteil
TWI670711B (zh) 2010-09-14 2019-09-01 日商半導體能源研究所股份有限公司 記憶體裝置和半導體裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994015340A1 (en) * 1992-12-18 1994-07-07 Hitachi Europe Limited Memory device
EP0642173A1 (de) * 1993-08-19 1995-03-08 Hitachi, Ltd. Halbleiterbauelement und Halbleiterspeichervorrichtung
JPH0936317A (ja) * 1995-07-17 1997-02-07 Matsushita Electric Ind Co Ltd メモリ素子およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4958318A (en) * 1988-07-08 1990-09-18 Eliyahou Harari Sidewall capacitor DRAM cell
JP3156878B2 (ja) * 1992-04-30 2001-04-16 株式会社東芝 半導体装置およびその製造方法
US6060723A (en) * 1997-07-18 2000-05-09 Hitachi, Ltd. Controllable conduction device
AT405109B (de) 1997-05-21 1999-05-25 Wasshuber Christoph Dipl Ing D Ein-elektron speicherbauelement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994015340A1 (en) * 1992-12-18 1994-07-07 Hitachi Europe Limited Memory device
EP0642173A1 (de) * 1993-08-19 1995-03-08 Hitachi, Ltd. Halbleiterbauelement und Halbleiterspeichervorrichtung
JPH0936317A (ja) * 1995-07-17 1997-02-07 Matsushita Electric Ind Co Ltd メモリ素子およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JI L ET AL: "FABRICATION AND CHARACTERIZATION OF SINGLE-ELECTRON TRANSISTORS ANDTRAPS", JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY: PART B, vol. 12, no. 6, 1 November 1994 (1994-11-01), pages 3619 - 3622, XP000497178 *
PATENT ABSTRACTS OF JAPAN vol. 97, no. 6 30 June 1997 (1997-06-30) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6487112B1 (en) 1997-05-21 2002-11-26 Christoph Wasshuber Single-electron memory
US7939398B2 (en) 2003-12-19 2011-05-10 Texas Instruments Incorporated Method to manufacture silicon quantum islands and single-electron devices
US7977621B2 (en) 2006-09-12 2011-07-12 Ravenbrick Llc Thermochromic optical filter in which transition wavelength is variable and controllable by adjustable temperature of a chosen quantum well layer
US8363307B2 (en) 2007-02-28 2013-01-29 Ravenbrick, Llc Multicolor light emitting device incorporating tunable quantum confinement devices
US7936500B2 (en) 2007-03-02 2011-05-03 Ravenbrick Llc Wavelength-specific optical switch
US8947760B2 (en) 2009-04-23 2015-02-03 Ravenbrick Llc Thermotropic optical shutter incorporating coatable polarizers

Also Published As

Publication number Publication date
ATA86197A (de) 1998-09-15
US6487112B1 (en) 2002-11-26
AT405109B (de) 1999-05-25
AU7012298A (en) 1998-12-11

Similar Documents

Publication Publication Date Title
WO1998053504A1 (de) Ein-elektron-speicherbauelement
DE69734007T2 (de) Struktur für programmierbare metallisierzelle und herstellungsverfahren dazu
DE60126310T2 (de) Punktkontaktarray, Not-Schaltung und elektronische Schaltung damit
DE69636608T2 (de) Phasenverschiebung Speicherfeld auf einer Logikanordnung montiert
DE69825923T2 (de) Programmierbare aggregierende Unterflächenmetallisierungsstruktur
DE102005036555B4 (de) Programmieren programmierbarer resistiver Speichervorrichtungen
DE69824293T2 (de) Ferroelektrische datenverarbeitungsanordnung
EP0783180B1 (de) Elektrisch programmierbare Speicherzellenanordnung und Verfahren zu deren Herstellung
EP2436011B1 (de) Speichereiement, stapelung, speichermatrix und verfahren zum betreiben
DE60304209T2 (de) Magnettunnelsperrschichtspeicherzellenarchitektur
DE102004018715B3 (de) Speicherzelle zum Speichern einer Information, Speicherschaltung sowie Verfahren zum Herstellen einer Speicherzelle
DE19621994C1 (de) Einzelelektron-Speicherzellenanordnung
DE10202903B4 (de) Magnetoresistive Speicherzelle mit polaritätsabhängigem Widerstand und Speicherzelle
DE112013005990T5 (de) Eingebetteter Ladungseinfang-Split-Gate-Flashspeicher und Assoziierte Verfahren
EP1315215A2 (de) Floatinggate-Feldeffekttransistor
CH636469A5 (de) Datenspeicherzelle.
DE2228931C2 (de) Integrierte Halbleiteranordnung mit mindestens einem materialverschiedenen Halbleiterübergang und Verfahren zum Betrieb
EP0664569B1 (de) Mikroelektronisches Bauelement
DE10256486A1 (de) Verfahren zum Herstellen einer Speicherzelle, Speicherzelle und Speicherzellen-Anordnung
EP0045403B1 (de) Verefahren zur Herstellung einer Anordnung zum Verringern der Strahlungsempfindlichkeit von in integrierter MOS-Schaltkreistechnik ausgeführten Speicherzellen
EP1449220B1 (de) Magnetoresistive speicherzelle mit dynamischer referenzschicht
EP1008183B1 (de) Speicherzellenanordnung und verfahren zu deren herstellung
EP0631322B1 (de) Mikroelektronische Schaltungsstruktur und Verfahren zu deren Herstellung
WO1999021022A9 (de) Verfahren zum detektieren eines stroms spinpolarisierter elektronen in einem festkörper
DE102019116994A1 (de) Verfahren zum beschreiben eines magnetischen direktzugriffsspeichers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09444243

Country of ref document: US

ENP Entry into the national phase

Ref country code: AT

Ref document number: 1998 9088

Date of ref document: 19981126

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 19989088

Country of ref document: AT

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998549687

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase