WO1998053560A1 - Selective diversity combining - Google Patents

Selective diversity combining Download PDF

Info

Publication number
WO1998053560A1
WO1998053560A1 PCT/SE1998/000876 SE9800876W WO9853560A1 WO 1998053560 A1 WO1998053560 A1 WO 1998053560A1 SE 9800876 W SE9800876 W SE 9800876W WO 9853560 A1 WO9853560 A1 WO 9853560A1
Authority
WO
WIPO (PCT)
Prior art keywords
combining
signal
interference
received signals
combiner
Prior art date
Application number
PCT/SE1998/000876
Other languages
French (fr)
Inventor
Johan Backman
Stefan HÅKANSSON
Thomas Lindqvist
Original Assignee
Telefonaktiebolaget Lm Ericsson
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget Lm Ericsson filed Critical Telefonaktiebolaget Lm Ericsson
Priority to AU75593/98A priority Critical patent/AU739043B2/en
Priority to CA002290467A priority patent/CA2290467C/en
Priority to DE69834178T priority patent/DE69834178T2/en
Priority to JP55028098A priority patent/JP4312836B2/en
Priority to EP98923259A priority patent/EP0983644B1/en
Priority to BRPI9809856-0A priority patent/BR9809856B1/en
Publication of WO1998053560A1 publication Critical patent/WO1998053560A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0857Joint weighting using maximum ratio combining techniques, e.g. signal-to- interference ratio [SIR], received signal strenght indication [RSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0845Weighted combining per branch equalization, e.g. by an FIR-filter or RAKE receiver per antenna branch
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0871Hybrid systems, i.e. switching and combining using different reception schemes, at least one of them being a diversity reception scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming

Definitions

  • the present invention relates generally to the processing of digitally modulated radio signals at a receiver having multiple antennas. More particularly, the present invention relates to the diversity combining of radio signals to reduce signal impairments.
  • Multipath fading results from the interaction of the transmitted signal and its reflections or echoes which arrive at the receiver at approximately the same time. If the number of reflections is relatively large, this fading exhibits a so-called Rayleigh distribution.
  • Time dispersion occurs when there is a time delay between the reflections and the transmitted signal.
  • Interference results from the presence of signals which are non-orthogonal with respect to the transmitted signal. Such non-orthogonal signals can originate from other radios operating on the same frequency (co-channel interference) or from other radios operating on neighboring frequency bands (adjacent channel interference).
  • FIG. 1 shows an example of co-channel interference, in which a mobile station M 1 communicates with a base station antenna Al in a cell Cl , while a mobile station M2 communicates with a base station antenna A2 in a cell C2.
  • a base station antenna A3 serving a cell C3 may be located between cells Cl and C2.
  • mobile stations M 1 and M2 are simultaneously communicating on the same channel to different antennas in different cells.
  • signals transmitted by mobile station Ml to antenna Al interfere with the signals transmitted by mobile station M2 to antenna A2, causing signal impairment.
  • diversity combining In which a receiver is provided with multiple separated antennas, and the received signals at each of the antennas are combined. Because the antennas are separated, the signal strength in each antenna is independent. Thus, if there is a deep fading dip for one antenna, another antennas may have a relatively strong signal.
  • diversity combining methods For example, in Mobile Communication Design Fundamentals, by William C.Y. Lee (Wiley, 1993), numerous diversity schemes are described at pages 116-132. In a typical mobile communication system, antenna diversity is employed by providing base stations with multiple antennas. The signals received at the antennas are typically combined using maximum ratio combining (MRC). Lee, supra for example, recognizes MRC as the best combining technique.
  • MRC maximum ratio combining
  • each signal branch i.e. , each received signal to be combined
  • a selected weighting factor oc, ⁇ 2
  • MRC does not consider correlation between received signals, thereby enabling the received signals to be detected and equalized one at a time, and then combined by summing.
  • MRC since it assumes that the interference experienced by a signal closely approximates white Gaussian noise, has certain performance limitations when the interference does not closely approximate white Gaussian noise.
  • IRC interference rejection combining
  • a receiver incorporating IRC produces received signal samples for each antenna (using, e.g., log-polar signal processing), estimates channel taps for each antenna, estimates impairment correlation properties (e.g., co-channel interference), forms branch metrics from the received signal samples, channel tap estimates, and impairment correlation estimates, and estimates the transmitted information sequence using the branch metrics (using, e.g. , the Viterbi algorithm).
  • the receiver estimates impairment correlation properties by estimating the correlated noise between signal branches when a training sequence (such as is contained in a typical GSM burst) is received. This estimated covariance is used by the receiver during the demodulation process. IRC is described in significant detail in the copending, commonly-assigned application Serial No.
  • IRC is very efficient in rejecting interference from mobile stations from neighboring cells which transmit at the same frequency as the transmitted signal of interest
  • IRC interfering burst
  • carrier burst i.e., the transmitted signal of interest
  • IRC also reduces the effects of adjacent channel interference.
  • IRC is complex and requires a relatively large amount of computer processing resources. Further, there are some cases where IRC does not provide optimum performance.
  • a transmitter generates and transmits a signal representing an sequence of information symbols.
  • a receiver having multiple antennas receives the transmitted signal on at least two antennas such that there are at least two received signals.
  • the receiver combines the received signals by selectively performing interference rejection combining or maximum ratio combining to maximize the receiver performance.
  • the signals can be combined every burst, half-burst, or at some other suitable frequency.
  • the receiver determines an interference indication, and a combining method is selected based on the interference indication.
  • the present invention allows a communication system to achieve the benefits of IRC when most appropriate (that is, when the interference is predominantly co-channel interference), adjacent channel interference or otherwise correlated between the diversity branches, and to save processing resources at times when IRC is not appropriate (that is, when co-channel interference is relatively low and the interference more closely approximates white Gaussian noise).
  • This selective combination scheme greatly enhances the efficiency of the communication. For example, as discussed below, the present invention makes it is possible to achieve a 1 dB gain in performance over a system which uses only IRC.
  • FIG. 1 is a diagram showing an example of co-channel interference
  • FIG. 2 is a block diagram showing a diversity combining technique using MRC
  • FIG. 3 is a block diagram showing an implementation of a preferred embodiment of the present invention
  • FIG. 4 is a flow chart describing a preferred embodiment of the method according to the present invention.
  • FIG. 5 is a block diagram showing a second exemplary embodiment of the present invention
  • FIG. 6 is a block diagram of an exemplary combination of the embodiments of
  • FIG. 7 is a block diagram of another embodiment of the present invention
  • FIG. 8 is a block diagram of a variation of the embodiment of FIG. 7
  • FIG. 9 is a graphical comparison of performance results for a receiver using a combination of IRC and MRC according to the embodiment of FIG. 5
  • FIG. 10 is a graphical comparison of performance results for the embodiment of FIG. 3.
  • FIG. 3 shows a block diagram of a first exemplary embodiment of the invention.
  • Antennas 10 and 12 which are two of multiple antennas in a receiver employing antenna diversity, receive signals transmitted from a mobile station or other transmitter (not shown).
  • Combiner modules 14 and 16 are each connected to receive the received signals from antennas 10 and 12.
  • Combiner modules 14 and 16 are capable of combining the received signals from antennas 10 and 12 using MRC (or some other conventional diversity combining technique) and IRC, respectively, and outputting a combined signal to a decoder or other signal processing circuitry (not shown).
  • the appropriate combiner module 14 or 16 is activated by an interference analyzer 18, which determines whether the interference experienced by the received signals exceeds a predetermined threshold, and selects the appropriate combiner module using a switch 19.
  • the analyzer 18 can estimate a correlation between two branches for each received signal and compare the estimated correlation to a correlation threshold. For example, an impairment correlation matrix can be formed, and the off- diagonal elements of the impairment correlation matrix can be used to measure the correlation and interference. A suitable threshold can then be derived from the diagonal elements of the matrix. Impairment correlation matrices are discussed in more detail in the copending, commonly-assigned application entitled “Method and Apparatus for Interference Rejection Combining in Multi-Antenna Digital Cellular Communications Systems” and bearing Serial Number 08/284,775, the entirety of which is incorporated by reference. Numerous other threshold calculation and comparison schemes can be used.
  • the interference analyzer 18 selects the IRC combiner module 16. If the interference (or other suitable impairment characteristic) does not meet or exceed the predetermined threshold, the interference analyzer 18 selects the MRC combiner module 14. The selected module outputs a combined signal to a decoder (not shown) in the receiver for further processing.
  • the circuit of FIG. 3 can operate to combine the received signals every burst, half-burst, or other suitable interval.
  • FIG. 4 shows a flow chart describing the steps of the method according to the present invention.
  • the receiver receives the signals transmitted by the mobile station or other transmitter on multiple antennas.
  • the receiver e.g., using analyzer 18 or other suitable means
  • MRC or another suitable diversity combining technique
  • the process returns to step 100 after some predetermined interval to process other received signals.
  • the predetermined interval can be every burst, half-burst, or other suitable interval.
  • the appropriate diversity combining technique can be selected for each interval.
  • FIG. 5 shows a block diagram of a second exemplary embodiment of the present invention.
  • both MRC and IRC are used for combining the branches, and then the outputs of combiner modules 14 and 16 are combined in combiner 20 so as to optimize the output from each combination algorithm.
  • Combiner 20 can combine the MRC and IRC outputs each burst, half-burst, or at some other suitable period.
  • the embodiment of FIG. 5 is particularly beneficial when interference is present, and the carrier bursts and interfering bursts are unsynchronized.
  • FIG. 3 provides improved performance over using only IRC when no interference is present
  • FIG. 5 provides improved performance when interference is present and the interfering bursts are not synchronized with the carrier bursts.
  • the embodiments of FIG. 3 and FIG. 5 can be combined to maximize the performance of both embodiments.
  • One exemplary combination of these embodiments is shown in FIG. 6, in which analyzer 18 analyzes the incoming signals and selects, via switch 19, either the output of comparator 20 or MRC combiner module 14 based on an interference indication.
  • FIG. 7 shows yet another embodiment of the present invention which includes memories 22a and 22b for storing signal bursts, analyzer 18 for analyzing the stored bursts, and combiner 20 for combining the signals in a manner dependent upon the output of analyzer 18.
  • the analyzer 18 determines a value , based on the level of interference associated with the received bursts.
  • the value is a weighting factor which determines how much weight is assigned to differing diversity combining techniques. For example, an factor of 1 can be assigned by the analyzer 18 when the interference level is such that IRC would be a preferable combining technique.
  • the combiner 20 uses IRC.
  • An factor of 0 can be assigned when the interference level is such that another diversity combining technique (e.g., MRC) would be preferable.
  • the combiner 20 uses MRC.
  • An factor of 0.5 can be assigned when the interference level is such that a weighted combination of 50 % IRC and 50% MRC would be desirable.
  • IRC and MRC are both performed, and the results combined equally.
  • IRC and MRC are both performed, and the results are combined by weighting the IRC results to the MRC results in a ratio of 3/1.
  • a "soft" or gradual shifting of combining techniques can be achieved.
  • the combiner 20 is implemented by a programmable combiner.
  • FIG. 8 shows a variation of the embodiment of FIG. 7.
  • received bursts are stored in the memories 22a and 22b.
  • Analyzer 18 determines the level of mterference, and assigns an appropriate ⁇ value.
  • Combiner 20 combines the stored bursts in a manner dependent upon the analyzer output, and the output of combiner 20 is stored in a memory 22c.
  • the analyzer 18 then resets to, for example, 0 and performs a second combining.
  • the output of this second combining is then combined with the first combining results stored in memory 22c in a combiner 24. Numerous other variations will be readily apparent to those of ordinary skill in the art.
  • FIG.9 is a graphical representation comparing bit error rates (BERs) as a function of interferer delay for a communication channel for the embodiment of FIG. 5.
  • IRC-MRC bit error rates
  • the combination of IRC and MRC is implemented by combining the received signals every burst (i.e. , on a burst-by-burst basis).
  • SNR signal-to-noise
  • C/I carrier-to-interference ratio
  • the combination of IRC and MRC can provide a performance improvement over the case for a receiver using only IRC .
  • FIG.10 is a graphical representation comparing bit error rates as a function of the signal-to-noise ratio (SNR) for the embodiment of FIG. 3, where the IRC algorithm is switched off, or not selected, during periods where no co-channel interference is present. As shown, it is possible to gain approximately 1 dB in sensitivity compared to the case where IRC is always used.
  • SNR signal-to-noise ratio

Abstract

A method and system for combining signals in a receiver employing antenna diversity. If the interference exceeds a predetermined threshold, inteference rejection combining (IRC) is used. If the interference does not exceed the predetermined threshold, maximum ratio combining (MRC) is used. The diversity combining technique can be selected, and the signal combined every burst, half-burst, or other suitable interval.

Description

SELECTIVE DIVERSITY COMBINING
Field of the Invention
The present invention relates generally to the processing of digitally modulated radio signals at a receiver having multiple antennas. More particularly, the present invention relates to the diversity combining of radio signals to reduce signal impairments.
Background of the Invention
In radio communications, signals are sometimes lost or impaired due to a variety of phenomena such as multipath fading, time dispersion, and co-channel interference which exist in a typical radio communication channel. Multipath fading results from the interaction of the transmitted signal and its reflections or echoes which arrive at the receiver at approximately the same time. If the number of reflections is relatively large, this fading exhibits a so-called Rayleigh distribution. Time dispersion occurs when there is a time delay between the reflections and the transmitted signal. Interference results from the presence of signals which are non-orthogonal with respect to the transmitted signal. Such non-orthogonal signals can originate from other radios operating on the same frequency (co-channel interference) or from other radios operating on neighboring frequency bands (adjacent channel interference).
FIG. 1 shows an example of co-channel interference, in which a mobile station M 1 communicates with a base station antenna Al in a cell Cl , while a mobile station M2 communicates with a base station antenna A2 in a cell C2. A base station antenna A3 serving a cell C3 may be located between cells Cl and C2. In this example, mobile stations M 1 and M2 are simultaneously communicating on the same channel to different antennas in different cells. As shown, signals transmitted by mobile station Ml to antenna Al interfere with the signals transmitted by mobile station M2 to antenna A2, causing signal impairment.
To reduce the effects of such signal impairments, it is known to use diversity combining, in which a receiver is provided with multiple separated antennas, and the received signals at each of the antennas are combined. Because the antennas are separated, the signal strength in each antenna is independent. Thus, if there is a deep fading dip for one antenna, another antennas may have a relatively strong signal. There are many types of diversity combining methods. For example, in Mobile Communication Design Fundamentals, by William C.Y. Lee (Wiley, 1993), numerous diversity schemes are described at pages 116-132. In a typical mobile communication system, antenna diversity is employed by providing base stations with multiple antennas. The signals received at the antennas are typically combined using maximum ratio combining (MRC). Lee, supra for example, recognizes MRC as the best combining technique. In MRC, the received signals are combined based on the assumption that the interference closely approximates white Gaussian noise. An exemplary MRC scheme is shown in FIG. 2, where each signal branch (i.e. , each received signal to be combined) is weighted by a selected weighting factor (oc,, α2), and the signal branches are combined. MRC does not consider correlation between received signals, thereby enabling the received signals to be detected and equalized one at a time, and then combined by summing. MRC, since it assumes that the interference experienced by a signal closely approximates white Gaussian noise, has certain performance limitations when the interference does not closely approximate white Gaussian noise.
Alternatively, an improved method of combining received signals in a system with antenna diversity is known as interference rejection combining (IRC). IRC assumes that the received signals include both white Gaussian noise and signals from other transmitters
(e.g. , other mobile stations in other cells). Generally speaking, a receiver incorporating IRC produces received signal samples for each antenna (using, e.g., log-polar signal processing), estimates channel taps for each antenna, estimates impairment correlation properties (e.g., co-channel interference), forms branch metrics from the received signal samples, channel tap estimates, and impairment correlation estimates, and estimates the transmitted information sequence using the branch metrics (using, e.g. , the Viterbi algorithm). The receiver estimates impairment correlation properties by estimating the correlated noise between signal branches when a training sequence (such as is contained in a typical GSM burst) is received. This estimated covariance is used by the receiver during the demodulation process. IRC is described in significant detail in the copending, commonly-assigned application Serial No. 08/284,775 entitled "Method and Apparatus for Interference Rejection Combining in Multi-Antenna Digital Cellular Communications Systems", filed on August 2, 1994 and copending, commonly assigned application Serial No. 08/634,719 entitled "Method and Apparatus for Interference Rejection with Different Beams, Polarizations, and Phase References", filed on April 19, 1996. These applications are hereby incorporated by reference in their entirety. The latter patent application discloses that IRC performance can be improved if the impairment correlation properties are scalar impairment correlation properties and the branch metrics are scalar branch metrics.
IRC is very efficient in rejecting interference from mobile stations from neighboring cells which transmit at the same frequency as the transmitted signal of interest
(i.e., co-channel interference), particularly when an interfering burst is synchronized with the carrier burst (i.e., the transmitted signal of interest). IRC also reduces the effects of adjacent channel interference. Unfortunately, IRC is complex and requires a relatively large amount of computer processing resources. Further, there are some cases where IRC does not provide optimum performance.
It would be desirable to improve the performance of a communication system employing antenna diversity. More particularly, it would be desirable to improve known methods of diversity combining.
Summary of the Invention The present invention overcomes the above-described problems, and provides additional advantages, by providing for a method and system for combining received signals from multiple antennas which employs both IRC and MRC (or some other diversity combining method). According to exemplary embodiments of the invention, a transmitter generates and transmits a signal representing an sequence of information symbols. A receiver having multiple antennas receives the transmitted signal on at least two antennas such that there are at least two received signals. The receiver combines the received signals by selectively performing interference rejection combining or maximum ratio combining to maximize the receiver performance. The signals can be combined every burst, half-burst, or at some other suitable frequency. To select whether IRC or MRC is used, the receiver determines an interference indication, and a combining method is selected based on the interference indication.
By selectively performing IRC, a conventional diversity combining scheme, or a combination of multiple schemes, the present invention allows a communication system to achieve the benefits of IRC when most appropriate (that is, when the interference is predominantly co-channel interference), adjacent channel interference or otherwise correlated between the diversity branches, and to save processing resources at times when IRC is not appropriate (that is, when co-channel interference is relatively low and the interference more closely approximates white Gaussian noise). This selective combination scheme greatly enhances the efficiency of the communication. For example, as discussed below, the present invention makes it is possible to achieve a 1 dB gain in performance over a system which uses only IRC.
Brief Description of the Drawings
A more complete understanding of the present invention can be obtained upon reading the following Detailed Description of the Preferred Embodiments, in conjunction with the accompanying drawings, in which like reference indicia are used to designate like elements, and in which:
FIG. 1 is a diagram showing an example of co-channel interference; FIG. 2 is a block diagram showing a diversity combining technique using MRC; FIG. 3 is a block diagram showing an implementation of a preferred embodiment of the present invention;
FIG. 4 is a flow chart describing a preferred embodiment of the method according to the present invention;
FIG. 5 is a block diagram showing a second exemplary embodiment of the present invention; FIG. 6 is a block diagram of an exemplary combination of the embodiments of
FIG. 3 and FIG. 5;
FIG. 7 is a block diagram of another embodiment of the present invention; FIG. 8 is a block diagram of a variation of the embodiment of FIG. 7; FIG. 9 is a graphical comparison of performance results for a receiver using a combination of IRC and MRC according to the embodiment of FIG. 5; and FIG. 10 is a graphical comparison of performance results for the embodiment of FIG. 3.
Detailed Description of the Preferred Embodiments
FIG. 3 shows a block diagram of a first exemplary embodiment of the invention. Antennas 10 and 12, which are two of multiple antennas in a receiver employing antenna diversity, receive signals transmitted from a mobile station or other transmitter (not shown). Combiner modules 14 and 16 are each connected to receive the received signals from antennas 10 and 12. Combiner modules 14 and 16 are capable of combining the received signals from antennas 10 and 12 using MRC (or some other conventional diversity combining technique) and IRC, respectively, and outputting a combined signal to a decoder or other signal processing circuitry (not shown). The appropriate combiner module 14 or 16 is activated by an interference analyzer 18, which determines whether the interference experienced by the received signals exceeds a predetermined threshold, and selects the appropriate combiner module using a switch 19. To determine whether the threshold is met or exceeded, the analyzer 18 can estimate a correlation between two branches for each received signal and compare the estimated correlation to a correlation threshold. For example, an impairment correlation matrix can be formed, and the off- diagonal elements of the impairment correlation matrix can be used to measure the correlation and interference. A suitable threshold can then be derived from the diagonal elements of the matrix. Impairment correlation matrices are discussed in more detail in the copending, commonly-assigned application entitled "Method and Apparatus for Interference Rejection Combining in Multi-Antenna Digital Cellular Communications Systems" and bearing Serial Number 08/284,775, the entirety of which is incorporated by reference. Numerous other threshold calculation and comparison schemes can be used. If an interfering burst is synchronized with the carrier burst of the transmitted signal of interest, the estimated correlation will be constant during a burst. If, as is more typical, an interfering burst is not synchronized with the carrier burst, the estimated correlation will not be constant during the burst. If the interference (or other suitable impairment characteristic) meets or exceeds the predetermined threshold, then the interference analyzer 18 selects the IRC combiner module 16. If the interference (or other suitable impairment characteristic) does not meet or exceed the predetermined threshold, the interference analyzer 18 selects the MRC combiner module 14. The selected module outputs a combined signal to a decoder (not shown) in the receiver for further processing. The circuit of FIG. 3 can operate to combine the received signals every burst, half-burst, or other suitable interval.
FIG. 4 shows a flow chart describing the steps of the method according to the present invention. In step 100, the receiver receives the signals transmitted by the mobile station or other transmitter on multiple antennas. In step 102, the receiver (e.g., using analyzer 18 or other suitable means) analyzes the received signals to determine if the level of interference meets or exceeds a predetermined threshold. If the interference threshold used in step 102 is met or exceeded by the received signals, the receiver combines the multiple received signals using IRC in step 104, and if the interference threshold used in step 102 is not met or exceeded by the received signals, the receiver combines the multiple received signals using MRC (or another suitable diversity combining technique) in step 106. Regardless of which combining method is used, the process returns to step 100 after some predetermined interval to process other received signals. The predetermined interval can be every burst, half-burst, or other suitable interval. As a result, the appropriate diversity combining technique can be selected for each interval.
FIG. 5 shows a block diagram of a second exemplary embodiment of the present invention. In this embodiment, both MRC and IRC are used for combining the branches, and then the outputs of combiner modules 14 and 16 are combined in combiner 20 so as to optimize the output from each combination algorithm. Combiner 20 can combine the MRC and IRC outputs each burst, half-burst, or at some other suitable period. The embodiment of FIG. 5 is particularly beneficial when interference is present, and the carrier bursts and interfering bursts are unsynchronized.
Thus, the embodiment of FIG. 3 provides improved performance over using only IRC when no interference is present, and the embodiment of FIG. 5 provides improved performance when interference is present and the interfering bursts are not synchronized with the carrier bursts. The embodiments of FIG. 3 and FIG. 5 can be combined to maximize the performance of both embodiments. One exemplary combination of these embodiments is shown in FIG. 6, in which analyzer 18 analyzes the incoming signals and selects, via switch 19, either the output of comparator 20 or MRC combiner module 14 based on an interference indication.
FIG. 7 shows yet another embodiment of the present invention which includes memories 22a and 22b for storing signal bursts, analyzer 18 for analyzing the stored bursts, and combiner 20 for combining the signals in a manner dependent upon the output of analyzer 18. In this embodiment, the analyzer 18 determines a value , based on the level of interference associated with the received bursts. The value is a weighting factor which determines how much weight is assigned to differing diversity combining techniques. For example, an factor of 1 can be assigned by the analyzer 18 when the interference level is such that IRC would be a preferable combining technique. For an alpha factor of 1, the combiner 20 uses IRC. An factor of 0 can be assigned when the interference level is such that another diversity combining technique (e.g., MRC) would be preferable. For an α factor of 0, the combiner 20 uses MRC. An factor of 0.5 can be assigned when the interference level is such that a weighted combination of 50 % IRC and 50% MRC would be desirable. For an α factor of 0.5, IRC and MRC are both performed, and the results combined equally. For an factor of 0.75, IRC and MRC are both performed, and the results are combined by weighting the IRC results to the MRC results in a ratio of 3/1. In this embodiment, a "soft" or gradual shifting of combining techniques can be achieved. In this embodiment, the combiner 20 is implemented by a programmable combiner.
FIG. 8 shows a variation of the embodiment of FIG. 7. In the embodiment of FIG. 8, received bursts are stored in the memories 22a and 22b. Analyzer 18 determines the level of mterference, and assigns an appropriate α value. Combiner 20 combines the stored bursts in a manner dependent upon the analyzer output, and the output of combiner 20 is stored in a memory 22c. The analyzer 18 then resets to, for example, 0 and performs a second combining. The output of this second combining is then combined with the first combining results stored in memory 22c in a combiner 24. Numerous other variations will be readily apparent to those of ordinary skill in the art.
FIG.9 is a graphical representation comparing bit error rates (BERs) as a function of interferer delay for a communication channel for the embodiment of FIG. 5. In the graph of FIG. 9, the combination of IRC and MRC (IRC-MRC) is implemented by combining the received signals every burst (i.e. , on a burst-by-burst basis). Further, the signal-to-noise (SNR) ratio is assumed to be 25 dB, and the carrier-to-interference ratio (C/I) is assumed to be 2 dB. As can be seen from the graph , the combination of IRC and MRC can provide a performance improvement over the case for a receiver using only IRC . FIG.10 is a graphical representation comparing bit error rates as a function of the signal-to-noise ratio (SNR) for the embodiment of FIG. 3, where the IRC algorithm is switched off, or not selected, during periods where no co-channel interference is present. As shown, it is possible to gain approximately 1 dB in sensitivity compared to the case where IRC is always used. Thus, it should be apparent that the present invention provides significant advantages over known diversity combining techniques. In particular, by selectively using IRC and MRC or another suitable diversity combining technique, receiver performance can be improved compared to a receiver using only one diversity combining technique. It will be appreciated that the principles of the present invention can be applied to s ystems which use more than two different combining techniques.
While the foregoing description includes numerous details and specificities , it is to be understood that these are for purposes of explanation only. Many modifications will be readily apparent to those of ordinary skill in the art which are clearly within the spirit and scope of the invention, as defined by the following claims and their legal equivalents. More than two different diversity combining techniques may be combined.

Claims

WHAT IS CLAIMED IS:
1. A method for diversity combining in a radio communication system, comprising the steps of: receiving a transmitted signal on at least two antennas such that at least two received signals exist; combining the received signals by using interference rejection combining together with another diversity combining method.
2. The method of claim 1, wherein the step of combining comprises the steps of: producing an interference indication; selecting a combining method based on the interference indication; and combining the signals using the selected combining method.
3. The method of claim 2, wherein the another diversity combining method is maximum ratio combining.
4. The method of claim 1, wherein the step of combining is performed by separately performing both interference rejection combining and the another diversity combining method to achieve separate results, and combining the separate results.
5. The method of claim 4, wherein the another diversity combining method is maximum ratio combining.
6. The method of claim 2, wherein interference rejection combining is performed by: producing received signal samples for each antenna, estimating channel taps for each antenna, estimating impairment correlation properties among the antennas, forming branch metrics from the received signal samples, channel tap estimates, and impairment correlation estimates, and estimating the information sequence using the branch metrics.
7. The method of claim 2, wherein the received signals include one or more bursts , and the diversity combining method is selected for each burst.
8. The method of claim 2, wherein the received signals include one or more bursts , and the diversity combining method is selected for each half-burst.
9. The method of claim 2, wherein the step of producing an interference indication is performed by estimating a covariance for each received signal and comparing the estimated covariances to a covariance threshold.
10. The method of claim 4, wherein the separate results are weighted prior to combining.
11. The method of claim 1 , wherein the step of combining further comprises the steps of: producing an interference indication; determining a weight factor based on the interference indication; and combining the received signals using a weighted combination of interference rejection combining and the another diversity combining technique.
12. A system for receiving communication signals, comprising: a plurality of antennas for receiving a communication signal such that multiple received signals are present; a plurality of signal combiners for combining the received signals, each signal combiner selectively associated with each of the plurality of antennas; and analyzer means for determining a level of signal impairment, comparing the level of signal impairment to a threshold level, and selectively operating said signal combiners based on the comparison.
13. The system of claim 12, wherein the plurality of signal combiners includes a first signal combiner using interference rejection combining and a second combiner using maximum ratio combining.
14. The system of claim 13, wherein the level of signal impairment is interference .
15. The system of claim 13, wherein the first combiner produces received signal samples for each antenna, estimates channel taps for each antenna, estimates impairment correlation properties among the antennas, forms branch metrics from the received signal samples, channel tap estimates, and impairment correlation estimates, and estimates the information sequence using the branch metrics.
16. The system of claim 12, wherein the received signals include one or more bursts, and the selection of combiners is performed every burst.
17. The system of claim 12, wherein the received signals include one or more bursts, and the selection of combiners is performed every half-burst.
18. A system for receiving communication signals, comprising: a plurality of antennas for receiving a communication signal such that multiple received signals are present; a plurality of signal combiners, each signal combiner combining the received signals using a different one of a plurality of signal combining techniques; and a combiner for combining the outputs of at least selected ones of the signal combiners.
19. The system of claim 18, wherein one of the plurality of signal combining techniques is interference rejection combining.
20. The system of claim 18, further comprising: analyzer means for determining a level of signal impairment, comparing the level of signal impairment to a threshold level, and selecting one of either the combined signal combiner outputs or an output of one of the plurality of signal combiners as a system output.
21. The system of claim 20, wherein the level of signal impairment is interference .
22. A system for receiving communication signals, comprising: a plurality of antennas for receiving a communication signal such that multiple received signals exist; an analyzer for determining an interference indicator associated with the received signals, and for selecting a weighting factor based on the interference indicator; and a first signal combiner for performing a weighted combination of at least two signal combining techniques based on the weighting factor.
23. The system of claim 22, wherein one of the signal combining techniques is interference rejection combining.
24. The system of claim 23, wherein another signal combining technique is maximum ratio combining.
25. The system of claim 22, further comprising one or more memories for storing the received signals for analysis by the analyzer.
26. The system of claim 25, further comprising: a combiner output memory for storing a first output of the first signal combiner; and a second signal combiner for combining the stored first output with a second output of the first signal combiner.
PCT/SE1998/000876 1997-05-21 1998-05-12 Selective diversity combining WO1998053560A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU75593/98A AU739043B2 (en) 1997-05-21 1998-05-12 Selective diversity combining
CA002290467A CA2290467C (en) 1997-05-21 1998-05-12 Selective diversity combining
DE69834178T DE69834178T2 (en) 1997-05-21 1998-05-12 SELECTIVE DIVERSITY COMBINATION
JP55028098A JP4312836B2 (en) 1997-05-21 1998-05-12 Selective diversity combination
EP98923259A EP0983644B1 (en) 1997-05-21 1998-05-12 Selective diversity combining
BRPI9809856-0A BR9809856B1 (en) 1997-05-21 1998-05-12 process for combining diversity in a radio communication system, and system for receiving communication signals.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/861,541 US6128355A (en) 1997-05-21 1997-05-21 Selective diversity combining
US08/861,541 1997-05-21

Publications (1)

Publication Number Publication Date
WO1998053560A1 true WO1998053560A1 (en) 1998-11-26

Family

ID=25336090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE1998/000876 WO1998053560A1 (en) 1997-05-21 1998-05-12 Selective diversity combining

Country Status (9)

Country Link
US (1) US6128355A (en)
EP (1) EP0983644B1 (en)
JP (1) JP4312836B2 (en)
CN (1) CN1123145C (en)
AU (1) AU739043B2 (en)
BR (1) BR9809856B1 (en)
CA (1) CA2290467C (en)
DE (1) DE69834178T2 (en)
WO (1) WO1998053560A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0951152A1 (en) * 1998-04-16 1999-10-20 Alcatel Diversity receiver
US6173014B1 (en) * 1994-08-02 2001-01-09 Telefonaktiebolaget Lm Ericsson Method of and apparatus for interference rejection combining and downlink beamforming in a cellular radio communications system
WO2001071942A2 (en) * 2000-03-17 2001-09-27 Wireless Online, Inc. Method and system for detecting signals with multiple antennas
EP1150441A1 (en) * 2000-04-25 2001-10-31 Alcatel Method of combining at least two received signals of a telecommunication system
JP2002009678A (en) * 2000-05-05 2002-01-11 Lucent Technol Inc Cellular wireless communication system
EP1248385A1 (en) * 2000-12-04 2002-10-09 Mitsubishi Denki Kabushiki Kaisha Syntesis receiving method and synthesis receiver
EP1530299A1 (en) * 2003-11-06 2005-05-11 Nokia Corporation Communication method, receiver and base station
DE10031677B4 (en) * 2000-06-29 2005-09-29 Siemens Ag Method or communication system with robust diversity combining
US7065383B1 (en) 2002-04-16 2006-06-20 Omri Hovers Method and apparatus for synchronizing a smart antenna apparatus with a base station transceiver
US7346365B1 (en) 2002-04-16 2008-03-18 Faulkner Interstices Llc Smart antenna system and method
WO2008086063A2 (en) * 2007-01-05 2008-07-17 Qualcomm Incorporated Method and apparatus for processing data at a wireless station
US7529525B1 (en) 2002-04-16 2009-05-05 Faulkner Interstices Llc Method and apparatus for collecting information for use in a smart antenna system
WO2010121657A1 (en) * 2009-04-22 2010-10-28 Nokia Siemens Networks Oy Selective interference rejection combining
GB2479549A (en) * 2010-04-13 2011-10-19 Toshiba Res Europ Ltd Selecting receiver antennas of an interference rejection receiver to provide highest SINR
US8325859B2 (en) 2006-08-30 2012-12-04 Kyocera Corporation Communication device and control method
US8666004B2 (en) 2008-05-21 2014-03-04 Qualcomm Incorporated Methods and systems for hybrid MIMO schemes in OFDM/A systems
EP2704336A1 (en) * 2011-04-25 2014-03-05 Ntt Docomo, Inc. Mobile communication terminal
US8670495B2 (en) 2007-02-05 2014-03-11 Blackberry Limited Multi-mode receiver with adaptive mode selection
EP3535858A4 (en) * 2016-11-03 2020-09-23 Nokia Technologies Oy Beamforming

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185258B1 (en) * 1997-09-16 2001-02-06 At&T Wireless Services Inc. Transmitter diversity technique for wireless communications
CA2276207C (en) 1997-10-31 2003-02-18 At&T Wireless Services, Inc. Low complexity maximum likelihood detection of concatenated space codes for wireless applications
DE19833967C2 (en) * 1998-07-28 2001-02-08 Siemens Ag Reception diversity procedure and radio communication system with diversity reception
US20020150070A1 (en) * 1999-07-02 2002-10-17 Shattil Steve J. Method and apparatus for using frequency diversity to separate wireless communication signals
US6701165B1 (en) * 2000-06-21 2004-03-02 Agere Systems Inc. Method and apparatus for reducing interference in non-stationary subscriber radio units using flexible beam selection
GB2364210A (en) * 2000-06-30 2002-01-16 Nokia Oy Ab Diversity receiver and method of receiving a multi carrier signal
FI20002844A (en) * 2000-12-22 2002-06-23 Nokia Corp Measurement procedure and receiver
US7065146B1 (en) 2002-02-15 2006-06-20 Marvell International Ltd. Method and apparatus for equalization and decoding in a wireless communications system including plural receiver antennae
US7039140B2 (en) * 2001-03-08 2006-05-02 Proxim Wireless Corporation OFDM data demodulators synchronization
GB0107113D0 (en) * 2001-03-21 2001-05-09 Nokia Networks Oy Interference rejection in a receiver
US6999538B2 (en) * 2001-09-10 2006-02-14 Mitsubishi Electric Research Laboratories, Inc. Dynamic diversity combiner with associative memory model for recovering signals in communication systems
US7567634B1 (en) 2002-02-15 2009-07-28 Marvell International Ltd. Reduced complexity viterbi decoding method and apparatus
CN100431274C (en) * 2002-02-28 2008-11-05 艾利森电话股份有限公司 Signal receiver devices and methods
TWI252644B (en) * 2002-08-07 2006-04-01 Interdigital Tech Corp Closed loop transmit diversity of point to multipoint physical channels
DE10243345B4 (en) * 2002-09-18 2011-02-17 Siemens Ag Method and device for transmitting data
GB0222046D0 (en) * 2002-09-23 2002-10-30 Nokia Corp Receiving method and receiver
US7395079B2 (en) * 2004-05-04 2008-07-01 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatus for selectively processing information replicas
US20050281200A1 (en) * 2004-06-16 2005-12-22 Gerard Terreault QAM signal analysis in a network
KR100833337B1 (en) 2004-06-16 2008-05-29 선라이즈 텔레콤 인코포레이티드 Qam signal analysis in a network
KR20070028450A (en) * 2004-06-24 2007-03-12 코닌클리케 필립스 일렉트로닉스 엔.브이. Noise canceling in equalized signals
US7324794B2 (en) * 2004-09-29 2008-01-29 Tzero Technologies, Inc. Phase combining diversity
US7643839B2 (en) * 2004-10-06 2010-01-05 Broadcom Corporation Method and system for diversity processing
US7715806B2 (en) 2004-10-06 2010-05-11 Broadcom Corporation Method and system for diversity processing including using dedicated pilot method for closed loop
US7505539B2 (en) * 2004-10-06 2009-03-17 Broadcom Corporation Method and system for single antenna receiver system for HSDPA
CN100359822C (en) * 2004-10-14 2008-01-02 中兴通讯股份有限公司 Method and device for treating emission diversity selected by antenna
US8279985B2 (en) * 2005-02-22 2012-10-02 Adaptix, Inc. Intelligent demodulation systems and methods in an OFDMA multicell network
US7796956B2 (en) * 2005-05-03 2010-09-14 Telefonaktiebolaget L M Ericsson (Publ) Receiver for a multi-antenna, multi-band radio
CN100544231C (en) * 2005-06-08 2009-09-23 中兴通讯股份有限公司 Smart antenna implementation method and smart antenna based on software radio are realized system
US20070009069A1 (en) * 2005-07-06 2007-01-11 Ning Kong Method operable to determine a signal to noise ratio gap between selection combining and maximal ratio combining for an arbitrary number of diversity branches
US8223904B2 (en) * 2005-08-22 2012-07-17 Qualcomm Incorporated Multiple hypothesis decoding
JP4732161B2 (en) * 2005-12-27 2011-07-27 京セラ株式会社 Wireless communication apparatus and wireless communication control method
KR100975701B1 (en) * 2006-01-26 2010-08-12 삼성전자주식회사 Apparatus and method for controlling dynamic range of weight vectors according to combining methods in a mobile station equipped with multiple antennas in high rate packet data system using code division multiple access scheme
US20070242666A1 (en) * 2006-04-13 2007-10-18 Alcatel Apparatus for managing requests for data in a communication network
US7944996B2 (en) * 2006-06-07 2011-05-17 Panasonic Corporation OFDM reception device and OFDM receiver using the same
JP4679467B2 (en) * 2006-08-21 2011-04-27 株式会社東芝 Signal receiving system and signal receiving method
WO2008056224A2 (en) * 2006-11-06 2008-05-15 Nokia Corporation Apparatus, methods, and computer program products providing reduced interference in a multi-antenna system
KR100950655B1 (en) * 2006-12-20 2010-04-01 삼성전자주식회사 Method and apparatus for receiving data using a plurality of antennas in communication system
DE602007003072D1 (en) * 2007-02-05 2009-12-17 Research In Motion Ltd Multi-mode receiver with adaptive mode selection
CN101667845B (en) * 2008-09-05 2013-03-20 中兴通讯股份有限公司 Self-adapting combination method and self-adapting combination system for multi-channel signals
US8396438B2 (en) * 2009-06-24 2013-03-12 Qualcomm Incorporated Enhanced interference nulling equalization
CN101729486B (en) * 2009-12-24 2015-04-29 北京韦加航通科技有限责任公司 Method and system for double-antenna receiving diversity in single carrier frequency domain equalization system
CN103155440B (en) 2010-10-29 2016-06-29 瑞典爱立信有限公司 Interference mitigation process and device
JP5464628B2 (en) * 2010-12-22 2014-04-09 シャープ株式会社 Wireless communication device
CN102638423A (en) * 2011-02-11 2012-08-15 中兴通讯股份有限公司 Interference and noise elimination method and device
CN102324960A (en) * 2011-05-13 2012-01-18 中兴通讯股份有限公司 Interference suppression merging method and receiver
US8537926B2 (en) * 2011-06-08 2013-09-17 Xg Technology, Inc. Cognitive receiver architecture
CN103095316A (en) * 2011-10-27 2013-05-08 京信通信系统(中国)有限公司 Self-adaption interference rejection method and device thereof
US8831546B2 (en) 2011-11-07 2014-09-09 Ibiquity Digital Corporation MRC antenna diversity for FM IBOC digital signals
GB2502308B (en) * 2012-05-22 2014-09-17 Toshiba Res Europ Ltd A transceiver, system and method for selecting an antenna
CN103516412B (en) * 2012-06-28 2017-03-08 联芯科技有限公司 The multiple-input and multiple-output detection method of receiving data and system
US8755477B1 (en) * 2012-07-19 2014-06-17 Sprint Spectrum L.P. Method and systems of selecting a mode of operation of a multi-antenna receiver in a radio access network
WO2014115373A1 (en) * 2013-01-25 2014-07-31 株式会社エヌ・ティ・ティ・ドコモ Mobile communication terminal
KR102042198B1 (en) * 2013-02-20 2019-11-07 삼성전자주식회사 Apparatus and method for virtual receiver diversity in wireless communication system
CN104283599B (en) * 2013-07-10 2018-11-06 南京中兴新软件有限责任公司 A kind of base station, terminal and AF panel method, apparatus
US9882619B2 (en) 2013-12-23 2018-01-30 Telefonaktiebolaget Lm Ericsson (Publ) Determining how to combine received signals
US9306654B2 (en) * 2014-01-10 2016-04-05 Qualcomm Incorporated Opportunistic active interference cancellation using RX diversity antenna
US9954917B2 (en) * 2015-07-23 2018-04-24 Samsung Electronics Co., Ltd. Transmitting apparatus, receiving apparatus, and control methods thereof
US9602313B1 (en) * 2015-09-01 2017-03-21 Qualcomm Incorporated Time-controlled spatial interference rejection
EP3276900B1 (en) 2016-07-29 2020-02-19 Nxp B.V. A receiver circuit
US9847802B1 (en) * 2016-08-16 2017-12-19 Xilinx, Inc. Reconfiguration of single-band transmit and receive paths to multi-band transmit and receive paths in an integrated circuit
EP3297179A1 (en) 2016-09-16 2018-03-21 Nxp B.V. A receiver circuit for suppression of co-channel interference
US10581476B2 (en) 2018-05-17 2020-03-03 Nxp B.V. Beam forming for first adjacent cancellation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993018593A1 (en) * 1992-03-02 1993-09-16 Motorola Inc. Clock recovery method and apparatus in a diversity receiver
EP0600547A1 (en) * 1992-12-01 1994-06-08 Koninklijke Philips Electronics N.V. Sub-band diversity transmission system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE465991B (en) * 1990-04-10 1991-11-25 Ericsson Telefon Ab L M PROCEDURE SHOULD IN A RECEIVER CHOOSE THE MOST EASY OF TWO OR MORE ANTENNA
DE69327837T2 (en) * 1992-12-01 2000-10-12 Koninkl Philips Electronics Nv Subband diversity transmission system
FI932605A (en) * 1993-06-07 1994-12-08 Nokia Telecommunications Oy Receiver device for base station
GB2294609B (en) * 1994-10-26 1999-01-27 Northern Telecom Ltd A base station arrangement
US5553102A (en) * 1994-12-01 1996-09-03 Motorola, Inc. Diversity reception communication system with maximum ratio combining method
US5787131A (en) * 1995-12-22 1998-07-28 Ericsson Inc. Method and apparatus for mitigation of self interference using array processing
US5796788A (en) * 1996-04-19 1998-08-18 Ericsson Inc. Method and apparatus for interference decorrelation in time and space

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993018593A1 (en) * 1992-03-02 1993-09-16 Motorola Inc. Clock recovery method and apparatus in a diversity receiver
EP0600547A1 (en) * 1992-12-01 1994-06-08 Koninklijke Philips Electronics N.V. Sub-band diversity transmission system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FEENEY M T ET AL: "The performance of various diversity combiners on signals received at a base-station site", LAND MOBILE RADIO. THIRD INTERNATIONAL CONFERENCE (PUBL. NO.65), CAMBRIDGE, UK, 10-13 DEC. 1985, ISBN 0-903748-63-0, 1985, LONDON, UK, IERE, UK, pages 55 - 62, XP002053212 *
KARLSSON J ET AL: "Interference rejection combining for GSM", GATEWAY TO THE TWENTY FIRST CENTURY. INTERNATIONAL CONFERENCE ON UNIVERSAL PERSONAL COMMUNICATIONS. 1996 5TH IEEE INTERNATIONAL CONFERENCE ON UNIVERSAL PERSONAL COMMUNICATIONS RECORD (CAT. NO.96TH8185), PROCEEDINGS OF ICUPC - 5TH INTERNATIONAL CONFER, ISBN 0-7803-3300-4, 1996, NEW YORK, NY, USA, IEEE, USA, pages 433 - 437 vol.1, XP002053626 *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173014B1 (en) * 1994-08-02 2001-01-09 Telefonaktiebolaget Lm Ericsson Method of and apparatus for interference rejection combining and downlink beamforming in a cellular radio communications system
EP0951152A1 (en) * 1998-04-16 1999-10-20 Alcatel Diversity receiver
WO2001071942A2 (en) * 2000-03-17 2001-09-27 Wireless Online, Inc. Method and system for detecting signals with multiple antennas
WO2001071942A3 (en) * 2000-03-17 2002-06-06 Wireless Online Inc Method and system for detecting signals with multiple antennas
EP1150441A1 (en) * 2000-04-25 2001-10-31 Alcatel Method of combining at least two received signals of a telecommunication system
JP2002009678A (en) * 2000-05-05 2002-01-11 Lucent Technol Inc Cellular wireless communication system
US7136424B2 (en) 2000-06-29 2006-11-14 Siemens Aktiengesellschaft Method or communications system using a robust diversity combination
DE10031677B4 (en) * 2000-06-29 2005-09-29 Siemens Ag Method or communication system with robust diversity combining
EP1248385A4 (en) * 2000-12-04 2003-05-14 Mitsubishi Electric Corp Syntesis receiving method and synthesis receiver
US7043217B2 (en) 2000-12-04 2006-05-09 Mitsubishi Denki Kabushiki Kaisha Combining reception method and apparatus
EP1248385A1 (en) * 2000-12-04 2002-10-09 Mitsubishi Denki Kabushiki Kaisha Syntesis receiving method and synthesis receiver
US7065383B1 (en) 2002-04-16 2006-06-20 Omri Hovers Method and apparatus for synchronizing a smart antenna apparatus with a base station transceiver
US7565174B2 (en) 2002-04-16 2009-07-21 Omri Hovers Method and apparatus for monitoring and extracting information for use in a smart antenna system
US7346365B1 (en) 2002-04-16 2008-03-18 Faulkner Interstices Llc Smart antenna system and method
US7395094B2 (en) 2002-04-16 2008-07-01 Faulkner Interstices, Llc Method and apparatus for synchronizing a smart antenna apparatus with a base station transceiver
US7529525B1 (en) 2002-04-16 2009-05-05 Faulkner Interstices Llc Method and apparatus for collecting information for use in a smart antenna system
EP1530299A1 (en) * 2003-11-06 2005-05-11 Nokia Corporation Communication method, receiver and base station
US7299017B2 (en) 2003-11-06 2007-11-20 Nokia Corporation Communication method, receiver and base station
US8325859B2 (en) 2006-08-30 2012-12-04 Kyocera Corporation Communication device and control method
WO2008086063A2 (en) * 2007-01-05 2008-07-17 Qualcomm Incorporated Method and apparatus for processing data at a wireless station
US9253009B2 (en) 2007-01-05 2016-02-02 Qualcomm Incorporated High performance station
WO2008086063A3 (en) * 2007-01-05 2008-11-20 Qualcomm Inc Method and apparatus for processing data at a wireless station
RU2496244C2 (en) * 2007-01-05 2013-10-20 Квэлкомм Инкорпорейтед Highly efficient station
US8670495B2 (en) 2007-02-05 2014-03-11 Blackberry Limited Multi-mode receiver with adaptive mode selection
US8666004B2 (en) 2008-05-21 2014-03-04 Qualcomm Incorporated Methods and systems for hybrid MIMO schemes in OFDM/A systems
WO2010121657A1 (en) * 2009-04-22 2010-10-28 Nokia Siemens Networks Oy Selective interference rejection combining
US8798654B2 (en) 2009-04-22 2014-08-05 Nokia Siemens Networks Oy Selective interference rejection combining
GB2479549A (en) * 2010-04-13 2011-10-19 Toshiba Res Europ Ltd Selecting receiver antennas of an interference rejection receiver to provide highest SINR
GB2479549B (en) * 2010-04-13 2012-10-03 Toshiba Res Europ Ltd Low complexity antenna selection methods for interference rejection receivers
EP2704336A1 (en) * 2011-04-25 2014-03-05 Ntt Docomo, Inc. Mobile communication terminal
US9173113B2 (en) 2011-04-25 2015-10-27 Ntt Docomo, Inc. Mobile communication terminal
EP2704336A4 (en) * 2011-04-25 2014-11-19 Ntt Docomo Inc Mobile communication terminal
EP3535858A4 (en) * 2016-11-03 2020-09-23 Nokia Technologies Oy Beamforming
US11031990B2 (en) 2016-11-03 2021-06-08 Nokia Technologies Oy Beamforming

Also Published As

Publication number Publication date
CN1123145C (en) 2003-10-01
EP0983644A1 (en) 2000-03-08
AU739043B2 (en) 2001-10-04
AU7559398A (en) 1998-12-11
JP2002508898A (en) 2002-03-19
BR9809856A (en) 2000-06-27
DE69834178D1 (en) 2006-05-24
JP4312836B2 (en) 2009-08-12
BR9809856B1 (en) 2012-02-07
CN1263653A (en) 2000-08-16
DE69834178T2 (en) 2006-09-14
CA2290467A1 (en) 1998-11-26
CA2290467C (en) 2006-06-06
EP0983644B1 (en) 2006-04-12
US6128355A (en) 2000-10-03

Similar Documents

Publication Publication Date Title
US6128355A (en) Selective diversity combining
US11503570B2 (en) Multi-antenna communication in a wireless network
EP1671432B1 (en) System and method for antenna selection
US7515939B2 (en) System and method for channel-adaptive antenna selection
US9379766B2 (en) Method and system for achieving space and time diversity gain
EP1205007B1 (en) Method of and apparatus for beam reduction and combining in a radio communications system
EP2208293B1 (en) Wireless receiver with receive diversity
EP0961419A2 (en) Base station apparatus and radio communication method with reception diversity
US20040114695A1 (en) Interference rejection in a receiver
MXPA99010615A (en) Selective diversity combining
Winters Smart antennas for the EDGE wireless TDMA system
Duong et al. Link adaptation in correlated antenna diversity environments
Janssen Enhancement of a dual-signal receiver using pre-detection microdiversity for narrowband and wideband signals

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98807115.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998923259

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2290467

Country of ref document: CA

Ref document number: 2290467

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/1999/010615

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 75593/98

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1998923259

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 75593/98

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1998923259

Country of ref document: EP