WO1999001956A1 - Orthogonal frequency-division multiplex transmission system, and its transmitter and receiver - Google Patents

Orthogonal frequency-division multiplex transmission system, and its transmitter and receiver Download PDF

Info

Publication number
WO1999001956A1
WO1999001956A1 PCT/JP1998/002942 JP9802942W WO9901956A1 WO 1999001956 A1 WO1999001956 A1 WO 1999001956A1 JP 9802942 W JP9802942 W JP 9802942W WO 9901956 A1 WO9901956 A1 WO 9901956A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
signal
pilot signal
frequency
segment
Prior art date
Application number
PCT/JP1998/002942
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohiro Kimura
Kenichiro Hayashi
Akira Kisoda
Shigeru Soga
Sadashi Kageyama
Masafumi Saito
Tatsuya Ishikawa
Hitoshi Mori
Makoto Sasaki
Toru Kuroda
Masayuki Takada
Original Assignee
Advanced Digital Television Broadcasting Laboratory
Matsushita Electric Industrial Co., Ltd.
Nippon Hoso Kyokai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Digital Television Broadcasting Laboratory, Matsushita Electric Industrial Co., Ltd., Nippon Hoso Kyokai filed Critical Advanced Digital Television Broadcasting Laboratory
Priority to JP11506866A priority Critical patent/JP3083159B2/en
Priority to KR1020037008882A priority patent/KR100575913B1/en
Publication of WO1999001956A1 publication Critical patent/WO1999001956A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L25/00Constructive types of pipe joints not provided for in groups F16L13/00 - F16L23/00 ; Details of pipe joints not otherwise provided for, e.g. electrically conducting or insulating means
    • F16L25/0036Joints for corrugated pipes
    • F16L25/0045Joints for corrugated pipes of the quick-acting type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L19/00Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on or into one of the joint parts
    • F16L19/02Pipe ends provided with collars or flanges, integral with the pipe or not, pressed together by a screwed member
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • the present invention relates to an orthogonal frequency division multiplexing transmission system for transmitting signals suitable for fixed reception and mobile reception in one channel in a mixed manner. Further, the present invention relates to a transmitting apparatus for forming and transmitting an OFDM signal based on the orthogonal frequency division multiplexing method, and a receiving apparatus for receiving and demodulating an OFDM signal formed and transmitted based on the orthogonal frequency division multiplexing method.
  • a transmitting apparatus for forming and transmitting an OFDM signal based on the orthogonal frequency division multiplexing method
  • a receiving apparatus for receiving and demodulating an OFDM signal formed and transmitted based on the orthogonal frequency division multiplexing method.
  • OFDM orthogonal frequency division multiplexing
  • the entire transmission band is 17 k.
  • 0 5 Carrier of carrier is used, of which 142 Carrier of carrier is used as dispersed pilot (Scattered Pilot) signal, and 45 carrier is used as continuous pilot. (Continual Pilot) signal, 17 carrier carrier is used for control information (TPS) signal, and 1512 carrier carrier is used for information transmission signal.
  • TPS control information
  • the continuous pilot signal of the carrier of 45 carriers is arranged so as to overlap with the distributed pilot.
  • the frequency arrangement within one symbol is arranged in 12 carrier periods, and the frequency arrangement is shifted by 3 carriers for each symbol.
  • the time arrangement has a period of 4 symbols.
  • the distributed pilot signal is (1 ) Is assigned to the carrier with carrier number k.
  • mod represents a modulo operation
  • p is an integer from 0 to 141.
  • the control information bit transmitted by the symbol of symbol number n is S n
  • the control information signal is obtained by modulating the carrier with the complex vectors ck and n shown in equation (3). That is, the carrier that transmits the control information signal is differentially binary PSK (Phase Shift Keying) modulated between symbols.
  • the carrier of the 1512 carrier used for information transmission signals other than the above can be QPSK, 16 QAM, or 6 4 QAM modulated. Both modulation methods are absolute phase modulation.
  • FIG. 10 shows an example of a conventional receiving apparatus that receives the OFDM signal thus generated and demodulates digital information.
  • a received OFDM signal is frequency-converted by a tuner 101, time-frequency-converted by a Fourier transform circuit 102, and is subjected to a frequency-domain carrier-to-frequency conversion. Kutl Column. This vector sequence is supplied to the distributed pilot extraction circuit 103 and the continuous pilot extraction circuit 109.
  • the scattered pilot extracting circuit 103 extracts a scattered pilot signal from the vector sequence output from the Fourier transform circuit 102.
  • the vector generation circuit 104 generates a modulation complex vector ck , n corresponding to the distributed pilot signal extracted by the distributed pilot extraction circuit 103.
  • the division circuit 105 divides the distributed pilot signal extracted by the distributed pilot extraction circuit 103 by the complex vector generated by the vector generation circuit 104, From the result of the division, the transmission path characteristics of the distributed pilot signal are estimated.
  • the interpolation circuit 106 interpolates the transmission line characteristics of the distributed pilot signal obtained by the division circuit 105 to estimate the transmission line characteristics of all the carrier waves.
  • the divider circuit 107 performs synchronous detection by dividing the vector sequence output from the Fourier transform circuit 102 by the transmission path characteristics estimated by the interpolator 106 on the corresponding carrier.
  • the demodulation circuit 108 demodulates the synchronous detection signal output from the division circuit 107 according to the modulation method (QPSK, 16 QAM, 64 QAM, etc.) when generating the information transmission signal, and transmits the demodulated signal. Obtained digital information.
  • the continuous pilot extraction circuit 109 extracts a continuous pilot signal from the vector train output from the Fourier transform circuit 102.
  • the vector generation circuit 110 generates the modulation complex vectors ck and n corresponding to the continuous pilot signals extracted by the continuous pilot extraction circuit 109.
  • the division circuit 111 outputs the continuous pilot signal extracted by the continuous pilot extraction circuit 109. Divide by the complex vector generated by the vector generation circuit 110 to estimate the transmission path characteristics of the continuous pilot signal.
  • the inverse Fourier transform circuit 112 converts the transmission path characteristic of the continuous pilot signal estimated by the division circuit 111 into frequency-to-hour conversion to obtain an impulse response characteristic of the transmission path. Disclosure of the invention
  • a carrier for transmitting digital information is modulated by QPSK, 16 QAM, 64 QAM, etc., and the absolute phase modulation is performed. Since demodulation is based on the assumption that the transmission path characteristics estimated from the sparsely distributed distribution ports are smoothed and interpolated, the transmission path characteristics are used. Due to such factors, there are cases where sufficient transmission quality cannot be obtained with mobile reception in which the transmission path characteristics change rapidly.
  • the modulation method of each carrier is determined to be one in the entire band, the digital information is transmitted so that some of the digital information can be received while moving. Even if, for example, differential QPSK modulation suitable for mobile reception is introduced into the modulation of the carrier transmitting the signal, the overall transmission capacity is reduced and the efficiency is reduced.
  • the present invention solves the above-mentioned problems, and introduces a modulation method partially suitable for mobile reception for modulation of a carrier for transmitting digital information while maintaining the entire transmission capacity.
  • An OFDM transmission system in which continuous pilot signals are arranged so that the impulse response of the transmission path estimated from the pilot signals does not return, and a transmitter and receiver suitable for this method The purpose is to provide equipment.
  • an OFDM transmission system is configured as follows.
  • a predetermined number of carriers are assigned as one unit to one or more segments, and one or more carriers are assigned to a band end pilot signal, A method in which one or more segments are used as either synchronous detection or differential detection for each segment, and
  • a distributed pilot signal that modulates a carrier with a specific phase and amplitude is arranged on a carrier whose symbol time and frequency are periodically dispersed, and the same is applied to each symbol.
  • M is a natural number of 2 or more
  • phase shift keying M phase PSK
  • differential M phase shift in the symbol direction according to the additional information.
  • An additional information transmission signal to be modulated by keying is arranged, and an information transmission and transmission is performed on a carrier other than the above in accordance with the digital information. Issue an issue
  • the M-phase shift keying or the differential M-phase phase in the symbol direction is applied to the carrier having the same frequency for each symbol according to the additional information.
  • An additional information transmission signal to be modulated by shift keying is provided, and a carrier having a frequency that satisfies the periodicity of the frequency arrangement of the distributed pilot signal of the adjacent synchronous detection segment is provided.
  • a terminal pilot signal for modulating the carrier at a specific phase and amplitude is arranged, and an information transmission signal for modulating the carrier according to the digital information is arranged for a carrier other than the above.
  • the carrier is modulated with a specific phase and amplitude.
  • a predetermined number of carriers are assigned as one unit to one or more segments, and one or more carriers are assigned to a band end pilot signal, A method in which one or more segments are used as either synchronous detection or differential detection for each segment, and
  • a distributed pilot signal that modulates a carrier with a specific phase and amplitude is arranged on a carrier whose symbol time and frequency are periodically dispersed, and the same for each symbol.
  • a continuous pilot signal that modulates the carrier with a specific phase and amplitude is arranged on the carrier of the same frequency, and the M-phase shift key is applied to the carrier of the same frequency for each symbol according to the additional information.
  • An additional information transmission signal to be modulated by differential or M-phase shift keying in the symbol direction or in the symbol direction is arranged, and the carrier is applied to a carrier other than the above according to the digital information. Arrange the information transmission signal to be modulated,
  • a continuous pilot signal that modulates the carrier with a specific phase and amplitude is arranged on a carrier having the same frequency as each symbol, and the same is applied to each symbol. Additional information that modulates the carrier by using the M-phase shift keying or the differential M-phase shift key in the symbol direction according to the additional information.
  • a terminal pilot that distributes a transmission signal and modulates the carrier with a specific phase and amplitude on a carrier having a frequency that satisfies the periodicity of the frequency arrangement of the dispersion pilot port of the adjacent synchronous detection segment.
  • the carrier is modulated with a specific phase and amplitude.
  • the frequency arrangement of the additional information transmission signal is determined by changing the frequency arrangement of the additional information transmission signal in the differential detection segment. It is part of the frequency allocation.
  • the frequency arrangement of the continuous pilot signal is changed by changing the frequency of the continuous pilot signal to the continuous pilot signal of the differential detection segment. It is part of the frequency allocation of.
  • the additional information includes control information.
  • control information is transmitted by differential two-phase shift keying (DBPSK) in the symbol direction.
  • DBPSK differential two-phase shift keying
  • a frequency allocation of the control information is a part of a frequency allocation of the control information of the differential detection segment. I do.
  • the number of carriers is set to a multiple of N (N is a natural number of 2 or more), and the distributed pilot signal is set to L (L Is a divisor of N). Allocate to carriers shifted by carriers.
  • each of the additional information transmission signals is The inverse Fourier transform pair in the frequency arrangement is arranged on a carrier wave with a frequency such that it becomes an impulse.
  • each of the continuous pilot signals is converted into an inverse Fourier of the frequency arrangement of the continuous pilot signals.
  • D) The transform pair is allocated to a carrier wave with a frequency that makes it impulse-shaped.
  • the above-mentioned terminal pilot signal is arranged only on the carrier at the band end of the differential detection segment.
  • the segment for synchronous detection is a distributed pilot signal using a carrier of 9 carriers per symbol, an additional information transmission signal using a carrier of 3 carriers, and 9 And an information transmission signal using a 6-carrier carrier.
  • the differential detection segment comprises: an additional information signal using a 11-carrier carrier; a termination packet signal using a 1-carrier carrier; and a 96-carrier carrier. And an information transmission signal using the same.
  • the synchronous detection segment includes a distributed pilot signal using 9 carriers per symbol, and an additional information transmission signal using 1 carrier. It consists of a continuous pilot signal using two carrier waves and an information transmission signal using 96 carrier waves.
  • the differential detection segment comprises an additional information signal using a 5-carrier carrier, a continuous pilot signal using a 6-carrier carrier, and a 1-carrier carrier.
  • the terminal pilot signal used is composed of an information transmission signal using a 96-carrier carrier.
  • a predetermined number of carriers are assigned as one unit to one or more segments, and one or more carriers are assigned to a band end pilot signal, and the one An array means for allocating the above segments to either synchronous detection or differential detection for each segment,
  • Signal generating means for generating the distributed pilot signal, the additional information transmission signal, the information transmission signal, the terminal pilot signal, and the band terminal pilot signal, respectively.
  • the band-end pilot signal is transmitted at a frequency satisfying the periodicity of the frequency arrangement of the distributed pilot signal in the synchronous detection segment and at the end of a transmission frequency band.
  • the distributed pilot signal is distributed to a carrier wave whose symbol time and frequency are periodically dispersed, and the additional information transmission signal is also transmitted to each symbol.
  • the information transmission signal is arranged on a carrier having the same frequency
  • the information transmission signal is arranged on a carrier other than the above
  • the additional information transmission signal is arranged on a carrier having the same frequency as each symbol.
  • the terminal pilot signal satisfies the periodicity of the frequency arrangement of the distributed pilot signal in the adjacent synchronous detection segment. It is arranged on the carrier wave of the frequency.
  • a predetermined number of carriers are assigned as one unit to one or more segments, and one or more carriers are assigned to a band end pilot signal, and the one An array means for allocating the above segments to either synchronous detection or differential detection for each segment,
  • the band-end pilot signal is transmitted at a frequency satisfying the periodicity of the frequency arrangement of the distributed pilot signal in the synchronous detection segment and at a transmission frequency band end.
  • the dispersed pilot signal is disposed on a carrier wave whose periodicity and frequency are periodically dispersed, and the continuous pilot signal is transmitted every symbol.
  • the additional information transmission signal is arranged on a carrier having the same frequency as each symbol, and the information transmission signal is arranged on a carrier other than the above, and the differential detection cell is arranged.
  • the continuous pilot signal is arranged on a carrier having the same frequency as each symbol, and the additional information transmission signal is arranged on a carrier having the same frequency as each symbol.
  • Frequency pie Lock preparative signal the dispersion pi port Tsu DOO signal synchronous detection segmenting preparative you adjacent It is arranged on the carrier wave of the frequency that satisfies the periodicity of arrangement. Further, the receiving device according to the present invention is configured as follows.
  • (23) A receiving device that receives and demodulates the OFDM signal generated by the OFDM transmission method according to any one of (1) to (18).
  • Fourier transform means for converting the received OFDM signal from a time domain to a frequency domain signal by Fourier transform to obtain a vector sequence representing a phase and an amplitude for each of the carrier waves;
  • the vector group extracted by this means is divided by the specific phase and amplitude modulating the dispersion pilot signal, the terminal pilot signal, and the band terminal pilot signal.
  • Filter means for smoothing and interpolating the output of this means in the frequency direction and symbol time direction;
  • Delay means for delaying the vector sequence obtained by the Fourier transform means for one symbol period
  • the The output of the filter means should be output from the selection means for selecting and outputting the output of the delay means when processing the signal of the differential detection segment, and the output from the Fourier conversion means.
  • Second division means for dividing the vector sequence by the output signal of the selection means to obtain and output a detection vector sequence.
  • Fourier transform means for converting the received OFDM signal from a time domain to a frequency domain signal by Fourier transform to obtain a vector sequence representing the phase and amplitude of each carrier.
  • Third division means for dividing the vector group extracted by this means by the specific phase and amplitude modulating the continuous pilot signal
  • An inverse Fourier transforming means for converting the output of this means from the frequency domain to the time domain by means of the inverse Fourier transform, thereby obtaining an impulse response characteristic of the transmission line.
  • FIG. 1 shows the first and second embodiments of the OFDM transmission system according to the present invention, in which synchronous detection or differential detection segments (a total of 13 segments) and a band termination pyrometer are shown.
  • FIG. 4 is a diagram showing an example of arrangement.
  • FIG. 2 shows the arrangement of the additional information transmission signal, the arrangement of the distributed pilot signal in the synchronous detection segment, and the differential detection in the first and second embodiments of the OFDM transmission system according to the present invention.
  • FIG. 10 is a diagram showing an example of an arrangement of a terminal pilot signal in a segment for use.
  • FIG. 3 shows an arrangement of a continuous pilot signal and a control information signal and an arrangement of a distributed pilot signal in a synchronous detection segment in a second embodiment of the OFDM transmission system according to the present invention.
  • FIG. 4 is a diagram showing an example of the arrangement of a terminal pilot signal in a differential detection segment.
  • FIG. 4 is a time chart showing an inverse Fourier transform pair of the frequency arrangement of the continuous pilot signal of the synchronous detection segment shown in Table 2 in the second embodiment of the OFDM transmission system according to the present invention.
  • FIG. 4 is a diagram showing one amplitude characteristic.
  • FIG. 5 shows an inverse Fourier transform pair of the frequency arrangement of the continuous pilot signal of the differential detection segment shown in Table 2 in the second embodiment of the OFDM transmission system according to the present invention.
  • FIG. 4 is a time-amplitude characteristic diagram shown.
  • FIG. 6 is a time-amplitude diagram illustrating an inverse Fourier transform pair of the frequency arrangement of the control information signal of the synchronous detection segment shown in Table 3 in the second embodiment of the OFDM transmission system according to the present invention.
  • FIG. 6 is a time-amplitude diagram illustrating an inverse Fourier transform pair of the frequency arrangement of the control information signal of the synchronous detection segment shown in Table 3 in the second embodiment of the OFDM transmission system according to the present invention.
  • FIG. 7 is a time chart showing the inverse Fourier transform pair of the frequency arrangement of the control information signal of the segment for differential detection shown in Table 3 in the second embodiment of the OFDM transmission system according to the present invention. Amplitude characteristics diagram It is.
  • FIG. 8 is a block diagram illustrating a configuration of a transmission device used in an OFDM transmission system according to a fifth embodiment of the present invention, as a fifth embodiment.
  • FIG. 9 is a block circuit diagram showing, as a sixth embodiment, the configuration of a receiving device used in the OFDM transmission system according to the present invention.
  • FIG. 10 is a block diagram showing a configuration of a receiving apparatus used in the conventional OFDM transmission system.
  • a band termination pilot using 13 segments and one carrier is used, and one segment has 108 carriers. It is composed of the carrier wave of (a). Each segment consists of a segment for synchronous detection or a segment for differential detection. A carrier of 1405 carriers is used for the entire band.
  • Figure 1 shows examples of segments for synchronous detection or differential detection (total of 13 segments), and band-terminated pilot signals.
  • the horizontal axis schematically represents the frequency axis (carrier arrangement), and the vertical axis represents the time axis (symbol direction).
  • the carrier number k of, is an integer from 0 to 107, and one segment consists of 108 carrier waves.
  • the segments for synchronous detection are a distributed pilot signal using nine carriers per symbol, an additional information transmission signal using three carriers, and a 96-carrier carrier. And an information transmission signal using the carrier of the lear.
  • the differential detection segment includes an additional information transmission signal using a 11-carrier carrier, a termination pilot signal using a 1-carrier carrier, and a 96-carrier carrier. It consists of an information transmission signal using a carrier wave and a signal.
  • the required transmission band depends on the combination of the segments. It will not change.
  • the carrier number k in the entire band is 0, an integer of 1404, the segment number i is 0, an integer of 1 to 12, and the carrier in each segment.
  • the rear number k 'be an integer from 0 to 107, and satisfy k i ⁇ 108 + k'.
  • the distributed pilot signal provided in the segment for synchronous detection is allocated to the carrier of carrier number k in the segment by equation (5) with each segment.
  • mod represents the remainder operation
  • n indicating the symbol number is an integer of 0 or more
  • p is an integer of 0 or more and 8 or less.
  • the additional information transmission signals provided in the segment for synchronization and the segment for differential detection are as shown in Table 1. It is located on the carrier with carrier number k '. Table 1 shows that the additional information transmission signal of the synchronous detection segment is included in the additional information transmission signal of the differential detection segment.
  • the synchronous detection segment and the differential detection segment are defined as additional information transmission signals of the synchronous detection segment. Since the additional information transmission signal is always arranged on the carrier wave, it is easy for the receiving side to identify the additional information transmission signal or the other transmission signal. Note that, depending on the additional information to be transmitted, the carrier wave may be assigned so that the subset arrangement does not occur.
  • the terminal pilot signal provided in the segment for differential detection is allocated to a carrier having a carrier number k 'of 0 in each segment.
  • the arrangement of the terminal pilot signal is a position that maintains the periodicity of the frequency arrangement of the distributed pilot signal in the adjacent synchronous detection segment.
  • Each terminal pilot signal complements the distributed pilot signal.
  • Figure 2 shows an example of the arrangement of the distributed pilot signal in the segment for synchronous detection and the example of the arrangement of the terminal pilot signal in the segment for differential detection.
  • the horizontal axis schematically represents the frequency axis (carrier arrangement), and the vertical axis the time axis (symbol direction).
  • the carrier number k 'in each segment is an integer from 0 to 107, and one segment is composed of 108 carrier waves.
  • the additional information transmission signal is assigned to a different carrier from the dispersion pilot signal.
  • Equation (6) R e ⁇ c kn ⁇ represents the real part of the complex vector ck, n corresponding to the carrier of carrier number k and symbol number n, and I m ⁇ c k; n ⁇ Represents an imaginary part.
  • the additional information transmission signal provided in the synchronous detection segment and the differential detection segment transmits additional information different from the information transmission signal transmitted using a 96-carrier carrier.
  • control information that specifies the transmission mode (number of segments, carrier modulation method, etc.), information used as a broadcast station (eg, control information used in a relay station, Low-time-delayed audio information used for communication, broadcast station identification signal, etc.) can be considered.
  • One bit of additional information may be transmitted for each symbol, or multiple bits of additional information may be transmitted. Alternatively, only control information that defines the transmission mode may be transmitted.
  • the control information signal modulates the carrier by the complex vector c k, n shown in equation (7).
  • the carrier for transmitting the control information signal is differentially binary-shifted PSK (Phase Shift Keying) modulated between the symbols.
  • the information transmission signal provided in the synchronous detection segment is distributed to a carrier other than the dispersion pilot signal and the additional information transmission signal of the aforementioned synchronous detection segment, and is discontinued based on the digital information.
  • Phase modulation is performed.
  • QPSK for example, QPSK :, 16QAM, or 64QAM modulation is used.
  • the information transmission signal of the synchronous detection segment is demodulated by the following process.
  • the distributed pilot signal, the required terminal pilot signal, and the band terminal pilot signal are modulated by the dispersion pilot, terminal pilot signal, and band terminal pilot signal. It performs inverse modulation with the complex vector, and estimates the transmission path characteristics in the frequency domain related to the scattered pilot signal and the terminal pilot signal. Further, the transmission path characteristics of the information transmission signal are estimated by interpolating in the frequency direction and the symbol direction by a filter. The information transmission signal is divided by the transmission path characteristics obtained in this way. As a result, the information transmission signal can be demodulated from the synchronous detection segment.
  • the information transmission signal provided in the differential detection segment is described above. Differential modulation between adjacent symbols of the same carrier number, based on digital information, is allocated to the carrier signal other than the pilot signal at the end of the differential detection segment and the additional information transmission signal. Is applied.
  • the information transmission signal of the differential detection segment can be demodulated by dividing by the information transmission signal of the same carrier number of the previous symbol.
  • the OFDM transmission method provides high-quality reception by the effect of the filter in the synchronous detection segment in the receiving apparatus and the differential detection for the differential detection.
  • differential demodulation between symbols makes it possible to perform reception suitable for mobile reception in which the transmission path characteristics change rapidly.
  • a flexible service configuration without fluctuations in the transmission band can be achieved. It can be realized.
  • a band termination pilot using 13 segments and one carrier is used, and one segment is 10 8 It consists of the carrier of the carrier.
  • Each segment is composed of either a segment for synchronous detection or a segment for differential detection.
  • a carrier of 1405 carriers is used for the entire band.
  • the synchronous detection segment consists of a distributed pilot signal using nine carriers per symbol and a two-carrier carrier.
  • a pilot signal using a carrier an additional information transmission signal using a carrier of one carrier (hereinafter, referred to as a control information signal in this embodiment), and an information transmission signal using a carrier of 96 carriers. It consists of a transmission signal.
  • the differential detection segment is composed of a continuous pilot signal using a 6-carrier carrier, a control information signal using a 5-carrier carrier, and a 1-carrier carrier. It consists of the terminal pilot signal used and an information transmission signal using a 96-carrier carrier.
  • the carrier number k for the entire band is an integer from 0 to 144
  • the segment number i is an integer from 0 to 12
  • the distributed pilot signal provided in the segment for synchronous detection is placed on the carrier of the carrier number k 'in the segment according to equation (5), together with each segment.
  • mod represents the remainder operation
  • p is an integer from 0 to 8 inclusive.
  • the continuous pilot signals provided for the segment for synchronization and the segment for differential detection are within the respective segments shown in Table 2. Is placed on the carrier with carrier number k '. Table 2 shows that the continuous pilot signal of the segment for synchronous detection is included in the continuous pilot signal of the segment for differential detection. Table 2 Frequency arrangement of continuous pilot signal
  • a continuous pilot signal is always arranged on the carrier wave, so that it is easy for the receiving side to distinguish between a continuous pilot signal and other transmission signals.
  • carriers may be assigned so as not to be in a partial arrangement.
  • a continuous pilot signal that modulates the carrier with a specific phase and amplitude on a carrier with the same frequency for each symbol is a carrier used as a reference on the receiving side because the frequency, phase, and amplitude are specified. You can use it.
  • the terminating pilot signal provided in the differential detection segment is arranged on a carrier having a carrier number k 'of 0 in each segment.
  • the arrangement of the terminal pilot signal is a position that maintains the periodicity of the frequency arrangement of the distributed pilot signal in the adjacent synchronous detection segment.
  • Each terminal pilot signal complements the distributed pilot signal.
  • Figure 3 shows the arrangement of the continuous pilot signal and the control information signal, the arrangement of the distributed pilot signal in the segment for synchronous detection, and the termination pilot signal in the segment for differential detection.
  • the horizontal axis schematically represents the frequency axis (carrier arrangement), and the vertical axis represents the time axis (symbol direction).
  • the carrier number k 'in each segment is set to 0 and the integer of 107 is set, and one segment is composed of 108 carrier waves.
  • the continuous pilot signal and the control information signal are assigned to a different carrier from the dispersed pilot signal. These distributed pilot signals, continuous pilot signals, and terminal pilot signals are respectively assigned carrier numbers k.
  • Equation (6) R e ⁇ c k , n ⁇ represents the real part of the complex vector c kn corresponding to the carrier of carrier number k and symbol number n, and I m ⁇ ckn ⁇ represents the imaginary part.
  • control information signals provided for the synchronous detection segment and the differential detection segment are respectively the control information signals in each segment shown in Table 3. It is arranged on the carrier with the rear number k 'and transmits 1-bit control information for each symbol.
  • control information bits to be transmitted in symbol of the symbol number n When S n, the control information signal is obtained by modulating a carrier wave by Tsu by the (7) complex base-vector c k in the expression, n. That is, the carrier that transmits the control information signal is differentially binary PSK (Phase Shift Keying) modulated between symbols.
  • PSK Phase Shift Keying
  • the carrier for transmitting the control information is based on the above-mentioned PN sequence w k and the complex vector c k , Modulated by n .
  • Inverse modulation is performed using the complex vector, and the channel characteristics in the frequency domain related to the scattered pilot signal and the terminal pilot signal are estimated. Further, a filter is used to interpolate in the frequency direction and the symbol direction to estimate the transmission path characteristics of the information transmission signal.
  • the information transmission signal is divided by the transmission path characteristics obtained in this way. As a result, the information transmission signal can be demodulated from the synchronous detection segment.
  • the information transmission signal provided in the differential detection segment is distributed to the carrier signal other than the continuous pilot signal, the terminal pilot signal, and the control information signal of the differential detection segment described above. Then, based on the digital information, differential modulation is performed between adjacent symbols having the same carrier number.
  • differential modulation for example, DBPSK :, DQPSK, DAPSK, etc. are used.
  • the information transmission signal of the differential detection segment can be demodulated by being divided by the information transmission signal of the same carrier number as the previous symbol.
  • the OFDM transmission method provides high-quality reception by the effect of the filter in the synchronous detection segment and the differential detection segment in the receiving apparatus.
  • differential demodulation between symbols it is possible to perform reception suitable for mobile reception in which the transmission path characteristics change rapidly.
  • a flexible service configuration can be realized by arbitrarily combining the segment for synchronous detection and the segment for differential detection.
  • the frequency, phase, and amplitude are specified. This can be used as a reference carrier on the side.
  • Figures 4 and 5 show the synchronous detection segment (13 segment, 26 carrier) and differential detection segment (13 segment, 26 segment) shown in Table 2, respectively.
  • This figure shows an inverse Fourier transform pair of the frequency arrangement of a continuous pilot signal of 78 carriers). From FIGS. 4 and 5, it can be said that they are impulse-like and that the frequency arrangement of the continuous pilot signal shown in Table 2 has no periodicity.
  • the OFDM transmission method of the present embodiment can prevent the entire continuous pilot signal from disappearing due to a delay wave such as a multipath.
  • a delay wave such as a multipath.
  • the impulse response of the transmission path can be obtained. Note that the frequency allocation of the continuous pilot signal is strong against autocorrelation.
  • the OFDM transmission scheme according to the present embodiment can prevent the entire control information signal from disappearing due to a delay wave such as a multipath.
  • the frequency allocation of the additional information transmission signal including the control information signal can be set in the same manner.
  • FIG. 8 shows a configuration of an embodiment of a transmitting apparatus that generates an OFDM signal based on the OFDM transmission schemes of the first and second embodiments.
  • the information transmission signal generation circuit 51 performs error control processing (error correction coding, interleaving, energy diffusion, etc.) and digitization as necessary for the input digital information. Apply digital modulation.
  • error control processing error correction coding, interleaving, energy diffusion, etc.
  • digitization as necessary for the input digital information.
  • Apply digital modulation digital modulation.
  • the basic error control processing method and digital modulation method generally used in digital transmission are omitted because they are well-known technologies.
  • absolute phase modulation is performed as digital modulation.
  • absolute phase modulation for example, QPSK, 16QAM, 64QAM modulation, or the like is used.
  • differential modulation is performed between adjacent symbols having the same carrier number based on digital information.
  • DBPSK DQPS :, DAPSK, and the like are used.
  • the additional information signal generating circuit 52 performs error control processing (error correction coding, interleaving, energy spreading, etc.) and digital modulation on the input additional information as necessary.
  • error control processing error correction coding, interleaving, energy spreading, etc.
  • digital modulation M (M is a natural number of 2 or more) phase PSK (Phase Shift Keying) modulation or differential M-phase PSK modulation in the symbol direction is used.
  • the control information generation circuit 56 transmits the transmission mode information (the number of segments for synchronous detection, the number of segments for differential detection, the carrier modulation method, etc.) required on the receiving side. (Specified information). This information is subjected to error control processing and digital modulation in the additional information signal generation circuit 52. However, even if error control processing and digital modulation different from other additional information are performed, Good.
  • the termination pilot signal generation circuit 54 is provided with a carrier number k (segment number i and carrier number k in each segment) whose arrangement is defined by the carrier arrangement circuit 57.
  • the additional information signal generation circuit 52 modulates the carrier with the same phase and amplitude for each symbol for each carrier.
  • the carrier arrangement circuit 57 the information transmission signal generation circuit 51, the additional information signal generation circuit 52, the distributed pilot signal generation circuit 53, the termination pilot signal generation circuit 54, and the band termination
  • Each output (complex vector train) of the lot signal generation circuit 55 is arranged at a carrier position in the frequency domain defined according to the transmission mode.
  • the output of the distributed pilot signal generation circuit 53 is N (where N is a natural number of 2 or more) within the synchronous detection segment at carrier intervals and L (L is a divisor of N) for each symbol.
  • the output of the additional information signal generation circuit 52 is assigned according to, for example, the frequency arrangement shown in Table 1.
  • the vector train for each carrier in the base frequency band arranged in this way is input to the inverse free transform circuit 58.
  • the inverse Fourier transform circuit 58 converts the vector train for each carrier in the base frequency band generated by the carrier arranging circuit 57 from the frequency domain to the time domain, and uses a commonly used guardian. Output with an interpal period added.
  • a quadrature modulation circuit 59 performs quadrature modulation on the output of the inverse Fourier conversion circuit 58 and converts it to an intermediate frequency band.
  • the frequency conversion circuit 60 converts the frequency band of the orthogonally modulated OFDM signal from an intermediate frequency band to a radio frequency band, and supplies it to an antenna or the like.
  • an OFDM signal based on the OFDM transmission scheme described in the first and second embodiments is generated. Can be achieved.
  • FIG. 9 shows a receiving apparatus capable of receiving an OFDM signal formed based on the OFDM transmission schemes of the first and second embodiments and estimating an impulse response in a time domain of a transmission path. The configuration of is shown.
  • tuner 11 converts the frequency band of the received OFDM signal from a radio frequency band to a base frequency band.
  • the Fourier transform circuit 12 converts the OFDM signal in the base frequency band from the time domain to the frequency domain, and outputs it as a vector train for each carrier in the frequency domain.
  • the distributed Z-terminated pilot extraction circuit 13 outputs a distributed pilot signal, a necessary terminal pilot signal, and a band terminal pilot signal from the vector train output from the Fourier transform circuit 12. Extract the signal.
  • the vector generation circuit 14 is a modulation complex corresponding to the dispersed pilot signal, the terminated pilot signal, and the band terminated pilot signal extracted by the distributed Z-terminated pilot extracting circuit 13. Generates the vector c n .
  • the division circuit 15 converts the distributed pilot signal, the terminal pilot signal and the band terminal pilot signal extracted by the distributed terminal pilot extraction circuit 13 into a vector generation circuit 1. Divide by the complex vector in which 4 occurs to estimate the transmission path characteristics of the distributed pilot signal, the terminal pilot signal, and the band terminal pilot signal.
  • the interpolation circuit 16 applies the dispersion pilot signal, the termination pilot signal, and the band termination pilot signal obtained in the division circuit 15 to each other. By interpolating the transmission path characteristics, the transmission path characteristics of the carrier of the information transmission signal of the synchronous detection segment are estimated.
  • the delay circuit 17 delays the vector sequence output from the Fourier transform circuit 12 by one symbol.
  • the selection circuit 18 outputs the output of the interpolation circuit 16 in the case of the segment for synchronous detection and the segment for differential detection in accordance with the type of the segment separately transmitted by the control information. In this case, the output of the delay circuit 17 is selected and output.
  • the division circuit 19 divides the vector sequence output from the Fourier transform circuit 12 by the output of the selection circuit 18.
  • the signal is divided by the transmission path characteristic of the corresponding carrier estimated in the interpolation circuit 16 to perform synchronous detection, and in the differential detection segment, the delay circuit is used. Divide by the vector row of the corresponding carrier one symbol before 1 output by 17 to perform differential detection.
  • the demodulation circuit 20 is output from the division circuit 19 according to the modulation method (QPSK :, 16 QAM, 64 QAM, DBPSK :, DQPSK :, DAPSK, etc.) when generating the information transmission signal. Demodulated the detected signal to obtain the transmitted digital information.
  • the modulation method QPSK :, 16 QAM, 64 QAM, DBPSK :, DQPSK :, DAPSK, etc.
  • the continuous pilot extraction circuit 21 extracts a continuous pilot signal from the vector sequence output from the Fourier transform circuit 12. You. At this time, even if the synchronous detection segment and the differential detection segment are mixed, at least the continuous pilot signal of the synchronous detection segment must be mixed. Therefore, a continuous pilot signal can always be extracted.
  • the vector generation circuit 22 generates a modulation complex vector ck , n corresponding to the continuous pilot signal extracted by the continuous pilot extraction circuit 21.
  • the division circuit 23 divides the continuous pilot signal extracted by the continuous pilot extraction circuit 21 by a complex vector generated by the vector generation circuit 22 to obtain a continuous pilot signal. Estimate the transmission path characteristics of the lot signal.
  • the inverse Fourier transform circuit 24 converts the transmission path characteristic of the continuous pilot signal estimated by the division circuit 23 from the frequency domain to the time domain to obtain an impulse response characteristic of the transmission path. .
  • the filter effect by the interpolation processing of the transmission path characteristic is used.
  • the inverse Fourier transform circuit 24 it is possible to obtain an impulse response characteristic of the transmission line without turning back.
  • the orthogonal frequency division multiplexing transmission system of the present invention may include a differential detection segment suitable for mobile reception. it can.
  • the segment detection characteristics of adjacent segments for synchronous detection are not impaired.
  • the segment for synchronous detection and the segment for differential detection can be freely combined for each point, thereby realizing a flexible service form.
  • the impulse response characteristics of a transmission line that does not return in the symbol period are obtained as necessary using a continuous pilot signal in which the inverse Fourier transform pair of the frequency arrangement is impulse-like. You can do it.
  • a modulation scheme suitable for mobile reception is partially introduced into the modulation of a carrier wave for transmitting digital information while maintaining the overall transmission capacity.
  • An OFDM transmission system in which continuous pilot signals are arranged so that no aliasing occurs in the impulse response of the transmission path estimated from the lot signal, and a transmitter and receiver suitable for this system Can be provided.

Abstract

Received OFDM signals are transformed from a time domain into a frequency domain by Fourier transformation (12) to generate a vector sequence of each carrier wave in the frequency domain. Necessary dispersion pilot signals and termination pilot signals are extracted (13) from the vector sequence and divided (15) by a modulation complex vector to estimate transmission line characteristics relative to the dispersion/termination pilot signals, and the transmission line characteristics are interpolated (16) to estimate transmission line characteristics relative to the information transmission carrier wave of a synchronous detection segment. The vector sequence is delayed (17) by one symbol. The interpolation output is selected (18) in the case of the synchronous detection segment, and the delay output is selected (18) in the case of a differential detection segment. The vector sequence is divided (19) by the selected output, and the result is subjected to synchronous detection or differential detection and demodulated (20) to generate digital information. Thus, high quality demodulation and demodulation suitable for mobile reception are realized.

Description

明 細 書 直交周波数分割多重伝送方式と  Description Orthogonal frequency division multiplexing transmission
その送信装置及び受信装置 技術分野  TECHNICAL FIELD OF THE INVENTION
本発明は、 1 つのチャ ネルで固定受信及び移動受信に適 し た信号を混在 して伝送する 直交周波数分割多重伝送方式に関 する。 また、 該直交周波数分割多重方式に基づいて O F D M 信号を形成 し伝送する送信装置及び、 該直交周波数分割多重 方式に基づいて形成 され伝送 される O F D M信号を受信 し復 調する受信装置に関する。 背景技術  The present invention relates to an orthogonal frequency division multiplexing transmission system for transmitting signals suitable for fixed reception and mobile reception in one channel in a mixed manner. Further, the present invention relates to a transmitting apparatus for forming and transmitting an OFDM signal based on the orthogonal frequency division multiplexing method, and a receiving apparatus for receiving and demodulating an OFDM signal formed and transmitted based on the orthogonal frequency division multiplexing method. Background art
現在、 地上波 T V放送におけるディ ジタル放送方式と して 直交周波数分割多重 (以下、 O F D Mと い う ) 技術を用いた 伝送方式が検討されている。 こ の O F D M伝送方式は、 マル チキヤ リ ァ変調方式の一種であ り 、 シンボル毎に互いに直交 する周波数関係にある多数の搬送波に変調を施 してディ ジタ ル情報を伝送する。 こ の方式は、 前述の よ う にディ ジタル情 報を多数の搬送波に分割 して伝送するため、 1 つの搬送波を 変調するため の分割 されたディ ジタル情報のシ ンボル期間長 が長 く な り 、 マルチパスな どの遅延波の影響を受けに く ぃ特 質を有 している。  At present, a transmission system using orthogonal frequency division multiplexing (hereinafter referred to as OFDM) technology is being studied as a digital broadcasting system for terrestrial TV broadcasting. This OFDM transmission system is a kind of a multi-modulation modulation system, and transmits digital information by modulating a large number of carriers having a frequency relationship orthogonal to each other for each symbol. In this method, as described above, since digital information is divided into a large number of carriers and transmitted, the symbol period length of the divided digital information for modulating one carrier is increased. It is resistant to the effects of delayed waves such as multipath.
従来の O F D M伝送技術を用いた T V信号のディ ジタル放 送方式と して、 例えば欧州における D V B — T規格、 すなわ ち ETSI 300 744 (ETSI: European Telecommunications Standards Institute) 力 挙げられる。 Digital broadcasting of TV signals using conventional OFDM transmission technology As the transmission system, for example, the DVB-T standard in Europe, that is, the power of ETSI 300 744 (ETSI: European Telecommunications Standards Institute) is cited.
従来の O F D M伝送方式は、 例えば 2 k モー ド ( 2 k は、 O F D M信号を生成する際の高速フー リ ェ変換のサンプル数 力 S 2 0 4 8 を意味する) では、 全伝送帯域で 1 7 0 5 キヤ リ ァの搬送波を用い、 その う ち 1 4 2 キ ャ リ ア の搬送波を分散 パィ ロ ッ ト (Scattered Pilot) 信号に、 4 5 キ ャ リ ア の搬送 波を連続パィ ロ ッ ト (Continual Pilot) 信号に、 1 7 キ ヤ リ ァ の搬送波を制御情報 (TPS) 信号に、 1 5 1 2 キ ャ リ ア の搬 送波を情報伝送信号に用いる。  In the conventional OFDM transmission method, for example, in the 2 k mode (2 k means the number of samples of the fast Fourier transform when generating the OFDM signal, S 2 048), the entire transmission band is 17 k. 0 5 Carrier of carrier is used, of which 142 Carrier of carrier is used as dispersed pilot (Scattered Pilot) signal, and 45 carrier is used as continuous pilot. (Continual Pilot) signal, 17 carrier carrier is used for control information (TPS) signal, and 1512 carrier carrier is used for information transmission signal.
但 し、 4 5 キ ャ リ ア の搬送波の連続パイ ロ ッ ト信号の う ち 1 1 キヤ リ アの搬送波の連続パイ 口 ッ ト信号は分散パイ ロ ッ ト と 重複 して配置 されている。 また、 分散パイ ロ ッ ト信号は 1 つのシンボル内での周波数配置が 1 2 キャ リ ア周期に配置 され、 シンボル毎にその周波数配置が 3 キヤ リ ァずつシ フ ト して配置 されてお り 、 時間配置は 4 シンボル周期になっ てい る。  However, among the continuous pilot signals of the carrier of 45 carriers, the continuous pilot signal of the carrier of 11 carriers is arranged so as to overlap with the distributed pilot. Also, in the distributed pilot signal, the frequency arrangement within one symbol is arranged in 12 carrier periods, and the frequency arrangement is shifted by 3 carriers for each symbol. The time arrangement has a period of 4 symbols.
具体的には、 キ ャ リ ア番号 k を端から順に 0 から 1 7 0 4 、 フ レーム内のシンボル番号 n を 0 カゝ ら 6 7 とする と 、 分散パ ィ ロ ッ ト信号は ( 1 ) 式によ る キャ リ ア番号 k の搬送波に配 置 される。 ( 1 ) 式において、 mod は剰余演算を表わ し、 p は 0 以上 1 4 1 以下の整数である。  Specifically, if the carrier number k is 0 to 1704 in order from the end and the symbol number n in the frame is 0 to 67, the distributed pilot signal is (1 ) Is assigned to the carrier with carrier number k. In the equation (1), mod represents a modulo operation, and p is an integer from 0 to 141.
k =: 3 (n mod 4) + 12 p ( 1 ) 連続パイ ロ ッ ト信号は、 キャ リ ア番号 k = { 0 , 4 8 , 5 4, 8 7 , 1 4 1 , 1 5 6 , 1 9 2 , 2 0 1 , 2 5 5 , 2 7 9 , 2 8 2, 3 3 3, 4 3 2 , 4 5 0 , 4 8 3 , 5 2 5 , 5 3 1 , 6 1 8 , 6 3 6 , 7 1 4 , 7 5 9 , 7 6 5 , 7 8 0 ,k =: 3 (n mod 4) + 12 p (1) The continuous pilot signal is the carrier number k = {0, 48, 5 4, 8 7, 14 1, 15 6, 19 2, 21, 25 55, 27 9, 28 28, 33 33, 43 32, 45 50, 48 3, 5 2 5, 5 3 1, 6 18, 6 3 6, 7 1 4, 7 5 9, 7 6 5, 7 8 0,
8 0 4 , 8 7 3 , 8 8 8, 9 1 8, 9 3 9, 9 4 2 , 9 6 9 ,8 0 4, 8 7 3, 8 8 8, 9 1 8, 9 3 9, 9 4 2, 9 6 9,
9 8 4 , 1 0 5 0 , 1 1 0 1 , 1 1 0 7 , 1 1 1 0, 1 1 3 7, 1 1 4 0, 1 1 4 6 , 1 2 0 6 , 1 2 6 9 , 1 3 2 3 , 1 3 7 7, 1 4 9 1 , 1 6 8 3, 1 7 0 4 } の搬送波に配置 される 9 84, 1 0 5 0, 1 1 0 1, 1 1 1 0 7, 1 1 1 0, 1 1 3 7, 1 1 4 0, 1 1 4 6, 1 2 0 6, 1 2 6 9, 1 3 2 3, 1 3 7 7, 1 4 9 1, 1 6 8 3, 1 7 0 4}
これ ら の分散及び連続パイ ロ ッ ト信号は、 それぞれ配置 さ れる キャ リ ア番号 k に対応する Ρ Ν (擬似乱数) 系列 w k に 基づき 、 ( 2 ) 式に示す複素べク ト ル c kn によ っ て搬送波 を変調 して得られる。 ( 2 ) 式において、 R e { c n } は キ ヤ リ ァ番号 k 、 シ ンボル番号 n の搬送波に対応する複素べ ク ト ル c k, n の実数部を表わ し、 I m { c k, n } は虚数部を 表わす Based on the 及 び Ν (pseudo-random number) sequence w k corresponding to the carrier number k to be arranged, these scattered and continuous pilot signals are represented by complex vectors c k shown in equation (2). , N and modulate the carrier. (2) In the formula, R e {c n} is key Ya Li § number k, symbol number n complex base click preparative Le ck corresponding to the carrier of the real part of the n Represents Wa, I m {c k , n } represents the imaginary part
4 \ Four \
Re{ckn} = x2 Re {c k , n } = x2
( 2 ) lm{ck,n} = 0 また、 T P S (Transmission Parameter Signaling) と呼ば れる制御情報信号はキャ リ ア番号 k = { 3 4 , 5 0, 2 0 9 , 3 4 6 , 4 1 3, 5 6 9 , 5 9 5 , 6 8 8 , 7 9 0, 9 0 1 , 1 0 7 3, 1 2 1 9 , 1 2 6 2 , 1 2 8 6 , 1 4 6 9 , 1 5 9 4, 1 6 8 7 } の搬送波に配置され、 シンボル毎に 1 ビ ッ ト の制御情報を伝送する。 (2) lm {c k , n } = 0 In addition, the control information signal called TPS (Transmission Parameter Signaling) is the carrier number k = {34, 50, 209, 346, 41 3, 569, 595, 688, 790, 901, 1,073,12,19,12,62,12,86,14,69,15 4, 1 687 7}, and transmits one bit of control information for each symbol.
シンボル番号 n の シンボルで伝送する制御情報ビッ ト を S n とする と 、 制御情報信号は ( 3 ) 式に示す複素べク ト ル c k, n によ っ て搬送波を変調 して得 られる。 すなわち、 制御情報信 号を伝送する搬送波は、 シンボル間で差動 2値 P S K ( Phase Shift Keying) 変調される。 The control information bit transmitted by the symbol of symbol number n is S n Then, the control information signal is obtained by modulating the carrier with the complex vectors ck and n shown in equation (3). That is, the carrier that transmits the control information signal is differentially binary PSK (Phase Shift Keying) modulated between symbols.
Re{ck n} = Re{ck,n-1 Re {c kn } = Re { c k, n-1
s„ = o→  s „= o →
Im{ck,n} = 0  Im {ck, n} = 0
( 3 ) (3)
Re ck,n- Re c k, n-
{aし 、 フ レー ム の先頭シ ンボル (シ ンボル番号 n = 0 ) で は、 制御情報を伝送する搬送波は、 前述の P N系列 w k に基 づいて、 ( 4 ) 式に示す複素ベク トル c k n によ っ て変調 さ れる。 and {a, a full rate-time of the first symbol (symbol number n = 0), the carrier wave for transmitting control information, based on the PN sequence w k described above, the complex vector as shown in equation (4) Modulated by c kn .
Re{ck,o} = 2(--Wk Re { c k, o} = 2 (--W k
り ( 4 ) Im{ck.o} = 0 上記以外の情報伝送信号に用い られる 1 5 1 2 キャ リ アの 搬送波は、 ディ ジタル情報に基づいて、 Q P S K、 1 6 Q A M、 ま たは、 6 4 Q A M変調 される。 いずれの変調方法も絶 対位相変調である。 (4) I m {ck.o} = 0 The carrier of the 1512 carrier used for information transmission signals other than the above can be QPSK, 16 QAM, or 6 4 QAM modulated. Both modulation methods are absolute phase modulation.
こ の よ う に して生成 された O F D M信号を受信 してディ ジ タル情報を復調する従来の受信装置の一例を図 1 0 に示す。  FIG. 10 shows an example of a conventional receiving apparatus that receives the OFDM signal thus generated and demodulates digital information.
図 1 0 において、 受信 された O F D M信号はチュ ーナ 1 0 1 に よ って周波数変換され、 フー リ エ変換回路 1 0 2 に よ つ て時間一周波数変換 されて周波数領域の搬送波毎のべク ト ル 列 と なる。 こ のべク トル列は分散パイ ロ ッ ト抽出回路 1 0 3 及び連続パイ ロ ッ ト抽出回路 1 0 9 に供給される。 In FIG. 10, a received OFDM signal is frequency-converted by a tuner 101, time-frequency-converted by a Fourier transform circuit 102, and is subjected to a frequency-domain carrier-to-frequency conversion. Kutl Column. This vector sequence is supplied to the distributed pilot extraction circuit 103 and the continuous pilot extraction circuit 109.
分散パイ ロ ッ ト抽出回路 1 0 3 は、 フー リ エ変換回路 1 0 2 が出力するべク トル列から分散パイ ロ ッ ト信号を抽出する。 べク トル発生回路 1 0 4 は、 分散パイ ロ ッ ト抽出回路 1 0 3 で抽出 された分散パイ ロ ッ ト信号に対応する変調複素べク ト ル c k , n を発生する。 除算回路 1 0 5 は、 分散パイ ロ ッ ト抽 出回路 1 0 3 で抽出 された分散パイ ロ ッ ト信号をべク トル発 生回路 1 0 4 が発生する複素べク トルで除 して、 その除算結 果から分散パイ 口 ッ ト信号に係る伝送路特性を推定する。 The scattered pilot extracting circuit 103 extracts a scattered pilot signal from the vector sequence output from the Fourier transform circuit 102. The vector generation circuit 104 generates a modulation complex vector ck , n corresponding to the distributed pilot signal extracted by the distributed pilot extraction circuit 103. The division circuit 105 divides the distributed pilot signal extracted by the distributed pilot extraction circuit 103 by the complex vector generated by the vector generation circuit 104, From the result of the division, the transmission path characteristics of the distributed pilot signal are estimated.
補間回路 1 0 6 は、 除算回路 1 0 5 で得 られた分散パイ 口 ッ ト信号に係る伝送路特性を補間 して、 全ての搬送波にかか る伝送路特性を推定する。 除算回路 1 0 7 は、 フー リ エ変換 回路 1 0 2 が出力するべク トル列をそれぞれ対応する搬送波 にかかる補間回路 1 0 6 で推定された伝送路特性で除 して同 期検波する。 復調回路 1 0 8 は、 情報伝送信号を生成する際 の変調方法 ( Q P S K 、 1 6 Q A M、 6 4 Q A M等) に従つ て除算回路 1 0 7 が出力する 同期検波信号を復調 し、 伝送 さ れたディ ジタル情報を得る。  The interpolation circuit 106 interpolates the transmission line characteristics of the distributed pilot signal obtained by the division circuit 105 to estimate the transmission line characteristics of all the carrier waves. The divider circuit 107 performs synchronous detection by dividing the vector sequence output from the Fourier transform circuit 102 by the transmission path characteristics estimated by the interpolator 106 on the corresponding carrier. The demodulation circuit 108 demodulates the synchronous detection signal output from the division circuit 107 according to the modulation method (QPSK, 16 QAM, 64 QAM, etc.) when generating the information transmission signal, and transmits the demodulated signal. Obtained digital information.
また、 連続パイ ロ ッ ト抽出回路 1 0 9 は、 フー リ エ変換回 路 1 0 2 が出力するべク トル列カゝ ら連続パイ ロ ッ ト信号を抽 出する。 べク トル発生回路 1 1 0 は、 連続パイ ロ ッ ト抽出回 路 1 0 9 で抽出 された連続パイ ロ ッ ト信号に対応する変調複 素べク トル c kn を発生する。 除算回路 1 1 1 は、 連続パイ ロ ッ ト抽出回路 1 0 9 で抽出 された連続パイ ロ ッ ト信号をべ ク トル発生回路 1 1 0 が発生する複素べク ト ルで除 して連続 パイ ロ ッ ト信号にかかる伝送路特性を推定する。 逆フー リ エ 変換回路 1 1 2 は、 除算回路 1 1 1 で推定 された連続パイ 口 ッ ト信号に係る伝送路特性を周波数一時間変換 して伝送路の ィ ンパルス応答特性を得る。 発明の開示 Further, the continuous pilot extraction circuit 109 extracts a continuous pilot signal from the vector train output from the Fourier transform circuit 102. The vector generation circuit 110 generates the modulation complex vectors ck and n corresponding to the continuous pilot signals extracted by the continuous pilot extraction circuit 109. The division circuit 111 outputs the continuous pilot signal extracted by the continuous pilot extraction circuit 109. Divide by the complex vector generated by the vector generation circuit 110 to estimate the transmission path characteristics of the continuous pilot signal. The inverse Fourier transform circuit 112 converts the transmission path characteristic of the continuous pilot signal estimated by the division circuit 111 into frequency-to-hour conversion to obtain an impulse response characteristic of the transmission path. Disclosure of the invention
しカゝ しなが ら 、 従来の O F D M伝送方式は、 ディ ジタル情 報を伝送する搬送波の変調に Q P S K、 1 6 Q A M、 6 4 Q A M等によ る絶対位相変調が施 されてお り 、 その復調に時間 的に疎 らな分散パイ 口 ッ ト か ら推定される伝送路特性を平滑 し補間 して得 られた伝送路特性を用いる こ と を前提と してい る ため、 フ エ一ディ ング等に よっ て伝送路特性の変化が速い 移動受信では十分な伝送品質が得られない場合がある。  However, in the conventional OFDM transmission method, a carrier for transmitting digital information is modulated by QPSK, 16 QAM, 64 QAM, etc., and the absolute phase modulation is performed. Since demodulation is based on the assumption that the transmission path characteristics estimated from the sparsely distributed distribution ports are smoothed and interpolated, the transmission path characteristics are used. Due to such factors, there are cases where sufficient transmission quality cannot be obtained with mobile reception in which the transmission path characteristics change rapidly.
さ ら に、 従来の O F D M伝送方式では帯域全体で各搬送波 の変調方式が 1 つに決め られている ため、 一部のディ ジタル 情報を移動 しなが ら受信でき る よ う に、 ディ ジタル情報を伝 送する搬送波の変調に移動受信に適 した例えば差動 Q P S K 変調を導入 した と して も 、 全体の伝送容量が少な く なつ て効 率が悪く なる。  In addition, in the conventional OFDM transmission method, since the modulation method of each carrier is determined to be one in the entire band, the digital information is transmitted so that some of the digital information can be received while moving. Even if, for example, differential QPSK modulation suitable for mobile reception is introduced into the modulation of the carrier transmitting the signal, the overall transmission capacity is reduced and the efficiency is reduced.
また、 連続パイ 口 ッ ト信号が所定のキヤ リ ァ間隔 Aの搬送 波の う ちのいずれかに配置 されて レヽるため、 連続パイ 口 ッ ト 信号か ら推定でき る伝送路のィ ンパルス応答特性に有効シン ボル期間長 (搬送波の最小周波数間隔の逆数) の A分の 1 の 折 り 返しを生 じる。 そ こ で、 本発明は、 上記の課題を解決 し、 全体の伝送容量 を維持 しつつディ ジタル情報を伝送する搬送波の変調に部分 的に移動受信に適 した変調方式を導入 し、 また、 連続パイ 口 ッ ト信号か ら推定される伝送路のイ ンパルス応答に折 り 返 し が生 じない よ う に連続パイ 口 ッ ト信号を配置 した O F D M伝 送方式と 本方式に適する送信装置、 受信装置を提供する こ と を 目 的とする。 In addition, since the continuous pilot signal is located on one of the carrier waves at a predetermined carrier interval A, the impulse response characteristics of the transmission path can be estimated from the continuous pilot signal. Then, the effective symbol period length (reciprocal of the minimum frequency interval of the carrier wave) is folded back by 1 / A. Therefore, the present invention solves the above-mentioned problems, and introduces a modulation method partially suitable for mobile reception for modulation of a carrier for transmitting digital information while maintaining the entire transmission capacity. An OFDM transmission system in which continuous pilot signals are arranged so that the impulse response of the transmission path estimated from the pilot signals does not return, and a transmitter and receiver suitable for this method The purpose is to provide equipment.
上記の課題を解決する ために、 本発明に係る O F D M伝送 方式は以下のよ う に構成される。  In order to solve the above problem, an OFDM transmission system according to the present invention is configured as follows.
( 1 ) シ ンボル周期毎に互いに直交する周波数関係にある 複数の搬送波に変調を施 してディ ジタル情報を伝送する O F D M伝送方式において、  (1) In an OFDM transmission system in which digital information is transmitted by modulating a plurality of carriers having a frequency relationship orthogonal to each other for each symbol period,
前記複数の搬送波の う ち、 所定数の搬送波を 1 単位 と して 1 つ以上のセ グメ ン ト に割当 て、 1 つ以上の搬送波を帯域終 端パイ ロ ッ ト信号に割当 て、 前記 1 つ以上のセ グメ ン ト をセ グメ ン ト毎にそれぞれ同期検波用または差動検波用のいずれ か一方と して用いる方式であって、  Among the plurality of carriers, a predetermined number of carriers are assigned as one unit to one or more segments, and one or more carriers are assigned to a band end pilot signal, A method in which one or more segments are used as either synchronous detection or differential detection for each segment, and
前記同期検波用セ グメ ン ト では、 シ ンポル時間及び周波数 が周期的に分散 した搬送波に当該搬送波を特定の位相及び振 幅で変調する分散パイ ロ ッ ト信号を配 し、 毎シンボルと も 同 じ周波数の搬送波に当該搬送波を付加情報に従っ て M ( Mは 2 以上の 自然数) 相位相シ フ ト キーイ ン グ ( M相 P S K ) あ る いはシンボル方向での差動 M相位相シ フ ト キーィ ングによ り 変調する付加情報伝送信号を配 し、 上記以外の搬送波に当 該搬送波を前記ディ ジタル情報に従っ て変調する情報伝送信 号を配し、 In the synchronous detection segment, a distributed pilot signal that modulates a carrier with a specific phase and amplitude is arranged on a carrier whose symbol time and frequency are periodically dispersed, and the same is applied to each symbol. M (M is a natural number of 2 or more) phase shift keying (M phase PSK) or differential M phase shift in the symbol direction according to the additional information. An additional information transmission signal to be modulated by keying is arranged, and an information transmission and transmission is performed on a carrier other than the above in accordance with the digital information. Issue an issue
前記差動検波用セ グメ ン ト では、 毎シンボルと も 同 じ周波 数の搬送波に当該搬送波を付加情報に従っ て M相位相シ フ ト キ一ィ ングあるいはシンボル方向での差動 M相位相シ フ ト キ 一イ ングによ り 変調する付加情報伝送信号を配 し、 隣接する 同期検波用セ グメ ン トの前記分散パイ 口 ッ ト信号の周波数配 置の周期性を満たす周波数の搬送波に当該搬送波を特定の位 相及び振幅で変調する終端パイ ロ ッ ト信号を配 し、 上記以外 の搬送波に当該搬送波を前記ディ ジタル情報に従って変調す る情報伝送信号を配し、  In the differential detection segment, the M-phase shift keying or the differential M-phase phase in the symbol direction is applied to the carrier having the same frequency for each symbol according to the additional information. An additional information transmission signal to be modulated by shift keying is provided, and a carrier having a frequency that satisfies the periodicity of the frequency arrangement of the distributed pilot signal of the adjacent synchronous detection segment is provided. A terminal pilot signal for modulating the carrier at a specific phase and amplitude is arranged, and an information transmission signal for modulating the carrier according to the digital information is arranged for a carrier other than the above.
前記帯域終端パイ ロ ッ ト信号を、 前記同期検波用セ グメ ン ト における 前記分散パイ ロ ッ ト信号の周波数配置の周期性を 満たす周波数でかつ伝送周波数帯域端の搬送波に配 して、 当 該搬送波を特定の位相及び振幅で変調する よ う に した。  Allocating the band-end pilot signal to a carrier at a frequency that satisfies the periodicity of the frequency arrangement of the distributed pilot signal in the synchronous detection segment and at the end of a transmission frequency band; The carrier is modulated with a specific phase and amplitude.
( 2 ) シンボル周期毎に互いに直交する周波数関係にある 複数の搬送波に変調を施 してディ ジタル情報を伝送する O F D M伝送方式において、  (2) In the OFDM transmission system in which digital information is transmitted by modulating a plurality of carriers having a frequency relationship orthogonal to each other for each symbol period,
前記複数の搬送波の う ち、 所定数の搬送波を 1 単位 と して 1 つ以上のセ グメ ン ト に割当 て、 1 つ以上の搬送波を帯域終 端パイ ロ ッ ト信号に割当 て、 前記 1 つ以上のセ グメ ン ト をセ グメ ン ト毎にそれぞれ同期検波用ま たは差動検波用のいずれ か一方と して用いる方式であって、  Among the plurality of carriers, a predetermined number of carriers are assigned as one unit to one or more segments, and one or more carriers are assigned to a band end pilot signal, A method in which one or more segments are used as either synchronous detection or differential detection for each segment, and
前記同期検波用セ グメ ン ト では、 シ ンボル時間及び周波数 が周期的に分散 した搬送波に当該搬送波を特定の位相及び振 幅で変調する 分散パイ ロ ッ ト信号を配 し、 毎シンボルと も 同 じ周波数の搬送波に当該搬送波を特定の位相及び振幅で変調 する連続パイ ロ ッ ト信号を配 し、 毎シンボルと も 同 じ周波数 の搬送波に当該搬送波を付加情報に従っ て M相位相シフ ト キ ーィ ングある いはシンボル方向での差動 M相位相シフ ト キ一 イ ングによ り 変調する付加情報伝送信号を配 し、 上記以外の 搬送波に当該搬送波を前記ディ ジタ ル情報に従っ て変調する 情報伝送信号を配 し、 In the synchronous detection segment, a distributed pilot signal that modulates a carrier with a specific phase and amplitude is arranged on a carrier whose symbol time and frequency are periodically dispersed, and the same for each symbol. A continuous pilot signal that modulates the carrier with a specific phase and amplitude is arranged on the carrier of the same frequency, and the M-phase shift key is applied to the carrier of the same frequency for each symbol according to the additional information. An additional information transmission signal to be modulated by differential or M-phase shift keying in the symbol direction or in the symbol direction is arranged, and the carrier is applied to a carrier other than the above according to the digital information. Arrange the information transmission signal to be modulated,
前記差動検波用セ グメ ン ト では、 毎シンボルと も 同 じ周波 数の搬送波に当該搬送波を特定の位相及び振幅で変調する連 続パイ ロ ッ ト信号を配 し、 毎シンボルと も 同 じ周波数の搬送 波に当該搬送波を付加情報に従っ て M相位相シ フ ト キ一イ ン グある いはシ ンボル方向での差動 M相位相シフ ト キ一ィ ング によ り 変調する付加情報伝送信号を配 し、 隣接する 同期検波 用セ グメ ン ト の前記分散パイ 口 ッ ト の周波数配置の周期性を 満たす周波数の搬送波に当該搬送波を特定の位相及び振幅で 変調する終端パイ ロ ッ ト信号を配 し、 上記以外の搬送波に当 該搬送波を前記ディ ジタル情報に従って変調する情報伝送信 号を配し、  In the differential detection segment, a continuous pilot signal that modulates the carrier with a specific phase and amplitude is arranged on a carrier having the same frequency as each symbol, and the same is applied to each symbol. Additional information that modulates the carrier by using the M-phase shift keying or the differential M-phase shift key in the symbol direction according to the additional information. A terminal pilot that distributes a transmission signal and modulates the carrier with a specific phase and amplitude on a carrier having a frequency that satisfies the periodicity of the frequency arrangement of the dispersion pilot port of the adjacent synchronous detection segment. A signal, and an information transmission signal for modulating the carrier in accordance with the digital information on a carrier other than the above.
前記帯域終端パイ ロ ッ ト信号を、 前記同期検波用セ グメ ン ト における前記分散パイ ロ ッ ト信号の周波数配置の周期性を 満たす周波数でかつ伝送周波数帯域端の搬送波に配 して、 当 該搬送波を特定の位相及び振幅で変調する よ う に した。  Allocating the band-end pilot signal to a carrier at a frequency that satisfies the periodicity of the frequency arrangement of the distributed pilot signal in the synchronous detection segment and a carrier at the end of a transmission frequency band; The carrier is modulated with a specific phase and amplitude.
( 3 ) ( 1 ) ま たは ( 2 ) の構成において、 前記同期検波 用セ グメ ン ト 内の前記付加情報伝送信号の周波数配置 と 、 前 記差動検波用セグメ ン ト 内の前記付加情報伝送信号の周波数 配置は、 一部共通の配置とする。 (3) In the configuration of (1) or (2), the frequency arrangement of the additional information transmission signal in the synchronous detection segment and the additional information in the differential detection segment described above. Transmission signal frequency The layout is partly common.
( 4 ) ( 1 ) または ( 2 ) の構成において、 前記同期検波 用セ グメ ン ト では、 前記付加情報伝送信号の周波数配置を、 前記差動検波用セ グメ ン ト の前記付加情報伝送信号の周波数 配置の一部 とする。  (4) In the configuration of (1) or (2), in the synchronous detection segment, the frequency arrangement of the additional information transmission signal is determined by changing the frequency arrangement of the additional information transmission signal in the differential detection segment. It is part of the frequency allocation.
( 5 ) ( 2 ) の構成において、 前記同期検波用セ グメ ン ト 内の前記連続パイ ロ ッ ト信号の周波数配置 と 、 前記差動検波 用セ グメ ン ト 内の前記連続パイ 口 ッ ト信号の周波数配置は、 一部共通の配置とする。  (5) In the configuration of (2), the frequency arrangement of the continuous pilot signal in the synchronous detection segment, and the continuous pilot signal in the differential detection segment The frequency allocation is partially common.
( 6 ) ( 2 ) の構成において、 前記同期検波用セ グメ ン ト では、 前記連続パイ ロ ッ ト信号の周波数配置を、 前記差動検 波用セ グメ ン トの前記連続パイ 口 ッ ト信号の周波数配置の一 部 とする。  (6) In the configuration of (2), in the synchronous detection segment, the frequency arrangement of the continuous pilot signal is changed by changing the frequency of the continuous pilot signal to the continuous pilot signal of the differential detection segment. It is part of the frequency allocation of.
( 7 ) ( 1 ) 〜 ( 6 ) のいずれかの構成において、 前記付 加情報には、 制御情報を含む。  (7) In any one of the constitutions (1) to (6), the additional information includes control information.
( 8 ) ( 7 ) の構成において、 前記制御情報はシンボル方 向での差動 2 相位相シフ ト キ一イ ング ( D B P S K ) に よ り 伝送する。  (8) In the configuration of (7), the control information is transmitted by differential two-phase shift keying (DBPSK) in the symbol direction.
( 9 ) ( 7 ) の構成において、 前記同期検波用セ グメ ン ト 内の前記制御情報の周波数配置 と 、 前記差動検波用セ グメ ン ト 内の前記制御情報の周波数配置は、 一部共通の配置とする。  (9) In the configuration of (7), the frequency arrangement of the control information in the synchronous detection segment and the frequency arrangement of the control information in the differential detection segment are partially common. Arrangement.
( 1 0 ) ( 7 ) の構成において、 前記同期検波用セ グメ ン ト では、 前記制御情報の周波数配置を、 前記差動検波用セ グ メ ン 卜の前記制御情報の周波数配置の一部とする。  (10) In the configuration of (7), in the synchronous detection segment, a frequency allocation of the control information is a part of a frequency allocation of the control information of the differential detection segment. I do.
( 1 1 ) ( 1 ) 〜 ( 1 0 ) のいずれかの構成において、 前 記同期検波用セ グメ ン ト では、 搬送波数を N ( Nは 2 以上の 自 然数) の倍数と し、 前記分散パイ ロ ッ ト信号を Nキャ リ ア 間隔でかつシンボル毎に L ( L は Nの約数) キャ リ アずつシ フ ト させた搬送波に配する。 (1 1) In any one of (1) to (10), In the synchronous detection segment, the number of carriers is set to a multiple of N (N is a natural number of 2 or more), and the distributed pilot signal is set to L (L Is a divisor of N). Allocate to carriers shifted by carriers.
( 1 2 ) ( 1 ) 〜 ( 1 1 ) のいずれかの構成において、 前 記同期検波用及び差動検波用セグメ ン ト では、 それぞれの前 記付加情報伝送信号を、 当該付加情報伝送信号の周波数配置 の逆フー リ ェ変換対がィ ンパルス状になる よ う な周波数の搬 送波に配する。  (12) In any of the configurations of (1) to (11), in the synchronous detection and differential detection segments, each of the additional information transmission signals is The inverse Fourier transform pair in the frequency arrangement is arranged on a carrier wave with a frequency such that it becomes an impulse.
( 1 3 ) ( 2 ) の構成において、 前記同期検波用及び差動 検波用セグメ ン ト では、 それぞれの前記連続パイ 口 ッ ト信号 を、 当該連続パイ 口 ッ ト信号の周波数配置の逆フー リ エ変換 対がィ ンパルス状になる よ う な周波数の搬送波に配する。  (13) In the configuration of (2), in the segment for synchronous detection and the segment for differential detection, each of the continuous pilot signals is converted into an inverse Fourier of the frequency arrangement of the continuous pilot signals. D) The transform pair is allocated to a carrier wave with a frequency that makes it impulse-shaped.
( 1 4 ) ( 2 ) の構成において、 前記同期検波用及び差動 検波用セグメ ン ト では、 それぞれ前記付加情報伝送信号及び 連続パイ ロ ッ ト信号を、 当該付加情報伝送信号及び連続パィ 口 ッ ト信号と の両者を合せた周波数配置の逆フー リ エ変換対 がィ ンパルス状になる よ う な周波数の搬送波に配する。  (14) In the configuration of (2), in the synchronous detection and differential detection segments, the additional information transmission signal and the continuous pilot signal are respectively transmitted to the additional information transmission signal and the continuous pipe port. The inverse Fourier transform pair in the frequency arrangement combining the two signals is arranged on a carrier wave with a frequency such that it becomes an impulse.
( 1 5 ) ( 1 ) 〜 ( 1 4 ) のいずれかの構成において、 前 記同期検波用セグメ ン ト と 前記差動検波用セグメ ン ト では同 一本数のキヤ リ ァを用いる。  (15) In any one of the constitutions (1) to (14), the same number of carriers are used in the synchronous detection segment and the differential detection segment.
( 1 6 ) ( 1 ) 〜 ( 1 5 ) のいずれかの構成において、 前 記終端パイ 口 ッ ト信号は前記差動検波用セ グメ ン ト の帯域端 の搬送波のみに配置する。  (16) In any one of the constitutions (1) to (15), the above-mentioned terminal pilot signal is arranged only on the carrier at the band end of the differential detection segment.
( 1 7 ) ( 1 ) の構成において、 1 3 個のセグメ ン ト と 1 キャ リ アの搬送波を用いた帯域終端パイ ロ ッ ト か らな り 、 1 個のセ グメ ン ト は 1 0 8 キャ リ アの搬送波で構成 され、 帯域 全体では 1 4 0 5 キヤ リ アの搬送波が用い られ、 (17) In the configuration of (1), 13 segments and 1 It consists of a band-terminating pilot using the carrier of the carrier, and one segment is composed of 108 carrier carriers, and the entire band has 1405 carrier carriers. A carrier is used,
前記同期検波用セ グメ ン ト が、 1 シンボルあた り 9 キヤ リ ァの搬送波を用いた分散パイ ロ ッ ト信号と 、 3 キャ リ アの搬 送波を用いた付加情報伝送信号と 、 9 6 キャ リ アの搬送波を 用いた情報伝送信号と から構成され、  The segment for synchronous detection is a distributed pilot signal using a carrier of 9 carriers per symbol, an additional information transmission signal using a carrier of 3 carriers, and 9 And an information transmission signal using a 6-carrier carrier.
前記差動検波用セ グメ ン ト が、 1 1 キャ リ アの搬送波を用 いた付加情報信号と 、 1 キャ リ アの搬送波を用いた終端パィ 口 ッ ト信号と 、 9 6 キヤ リ ア の搬送波を用いた情報伝送信号 と カゝ ら構成される よ う にする。  The differential detection segment comprises: an additional information signal using a 11-carrier carrier; a termination packet signal using a 1-carrier carrier; and a 96-carrier carrier. And an information transmission signal using the same.
( 1 8 ) ( 2 ) の構成において、 1 3 個のセ グメ ン ト と 1 キヤ リ アの搬送波を用いた帯域終端パイ 口 ッ ト か らな り 、 1 個のセ グメ ン ト は 1 0 8 キ ャ リ アの搬送波で構成 され、 帯域 全体では 1 4 0 5 キヤ リ アの搬送波が用い られ、  (18) In the configuration of (2), there are 13 segments and a band termination pilot using one carrier, and one segment is 10 It consists of 8 carrier carriers, and the entire band uses 1405 carrier carriers.
前記同期検波用セ グメ ン ト が、 1 シンボルあた り 9 キ ヤ リ ァの搬送波を用いた分散パイ ロ ッ ト信号と 、 1 キャ リ アの搬 送波を用いた付加情報伝送信号と 、 2 キャ リ アの搬送波を用 いた連続パイ 口 ッ ト信号と 、 9 6 キヤ リ アの搬送波を用いた 情報伝送信号と から構成され、  The synchronous detection segment includes a distributed pilot signal using 9 carriers per symbol, and an additional information transmission signal using 1 carrier. It consists of a continuous pilot signal using two carrier waves and an information transmission signal using 96 carrier waves.
前記差動検波用セ グメ ン ト が、 5 キャ リ アの搬送波を用い た付加情報信号と 、 6 キヤ リ アの搬送波を用いた連続パイ 口 ッ ト信号と 、 1 キ ヤ リ アの搬送波を用いた終端パイ ロ ッ ト信 号と 、 9 6 キャ リ アの搬送波を用いた情報伝送信号と か ら構 成される よ う にする。 また、 本発明 に係わる送信装置は、 以下の よ う に構成 され る。 The differential detection segment comprises an additional information signal using a 5-carrier carrier, a continuous pilot signal using a 6-carrier carrier, and a 1-carrier carrier. The terminal pilot signal used is composed of an information transmission signal using a 96-carrier carrier. Further, the transmitting device according to the present invention is configured as follows.
( 1 9 ) ( 1 ) 〜 ( 1 8 ) のいずれかの直交周波数分割多 重伝送方式によ り O F D M信号を生成する装置を具備する。  (19) An apparatus for generating an OFDM signal by the orthogonal frequency division multiplex transmission method according to any one of (1) to (18) is provided.
( 2 0 ) ( 1 ) の直交周波数分割多重伝送方式に よ り O F D M信号を生成する送信装置であって、  (20) A transmitting apparatus for generating an OFDM signal by the orthogonal frequency division multiplexing transmission method according to (1),
前記複数の搬送波の う ち、 所定数の搬送波を 1 単位と して 1 つ以上のセ グメ ン ト に割当て、 1 つ以上の搬送波を帯域終 端パイ ロ ッ ト信号に割当 て、 前記 1 つ以上のセ グメ ン ト をセ グメ ン ト毎にそれぞれ同期検波用ま たは差動検波用のいずれ か一方に割 り 当てる配列手段と 、  Among the plurality of carriers, a predetermined number of carriers are assigned as one unit to one or more segments, and one or more carriers are assigned to a band end pilot signal, and the one An array means for allocating the above segments to either synchronous detection or differential detection for each segment,
前記分散パイ ロ ッ ト信号、 前記付加情報伝送信号、 前記情 報伝送信号、 前記終端パイ ロ ッ ト信号、 前記帯域終端パィ 口 ッ ト信号をそれぞれ生成する信号生成手段と を具備 し、  Signal generating means for generating the distributed pilot signal, the additional information transmission signal, the information transmission signal, the terminal pilot signal, and the band terminal pilot signal, respectively.
前記配列手段では、 前記帯域終端パイ ロ ッ ト信号を前記同 期検波用セ グメ ン ト における前記分散パイ 口 ッ ト信号の周波 数配置の周期性を満たす周波数でかつ伝送周波数帯域端の搬 送波に配 し、 前記同期検波用セ グメ ン ト については、 前記分 散パイ 口 ッ ト信号をシンポル時間及び周波数が周期的に分散 した搬送波に配 し、 前記付加情報伝送信号を毎シンボル と も 同 じ周波数の搬送波に配 し、 前記情報伝送信号を上記以外の 搬送波に配 し、 前記差動検波用セ グメ ン ト については、 前記 付加情報伝送信号を毎シ ンボル と も 同 じ周波数の搬送波に配 し、 前記終端パイ ロ ッ ト信号を隣接する 同期検波用セ グメ ン トの前記分散パイ 口 ッ ト信号の周波数配置の周期性を満たす 周波数の搬送波に配する よ う に した。 In the arranging means, the band-end pilot signal is transmitted at a frequency satisfying the periodicity of the frequency arrangement of the distributed pilot signal in the synchronous detection segment and at the end of a transmission frequency band. For the synchronous detection segment, the distributed pilot signal is distributed to a carrier wave whose symbol time and frequency are periodically dispersed, and the additional information transmission signal is also transmitted to each symbol. The information transmission signal is arranged on a carrier having the same frequency, the information transmission signal is arranged on a carrier other than the above, and for the differential detection segment, the additional information transmission signal is arranged on a carrier having the same frequency as each symbol. And the terminal pilot signal satisfies the periodicity of the frequency arrangement of the distributed pilot signal in the adjacent synchronous detection segment. It is arranged on the carrier wave of the frequency.
( 2 1 ) ( 2 ) の直交周波数分割多重伝送方式に よ り O F D M信号を生成する送信装置であって、  (2 1) A transmitting apparatus for generating an OFDM signal by the orthogonal frequency division multiplexing transmission method of (2),
前記複数の搬送波の う ち、 所定数の搬送波を 1 単位 と して 1 つ以上のセ グメ ン ト に割当 て、 1 つ以上の搬送波を帯域終 端パイ ロ ッ ト信号に割当て、 前記 1 つ以上のセ グメ ン ト をセ グメ ン ト毎にそれぞれ同期検波用ま たは差動検波用のいずれ か一方に割 り 当てる配列手段と 、  Of the plurality of carriers, a predetermined number of carriers are assigned as one unit to one or more segments, and one or more carriers are assigned to a band end pilot signal, and the one An array means for allocating the above segments to either synchronous detection or differential detection for each segment,
前記分散パイ ロ ッ ト信号、 前記付加情報伝送信号、 前記 ' Iト虫 m 報伝送信号、 前記終端パイ ロ ッ ト信号、 前記帯域終端パィ 口 ッ ト信号、 前記連続パイ ロ ッ ト信号を生成する信号生成手段 と を具備 し、  Generates the distributed pilot signal, the additional information transmission signal, the 'I'm bug information transmission signal, the end pilot signal, the band end pilot signal, and the continuous pilot signal. And signal generating means for
前記配列手段では、 前記帯域終端パイ ロ ッ ト信号を前記同 期検波用セ グメ ン ト における前記分散パイ ロ ッ ト信号の周波 数配置の周期性を満たす周波数でかつ伝送周波数帯域端の搬 送波に配 し、 前記同期検波用セ グメ ン ト については、 前記分 散パイ ロ ッ ト信号をシンポル時間及び周波数が周期的に分散 した搬送波に配し、 前記連続パイ 口 ッ ト信号を毎シンボルと も 同 じ周波数の搬送波に配 し、 前記付加情報伝送信号を毎シ ンボルと も 同 じ周波数の搬送波に配 し、 前記情報伝送信号を 上記以外の搬送波に配 し、 前記差動検波用セ グメ ン ト につい ては、 前記連続パイ ロ ッ ト信号を毎シンボルと も 同 じ周波数 の搬送波に配 し、 前記付加情報伝送信号を毎シンボル と も 同 じ周波数の搬送波に配 し、 前記終端パイ ロ ッ ト信号を隣接す る 同期検波用セグメ ン ト の前記分散パイ 口 ッ ト信号の周波数 配置の周期性を満たす周波数の搬送波に配する よ う に した。 また、 本発明に係わる受信装置は、 以下のよ う に構成され る。 In the arranging means, the band-end pilot signal is transmitted at a frequency satisfying the periodicity of the frequency arrangement of the distributed pilot signal in the synchronous detection segment and at a transmission frequency band end. For the synchronous detection segment, the dispersed pilot signal is disposed on a carrier wave whose periodicity and frequency are periodically dispersed, and the continuous pilot signal is transmitted every symbol. Are arranged on a carrier having the same frequency, the additional information transmission signal is arranged on a carrier having the same frequency as each symbol, and the information transmission signal is arranged on a carrier other than the above, and the differential detection cell is arranged. As for the gradient, the continuous pilot signal is arranged on a carrier having the same frequency as each symbol, and the additional information transmission signal is arranged on a carrier having the same frequency as each symbol. Frequency pie Lock preparative signal the dispersion pi port Tsu DOO signal synchronous detection segmenting preparative you adjacent It is arranged on the carrier wave of the frequency that satisfies the periodicity of arrangement. Further, the receiving device according to the present invention is configured as follows.
( 2 2 ) ( 1 ) 〜 ( : 1 8 ) のいずれかの O F D M伝送方式 によ り 生成される O F D M信号を受信 し復調する装置を具備 する。  (22) An apparatus for receiving and demodulating an OFDM signal generated by any of the OFDM transmission methods according to any one of (1) to (: 18) is provided.
( 2 3 ) ( 1 ) 〜 ( 1 8 ) のいずれかの O F D M伝送方式 によ り 生成される O F D M信号を受信 し復調する受信装置で めっ てヽ  (23) A receiving device that receives and demodulates the OFDM signal generated by the OFDM transmission method according to any one of (1) to (18).
前記受信 O F D M信号をフー リ エ変換によ り 時間領域から 周波数領域の信号に変換する こ と によって前記搬送波毎の位 相と振幅を表わすべク トル列を得る フー リ エ変換手段と、  Fourier transform means for converting the received OFDM signal from a time domain to a frequency domain signal by Fourier transform to obtain a vector sequence representing a phase and an amplitude for each of the carrier waves;
こ の手段で得られるべク ト ル列から前記分散パイ ロ ッ ト信 号及び前記終端パイ 口 ッ ト信号及び前記帯域終端パイ 口 ッ ト 信号に相対する搬送波のべク トル群を抽出する第 1 の抽出手 段と、  A vector group for extracting a carrier wave group corresponding to the distributed pilot signal, the terminal pilot signal, and the band terminal pilot signal from the vector train obtained by this means. 1 extraction means,
こ の手段で抽出 されたべク ト ル群を前記分散パイ ロ ッ ト信 号及び前記終端パイ 口 ッ ト信号及び前記帯域終端パイ 口 ッ ト 信号を変調 している前記特定の位相及び振幅で除算する第 1 の除算手段と、  The vector group extracted by this means is divided by the specific phase and amplitude modulating the dispersion pilot signal, the terminal pilot signal, and the band terminal pilot signal. A first means of dividing
こ の手段の出力を周波数方向及びシ ンボル時間方向に平滑 して補間するフ ィ ルタ手段と、  Filter means for smoothing and interpolating the output of this means in the frequency direction and symbol time direction;
前記フー リ エ変換手段で得られたべク ト ル列を 1 シンボル 期間遅延する遅延手段と、  Delay means for delaying the vector sequence obtained by the Fourier transform means for one symbol period;
前記同期検波用セグメ ン ト の信号を処理する時には前記フ ィ ルタ手段の出力を、 差動検波用セ グメ ン ト の信号を処理す る時には前記遅延手段の出力を選択して出力する選択手段と 、 前記フ ー リ エ変換手段か ら出力 されるべク ト ル列を前記選 択手段の出力信号で除算 して検波べク トル列を求め出力する 第 2 の除算手段と を具備する。 When processing the signal of the synchronous detection segment, the The output of the filter means should be output from the selection means for selecting and outputting the output of the delay means when processing the signal of the differential detection segment, and the output from the Fourier conversion means. Second division means for dividing the vector sequence by the output signal of the selection means to obtain and output a detection vector sequence.
( 2 4 ) ( 1 3 ) の O F D M伝送方式によ り 生成 される O F D M信号を受信 し復調する受信装置であって、  (24) A receiving device for receiving and demodulating an OFDM signal generated by the OFDM transmission method according to (13),
前記受信 O F D M信号を フー リ エ変換に よ り 時間領域か ら 周波数領域の信号に変換する こ と に よ っ て前記搬送波毎の位 相 と振幅を表わすべク トル列を得る フー リ エ変換手段と 、  Fourier transform means for converting the received OFDM signal from a time domain to a frequency domain signal by Fourier transform to obtain a vector sequence representing the phase and amplitude of each carrier. When ,
こ の手段で得 られるべク ト ル列か ら前記同期検波用セ グメ ン ト及び前記差動検波用セ グメ ン ト の前記連続パイ 口 ッ ト信 号に相対する搬送波のべク トル群を抽出する第 2 の抽出手段 と 、  From the vector train obtained by this means, a vector group of a carrier wave corresponding to the continuous pilot signal of the synchronous detection segment and the differential detection segment is obtained. A second extracting means for extracting, and
こ の手段で抽出 されたべク ト ル群を前記連続パイ ロ ッ ト信 号を変調 している前記特定の位相及び振幅で除算する第 3 の 除算手段と 、  Third division means for dividing the vector group extracted by this means by the specific phase and amplitude modulating the continuous pilot signal;
こ の手段の出力を逆フー リ エ変換によ り 周波数領域か ら時間 領域に変換する こ と によ っ て伝送路のィ ンパルス応答特性を 得る逆フー リ エ変換手段と を具備する。 図面の簡単な説明  An inverse Fourier transforming means for converting the output of this means from the frequency domain to the time domain by means of the inverse Fourier transform, thereby obtaining an impulse response characteristic of the transmission line. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明に係る O F D M伝送方式の第 1 及び第 2 の 実施形態において、 同期検波用あるいは差動検波用セ グメ ン ト (合計 1 3 個のセ グメ ン ト ) 、 帯域終端パイ ロ ッ ト信号の 配置例を示 した図である。 FIG. 1 shows the first and second embodiments of the OFDM transmission system according to the present invention, in which synchronous detection or differential detection segments (a total of 13 segments) and a band termination pyrometer are shown. Of the set signal FIG. 4 is a diagram showing an example of arrangement.
図 2 は、 本発明に係る O F D M伝送方式の第 1 及び第 2 の実施形態において、 付加情報伝送信号の配置 と 、 同期検波 用セグメ ン ト での分散パイ 口 ッ ト信号の配置、 差動検波用セ グメ ン トでの終端パイ 口 ッ ト信号の配置例を示 した図である。  FIG. 2 shows the arrangement of the additional information transmission signal, the arrangement of the distributed pilot signal in the synchronous detection segment, and the differential detection in the first and second embodiments of the OFDM transmission system according to the present invention. FIG. 10 is a diagram showing an example of an arrangement of a terminal pilot signal in a segment for use.
図 3 は、 本発明に係る O F D M伝送方式の第 2 の実施形態 において、 連続パイ ロ ッ ト信号及び制御情報信号の配置 と 、 同期検波用セ グメ ン ト での分散パイ 口 ッ ト信号の配置、 差動 検波用セグメ ン ト での終端パイ 口 ッ ト信号の配置例を示 した 図である。  FIG. 3 shows an arrangement of a continuous pilot signal and a control information signal and an arrangement of a distributed pilot signal in a synchronous detection segment in a second embodiment of the OFDM transmission system according to the present invention. FIG. 4 is a diagram showing an example of the arrangement of a terminal pilot signal in a differential detection segment.
図 4 は、 本発明 に係る O F D M伝送方式の第 2 の実施形態 において、 表 2 に示 した同期検波用セグメ ン ト の連続パイ 口 ッ ト信号の周波数配置の逆フー リ エ変換対を示す時間一振幅 特性図である。  FIG. 4 is a time chart showing an inverse Fourier transform pair of the frequency arrangement of the continuous pilot signal of the synchronous detection segment shown in Table 2 in the second embodiment of the OFDM transmission system according to the present invention. FIG. 4 is a diagram showing one amplitude characteristic.
図 5 は、 本発明に係る O F D M伝送方式の第 2 の実施形態 において、 表 2 に示 した差動検波用セ グメ ン ト の連続パイ 口 ッ ト信号の周波数配置の逆フー リ エ変換対を示す時間一振幅 特性図である。  FIG. 5 shows an inverse Fourier transform pair of the frequency arrangement of the continuous pilot signal of the differential detection segment shown in Table 2 in the second embodiment of the OFDM transmission system according to the present invention. FIG. 4 is a time-amplitude characteristic diagram shown.
図 6 は、 本発明に係る O F D M伝送方式の第 2 の実施形態 において、 表 3 に示 した同期検波用セグメ ン ト の制御情報信 号の周波数配置の逆フー リ エ変換対を示す時間一振幅特性図 である。  FIG. 6 is a time-amplitude diagram illustrating an inverse Fourier transform pair of the frequency arrangement of the control information signal of the synchronous detection segment shown in Table 3 in the second embodiment of the OFDM transmission system according to the present invention. FIG.
図 7 は、 本発明 に係る O F D M伝送方式の第 2 の実施形態 において、 表 3 に示 した差動検波用セグメ ン ト の制御情報信 号の周波数配置の逆フー リ エ変換対を示す時間一振幅特性図 である。 FIG. 7 is a time chart showing the inverse Fourier transform pair of the frequency arrangement of the control information signal of the segment for differential detection shown in Table 3 in the second embodiment of the OFDM transmission system according to the present invention. Amplitude characteristics diagram It is.
図 8 は、 第 5 の実施形態と して、 本発明に係る O F D M伝 送方式に用い られる送信装置の構成を示すプロ ッ ク 回路図で &)る。  FIG. 8 is a block diagram illustrating a configuration of a transmission device used in an OFDM transmission system according to a fifth embodiment of the present invention, as a fifth embodiment.
図 9 は、 第 6 の実施形態と して、 本発明に係る O F D M伝 送方式に用い られる受信装置の構成を示すプロ ッ ク 回路図で ある。  FIG. 9 is a block circuit diagram showing, as a sixth embodiment, the configuration of a receiving device used in the OFDM transmission system according to the present invention.
図 1 0 は従来の O F D M伝送方式に用い られる受信装置の 構成を示すプロ ック 回路図である。 発明を実施するための最良の形態  FIG. 10 is a block diagram showing a configuration of a receiving apparatus used in the conventional OFDM transmission system. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係る O F D M伝送方式と この O F D M伝送 方式に適した送信装置、 受信装置の実施の形態について詳細 に説明する。  Hereinafter, an embodiment of an OFDM transmission system according to the present invention, and a transmission device and a reception device suitable for the OFDM transmission system will be described in detail.
(第 1 の実施の形態)  (First Embodiment)
本実施の形態の O F D M伝送方式では、 1 3 個のセグメ ン ト と 1 キャ リ アの搬送波を用いた帯域終端パイ ロ ッ トからな り 、 1 個のセ グメ ン トは 1 0 8 キャ リ アの搬送波で構成され る。 各セグメ ン ト は、 同期検波用セグメ ン ト、 または、 差動 検波用セグメ ン ト のいずれかで構成される。 帯域全体では 1 4 0 5 キヤ リ アの搬送波を用いる。  In the OFDM transmission method according to the present embodiment, a band termination pilot using 13 segments and one carrier is used, and one segment has 108 carriers. It is composed of the carrier wave of (a). Each segment consists of a segment for synchronous detection or a segment for differential detection. A carrier of 1405 carriers is used for the entire band.
図 1 に同期検波用あるいは差動検波用セ グメ ン ト (合計 1 3 個のセ グメ ン ト) 、 帯域終端パイ ロ ッ ト信号の配置例を示 す。 横軸は周波数軸 (キャ リ ア配置) 、 縦軸は時間軸 (シン ボル方向) を模式的に表現したものである。 各セ グメ ン ト内 のキャ リ ア番号 k , を 0 力 ら 1 0 7 の整数 と し、 1 個のセ グ メ ン ト は 1 0 8 キャ リ アの搬送波で構成される。 Figure 1 shows examples of segments for synchronous detection or differential detection (total of 13 segments), and band-terminated pilot signals. The horizontal axis schematically represents the frequency axis (carrier arrangement), and the vertical axis represents the time axis (symbol direction). Within each segment The carrier number k, of, is an integer from 0 to 107, and one segment consists of 108 carrier waves.
同期検波用セ グメ ン ト は、 1 シンボルあた り 9 キャ リ アの 搬送波を用いた分散パイ ロ ッ ト信号と 、 3 キャ リ アの搬送波 を用いた付加情報伝送信号と 、 9 6 キ ヤ リ ァ の搬送波を用い た情報伝送信号と から構成される。  The segments for synchronous detection are a distributed pilot signal using nine carriers per symbol, an additional information transmission signal using three carriers, and a 96-carrier carrier. And an information transmission signal using the carrier of the lear.
差動検波用セ グメ ン ト は、 1 1 キ ャ リ アの搬送波を用いた 付加情報伝送信号と 、 1 キャ リ アの搬送波を用いた終端パイ 口 ッ ト信号と 、 9 6 キヤ リ アの搬送波を用いた情報伝送信号 と カゝら構成される。  The differential detection segment includes an additional information transmission signal using a 11-carrier carrier, a termination pilot signal using a 1-carrier carrier, and a 96-carrier carrier. It consists of an information transmission signal using a carrier wave and a signal.
この よ う に同期検波用セ グメ ン ト と 差動検波用セ グメ ン ト では 1 0 8 本 と い う 同一本数のキャ リ アを用いる ため、 セ グ メ ン トの組合せによって所要伝送帯域が変わる こ と はない。  As described above, since the same number of carriers as 108 are used in the segment for synchronous detection and the segment for differential detection, the required transmission band depends on the combination of the segments. It will not change.
こ こ では、 帯域全体でのキ ヤ リ ア番号 k を 0 カゝら 1 4 0 4 の整数、 セ グメ ン ト番号 i を 0 カゝ ら 1 2 の整数、 各セグメ ン ト 内の キ ャ リ ア番号 k ' を 0 力 ら 1 0 7 の整数 と し、 k = i · 1 0 8 + k ' を満たすもの とする。  In this case, the carrier number k in the entire band is 0, an integer of 1404, the segment number i is 0, an integer of 1 to 12, and the carrier in each segment. Let the rear number k 'be an integer from 0 to 107, and satisfy k = i · 108 + k'.
同期検波用セグメ ン ト に設け られる分散パイ ロ ッ ト信号は、 各セ グメ ン ト と も ( 5 ) 式に よ るセ グメ ン ト 内のキャ リ ア番 号 k , の搬送波に配置される。 ( 5 ) 式において、 mo d は剰 余演算を表わ し、 シンボル番号を示す n は 0 以上の整数、 p は 0 以上 8 以下の整数である。  The distributed pilot signal provided in the segment for synchronous detection is allocated to the carrier of carrier number k in the segment by equation (5) with each segment. . In equation (5), mod represents the remainder operation, n indicating the symbol number is an integer of 0 or more, and p is an integer of 0 or more and 8 or less.
k' = 3 (n mod 4) + 12 p ( 5 ) 同期用セ グメ ン ト及び差動検波用セ グメ ン ト に設け られる 付加情報伝送信号は、 それぞれ表 1 に示す各セグメ ン ト 内の キ ャ リ ア番号 k ' の搬送波に配置 される。 表 1 は、 同期検波 用セ グメ ン ト の付加情報伝送信号が差動検波用セ グメ ン ト の 付加情報伝送信号に含まれる こ と を示 している。 k '= 3 (n mod 4) + 12 p (5) The additional information transmission signals provided in the segment for synchronization and the segment for differential detection are as shown in Table 1. It is located on the carrier with carrier number k '. Table 1 shows that the additional information transmission signal of the synchronous detection segment is included in the additional information transmission signal of the differential detection segment.
以上の構成に よ り 、 同期検波用セ グメ ン ト と 差動検波用セ グメ ン ト が混在 した状態であっ て も 、 同期検波用セ グメ ン ト の付加情報伝送信号 と して定義 される搬送波には付加情報伝 送信号が必ず配置 される こ と にな り 、 付加情報伝送信号かそ れ以外の伝送信号かの識別が受信側で容易 と なる。 尚、 伝送 される付加情報に よ っては部分集合配置 と な ら ないよ う に搬 送波を割 り 当てて も よい。 With the above configuration, even when the synchronous detection segment and the differential detection segment are mixed, they are defined as additional information transmission signals of the synchronous detection segment. Since the additional information transmission signal is always arranged on the carrier wave, it is easy for the receiving side to identify the additional information transmission signal or the other transmission signal. Note that, depending on the additional information to be transmitted, the carrier wave may be assigned so that the subset arrangement does not occur.
付加情報伝送信号の周波数配置 Frequency allocation of additional information transmission signal
差動検波用セグメ ン ト に設け られる終端パイ 口 ッ ト信号は、 各セ グメ ン ト 内のキャ リ ア番号 k ' が 0 の搬送波に配置 され る。 終端パイ ロ ッ ト信号の配置は、 隣接する 同期検波用セ グ メ ン ト の分散パイ 口 ッ ト信号の周波数配置の周期性を保つ位 置である。 各終端パイ ロ ッ ト信号は、 該分散パイ ロ ッ ト信号 を補ってレ、る。 The terminal pilot signal provided in the segment for differential detection is allocated to a carrier having a carrier number k 'of 0 in each segment. The arrangement of the terminal pilot signal is a position that maintains the periodicity of the frequency arrangement of the distributed pilot signal in the adjacent synchronous detection segment. Each terminal pilot signal complements the distributed pilot signal.
図 2 に、 同期検波用セ グメ ン ト での分散パイ ロ ッ ト信号の 配置、 差動検波用セ グメ ン ト での終端パイ 口 ッ ト信号の配置 例を示す。 横軸は周波数軸 (キャ リ ア配置) 、 縦軸は時間軸 (シンボル方向) を模式的に表現 したも のである。 各セ グメ ン ト 内のキャ リ ア番号 k ' を 0 力 ら 1 0 7 の整数 と し、 1 個 のセ グメ ン ト は 1 0 8 キャ リ アの搬送波で構成 される。 付加 情報伝送信号は分散パイ 口 ッ ト信号と は異なる搬送波に割 り 付け られる。  Figure 2 shows an example of the arrangement of the distributed pilot signal in the segment for synchronous detection and the example of the arrangement of the terminal pilot signal in the segment for differential detection. The horizontal axis schematically represents the frequency axis (carrier arrangement), and the vertical axis the time axis (symbol direction). The carrier number k 'in each segment is an integer from 0 to 107, and one segment is composed of 108 carrier waves. The additional information transmission signal is assigned to a different carrier from the dispersion pilot signal.
これらの分散パイ 口 ッ ト信号及び、 終端パイ 口 ッ ト信号は、 それぞれ配置 される キャ リ ア番号 k (セ グメ ン ト番号 i 及び 各セ グメ ン ト 内のキ ャ リ ア番号 k ' によ り 決ま る) に対応す る P N (擬似乱数) 系列 w k ( w k = 0, 1 ) に基づき 、These distributed pilot signal and terminal pilot signal are assigned to the carrier number k (segment number i and carrier number k 'in each segment) respectively arranged. PN (pseudorandom number) sequence w k (w k = 0, 1) corresponding to
( 6 ) 式に示す複素べク トル c kn によ って搬送波を変調 し て得られる。 ( 6 ) 式において、 R e { c k n } はキャ リ ア 番号 k 、 シンボル番号 n の搬送波に対応する複素べク トル c k, n の実数部を表わ し、 I m { c k; n } は虚数部を表わす。 It is obtained by modulating the carrier with the complex vectors ck and n shown in Eq. (6). In equation (6), R e {c kn } represents the real part of the complex vector ck, n corresponding to the carrier of carrier number k and symbol number n, and I m {c k; n } Represents an imaginary part.
Re{ck n} = -x2 Wk Re {c kn } = -x2 W k
( 6 ) (6)
Im L{ck,ni = 0 同期検波用セ グメ ン ト及び差動検波用セ グメ ン ト に設け ら れる付加情報伝送信号は、 9 6 キヤ リ ァ の搬送波を用いて伝 送される情報伝送信号と は異なる付加情報を伝送する ために 用いる。 例えば伝送モー ド (各セ グメ ン ト数、 キ ャ リ ア変調 方式な ど) を規定する制御情報や、 放送局 と して利用する情 報 (例えば中継局で使用する制御情報、 生放送でのかけあい に使用する低時間遅延の音声情報、 放送局識別用信号な ど) が考え られる。 シンボル毎に 1 ビ ッ ト の付加情報を伝送して も よい し、 複数ビ ッ ト の付加情報を伝送 して も よい。 また伝 送モー ドを規定する制御情報だけを伝送しても よい。 Im L (ck, ni = 0 The additional information transmission signal provided in the synchronous detection segment and the differential detection segment transmits additional information different from the information transmission signal transmitted using a 96-carrier carrier. Used to For example, control information that specifies the transmission mode (number of segments, carrier modulation method, etc.), information used as a broadcast station (eg, control information used in a relay station, Low-time-delayed audio information used for communication, broadcast station identification signal, etc.) can be considered. One bit of additional information may be transmitted for each symbol, or multiple bits of additional information may be transmitted. Alternatively, only control information that defines the transmission mode may be transmitted.
こ こ でシ ンボル番号 n の シ ンボルで伝送する制御情報 ビ ッ ト を S n と する と 、 制御情報信号は ( 7 ) 式に示す複素ベタ トル c k, n に よっ て搬送波を変調 して得 られる。 すなわち、 この場合には制御情報信号を伝送する搬送波は、 シンポル間 で差動 2値 P S K (Phase Shift Keying) 変調される。 If the control information bit transmitted by the symbol of symbol number n is S n , the control information signal modulates the carrier by the complex vector c k, n shown in equation (7). can get. That is, in this case, the carrier for transmitting the control information signal is differentially binary-shifted PSK (Phase Shift Keying) modulated between the symbols.
Re{ckn = Re{ck,n-l} Re {c kn = R e {c k , nl}
sn=o→ s n = o →
Im{ckn = 0 Im {c kn = 0
( 7 ) (7)
Re{ck,n =一 Re{ck,n-1: Re { c k, n = one Re { c k, n-1:
n=l- 1  n = l- 1
Im{ck,n = 0 但し、 フ レーム の先頭シンボル (シンボル番号 n = 0 ) で は、 制御情報を伝送する搬送波は、 前述の P N系列 w k に基 づいて、 ( 8 ) 式に示す複素べク トル c kn によ って変調 さ れる。 π ί . 4 、 I m {c k, n = 0 , however, the leading symbol of the frame (symbol number n = 0), the carrier wave for transmitting control information, based on the PN sequence w k described above, the (8) It is modulated by the complex vectors ck and n shown. π ί. 4,
Re Ck,o } = x 2 - W kR e C k, o} = x 2 -W k
( 8 ) (8)
Im ^c k,0 0 尚、 シンボル毎に 2 ビッ トの制御情報を伝送する場合には、 例えばシンボル間での差動 4 相 P S K変調を用いた り 、 ある いは制御情報を伝送する複数の搬送波を 2 つのグループに分 割 し、 シンボル毎にそれぞれ 1 ビ ッ トずつ伝送する よ う に割 り 付けても よい。 Im ^ ck, 00 In the case of transmitting 2-bit control information for each symbol, for example, differential 4-phase PSK modulation between symbols may be used, or a plurality of control information transmitting control information may be transmitted. The carrier may be divided into two groups, and one symbol may be transmitted for each symbol.
同期検波用セ グメ ン ト に設け られる情報伝送信号は、 前述 の同期検波用セグメ ン ト の分散パイ 口 ッ ト信号、 付加情報伝 送信号以外の搬送波に配 され、 ディ ジタル情報に基づいて絶 対位相変調が施される。 こ の絶対位相変調には、 例えば、 Q P S K:、 1 6 Q A M 、 6 4 Q A M変調な どが用い られる。  The information transmission signal provided in the synchronous detection segment is distributed to a carrier other than the dispersion pilot signal and the additional information transmission signal of the aforementioned synchronous detection segment, and is discontinued based on the digital information. Phase modulation is performed. For this absolute phase modulation, for example, QPSK :, 16QAM, or 64QAM modulation is used.
同期検波用セ グメ ン ト の情報伝送信号は以下の処理に よ つ て復調 される。 まず、 分散パイ ロ ッ ト信号や必要な終端パイ ロ ッ ト信号、 帯域終端パイ ロ ッ ト信号を該分散パイ ロ ッ ト 、 終端パイ 口 ッ ト信号及び帯域終端パイ 口 ッ ト信号を変調 して いる複素べク トルで逆変調 して、 分散パイ ロ ッ ト信号及び終 端パィ ロ ッ ト信号な どにかかる周波数領域での伝送路特性を 推定する。 さ ら に、 フ ィ ルタ によ っ て周波数方向及びシンポ ル方向に補間 して情報伝送信号にかかる伝送路特性を推定す る。 こ のよ う に して得られた伝送路特性で情報伝送信号を除 算する。 これによ つ て同期検波用セ グメ ン トか ら情報伝送信 号を復調する こ と ができ る。  The information transmission signal of the synchronous detection segment is demodulated by the following process. First, the distributed pilot signal, the required terminal pilot signal, and the band terminal pilot signal are modulated by the dispersion pilot, terminal pilot signal, and band terminal pilot signal. It performs inverse modulation with the complex vector, and estimates the transmission path characteristics in the frequency domain related to the scattered pilot signal and the terminal pilot signal. Further, the transmission path characteristics of the information transmission signal are estimated by interpolating in the frequency direction and the symbol direction by a filter. The information transmission signal is divided by the transmission path characteristics obtained in this way. As a result, the information transmission signal can be demodulated from the synchronous detection segment.
差動検波用セ グメ ン ト に設け られる情報伝送信号は、 前述 の差動検波用セグメ ン ト の終端パイ 口 ッ ト信号、 及び付加情 報伝送信号以外の搬送波に配 され、 ディ ジタル情報に基づい て同 じキヤ リ ア番号の隣接する シンボル間で差動変調が施さ れる。 The information transmission signal provided in the differential detection segment is described above. Differential modulation between adjacent symbols of the same carrier number, based on digital information, is allocated to the carrier signal other than the pilot signal at the end of the differential detection segment and the additional information transmission signal. Is applied.
こ の差動変調には、 例えば、 D B P S K 、 D Q P S K 、 D A P S Kな どが用レ、 られる。 差動検波用セ グメ ン ト の情報伝 送信号は、 前シンボルの同 じキャ リ ア番号の情報伝送信号で 除算 される こ と によって復調でき る。  For this differential modulation, for example, DBPSK, DQPSK, DAPSK, etc. are used. The information transmission signal of the differential detection segment can be demodulated by dividing by the information transmission signal of the same carrier number of the previous symbol.
以上の こ と か ら 、 本実施の形態の O F D M伝送方式は、 そ の受信装置において、 同期検波用セ グメ ン トではフ ィ ルタ の 効果によ っ て高品質な受信を、 差動検波用セ グメ ン ト ではシ ンボル間の差動復調によ っ て伝送路特性の変化が速い移動受 信に適 した受信を行 う こ と ができ る。 ま た、 セ グメ ン ト毎に 同期検波用セ グメ ン ト と 差動検波用セグメ ン ト を任意に組み 合わせる こ と で、 伝送帯域の変動を伴 う こ と な く 柔軟なサー ビス形態を実現する こ と ができ る。  From the above, the OFDM transmission method according to the present embodiment provides high-quality reception by the effect of the filter in the synchronous detection segment in the receiving apparatus and the differential detection for the differential detection. In the segment, differential demodulation between symbols makes it possible to perform reception suitable for mobile reception in which the transmission path characteristics change rapidly. In addition, by combining the segments for synchronous detection and the segments for differential detection arbitrarily for each segment, a flexible service configuration without fluctuations in the transmission band can be achieved. It can be realized.
(第 2 の実施の形態)  (Second embodiment)
本実施の形態の O F D M伝送方式では、 1 3 個のセ グメ ン ト と 1 キャ リ アの搬送波を用いた帯域終端パイ ロ ッ ト か らな り 、 1 個のセ グメ ン ト は 1 0 8 キャ リ アの搬送波で構成され る。 各セグメ ン ト は、 同期検波用セ グメ ン ト 、 または、 差動 検波用セ グメ ン ト のいずれかで構成 される。 帯域全体では 1 4 0 5 キヤ リ アの搬送波を用いる。  In the OFDM transmission method according to the present embodiment, a band termination pilot using 13 segments and one carrier is used, and one segment is 10 8 It consists of the carrier of the carrier. Each segment is composed of either a segment for synchronous detection or a segment for differential detection. A carrier of 1405 carriers is used for the entire band.
同期検波用セ グメ ン ト は、 1 シンボルあた り 9 キャ リ アの 搬送波を用いた分散パイ ロ ッ ト信号と 、 2 キャ リ アの搬送波 を用いた連続パイ ロ ッ ト信号 と 、 1 キャ リ アの搬送波を用い た付加情報伝送信号 (この実施例では以下制御情報信号とす る) と 、 9 6 キャ リ アの搬送波を用いた情報伝送信号 と か ら 構成される。 The synchronous detection segment consists of a distributed pilot signal using nine carriers per symbol and a two-carrier carrier. A pilot signal using a carrier, an additional information transmission signal using a carrier of one carrier (hereinafter, referred to as a control information signal in this embodiment), and an information transmission signal using a carrier of 96 carriers. It consists of a transmission signal.
差動検波用セ グメ ン ト は、 6 キ ヤ リ アの搬送波を用いた連 続パイ 口 ッ ト信号と 、 5 キヤ リ アの搬送波を用いた制御情報 信号と 、 1 キャ リ アの搬送波を用いた終端パイ ロ ッ ト信号と 、 9 6 キヤ リ ァの搬送波を用いた情報伝送信号と か ら構成 され る。  The differential detection segment is composed of a continuous pilot signal using a 6-carrier carrier, a control information signal using a 5-carrier carrier, and a 1-carrier carrier. It consists of the terminal pilot signal used and an information transmission signal using a 96-carrier carrier.
こ こでは、 帯域全体でのキャ リ ア番号 k を 0 から 1 4 0 4 の整数、 セ グメ ン ト番号 i を 0 カゝ ら 1 2 の整数、 各セグメ ン ト 内のキ ャ リ ア番号 k ' を 0 力 ら 1 0 7 の整数 と し、 k = 1 · 1 0 8 + k ' を満たすもの とする。  Here, the carrier number k for the entire band is an integer from 0 to 144, the segment number i is an integer from 0 to 12, and the carrier number in each segment. Let k 'be an integer from 0 to 107, and satisfy k = 1 · 108 + k'.
同期検波用セグメ ン ト に設け られる分散パィ ロ ッ ト信号は、 各セグメ ン ト と も ( 5 ) 式に よ るセ グメ ン ト 内のキャ リ ア番 号 k ' の搬送波に配置される。 ( 5 ) 式において、 mo d は剰 余演算を表わ し、 p は 0 以上 8 以下の整数である。  The distributed pilot signal provided in the segment for synchronous detection is placed on the carrier of the carrier number k 'in the segment according to equation (5), together with each segment. In equation (5), mod represents the remainder operation, and p is an integer from 0 to 8 inclusive.
k' = 3 (n mod 4) + 12 p ( 5 ) 同期用セ グメ ン ト及び差動検波用セグメ ン ト に設け られる 連続パイ ロ ッ ト信号は、 それぞれ表 2 に示す各セグメ ン ト 内 のキャ リ ア番号 k ' の搬送波に配置 される。 表 2 は、 同期検 波用セグメ ン トの連続パイ ロ ッ ト信号が差動検波用セグメ ン トの連続パイ ロ ッ ト信号に含まれる こ と を示している。 表 2 連続パイ 口 ッ ト信号の周波数配置 k '= 3 (n mod 4) + 12 p (5) The continuous pilot signals provided for the segment for synchronization and the segment for differential detection are within the respective segments shown in Table 2. Is placed on the carrier with carrier number k '. Table 2 shows that the continuous pilot signal of the segment for synchronous detection is included in the continuous pilot signal of the segment for differential detection. Table 2 Frequency arrangement of continuous pilot signal
セ グメ ン ト キ ャ リ ア番号 k ' Segment carrier number k '
番 -τν i 同期検波用 差動検波用  No. -τν i For synchronous detection For differential detection
No 0 10 28 3 10 28 45 59 77 No 0 10 28 3 10 28 45 59 77
No 1 53 83 3 15 40 53 58 83No 1 53 83 3 15 40 53 58 83
No 2 61 100 29 41 61 84 93 100No 2 61 100 29 41 61 84 93 100
No 3 11 101 11 28 45 81 91 101No 3 11 101 11 28 45 81 91 101
No 4 20 40 20 23 40 63 85 105No 4 20 40 20 23 40 63 85 105
No 5 74 100 30 74 81 92 100 103No 5 74 100 30 74 81 92 100 103
No 6 35 79 3 35 72 79 85 89No 6 35 79 3 35 72 79 85 89
No 7 76 97 5 18 57 76 92 97No 7 76 97 5 18 57 76 92 97
No 8 4 89 4 13 89 93 98 102No 8 4 89 4 13 89 93 98 102
No . 9 40 89 40 72 89 95 100 105No. 9 40 89 40 72 89 95 100 105
No. 10 8 64 8 36 48 52 64 74No. 10 8 64 8 36 48 52 64 74
No. 11 7 89 7 25 30 42 89 104No. 11 7 89 7 25 30 42 89 104
No. 12 98 101 10 30 55 81 98 101 No. 12 98 101 10 30 55 81 98 101
以上の構成に よ り 、 同期検波用セ グメ ン ト と 差動検波用セ グメ ン トが混在 した状態であって も 、 同期検波用セグメ ン ト の連続パイ 口 ッ ト と して定義 される搬送波には連続パイ 口 ッ ト信号が必ず配置 される こ と にな り 、 連続パイ ロ ッ ト信号か それ以外の伝送信号かの識別が受信側で容易 と なる。 尚、 部 分集合配置と な らないよ う に搬送波を割 り 当てても よい。 With the above configuration, even when the synchronous detection segment and the differential detection segment are mixed, they are defined as a continuous pilot port of the synchronous detection segment. A continuous pilot signal is always arranged on the carrier wave, so that it is easy for the receiving side to distinguish between a continuous pilot signal and other transmission signals. Note that carriers may be assigned so as not to be in a partial arrangement.
毎シンボルと も 同 じ周波数の搬送波に、 当該搬送波を特定 の位相及び振幅で変調する連続パイ ロ ッ ト信号は、 周波数、 位相、 振幅が特定される ため受信側では基準と なる キヤ リ ア と して利用する こ と ができ る。  A continuous pilot signal that modulates the carrier with a specific phase and amplitude on a carrier with the same frequency for each symbol is a carrier used as a reference on the receiving side because the frequency, phase, and amplitude are specified. You can use it.
差動検波用セグメ ン ト に設け られる終端パィ ロ ッ ト信号は、 各セ グメ ン ト 内のキヤ リ ア番号 k ' が 0 の搬送波に配置 され る。 終端パイ ロ ッ ト信号の配置は、 隣接する 同期検波用セ グ メ ン ト の分散パイ 口 ッ ト信号の周波数配置の周期性を保つ位 置である。 各終端パイ ロ ッ ト信号は、 該分散パイ ロ ッ ト信号 を補ってレ、る。  The terminating pilot signal provided in the differential detection segment is arranged on a carrier having a carrier number k 'of 0 in each segment. The arrangement of the terminal pilot signal is a position that maintains the periodicity of the frequency arrangement of the distributed pilot signal in the adjacent synchronous detection segment. Each terminal pilot signal complements the distributed pilot signal.
図 3 に、 連続パイ ロ ッ ト信号及び制御情報信号の配置 と 、 同期検波用セグメ ン トでの分散パイ 口 ッ ト信号の配置、 差動 検波用セグメ ン ト での終端パイ 口 ッ ト信号の配置例を示す。 横軸は周波数軸 (キ ャ リ ア配置) 、 縦軸は時間軸 (シ ンボル 方向) を模式的に表現したものである。 各セ グメ ン ト 内のキ ャ リ ア番号 k ' を 0 力、ら 1 0 7 の整数と し、 1 個のセ グメ ン ト は 1 0 8 キ ャ リ ア の搬送波で構成 される。 連続パイ ロ ッ ト 信号、 制御情報信号は分散パイ ロ ッ ト信号と は異なる搬送波 に割 り 付け られる。 これ ら の分散パイ ロ ッ ト信号、 連続パイ ロ ッ ト信号、 及び、 終端パイ ロ ッ ト信号は、 それぞれ配置 される キャ リ ア番号 kFigure 3 shows the arrangement of the continuous pilot signal and the control information signal, the arrangement of the distributed pilot signal in the segment for synchronous detection, and the termination pilot signal in the segment for differential detection. The following shows an example of the arrangement. The horizontal axis schematically represents the frequency axis (carrier arrangement), and the vertical axis represents the time axis (symbol direction). The carrier number k 'in each segment is set to 0 and the integer of 107 is set, and one segment is composed of 108 carrier waves. The continuous pilot signal and the control information signal are assigned to a different carrier from the dispersed pilot signal. These distributed pilot signals, continuous pilot signals, and terminal pilot signals are respectively assigned carrier numbers k.
(セ グメ ン ト番号 i 及び各セ グメ ン ト 内のキヤ リ ア番号 k ' に よ り 決ま る) に対応する P N (擬似乱数) 系列 w k ( w k = 0 , 1 ) に基づき 、 ( 6 ) 式に示す複素ベク トル c レ n に よ っ て搬送波を変調 して得 られる。 ( 6 ) 式において、 R e { c k, n } はキ ャ リ ア番号 k 、 シンボル番号 n の搬送波に対 応す る 複素ベ ク ト ル c k n の実数部 を表 わ し 、 I m { c k n } は虚数部を表わす。 Based on a PN (pseudo-random number) sequence w k (w k = 0, 1) corresponding to (segment number i and carrier number k 'in each segment), ( It is obtained by modulating the carrier with the complex vector c n shown in Eq. (6). In Equation (6), R e {c k , n} represents the real part of the complex vector c kn corresponding to the carrier of carrier number k and symbol number n, and I m { ckn} represents the imaginary part.
Ώ ( 1 4 1 、 Ώ (1 4 1,
Re{ck!n} = -x 2l 2 ~wk Re {c k! N} = -x 2 l 2 ~ w k
( 6 ) lm{ck'n} = 0 同期検波用セ グメ ン ト及び差動検波用セ グメ ン ト に設け ら れる制御情報信号は、 それぞれ表 3 に示す各セ グメ ン ト 内の キャ リ ア番号 k ' の搬送波に配置され、 シンボル毎に 1 ビッ トの制御情報を伝送する。 (6) lm {c k ' n } = 0 The control information signals provided for the synchronous detection segment and the differential detection segment are respectively the control information signals in each segment shown in Table 3. It is arranged on the carrier with the rear number k 'and transmits 1-bit control information for each symbol.
表 3 制御情報信号の周波数配置 Table 3 Frequency arrangement of control information signal
セ グメ ン ト キャ リ ア番号 k ' Segment carrier number k '
¾:口 i 问期検波用 差動検波用 ¾ : mouth i For long-term detection For differential detection
No 0 50 13 50 70 83 87 No 0 50 13 50 70 83 87
No 1 25 25 63 73 80 93No 1 25 25 63 73 80 93
No 2 71 4 7 17 51 71No 2 71 4 7 17 51 71
No 3 55 36 48 55 59 86No 3 55 36 48 55 59 86
No 4 44 10 28 44 47 54No 4 44 10 28 44 47 54
No 5 25 7 25 47 60 87No 5 25 7 25 47 60 87
No 6 49 49 61 96 99 104No 6 49 49 61 96 99 104
No 7 65 31 39 47 65 72No 7 65 31 39 47 65 72
No 8 74 16 30 37 74 83No 8 74 16 30 37 74 83
No 9 5 5 10 21 44 61No 9 5 5 10 21 44 61
No. 10 85 78 82 85 98 102No. 10 85 78 82 85 98 102
No. 11 70 34 48 54 70 101No. 11 70 34 48 54 70 101
No. 12 37 23 37 51 68 105 No. 12 37 23 37 51 68 105
シンボル番号 n のシンボルで伝送する制御情報ビッ ト を S n とする と 、 制御情報信号は ( 7 ) 式に示す複素べク トル c k, n によ っ て搬送波を変調 して得 られる。 すなわち、 制御情報信 号を伝送する搬送波は、 シンボル間で差動 2値 P S K ( Phase Shift Keying) 変調される。 The control information bits to be transmitted in symbol of the symbol number n When S n, the control information signal is obtained by modulating a carrier wave by Tsu by the (7) complex base-vector c k in the expression, n. That is, the carrier that transmits the control information signal is differentially binary PSK (Phase Shift Keying) modulated between symbols.
但し、 フ レーム の先頭シンボル (シ ンボル番号 n = 0 ) で は、 制御情報を伝送する搬送波は、 前述の P N系列 w k に基 づいて、 ( 8 ) 式に示す複素べク トル c k, n によ って変調 さ れる。 However, in the first symbol of the frame (symbol number n = 0), the carrier for transmitting the control information is based on the above-mentioned PN sequence w k and the complex vector c k , Modulated by n .
4 Four
=— X / ——\  = — X / —— \
w, w,
" 3 V2  "3 V2
( 8 ) Im{ck0} = 0 尚、 シンボル毎に 2 ビ ッ ト の制御情報を伝送する場合には、 例えばシンボル間での差動 4 相 P S K変調を用いる。 同期検波用セ グメ ン ト に設け られる情報伝送信号は、 前述 の同期検波用セグメ ン ト の分散パイ 口 ッ ト信号、 連続パイ 口 ッ ト信号、 及び、 制御情報信号以外の搬送波に配 され、 ディ ジタル情報に基づいて絶対位相変調が施 される。 この絶対位 相変調には、 例えば、 Q P S K: 、 1 6 Q A M、 6 4 Q A M変 調な どが用い られる。 同期検波用セ グメ ン ト の情報伝送信号は以下の処理に よ つ て復調 される。 まず、 分散パイ ロ ッ ト信号や必要な終端パイ ロ ッ ト信号、 帯域終端パイ ロ ッ ト信号を該分散パイ ロ ッ ト 、 終端パイ ロ ッ ト信号及び帯域終端パイ ロ ッ ト信号を変調 して いる複素べク トルで逆変調 して、 分散パイ ロ ッ ト信号及び終 端パイ ロ ッ ト信号な どにかかる周波数領域での伝送路特性を 推定する。 さ らに、 フ ィ ルタ によ っ て周波数方向及びシンポ ル方向に補間 して情報伝送信号にかかる伝送路特性を推定す る。 こ のよ う に して得られた伝送路特性で情報伝送信号を除 算する。 これによ つ て同期検波用セ グメ ン トか ら情報伝送信 号を復調する こ と ができ る。 (8) Im {c k0 } = 0 When transmitting two bits of control information for each symbol, for example, differential four-phase PSK modulation between symbols is used. The information transmission signal provided in the synchronous detection segment is distributed to a carrier other than the dispersion pilot signal, the continuous pilot signal, and the control information signal of the synchronous detection segment described above. Absolute phase modulation is performed based on digital information. For this absolute phase modulation, for example, QPSK:, 16 QAM, 64 QAM modulation and the like are used. The information transmission signal of the synchronous detection segment is demodulated by the following process. First, the distributed pilot signal, the required termination pilot signal, and the band termination pilot signal are modulated by the dispersion pilot, termination pilot signal, and band termination pilot signal. Inverse modulation is performed using the complex vector, and the channel characteristics in the frequency domain related to the scattered pilot signal and the terminal pilot signal are estimated. Further, a filter is used to interpolate in the frequency direction and the symbol direction to estimate the transmission path characteristics of the information transmission signal. The information transmission signal is divided by the transmission path characteristics obtained in this way. As a result, the information transmission signal can be demodulated from the synchronous detection segment.
差動検波用セ グメ ン ト に設け られる情報伝送信号は、 前述 の差動検波用セグメ ン ト の連続パイ 口 ッ ト信号、 終端パイ 口 ッ ト信号、 及び、 制御情報信号以外の搬送波に配され、 ディ ジタル情報に基づいて同 じキ ヤ リ ァ番号の隣接する シンボル 間で差動変調が施される。  The information transmission signal provided in the differential detection segment is distributed to the carrier signal other than the continuous pilot signal, the terminal pilot signal, and the control information signal of the differential detection segment described above. Then, based on the digital information, differential modulation is performed between adjacent symbols having the same carrier number.
この差動変調には、 例えば、 D B P S K:、 D Q P S K、 D A P S Kな どが用レ、 られる。 差動検波用セグメ ン ト の情報伝 送信号は、 前シンボルの同 じキャ リ ア番号の情報伝送信号で 除算 される こ と によって復調でき る。  For this differential modulation, for example, DBPSK :, DQPSK, DAPSK, etc. are used. The information transmission signal of the differential detection segment can be demodulated by being divided by the information transmission signal of the same carrier number as the previous symbol.
以上の こ と か ら、 本実施の形態の O F D M伝送方式は、 そ の受信装置において、 同期検波用セ グメ ン トではフ ィ ルタ の 効果によっ て高品質な受信を、 差動検波用セグメ ン ト ではシ ンボル間の差動復調によ っ て伝送路特性の変化が速い移動受 信に適 した受信を行 う こ と ができ る。 また、 セ グメ ン ト毎に 同期検波用セ グメ ン ト と 差動検波用セグメ ン ト を任意に組み 合わせる こ と で、 柔軟なサー ビス形態を実現する こ と ができ る。 From the above, the OFDM transmission method according to the present embodiment provides high-quality reception by the effect of the filter in the synchronous detection segment and the differential detection segment in the receiving apparatus. By using differential demodulation between symbols, it is possible to perform reception suitable for mobile reception in which the transmission path characteristics change rapidly. Also, for each segment A flexible service configuration can be realized by arbitrarily combining the segment for synchronous detection and the segment for differential detection.
また、 毎シンボルと も 同 じ周波数の搬送波に、 当該搬送波 を特定の位相及び振幅で変調する連続パイ 口 ッ ト信号を配置 する こ と に よ り 、 周波数、 位相、 振幅が特定される ため受信 側では基準と なる キヤ リ ア と して利用する こ と ができ る。  In addition, by arranging a continuous pilot signal that modulates the carrier with a specific phase and amplitude on a carrier with the same frequency for each symbol, the frequency, phase, and amplitude are specified. This can be used as a reference carrier on the side.
図 4 及び図 5 は、 それぞれ表 2 に示 した同期検波用セ グメ ン ト ( 1 3 セ グメ ン ト 、 2 6 キャ リ ア) 及び差動検波用セグ メ ン ト ( 1 3 セグメ ン ト 、 7 8 キャ リ ア) の連続パイ ロ ッ ト 信号の周波数配置の逆フー リ エ変換対を示 した も のである。 図 4 、 図 5 力 ら、 それら はイ ンパルス状であ り 、 表 2 に示 し た連続パイ 口 ッ ト信号の周波数配置が周期性を持たない こ と 力 Sわ力 る。  Figures 4 and 5 show the synchronous detection segment (13 segment, 26 carrier) and differential detection segment (13 segment, 26 segment) shown in Table 2, respectively. This figure shows an inverse Fourier transform pair of the frequency arrangement of a continuous pilot signal of 78 carriers). From FIGS. 4 and 5, it can be said that they are impulse-like and that the frequency arrangement of the continuous pilot signal shown in Table 2 has no periodicity.
こ の こ と か ら、 本実施の形態の O F D M伝送方式は、 マル チパス な どの遅延波によ っ て連続パイ 口 ッ ト信号全体が消滅 する こ と を防 ぐこ と ができ る。 ま た、 こ の配置を使用 して逆 フー リ ェ変換を求め る こ と で、 伝送路のィ ンパルス応答を求 める こ と ができ る。 尚、 連続パイ ロ ッ ト信号の周波数配置は 自 己相関に強い配置になっている。  From this, the OFDM transmission method of the present embodiment can prevent the entire continuous pilot signal from disappearing due to a delay wave such as a multipath. In addition, by using this arrangement to obtain the inverse Fourier transform, the impulse response of the transmission path can be obtained. Note that the frequency allocation of the continuous pilot signal is strong against autocorrelation.
図 6 及び図 7 は、 それぞれ表 3 に示 した同期検波用セ グメ ン ト及び差動検波用セグメ ン トの制御情報信号の周波数配置 の逆フー リ エ変換対を示 したものである。 図 6 、 図 7 か ら、 それらはイ ンパルス状であ り 、 表 3 に示 した制御情報信号の 周波数配置が周期性を持たないこ と がわかる。 以上の こ と か ら 、 本実施の形態の O F D M伝送方式は、 マ ルチパスな どの遅延波に よ っ て制御情報信号全体が消滅する こ と を防ぐこ と ができ る。 6 and 7 show the inverse Fourier transform pairs of the frequency arrangement of the control information signal of the synchronous detection segment and the differential detection segment shown in Table 3, respectively. From FIGS. 6 and 7, it can be seen that they are impulse-like and that the frequency arrangement of the control information signal shown in Table 3 has no periodicity. As described above, the OFDM transmission scheme according to the present embodiment can prevent the entire control information signal from disappearing due to a delay wave such as a multipath.
尚、 制御情報信号を含む付加情報伝送信号の周波数配置を 同様に設定する こ と ができ る。  The frequency allocation of the additional information transmission signal including the control information signal can be set in the same manner.
(第 3 の実施の形態)  (Third embodiment)
図 8 に、 第 1 及び第 2 の実施の形態の O F D M伝送方式に 基づいて O F D M信号を生成する送信装置の実施の形態の構 成を示す。  FIG. 8 shows a configuration of an embodiment of a transmitting apparatus that generates an OFDM signal based on the OFDM transmission schemes of the first and second embodiments.
図 8 において、 情報伝送信号生成回路 5 1 では、 入力 され るディ ジタル情報に必要に応 じて誤 り 制御処理 (誤 り 訂正符 号化やイ ンタ リ ーブ、 エネルギー拡散な ど) と ディ ジタル変 調を施す。 尚、 ディ ジタル伝送で一般的に用い られる基本的 な誤 り 制御処理手法 と ディ ジタル変調手法は周知の技術なの で省略している。  In FIG. 8, the information transmission signal generation circuit 51 performs error control processing (error correction coding, interleaving, energy diffusion, etc.) and digitization as necessary for the input digital information. Apply digital modulation. The basic error control processing method and digital modulation method generally used in digital transmission are omitted because they are well-known technologies.
同期検波用セ グメ ン ト ではディ ジタル変調 と して絶対位相 変調が施される。 こ の絶対位相変調には、 例えば、 Q P S K、 1 6 Q A M、 6 4 Q A M変調な どが用い られる。 また、 差動 検波用セ グメ ン ト ではディ ジタル情報に基づいて同 じキヤ リ ァ番号の隣接する シ ンボル間で差動変調が施される。 こ の差 動変調には例えば、 D B P S K:、 D Q P S :、 D A P S Kな どが用い られる。  In the synchronous detection segment, absolute phase modulation is performed as digital modulation. For this absolute phase modulation, for example, QPSK, 16QAM, 64QAM modulation, or the like is used. In the differential detection segment, differential modulation is performed between adjacent symbols having the same carrier number based on digital information. For this differential modulation, for example, DBPSK :, DQPS :, DAPSK, and the like are used.
付加情報信号生成回路 5 2 は、 入力 される付加情報に必要 に応 じて誤 り 制御処理 (誤 り 訂正符号化やイ ンタ リ ーブ、 ェ ネルギー拡散な ど) と ディ ジタル変調を施す。 ディ ジタル変 調 と して M ( Mは 2 以上の 自 然数) 相 P S K ( Phase Shift Keying) 変調や、 シンボル方向での差動 M相 P S K変調な ど を用 ヽる。 The additional information signal generating circuit 52 performs error control processing (error correction coding, interleaving, energy spreading, etc.) and digital modulation on the input additional information as necessary. Digital transformation As the modulation, M (M is a natural number of 2 or more) phase PSK (Phase Shift Keying) modulation or differential M-phase PSK modulation in the symbol direction is used.
制御情報生成回路 5 6 は、 受信側で必要 と される伝送モー ド情報 (同期検波用セ グメ ン ト数、 差動検波用セ グメ ン ト数、 キヤ リ ァ変調方式な ど伝送モー ドを規定する各種情報) を生 成する。 こ の情報は、 付加情報信号生成回路 5 2 にて誤 り 制 御処理 と ディ ジタ ル変調を施 される が、 他の付加情報 と は異 なる誤 り 制御処理とディ ジタル変調を施しても よい。  The control information generation circuit 56 transmits the transmission mode information (the number of segments for synchronous detection, the number of segments for differential detection, the carrier modulation method, etc.) required on the receiving side. (Specified information). This information is subjected to error control processing and digital modulation in the additional information signal generation circuit 52. However, even if error control processing and digital modulation different from other additional information are performed, Good.
分散パイ ロ ッ ト信号生成回路 5 3 は、 キャ リ ア配置回路 5 7 にて配置が規定 される キヤ リ ア番号 k (セ グメ ン ト番号 i 及び各セグメ ン ト 内のキャ リ ア番号 k ' に よ り 決ま る) に対 応する P N (擬似乱数) 系列 w k ( w k = 0 , 1 ) に基づき 変調された分散パイ ロ ッ ト信号を生成する。 The distributed pilot signal generation circuit 53 generates the carrier number k (segment number i and carrier number k in each segment) whose arrangement is defined by the carrier arrangement circuit 57. generating a dispersed pie Lock preparative signal modulated based on PN that corresponds to Kemah that) Ri by the '(pseudo-random number) sequence w k (w k = 0, 1).
終端パイ 口 ッ ト信号生成回路 5 4 は、 キヤ リ ア配置回路 5 7 にて配置が規定される キヤ リ ァ番号 k (セ グメ ン ト番号 i 及び各セグメ ン ト 内のキャ リ ア番号 k ' によ り 決ま る) に対 応する P N (擬似乱数) 系列 w k ( w k = 0 , 1 ) に基づき 変調された終端パイ ロ ッ ト信号を生成する。 The termination pilot signal generation circuit 54 is provided with a carrier number k (segment number i and carrier number k in each segment) whose arrangement is defined by the carrier arrangement circuit 57. ′ (Determined by ') is generated based on a PN (pseudo-random number) sequence w k (w k = 0, 1).
帯域終端パイ ロ ッ ト信号生成回路 5 5 は、 帯域終端のキ ヤ リ ア番号 k に対応する Ρ Ν (擬似乱数) 系列 w k ( w k = 0 ,The band end pilot signal generation circuit 55 generates a Ρ Ν (pseudo random number) sequence w k (w k = 0,
1 ) に基づき変調された帯域終端パイ ロ ッ ト信号を生成する。 連続パィ 口 ッ ト信号は特に記 していないが、 付加情報信号 生成回路 5 2 にて当該キヤ リ アに対 して毎シンボル同一位相、 振幅で変調する場合を想定すればよい。 キャ リ ア配置回路 5 7 では、 情報伝送信号生成回路 5 1 、 付加情報信号生成回路 5 2 、 分散パイ ロ ッ ト信号生成回路 5 3 、 終端パイ ロ ッ ト信号生成回路 5 4 、 帯域終端パイ ロ ッ ト 信号生成回路 5 5 の各出力 (複素ベク トル列) を、 伝送モー ドに応じて規定される周波数領域の搬送波位置に配置する。 例えば、 分散パイ ロ ッ ト信号生成回路 5 3 の出力は、 同期 検波用セグメ ン ト 内において N ( Nは 2 以上の 自然数) キヤ リ ア間隔でかつシンボル毎に L ( Lは Nの約数) キャ リ アず つシフ ト させた搬送波に配置される。 終端パイ ロ ッ ト信号生 成回路 5 4 の出力は、 差動検波用セグメ ン ト内においてセグ メ ン ト内のキャ リ ア番号 k ' = 0 の搬送波に配置される。 ま た、 付加情報信号生成回路 5 2 の出力は、 例えば表 1 に示す 周波数配置に従って割 り 付け られる。 このよ う に して配置さ れた基底周波数帯域の搬送波毎のべク ト ル列は逆フ一 リ ェ変 換回路 5 8 に入力される。 Generates a band-end pilot signal modulated based on 1). Although the continuous bit signal is not particularly described, it is sufficient to assume that the additional information signal generation circuit 52 modulates the carrier with the same phase and amplitude for each symbol for each carrier. In the carrier arrangement circuit 57, the information transmission signal generation circuit 51, the additional information signal generation circuit 52, the distributed pilot signal generation circuit 53, the termination pilot signal generation circuit 54, and the band termination Each output (complex vector train) of the lot signal generation circuit 55 is arranged at a carrier position in the frequency domain defined according to the transmission mode. For example, the output of the distributed pilot signal generation circuit 53 is N (where N is a natural number of 2 or more) within the synchronous detection segment at carrier intervals and L (L is a divisor of N) for each symbol. ) Allocated to carrier shifted by carrier. The output of the termination pilot signal generation circuit 54 is arranged on the carrier having the carrier number k ′ = 0 in the segment in the differential detection segment. The output of the additional information signal generation circuit 52 is assigned according to, for example, the frequency arrangement shown in Table 1. The vector train for each carrier in the base frequency band arranged in this way is input to the inverse free transform circuit 58.
逆フー リ エ変換回路 5 8 は、 キ ャ リ ア配置回路 5 7 で生成 された基底周波数帯域の搬送波毎のべク トル列を周波数領域 から時間領域に変換し、 通常用い られるガ一 ドィ ンターパル 期間を付加 して出力する。 直交変調回路 5 9 は逆フー リ エ変 換回路 5 8 の出力を直交変調 し中間周波数帯域に変換する。 周波数変換回路 6 0 は、 直交変調された O F D M信号の周波 数帯域を中間周波数帯域から無線周波数帯域に変換しア ンテ ナなどに供給する。  The inverse Fourier transform circuit 58 converts the vector train for each carrier in the base frequency band generated by the carrier arranging circuit 57 from the frequency domain to the time domain, and uses a commonly used guardian. Output with an interpal period added. A quadrature modulation circuit 59 performs quadrature modulation on the output of the inverse Fourier conversion circuit 58 and converts it to an intermediate frequency band. The frequency conversion circuit 60 converts the frequency band of the orthogonally modulated OFDM signal from an intermediate frequency band to a radio frequency band, and supplies it to an antenna or the like.
以上の構成によ る送信装置によれば、 第 1 及び第 2 の実施 の形態で述べた O F D M伝送方式に基づく O F D M信号を生 成する こ と ができ る。 According to the transmission apparatus having the above configuration, an OFDM signal based on the OFDM transmission scheme described in the first and second embodiments is generated. Can be achieved.
(第 4 の実施の形態)  (Fourth embodiment)
図 9 は、 第 1 及び第 2 の実施の形態の O F D M伝送方式に 基づいて形成 された O F D M信号を受信 し、 伝送路の時間領 域でのィ ンパルス応答を推定する こ と が可能な受信装置の構 成を示す。  FIG. 9 shows a receiving apparatus capable of receiving an OFDM signal formed based on the OFDM transmission schemes of the first and second embodiments and estimating an impulse response in a time domain of a transmission path. The configuration of is shown.
図 9 において、 チューナ 1 1 は、 受信 された O F D M信号 の周波数帯域を無線周波数帯域か ら基底周波数帯域に変換す る。 フー リ エ変換回路 1 2 は、 基底周波数帯域の O F D M信 号を時間領域か ら周波数領域に変換 し、 周波数領域の搬送波 毎のべク トル列 と して出力する。  In FIG. 9, tuner 11 converts the frequency band of the received OFDM signal from a radio frequency band to a base frequency band. The Fourier transform circuit 12 converts the OFDM signal in the base frequency band from the time domain to the frequency domain, and outputs it as a vector train for each carrier in the frequency domain.
分散 Z終端パイ ロ ッ ト抽出回路 1 3 は、 フー リ エ変換回路 1 2 が出力するべク トル列か ら分散パイ ロ ッ ト信号及び必要 な終端パイ 口 ッ ト信号、 帯域終端パイ 口 ッ ト信号を抽出する。 ベタ トル発生回路 1 4 は、 分散 Z終端パイ ロ ッ ト抽出回路 1 3 で抽出 された分散パイ 口 ッ ト信号、 終端パイ 口 ッ ト信号及 び帯域終端パイ ロ ッ ト信号に対応する変調複素べク トル c n を発生する。 The distributed Z-terminated pilot extraction circuit 13 outputs a distributed pilot signal, a necessary terminal pilot signal, and a band terminal pilot signal from the vector train output from the Fourier transform circuit 12. Extract the signal. The vector generation circuit 14 is a modulation complex corresponding to the dispersed pilot signal, the terminated pilot signal, and the band terminated pilot signal extracted by the distributed Z-terminated pilot extracting circuit 13. Generates the vector c n .
除算回路 1 5 は、 分散ノ終端パイ ロ ッ ト抽出回路 1 3 で抽 出 された分散パイ ロ ッ ト信号、 終端パイ ロ ッ ト信号及び帯域 終端パイ ロ ッ ト信号をべク トル発生回路 1 4 が発生する複素 ベク トルで除 して、 分散パイ ロ ッ ト信号、 終端パイ ロ ッ ト信 号及び帯域終端パイ 口 ッ ト信号にかかる伝送路特性を推定す る。 補間回路 1 6 は、 除算回路 1 5 で得 られた分散パイ ロ ッ ト信号、 終端パイ ロ ッ ト信号及び帯域終端パイ ロ ッ ト信号に かかる伝送路特性を補間 して、 同期検波用セグメ ン ト の情報 伝送信号の搬送波にかかる伝送路特性を推定する。 The division circuit 15 converts the distributed pilot signal, the terminal pilot signal and the band terminal pilot signal extracted by the distributed terminal pilot extraction circuit 13 into a vector generation circuit 1. Divide by the complex vector in which 4 occurs to estimate the transmission path characteristics of the distributed pilot signal, the terminal pilot signal, and the band terminal pilot signal. The interpolation circuit 16 applies the dispersion pilot signal, the termination pilot signal, and the band termination pilot signal obtained in the division circuit 15 to each other. By interpolating the transmission path characteristics, the transmission path characteristics of the carrier of the information transmission signal of the synchronous detection segment are estimated.
遅延回路 1 7 は、 フー リ エ変換回路 1 2 の出力するべク ト ル列を 1 シンボル遅延する。 選択回路 1 8 は、 制御情報によ つ て別途伝送 されるセグメ ン トの種類に従っ て、 同期検波用 セ グメ ン ト の場合は補間回路 1 6 の出力を、 差動検波用セグ メ ン トの場合は遅延回路 1 7 の出力を選択 して出力する。  The delay circuit 17 delays the vector sequence output from the Fourier transform circuit 12 by one symbol. The selection circuit 18 outputs the output of the interpolation circuit 16 in the case of the segment for synchronous detection and the segment for differential detection in accordance with the type of the segment separately transmitted by the control information. In this case, the output of the delay circuit 17 is selected and output.
除算回路 1 9 は、 フー リ エ変換回路 1 2 が出力するべク ト ル列をそれぞれ選択回路 1 8 の出力で除算する。 除算回路 1 9 において、 同期検波用セ グメ ン ト では補間回路 1 6 で推定 されたそれぞれ対応する搬送波にかかる伝送路特性で除算 し て同期検波 し、 差動検波用セ グメ ン トでは遅延回路 1 7 が出 力する 1 シ ンボル前のそれぞれ対応する搬送波のべク トル列 で除算 して差動検波する。  The division circuit 19 divides the vector sequence output from the Fourier transform circuit 12 by the output of the selection circuit 18. In the division circuit 19, in the synchronous detection segment, the signal is divided by the transmission path characteristic of the corresponding carrier estimated in the interpolation circuit 16 to perform synchronous detection, and in the differential detection segment, the delay circuit is used. Divide by the vector row of the corresponding carrier one symbol before 1 output by 17 to perform differential detection.
復調回路 2 0 は、 情報伝送信号を生成す る 際の変調方法 ( Q P S K:、 1 6 Q A M、 6 4 Q A M、 D B P S K:、 D Q P S K:、 D A P S Kな ど) に従っ て除算回路 1 9 か ら出力 され る検波信号を復調 し、 伝送されたディ ジタル情報を得る。  The demodulation circuit 20 is output from the division circuit 19 according to the modulation method (QPSK :, 16 QAM, 64 QAM, DBPSK :, DQPSK :, DAPSK, etc.) when generating the information transmission signal. Demodulated the detected signal to obtain the transmitted digital information.
以上の構成に よ り 、 第 1 の実施の形態で述べた O F D M伝 送方式に基づく O F D M信号を受信 し復調する こ と ができ る。 以下に述べる構成は、 第 2 の実施の形態で述べた O F D M伝 送方式に基づ く O F D M信号を受信 し復調する場合の も ので ある。  With the above configuration, it is possible to receive and demodulate an OFDM signal based on the OFDM transmission method described in the first embodiment. The configuration described below is for the case of receiving and demodulating an OFDM signal based on the OFDM transmission method described in the second embodiment.
まず、 連続パイ ロ ッ ト抽出回路 2 1 は、 フ 一 リ エ変換回路 1 2 が出力するべク ト ル列か ら連続パイ ロ ッ ト信号を抽出す る。 こ の と き 、 同期検波用セ グメ ン ト と 差動検波用セ グメ ン ト が混在 している状態でも 、 少な く と も 同期検波用セ グメ ン ト の連続パイ ロ ッ ト信号が必ず混在する ので、 連続パイ ロ ッ ト信号を常時抽出する こ と ができ る。 First, the continuous pilot extraction circuit 21 extracts a continuous pilot signal from the vector sequence output from the Fourier transform circuit 12. You. At this time, even if the synchronous detection segment and the differential detection segment are mixed, at least the continuous pilot signal of the synchronous detection segment must be mixed. Therefore, a continuous pilot signal can always be extracted.
べク ト ル発生回路 2 2 は、 連続パイ ロ ッ ト抽出回路 2 1 で 抽出 された連続パイ ロ ッ ト信号に対応する変調複素べク トル c kn を発生する。 除算回路 2 3 は、 連続パイ ロ ッ ト抽出回 路 2 1 で抽出 された連続パイ ロ ッ ト信号をべク ト ル発生回路 2 2 が発生する複素べク ト ルで除 して、 連続パイ ロ ッ ト信号 にかかる伝送路特性を推定する。 逆フー リ エ変換回路 2 4 は、 除算回路 2 3 で推定された連続パイ 口 ッ ト信号にかかる伝送 路特性を周波数領域か ら時間領域に変換 して伝送路のィ ンパ ルス応答特性を得る。 The vector generation circuit 22 generates a modulation complex vector ck , n corresponding to the continuous pilot signal extracted by the continuous pilot extraction circuit 21. The division circuit 23 divides the continuous pilot signal extracted by the continuous pilot extraction circuit 21 by a complex vector generated by the vector generation circuit 22 to obtain a continuous pilot signal. Estimate the transmission path characteristics of the lot signal. The inverse Fourier transform circuit 24 converts the transmission path characteristic of the continuous pilot signal estimated by the division circuit 23 from the frequency domain to the time domain to obtain an impulse response characteristic of the transmission path. .
以上の こ と か ら、 本実施形態の受信装置の構成に よれば、 復調回路 2 0 において、 同期検波用セ グメ ン ト では伝送路特 性の補間処理によ る フ ィ ルタ効果に よ っ て高品質な復調を実 現する こ と ができ 、 差動検波用セ グメ ン ト ではシンポル間の 差動復調によ って伝送路特性の変化が速い移動受信に適 した 復調を実現する こ と ができ る。 また、 逆フ一 リ エ変換回路 2 4 において、 折 り 返 しのない伝送路のィ ンパルス応答特性を 得る こ と ができ る。 産業上の利用可能性  As described above, according to the configuration of the receiving apparatus of the present embodiment, in the demodulation circuit 20, in the synchronous detection segment, the filter effect by the interpolation processing of the transmission path characteristic is used. High-quality demodulation, and in the differential detection segment, demodulation suitable for mobile reception, in which the transmission line characteristics change rapidly, by differential demodulation between symbols. And can be. In addition, in the inverse Fourier transform circuit 24, it is possible to obtain an impulse response characteristic of the transmission line without turning back. Industrial applicability
以上述べたよ う に、 本発明の直交周波数分割多重伝送方式 は、 移動受信に適 した差動検波用セ グメ ン ト を備える こ と が でき る。 こ の と き 、 終端パイ ロ ッ ト信号及び帯域終端パイ 口 ッ ト信号を備える こ と によ っ て、 隣接する 同期検波用のセ グ メ ン ト の同期検波特性を損なわずに、 セ グメ ン ト毎に同期検 波用セグメ ン ト と 差動検波用セグメ ン ト を 自 由 に組み合わせ る こ と ができ 、 これによ つ て柔軟なサー ビス形態を実現する こ と ができ る。 As described above, the orthogonal frequency division multiplexing transmission system of the present invention may include a differential detection segment suitable for mobile reception. it can. In this case, by providing the terminal pilot signal and the band terminal pilot signal, the segment detection characteristics of adjacent segments for synchronous detection are not impaired. The segment for synchronous detection and the segment for differential detection can be freely combined for each point, thereby realizing a flexible service form.
また、 周波数配置の逆フー リ エ変換対がイ ンパルス状であ る連続パイ ロ ッ ト信号を用いて、 必要に応 じてシンボル期間 で折 り 返しのない伝送路のィ ンパルス応答特性を求め る こ と ができ る。  In addition, if necessary, the impulse response characteristics of a transmission line that does not return in the symbol period are obtained as necessary using a continuous pilot signal in which the inverse Fourier transform pair of the frequency arrangement is impulse-like. You can do it.
したがっ て、 本発明に よれば、 全体の伝送容量を維持 しつ つディ ジタ ル情報を伝送する搬送波の変調に部分的に移動受 信に適 した変調方式を導入 し、 ま た、 例えば連続パイ ロ ッ ト 信号か ら推定される伝送路のイ ンパルス応答に折 り 返 しが生 じないよ う に連続パイ 口 ッ ト信号を配置 した O F D M伝送方 式と 本方式に適する送信装置及び受信装置を提供する こ と が でき る。  Therefore, according to the present invention, a modulation scheme suitable for mobile reception is partially introduced into the modulation of a carrier wave for transmitting digital information while maintaining the overall transmission capacity. An OFDM transmission system in which continuous pilot signals are arranged so that no aliasing occurs in the impulse response of the transmission path estimated from the lot signal, and a transmitter and receiver suitable for this system Can be provided.

Claims

請求の範囲 The scope of the claims
( 1 ) シ ンボル周期毎に互いに直交する周波数関係にある 複数の搬送波に変調を施 してディ ジタ ル情報を伝送する 直交 周波数分割多重 ( O F D M ) 伝送方式において、  (1) In an orthogonal frequency division multiplexing (OFDM) transmission method in which digital information is transmitted by modulating a plurality of carriers having a frequency relationship orthogonal to each other for each symbol period,
前記複数の搬送波の う ち、 所定数の搬送波を 1 単位 と して 1 つ以上のセ グメ ン ト に割当て、 1 つ以上の搬送波を帯域終 端パイ ロ ッ ト信号に割当て、 前記 1 つ以上のセ グメ ン ト をセ グメ ン ト毎にそれぞれ同期検波用ま たは差動検波用のいずれ か一方と して用いる方式であって、  Among the plurality of carriers, a predetermined number of carriers are assigned as one unit to one or more segments, and one or more carriers are assigned to a band end pilot signal, and the one or more carriers are assigned. Is used as either synchronous detection or differential detection for each segment.
前記同期検波用セ グメ ン ト では、 シンポル時問及び周波数 が周期的に分散 した搬送波に当該搬送波を特定の位相及び振 幅で変調する分散パイ ロ ッ ト信号を配 し、 毎シンボルと も 同 じ周波数の搬送波に当該搬送波を付加情報に従っ て M ( Mは 2 以上の 自 然数) 相位相シ フ ト キーイ ン グ ( M相 P S K ) あ るいはシンボル方向での差動 M相位相シフ ト キーィ ングによ り 変調する付加情報伝送信号を配 し、 上記以外の搬送波に当 該搬送波を前記ディ ジタル情報に従っ て変調する情報伝送信 号を配し、  In the synchronous detection segment, a distributed pilot signal for modulating the carrier at a specific phase and amplitude is arranged on a carrier whose symbol is periodically dispersed and the frequency is periodically changed, and the same for each symbol. M (M is a natural number of 2 or more) phase shift keying (M phase PSK) or differential M phase shift in the symbol direction according to the additional information. An additional information transmission signal to be modulated by the keying is arranged, and an information transmission signal to modulate the carrier according to the digital information is arranged on a carrier other than the above.
前記差動検波用セ グメ ン ト では、 毎シンボル と も 同 じ周波 数の搬送波に当該搬送波を付加情報に従っ て M相位相シフ ト キーィ ングあるいはシンボル方向での差動 M相位相シ フ ト キ 一イ ングに よ り 変調する付加情報伝送信号を配 し、 隣接する 同期検波用セグメ ン ト の前記分散パイ 口 ッ ト信号の周波数配 置の周期性を満たす周波数の搬送波に当該搬送波を特定の位 相及び振幅で変調する終端パイ ロ ッ ト信号を配 し、 上記以外 の搬送波に当該搬送波を前記ディ ジタル情報に従って変調す る情報伝送信号を配し、 In the differential detection segment, the M-phase shift keying or the differential M-phase shift in the symbol direction is performed on the carrier having the same frequency for each symbol according to the additional information. An additional information transmission signal to be modulated by keying is arranged, and the carrier is identified as a carrier having a frequency that satisfies the periodicity of the frequency arrangement of the dispersed pilot signal in the adjacent synchronous detection segment. Rank A terminal pilot signal that modulates in phase and amplitude is arranged, and an information transmission signal that modulates the carrier according to the digital information is arranged in a carrier other than the above,
前記帯域終端パイ ロ ッ ト信号を、 前記同期検波用セ グメ ン ト における前記分散パイ ロ ッ ト信号の周波数配置の周期性を 満たす周波数でかつ伝送周波数帯域端の搬送波に配 して、 当 該搬送波を特定の位相及び振幅で変調する よ う に したこ と を 特徴とする直交周波数分割多重伝送方式。  Allocating the band-end pilot signal to a carrier at a frequency that satisfies the periodicity of the frequency arrangement of the distributed pilot signal in the synchronous detection segment and a carrier at the end of a transmission frequency band; An orthogonal frequency division multiplexing transmission system characterized in that a carrier is modulated at a specific phase and amplitude.
( 2 ) シンボル周期毎に互いに直交する周波数関係にあ る複数の搬送波に変調を施 してディ ジタル情報を伝送する 直 交周波数分割多重 ( O F D M ) 伝送方式において、  (2) In an orthogonal frequency division multiplexing (OFDM) transmission system in which digital information is transmitted by modulating a plurality of carriers having a frequency relationship orthogonal to each other for each symbol period,
前記複数の搬送波の う ち、 所定数の搬送波を 1 単位 と して 1 つ以上のセ グメ ン ト に割当て、 1 つ以上の搬送波を帯域終 端パイ ロ ッ ト信号に割当て、 前記 1 つ以上のセ グメ ン ト をセ グメ ン ト毎にそれぞれ同期検波用ま たは差動検波用のいずれ か一方と して用いる方式であって、  Among the plurality of carriers, a predetermined number of carriers are assigned as one unit to one or more segments, and one or more carriers are assigned to a band end pilot signal, and the one or more carriers are assigned. Is used as either synchronous detection or differential detection for each segment.
前記同期検波用セ グメ ン ト では、 シンポル時間及び周波数 が周期的に分散 した搬送波に当該搬送波を特定の位相及び振 幅で変調する分散パイ ロ ッ ト信号を配し、 毎シンボルと も 同 じ周波数の搬送波に当該搬送波を特定の位相及び振幅で変調 する連続パイ ロ ッ ト信号を配 し、 毎シンボルと も同 じ周波数 の搬送波に当該搬送波を付加情報に従っ て M相位相シ フ ト キ ーィ ングある いはシ ンボル方向での差動 M相位相シフ ト キ一 イ ングによ り 変調する付加情報伝送信号を配 し、 上記以外の 搬送波に当該搬送波を前記ディ ジタル情報に従っ て変調する 情報伝送信号を配し、 In the synchronous detection segment, a distributed pilot signal for modulating the carrier with a specific phase and amplitude is arranged on a carrier whose symbol time and frequency are periodically dispersed, and the same for each symbol. A continuous pilot signal that modulates the carrier with a specific phase and amplitude is arranged on the carrier of the frequency, and the M-phase phase shift key is applied to the carrier having the same frequency for each symbol according to the additional information. An additional information transmission signal to be modulated by the differential M-phase shift keying in the symbol direction or the symbol direction is arranged, and the carrier is applied to a carrier other than the above according to the digital information. Modulate Arrange information transmission signal,
前記差動検波用セ グメ ン ト では、 毎シンボル と も 同 じ周波 数の搬送波に当該搬送波を特定の位相及び振幅で変調する連 続パイ ロ ッ ト信号を配し、 毎シンボルと も同 じ周波数の搬送 波に当該搬送波を付加情報に従っ て M相位相シフ ト キ一イ ン グある いはシンボル方向での差動 M相位相シフ ト キ一ィ ング に よ り 変調する付加情報伝送信号を配し、 隣接する同期検波 用セ グメ ン ト の前記分散パイ 口 ッ ト の周波数配置の周期性を 満たす周波数の搬送波に当該搬送波を特定の位相及び振幅で 変調する終端パイ ロ ッ ト信号を配 し、 上記以外の搬送波に当 該搬送波を前記ディ ジタル情報に従って変調する情報伝送信 号を配し、  In the differential detection segment, a continuous pilot signal for modulating the carrier at a specific phase and amplitude is arranged on a carrier having the same frequency as each symbol, and the same symbol is used for each symbol. An additional information transmission signal that modulates a carrier with a frequency according to additional information by M-phase shift keying or differential M-phase shift keying in the symbol direction And a terminal pilot signal for modulating the carrier with a specific phase and amplitude on a carrier having a frequency that satisfies the periodicity of the frequency arrangement of the dispersion pilot port of the adjacent synchronous detection segment. An information transmission signal for modulating the carrier according to the digital information on a carrier other than the above;
前記帯域終端パイ 口 ッ ト信号を、 前記同期検波用セ グメ ン ト における前記分散パイ 口 ッ ト信号の周波数配置の周期性を 満たす周波数でかつ伝送周波数帯域端の搬送波に配 して、 当 該搬送波を特定の位相及び振幅で変調する よ う に した こ と を 特徴とする直交周波数分割多重伝送方式。  Allocating the band end pilot signal to a carrier at a frequency that satisfies the periodicity of the frequency arrangement of the distributed pilot signal in the synchronous detection segment and a carrier at the end of a transmission frequency band; An orthogonal frequency division multiplexing transmission method characterized in that a carrier is modulated at a specific phase and amplitude.
( 3 ) 前記同期検波用セ グメ ン ト 内の前記付加情報伝送 信号の周波数配置 と 、 前記差動検波用セ グメ ン ト 内の前記付 加情報伝送信号の周波数配置は、 一部共通の配置 と なっ てい る こ と を特徴とする請求項 1 または 2記載の直交周波数分割 多重伝送方式。  (3) The frequency arrangement of the additional information transmission signal in the synchronous detection segment and the frequency arrangement of the additional information transmission signal in the differential detection segment are partially common. 3. The orthogonal frequency division multiplexing transmission system according to claim 1, wherein:
( 4 ) 前記同期検波用セ グメ ン ト では、 前記付加情報伝 送信号の周波数配置を、 前記差動検波用セ グメ ン ト の前記付 加情報伝送信号の周波数配置の一部 とする こ と を特徴 とする 請求項 1 または 2記載の直交周波数分割多重伝送方式。 (4) In the synchronous detection segment, the frequency allocation of the additional information transmission signal is a part of the frequency allocation of the additional information transmission signal of the differential detection segment. Characterized by The orthogonal frequency division multiplex transmission system according to claim 1 or 2.
( 5 ) 前記同期検波用セ グメ ン ト 内の前記連続パイ ロ ッ ト信号の周波数配置 と 、 前記差動検波用セ グメ ン ト 内の前記 連続パイ ロ ッ ト信号の周波数配置は、 一部共通の配置 と なつ ている こ と を特徴 と する請求項 2 記載の直交周波数分割多重 达方式。  (5) The frequency allocation of the continuous pilot signal in the synchronous detection segment and the frequency allocation of the continuous pilot signal in the differential detection segment are partially 3. The orthogonal frequency division multiplexing method according to claim 2, characterized in that the arrangement is common.
( 6 ) 前記同期検波用セ グメ ン ト では、 前記連続パイ 口 ッ ト信号の周波数配置を、 前記差動検波用セグメ ン ト の前記 連続パイ 口 ッ ト信号の周波数配置の一部 とする こ と を特徴 と する請求項 2記載の直交周波数分割多重伝送方式。  (6) In the synchronous detection segment, the frequency arrangement of the continuous pilot signal may be a part of the frequency arrangement of the continuous pilot signal of the differential detection segment. The orthogonal frequency division multiplexing transmission system according to claim 2, characterized in that:
( 7 ) 前記付加情報には、 制御情報が含まれる こ と を特 徴とする請求項 1 乃至 6 のいずれか記載の直交周波数分割多 直伝;^方式。  (7) The orthogonal frequency division multiple transmission according to any one of claims 1 to 6, characterized in that the additional information includes control information.
( 8 ) 前記制御情報はシンボル方向での差動 2 相位相シ フ ト キーイ ング ( D B P S K ) に よ り 伝送する こ と を特徴 と する請求項 7記載の直交周波数分割多重伝送方式。  (8) The orthogonal frequency division multiplex transmission method according to claim 7, wherein the control information is transmitted by differential two-phase shift keying (DBPSK) in the symbol direction.
( 9 ) 前記同期検波用セ グメ ン ト 内の前記制御情報の周 波数配置と 、 前記差動検波用セグメ ン ト 内の前記制御情報の 周波数配置は、 一部共通の配置と なっている こ と を特徴 とす る請求項 7記載の直交周波数分割多重伝送方式。  (9) The frequency arrangement of the control information in the synchronous detection segment and the frequency arrangement of the control information in the differential detection segment are partly common. The orthogonal frequency division multiplexing transmission system according to claim 7, characterized in that:
( 1 0 ) 前記同期検波用セグメ ン ト では、 前記制御情報 の周波数配置を、 前記差動検波用セ グメ ン トの前記制御情報 の周波数配置の一部 とする こ と を特徴と する請求項 7 記載の 直交周波数分割多重伝送方式。  (10) In the synchronous detection segment, the frequency arrangement of the control information is a part of the frequency arrangement of the control information of the differential detection segment. 7. The orthogonal frequency division multiplexing transmission method described in 7.
( 1 1 ) 前記同期検波用セ グメ ン トでは、 搬送波数を N ( Nは 2 以上の 自 然数) の倍数と し、 前記分散パイ ロ ッ ト信 号を Nキヤ リ ア間隔でかつシンボル毎に L ( L は Nの約数) キャ リ アずつシフ ト させた搬送波に配する こ と を特徴とする 請求項 1 乃至 1 0 のいずれか記載の直交周波数分割多重伝送 方式。 (11) In the synchronous detection segment, the number of carriers is N (N is a natural number of 2 or more), and the distributed pilot signal is shifted by L (L is a divisor of N) carriers at N carrier intervals and for each symbol. The orthogonal frequency division multiplex transmission system according to any one of claims 1 to 10, wherein the orthogonal frequency division multiplex transmission system is arranged on a carrier wave.
( 1 2 ) 前記同期検波用及び差動検波用セグメ ン トでは、 それぞれの前記付加情報伝送信号を、 当該付加情報伝送信号 の周波数配置の逆フー リ ェ変換対がィ ンパルス状にな る よ う な周波数の搬送波に配する こ と を特徴とする請求項 1 乃至 1 1 のいずれか記載の直交周波数分割多重伝送方式。  (12) In the segment for synchronous detection and the segment for differential detection, each of the additional information transmission signals is formed such that the inverse Fourier transform pair of the frequency arrangement of the additional information transmission signal has an impulse shape. 12. The orthogonal frequency division multiplex transmission system according to claim 1, wherein the orthogonal frequency division multiplex transmission system is arranged on a carrier having such a frequency.
( 1 3 ) 前記同期検波用及び差動検波用セグメ ン トでは、 それぞれの前記連続パイ 口 ッ ト信号を、 当該連続パイ 口 ッ ト 信号の周波数配置の逆フー リ エ変換対がイ ンパルス状になる よ う な周波数の搬送波に配する こ と を特徴 とする請求項 2 記 載の直交周波数分割多重伝送方式。  (13) In the synchronous detection and differential detection segments, each of the continuous pilot signals is converted into an impulse-shaped inverse Fourier transform pair having the frequency arrangement of the continuous pilot signals. 3. The orthogonal frequency division multiplex transmission system according to claim 2, wherein the orthogonal frequency division multiplex transmission system is arranged on a carrier having a frequency such that
( 1 4 ) 前記同期検波用及び差動検波用セグメ ン トでは、 それぞれ前記付加情報伝送信号及び連続パイ 口 ッ ト信号を、 当該付加情報伝送信号及び連続パイ ロ ッ ト信号と の両者を合 せた周波数配置の逆フ 一 リ ェ変換対がィ ンパルス状になる よ う な周波数の搬送波に配する こ と を特徴 とする請求項 2 記載 の直交周波数分割多重伝送方式。  (14) In the synchronous detection and differential detection segments, the additional information transmission signal and the continuous pilot signal are combined with the additional information transmission signal and the continuous pilot signal, respectively. 3. The orthogonal frequency division multiplexing transmission system according to claim 2, wherein the inverse Fourier transform pairs of the arranged frequency arrangement are arranged on a carrier wave having a frequency so as to form an impulse.
( 1 5 ) 前記同期検波用セグメ ン ト と 前記差動検波用セ グメ ン ト では同一本数のキヤ リ アを用レヽる こ と を特徴 とする 請求項 1 乃至 1 4 のいずれか記載の直交周波数分割多重伝送 方式。 ( 1 6 ) 前記終端パイ ロ ッ ト信号は前記差動検波用セグ メ ン ト の帯域端の搬送波のみに配置する こ と を特徴と する請 求項 1 乃至 1 5 記載の直交周波数分割多重伝送方式。 (15) The quadrature according to any one of claims 1 to 14, wherein the same number of carriers are used in the synchronous detection segment and the differential detection segment. Frequency division multiplex transmission method. (16) The orthogonal frequency division multiplex transmission according to claims 1 to 15, wherein the terminal pilot signal is arranged only on a carrier at a band end of the differential detection segment. method.
( 1 7 ) 1 3 個のセ グメ ン ト と 1 キャ リ アの搬送波を用 いた帯域終端パイ ロ ッ ト カゝ ら な り 、 1 個のセグメ ン ト は 1 0 8 キヤ リ アの搬送波で構成 され、 帯域全体では 1 4 0 5 キヤ リ アの搬送波が用い られ、  (17) A band-terminated pilot carrier using 13 segments and 1 carrier carrier, one segment on a 108 carrier carrier. And a carrier of 1405 carriers is used in the entire band.
前記同期検波用セ グメ ン ト が、 1 シンボルあた り 9 キヤ リ ァの搬送波を用いた分散パイ ロ ッ ト信号 と 、 3 キャ リ アの搬 送波を用いた付加情報伝送信号と 、 9 6 キヤ リ ァの搬送波を 用いた情報伝送信号と から構成され、  The segment for synchronous detection is a distributed pilot signal using a carrier of 9 carriers per symbol, an additional information transmission signal using a carrier of 3 carriers, and 9 And an information transmission signal using a 6-carrier carrier.
前記差動検波用セ グメ ン ト が、 1 1 キャ リ アの搬送波を用 いた付加情報信号と 、 1 キャ リ アの搬送波を用いた終端パイ ロ ッ ト信号と 、 9 6 キャ リ アの搬送波を用いた情報伝送信号 と か ら構成 される こ と を特徴 とする請求項 1 記載の直交周波 数分割多重伝送方式。  The differential detection segment comprises: an additional information signal using a 11-carrier carrier, a termination pilot signal using a 1-carrier carrier, and a 96-carrier carrier. 2. The orthogonal frequency division multiplex transmission system according to claim 1, wherein the orthogonal frequency division multiplex transmission system is constituted by an information transmission signal using a signal.
( 1 8 ) 1 3 個のセ グメ ン ト と 1 キャ リ アの搬送波を用 いた帯域終端パイ 口 ッ ト カ ら な り 、 1 個のセグメ ン小 は 1 0 8 キャ リ アの搬送波で構成 され、 帯域全体では 1 4 0 5 キヤ リ アの搬送波が用い られ、  (18) 13-segment and 1-carrier carrier band-end Pi-to-car, one small segment consists of 108 carrier carriers And a carrier of 1405 carriers is used in the entire band,
前記同期検波用セ グメ ン ト が、 1 シンボルあた り 9 キヤ リ ァの搬送波を用いた分散パイ ロ ッ ト信号と 、 1 キャ リ アの搬 送波を用いた付加情報伝送信号と 、 2 キャ リ アの搬送波を用 いた連続パイ ロ ッ ト信号と 、 9 6 キャ リ アの搬送波を用いた 情報伝送信号と から構成され、 前記差動検波用セ グメ ン ト が、 5 キャ リ アの搬送波を用い た付加情報信号と 、 6 キ ヤ リ ァの搬送波を用いた連続パイ 口 ッ ト信号と 、 1 キャ リ アの搬送波を用いた終端パイ ロ ッ ト信 号と 、 9 6 キャ リ アの搬送波を用いた情報伝送信号と か ら構 成される こ と を特徴 とする請求項 2 記載の直交周波数分割多 重ィ s j ^方式。 The synchronous detection segment is a distributed pilot signal using a carrier of 9 carriers per symbol, an additional information transmission signal using a carrier of 1 carrier, and 2 It consists of a continuous pilot signal using the carrier of the carrier and an information transmission signal using the carrier of the 96 carrier. The differential detection segment comprises an additional information signal using a 5-carrier carrier, a continuous pilot signal using a 6-carrier carrier, and a 1-carrier carrier. 3. The orthogonal frequency division multiplexing sj ^ according to claim 2, comprising: a terminal pilot signal used; and an information transmission signal using a 96-carrier carrier. method.
( 1 9 ) 請求項 1 乃至 1 8 のいずれか記載の直交周波数 分割多重伝送方式に よ り O F D M信号を生成する装置を具備 する こ と を特徴と する直交周波数分割多重伝送方式の送信装 置。  (19) A transmission device of an orthogonal frequency division multiplex transmission system, characterized by comprising a device for generating an OFDM signal by the orthogonal frequency division multiplex transmission system according to any one of claims 1 to 18.
( 2 0 ) 請求項 1 記載の直交周波数分割多重伝送方式に よ り O F D M信号を生成する送信装置であって、  (20) A transmitting apparatus for generating an OFDM signal by the orthogonal frequency division multiplexing transmission method according to claim 1,
前記複数の搬送波の う ち、 所定数の搬送波を 1 単位 と して 1 つ以上のセ グメ ン ト に割当 て、 1 つ以上の搬送波を帯域終 端パイ ロ ッ ト信号に割当 て、 前記 1 つ以上のセ グメ ン ト をセ グメ ン ト毎にそれぞれ同期検波用ま たは差動検波用のいずれ か一方に割 り 当てる配列手段と 、  Among the plurality of carriers, a predetermined number of carriers are assigned as one unit to one or more segments, and one or more carriers are assigned to a band end pilot signal, An arranging means for allocating one or more segments to either synchronous detection or differential detection for each segment, and
前記分散パイ ロ ッ ト信号、 前記付加情報伝送信号、 前記情 報伝送信号、 前記終端パイ ロ ッ ト信号、 前記帯域終端パイ 口 ッ ト信号をそれぞれ生成する信号生成手段と を具備 し、 前記配列手段では、 前記帯域終端パイ ロ ッ ト信号を前記同 期検波用セ グメ ン ト における前記分散パイ 口 ッ ト信号の周波 数配置の周期性を満たす周波数でかつ伝送周波数帯域端の搬 送波に配 し、 前記同期検波用セグメ ン ト については、 前記分 散パイ ロ ッ ト信号をシンポル時間及び周波数が周期的に分散 した搬送波に配 し、 前記付加情報伝送信号を毎シンボルと も 同 じ周波数の搬送波に配 し、 前記情報伝送信号を上記以外の 搬送波に配 し、 前記差動検波用セグメ ン ト については、 前記 付加情報伝送信号を毎シンボルと も 同 じ周波数の搬送波に配 し、 前記終端パイ ロ ッ ト信号を隣接する 同期検波用セ グメ ン トの前記分散パイ 口 ッ ト信号の周波数配置の周期性を満たす 周波数の搬送波に配する よ う に したこ と を特徴とする直交周 波数分割多重伝送方式の送信装置。 Signal generating means for generating each of the distributed pilot signal, the additional information transmission signal, the information transmission signal, the terminal pilot signal, and the band terminal pilot signal, In the means, the band-end pilot signal is converted to a carrier wave at a frequency satisfying the periodicity of the frequency arrangement of the dispersion pilot signal in the synchronous detection segment and at the end of a transmission frequency band. And for the synchronous detection segment, the symbol time and frequency are periodically dispersed in the dispersion pilot signal. , The additional information transmission signal is allocated to a carrier having the same frequency as each symbol, the information transmission signal is allocated to a carrier other than the above, and the differential detection segment is configured as described above. The additional information transmission signal is arranged on a carrier having the same frequency as each symbol, and the terminal pilot signal is used to determine the periodicity of the frequency arrangement of the distributed pilot signal in the adjacent synchronous detection segment. A transmitting device of an orthogonal frequency division multiplex transmission system, wherein the transmitting device is arranged on a carrier wave having a frequency satisfying the requirement.
( 2 1 ) 請求項 2 記載の直交周波数分割多重伝送方式に よ り O F D M信号を生成する送信装置であって、  (21) A transmitting apparatus for generating an OFDM signal by the orthogonal frequency division multiplexing transmission method according to claim 2,
前記複数の搬送波の う ち、 所定数の搬送波を 1 単位 と して 1 つ以上のセグメ ン ト に割当て、 1 つ以上の搬送波を帯域終 端パイ ロ ッ ト信号に割当 て、 前記 1 つ以上のセ グメ ン ト をセ グメ ン ト毎にそれぞれ同期検波用または差動検波用のいずれ か一方に割 り 当てる配列手段と 、  Of the plurality of carriers, a predetermined number of carriers are assigned as one unit to one or more segments, and one or more carriers are assigned to a band end pilot signal, and the one or more carriers are assigned to one or more segments. An array means for allocating each segment to either synchronous detection or differential detection for each segment,
前記分散パイ ロ ッ ト信号、 前記付加情報伝送信号、 前記情 報伝送信号、 前記終端パイ ロ ッ ト信号、 前記帯域終端パイ 口 ッ ト信号、 前記連続パイ ロ ッ ト信号を生成する信号生成手段 と を具備 し、  Signal generating means for generating the distributed pilot signal, the additional information transmission signal, the information transmission signal, the terminal pilot signal, the band terminal pilot signal, and the continuous pilot signal And
前記配列手段では、 前記帯域終端パイ ロ ッ ト信号を前記同 期検波用セ グメ ン ト における前記分散パイ ロ ッ ト信号の周波 数配置の周期性を満たす周波数でかつ伝送周波数帯域端の搬 送波に配 し、 前記同期検波用セグメ ン ト については、 前記分 散パイ 口 ッ ト信号をシンボル時間及び周波数が周期的に分散 した搬送波に配し、 前記連続パイ ロ ッ ト信号を毎シンボルと も 同 じ周波数の搬送波に配 し、 前記付加情報伝送信号を毎シ ンボルと も 同 じ周波数の搬送波に配 し、 前記情報伝送信号を 上記以外の搬送波に配 し、 前記差動検波用セ グメ ン ト につい ては、 前記連続パイ ロ ッ ト信号を毎シンボルと も 同 じ周波数 の搬送波に配 し、 前記付加情報伝送信号を毎シンボルと も 同 じ周波数の搬送波に配 し、 前記終端パイ 口 ッ ト信号を隣接す る 同期検波用セグメ ン ト の前記分散パイ 口 ッ ト信号の周波数 配置の周期性を満たす周波数の搬送波に配する よ う に したこ と を特徴とする直交周波数分割多重伝送方式の送信装置。 In the arranging means, the band-end pilot signal is transmitted at a frequency satisfying the periodicity of the frequency arrangement of the distributed pilot signal in the synchronous detection segment and at a transmission frequency band end. For the synchronous detection segment, the scattered pilot signal is arranged on a carrier wave whose symbol time and frequency are periodically dispersed, and the continuous pilot signal is regarded as each symbol. The additional information transmission signal is arranged on a carrier having the same frequency as each symbol, the information transmission signal is arranged on a carrier other than the above, and the differential detection segment is arranged. As for the point, the continuous pilot signal is arranged on a carrier having the same frequency as each symbol, the additional information transmission signal is arranged on a carrier having the same frequency as each symbol, and the terminal pilot is arranged. Orthogonal frequency division multiplexing transmission characterized in that a set signal is arranged on a carrier having a frequency that satisfies the periodicity of the frequency arrangement of the distributed pilot signal of adjacent synchronous detection segments. System transmission device.
( 2 2 ) 請求項 1 乃至 1 8 のいずれか記載の直交周波数 分割多重伝送方式に よ り 生成 される O F D M信号を受信 し復 調する装置を具備する こ と を特徴 と する直交周波数分割多重 伝送方式の受信装置。  (22) An orthogonal frequency division multiplex transmission characterized by comprising a device for receiving and demodulating an OFDM signal generated by the orthogonal frequency division multiplex transmission method according to any one of claims 1 to 18. System receiver.
( 2 3 ) 請求項 1 乃至 1 8 のいずれか記載の直交周波数 分割多重伝送方式に よ り 生成 される O F D M信号を受信 し復 調する受信装置であって、  (23) A receiving apparatus for receiving and demodulating an OFDM signal generated by the orthogonal frequency division multiplex transmission method according to any one of claims 1 to 18,
前記受信 O F D M信号をフ ー リ エ変換に よ り 時間領域か ら 周波数領域の信号に変換する こ と に よっ て前記搬送波毎の位 相 と振幅を表わすベク トル列を得る フー リ エ変換手段と 、  Fourier transform means for transforming the received OFDM signal from a time domain to a frequency domain signal by Fourier transform to obtain a vector sequence representing the phase and amplitude of each carrier. ,
こ の手段で得 られるべク トル列か ら前記分散パイ ロ ッ ト信 号及び前記終端パイ 口 ッ ト信号及び前記帯域終端パイ ロ ッ ト 信号に相対する搬送波のべク トル群を抽出する第 1 の抽出手 段と 、  A vector group of carrier waves corresponding to the distributed pilot signal, the terminal pilot signal and the band terminal pilot signal is extracted from the vector train obtained by this means. 1 extraction method and
こ の手段で抽出 されたべク ト ル群を前記分散パイ ロ ッ ト信 号及び前記終端パイ 口 ッ ト信号及び前記帯域終端パィ ロ ッ ト 信号を変調 している前記特定の位相及び振幅で除算する第 1 の除算手段と 、 The vector group extracted by this means is divided into the distributed pilot signal, the terminal pilot signal, and the band terminal pilot. First dividing means for dividing the signal by the specific phase and amplitude modulating the signal;
こ の手段の出力を周波数方向及びシンボル時間方向に平滑 して補間する フ ィ ルタ手段と 、  Filter means for smoothing and interpolating the output of this means in the frequency direction and the symbol time direction;
前記フ ー リ エ変換手段で得 られたべク トル列を 1 シンボル 期間遅延する遅延手段と 、  Delay means for delaying the vector sequence obtained by the Fourier transform means for one symbol period;
前記同期検波用セ グメ ン ト の信号を処理する時には前記フ ィ ルタ手段の出力を、 差動検波用セ グメ ン ト の信号を処理す る時には前記遅延手段の出力を選択して出力する選択手段と 、 前記フー リ エ変換手段か ら出力 されるべク ト ル列を前記選 択手段の出力信号で除算 して検波べク ト ル列を求め出力する 第 2 の除算手段 と を具備する こ と を特徴とする 直交周波数分 割多重伝送方式の受信装置。  When processing the signal of the segment for synchronous detection, the output of the filter means is selected, and when processing the signal of the segment for differential detection, the output of the delay means is selected and output. Means, and second division means for dividing the vector sequence output from the Fourier transform means by the output signal of the selection means to obtain a detection vector sequence and outputting the same. A receiving device of the orthogonal frequency division multiplexing transmission method characterized by this.
( 2 4 ) 請求項 1 3 記載の直交周波数分割多重伝送方式 によ り 生成 される O F D M信号を受信 し復調する受信装置で あってヽ  (24) A receiving device for receiving and demodulating an OFDM signal generated by the orthogonal frequency division multiplexing transmission method according to claim 13.
前記受信 O F D M信号をフ ー リ エ変換に よ り 時間領域か ら 周波数領域の信号に変換する こ と によ っ て前記搬送波毎の位 相 と振幅を表わすべク トル列を得る フー リ エ変換手段と 、 こ の手段で得 られるべク ト ル列か ら前記同期検波用セ グメ ン ト及び前記差動検波用セ グメ ン ト の前記連続パイ 口 ッ ト信 号に相対する搬送波のべク ト ル群を抽出する第 2 の抽出手段 と 、  Fourier transform to obtain a vector sequence representing the phase and amplitude of each carrier by converting the received OFDM signal from a time domain to a frequency domain signal by Fourier transform Means, and a vector of a carrier wave corresponding to the continuous pilot signal of the synchronous detection segment and the differential detection segment from a vector train obtained by the means. A second extraction means for extracting a group of tolls, and
こ の手段で抽出 されたべク ト ル群を前記連続パイ ロ ッ ト信 号を変調 している前記特定の位相及び振幅で除算する第 3 の 除算手段と 、 A third method of dividing the vector group extracted by this means by the specific phase and amplitude modulating the continuous pilot signal. Division means, and
こ の手段の出力を逆フー リ エ変換に よ り 周波数領域か ら時間 領域に変換する こ と によ っ て伝送路のィ ンパルス応答特性を 得る逆フー リ エ変換手段 と を具備する こ と を特徴 とする 直交 周波数分割多重伝送方式の受信装置。 An inverse Fourier transform means for obtaining an impulse response characteristic of a transmission line by converting an output of the means from a frequency domain to a time domain by an inverse Fourier transform. A receiving device using an orthogonal frequency division multiplexing transmission method.
PCT/JP1998/002942 1997-07-01 1998-06-30 Orthogonal frequency-division multiplex transmission system, and its transmitter and receiver WO1999001956A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11506866A JP3083159B2 (en) 1997-07-01 1998-06-30 Orthogonal frequency division multiplexing transmission system and transmitter and receiver thereof
KR1020037008882A KR100575913B1 (en) 1997-07-01 1998-06-30 Orthogonal frequency-division multiplex transmission system, and its transmitter and receiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/175941 1997-07-01
JP17594197 1997-07-01

Publications (1)

Publication Number Publication Date
WO1999001956A1 true WO1999001956A1 (en) 1999-01-14

Family

ID=16004943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002942 WO1999001956A1 (en) 1997-07-01 1998-06-30 Orthogonal frequency-division multiplex transmission system, and its transmitter and receiver

Country Status (5)

Country Link
JP (5) JP3083159B2 (en)
KR (4) KR100575913B1 (en)
CN (9) CN1980214B (en)
TW (1) TW443059B (en)
WO (1) WO1999001956A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000051275A1 (en) * 1999-02-25 2000-08-31 Sony Corporation Digital broadcasting apparatus
WO2000054445A1 (en) * 1999-03-10 2000-09-14 Sony Corporation Digital broadcast receiver
JP2000312194A (en) * 1999-02-25 2000-11-07 Sony Corp Digital broadcast device
JP2001103032A (en) * 1999-07-23 2001-04-13 Nippon Telegr & Teleph Corp <Ntt> Ofdm modulation and demodulation circuit
WO2001054326A1 (en) * 2000-01-24 2001-07-26 Ntt Docomo, Inc. Channel constructing method and base station using the method
WO2002017529A1 (en) * 2000-08-21 2002-02-28 Kabushiki Kaisha Kenwood Orthogonal frequency division multiplexed signal receiving apparatus and orthogonal frequency division multiplexed signal receiving method
JP2002111620A (en) * 2000-08-01 2002-04-12 Sony Internatl Europ Gmbh Receiver and method for estimating channel
WO2002067478A1 (en) * 2001-02-20 2002-08-29 Mitsubishi Denki Kabushiki Kaisha Mobile communication system, multicarrier cdma transmitter, and multicarrier cdma receiver
WO2002093860A1 (en) * 2001-05-10 2002-11-21 Intel Corporation Channel estimation for orthogonal frequency division multiplexed (ofdm) signals
WO2004112292A1 (en) * 2003-06-18 2004-12-23 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving a pilot pattern for identification of a base station in an ofdm communication system
KR100724968B1 (en) * 2004-11-19 2007-06-04 삼성전자주식회사 Apparatus and method for transmitting/receiving signal according to pilot modulation in a multi-carrier communication system
WO2007136036A1 (en) 2006-05-24 2007-11-29 Panasonic Corporation Ofdm demodulation device
KR100794839B1 (en) * 2004-07-28 2008-01-16 가시오게산키 가부시키가이샤 Ofdm signal demodulator circuit and ofdm signal demodulating method
CN100438381C (en) * 2000-12-06 2008-11-26 松下电器产业株式会社 Ofdm signal transmission system, mobile terminal and electronic commerce system
WO2009001528A1 (en) * 2007-06-22 2008-12-31 Panasonic Corporation Transmission device, reception device, and ofdm transmission method
US7548506B2 (en) 2001-10-17 2009-06-16 Nortel Networks Limited System access and synchronization methods for MIMO OFDM communications systems and physical layer packet and preamble design
US8150408B2 (en) 2005-03-08 2012-04-03 Qualcomm Incorporated Pilot grouping and set management in multi-carrier communication systems
JP2012516615A (en) * 2009-01-30 2012-07-19 サムスン エレクトロニクス カンパニー リミテッド Cable digital video broadcasting system and reserved tone processing method thereof
US10075313B2 (en) 2005-03-08 2018-09-11 Qualcomm Incorporated Pilot grouping and route protocols in multi-carrier communication systems

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4409743B2 (en) * 2000-02-25 2010-02-03 パナソニック株式会社 Wireless communication apparatus and wireless communication system
FR2814011B1 (en) * 2000-09-14 2003-10-24 France Telecom OPTIMAL ESTIMATION METHOD OF A PROPAGATION CHANNEL BASED ONLY ON PILOT SYMBOLS AND CORRESPONDING ESTIMATOR
US7646702B2 (en) 2000-11-17 2010-01-12 Panasonic Corporation OFDM communication apparatus
SE0004403L (en) * 2000-11-29 2002-05-30 Ericsson Telefon Ab L M Methods and devices in a telecommunication system
US7020095B2 (en) * 2001-06-16 2006-03-28 Maxim Integrated Products, Inc. System and method for modulation of non-data bearing carriers in a multi-carrier modulation system
US6975650B2 (en) * 2002-02-13 2005-12-13 Interdigital Technology Corporation Transport block set segmentation
GB2386519B (en) 2002-03-12 2004-05-26 Toshiba Res Europ Ltd Adaptive Multicarrier Communication
KR20050005047A (en) * 2003-07-01 2005-01-13 삼성전자주식회사 Apparatus and Method for detecting synchronization signal
KR100996080B1 (en) * 2003-11-19 2010-11-22 삼성전자주식회사 Apparatus and method for controlling adaptive modulation and coding in a communication system using orthogonal frequency division multiplexing scheme
JP4043442B2 (en) 2004-01-09 2008-02-06 株式会社東芝 Wireless transmission device, wireless reception device, wireless transmission method, wireless reception method, and wireless communication system
JP4059227B2 (en) * 2004-05-21 2008-03-12 ソニー株式会社 Demodulator
CN1787506B (en) * 2004-12-09 2010-09-15 中兴通讯股份有限公司 Method for guiding frequency distribution of orthogonal frequency division multiplex system and apparatus thereof
KR100724949B1 (en) 2005-05-03 2007-06-04 삼성전자주식회사 Method and Apparatus for multiplexing data and control information in wireless communication systems based on frequency division multiple access
KR101119351B1 (en) * 2005-05-04 2012-03-06 삼성전자주식회사 Method and apparatus for transmitting/receiving information in a orthogonal frequency division multiplexing system
JP2007081504A (en) * 2005-09-12 2007-03-29 Hitachi Kokusai Electric Inc Transmission path characteristic interpolation method in ofdm receiver and apparatus thereof
JP3841819B1 (en) * 2005-11-08 2006-11-08 三菱電機株式会社 Orthogonal frequency division multiplexed signal receiver and reception method
JP4343926B2 (en) * 2006-02-08 2009-10-14 株式会社エヌ・ティ・ティ・ドコモ Transmitting apparatus and transmitting method
JP2007300217A (en) * 2006-04-27 2007-11-15 Toshiba Corp Transmission method of ofdm signal, ofdm transmission apparatus, and ofdm receiving apparatus
KR101233604B1 (en) * 2006-07-04 2013-02-14 가부시키가이샤 히다치 고쿠사이 덴키 Receiving apparatus
US8374161B2 (en) * 2006-07-07 2013-02-12 Qualcomm Incorporated Method and apparatus for sending data and control information in a wireless communication system
KR100922729B1 (en) * 2006-12-05 2009-10-22 한국전자통신연구원 Apparatus and method for channel estimation and synchronization for OFDM/OFDMA relay system
EP2129017A1 (en) 2007-02-15 2009-12-02 Mitsubishi Electric Corporation Reception device and reception method
CN101682452A (en) 2007-05-30 2010-03-24 松下电器产业株式会社 Transmitter, multicarrier transmitting method, and receiver
US8045628B2 (en) 2007-10-18 2011-10-25 Nokia Corporation Digital video broadcast service discovery
JP5061892B2 (en) * 2007-12-28 2012-10-31 富士通株式会社 Signal multiplexing method, transmitting station and receiving station in radio communication system
JP4545209B2 (en) 2008-09-01 2010-09-15 三菱電機株式会社 Orthogonal frequency division multiplexed signal receiving apparatus and receiving method thereof
JP4567088B2 (en) 2008-09-01 2010-10-20 三菱電機株式会社 OFDM signal receiving apparatus and receiving method
CN102065046B (en) * 2009-11-11 2013-10-09 北京泰美世纪科技有限公司 Information transmission method and signal generation device of OFDM (Orthogonal Frequency Division Multiplexing) system
GB2511797B (en) * 2013-03-13 2020-12-23 Saturn Licensing Llc Transmitters, receivers and methods of transmitting and receiving
US9008203B2 (en) 2013-03-13 2015-04-14 Sony Corporation Transmitters, receivers and methods of transmitting and receiving
CN105284068B (en) 2013-06-05 2019-08-27 索尼公司 It is used for transmission the transmitter and transmission method of payload data and emergence message
KR101446629B1 (en) * 2013-07-17 2014-10-06 한국전자통신연구원 Apparatus and method for secure data transmission in wireless communication system
JP6417178B2 (en) * 2014-10-10 2018-10-31 日本放送協会 OFDM transmitter
KR20170034621A (en) 2015-09-21 2017-03-29 박주원 Swing Bed For The Infant
JP6412535B2 (en) * 2016-10-17 2018-10-24 日本放送協会 OFDM transmitter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04501348A (en) * 1988-10-21 1992-03-05 トムソン―セエスエフ Transmitter, transmission method, receiver
JPH0723072A (en) * 1993-07-02 1995-01-24 Hitachi Ltd Detection system
JPH0888617A (en) * 1994-09-16 1996-04-02 Toshiba Corp Hierarchical orthogonal multiplex transmission system and its transmitter-receiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04501348A (en) * 1988-10-21 1992-03-05 トムソン―セエスエフ Transmitter, transmission method, receiver
JPH0723072A (en) * 1993-07-02 1995-01-24 Hitachi Ltd Detection system
JPH0888617A (en) * 1994-09-16 1996-04-02 Toshiba Corp Hierarchical orthogonal multiplex transmission system and its transmitter-receiver

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6973118B1 (en) 1999-02-25 2005-12-06 Sony Corporation Digital broadcasting apparatus
JP2000312194A (en) * 1999-02-25 2000-11-07 Sony Corp Digital broadcast device
WO2000051275A1 (en) * 1999-02-25 2000-08-31 Sony Corporation Digital broadcasting apparatus
WO2000054445A1 (en) * 1999-03-10 2000-09-14 Sony Corporation Digital broadcast receiver
US7356094B1 (en) 1999-03-10 2008-04-08 Sony Corporation Digital broadcast receiving apparatus
JP2001103032A (en) * 1999-07-23 2001-04-13 Nippon Telegr & Teleph Corp <Ntt> Ofdm modulation and demodulation circuit
KR100439877B1 (en) * 2000-01-24 2004-07-12 엔티티 도꼬모 인코퍼레이티드 Channel constructing method and base station using the method
WO2001054326A1 (en) * 2000-01-24 2001-07-26 Ntt Docomo, Inc. Channel constructing method and base station using the method
AU755354B2 (en) * 2000-01-24 2002-12-12 Ntt Docomo, Inc. Channel constructing method and base station using the method
US7646747B2 (en) * 2000-01-24 2010-01-12 Ntt Docomo, Inc. Channel constructing method and base station using the method
US8630244B2 (en) 2000-01-24 2014-01-14 Ntt Docomo, Inc. Channel structuring method and base station therewith
JP2002111620A (en) * 2000-08-01 2002-04-12 Sony Internatl Europ Gmbh Receiver and method for estimating channel
WO2002017529A1 (en) * 2000-08-21 2002-02-28 Kabushiki Kaisha Kenwood Orthogonal frequency division multiplexed signal receiving apparatus and orthogonal frequency division multiplexed signal receiving method
CN100438381C (en) * 2000-12-06 2008-11-26 松下电器产业株式会社 Ofdm signal transmission system, mobile terminal and electronic commerce system
WO2002067478A1 (en) * 2001-02-20 2002-08-29 Mitsubishi Denki Kabushiki Kaisha Mobile communication system, multicarrier cdma transmitter, and multicarrier cdma receiver
US7443827B2 (en) 2001-02-20 2008-10-28 Mitsubishi Denki Kabushiki Kaisha Mobile communication system, multicarrier CDMA transmitter, and multicarrier CDMA receiver
US7230911B2 (en) 2001-05-10 2007-06-12 Intel Corporation Sparse channel estimation for orthogonal frequency division multiplexed signals
US7609616B2 (en) 2001-05-10 2009-10-27 Intel Corporation Sparse channel estimation for orthogonal frequency division multiplexed signals
WO2002093860A1 (en) * 2001-05-10 2002-11-21 Intel Corporation Channel estimation for orthogonal frequency division multiplexed (ofdm) signals
US7912012B2 (en) 2001-10-17 2011-03-22 Nortel Networks Limited Method and system for performing cell selection for OFDM communications
US7548506B2 (en) 2001-10-17 2009-06-16 Nortel Networks Limited System access and synchronization methods for MIMO OFDM communications systems and physical layer packet and preamble design
US8213292B2 (en) 2001-10-17 2012-07-03 Rockstar Bidco, LP System access and synchronization methods for MIMO OFDM communications systems and physical layer packet and preamble design
KR100934299B1 (en) * 2001-10-17 2009-12-29 노오텔 네트웍스 리미티드 Synchronization in a Multi-Carrier CDMA System
US8018975B2 (en) 2001-10-17 2011-09-13 Nortel Networks Limited Method and system for performing synchronization in OFDM systems
US8441918B2 (en) 2001-10-17 2013-05-14 Apple Inc. System access and synchronization methods for MIMO OFDM communications systems and physical layer packet and preamble design
US8085814B2 (en) 2001-10-17 2011-12-27 Nortel Networks Limited Frame structure, system and method for OFDM communications
US8830816B2 (en) 2001-10-17 2014-09-09 Apple Inc. System access and synchronization methods for MIMO OFDM communications systems and physical layer packet and preamble design
WO2004112292A1 (en) * 2003-06-18 2004-12-23 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving a pilot pattern for identification of a base station in an ofdm communication system
US7675981B2 (en) 2004-07-28 2010-03-09 Casio Computer Co., Ltd. OFDM signal demodulator circuit and OFDM signal demodulating method
KR100794839B1 (en) * 2004-07-28 2008-01-16 가시오게산키 가부시키가이샤 Ofdm signal demodulator circuit and ofdm signal demodulating method
KR100724968B1 (en) * 2004-11-19 2007-06-04 삼성전자주식회사 Apparatus and method for transmitting/receiving signal according to pilot modulation in a multi-carrier communication system
US8150408B2 (en) 2005-03-08 2012-04-03 Qualcomm Incorporated Pilot grouping and set management in multi-carrier communication systems
US10075313B2 (en) 2005-03-08 2018-09-11 Qualcomm Incorporated Pilot grouping and route protocols in multi-carrier communication systems
US8077784B2 (en) 2006-05-24 2011-12-13 Panasonic Corporation OFDM demodulation device
WO2007136036A1 (en) 2006-05-24 2007-11-29 Panasonic Corporation Ofdm demodulation device
JP5015249B2 (en) * 2007-06-22 2012-08-29 パナソニック株式会社 Transmitting apparatus, receiving apparatus, and OFDM transmission method
US8559536B2 (en) 2007-06-22 2013-10-15 Panasonic Corporation Transmission device, reception device, and OFDM transmission method
WO2009001528A1 (en) * 2007-06-22 2008-12-31 Panasonic Corporation Transmission device, reception device, and ofdm transmission method
JP2012516615A (en) * 2009-01-30 2012-07-19 サムスン エレクトロニクス カンパニー リミテッド Cable digital video broadcasting system and reserved tone processing method thereof
US9172572B2 (en) 2009-01-30 2015-10-27 Samsung Electronics Co., Ltd. Digital video broadcasting-cable system and method for processing reserved tone

Also Published As

Publication number Publication date
CN1980216A (en) 2007-06-13
KR100557426B1 (en) 2006-04-07
JP4197690B2 (en) 2008-12-17
CN1980214B (en) 2010-07-21
CN1984112B (en) 2010-12-15
JP2005312082A (en) 2005-11-04
CN1980213A (en) 2007-06-13
JP4197568B2 (en) 2008-12-17
JP2008113471A (en) 2008-05-15
KR100574125B1 (en) 2006-04-26
CN1980217A (en) 2007-06-13
KR20040004480A (en) 2004-01-13
JP4057603B2 (en) 2008-03-05
CN1980213B (en) 2010-12-15
CN1984112A (en) 2007-06-20
JP2000236313A (en) 2000-08-29
CN1980215A (en) 2007-06-13
CN1484449A (en) 2004-03-24
CN1980217B (en) 2012-06-20
KR100581780B1 (en) 2006-05-24
CN1980214A (en) 2007-06-13
JP2005304082A (en) 2005-10-27
JP3083159B2 (en) 2000-09-04
KR20000068380A (en) 2000-11-25
JP4287895B2 (en) 2009-07-01
TW443059B (en) 2001-06-23
CN1236610C (en) 2006-01-11
CN1980216B (en) 2011-09-07
KR100575913B1 (en) 2006-05-02
CN1231089A (en) 1999-10-06
CN1842068A (en) 2006-10-04

Similar Documents

Publication Publication Date Title
WO1999001956A1 (en) Orthogonal frequency-division multiplex transmission system, and its transmitter and receiver
KR102555888B1 (en) Preamble based ofdm fine frequency offset estimation
KR100768052B1 (en) Estimation of two propagation channels in ofdm
US7965781B2 (en) Signal component demultiplexing apparatus, filter apparatus, receiving apparatus, communication apparatus, and communication method
EP2822243B1 (en) Transmit signal generation in an FDMA communication system
CN1965518B (en) Apparatus and method for channel estimation in an orthogonal frequency division multiplexing cellular communication system using multiple transmit antennas
AU2009201967B2 (en) Improved pilot allocation in multi-carrier systems with frequency notching
JPWO2011083535A1 (en) OFDM transmitter, OFDM transmission method, OFDM receiver, and OFDM reception method
JP2000049744A (en) Transmission band division modulation/demodulation device and its method
US20090022050A1 (en) Ofdm modulation device, ofdm demodulation device, ofdm modulation method, and ofdm demodulation method
WO2015037873A1 (en) Broadcast receiving device and method for operating the same
KR20180033168A (en) Receiver and receiving method
JP3541653B2 (en) Received signal correction system and orthogonal frequency division multiplexed signal transmission device
JP7289737B2 (en) Data transmission system and data transmission method
Chaudhary A Dissertation on Inter-carrier Interference (Analysis & Methods to Reduce ICI) in Mobile Communication Using OFDM

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98800917.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR

WWE Wipo information: entry into national phase

Ref document number: 1019997001638

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1019997001638

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997001638

Country of ref document: KR