WO1999008227A1 - Device and method for detecting without contact two-dimensional or three-dimensional marked surfaces and/or for detecting two-dimensional or three-dimensional movements - Google Patents

Device and method for detecting without contact two-dimensional or three-dimensional marked surfaces and/or for detecting two-dimensional or three-dimensional movements Download PDF

Info

Publication number
WO1999008227A1
WO1999008227A1 PCT/DE1998/002272 DE9802272W WO9908227A1 WO 1999008227 A1 WO1999008227 A1 WO 1999008227A1 DE 9802272 W DE9802272 W DE 9802272W WO 9908227 A1 WO9908227 A1 WO 9908227A1
Authority
WO
WIPO (PCT)
Prior art keywords
motion detector
marked
distance
marked area
movement
Prior art date
Application number
PCT/DE1998/002272
Other languages
German (de)
French (fr)
Inventor
Thomas Teufel
Gerhard Keller
Original Assignee
Mm-Lesestift Manager Memory Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mm-Lesestift Manager Memory Gmbh filed Critical Mm-Lesestift Manager Memory Gmbh
Publication of WO1999008227A1 publication Critical patent/WO1999008227A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • G06F3/0317Detection arrangements using opto-electronic means in co-operation with a patterned surface, e.g. absolute position or relative movement detection for an optical mouse or pen positioned with respect to a coded surface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors

Definitions

  • Non-contact-free methods are known for detecting relief-like surface structures.
  • a three-dimensional negative image of the object is created, from which information about its surface properties is obtained.
  • a disadvantage of such processes is that their quality depends very much on the casting or impression agent used. In addition, they cannot be used on sensitive or easily damaged surfaces without danger to the areas to be examined.
  • JP-0 5 341 904 describes a motion detector which is designed as a rotatable ball surrounded by a strongly inhomogeneous magnetic field.
  • the motion detector is moved along the surface to be scanned, the ball is rotated, which is detected by a Hall generator and converted into electronic signals containing information about the position of the motion detector relative to the surface to be scanned.
  • a motion detector can only detect the position parallel to a two-dimensional surface, a relief structure of the surface to be scanned cannot be detected with it.
  • the previously known motion detector also does not work in a contact-free manner and can therefore not be used on sensitive surfaces.
  • ERSATZBLAH (RULE 26)
  • the object of the present invention is to provide a device and a method for detecting two- and / or three-dimensional surfaces and / or for detecting two- and / or three-dimensional movements along a surface, the risk of damage to the surface being largely avoided.
  • the device then comprises a motion detector, a distance meter and a signal processing unit.
  • the motion detector works without contact and continuously or at predetermined time intervals detects the position of the device according to the invention in a plane parallel to the surface to be examined, for example, generated from a plane projection of the three-dimensional marked surface.
  • the relief is detected by means of the distance meter, which determines the distance between the motion detector and the surface to be detected at each detected point on the projected plane.
  • the signal processing unit With the help of the signal processing unit, the information from the motion detector and the distance meter are brought together and converted into an electronically usable image of the relief structure of the detected surface and / or of the movement carried out.
  • the surface structure is detected without contact.
  • Suitable motion detectors or distance meters work, for example, with the help of light or other electromagnetic rays, sound waves, electrical and / or magnetic fields.
  • the particular advantage of the device according to the invention is that it can be used in various areas, in particular those in which the surfaces to be detected are particularly sensitive and the high precision of the determined data is also important. This included certain areas of medicine, dentistry, biology, archeology or paleontology.
  • a detection device that is particularly useful for a large number of applications works with optical means.
  • An optical radiation source emitting in the direction of the marked area is integrated in the motion detector and the motion detector and the distance meter detect light reflected from the marked area.
  • Lasers or semiconductor emitters, the radiation frequencies of which should be adapted to the corresponding application, may be considered as preferred radiation sources.
  • the motion detector advantageously has a matrix of optical detection means arranged next to one another in a surface.
  • the movement carried out by the detector along the marked area is thus easy to understand due to the chronological sequence of the electronic signals emitted by the individual optical detection means.
  • a suitable and particularly inexpensive detection means is an array of photodiodes.
  • the photodiodes are arranged at a distance from one another in at least two different directions, as a result of which the movement of the motion detector in an area parallel to these directions can be calculated particularly easily. If the photodiodes are in two directions perpendicular to one another, then an X and a Y direction can be determined directly for determining the position of the motion detector.
  • an optical image sensor can also be used instead of the photodiode array. By comparing successive image sequences of the image sensor, information about any movement perpendicular to the marked area can also be obtained.
  • a particularly advantageous distance meter consists of a photodiode which receives a light signal from a radiation source reflected by the marked area and converts it into an electronic signal which is used in measuring electronics to determine the distance.
  • a plurality of photodiodes arranged side by side are also conceivable, from whose photovoltaic signals the distance between the motion detector and the marked area is calculated by suitable measuring electronics.
  • the distance can be determined using optical triangulation, for example.
  • An optical interferometer is particularly suitable for microscopically fine surface structures, for example in particular metallic surfaces.
  • the motion detector and / or the distance meter and / or the radiation source is integrated in a microchip.
  • the signal processing unit can be connected to a display unit, for example a monitor, so that the respective position of the motion detector can be followed directly during the motion.
  • the signal processing unit is arranged spatially separated from the motion detector and is in - preferably wireless - data exchange with it.
  • the spatial dimensions of the motion detector can thus be limited to a minimum and the flexibility and efficiency of the device can thereby be significantly increased.
  • the signal processing unit is expediently in a data connection to an electronic storage medium in which the information about the surface structure and / or the movement relative to the surface is stored electronically and can be called up.
  • the positions in a projection plane — essentially parallel to the marked surface — are determined with the aid of optical detection means (X, Y) position.
  • the distance between the motion detector and the marked surface i.e. the value / (X, Y)
  • the distance between the motion detector and the marked surface i.e. the value / (X, Y)
  • the distance between the motion detector and the marked surface is determined in a contact-free manner for each detected (X.Y) value.
  • information about the movement or the surface condition of the marked area is obtained from the (X, Y, Z) values determined in this way.
  • a particularly advantageous determination of the distance is carried out by measuring the transit time of a light signal as it traverses the distance to be determined.
  • the invention makes use of a method known per se for measuring the speed of light, in which the phase shift of a light signal modulated at high frequency is measured after passing through a predetermined distance with respect to the original modulation signal.
  • the speed of light is assumed to be known and the method for measuring the distance traveled by the light is used. Since the speed of light in different media is known with high accuracy, this method enables a very precise distance measurement.
  • the method according to the invention is advantageously suitable for motion detection, for example of a reading device, for the optical detection and storage of visually marked and projected alphanumeric characters, graphics and / or photographic images or for determining the position in hand scanners.
  • a particularly advantageous development of a method according to the invention used for motion detection provides that the data recorded by the motion detector are suitable for carrying out a correction compensation in order, for example, to enable the reading of a page of text by a reader.
  • FIG. 1 shows the motion detector of a detection device according to the invention in a plan view
  • FIG. 3 is a block diagram to explain the operation of the motion detector of FIG. 1,
  • FIG. 4a a spacer held at a distance from a surface
  • Fig. 4b the principle of distance measurement in a distance meter of a detection device according to the invention
  • Fig. 5 in a block diagram the electronic components of the distance meter of Fig. 4a.
  • the non-contact motion detector 1 shown in FIG. 1 has a semiconductor radiator 2 and a total of five photodiodes 3, 3 ', 3 ", 3'", 4.
  • the photodiodes 3 to 3 '" serve to detect a movement parallel to a two- or three-dimensionally marked area 8, while the photodiode 4 enables the measurement of the vertical distance of the reading device from the marked area.
  • the scanning head 6 is an independent module that can be installed within a larger device, such as an image reading device.
  • the scanning head 6 is provided on the side facing the marked surface 8 in the intended state with a lens 7, which in the exemplary embodiment is convex-concave, which imparts the light emitted by the semiconductor emitter 2 on the marked surface 8 or the image of the the marked surface 8 of reflected light on the photodiodes 3, 3 ', 3 ", 3'", 4 is used.
  • the semiconductor emitter 2 and the photodiodes 3, 3 ', 3 ", 3'” are integrated in a microchip 9 as components of the non-contact motion detector 1.
  • the semiconductor emitter 2 is actuated by suitable control electronics 11 as soon as the intended movement detection begins.
  • the light focused by the lens 7 from the semiconductor emitter 2 in the direction of the marked area 8 is reflected by the latter and is imaged by the lens 7 onto the microchip 9.
  • the photodiodes 3, 3 ', 3 ", 3'” detect the reflected light.
  • the electrical pulses of the photodiodes 3, 3 ', 3 ", 3'", 4 are amplified in an A / D converter 12 and supplied to the signal processing unit 13 as a digital synchronization signal for describing the position of the motion detector 1 relative to the marked area 8 and / or stored in the storage units 14, 15.
  • the light signal 18 is reflected on the marked area and reaches the photodiode 4.
  • the transit time t For the distance covered, which is greater than twice the distance 2 L between the motion detector 1 and the marked area 8, the light requires the transit time t.
  • the light transit time t is determined by comparing the phase of the transmitted modulation signal 19 with the phase of the received light signal 18.
  • the amplitudes of the two signals 18, 19 are plotted as a function of time in FIG. 4b.
  • the light propagation time t is clearly recognizable from the phase difference 61 minus t1 of the modulation signal 19 and the light signal 18.
  • the electronic components required for the distance measurement are shown in FIG. 5.
  • the emitted light from the light-emitting diode 2 is modulated with the sine wave signal generated in the oscillator 21 and amplified in the signal amplifier 22.
  • the photodiode 4 receives the modulated Kiert surface 8 reflected light signal 18, converts it into a modulated photovoltaic signal and passes this to the amplifier 23.
  • the phase positions of the generated sine wave signal 19 and the photovoltaic signal 18 are compared in a discriminator 24.
  • the output signal of the discriminator 24 is proportional to the phase shift and is therefore a measure of the distance traveled by the light within a time t2 minus t1 at the speed c.
  • the discriminator signal passes via the signal amplifier 25 to the signal processing unit 13, in which it is combined with the corresponding signals from the photodiodes 3, 3 ', 3 ", 3" to form a digital information package and is stored in the memories 14, 15.
  • the signal can also be used to control a sensor motor 27, by means of which, for example, the focal length of the lens 7 can be controlled, or which controls an optics connected upstream of a reading device for detecting alphanumeric characters, graphics or photographic images.

Abstract

The invention concerns a device comprising a movement detector (1) which detects without contact the position of the device parallel to a marked surface (8) in two and/or three dimensions, a distance measuring element which determines without contact, for each detected position value of the movement detector (1), the variation between the movement detector (1) and the marked surface, and a signal processing unit which computes on the basis of the movement detector position signals and of the distance measuring element data capable of being electronically stored related to the marked surface and/or the movement produced by the movement detector. The movement detector (1) is preferably a matrix consisting of optical detecting means arranged side by side in a surface, such as photodiodes or pixels of an image detector. The variation between the image detector and the marked surface is preferably determined by means detecting the time taken by a light signal to travel the distance. Said device is particularly appropriate for position detecting for image reading electronic appliances, as well as for determining without contact the structure of surfaces in medical and dental applications.

Description

Vorrichtung und Verfahren zum berührungsfreien Erfassen zwei- und/oder dreidimensional markierter Oberflächen und/ oder zum Erfassen zwei- und/oder dreidimensionaler Bewegungen Device and method for contactless detection of two- and / or three-dimensionally marked surfaces and / or for detecting two- and / or three-dimensional movements
Zum Erfassen reliefartiger Oberflächenstrukturen sind nichtberührungsfreie Verfahren bekannt. So wird etwa bei Guß- oder Abdruckverfahren ein dreidimensionales Negativbild des Gegenstandes erstellt, aus dem Informationen über dessen Oberflächenbeschaffenheit gewonnen werden.Non-contact-free methods are known for detecting relief-like surface structures. In the case of casting or impression processes, for example, a three-dimensional negative image of the object is created, from which information about its surface properties is obtained.
Nachteilig bei derartigen Verfahren ist, daß ihre Qualität sehr stark von dem eingesetzten Guß- oder Abdruckmittel abhängt. Zudem sind sie bei empfindlichen oder leicht zu beschädigenden Oberflächen nicht ohne Gefahr für die zu untersuchenden Areale einsetzbar.A disadvantage of such processes is that their quality depends very much on the casting or impression agent used. In addition, they cannot be used on sensitive or easily damaged surfaces without danger to the areas to be examined.
Desweiteren sind Bewegungsdetektoren bekannt, mittels derer die Position eines Gegenstandes, etwa eines Handscanners, gegenüber einer Fläche bestimmbar ist. In der JP-0 5 341 904 wird ein Bewegungsdetektor beschrieben, der als eine drehbewegliche, von einem stark inhomogenen Magnetfeld umgebene Kugel ausgebildet ist. Beim Bewegen des Bewegungsdetektors entlang der abzuscannenden Fläche wird die Kugel in eine Drehbewegung versetzt, die von einem Hallgenerator erfaßt und in elektronische, die Information über die Position des Bewegungsdetektors gegenüber der abzuscannenden Fläche enthaltene Signale umgewandelt werden. Ein derartiger Bewegungsdetektor kann jedoch nur die Position parallel zu einer zweidimen- sionalen Fläche erfassen, eine Reliefstruktur der abzuscannenden Oberflä- ehe ist damit nicht detektierbar. Zudem arbeitet der vorbekannte Bewegungsdetektor ebenfalls nicht berührungsfrei und ist deshalb bei empfindlichen Oberflächen nicht einsetzbar.Furthermore, motion detectors are known, by means of which the position of an object, for example a hand scanner, relative to a surface can be determined. JP-0 5 341 904 describes a motion detector which is designed as a rotatable ball surrounded by a strongly inhomogeneous magnetic field. When the motion detector is moved along the surface to be scanned, the ball is rotated, which is detected by a Hall generator and converted into electronic signals containing information about the position of the motion detector relative to the surface to be scanned. However, such a motion detector can only detect the position parallel to a two-dimensional surface, a relief structure of the surface to be scanned cannot be detected with it. In addition, the previously known motion detector also does not work in a contact-free manner and can therefore not be used on sensitive surfaces.
ERSATZBLAH (REGEL 26) Aufgabe der vorliegenden Erfindung ist die Schaffung einer Vorrichtung und eines Verfahrens zum Erfassen zwei- und/oder dreidimensionaler Oberflächen und/oder zum Erfassen zwei- und/oder dreidimensionaler Bewegungen entlang einer Fläche, wobei die Gefahr von Beschädigungen der Fläche weitestgehend zu vermeiden ist.ERSATZBLAH (RULE 26) The object of the present invention is to provide a device and a method for detecting two- and / or three-dimensional surfaces and / or for detecting two- and / or three-dimensional movements along a surface, the risk of damage to the surface being largely avoided.
Gelöst wird diese Aufgabe in vorrichtungstechnischer Hinsicht durch die Merkmale des Patentanspruchs 1. Danach umfaßt die Vorrichtung einen Bewegungsdetektor, einen Distanzmesser und eine Signalverarbeitungseinheit.In terms of device technology, this object is achieved by the features of patent claim 1. The device then comprises a motion detector, a distance meter and a signal processing unit.
Der Bewegungsdetektor arbeitet berührungsfrei und erfaßt kontinuierlich oder in vorgegebenen Zeitabständen die Position der erfindungsgemäßen Vorrichtung in einer zur untersuchenden Fläche parallelen, etwa aus einer Ebenenprojektion der dreidimensional markierten Oberfläche erzeugten Ebene. Die Erfassung des Reliefs erfolgt mittels des Distanzmessers, der zu jedem erfaßten Punkt der projizierten Ebene den Abstand zwischen dem Bewegungsdetektor und der zu erfassenden Fläche bestimmt. Mit Hilfe der Signalverarbeitungseinheit werden die Informationen des Bewegungsdetektors sowie des Distanzmessers zusammengeführt und in ein elektronisch verwertbares Bild der Reliefstruktur der erfaßten Oberfläche und/oder der durchgeführten Bewegung umgewandelt.The motion detector works without contact and continuously or at predetermined time intervals detects the position of the device according to the invention in a plane parallel to the surface to be examined, for example, generated from a plane projection of the three-dimensional marked surface. The relief is detected by means of the distance meter, which determines the distance between the motion detector and the surface to be detected at each detected point on the projected plane. With the help of the signal processing unit, the information from the motion detector and the distance meter are brought together and converted into an electronically usable image of the relief structure of the detected surface and / or of the movement carried out.
Die Erfassung der Oberflächenstruktur erfolgt bei der erfindungsgemäßen Vorrichtung berührungsfrei. Geeignete Bewegungsdetektoren bzw. Distanz- messer arbeiten etwa mit Hilfe von Licht oder sonstigen elektromagnetischen Strahlen, Schallwellen, elektrischen und/oder magnetischen Feldern. Der besondere Vorteil der erfindungsgemäßen Vorrichtung besteht in ihrer Einsetzbarkeit in verschiedenen Bereichen, und zwar insbesondere solchen, bei denen die zu erfassenden Oberflächen besonders empfindlich sind und es zudem auf eine hohe Präzision der ermittelten Daten ankommt. Dazu gehörten etwa bestimmte Bereiche der Medizin, Zahnmedizin, Biologie, Archäologie oder Paläontologie.In the device according to the invention, the surface structure is detected without contact. Suitable motion detectors or distance meters work, for example, with the help of light or other electromagnetic rays, sound waves, electrical and / or magnetic fields. The particular advantage of the device according to the invention is that it can be used in various areas, in particular those in which the surfaces to be detected are particularly sensitive and the high precision of the determined data is also important. This included certain areas of medicine, dentistry, biology, archeology or paleontology.
Eine für eine große Zahl von Anwendungen besonders zweckmäßige Erfas- sungsvorrichtung arbeitet mit optischen Mitteln. Dabei ist im Bewegungsdetektor eine in Richtung auf die markierte Fläche abstrahlende optische Strahlungsquelle integriert und der Bewegungsdetektor sowie der Distanzmesser erfassen von der markierten Fläche reflektiertes Licht. Als bevorzugte Strahlungsquellen kommen etwa Laser oder Halbleiterstrahler in Fra- ge, deren Strahlungsfrequenzen der entsprechenden Anwendung angepaßt sein sollten.A detection device that is particularly useful for a large number of applications works with optical means. An optical radiation source emitting in the direction of the marked area is integrated in the motion detector and the motion detector and the distance meter detect light reflected from the marked area. Lasers or semiconductor emitters, the radiation frequencies of which should be adapted to the corresponding application, may be considered as preferred radiation sources.
Vorteilhafterweise besitzt der Bewegungsdetektor eine Matrix aus in einer Fläche nebeneinander angeordneten optischen Erfassungsmitteln. Die vom Detektor vollzogene Bewegung entlang der markierten Fläche ist damit leicht aufgrund der zeitlichen Abfolge der von den einzelnen optischen Erfassungsmitteln abgegebenen elektronischen Signale nachvollziehbar.The motion detector advantageously has a matrix of optical detection means arranged next to one another in a surface. The movement carried out by the detector along the marked area is thus easy to understand due to the chronological sequence of the electronic signals emitted by the individual optical detection means.
Ein geeignetes und besonders preisgünstiges Erfassungsmittel ist ein Array aus Fotodioden. Die Fotodioden sind in einer Ebene in zumindest zwei unterschiedlichen Richtungen beabstandet voneinander angeordnet , wodurch sich die Bewegung des Bewegungsdetektors in einer zu diesen Richtungen parallelen Fläche besonders leicht berechnen läßt. Stehen die Fotodioden in zwei zueinander senkrechten Richtungen, so läßt sich unmittelbar eine X- und eine Y-Richtung zur Positionsbestimmung des Bewegungsdetektors festlegen.A suitable and particularly inexpensive detection means is an array of photodiodes. The photodiodes are arranged at a distance from one another in at least two different directions, as a result of which the movement of the motion detector in an area parallel to these directions can be calculated particularly easily. If the photodiodes are in two directions perpendicular to one another, then an X and a Y direction can be determined directly for determining the position of the motion detector.
Bei bestimmten Anwendungen, insbesondere wenn eine hohe Auflösung gewünscht wird, kann auch anstelle des Fotodiodenarrays ein optischer Bild- sensor eingesetzt werden. Aus dem Vergleich aufeinanderfolgender Bildsequenzen des Bildsensors läßt sich zudem auch eine Information über eine etwaige, gegenüber der markierten Fläche senkrechte Bewegung gewinnen.In certain applications, especially when a high resolution is required, an optical image sensor can also be used instead of the photodiode array. By comparing successive image sequences of the image sensor, information about any movement perpendicular to the marked area can also be obtained.
Ein besonders vorteilhafter Distanzmesser besteht aus einer Fotodiode, die ein von der markierten Fläche reflektiertes Lichtsignal einer Strahlungsquelle empfängt und in ein elektronisches Signal umwandelt, das in einer Meßelektronik dazu benutzt wird, die Distanz zu bestimmen. Es sind auch mehrere nebeneinander angeordnete Fotodioden denkbar, aus deren photovol- taischen Signalen der Abstand zwischen dem Bewegungsdetektor und der markierten Fläche von einer geeigneten Meßelektronik berechnet wird. Im Zusammenhang mit einem Laser als Strahlungsquelle kann der Abstand etwa mittels optischer Triangulation bestimmt werden.A particularly advantageous distance meter consists of a photodiode which receives a light signal from a radiation source reflected by the marked area and converts it into an electronic signal which is used in measuring electronics to determine the distance. A plurality of photodiodes arranged side by side are also conceivable, from whose photovoltaic signals the distance between the motion detector and the marked area is calculated by suitable measuring electronics. In connection with a laser as a radiation source, the distance can be determined using optical triangulation, for example.
Alternativ sind auch interferometrische Methoden zur Distanzmessung einsetzbar. Für mikroskopisch feine Oberflächenstrukturen, etwa insbesondere metallischer Oberflächen, ist ein optisches Interferometer besonders geeignet.Alternatively, interferometric methods for distance measurement can also be used. An optical interferometer is particularly suitable for microscopically fine surface structures, for example in particular metallic surfaces.
Um die Herstellung der erfindungsgemäßen Erfassungsvorrichtung zu erleichtern und zu verbilligen, ist der Bewegungsdetektor und/oder der Distanzmesser und/oder die Strahlungsquelle in einen Mikrochip integriert.In order to facilitate and reduce the cost of manufacturing the detection device according to the invention, the motion detector and / or the distance meter and / or the radiation source is integrated in a microchip.
In einer vorteilhaften Weiterbildung ist die Signalverarbeitungseinheit mit ei- ner Anzeigeeinheit, etwa einem Monitor verbindbar, so daß die jeweilige Position des Bewegungsdetektors während der Bewegung unmittelbar verfolgt werden kann.In an advantageous development, the signal processing unit can be connected to a display unit, for example a monitor, so that the respective position of the motion detector can be followed directly during the motion.
In einer abermaligen Weiterbildung ist die Signalverarbeitungseinheit vom Bewegungsdetektor räumlich getrennt angeordnet und steht mit diesem in - vorzugsweise drahtlosem - Datenaustausch. Die räumlichen Dimensionen des Bewegungsdetektors lassen sich damit auf ein Minimum begrenzen und hierdurch die Flexibilität und Effizienz der Vorrichtung deutlich erhöhen.In a further development, the signal processing unit is arranged spatially separated from the motion detector and is in - preferably wireless - data exchange with it. The spatial dimensions of the motion detector can thus be limited to a minimum and the flexibility and efficiency of the device can thereby be significantly increased.
Zweckmäßigerweise steht die Signalverarbeitungseinheit mit einem elektronischen Speichermedium in Datenverbindung, in dem die Informationen über die Oberflächenstruktur und/oder die Bewegung gegenüber der Fläche elektronisch abrufbar abgespeichert sind.The signal processing unit is expediently in a data connection to an electronic storage medium in which the information about the surface structure and / or the movement relative to the surface is stored electronically and can be called up.
In verfahrenstechnischer Hinsicht ist die Erfindungsaufgabe durch ein Verfahren mit den Merkmalen -des Patentanspruchs 1 gelöst.In procedural terms, the object of the invention is achieved by a method having the features of claim 1.
Bei diesem Verfahren erfolgt während einer Bewegung eines Bewegungsdetektors relativ zu einer markierten Fläche eine berührungsfreie Ermittlung der Positionen in einer - zur markierten Fläche im wesentlichen parallelen - Projektionsebene mit Hilfe von optischen Erfassungsmitteln (X,Y)-Position. Gleichzeitig wird zu jedem erfaßten (X.Y)-Wert der jeweilige Abstand des Bewegungsdetektors zur markierten Fläche, also der Wert / (X,Y), berührungsfrei ermittelt. In einem letzten Verfahrensschritt werden aus den auf diese Weise ermittelten (X,Y,Z)-Werten Informationen über die Bewegung bzw. die Oberflächenbeschaffenheit der markierten Fläche gewonnen.In this method, during a movement of a motion detector relative to a marked surface, the positions in a projection plane — essentially parallel to the marked surface — are determined with the aid of optical detection means (X, Y) position. At the same time, the distance between the motion detector and the marked surface, i.e. the value / (X, Y), is determined in a contact-free manner for each detected (X.Y) value. In a last method step, information about the movement or the surface condition of the marked area is obtained from the (X, Y, Z) values determined in this way.
Eine besonders vorteilhafte Bestimmung der Distanz erfolgt dabei durch die Messung der Laufzeit eines Lichtsignals beim Durchlaufen der zu bestim- menden Distanz. Die Erfindung macht dabei Gebrauch von einem an sich bekannten Verfahren zur Messung der Lichtgeschwindigkeit, bei dem die Phasenverschiebung eines mit hoher Frequenz modulierten Lichtsignals nach Durchlaufen einer vorgegebenen Distanz gegenüber dem ursprünglichen Modulationssignal gemessen wird. Die Lichtgeschwindigkeit wird dabei als bekannt vorausgesetzt und das Verfahren zur Messung der vom Licht durchlaufenen Strecke eingesetzt. Da die Lichtgeschwindigkeit in unterschiedlichen Medien mit hoher Genauigkeit bekannt ist, ermöglicht dieses Verfahren eine sehr präzise Distanzmessung.A particularly advantageous determination of the distance is carried out by measuring the transit time of a light signal as it traverses the distance to be determined. The invention makes use of a method known per se for measuring the speed of light, in which the phase shift of a light signal modulated at high frequency is measured after passing through a predetermined distance with respect to the original modulation signal. The speed of light is assumed to be known and the method for measuring the distance traveled by the light is used. Since the speed of light in different media is known with high accuracy, this method enables a very precise distance measurement.
Das erfindungsgemäße Verfahren ist in vorteilhafter Weise zur Bewegungserfassung etwa eines Lesegerätes für die optische Erfassung und Speicherung von visuell markierten und projizierten alphanumerischen Zeichen, Graphiken und/oder fotografischen Bildern oder auch zur Positionsbestimmung bei Handscannern geeignet.The method according to the invention is advantageously suitable for motion detection, for example of a reading device, for the optical detection and storage of visually marked and projected alphanumeric characters, graphics and / or photographic images or for determining the position in hand scanners.
Eine besonders vorteilhafte Weiterbildung eines zur Bewegungserfassung eingesetzten erfindungsgemäßen Verfahrens sieht vor, daß die vom Bewegungsdetektor aufgenommenen Daten zum Durchführen eines Korrekturausgleiches geeignet sind, um etwa die zeilenrichtige Erfassung einer Textseite durch ein Lesegerät zu ermöglichen.A particularly advantageous development of a method according to the invention used for motion detection provides that the data recorded by the motion detector are suitable for carrying out a correction compensation in order, for example, to enable the reading of a page of text by a reader.
Anhand der beigefügten Zeichnungen sollen nachstehend ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung und das Verfahren nach der Erfindung näher erläutert werden. In schematischen Ansichten zeigen:An exemplary embodiment of the device according to the invention and the method according to the invention will be explained in more detail below with reference to the accompanying drawings. Schematic views show:
Fig. 1 den Bewegungsdetektor einer erfindungsgemäßen Erfassungsvorrichtung in einer Draufsicht,1 shows the motion detector of a detection device according to the invention in a plan view,
Fig. 2 einen in einem Abtastkopf aufgenommenen Bewegungsdetek- tor bei bestimmungsgemäßem Gebrauch in einem Längsschnitt,2 shows a motion detector accommodated in a scanning head when used as intended in a longitudinal section,
Fig. 3 ein Blockschaltbild zur Erklärung der Funktionsweise des Bewegungsdetektors aus Fig. 1 ,3 is a block diagram to explain the operation of the motion detector of FIG. 1,
Fig. 4a einen beabstandet von einer Fläche gehaltenen Distanzmesser, Fig. 4b das Prinzip der Abstandsmessung bei einem Distanzmesser einer erfindungsgemäßen Erfassungsvorrichtung und4a a spacer held at a distance from a surface, Fig. 4b the principle of distance measurement in a distance meter of a detection device according to the invention and
Fig. 5 in einem Blockschaltbild die elektronischen Komponenten des Distanzmessers der Fig. 4a.Fig. 5 in a block diagram the electronic components of the distance meter of Fig. 4a.
Der in Fig. 1 gezeigte berührungsfreie Bewegungsdetektor 1 weist einen Halbleiterstrahier 2 sowie insgesamt fünf Fotodioden 3, 3', 3", 3'", 4 auf. Die Fotodioden 3 bis 3'" dienen der Erfassung einer Bewegung parallel zu einer zwei- oder dreidimensional markierten Fläche 8, während die Fotodiode 4 die Messung des Vertikalabstandes des Lesegerätes von der markierten Fläche ermöglicht.The non-contact motion detector 1 shown in FIG. 1 has a semiconductor radiator 2 and a total of five photodiodes 3, 3 ', 3 ", 3'", 4. The photodiodes 3 to 3 '"serve to detect a movement parallel to a two- or three-dimensionally marked area 8, while the photodiode 4 enables the measurement of the vertical distance of the reading device from the marked area.
Fig. 2 zeigt einen Abtastkopf 6, in dem der berührungsfreie Bewegungsde- tektor 1 aufgenommen ist. Bei dem Abtastkopf 6 handelt es sich um ein eigenständiges Modul, das innerhalb einer größeren Vorrichtung, etwa eines Bildlesegerätes, einbaubar ist. Der Abtastkopf 6 ist auf der im bestimmungsgemäßen Zustand der markierten Fläche 8 zugewandten Seite mit einer - im Ausführungsbeispiel konvex-konkaven - Linse 7 versehen , die der Abbil- düng des vom Halbleiterstrahler 2 abgestrahlten Lichts auf der markierten Fläche 8 bzw. der Abbildung des von der markierten Fläche 8 reflektierten Lichtes auf die Fotodioden 3, 3', 3", 3'", 4 dient.2 shows a scanning head 6 in which the non-contact movement detector 1 is accommodated. The scanning head 6 is an independent module that can be installed within a larger device, such as an image reading device. The scanning head 6 is provided on the side facing the marked surface 8 in the intended state with a lens 7, which in the exemplary embodiment is convex-concave, which imparts the light emitted by the semiconductor emitter 2 on the marked surface 8 or the image of the the marked surface 8 of reflected light on the photodiodes 3, 3 ', 3 ", 3'", 4 is used.
Die Funktionsweise des berührungsfreien Bewegungsdetektors 1 läßt sich anhand des in Fig. 3 dargestellten Blockdiagramms beschreiben. In dieser Darstellung sind als Komponenten des berührungsfreien Bewegungsdetektors 1 der Halbleiterstrahler 2 sowie die Fotodioden 3, 3', 3", 3'" in einem Mi- krochip 9 integriert. Durch eine geeignete Ansteuerungselektronik 11 wird der Halbleiterstrahler 2 betätigt, sobald die bestimmungsgemäße Bewegungs- detektion beginnt. Das durch die Linse 7 vom Halbleiterstrahler 2 in Richtung auf die markierte Fläche 8 fokussierte Licht wird von dieser reflektiert und von der Linse 7 auf den Mikrochip 9 abgebildet. Die Fotodioden 3, 3', 3", 3'" erfassen das reflektierte Licht. Bei der Bewegung des Bewegungsdetektors 1 parallel zur markierten Fläche 8 wird in dem aus den Fotodioden 3, 3', 3", 3'" bestehenden Diodenarray ein Muster zeitlich aufeinanderfolgender elektrischer Signale erzeugt, aus dem mittels einer geeigneten Datenverarbeitung die Richtung und die Geschwindigkeit der Bewegung des Bewegungsdetektors 1 in eindeutiger Weise bestimmbar ist.The operation of the non-contact motion detector 1 can be described with the aid of the block diagram shown in FIG. 3. In this illustration, the semiconductor emitter 2 and the photodiodes 3, 3 ', 3 ", 3'" are integrated in a microchip 9 as components of the non-contact motion detector 1. The semiconductor emitter 2 is actuated by suitable control electronics 11 as soon as the intended movement detection begins. The light focused by the lens 7 from the semiconductor emitter 2 in the direction of the marked area 8 is reflected by the latter and is imaged by the lens 7 onto the microchip 9. The photodiodes 3, 3 ', 3 ", 3'" detect the reflected light. When the motion detector 1 moves parallel to the marked area 8, a pattern of temporally successive electrical signals is generated in the diode array consisting of the photodiodes 3, 3 ', 3 ", 3'", from which the direction and the speed of the signals are generated by means of suitable data processing Movement of the motion detector 1 can be determined in a clear manner.
Die elektrischen Impulse der Fotodioden 3, 3', 3", 3'", 4 werden in einem A/D-Konverter 12 verstärkt und als digitales Synchronisationssignal zur Be- Schreibung der Position des Bewegungsdetektors 1 gegenüber der markierten Fläche 8 der Signalverarbeitungseinheit 13 zugeführt und/oder in den Speichereinheiten 14, 15 abgespeichert.The electrical pulses of the photodiodes 3, 3 ', 3 ", 3'", 4 are amplified in an A / D converter 12 and supplied to the signal processing unit 13 as a digital synchronization signal for describing the position of the motion detector 1 relative to the marked area 8 and / or stored in the storage units 14, 15.
Anhand der Fig. 4a und 4b wird im folgenden die Funktionsweise des erfin- dungsgemäßen Distanzmessers erklärt. Von der Leuchtdiode 2 wird ein Lichtsignal 18, zum Beispiel eine voll durchmodulierte sinusförmige Schwingung in Richtung auf die markierte Fläche 8 abgestrahlt. Das Lichtsignal 18 wird an der markierten Fläche reflektiert und gelangt auf die Fotodiode 4. Für die dabei zurückgelegte Wegstrecke, die größer als der doppelte Abstand 2 L zwischen dem Bewegungsdetektor 1 und der markierten Fläche 8 ist, benö tigt das Licht die Laufzeit t. Mit der Lichtgeschwindigkeit c ergibt sich die zu berechnende Wegstrecke somit aus der Formel 2 L = c x t. Die Bestimmung der Lichtlaufzeit t erfolgt aus dem Vergleich der Phase des gesendeten Modulationssignals 19 mit der Phase des empfangenen Lichtsignals 18. In Fig. 4b sind die Amplituden der beiden Signale 18, 19 als Funktion der Zeit aufgetragen. Deutlich erkennbar ergibt sich die Lichtlaufzeit t aus der Phasendifferenz 61 minus t1 des Modulationssignals 19 und des Lichtsignals 18.The operation of the distance meter according to the invention is explained below with reference to FIGS. 4a and 4b. A light signal 18, for example a fully modulated sinusoidal oscillation, is emitted by the light-emitting diode 2 in the direction of the marked surface 8. The light signal 18 is reflected on the marked area and reaches the photodiode 4. For the distance covered, which is greater than twice the distance 2 L between the motion detector 1 and the marked area 8, the light requires the transit time t. With the speed of light c, the distance to be calculated thus results from the formula 2 L = c x t. The light transit time t is determined by comparing the phase of the transmitted modulation signal 19 with the phase of the received light signal 18. The amplitudes of the two signals 18, 19 are plotted as a function of time in FIG. 4b. The light propagation time t is clearly recognizable from the phase difference 61 minus t1 of the modulation signal 19 and the light signal 18.
Die für die Distanzmessung erforderlichen elektronischen Komponenten sind in Fig. 5 gezeigt. Das abgestrahlte Licht der Leuchtdiode 2 wird mit dem im Oszillator 21 generierten und im Signalverstärker 22 verstärkten Sinuswellensignal moduliert. Die Fotodiode 4 empfängt das modulierte, an der mar- kierten Fläche 8 reflektierte Lichtsignal 18, wandelt es in ein moduliertes photovoltaisches Signal um und leitet dies dem Verstärker 23 zu. In einem Diskriminator 24 werden die Phasenlagen des generierten Sinuswellensignals 19 und des photovoltaischen Signals 18 miteinander verglichen. Das Ausgangssignal des Diskriminators 24 verhält sich proportional zur Phasenverschiebung und ist somit ein Maß für die vom Licht innerhalb einer Zeit t2 minus t1 mit der Geschwindigkeit c zurückgelegten Wegstrecke.The electronic components required for the distance measurement are shown in FIG. 5. The emitted light from the light-emitting diode 2 is modulated with the sine wave signal generated in the oscillator 21 and amplified in the signal amplifier 22. The photodiode 4 receives the modulated Kiert surface 8 reflected light signal 18, converts it into a modulated photovoltaic signal and passes this to the amplifier 23. The phase positions of the generated sine wave signal 19 and the photovoltaic signal 18 are compared in a discriminator 24. The output signal of the discriminator 24 is proportional to the phase shift and is therefore a measure of the distance traveled by the light within a time t2 minus t1 at the speed c.
Das Diskriminatorsignal gelangt über den Signalverstärker 25 zur Signalver- arbeitseinheit 13, in der es mit den entsprechenden Signalen der Fotodioden 3, 3', 3", 3" zu einem digitalen Informationspaket zusammengefaßt und in den Speichern 14, 15 abgelegt wird.The discriminator signal passes via the signal amplifier 25 to the signal processing unit 13, in which it is combined with the corresponding signals from the photodiodes 3, 3 ', 3 ", 3" to form a digital information package and is stored in the memories 14, 15.
Das Signal ist auch zur Steuerung eines Sensormotors 27 einsetzbar, mittels dessen etwa die Brennweite der Linse 7 ansteuerbar ist, oder der eine an einem Lesegerät zur Erfassung von alphanumerischen Zeichen, Graphiken oder fotografischen Bildern vorgeschaltete Optik ansteuert. The signal can also be used to control a sensor motor 27, by means of which, for example, the focal length of the lens 7 can be controlled, or which controls an optics connected upstream of a reading device for detecting alphanumeric characters, graphics or photographic images.

Claims

Patentansprüche claims
1. Vorrichtung zum Erfassen zwei- und/oder dreidimensional markierter Oberflächen und/oder zum Erfassen zwei- und/oder dreidimensionaler Bewegungen, mit einem Bewegungsdetektor (1), der kontinuierlich oder in vorgegebenen Zeitabständen seine jeweilige Position bei einer Bewegung parallel zu einer zwei- und/oder dreidimensional markierten Fläche (8) berührungsfrei erfaßt und in elektronische Signale umwandelt, mit einem Distanzmesser (4), der den Abstand (L) des Bewegungsdetektors (1) bei einer vorgegebenen Position relativ zur markierten Fläche (8) berührungsfrei ermittelt und in elektronische Signale umwandelt, und mit einer Signalverarbeitungseinheit (13), die aus den Signalen des Bewegungsdetektors (1) und/oder des Distanzmessers (4) elektronisch abspeicherbare Informationen über die Bewegung des Detektors (1) relativ zur markierten Fläche (8) und/oder die dreidimensionale Struktur der markierten Fläche (8) erzeugt.1. Device for detecting two- and / or three-dimensionally marked surfaces and / or for detecting two- and / or three-dimensional movements, with a motion detector (1) which continuously or at predetermined time intervals moves its respective position during a movement parallel to a two- and / or three-dimensionally marked area (8) detected without contact and converted into electronic signals, with a distance meter (4) which determines the distance (L) of the motion detector (1) at a predetermined position relative to the marked area (8) without contact and in converts electronic signals, and with a signal processing unit (13) which, from the signals of the movement detector (1) and / or the distance meter (4), electronically storable information about the movement of the detector (1) relative to the marked area (8) and / or creates the three-dimensional structure of the marked area (8).
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet,, daß im Bewegungsdetektor (1) eine in Richtung auf die markierte Fläche (8) abstrahlende optische Strahlungsquelie (2), vorzugsweise ein Laser- oder ein Halbleiterstrahler, integriert, sowie von der markierten Fläche (8) reflektiertes Licht vom Bewegungsdetektor (1) und/oder dem Distanzmesser (4) erfaßbar ist.2. Device according to claim 1, characterized in that integrated in the motion detector (1) in the direction of the marked surface (8) emitting optical radiation source (2), preferably a laser or a semiconductor emitter, and of the marked surface ( 8) reflected light from the motion detector (1) and / or the distance meter (4) can be detected.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Bewegungsdetektor (1) eine Matrix aus in einer Fläche nebeneinander ange ordneten optischen Erfassungsmitteln (3, 3', 3", 3'") aufweist, mittels derer eine zur markierten Fläche (8) im wesentlichen parallele Bewegung in eine charakteristische Abfolge elektronischer Signale umwandelbar ist. 3. Apparatus according to claim 1 or 2, characterized in that the motion detector (1) has a matrix of arranged in a surface side by side optical detection means (3, 3 ', 3 ", 3'"), by means of which to a marked area (8) essentially parallel movement can be converted into a characteristic sequence of electronic signals.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß als Matrix optischer Erfassungsmittel (3, 3', 3", 3'") ein Array aus Fotodioden vorgesehen ist, welche Fotodioden in einer bei bestimmungsgemäßem Gebrauch zur markierten Fläche (8) im wesentlichen parallelen Ebene in wenigstens zwei unterschiedlichen, vorzugsweise zueinander senkrechten Richtungen beabstandet voneinander angeordnet sind.4. The device according to claim 3, characterized in that an array of photodiodes is provided as a matrix of optical detection means (3, 3 ', 3 ", 3'"), which photodiodes in a designated use for the marked area (8) substantially parallel plane are arranged at a distance from one another in at least two different, preferably perpendicular directions.
5. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß als Matrix optischer Erfassungsmittel (3, 3', 3", 3'") ein Bildsensor vorgesehen ist.5. The device according to claim 3, characterized in that an image sensor is provided as a matrix of optical detection means (3, 3 ', 3 ", 3'").
6. Vorrichtung nach einem-der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Distanzmesser (4) wenigstens eine Fotodiode sowie eine mit dieser wirkverbundene Meßelektronik (24) vorgesehen ist, wobei die Fotodiode ein von der markierten Fläche (8) reflektiertes Lichtsignal (18) einer Strahlungsquelle (2) erfaßt und die Meßelektronik (24) hieraus den Vertikalabstand (L) errechnet.6. Device according to one of the preceding claims, characterized in that at least one photodiode and a measuring electronics (24) operatively connected to this are provided as a distance meter (4), the photodiode being a light signal (18) reflected from the marked area (8). a radiation source (2) is detected and the measuring electronics (24) use this to calculate the vertical distance (L).
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Distanzmesser (4) ein Interferometer vorgesehen ist.7. Device according to one of the preceding claims, characterized in that an interferometer is provided as a distance meter (4).
8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Bewegungsdetektor (1) und/oder der Distanzmesser (4) und/oder die Strahlungsquelle (2) in einem Mikrochip (9) integriert sind.8. Device according to one of the preceding claims, characterized in that the motion detector (1) and / or the distance meter (4) and / or the radiation source (2) are integrated in a microchip (9).
9. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Signalverarbeitungseinheit (13) mit einer Anzeigeeinheit, etwa einem Monitor, verbindbar ist.9. Device according to one of the preceding claims, characterized in that the signal processing unit (13) with a display unit, such as a monitor, can be connected.
10. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, daß die Signalverarbeitungseinheit (13) vom Bewegungsdetektor (1) getrennt ist, mit diesem jedoch in - vorzugsweise drahtlosem - Datenaustausch steht.10. Device according to one of the preceding claims, characterized in that the signal processing unit (13) is separated from the motion detector (1), but is in - preferably wireless - data exchange with the latter.
ERSATZBLÄTT (REGEL 26) SPARE BLADE (RULE 26)
11. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Signalverarbeitungseinheit (1) mit einem elektronischen Speichermedium (14, 15) verbunden ist, in dem die aus den Signalen des Bewegungsdetektors (1) und/oder des Distanzmessers (4) gewonnenen Informationen abspeicherbar sind.11. Device according to one of the preceding claims, characterized in that the signal processing unit (1) is connected to an electronic storage medium (14, 15) in which those obtained from the signals of the motion detector (1) and / or the distance meter (4) Information can be saved.
12. Verfahren zum Erfassen zwei- und/oder dreidimensional markierter Oberflächen und/oder zum Erfassen einer zwei-/oder dreidimensionalen Be- wegung, bei dem ein Bewegungsdetektor (1) relativ zu einer markierten Fläche (8) und/oder die markierte Fläche (8) relativ zum Bewegungsdetektor (1) bewegt wird, die Bewegung des Bewegungsdetektors (1) optisch erfaßt und kontinuierlich oder in vorbestimmten Zeitabständen in ein elektronisches Signal übersetzt wird, welche Abfolge jeweils eine Information über eine - auf eine zur markierten Fläche im wesentlichen parallelen Ebene bezogene - (x.y)-Positionen des Bewegungsdetektors (1) aufweist, zu jedem erfaßten Wert der (x.y)-Position der jeweiligen Abstand des Bewegungsdetektors (1) von der markierten Fläche (8), z (x,y) berührungsfrei er- mittelt wird und12. A method for detecting two- and / or three-dimensionally marked surfaces and / or for detecting a two- or three-dimensional movement, in which a motion detector (1) relative to a marked area (8) and / or the marked area ( 8) is moved relative to the motion detector (1), the motion of the motion detector (1) is optically detected and continuously or at predetermined time intervals is translated into an electronic signal, which sequence is information about a - on a plane substantially parallel to the marked area related - (xy) positions of the motion detector (1), for each detected value of the (xy) position, the respective distance of the motion detector (1) from the marked area (8), z (x, y) determined without contact will and
- aus einer Abfolge ermittelter (x,y,z)-Werte eine Information über den Bewegungsverlauf des Bewegungsdetektors (1) und/oder die Oberflächenstruktur der markierten Fläche (8) errechnet wird.- From a sequence of determined (x, y, z) values, information about the movement profile of the movement detector (1) and / or the surface structure of the marked area (8) is calculated.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß zur Ermittlung des Abstandes (L) die Laufzeit eines diesen Abstand (L) durchlaufenden Lichtsignals (18) relativ zu einem optischen oder elektronischen Referenzsignal (19) gemessen wird. 13. The method according to claim 12, characterized in that to determine the distance (L), the transit time of this distance (L) passing light signal (18) is measured relative to an optical or electronic reference signal (19).
14. Verfahren nach Anspruch 12 oder 13, gekennzeichnet durch die Verwendung zur Bewegungserfassung bei einem Lesegerät für die optische Erfassung und Speicherung von visuell markierten und projizierten alphanumerischen Zeichen, Grafiken und/oder fotographischen Bildern.14. The method according to claim 12 or 13, characterized by the use for motion detection in a reader for the optical detection and storage of visually marked and projected alphanumeric characters, graphics and / or photographic images.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die von dem Bewegungsdetektor (1) erzeugten elektronischen Signale als Referenzinformation zum Durchführen eines Korrektur-Ausgleiches der von einem Lesegerät erfaßten Zeichen, Grafiken und/oder Bildern einsetzbar sind. 15. The method according to claim 14, characterized in that the electronic signals generated by the motion detector (1) can be used as reference information for performing a correction compensation of the characters, graphics and / or images detected by a reading device.
PCT/DE1998/002272 1997-08-09 1998-08-07 Device and method for detecting without contact two-dimensional or three-dimensional marked surfaces and/or for detecting two-dimensional or three-dimensional movements WO1999008227A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19734613A DE19734613A1 (en) 1997-08-09 1997-08-09 Device and method for non-contact detection of two- and / or three-dimensionally marked surfaces and / or for detection of two and / or three-dimensional movements
DE19734613.8 1997-08-09

Publications (1)

Publication Number Publication Date
WO1999008227A1 true WO1999008227A1 (en) 1999-02-18

Family

ID=7838533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/002272 WO1999008227A1 (en) 1997-08-09 1998-08-07 Device and method for detecting without contact two-dimensional or three-dimensional marked surfaces and/or for detecting two-dimensional or three-dimensional movements

Country Status (2)

Country Link
DE (1) DE19734613A1 (en)
WO (1) WO1999008227A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000008593A2 (en) * 1998-08-07 2000-02-17 Thomas Teufel Combined mouse

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7079712B1 (en) 1999-05-25 2006-07-18 Silverbrook Research Pty Ltd Method and system for providing information in a document
DE10354747A1 (en) * 2003-11-21 2005-08-04 Fachhochschule Lübeck Körperschaft des öffentlichen Rechts Control system for microscopes
DE102019208881A1 (en) * 2019-06-19 2020-12-24 Robert Bosch Gmbh Device and method for determining a surface condition of a roadway on or to be driven on by a vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260979A (en) * 1979-12-31 1981-04-07 International Business Machines Corporation Apparatus for sensing non-coded images
US5444193A (en) * 1992-09-21 1995-08-22 Ricoh Company, Ltd. Pen input device
US5652412A (en) * 1994-07-11 1997-07-29 Sia Technology Corp. Pen and paper information recording system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260979A (en) * 1979-12-31 1981-04-07 International Business Machines Corporation Apparatus for sensing non-coded images
US5444193A (en) * 1992-09-21 1995-08-22 Ricoh Company, Ltd. Pen input device
US5652412A (en) * 1994-07-11 1997-07-29 Sia Technology Corp. Pen and paper information recording system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000008593A2 (en) * 1998-08-07 2000-02-17 Thomas Teufel Combined mouse
WO2000008593A3 (en) * 1998-08-07 2000-05-25 Thomas Teufel Combined mouse

Also Published As

Publication number Publication date
DE19734613A1 (en) 1999-02-11

Similar Documents

Publication Publication Date Title
DE102004037137A1 (en) Object`s distance measurement method, involves providing electrical reference signal to time-of-flight unit, mixing electromagnetic radiation falling on unit with reference signal and detecting delay time between signal and radiation
EP3633405A1 (en) Measuring apparatus for geometric 3d-scanning of an environment having a plurality of emission channels and semiconductor photomultiplier sensors
EP1373985B1 (en) Lithography system with beam guidance and method for producing digital holograms in a storage medium
EP1431740B1 (en) Measuring device for non-contact recording of object vibrations
DE1905392A1 (en) Device for generating electrical signals by means of a scale grating which can be moved relative to an index grating
DE102015217332A1 (en) POSITION MEASURING DEVICE
EP0491749B1 (en) Device for absolute two-dimensional position measurement
EP1382959B1 (en) Analysis device for reflectance photometry
DE3121070A1 (en) DEVICE FOR DETERMINING THE POSITION OF A MARKING ON AN OBJECT
EP0322676B1 (en) Process and device to regulate the emission intensity of light in an optical measuring probe
EP0995085B1 (en) Ultrasonic microscope
WO1999008227A1 (en) Device and method for detecting without contact two-dimensional or three-dimensional marked surfaces and/or for detecting two-dimensional or three-dimensional movements
EP0467127A2 (en) Method and device for optically detecting and evaluating scattered light signals
EP1314953A2 (en) Interferometer and interferometric measuring procedure
DE3910855C2 (en)
DE3132526C2 (en) Method and device for measuring transit time differences of ultrasonic pulses for determining flow fields, in particular of velocity components in gaseous media
DE102012005966A1 (en) Device for generating representation of three dimensional body in form of vehicle, has illumination device for generating light strip, particularly parallel light, where electronic sensor is arranged behind or in front of shadow wall
DE2507040B2 (en) OPTOELECTRONIC MEASURING DEVICE FOR THE POSITION OF A CONTRASTING EDGE OF AN OBJECTIVE
DE102009040990A1 (en) Device for measuring upper surface, comprises light control unit, which is arranged on upper surface to control optical signal in ray fan, where optical signal comprises cycle of light pulses with repetition rate
DE4018189C2 (en) Method for detecting the movement of a vehicle over a surface and motion detection device
DE10256725B3 (en) Sensor for contactless optical measurement of relative velocity of material surface using detection of moving light pattern directed onto material surface via illumination device with controlled light sources
DE102020215960A1 (en) Method and arrangement for determining a position of an object
DE3322712C2 (en) Optical distance measuring method
DE19510075C2 (en) Method and devices for contactless detection of the angular position of an object
WO2003052347A2 (en) Method for the three-dimensional measurement of a surface

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1999511558

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase