WO1999017672A1 - Electro-surgical instrument with a graphical user interface - Google Patents

Electro-surgical instrument with a graphical user interface Download PDF

Info

Publication number
WO1999017672A1
WO1999017672A1 PCT/US1998/021066 US9821066W WO9917672A1 WO 1999017672 A1 WO1999017672 A1 WO 1999017672A1 US 9821066 W US9821066 W US 9821066W WO 9917672 A1 WO9917672 A1 WO 9917672A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
electro
display unit
surgical
display
Prior art date
Application number
PCT/US1998/021066
Other languages
French (fr)
Inventor
David J. Wills
Franklin R. Koenig
Robin B. Bek
Original Assignee
Somnus Medical Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Somnus Medical Technologies, Inc. filed Critical Somnus Medical Technologies, Inc.
Priority to AU96875/98A priority Critical patent/AU9687598A/en
Publication of WO1999017672A1 publication Critical patent/WO1999017672A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1402Probes for open surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • A61B2017/00482Coupling with a code
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00172Connectors and adapters therefor
    • A61B2018/00178Electrical connectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/0075Phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00779Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00827Current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00892Voltage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00988Means for storing information, e.g. calibration constants, or for preventing excessive use, e.g. usage, service life counter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1273Generators therefor including multiple generators in one device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/92Computer assisted medical diagnostics
    • Y10S128/923Computer assisted medical diagnostics by comparison of patient data to other data

Definitions

  • This invention relates to the field of electro-surgical medical devices. More particularly, this invention relates to devices that deliver energy in the form of radio- frequency electrical current to tissue in order to perform surgical functions.
  • a high-frequency current is passed through the tissue between electrodes.
  • One electrode is located at the tip of a surgical probe.
  • Another electrode is located elsewhere, and may be a ground pad or another surgical probe tip.
  • the tissue to be treated lies between the electrodes.
  • the electric potential of the electrodes at the probe tips oscillates at radio frequencies about a reference potential. If one is used, a ground pad remains at a floating reference potential.
  • a motive force on charged particles in the tissue is established that is proportional to the gradient of the electric potential.
  • This electromotive force causes a net flow of electric charge, a current, to flow from one electrode, through the tissue, to any other electrode(s) at a lower potential.
  • the charged particles collide with tissue molecules and atoms. This process acts to convert electrical energy to sensible heat in the tissue and is termed Joule heating.
  • tissue can be cut by heating and eventually vaporizing the tissue cell fluids. The vaporization causes the cell walls to rapture and the tissue to cleave. When it is beneficial to destroy tissue, comparatively higher rates of energy deposition can cause tissue ablation.
  • Ablation of cellular tissues in situ is used in the treatment of many diseases and medical conditions either alone or combined with surgical removal procedures. Surgical ablation is often less traumatic than surgical removal procedures and may be the only alternative where other procedures are unsafe.
  • the Food and Drug Administration (FDA) requires an extensive validation process for approval of radio frequency (RF) electro-surgical devices. This evaluation is designed to assure that any risks associated with this type of surgical procedures are minimized.
  • RF radio frequency
  • the validation process requires documenting and testing all possible states and exceptions that can be generated by the combined hardware and software that makes up the RF Electro-Surgical device.
  • every line of source code must be documented to the satisfaction of the FDA.
  • the degree to which computer controlled medical equipment is verified and validated depends on the level of concern. These levels of concern can also be applied to subsystems within a system. This latter requirement has prevented the introduction of complex graphical user interfaces (GUIs) for electro-surgical devices.
  • GUIs complex graphical user interfaces
  • These interfaces are certainly available on personal computers. These interfaces are generated using the proprietary software of companies such as Microsoft, e.g. Windows 95 ® and Apple Computer, e.g. System 7®.
  • electro-surgical device displays are limited to one or two lines of alphanumeric display without any graphical capability.
  • the present invention provides for an electro-surgical instrument with a rich graphical user interface (GUI) capability and a verifiable hardware and software platform meeting Food and Drug Administration (FDA) requirements.
  • GUI graphical user interface
  • FDA Food and Drug Administration
  • the rich GUI makes for a device which is more easily operated than prior art devices which lacked a sophisticated user interface.
  • the increased functionality is achieved without sacrificing the ability to validate the device for FDA purposes.
  • This goal is achieved by a dual processor design.
  • a control or master processor with verifiable source code implements the functions of: power delivery, temperature measurement, power measurement and power control.
  • a display or slave processor is functionally isolated from the first processor receiving only messages from the first processor.
  • an electro-surgical instrument in a first embodiment of the invention includes a power delivery channel, at least one electrode and a display.
  • the electro-surgical instrument also includes a control unit and a display unit.
  • the control unit controls the operation of the power delivery channel and at least one electrode to deliver power to the surgical site.
  • the control unit also determines at least one parameter of the power delivery channel and passing the parameter to the display unit.
  • the display unit is coupled to the control unit and the display.
  • the display unit accepts the at least one parameter, generates the graphical user interface on the display and displays the at least one parameter on the graphical user interface.
  • a method for providing a graphical user interface in an electro-surgical instrument includes a power delivery channel, at least one electrode and a display.
  • the method for providing comprises the acts of: controlling with a control unit the operation of the power delivery channel and at least one electrode to deliver power to the surgical site; determining with the control unit at least one parameter of the power delivery channel; passing the at least one parameter from the control unit to a display unit; accepting at the display unit the at least one parameter; and displaying the at least one parameter on a graphical user interface generated by the display unit.
  • FIG. 1 is an isometric view of an electro-surgical device.
  • FIG. 2 is a hardware block diagram of the dual processor design of the current invention including a master processor for controlling power delivery and measurement and a slave processor for handling display of GUIs.
  • FIG. 3 is a state diagram for the electro-surgical device.
  • FIGS. 4A-B are process flow diagrams of the power delivery and measurement functions of the master processor.
  • FIG. 5 is a process flow diagram of the GUI display functions performed by the slave processor.
  • FIGS. 6A-B show the data structures associated with the header of the messages passed from the master processor to the slave processor.
  • FIG. 7 shows the data structure of a data payload portion of a message.
  • FIG. 8 shows a GUI for Standby mode of the electro-surgical device.
  • FIG. 9 shows a GUI for Ready mode of the electro-surgical device.
  • FIG. 10 shows a GUI for Operational mode of the electro-surgical device.
  • the present invention provides for an electro-surgical instrument with a rich graphical user interface (GUI) capability and a verifiable hardware and software platform meeting Food and Drug Administration (FDA) requirements.
  • GUI graphical user interface
  • FDA Food and Drug Administration
  • the rich GUI makes for a device which is more easily operated than prior art devices which lacked a sophisticated user interface.
  • the increased functionality is achieved without sacrificing the ability to validate the device for FDA purposes.
  • This goal is achieved by a dual processor design.
  • a control or master processor with verifiable source code implements the functions of: power delivery, temperature measurement, power measurement and power control.
  • a display or slave processor is functionally isolated from the first processor receiving only messages from the first processor. These messages contain control parameters and data which allow the display processor to update the complex GUI's it displays during the course of a surgical operation.
  • the display processor must respond to the control processor within a defined period of time.
  • the display processor also verifies the data integrity by use of a cyclical redundancy check (CRC) algorithm.
  • CRC cyclical redundancy check
  • the GUI's are created in a complex operating environment which is proprietary and un-verifiable. That operating system can, for example, be Windows 95 ® by Microsoft, or System 7®, by Apple Computer.
  • FIG. 1 shows an exterior isometric view of an embodiment of the electro-surgical generator.
  • the electro-surgical generator includes a housing 100, an instrument 106, a ground pad 110 and a foot switch 104.
  • the electro-surgical instrument 106 includes a probe 108, the tip of which may include one or more electrodes.
  • the housing includes a color display 120, a series of front panel parameter control buttons 122, a stand-by/ready button 126, a ready indicator light 124, an RF power delivery indicator light 128 and a fault indicator light 130.
  • the housing contains both the RF delivery and control/master processor as well as the slave/display processor (see FIG. 2).
  • the foot switch 104, the instrament 106 and the ground pad 110 are all coupled to the housing with flexible connectors.
  • the electro-surgical device is placed in operation by user's activation of a power switch [not shown].
  • the surgical instrament 106 and specifically the probe portion 108 thereof is placed in contact with the patient at the appropriate surgical site.
  • the probe may be delivered to the site directly through an opening or incision or may be guided to the surgical site through a catheter.
  • FIG 2 is a hardware block diagram of the dual processor design of the current invention.
  • a power control and measurement unit 200 and a display unit 202 are shown.
  • the power control and measurement unit 200 includes the control/master processor 204, a power delivery module 216, a power and impedance sensing circuit 214, temperature sensing circuit 212, the surgical instrament 106 as well as inputs from both the front panel control buttons 122,126 and the foot switch 104.
  • the control processor 204 interfaces with nonvolatile memory 220 and volatile memory 224.
  • Memory 220 includes the verified operating system 232 comprising in house source code.
  • the memory 220 also includes control/target parameter file 236 and code for sending parameters 230A from the master processor 204 to the slave processor 206.
  • the control parameter database contains operating parameters for a surgical procedure as a function of time. Thus a profile of temperature vs. time, power vs. time, and impedance vs.
  • the display unit 202 includes the display/slave processor 206, a keyboard 208, a floppy drive 210 and the display 120 (see FIG. 1).
  • the slave processor interfaces with memory 226.
  • Memory 226 contains code for receiving parameters 230B at the slave processor from the master processor.
  • Memory 226 also contains a proprietary operating system such as Windows 95 ® which is capable of supporting a complex GUI environment.
  • the front panel buttons 122, 126 are direct connected to the control processor 204 as is the foot switch 104. These inputs allow the user to vary desired operating states of the system (see FIG. 3).
  • the power delivery module 216 is coupled to the control processor 204, the surgical instrament 106 and to the power and impedance sensing circuit 214.
  • the power and impedance measurement circuit is also coupled directly to the control processor.
  • the temperature sensing circuit 212 is coupled to both the surgical instrument 106 and the control processor 204.
  • a bidirectional bus to serial bus connects 240 connects the control processor 204 to the display unit 202
  • the display processor 202 is coupled to the keyboard 208, the floppy drive 210 and the display 120 (see FIG. 1).
  • the keyboard can be used to enter patient name and record so that that information along surgical history can be stored on a floppy disc.
  • control processor 204 initiates the power-up and self-testing when a power-switch is enabled (not shown). After diagnostics have ran the system is in standby mode and as such can accept adjustments by the surgeon to operating parameters such as time of operation and total energy.
  • the user transitions operation to ready mode by pressing the ready/standby button 126 the system enters ready mode. In ready mode the parameters are set. The system can then be moved to the operational mode using the foot switch 104.
  • the control processor working with the control parameters stored in the control/target parameter file 236 or with user inputs from the front panel parameter control buttons 122 determines the appropriate control parameters for the operation from the control parameter code and the elapsed time since start of surgery. As the surgery progresses the power control and measurement unit 200 maintains the drive level of each RF channel at the level indicated in the control/target parameter file 236.
  • the power delivery module 216 accepts from the power/impedance sensing circuit 214 an indication of the actual power delivered and compares that with the target power to calculate current and cumulative error. Then in an embodiment of the invention the power delivery module, using control algorithms such as proportional integral derivative (PID) adjusts the power delivery to the surgical instrament 106 in a manner to minimize the difference between the actual power delivered to the surgical instrument and the target power to be delivered.
  • PID proportional integral derivative
  • thermosensor positioned in the surgical instrament 106 which allow temperature sensing circuit 212 to monitor the temperature of the tissue at the surgical site. If the temperatures exceed acceptable levels the control/master processor 204 may implement processes to abort power delivery. All of the above-mentioned processes take place independently of the display unit 202.
  • the only communications passed between the power control and measurement unit 200 and the display unit 202 are messages 240A-B which will be described in greater detail in the following FIGS. 4-7. These messages are passed by program code for sending parameters 230A and by program code 230B for receiving messages contained in respectively the memory of the control processor 204 and the display processor 206. Parameters such as total RF delivery time, impedance, power, energy, tip temperature, etc. are passed from the master control processor 204 to the display processor 206 for display to the user on display 120 (see FIG. 1).
  • the optional keyboard 208 allows the user to input new GUI interfaces and non- verifiable code into display memory 226.
  • FIG. 3 is a process flow diagram of the major states for the verified operating system (OS) 232 in the power control and delivery module. Processing begins at process 300 in which a power-up reset operation is performed. After a power-up reset the control processor awaits the first acknowledge from the display processor indicating that the display processor is awake and ready to communicate. Control then passes to process 302 and 304 in which respectively a system self-test and a device self-test are performed.
  • OS verified operating system
  • control passes to process 314 in which the operation of the system is aborted. If a non-fatal fault in the device is detected control is passed to state/process 316.
  • a non-fatal fault in the device might, for example, include a foot switch which was depressed or a surgical instrament 106 which had not yet been connected to the housing 100 (see FIG. 1). Control then passes to state/process 306 when the system diagnostics have been successfully completed.
  • the stand-by phase global parameters are set to default or lowest values and additional user input to change these parameters is accepted from the front panel parameter control buttons 122 (see FIG. 1).
  • the user is thus able to increase or decrease parameters such as: total burn time, maximum impedance, maximum power, maximum energy, maximum temperature, total energy delivered, and total time of delivery.
  • the user may also select the control/target parameter file 236 to be utilized by the surgical instrament to control the surgical procedure.
  • the surgical device remains in the stand-by or idle state until the user enables ready/standby button 126 or the foot switch 104 to transition from the standby to the ready state 308 on the front of housing 100 (see FIG. 1).
  • the system is transitioned from the ready state 308 to the operational state 310 by the user's subsequent toggling of the foot switch 104 (see FIG. 1). Toggling of the foot switch moves the system back to the ready state 308 from the operational state. This assures that the system can be deactivated at any time without resetting the values of the control parameters to a default state. This allows the subsequent reactivation of the system.
  • the user can change parameters such as maximum temperature, power, total procedure time and total energy delivery during either the stand-by or ready states, respectively 306-308. The user cannot change these same parameters while in the operational state 310. At the end of the total procedure time or the maximum energy end point, the system terminates operation and returns to the ready state 308.
  • the power control and measurement unit 200 operates within either user-defined parameters input with buttons 122 as well as those control parameter stored in the control/target parameter file 236.
  • the control/master processor and the power delivery module 216 monitor power and temperature delivered to the surgical instrament and adjust the power accordingly.
  • the unit moves from the operational state to the ready state when the user toggles foot switch 104.
  • the unit moves from the operational state to fatal fault state 314 when a fatal fault error is detected.
  • control passes to impedance fault state process 312.
  • process 312 a determination is made as to whether impedance is outside an acceptable range. A high impedance might indicate that the surgical device has been removed from the surgical site.
  • control processor 204 returns the unit to either the stand-by state, the device fault state 316, the device self-test state 304, or the fatal fault state 314, depending on the nature of the fault.
  • FIGS. 4A-B are process flow diagrams
  • FIGS. 4A-B are process flow diagrams of the power delivery and measurement functions of the master processor 204 (see FIG. 2).
  • Subroutines 450A-B and 452 are implemented for each channel. All subroutines are sequentially engaged in throughout the course of the operational state 310 (see FIG. 3). Processing in the drive level error determination subroutine 450 A begins with process 400.
  • a total elapsed time since the commencement of the operational state is updated and a corresponding power or temperature level is obtained by the control/master processor 204 from the control/target parameter file 236 (see FIG. 2).
  • Control is then passed to process 402.
  • a wait state is introduced until the start of the next power and/or temperature sampling interval.
  • control is passed to process 404.
  • the power sensing circuit 214 measures the actual power delivered to the device during the sample interval.
  • the temperature sensing circuit 212 measures the temperature at the surgical site at which the probe of surgical instrament 106, e.g. the probe portion thereof (see FIG. 1) is positioned. Control is then passed to process 406.
  • process 406 the actual power and/or temperature level is compared with the targeted power and temperature profile discussed above in connection with process 400.
  • the error for each of those parameters between the targeted value and the actual value is calculated.
  • Control is then passed process 408.
  • process 408 an appropriate control law algorithm is applied to the error to calculate a new drive level which is stored for use in process 432 (see FIG. 4B).
  • Control then passes to subroutine 452 for the measurement of the impedance of the channel being measured.
  • the impedance measurement is in a preferred embodiment of the invention distinct from the power measurement. They occur at different time interval within an overall cycle that transitions from impedance measurement to heating of the surgical site and then repeats itself.
  • the impedance measurement interval for each channel is a fraction of the heating/power delivery interval for that channel the impact on the surgical site in terms of temperature rise, etc. is limited. No appreciable surgical activity, i.e. cauterizing, cutting, or ablation need take place during the impedance measurement.
  • This has the advantage of allowing impedance measurements to be made at drive levels in excess of those utilized during the actual heating/power delivery interval (see process 432) which provides for a more accurate impedance determination by reducing the effects of background "noise”. .
  • the impedance measurement interval not only is the impedance measurement interval short, but it is also time division multiplexed (TDM) between the separate channels.
  • TDM time division multiplexed
  • Processing in subroutine 452 commences with process 410.
  • process 410 a wait state is introduced pending the start of the impedance measurement interval.
  • Control then passes to process 412 at the start of the impedance measurement interval.
  • process 412 an elevated drive level appropriate for impedance measurement is downloaded by the CPU to the power delivery module 216 (see FIG. 2). This is 5 watts in this embodiment of the invention.
  • Control is then passed to state/process 414 in which a wait state is introduced to the end of the impedance measurement interval.
  • process 416 the impedance of the corresponding channel is calculated.
  • Control then passes through splice block A to the continuation of subroutine 252 shown on FIG. 4B, and specifically decision process 430.
  • control/master processor 204 using target impedance ranges contained in control/target parameter file 236 (see FIG. 2) determines whether or not the measured impedance is out of a range. If the impedance is too low there may be an electrical malfunction. If the impedance is too high the electrode coupled to the channel may be coated with carbonated tissue, or the probe may have been removed from the surgical site. Confrol is then passed to process 312 (see FIG. 3), where a determination is made as to the cause of the out of range condition. Control is then passed to the appropriate state shown in FIG. 3. If, alternately impedance of the channel being measured is in range, control is passed to subroutine 45 OB .
  • Adjustment of the desired drive level of each channel is accomplished in subroutine 450B. Processing begins at process 432. In process 432, a wait state is introduced for the beginning of the power/heating delivery interval. Control is then passed at the start of that interval to process 434. In process 434, the drive level for the next heating interval calculated and stored above in connection with process 408 by the control/master processor 204 is downloaded to the power delivery module 216 (see FIG. 2). That drive level is applied over the heating interval to the corresponding channel. Control then passes to subroutine 454.
  • Parameter and data sending from the control/master processor 204 to the display processor 206 is handled in subroutine 454.
  • Processing begins at process 436 in which data and parameters to be passed to the display processor, e.g. power, temperature, and impedance for each channel are put in the payload portion of a message. Then a check is performed to assist the display processor in evaluating the integrity of the message it will receive. In an embodiment of the invention a cyclical redundancy calculation (CRC) is performed on the payload and added to the header of the message. Control is then passed to process 438. In process 438, the message packet 240A is passed over by directional serial bus 240 to the display processor 206 of the display unit 202 (see FIG. 2).
  • CRC cyclical redundancy calculation
  • Control is then passed to decision process 440.
  • decision process 440 the control processor waits for an acknowledge signal 240B from the display/slave processor 206 indicating that the package has been received and that the CRC calculated by the display processor for the package corresponds with the CRC calculated in process 422 above. If no such acknowledgment is received, control passes to process 314. In process 314 (see FIG. 3) a fatal fault state is entered and the operation of the power control and measurement unit 200 is terminated. If alternately in decision process 426 an acknowledgment is received then control returns to the aforementioned process 400 (see FIG. 4A). The processing of each channel over the next impedance and heating intervals is then re-initiated.
  • the entire cycle repeats once each second.
  • the temperature sampling interval is coincident with the last 100 milliseconds of the power delivery or heating interval.
  • the power delivery interval 432 lasts for 900 milliseconds out of the one second cycle and the impedance measurement interval 410 is the 100 milliseconds of the 1 second cycle which is completely outside of the 900 milliseconds occupied by power delivery interval.
  • the impedance measurement interval of each channel has a duration of 10 milliseconds for each channel.
  • FIG. 5 is a process flow diagram for the processes associated with message passing as implemented on the display processor 206. Processing begins at decision process 500 in which a determination is made that the next message is received. If that determination is in the affirmative control passes to decision process 502. In decision process 502, the CRC for the message is independently calculated by the display processor and compared with the CRC in the header of the message as calculated by the master/control processor 204 (see FIG. 2). If the two do not match, control passes to process 504. In process 504, a NACK response 240B is sent from the display processor to the control processor 204. The display processor control then passes to process 314 in which the display processor enters the fault state (see FIG. 3).
  • decision process 510 a state field 612 (see FIG. 6 A) is read in the message to determine whether the state has changed from, e.g. standby state 306, ready state 308, or operational state 310 (see FIG. 3). If an affirmative decision is reached i.e. that the state has changed then control is passed to process 512.
  • the display processor utilizing the receiving parameter 230B and display processes (see FIG. 2) refreshes the display 120 (see FIG. 1) with the appropriate graphical user interface for the new state.
  • Control subsequently passes to decision process 514.
  • Control also passes to decision process 514 from decision process 514 directly if there has been no state change.
  • decision process 514 a determination is made as to whether any of the parameters received in the message packet 240 A have changed from their previous values. If a determination in the affirmative is reached then control passes to process 516. In process 516, the new parameters are updated for that portion of the graphical user interface in which parameters are listed (see FIGS. 8-9). Control then passes to decision process 518. Control also passes to decision process 518 directly if a negative determination is reached in decision process 514 i.e. that no parameter changes have taken place.
  • decision process 518 a determination is made as to whether any of the data, e.g. temperature and impedance, contained in the message has changed from previous values. If the determination is in the affirmative control is passed to process 520. In process 520, the updated parameters are written to the appropriate location of the GUI on the display 120 (see FIGS. 8-10). Control then returns to decision process 500 for the reception of the next message. If alternately in decision process 518 no data change is indicated in the message packet then control returns directly to decision process 500 for the detection of the next message. All the processes discussed above in connection with FIG. 5 are carried out by the display processor 206. The only message that the display processor can send to the control processor is the acknowledge ACK or the not acknowledge NACK. FIG.
  • FIG. 6A shows the header portion 600 of a message and specifically the byte sequence 600A and the corresponding data 600B which the control/master processor 204 can send to the display processor 206 (see FIG. 2).
  • FIG. 6B shows a table 602 with the various parameters 602A-B a message may contain.
  • the parameter message is sent any time any parameter has changed and needs to be updated in the display processor.
  • Reference 610 is the ASCII character that indicates that this message is a parameter message.
  • Reference 612 is the field whose contents indicates what state the confrol processor was in when the message was sent. Possible states include: power-up reset, system self test, device self test, standby, ready, operational impedance fault, device fault or fatal fault.
  • Reference 616 is the beginning of the cyclical redundancy check field in the message.
  • Reference 614 is the parameter field, the contents of which are set forth in table 602 A-B. The value immediately follows the parameter field.
  • the types of parameters are target temperature 630, maximum power, end-point energy, end-point time or model select.
  • the field 610 would have the content "P" for parameter message.
  • the state field 612 would have the content indicating a standby state.
  • the field 614 would indicate that the parameter type is time end-point.
  • the value low byte and high byte would have the actual time end- point, and the cyclical redundancy check would be calculated for the message and put in field 616.
  • FIG. 7 shows the structure of the payload 700 for a data message that the control processor can send to the display processor.
  • the payload is shown with the byte sequence 700A and a corresponding parameter 700B for a data payload.
  • the data message shown in reference 438 in FIG. 4B is being transmitted by the control processor and is being received by the display processor in reference 500 in FIG. 5.
  • Reference 710 indicates that the message is a data message.
  • Reference 712 indicates what state the control processor was in when the data message was sent and all the following fields in the data message are the current values of the data. For example, reference 714 is the most significant byte of the temperature for channel number 0.
  • FIG. 8 shows the appearance of the standby GUI 800 generated by the display processor in the standby state 306 (see FIG. 3).
  • Fields 814A-B show the total burn time, maximum impedance, maximum power, maximum energy, maximum tip temperature, maximum insulation temperature and total energy. The temperature is shown in field 802, the energy endpoint in field 804, the model selection for the surgical instrament in field 806, the ACK/NACK status in field 820, the maximum power in field 808 and the time endpoint in field 810. Anytime a message is sent from the control processor to the display processor while the control processor is in the standby state the display processor will go into the standby state and display the screen in FIG. 8.
  • FIG. 9 shows the GUI 900 of the display processor in the ready state. As in the case of the standby screen in FIG. 8, these screens are shown when the display processor enters the corresponding state. For example, if the control processor was in the ready state when a message was sent it would put the display processor into the ready state by the state field 612 in the header of the message (see FIG. 6). In response the display processor would select the appropriate GUI and fill in the corresponding data and parameters.
  • the ready state fields 814A-B show the total burn time, maximum impedance, maximum power, maximum energy, maximum tip temperature, maximum insulation temperature and total energy.
  • the temperature is shown in field 802, the energy endpoint in field 804, the model selection for the surgical instrament in field 806, the ACK/NACK status in field 820, the maximum power in field 808 and the time endpoint in field 810.
  • temperature samples 910 for each channel are displayed along with impedance samples 920. The data for these samples is contained in the payload of a ready message.
  • Reference 920 shows the maximum impedance, meaning the highest impedance of any active channel, this information also having been obtained from the data message of FIG. 7.
  • FIG. 10 shows the GUI 1000 of the display processor in the operational state.
  • fields 814A-B show the total burn time, maximum impedance, maximum power, maximum energy, maximum tip temperature, maximum insulation temperature and total energy.
  • the temperature is shown in field 802, the energy endpoint in field 804, the model selection for the surgical instrament in field 806, the ACK/NACK status in field 820, the maximum power in field 808 and the time endpoint in field 810.
  • a graph 1002 of the temperature of each device tip as a function of time is displayed. These temperatures are also obtained from the data messages shown in FIG. 7.

Abstract

The present invention provides for an electro-surgical instrument with a rich graphical user interface (GUI) capability and a verifiable hardware and software platform meeting Food and Drug Administration (FDA) requirements. The rich GUI makes for a device which is more easily operated than prior art devices which lacked a sophisticated user interface. The increased functionality is achieved without sacrificing the ability to validate the device for FDA purposes. This goal is achieved by a dual processor design. In the dual processor design a control or master processor with verifiable source code implements the functions of: power delivery, temperature measurement, power measurement and power control. A display or slave processor, is functionally isolated from the first processor receiving only messages from the first processor. In a first embodiment of the invention an electro-surgical instrument is disclosed. The electro-surgical instrument includes a power delivery channel, at least one electrode and a display. The electro-surgical instrument also includes a control unit and a display unit. The control unit controls the operation of the power delivery channel and at least one electrode to deliver power to the surgical site. The control unit also determines at least one parameter of the power delivery channel and passing the parameter to the display unit. The display unit is coupled to the control unit and the display. The display unit accepts the at least one parameter, generates the graphical user interface on the display and displays the at least one parameter on the graphical user interface. In another embodiment of the invention a method for providing a graphical user interface in an electro-surgical instrument is disclosed.

Description

ELECTRO-SURGICAL INSTRUMENT WITH A GRAPHICAL USER INTERFACE
CROSS REFERENCE TO RELATED APPLICATION
This application claims the benefit of prior filed copending Provisional Application No. 60/061,714, filed on October 6, 1997, [Attorney Docket No. 16747.808], entitled Dual Processor Architecture For Electrosurgical Generator, Provisional Application No. 60/062,458, filed on October 6, 1997, [Attorney Docket No. 16747. 805], entitled Linear Power Control With Digital
Phase Lock, Provisional Application, Provisional No. 60/061,193, filed on October 6, 1997, [Attorney Docket No. 16747.806], entitled Linear Power Control With PSK Regulation, Provisional Application No. 60/061,197, filed on October 6, 1997, [Attorney Docket No. 16747.807], entitled Memory for Regulating Device Utilization and Behavior, Provisional Application No. 60/062,543, filed on October 6, 1997, [Attorney Docket No. 16747.810], entitled Method And Apparatus For Power Measurement In Radio Frequency Electro-Surgical Generators, and Provisional Application No. 60/061,213, filed on October 6, 1997, [Attorney Docket No. 16747.811], entitled Method And Apparatus for Impedance Measurement In A Multi-Channel Electro-Surgical Generator.
The present application is related to copending U.S. Patent Application
No. , filed October 6, 1998, [Attorney Docket No. 16747.840] entitled Linear Power Control With Digital Phase Lock, U.S. Patent Application No. , filed October 6, 1998, [Attorney Docket No. 16747.841] entitled Linear Power Control With PSK Regulation, U.S. Patent Application No. , filed October 6, 1998, [Attorney Docket No. 16747.842] entitled Memory for Regulating Device Utilization and Behavior, U.S. Patent Application
No. , filed October 6, 1998, [Attorney Docket No. 16747.839] entitled
Method And Apparatus For Power Measurement In Radio Frequency Electro- Surgical Generators, U.S. Patent Application No. , filed October 6, 1998, [Attorney Docket No. 16747.844] entitled Method And Apparatus for Impedance Measurement In A Multi-Channel Electro-Surgical Generator,
International Application No. , filed October 6, 1998, [Attorney Docket
No. 16747.846] entitled Linear Power Control With Digital Phase Lock, and International Application No. , filed October 1998, [Attorney Docket No. 16747.849] entitled Dual Processor Architecture For Electro Generator.
Each of the above-cited applications is incorporated herein by reference in its entirety.
BACKGROUND OF THE INVENTION Field of the Invention
This invention relates to the field of electro-surgical medical devices. More particularly, this invention relates to devices that deliver energy in the form of radio- frequency electrical current to tissue in order to perform surgical functions.
Description of Related Art
Various medical procedures rely on high-frequency electrical currents to deposit energy and thus heat human and animal tissues. During such procedures, a high-frequency current is passed through the tissue between electrodes. One electrode is located at the tip of a surgical probe. Another electrode is located elsewhere, and may be a ground pad or another surgical probe tip. The tissue to be treated lies between the electrodes.
When the electrode circuit is energized, the electric potential of the electrodes at the probe tips oscillates at radio frequencies about a reference potential. If one is used, a ground pad remains at a floating reference potential. As the electric potential of the probe electrodes varies, a motive force on charged particles in the tissue is established that is proportional to the gradient of the electric potential. This electromotive force causes a net flow of electric charge, a current, to flow from one electrode, through the tissue, to any other electrode(s) at a lower potential. In the course of their flow, the charged particles collide with tissue molecules and atoms. This process acts to convert electrical energy to sensible heat in the tissue and is termed Joule heating.
Upon heating, surgical functions such as cutting, cauterizing and tissue destruction can be accomplished. For example, tissues can be cut by heating and eventually vaporizing the tissue cell fluids. The vaporization causes the cell walls to rapture and the tissue to cleave. When it is beneficial to destroy tissue, comparatively higher rates of energy deposition can cause tissue ablation. Ablation of cellular tissues in situ is used in the treatment of many diseases and medical conditions either alone or combined with surgical removal procedures. Surgical ablation is often less traumatic than surgical removal procedures and may be the only alternative where other procedures are unsafe. The Food and Drug Administration (FDA) requires an extensive validation process for approval of radio frequency (RF) electro-surgical devices. This evaluation is designed to assure that any risks associated with this type of surgical procedures are minimized. The validation process requires documenting and testing all possible states and exceptions that can be generated by the combined hardware and software that makes up the RF Electro-Surgical device. Depending on the level of concern every line of source code must be documented to the satisfaction of the FDA. The degree to which computer controlled medical equipment is verified and validated depends on the level of concern. These levels of concern can also be applied to subsystems within a system. This latter requirement has prevented the introduction of complex graphical user interfaces (GUIs) for electro-surgical devices. Complex graphical user interfaces are certainly available on personal computers. These interfaces are generated using the proprietary software of companies such as Microsoft, e.g. Windows 95 ® and Apple Computer, e.g. System 7®. However, the source code for these well know operating systems is proprietary and thus can not be verified to the satisfaction of the FDA. Absent the use of these complex operating systems and development environments they provide, companies manufacturing electro-surgical devices have been limited in the complexity of their GUIs to those which can be generated with source code written in house. Typically electro-surgical device displays are limited to one or two lines of alphanumeric display without any graphical capability.
What is needed is a way to create for electro-surgical instruments the more user-friendly GUIs found in Microsoft's or Apple's operating environments while staying in compliance with FDA guidelines for computer controlled surgical equipment.
SUMMARY OF THE INVENTION
The present invention provides for an electro-surgical instrument with a rich graphical user interface (GUI) capability and a verifiable hardware and software platform meeting Food and Drug Administration (FDA) requirements. The rich GUI makes for a device which is more easily operated than prior art devices which lacked a sophisticated user interface. The increased functionality is achieved without sacrificing the ability to validate the device for FDA purposes. This goal is achieved by a dual processor design. In the dual processor design a control or master processor with verifiable source code implements the functions of: power delivery, temperature measurement, power measurement and power control. A display or slave processor, is functionally isolated from the first processor receiving only messages from the first processor.
In a first embodiment of the invention an electro-surgical instrument is disclosed. The electro-surgical instrument includes a power delivery channel, at least one electrode and a display. The electro-surgical instrument also includes a control unit and a display unit. The control unit controls the operation of the power delivery channel and at least one electrode to deliver power to the surgical site. The control unit also determines at least one parameter of the power delivery channel and passing the parameter to the display unit. The display unit is coupled to the control unit and the display. The display unit accepts the at least one parameter, generates the graphical user interface on the display and displays the at least one parameter on the graphical user interface.
In another embodiment of the invention a method for providing a graphical user interface in an electro-surgical instrument is disclosed. The electro-surgical instrument includes a power delivery channel, at least one electrode and a display. The method for providing comprises the acts of: controlling with a control unit the operation of the power delivery channel and at least one electrode to deliver power to the surgical site; determining with the control unit at least one parameter of the power delivery channel; passing the at least one parameter from the control unit to a display unit; accepting at the display unit the at least one parameter; and displaying the at least one parameter on a graphical user interface generated by the display unit.
BRIEF DESCRIPTION OF THE FIGURES
The above and other objects and advantages of the invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference numerals refer to like parts throughout.
FIG. 1 is an isometric view of an electro-surgical device. FIG. 2 is a hardware block diagram of the dual processor design of the current invention including a master processor for controlling power delivery and measurement and a slave processor for handling display of GUIs. FIG. 3 is a state diagram for the electro-surgical device.
FIGS. 4A-B are process flow diagrams of the power delivery and measurement functions of the master processor.
FIG. 5 is a process flow diagram of the GUI display functions performed by the slave processor. FIGS. 6A-B show the data structures associated with the header of the messages passed from the master processor to the slave processor.
FIG. 7 shows the data structure of a data payload portion of a message. FIG. 8 shows a GUI for Standby mode of the electro-surgical device. FIG. 9 shows a GUI for Ready mode of the electro-surgical device. FIG. 10 shows a GUI for Operational mode of the electro-surgical device.
DETAILED DESCRIPTION
The present invention provides for an electro-surgical instrument with a rich graphical user interface (GUI) capability and a verifiable hardware and software platform meeting Food and Drug Administration (FDA) requirements. The rich GUI makes for a device which is more easily operated than prior art devices which lacked a sophisticated user interface. The increased functionality is achieved without sacrificing the ability to validate the device for FDA purposes. This goal is achieved by a dual processor design. In the dual processor design a control or master processor with verifiable source code implements the functions of: power delivery, temperature measurement, power measurement and power control. A display or slave processor, is functionally isolated from the first processor receiving only messages from the first processor. These messages contain control parameters and data which allow the display processor to update the complex GUI's it displays during the course of a surgical operation. The display processor must respond to the control processor within a defined period of time. The display processor also verifies the data integrity by use of a cyclical redundancy check (CRC) algorithm. The GUI's are created in a complex operating environment which is proprietary and un-verifiable. That operating system can, for example, be Windows 95 ® by Microsoft, or System 7®, by Apple Computer.
FIG. 1 shows an exterior isometric view of an embodiment of the electro-surgical generator. The electro-surgical generator includes a housing 100, an instrument 106, a ground pad 110 and a foot switch 104. The electro-surgical instrument 106 includes a probe 108, the tip of which may include one or more electrodes. The housing includes a color display 120, a series of front panel parameter control buttons 122, a stand-by/ready button 126, a ready indicator light 124, an RF power delivery indicator light 128 and a fault indicator light 130. The housing contains both the RF delivery and control/master processor as well as the slave/display processor (see FIG. 2). The foot switch 104, the instrament 106 and the ground pad 110 are all coupled to the housing with flexible connectors. The electro-surgical device is placed in operation by user's activation of a power switch [not shown]. The surgical instrament 106 and specifically the probe portion 108 thereof is placed in contact with the patient at the appropriate surgical site. The probe may be delivered to the site directly through an opening or incision or may be guided to the surgical site through a catheter.
After the appropriate diagnostics, the surgeon is able to move from the standby state in which operating parameters are entered, to the ready state in which parameters are set and power is not delivered to the instrament 106. The foot switch is also used to toggle the device between the ready and the operating state in which power is supplied to the surgical site. Details on the actual GUIs of an embodiment of the invention are displayed on display 120 (see FIGS. 8-9). FIG 2 is a hardware block diagram of the dual processor design of the current invention. A power control and measurement unit 200 and a display unit 202 are shown. The power control and measurement unit 200 includes the control/master processor 204, a power delivery module 216, a power and impedance sensing circuit 214, temperature sensing circuit 212, the surgical instrament 106 as well as inputs from both the front panel control buttons 122,126 and the foot switch 104. The control processor 204 interfaces with nonvolatile memory 220 and volatile memory 224. Memory 220 includes the verified operating system 232 comprising in house source code. The memory 220 also includes control/target parameter file 236 and code for sending parameters 230A from the master processor 204 to the slave processor 206. The control parameter database contains operating parameters for a surgical procedure as a function of time. Thus a profile of temperature vs. time, power vs. time, and impedance vs. time is contained in this database, in this embodiment of the invention. The display unit 202 includes the display/slave processor 206, a keyboard 208, a floppy drive 210 and the display 120 (see FIG. 1). The slave processor interfaces with memory 226. Memory 226 contains code for receiving parameters 230B at the slave processor from the master processor. Memory 226 also contains a proprietary operating system such as Windows 95 ® which is capable of supporting a complex GUI environment.
The front panel buttons 122, 126 are direct connected to the control processor 204 as is the foot switch 104. These inputs allow the user to vary desired operating states of the system (see FIG. 3). The power delivery module 216 is coupled to the control processor 204, the surgical instrament 106 and to the power and impedance sensing circuit 214. The power and impedance measurement circuit is also coupled directly to the control processor. The temperature sensing circuit 212 is coupled to both the surgical instrument 106 and the control processor 204. A bidirectional bus to serial bus connects 240 connects the control processor 204 to the display unit 202 The display processor 202 is coupled to the keyboard 208, the floppy drive 210 and the display 120 (see FIG. 1). The keyboard can be used to enter patient name and record so that that information along surgical history can be stored on a floppy disc.
In operation the control processor 204 initiates the power-up and self-testing when a power-switch is enabled (not shown). After diagnostics have ran the system is in standby mode and as such can accept adjustments by the surgeon to operating parameters such as time of operation and total energy. When the user transitions operation to ready mode by pressing the ready/standby button 126 the system enters ready mode. In ready mode the parameters are set. The system can then be moved to the operational mode using the foot switch 104. The control processor working with the control parameters stored in the control/target parameter file 236 or with user inputs from the front panel parameter control buttons 122 determines the appropriate control parameters for the operation from the control parameter code and the elapsed time since start of surgery. As the surgery progresses the power control and measurement unit 200 maintains the drive level of each RF channel at the level indicated in the control/target parameter file 236.
For successive intervals throughout the operation new control parameters, e.g. target temperature or target power are downloaded to the power delivery module 216. The power delivery module 216 accepts from the power/impedance sensing circuit 214 an indication of the actual power delivered and compares that with the target power to calculate current and cumulative error. Then in an embodiment of the invention the power delivery module, using control algorithms such as proportional integral derivative (PID) adjusts the power delivery to the surgical instrament 106 in a manner to minimize the difference between the actual power delivered to the surgical instrument and the target power to be delivered.
An additional degree of safety is provided by sensors positioned in the surgical instrament 106 which allow temperature sensing circuit 212 to monitor the temperature of the tissue at the surgical site. If the temperatures exceed acceptable levels the control/master processor 204 may implement processes to abort power delivery. All of the above-mentioned processes take place independently of the display unit 202.
The only communications passed between the power control and measurement unit 200 and the display unit 202 are messages 240A-B which will be described in greater detail in the following FIGS. 4-7. These messages are passed by program code for sending parameters 230A and by program code 230B for receiving messages contained in respectively the memory of the control processor 204 and the display processor 206. Parameters such as total RF delivery time, impedance, power, energy, tip temperature, etc. are passed from the master control processor 204 to the display processor 206 for display to the user on display 120 (see FIG. 1). The optional keyboard 208 allows the user to input new GUI interfaces and non- verifiable code into display memory 226. The floppy drive allows changes and/or additions to the non-verifiable program code 234 to be uploaded to the display processor. Neither the keyboard nor floppy drive provides an input path to the control processor 204 or more generally the power control and measurement unit 200. FIG. 3 is a process flow diagram of the major states for the verified operating system (OS) 232 in the power control and delivery module. Processing begins at process 300 in which a power-up reset operation is performed. After a power-up reset the control processor awaits the first acknowledge from the display processor indicating that the display processor is awake and ready to communicate. Control then passes to process 302 and 304 in which respectively a system self-test and a device self-test are performed. Various functions are performed such as testing of the various memories in the control processor, testing of the keyboard for stuck keys, measurement of various system temperatures, power supply voltages, and so forth, to ascertain the general health of the system. If a fatal fault is detected in either of these processes, control passes to process 314 in which the operation of the system is aborted. If a non-fatal fault in the device is detected control is passed to state/process 316. A non-fatal fault in the device might, for example, include a foot switch which was depressed or a surgical instrament 106 which had not yet been connected to the housing 100 (see FIG. 1). Control then passes to state/process 306 when the system diagnostics have been successfully completed. In the stand-by phase global parameters are set to default or lowest values and additional user input to change these parameters is accepted from the front panel parameter control buttons 122 (see FIG. 1). The user is thus able to increase or decrease parameters such as: total burn time, maximum impedance, maximum power, maximum energy, maximum temperature, total energy delivered, and total time of delivery. The user may also select the control/target parameter file 236 to be utilized by the surgical instrament to control the surgical procedure. The surgical device remains in the stand-by or idle state until the user enables ready/standby button 126 or the foot switch 104 to transition from the standby to the ready state 308 on the front of housing 100 (see FIG. 1). The system is transitioned from the ready state 308 to the operational state 310 by the user's subsequent toggling of the foot switch 104 (see FIG. 1). Toggling of the foot switch moves the system back to the ready state 308 from the operational state. This assures that the system can be deactivated at any time without resetting the values of the control parameters to a default state. This allows the subsequent reactivation of the system. The user can change parameters such as maximum temperature, power, total procedure time and total energy delivery during either the stand-by or ready states, respectively 306-308. The user cannot change these same parameters while in the operational state 310. At the end of the total procedure time or the maximum energy end point, the system terminates operation and returns to the ready state 308. In the operational state, the power control and measurement unit 200 operates within either user-defined parameters input with buttons 122 as well as those control parameter stored in the control/target parameter file 236. The control/master processor and the power delivery module 216 monitor power and temperature delivered to the surgical instrament and adjust the power accordingly. The unit moves from the operational state to the ready state when the user toggles foot switch 104. The unit moves from the operational state to fatal fault state 314 when a fatal fault error is detected. Alternately, if in the operational state 310 an out of bounds condition is detected for impedance, control passes to impedance fault state process 312. In process 312 a determination is made as to whether impedance is outside an acceptable range. A high impedance might indicate that the surgical device has been removed from the surgical site. Alternately, if the impedance is too low there may be an equipment malfunction. In this event the control processor 204 returns the unit to either the stand-by state, the device fault state 316, the device self-test state 304, or the fatal fault state 314, depending on the nature of the fault.
FIGS. 4A-B are process flow diagrams FIGS. 4A-B are process flow diagrams of the power delivery and measurement functions of the master processor 204 (see FIG. 2). There are four primary subroutines dealing with respectively drive level error determination 450A, impedance error determination 452, drive level adjustment 450B and parameter passing 454. Subroutines 450A-B and 452 are implemented for each channel. All subroutines are sequentially engaged in throughout the course of the operational state 310 (see FIG. 3). Processing in the drive level error determination subroutine 450 A begins with process 400. In process 400 a total elapsed time since the commencement of the operational state is updated and a corresponding power or temperature level is obtained by the control/master processor 204 from the control/target parameter file 236 (see FIG. 2). Control is then passed to process 402. In process 402 a wait state is introduced until the start of the next power and/or temperature sampling interval. At the start of that interval control is passed to process 404. In process 404 the power sensing circuit 214 (see FIG.2) measures the actual power delivered to the device during the sample interval. During that same interval the temperature sensing circuit 212 measures the temperature at the surgical site at which the probe of surgical instrament 106, e.g. the probe portion thereof (see FIG. 1) is positioned. Control is then passed to process 406. In process 406 the actual power and/or temperature level is compared with the targeted power and temperature profile discussed above in connection with process 400. The error for each of those parameters between the targeted value and the actual value is calculated. Control is then passed process 408. In process 408 an appropriate control law algorithm is applied to the error to calculate a new drive level which is stored for use in process 432 (see FIG. 4B). Control then passes to subroutine 452 for the measurement of the impedance of the channel being measured. The impedance measurement is in a preferred embodiment of the invention distinct from the power measurement. They occur at different time interval within an overall cycle that transitions from impedance measurement to heating of the surgical site and then repeats itself. Additionally, if the impedance measurement interval for each channel is a fraction of the heating/power delivery interval for that channel the impact on the surgical site in terms of temperature rise, etc. is limited. No appreciable surgical activity, i.e. cauterizing, cutting, or ablation need take place during the impedance measurement. This has the advantage of allowing impedance measurements to be made at drive levels in excess of those utilized during the actual heating/power delivery interval (see process 432) which provides for a more accurate impedance determination by reducing the effects of background "noise". .
In still another embodiment of the invention, not only is the impedance measurement interval short, but it is also time division multiplexed (TDM) between the separate channels. High power levels are only applied for short intervals to a single channel at a time while the other channels are placed in a high impedance state. This avoids crosstalk between multiple electrodes that may be positioned on probe 108 thereby allowing for an accurate impedance measurement.
Processing in subroutine 452 commences with process 410. In process 410 a wait state is introduced pending the start of the impedance measurement interval. Control then passes to process 412 at the start of the impedance measurement interval. In process 412 an elevated drive level appropriate for impedance measurement is downloaded by the CPU to the power delivery module 216 (see FIG. 2). This is 5 watts in this embodiment of the invention. Control is then passed to state/process 414 in which a wait state is introduced to the end of the impedance measurement interval. Control subsequently passes to process 416. In process 416, the impedance of the corresponding channel is calculated. Control then passes through splice block A to the continuation of subroutine 252 shown on FIG. 4B, and specifically decision process 430. In decision process 430, the control/master processor 204 using target impedance ranges contained in control/target parameter file 236 (see FIG. 2) determines whether or not the measured impedance is out of a range. If the impedance is too low there may be an electrical malfunction. If the impedance is too high the electrode coupled to the channel may be coated with carbonated tissue, or the probe may have been removed from the surgical site. Confrol is then passed to process 312 (see FIG. 3), where a determination is made as to the cause of the out of range condition. Control is then passed to the appropriate state shown in FIG. 3. If, alternately impedance of the channel being measured is in range, control is passed to subroutine 45 OB .
Adjustment of the desired drive level of each channel is accomplished in subroutine 450B. Processing begins at process 432. In process 432, a wait state is introduced for the beginning of the power/heating delivery interval. Control is then passed at the start of that interval to process 434. In process 434, the drive level for the next heating interval calculated and stored above in connection with process 408 by the control/master processor 204 is downloaded to the power delivery module 216 (see FIG. 2). That drive level is applied over the heating interval to the corresponding channel. Control then passes to subroutine 454.
Parameter and data sending from the control/master processor 204 to the display processor 206 (see FIG. 2) is handled in subroutine 454. Processing begins at process 436 in which data and parameters to be passed to the display processor, e.g. power, temperature, and impedance for each channel are put in the payload portion of a message. Then a check is performed to assist the display processor in evaluating the integrity of the message it will receive. In an embodiment of the invention a cyclical redundancy calculation (CRC) is performed on the payload and added to the header of the message. Control is then passed to process 438. In process 438, the message packet 240A is passed over by directional serial bus 240 to the display processor 206 of the display unit 202 (see FIG. 2). Control is then passed to decision process 440. In decision process 440 the control processor waits for an acknowledge signal 240B from the display/slave processor 206 indicating that the package has been received and that the CRC calculated by the display processor for the package corresponds with the CRC calculated in process 422 above. If no such acknowledgment is received, control passes to process 314. In process 314 (see FIG. 3) a fatal fault state is entered and the operation of the power control and measurement unit 200 is terminated. If alternately in decision process 426 an acknowledgment is received then control returns to the aforementioned process 400 (see FIG. 4A). The processing of each channel over the next impedance and heating intervals is then re-initiated.
In this embodiment the entire cycle repeats once each second. The temperature sampling interval is coincident with the last 100 milliseconds of the power delivery or heating interval. The power delivery interval 432 lasts for 900 milliseconds out of the one second cycle and the impedance measurement interval 410 is the 100 milliseconds of the 1 second cycle which is completely outside of the 900 milliseconds occupied by power delivery interval. The impedance measurement interval of each channel has a duration of 10 milliseconds for each channel.
FIG. 5 is a process flow diagram for the processes associated with message passing as implemented on the display processor 206. Processing begins at decision process 500 in which a determination is made that the next message is received. If that determination is in the affirmative control passes to decision process 502. In decision process 502, the CRC for the message is independently calculated by the display processor and compared with the CRC in the header of the message as calculated by the master/control processor 204 (see FIG. 2). If the two do not match, control passes to process 504. In process 504, a NACK response 240B is sent from the display processor to the control processor 204. The display processor control then passes to process 314 in which the display processor enters the fault state (see FIG. 3). If alternately in decision process 502 the calculated CRC of the display processor and the control processor matches then control passes to process 508 and an acknowledge ACK is sent from the display processor 206 to the control processor 204 (see FIG. 2). Control then passes to decision process 510. In decision process 510, a state field 612 (see FIG. 6 A) is read in the message to determine whether the state has changed from, e.g. standby state 306, ready state 308, or operational state 310 (see FIG. 3). If an affirmative decision is reached i.e. that the state has changed then control is passed to process 512. In process 512, the display processor utilizing the receiving parameter 230B and display processes (see FIG. 2) refreshes the display 120 (see FIG. 1) with the appropriate graphical user interface for the new state. Control subsequently passes to decision process 514. Control also passes to decision process 514 from decision process 514 directly if there has been no state change.
In decision process 514 a determination is made as to whether any of the parameters received in the message packet 240 A have changed from their previous values. If a determination in the affirmative is reached then control passes to process 516. In process 516, the new parameters are updated for that portion of the graphical user interface in which parameters are listed (see FIGS. 8-9). Control then passes to decision process 518. Control also passes to decision process 518 directly if a negative determination is reached in decision process 514 i.e. that no parameter changes have taken place.
In decision process 518 a determination is made as to whether any of the data, e.g. temperature and impedance, contained in the message has changed from previous values. If the determination is in the affirmative control is passed to process 520. In process 520, the updated parameters are written to the appropriate location of the GUI on the display 120 (see FIGS. 8-10). Control then returns to decision process 500 for the reception of the next message. If alternately in decision process 518 no data change is indicated in the message packet then control returns directly to decision process 500 for the detection of the next message. All the processes discussed above in connection with FIG. 5 are carried out by the display processor 206. The only message that the display processor can send to the control processor is the acknowledge ACK or the not acknowledge NACK. FIG. 6A shows the header portion 600 of a message and specifically the byte sequence 600A and the corresponding data 600B which the control/master processor 204 can send to the display processor 206 (see FIG. 2). FIG. 6B shows a table 602 with the various parameters 602A-B a message may contain. The parameter message is sent any time any parameter has changed and needs to be updated in the display processor. Reference 610 is the ASCII character that indicates that this message is a parameter message. Reference 612 is the field whose contents indicates what state the confrol processor was in when the message was sent. Possible states include: power-up reset, system self test, device self test, standby, ready, operational impedance fault, device fault or fatal fault. Reference 616 is the beginning of the cyclical redundancy check field in the message. Reference 614 is the parameter field, the contents of which are set forth in table 602 A-B. The value immediately follows the parameter field. The types of parameters are target temperature 630, maximum power, end-point energy, end-point time or model select. By way of example, if the operator pressed the time end-point increment button while in the standby state, the following message would be sent. The field 610 would have the content "P" for parameter message. The state field 612 would have the content indicating a standby state. The field 614 would indicate that the parameter type is time end-point. The value low byte and high byte would have the actual time end- point, and the cyclical redundancy check would be calculated for the message and put in field 616.
FIG. 7 shows the structure of the payload 700 for a data message that the control processor can send to the display processor. The payload is shown with the byte sequence 700A and a corresponding parameter 700B for a data payload. The data message shown in reference 438 in FIG. 4B is being transmitted by the control processor and is being received by the display processor in reference 500 in FIG. 5. Reference 710 indicates that the message is a data message. Reference 712 indicates what state the control processor was in when the data message was sent and all the following fields in the data message are the current values of the data. For example, reference 714 is the most significant byte of the temperature for channel number 0.
FIG. 8 shows the appearance of the standby GUI 800 generated by the display processor in the standby state 306 (see FIG. 3). Fields 814A-B show the total burn time, maximum impedance, maximum power, maximum energy, maximum tip temperature, maximum insulation temperature and total energy. The temperature is shown in field 802, the energy endpoint in field 804, the model selection for the surgical instrament in field 806, the ACK/NACK status in field 820, the maximum power in field 808 and the time endpoint in field 810. Anytime a message is sent from the control processor to the display processor while the control processor is in the standby state the display processor will go into the standby state and display the screen in FIG. 8.
FIG. 9 shows the GUI 900 of the display processor in the ready state. As in the case of the standby screen in FIG. 8, these screens are shown when the display processor enters the corresponding state. For example, if the control processor was in the ready state when a message was sent it would put the display processor into the ready state by the state field 612 in the header of the message (see FIG. 6). In response the display processor would select the appropriate GUI and fill in the corresponding data and parameters. In the ready state fields 814A-B show the total burn time, maximum impedance, maximum power, maximum energy, maximum tip temperature, maximum insulation temperature and total energy. The temperature is shown in field 802, the energy endpoint in field 804, the model selection for the surgical instrament in field 806, the ACK/NACK status in field 820, the maximum power in field 808 and the time endpoint in field 810. In addition temperature samples 910 for each channel are displayed along with impedance samples 920. The data for these samples is contained in the payload of a ready message. Reference 920 shows the maximum impedance, meaning the highest impedance of any active channel, this information also having been obtained from the data message of FIG. 7.
FIG. 10 shows the GUI 1000 of the display processor in the operational state. In the operational state fields 814A-B show the total burn time, maximum impedance, maximum power, maximum energy, maximum tip temperature, maximum insulation temperature and total energy. The temperature is shown in field 802, the energy endpoint in field 804, the model selection for the surgical instrament in field 806, the ACK/NACK status in field 820, the maximum power in field 808 and the time endpoint in field 810. In addition a graph 1002 of the temperature of each device tip as a function of time is displayed. These temperatures are also obtained from the data messages shown in FIG. 7.
Although the foregoing invention has been described in detail for purposes of clarity of understanding, it will be obvious that certain modifications may be practiced within the scope of the appended claims.

Claims

What is claimed is:
A method for providing a graphical user interface in an electro- surgical instrament with a power delivery channel, at least one electrode and a display, and the electro-surgical instrament for delivering power to a surgical site, and the method for providing comprising the acts of: controlling with a control unit the operation of the power delivery channel and at least one electrode to deliver power to the surgical site; determining with the control unit at least one parameter of the power delivery channel; passing the at least one parameter from the control unit to a display unit; accepting at the display unit the at least one parameter; and displaying the at least one parameter on a graphical user interface generated by the display unit.
2. The method of claim 1, wherein the act of determining further comprising the act of: computing for the at least one parameter a first error detection indicia; wherein the passing act further comprises the act of: passing the at least one parameter and the first error detection indicia to the display unit; and wherein the accepting act further comprises the act of: verifying the integrity of the at least one parameter utilizing the first error detection indicia and a second error detection indicia calculated by the display unit.
3. The method of Claim 1 , wherein the accepting act further comprises the acts of: verifying the integrity of the at least one parameter utilizing the first error detection indicia and a second error detection indicia calculated by the display unit.
4. The method of Claim 3, wherein the verifying act further comprises the act of: notifying the control unit of a loss of integrity of the least one parameter.
5. The method of Claim 4, further comprising the act subsequent to the accepting act of: terminating operation of the power delivery channel responsive to said notifying act.
6. The method of Claim 2, wherein the error detection indicia in said act of computing comprises a cyclical redundancy check.
7. The method of Claim 1 , wherein the accepting and displaying acts are implemented utilizing non-verified program code.
8. An electro-surgical instrament including a graphical user interface, and the electro-surgical instrament including a power delivery channel, at least one electrode and a display, and the electro-surgical instrament for delivering power to a surgical site, and the electro-surgical instrament comprising; a control unit for controlling the operation of the power delivery channel and at least one elecfrode to deliver power to the surgical site and for determining at least one parameter of the power delivery channel and passing the at least one parameter a display unit; a display unit coupled to the control unit and the display, and the display unit accepting the at least one parameter, generating the graphical user interface on the display and displaying the at least one parameter on the graphical user interface.
9. The electro-surgical instrament of Claim 8, wherein the control unit computes for the at least one parameter a first error detection indicia and passes the at least one parameter and the first error detection indicia to the display unit; and wherein the display unit verifies the integrity of the at least one parameter utilizing the first error detection indicia and a second error detection indicia calculated by the display unit.
10. The electro-surgical instrament of Claim 8, wherein the display unit verifies the integrity of the at least one parameter utilizing the first error detection indicia and a second error detection indicia calculated by the display unit.
11. The electro-surgical instrument of Claim 8, wherein the display unit notifies the control unit of a loss of integrity of the least one parameter.
12. The electro-surgical instrament of Claim 11, wherein the control unit terminates operation of the power delivery channel responsive to a notification of a loss of integrity from the display unit.
13. The electro-surgical instrament of Claim 9, wherein the first error detection indicia comprises a cyclical redundancy check.
14. The electro-surgical instrament of Claim 8, wherein the display unit operates with non- verified program code and the control unit operates with verified program code.
PCT/US1998/021066 1997-10-06 1998-10-06 Electro-surgical instrument with a graphical user interface WO1999017672A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU96875/98A AU9687598A (en) 1997-10-06 1998-10-06 Electro-surgical instrument with a graphical user interface

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US6171497P 1997-10-06 1997-10-06
US6254397P 1997-10-06 1997-10-06
US6121397P 1997-10-06 1997-10-06
US6119397P 1997-10-06 1997-10-06
US6119797P 1997-10-06 1997-10-06
US6245897P 1997-10-06 1997-10-06
US60/061,714 1997-10-06
US60/061,213 1997-10-06
US60/062,543 1997-10-06
US60/061,193 1997-10-06
US60/061,197 1997-10-06
US60/062,458 1997-10-06

Publications (1)

Publication Number Publication Date
WO1999017672A1 true WO1999017672A1 (en) 1999-04-15

Family

ID=27556838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/021066 WO1999017672A1 (en) 1997-10-06 1998-10-06 Electro-surgical instrument with a graphical user interface

Country Status (3)

Country Link
US (6) US6231569B1 (en)
AU (1) AU9687598A (en)
WO (1) WO1999017672A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011015344A1 (en) * 2009-08-06 2011-02-10 Erbe Elektromedizin Gmbh Supply device for at least one medical instrument and method for configuring an associated supply device
EP2486884A1 (en) * 2010-12-16 2012-08-15 Biosense Webster (Israel), Ltd. System for controlling tissue ablation using temperature sensors
WO2014181077A1 (en) * 2013-05-08 2014-11-13 Creo Medical Limited Method and apparatus for controlling power delivered by electrosurgical probe
US11759271B2 (en) 2017-04-28 2023-09-19 Stryker Corporation System and method for indicating mapping of console-based surgical systems

Families Citing this family (738)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7604633B2 (en) 1996-04-12 2009-10-20 Cytyc Corporation Moisture transport system for contact electrocoagulation
US6104959A (en) 1997-07-31 2000-08-15 Microwave Medical Corp. Method and apparatus for treating subcutaneous histological features
US6358245B1 (en) 1998-02-19 2002-03-19 Curon Medical, Inc. Graphical user interface for association with an electrode structure deployed in contact with a tissue region
US8906010B2 (en) * 1998-02-19 2014-12-09 Mederi Therapeutics, Inc. Graphical user interface for association with an electrode structure deployed in contact with a tissue region
US6059778A (en) * 1998-05-05 2000-05-09 Cardiac Pacemakers, Inc. RF ablation apparatus and method using unipolar and bipolar techniques
US6558378B2 (en) * 1998-05-05 2003-05-06 Cardiac Pacemakers, Inc. RF ablation system and method having automatic temperature control
US8551082B2 (en) 1998-05-08 2013-10-08 Cytyc Surgical Products Radio-frequency generator for powering an ablation device
US6508815B1 (en) * 1998-05-08 2003-01-21 Novacept Radio-frequency generator for powering an ablation device
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US6451015B1 (en) * 1998-11-18 2002-09-17 Sherwood Services Ag Method and system for menu-driven two-dimensional display lesion generator
JP4110668B2 (en) * 1999-05-13 2008-07-02 松下電器産業株式会社 Signal generator
US6663623B1 (en) * 2000-03-13 2003-12-16 Olympus Optical Co., Ltd. Electric surgical operation apparatus
DE10057585A1 (en) * 2000-11-21 2002-05-29 Erbe Elektromedizin Device and method for the automatic configuration of high-frequency system elements
US6775575B2 (en) * 2001-02-26 2004-08-10 D. Bommi Bommannan System and method for reducing post-surgical complications
DE60238369D1 (en) * 2001-05-23 2011-01-05 Radi Medical Systems Interactive measuring system
EP1334699A1 (en) * 2002-02-11 2003-08-13 Led S.p.A. Apparatus for electrosurgery
US6695837B2 (en) * 2002-03-13 2004-02-24 Starion Instruments Corporation Power supply for identification and control of electrical surgical tools
DE10211765B4 (en) * 2002-03-14 2004-06-03 Forschungszentrum Jülich GmbH Device for localizing the target point of electrodes for brain stimulation, in particular for deep brain stimulation
US6728602B2 (en) * 2002-03-15 2004-04-27 Delphi Technologies, Inc. Control system for an electric heater
US6882885B2 (en) 2002-03-19 2005-04-19 Solarant Medical, Inc. Heating method for tissue contraction
US7258688B1 (en) * 2002-04-16 2007-08-21 Baylis Medical Company Inc. Computerized electrical signal generator
JP2003305050A (en) * 2002-04-17 2003-10-28 Olympus Optical Co Ltd Ultrasonic operation apparatus
JP4490807B2 (en) 2002-05-06 2010-06-30 コヴィディエン アクチェンゲゼルシャフト System for electrically detecting blood and controlling the generator during electrosurgical procedures
US6849074B2 (en) * 2002-06-17 2005-02-01 Medconx, Inc. Disposable surgical devices
US20050256523A1 (en) * 2002-06-17 2005-11-17 Medconx, Inc. Disposable surgical devices
US7810359B2 (en) 2002-10-01 2010-10-12 Nellcor Puritan Bennett Llc Headband with tension indicator
US7698909B2 (en) 2002-10-01 2010-04-20 Nellcor Puritan Bennett Llc Headband with tension indicator
USD477408S1 (en) 2002-10-04 2003-07-15 Conmed Corporation Electrosurgical generator
US6875210B2 (en) * 2002-11-19 2005-04-05 Conmed Corporation Electrosurgical generator and method for cross-checking mode functionality
US6948503B2 (en) * 2002-11-19 2005-09-27 Conmed Corporation Electrosurgical generator and method for cross-checking output power
US6942660B2 (en) * 2002-11-19 2005-09-13 Conmed Corporation Electrosurgical generator and method with multiple semi-autonomously executable functions
US7044948B2 (en) 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
US8012150B2 (en) 2003-05-01 2011-09-06 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
EP1707146A3 (en) * 2003-05-15 2008-02-27 Covidien AG System for activating an electrosurgical instrument
US20050021020A1 (en) * 2003-05-15 2005-01-27 Blaha Derek M. System for activating an electrosurgical instrument
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US7047056B2 (en) 2003-06-25 2006-05-16 Nellcor Puritan Bennett Incorporated Hat-based oximeter sensor
US8412297B2 (en) 2003-10-01 2013-04-02 Covidien Lp Forehead sensor placement
US20050086528A1 (en) * 2003-10-21 2005-04-21 Aladdin Knowledge Systems Ltd. Method for hiding information on a computer
US8104956B2 (en) 2003-10-23 2012-01-31 Covidien Ag Thermocouple measurement circuit
ES2372045T3 (en) 2003-10-23 2012-01-13 Covidien Ag REDUNDANT TEMPERATURE MONITORING IN ELECTROCHURGICAL SYSTEMS TO ATTENATE SAFETY.
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
US20050119866A1 (en) * 2003-11-14 2005-06-02 Zaleski John R. Medical parameter processing system
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US7300435B2 (en) * 2003-11-21 2007-11-27 Sherwood Services Ag Automatic control system for an electrosurgical generator
US7317954B2 (en) * 2003-12-12 2008-01-08 Conmed Corporation Virtual control of electrosurgical generator functions
US7317955B2 (en) * 2003-12-12 2008-01-08 Conmed Corporation Virtual operating room integration
US7251531B2 (en) * 2004-01-30 2007-07-31 Ams Research Corporation Heating method for tissue contraction
US7766905B2 (en) 2004-02-12 2010-08-03 Covidien Ag Method and system for continuity testing of medical electrodes
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US20050283148A1 (en) * 2004-06-17 2005-12-22 Janssen William M Ablation apparatus and system to limit nerve conduction
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US20060095096A1 (en) * 2004-09-09 2006-05-04 Debenedictis Leonard C Interchangeable tips for medical laser treatments and methods for using same
US20080154251A1 (en) * 2004-09-09 2008-06-26 Reliant Technologies, Inc. Interchangeable Tips for Medical Laser Treatments and Methods for Using Same
US7628786B2 (en) 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
US20060149301A1 (en) * 2005-01-05 2006-07-06 Claus Michael J Phacoemulsification system utilizing graphical user interfaces for adjusting pulse parameters
EP1860993B1 (en) 2005-03-01 2019-01-23 Masimo Laboratories, Inc. Noninvasive multi-parameter patient monitor
US9474564B2 (en) 2005-03-31 2016-10-25 Covidien Ag Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
US20060224151A1 (en) * 2005-03-31 2006-10-05 Sherwood Services Ag System and method for projecting a virtual user interface for controlling electrosurgical generator
EP2727547B1 (en) * 2005-04-21 2020-11-18 Boston Scientific Scimed, Inc. Devices for energy delivery
US20060270916A1 (en) * 2005-05-20 2006-11-30 Medtronic, Inc. Portable therapy delivery device with a removable connector board
US7655003B2 (en) * 2005-06-22 2010-02-02 Smith & Nephew, Inc. Electrosurgical power control
US9554803B2 (en) 2005-07-26 2017-01-31 Ethicon Endo-Surgery, Llc Electrically self-powered surgical instrument with manual release
US8627995B2 (en) * 2006-05-19 2014-01-14 Ethicon Endo-Sugery, Inc. Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US8028885B2 (en) 2006-05-19 2011-10-04 Ethicon Endo-Surgery, Inc. Electric surgical instrument with optimized power supply and drive
US9662116B2 (en) 2006-05-19 2017-05-30 Ethicon, Llc Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US11751873B2 (en) 2005-07-26 2023-09-12 Cilag Gmbh International Electrically powered surgical instrument with manual release
US10314583B2 (en) 2005-07-26 2019-06-11 Ethicon Llc Electrically self-powered surgical instrument with manual release
US8627993B2 (en) * 2007-02-12 2014-01-14 Ethicon Endo-Surgery, Inc. Active braking electrical surgical instrument and method for braking such an instrument
US7959050B2 (en) * 2005-07-26 2011-06-14 Ethicon Endo-Surgery, Inc Electrically self-powered surgical instrument with manual release
ATE480198T1 (en) 2005-08-02 2010-09-15 Neurotherm Inc APPARATUS TO DIAGNOSE AND TREAT NERVOUS DYSFUNCTION
EP1754512A3 (en) * 2005-08-18 2008-03-05 Neurotherm, Inc. Method and apparatus for diagnosing and treating neural dysfunction
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US20070194082A1 (en) 2005-08-31 2007-08-23 Morgan Jerome R Surgical stapling device with anvil having staple forming pockets of varying depths
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US20070073282A1 (en) * 2005-09-26 2007-03-29 Starion Instruments Corporation Resistive heating device and method for turbinate ablation
US20070073286A1 (en) * 2005-09-29 2007-03-29 Dorin Panescu Method and apparatus for an ocular procedure
US8550743B2 (en) * 2005-09-30 2013-10-08 Medtronic, Inc. Sliding lock device
US20070078502A1 (en) * 2005-10-05 2007-04-05 Thermage, Inc. Method and apparatus for estimating a local impedance factor
US7957815B2 (en) * 2005-10-11 2011-06-07 Thermage, Inc. Electrode assembly and handpiece with adjustable system impedance, and methods of operating an energy-based medical system to treat tissue
US8702691B2 (en) * 2005-10-19 2014-04-22 Thermage, Inc. Treatment apparatus and methods for delivering energy at multiple selectable depths in tissue
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
WO2007099460A2 (en) * 2006-01-17 2007-09-07 Endymion Medical Ltd. Electrosurgical methods and devices employing phase-controlled radiofrequency energy
US7887534B2 (en) * 2006-01-18 2011-02-15 Stryker Corporation Electrosurgical system
US8216223B2 (en) 2006-01-24 2012-07-10 Covidien Ag System and method for tissue sealing
CA2574935A1 (en) 2006-01-24 2007-07-24 Sherwood Services Ag A method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US8685016B2 (en) 2006-01-24 2014-04-01 Covidien Ag System and method for tissue sealing
AU2007200299B2 (en) 2006-01-24 2012-11-15 Covidien Ag System and method for tissue sealing
US9186200B2 (en) 2006-01-24 2015-11-17 Covidien Ag System and method for tissue sealing
CA2574934C (en) 2006-01-24 2015-12-29 Sherwood Services Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US20110006101A1 (en) 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7942872B2 (en) * 2006-02-27 2011-05-17 Moshe Ein-Gal Blended monopolar and bipolar application of RF energy
US7651493B2 (en) 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
US7648499B2 (en) 2006-03-21 2010-01-19 Covidien Ag System and method for generating radio frequency energy
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US7651492B2 (en) 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US8753334B2 (en) 2006-05-10 2014-06-17 Covidien Ag System and method for reducing leakage current in an electrosurgical generator
EP2486866A3 (en) * 2006-05-19 2014-04-02 Ethicon Endo-Surgery, Inc. Mechanical force switch for a medical device
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
CN101610735B (en) 2006-06-28 2015-07-01 美敦力Af卢森堡公司 Methods and systems for thermally-induced renal neuromodulation
US7443175B2 (en) * 2006-07-14 2008-10-28 Covidien Ag Surgical testing instrument and system
US8034049B2 (en) 2006-08-08 2011-10-11 Covidien Ag System and method for measuring initial tissue impedance
US7731717B2 (en) 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US8486060B2 (en) 2006-09-18 2013-07-16 Cytyc Corporation Power ramping during RF ablation
US7794457B2 (en) 2006-09-28 2010-09-14 Covidien Ag Transformer for RF voltage sensing
US8485412B2 (en) 2006-09-29 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical staples having attached drivers and stapling instruments for deploying the same
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US8048069B2 (en) 2006-09-29 2011-11-01 Medtronic, Inc. User interface for ablation therapy
US8255026B1 (en) 2006-10-12 2012-08-28 Masimo Corporation, Inc. Patient monitor capable of monitoring the quality of attached probes and accessories
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8701958B2 (en) 2007-01-11 2014-04-22 Ethicon Endo-Surgery, Inc. Curved end effector for a surgical stapling device
US8696724B2 (en) 2007-01-11 2014-04-15 Scion Neurostim, Llc. Devices for vestibular or cranial nerve stimulation
US20080168775A1 (en) * 2007-01-11 2008-07-17 Nextreme Thermal Solutions, Inc. Temperature Control Including Integrated Thermoelectric Temperature Sensing and Related Methods and Systems
US8267983B2 (en) 2007-01-11 2012-09-18 Scion Neurostim, Llc. Medical devices incorporating thermoelectric transducer and controller
US20080264464A1 (en) * 2007-01-11 2008-10-30 Nextreme Thermal Solutions, Inc. Temperature Control Including Integrated Thermoelectric Sensing and Heat Pumping Devices and Related Methods and Systems
WO2008091983A2 (en) * 2007-01-25 2008-07-31 Thermage, Inc. Treatment apparatus and methods for inducing microburn patterns in tissue
AU2014250664B2 (en) * 2007-02-21 2017-05-18 Ethicon Endo-Surgery, Inc. Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
AU2012203402B2 (en) * 2007-02-21 2014-07-17 Ethicon Endo-Surgery, Inc. Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US7896871B2 (en) * 2007-02-22 2011-03-01 Medtronic, Inc. Impedance computation for ablation therapy
WO2008125962A2 (en) * 2007-03-01 2008-10-23 Endymed Medical Ltd. Electrosurgical methods and devices employing semiconductor chips
US20080221443A1 (en) * 2007-03-07 2008-09-11 Ritchie Paul G Integrated Imaging and Biopsy System with Ancillary Device Authentication
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
WO2009128940A1 (en) 2008-04-17 2009-10-22 Miramar Labs, Inc. Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
US20100211059A1 (en) 2007-04-19 2010-08-19 Deem Mark E Systems and methods for creating an effect using microwave energy to specified tissue
JP2010524589A (en) 2007-04-19 2010-07-22 ザ ファウンドリー, インコーポレイテッド Method, apparatus and system for non-invasive delivery of microwave therapy
WO2008131302A2 (en) 2007-04-19 2008-10-30 The Foundry, Inc. Methods and apparatus for reducing sweat production
CN101711134B (en) 2007-04-19 2016-08-17 米勒玛尔实验室公司 Tissue is applied the system of microwave energy and in organized layer, produces the system of tissue effect
US8374665B2 (en) 2007-04-21 2013-02-12 Cercacor Laboratories, Inc. Tissue profile wellness monitor
US8777941B2 (en) 2007-05-10 2014-07-15 Covidien Lp Adjustable impedance electrosurgical electrodes
US7905380B2 (en) 2007-06-04 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7832408B2 (en) 2007-06-04 2010-11-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US20120143178A9 (en) * 2007-06-15 2012-06-07 Primaeva Medical, Inc. Devices and methods for percutaneous energy delivery
US20080312647A1 (en) * 2007-06-15 2008-12-18 Primaeva Medical, Inc. Methods and devices for treating tissue
US8845630B2 (en) * 2007-06-15 2014-09-30 Syneron Medical Ltd Devices and methods for percutaneous energy delivery
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US8216218B2 (en) * 2007-07-10 2012-07-10 Thermage, Inc. Treatment apparatus and methods for delivering high frequency energy across large tissue areas
US9861424B2 (en) 2007-07-11 2018-01-09 Covidien Lp Measurement and control systems and methods for electrosurgical procedures
US7834484B2 (en) 2007-07-16 2010-11-16 Tyco Healthcare Group Lp Connection cable and method for activating a voltage-controlled generator
US8152800B2 (en) 2007-07-30 2012-04-10 Vivant Medical, Inc. Electrosurgical systems and printed circuit boards for use therewith
US7805838B2 (en) * 2007-08-02 2010-10-05 Hypertronics Corporation Method of forming an electrical connector
US7645142B2 (en) 2007-09-05 2010-01-12 Vivant Medical, Inc. Electrical receptacle assembly
US8216220B2 (en) 2007-09-07 2012-07-10 Tyco Healthcare Group Lp System and method for transmission of combined data stream
US8747398B2 (en) 2007-09-13 2014-06-10 Covidien Lp Frequency tuning in a microwave electrosurgical system
US8512332B2 (en) 2007-09-21 2013-08-20 Covidien Lp Real-time arc control in electrosurgical generators
US7969715B2 (en) * 2007-11-13 2011-06-28 Eikon Device Inc. Power supply for a tattoo machine
GB0723255D0 (en) * 2007-11-28 2008-01-09 Barry Callebaut Ag Process and product
EP3391846B1 (en) 2007-12-12 2022-07-27 miraDry, Inc. Systems and apparatus for the noninvasive treatment of tissue using microwave energy
BRPI0820706B8 (en) 2007-12-12 2021-06-22 Miramar Labs Inc disposable medical device for use with an applicator
US7905381B2 (en) 2008-09-19 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with cutting member arrangement
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8657174B2 (en) * 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US7793812B2 (en) 2008-02-14 2010-09-14 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US8226639B2 (en) 2008-06-10 2012-07-24 Tyco Healthcare Group Lp System and method for output control of electrosurgical generator
US8394086B2 (en) * 2008-09-03 2013-03-12 Vivant Medical, Inc. Microwave shielding apparatus
US8403924B2 (en) 2008-09-03 2013-03-26 Vivant Medical, Inc. Shielding for an isolation apparatus used in a microwave generator
DE102008058737B4 (en) * 2008-09-08 2019-12-12 Erbe Elektromedizin Gmbh Electrosurgical generator
DE102008047339B3 (en) 2008-09-15 2010-03-04 Celon Ag Medical Instruments Medical device and medical device device arrangement
PL3476312T3 (en) 2008-09-19 2024-03-11 Ethicon Llc Surgical stapler with apparatus for adjusting staple height
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8257274B2 (en) 2008-09-25 2012-09-04 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US8248075B2 (en) * 2008-09-30 2012-08-21 Vivant Medical, Inc. System, apparatus and method for dissipating standing wave in a microwave delivery system
US8180433B2 (en) * 2008-09-30 2012-05-15 Vivant Medical, Inc. Microwave system calibration apparatus, system and method of use
US8174267B2 (en) * 2008-09-30 2012-05-08 Vivant Medical, Inc. Intermittent microwave energy delivery system
US8346370B2 (en) * 2008-09-30 2013-01-01 Vivant Medical, Inc. Delivered energy generator for microwave ablation
US20100082083A1 (en) * 2008-09-30 2010-04-01 Brannan Joseph D Microwave system tuner
US8242782B2 (en) 2008-09-30 2012-08-14 Vivant Medical, Inc. Microwave ablation generator control system
US8287527B2 (en) * 2008-09-30 2012-10-16 Vivant Medical, Inc. Microwave system calibration apparatus and method of use
US20100087808A1 (en) * 2008-10-03 2010-04-08 Vivant Medical, Inc. Combined Frequency Microwave Ablation System, Devices and Methods of Use
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US20100130976A1 (en) * 2008-11-21 2010-05-27 Smith & Nephew Inc. Reducing cross-talk effects in an rf electrosurgical device
US8262652B2 (en) * 2009-01-12 2012-09-11 Tyco Healthcare Group Lp Imaginary impedance process monitoring and intelligent shut-off
US8167875B2 (en) * 2009-01-12 2012-05-01 Tyco Healthcare Group Lp Energy delivery algorithm for medical devices
US8162932B2 (en) * 2009-01-12 2012-04-24 Tyco Healthcare Group Lp Energy delivery algorithm impedance trend adaptation
US8211100B2 (en) * 2009-01-12 2012-07-03 Tyco Healthcare Group Lp Energy delivery algorithm for medical devices based on maintaining a fixed position on a tissue electrical conductivity v. temperature curve
US8333759B2 (en) * 2009-01-12 2012-12-18 Covidien Lp Energy delivery algorithm for medical devices
US8152802B2 (en) * 2009-01-12 2012-04-10 Tyco Healthcare Group Lp Energy delivery algorithm filter pre-loading
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
JP2012517287A (en) 2009-02-06 2012-08-02 エシコン・エンド−サージェリィ・インコーポレイテッド Improvement of driven surgical stapler
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US20100217254A1 (en) * 2009-02-25 2010-08-26 Primaeva Medical, Inc. Methods for applying energy to tissue using isolated energy sources
US8298225B2 (en) * 2009-03-19 2012-10-30 Tyco Healthcare Group Lp System and method for return electrode monitoring
US8515515B2 (en) 2009-03-25 2013-08-20 Covidien Lp Medical sensor with compressible light barrier and technique for using the same
US8781548B2 (en) 2009-03-31 2014-07-15 Covidien Lp Medical sensor with flexible components and technique for using the same
US10045819B2 (en) * 2009-04-14 2018-08-14 Covidien Lp Frequency identification for microwave ablation probes
US8216227B2 (en) * 2009-05-06 2012-07-10 Vivant Medical, Inc. Power-stage antenna integrated system with junction member
US8353903B2 (en) * 2009-05-06 2013-01-15 Vivant Medical, Inc. Power-stage antenna integrated system
US8463396B2 (en) 2009-05-06 2013-06-11 Covidien LLP Power-stage antenna integrated system with high-strength shaft
WO2010135602A1 (en) * 2009-05-20 2010-11-25 Osseon Therapeutics, Inc. Steerable curvable ablation catheter for vertebroplasty
US20100298832A1 (en) 2009-05-20 2010-11-25 Osseon Therapeutics, Inc. Steerable curvable vertebroplasty drill
US8932282B2 (en) * 2009-08-03 2015-01-13 Covidien Lp Power level transitioning in a surgical instrument
US7956620B2 (en) * 2009-08-12 2011-06-07 Tyco Healthcare Group Lp System and method for augmented impedance sensing
US8460356B2 (en) 2009-12-18 2013-06-11 Scion Neurostim, Llc Devices and methods for vestibular and/or cranial nerve stimulation
US10386990B2 (en) 2009-09-22 2019-08-20 Mederi Rf, Llc Systems and methods for treating tissue with radiofrequency energy
US9750563B2 (en) 2009-09-22 2017-09-05 Mederi Therapeutics, Inc. Systems and methods for treating tissue with radiofrequency energy
US9474565B2 (en) 2009-09-22 2016-10-25 Mederi Therapeutics, Inc. Systems and methods for treating tissue with radiofrequency energy
US20110112529A1 (en) 2009-09-22 2011-05-12 Mederi Therapeutics Inc. Systems and methods for controlling use and operation of a family of different treatment devices
US9775664B2 (en) 2009-09-22 2017-10-03 Mederi Therapeutics, Inc. Systems and methods for treating tissue with radiofrequency energy
US8685015B2 (en) 2009-09-24 2014-04-01 Covidien Lp System and method for multi-pole phase-shifted radio frequency application
US8382750B2 (en) 2009-10-28 2013-02-26 Vivant Medical, Inc. System and method for monitoring ablation size
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
US8652126B2 (en) * 2009-11-24 2014-02-18 General Electric Company Method and computer program for authenticating a physiological sensor, a sensor system, a patient monitor, and a physiological sensor
GB2487882B (en) 2009-12-04 2017-03-29 Masimo Corp Calibration for multi-stage physiological monitors
US8882759B2 (en) 2009-12-18 2014-11-11 Covidien Lp Microwave ablation system with dielectric temperature probe
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8568404B2 (en) 2010-02-19 2013-10-29 Covidien Lp Bipolar electrode probe for ablation monitoring
KR20130108067A (en) * 2010-04-09 2013-10-02 베식스 바스큘라 인코포레이티드 Power generating and control apparatus for the treatment of tissue
WO2011137377A1 (en) 2010-04-29 2011-11-03 Dfine, Inc. System for use in treatment of vertebral fractures
US9138180B1 (en) 2010-05-03 2015-09-22 Masimo Corporation Sensor adapter cable
US8974449B2 (en) 2010-07-16 2015-03-10 Covidien Lp Dual antenna assembly with user-controlled phase shifting
US8840609B2 (en) 2010-07-23 2014-09-23 Conmed Corporation Tissue fusion system and method of performing a functional verification test
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US8632525B2 (en) 2010-09-17 2014-01-21 Ethicon Endo-Surgery, Inc. Power control arrangements for surgical instruments and batteries
US20120078244A1 (en) 2010-09-24 2012-03-29 Worrell Barry C Control features for articulating surgical device
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
CA2812553C (en) 2010-09-30 2019-02-12 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix and an alignment matrix
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9113865B2 (en) 2010-09-30 2015-08-25 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a layer
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US20120080498A1 (en) 2010-09-30 2012-04-05 Ethicon Endo-Surgery, Inc. Curved end effector for a stapling instrument
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
EP3449856B1 (en) 2010-10-25 2023-06-28 Medtronic Ardian Luxembourg S.à.r.l. Device for evaluation and feedback of neuromodulation treatment
US9744074B2 (en) 2010-12-16 2017-08-29 Scion Neurostim, Llc Combination treatments
AU2011343589B2 (en) 2010-12-16 2017-02-23 Scion NeuroStim, Inc. Systems, methods and apparatus for delivering nerve stimulation to a patient with physician oversight
US10512564B2 (en) 2010-12-16 2019-12-24 Scion Neurostim, Llc Combination treatments
US10537467B2 (en) 2010-12-16 2020-01-21 Scion Neurostim, Llc Systems, devices and methods for bilateral caloric vestibular stimulation
US8636551B2 (en) 2011-01-07 2014-01-28 Hypertronics Corporation Electrical contact with embedded wiring
PL2497427T3 (en) * 2011-03-10 2020-05-18 Erbe Elektromedizin Gmbh Surgical instrument with digital data interface
US20120239024A1 (en) * 2011-03-17 2012-09-20 Vivant Medical, Inc. Energy-Based Ablation Completion Algorithm
WO2012129542A1 (en) * 2011-03-23 2012-09-27 Halt Medical Inc. Merged image user interface and navigational tool for remote control of surgical devices
AU2012250197B2 (en) 2011-04-29 2017-08-10 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US11304746B2 (en) 2011-06-14 2022-04-19 Aerin Medical Inc. Method of treating airway tissue to reduce mucus secretion
US10722282B2 (en) 2011-06-14 2020-07-28 Aerin Medical, Inc. Methods and devices to treat nasal airways
US9415194B2 (en) 2011-06-14 2016-08-16 Aerin Medical Inc. Post nasal drip treatment
US11033318B2 (en) 2011-06-14 2021-06-15 Aerin Medical, Inc. Methods and devices to treat nasal airways
WO2012174161A1 (en) 2011-06-14 2012-12-20 Aerin Medical, Inc. Devices for treating nasal airways
US10456185B2 (en) 2011-06-14 2019-10-29 Aerin Medical, Inc. Methods and devices to treat nasal airways
US8986301B2 (en) 2012-06-13 2015-03-24 Aerin Medical Inc. Methods and devices to treat nasal airways
US11241271B2 (en) 2011-06-14 2022-02-08 Aerin Medical Inc. Methods of treating nasal airways
US9314301B2 (en) 2011-08-01 2016-04-19 Miramar Labs, Inc. Applicator and tissue interface module for dermatological device
US9033973B2 (en) 2011-08-30 2015-05-19 Covidien Lp System and method for DC tissue impedance sensing
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9113897B2 (en) * 2012-01-23 2015-08-25 Covidien Lp Partitioned surgical instrument
US10076383B2 (en) 2012-01-25 2018-09-18 Covidien Lp Electrosurgical device having a multiplexer
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
JP6305979B2 (en) 2012-03-28 2018-04-04 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Tissue thickness compensator with multiple layers
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
RU2644272C2 (en) 2012-03-28 2018-02-08 Этикон Эндо-Серджери, Инк. Limitation node with tissue thickness compensator
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
US8920410B2 (en) 2012-05-04 2014-12-30 Covidien Lp Peripheral switching device for microwave energy platforms
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US10092292B2 (en) 2013-02-28 2018-10-09 Ethicon Llc Staple forming features for surgical stapling instrument
US20140249557A1 (en) 2013-03-01 2014-09-04 Ethicon Endo-Surgery, Inc. Thumbwheel switch arrangements for surgical instruments
BR112015021098B1 (en) 2013-03-01 2022-02-15 Ethicon Endo-Surgery, Inc COVERAGE FOR A JOINT JOINT AND SURGICAL INSTRUMENT
RU2669463C2 (en) 2013-03-01 2018-10-11 Этикон Эндо-Серджери, Инк. Surgical instrument with soft stop
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US20140276767A1 (en) * 2013-03-15 2014-09-18 St. Jude Medical, Cardiology Division, Inc. Ablation system, methods, and controllers
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US10136887B2 (en) 2013-04-16 2018-11-27 Ethicon Llc Drive system decoupling arrangement for a surgical instrument
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
USD742013S1 (en) * 2013-06-18 2015-10-27 Electromed, Inc. Air pulsating generator
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US10779885B2 (en) 2013-07-24 2020-09-22 Miradry. Inc. Apparatus and methods for the treatment of tissue using microwave energy
US20150032094A1 (en) * 2013-07-25 2015-01-29 Aesculap Ag Tri-mode electrodes with integral temperature sensing
US9655670B2 (en) 2013-07-29 2017-05-23 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
US9924942B2 (en) 2013-08-23 2018-03-27 Ethicon Llc Motor-powered articulatable surgical instruments
US9687288B2 (en) 2013-09-30 2017-06-27 Arrinex, Inc. Apparatus and methods for treating rhinitis
DE112014004768T5 (en) 2013-10-18 2016-08-11 Ziva Medical, Inc. Methods and systems for the treatment of polycystic ovarian syndrome
US10433902B2 (en) 2013-10-23 2019-10-08 Medtronic Ardian Luxembourg S.A.R.L. Current control methods and systems
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9585662B2 (en) 2013-12-23 2017-03-07 Ethicon Endo-Surgery, Llc Fastener cartridge comprising an extendable firing member
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
US20140166725A1 (en) 2014-02-24 2014-06-19 Ethicon Endo-Surgery, Inc. Staple cartridge including a barbed staple.
USD737449S1 (en) * 2014-03-24 2015-08-25 Covidien Lp Generator for medical treatment devices
US20150272580A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Verification of number of battery exchanges/procedure count
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9804618B2 (en) 2014-03-26 2017-10-31 Ethicon Llc Systems and methods for controlling a segmented circuit
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US20150297222A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US11185330B2 (en) 2014-04-16 2021-11-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
CN106456176B (en) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 Fastener cartridge including the extension with various configuration
US10610292B2 (en) 2014-04-25 2020-04-07 Medtronic Ardian Luxembourg S.A.R.L. Devices, systems, and methods for monitoring and/or controlling deployment of a neuromodulation element within a body lumen and related technology
US20150317899A1 (en) * 2014-05-01 2015-11-05 Covidien Lp System and method for using rfid tags to determine sterilization of devices
US10111703B2 (en) * 2014-05-06 2018-10-30 Cosman Instruments, Llc Electrosurgical generator
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
USD748803S1 (en) * 2014-06-26 2016-02-02 Covidien Lp Electrosurgical generator
US9763743B2 (en) 2014-07-25 2017-09-19 Arrinex, Inc. Apparatus and method for treating rhinitis
USD736933S1 (en) * 2014-07-25 2015-08-18 Covidien Lp Generator for medical treatment devices
US10135242B2 (en) 2014-09-05 2018-11-20 Ethicon Llc Smart cartridge wake up operation and data retention
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
MX2017003960A (en) 2014-09-26 2017-12-04 Ethicon Llc Surgical stapling buttresses and adjunct materials.
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US10363086B2 (en) 2014-10-31 2019-07-30 Medtronic Advanced Energy Llc Power monitoring circuitry and method for reducing leakage current in RF generators
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
RU2703684C2 (en) 2014-12-18 2019-10-21 ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи Surgical instrument with anvil which is selectively movable relative to staple cartridge around discrete fixed axis
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US9119628B1 (en) 2015-01-21 2015-09-01 Serene Medical, Inc. Systems and devices to identify and limit nerve conduction
US9113912B1 (en) 2015-01-21 2015-08-25 Serene Medical, Inc. Systems and devices to identify and limit nerve conduction
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US10226250B2 (en) 2015-02-27 2019-03-12 Ethicon Llc Modular stapling assembly
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
EP3277191B1 (en) 2015-03-31 2023-11-15 May Health US Inc. Methods and systems for the manipulation of ovarian tissues
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
CN107835705B (en) * 2015-05-12 2022-05-13 爱尔兰国立高威大学 Devices for therapeutic nasal neuromodulation and associated methods and systems
USD775734S1 (en) * 2015-06-18 2017-01-03 Covidien Lp Electrosurgical generator
US10405863B2 (en) 2015-06-18 2019-09-10 Ethicon Llc Movable firing beam support arrangements for articulatable surgical instruments
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10098642B2 (en) 2015-08-26 2018-10-16 Ethicon Llc Surgical staples comprising features for improved fastening of tissue
BR112018003693B1 (en) 2015-08-26 2022-11-22 Ethicon Llc SURGICAL STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPPING INSTRUMENT
US10238390B2 (en) 2015-09-02 2019-03-26 Ethicon Llc Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
US9578773B1 (en) 2015-09-02 2017-02-21 Medline Industries, Inc. Repair or refurbishment of limited use medical devices
MX2022006189A (en) 2015-09-02 2022-06-16 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples.
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10561420B2 (en) 2015-09-30 2020-02-18 Ethicon Llc Tubular absorbable constructs
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10433837B2 (en) 2016-02-09 2019-10-08 Ethicon Llc Surgical instruments with multiple link articulation arrangements
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
AU2017217934B2 (en) 2016-02-12 2021-02-18 Aerin Medical, Inc. Hyaline cartilage shaping
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
WO2017141427A1 (en) * 2016-02-19 2017-08-24 オリンパス株式会社 Treatment system, power supply device, and output control circuit
EP3422965B1 (en) 2016-03-04 2019-12-11 Aerin Medical, Inc. Device for eustachian tube modification
US10485542B2 (en) 2016-04-01 2019-11-26 Ethicon Llc Surgical stapling instrument comprising multiple lockouts
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
WO2017214033A1 (en) 2016-06-07 2017-12-14 Stryker Corporation Thermal control system
US10675024B2 (en) 2016-06-24 2020-06-09 Ethicon Llc Staple cartridge comprising overdriven staples
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
CN109310431B (en) 2016-06-24 2022-03-04 伊西康有限责任公司 Staple cartridge comprising wire staples and punch staples
US10379038B2 (en) 2016-10-06 2019-08-13 Government Of The United States Of America, As Represented By The Secretary Of Commerce Measuring a size distribution of nucleic acid molecules in a sample
CN109862834B (en) 2016-10-27 2022-05-24 Dfine有限公司 Bendable osteotome with cement delivery channel
US11026744B2 (en) 2016-11-28 2021-06-08 Dfine, Inc. Tumor ablation devices and related methods
EP3551100B1 (en) 2016-12-09 2021-11-10 Dfine, Inc. Medical devices for treating hard tissues
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US20180168648A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Durability features for end effectors and firing assemblies of surgical stapling instruments
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US10588630B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical tool assemblies with closure stroke reduction features
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10617414B2 (en) 2016-12-21 2020-04-14 Ethicon Llc Closure member arrangements for surgical instruments
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US20180168608A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
BR112019011947A2 (en) 2016-12-21 2019-10-29 Ethicon Llc surgical stapling systems
JP2020503158A (en) 2016-12-22 2020-01-30 エアリン・メディカル・インコーポレイテッド Soft palate treatment
US11806071B2 (en) 2016-12-22 2023-11-07 Aerin Medical Inc. Soft palate treatment
EP3565486B1 (en) 2017-01-06 2021-11-10 Dfine, Inc. Osteotome with a distal portion for simultaneous advancement and articulation
EP3592270A1 (en) * 2017-03-08 2020-01-15 Affera, Inc. Devices, systems and methods for balancing ablation energy
JP7300999B2 (en) 2017-04-28 2023-06-30 アリネックス, インコーポレイテッド Systems and methods for locating blood vessels in the treatment of rhinitis
CA3061710A1 (en) 2017-04-28 2018-11-01 Stryker Corporation Control console and accessories for rf nerve ablation and methods of operating the same
USD880694S1 (en) 2017-05-01 2020-04-07 Aerin Medical, Inc. Nasal airway medical instrument
US11096738B2 (en) 2017-05-05 2021-08-24 Aerin Medical, Inc. Treatment of spinal tissue
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US10945781B2 (en) * 2017-09-07 2021-03-16 Biosense Webster (Israel) Ltd. Variable phase generation and detection for radio-frequency (RF) ablation
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11179151B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a display
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US10990683B2 (en) * 2018-05-25 2021-04-27 At&T Intellectual Property I, L.P. Virtual reality for security augmentation in home and office environments
US10980599B2 (en) 2018-07-05 2021-04-20 Avent, Inc. System and method for adjusting available power per probe during an ablation procedure
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
USD902412S1 (en) 2018-10-31 2020-11-17 Aerin Medical, Inc. Electrosurgery console
USD881904S1 (en) 2018-10-31 2020-04-21 Aerin Medical Inc. Display screen with animated graphical user interface
WO2020097339A1 (en) 2018-11-08 2020-05-14 Dfine, Inc. Tumor ablation device and related systems and methods
US11826088B2 (en) 2018-12-28 2023-11-28 Biosense Webster (Israel) Ltd. Adjusting phases of multiphase ablation generator to detect contact
EP3914171A2 (en) 2019-01-25 2021-12-01 Ablacare SAS Systems and methods for applying energy to ovarian tissue
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
DE102019111644A1 (en) * 2019-05-06 2020-11-12 Karl Storz Se & Co. Kg Medical device and method for operating a medical device
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11622790B2 (en) * 2020-05-21 2023-04-11 Covidien Lp Obturators for surgical access assemblies and methods of assembly thereof
US20210361340A1 (en) * 2020-05-21 2021-11-25 Covidien Lp Independent control of dual rf electrosurgery
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US20220031350A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with double pivot articulation joint arrangements
US20220071692A1 (en) * 2020-09-08 2022-03-10 Biosense Webster (Israel) Ltd. Impedance based irreversible-electroporation (ire)
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US20220378426A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a mounted shaft orientation sensor
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
CN116807600A (en) * 2022-03-28 2023-09-29 奥林匹斯冬季和Ibe有限公司 Electrosurgical generator, method of operating an electrosurgical generator, and electrosurgical generator system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233515A (en) * 1990-06-08 1993-08-03 Cosman Eric R Real-time graphic display of heat lesioning parameters in a clinical lesion generator system
WO1997020510A1 (en) * 1995-12-08 1997-06-12 C.R. Bard, Inc. Radio frequency energy delivery system for multipolar electrode catheters

Family Cites Families (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1798902A (en) 1928-11-05 1931-03-31 Edwin M Raney Surgical instrument
US3901241A (en) 1973-05-31 1975-08-26 Al Corp Du Disposable cryosurgical instrument
DE2513868C2 (en) 1974-04-01 1982-11-04 Olympus Optical Co., Ltd., Tokyo Bipolar electrodiathermy forceps
US4196724A (en) 1978-01-31 1980-04-08 Frecker William H Tongue locking device
WO1981003271A1 (en) 1980-05-13 1981-11-26 American Hospital Supply Corp A multipolar electrosurgical device
JPS5755573A (en) 1980-09-18 1982-04-02 Olympus Optical Co Ltd Cassette storing device
US4411266A (en) 1980-09-24 1983-10-25 Cosman Eric R Thermocouple radio frequency lesion electrode
US4565200A (en) 1980-09-24 1986-01-21 Cosman Eric R Universal lesion and recording electrode system
US5435805A (en) 1992-08-12 1995-07-25 Vidamed, Inc. Medical probe device with optical viewing capability
US5370675A (en) 1992-08-12 1994-12-06 Vidamed, Inc. Medical probe device and method
US5421819A (en) 1992-08-12 1995-06-06 Vidamed, Inc. Medical probe device
US5385544A (en) 1992-08-12 1995-01-31 Vidamed, Inc. BPH ablation method and apparatus
US5542915A (en) 1992-08-12 1996-08-06 Vidamed, Inc. Thermal mapping catheter with ultrasound probe
US4580557A (en) * 1983-08-22 1986-04-08 Laserscope Surgical laser system with multiple output devices
US4727874A (en) * 1984-09-10 1988-03-01 C. R. Bard, Inc. Electrosurgical generator with high-frequency pulse width modulated feedback power control
US5365926A (en) 1986-11-14 1994-11-22 Desai Jawahar M Catheter for mapping and ablation and method therefor
US5215103A (en) 1986-11-14 1993-06-01 Desai Jawahar M Catheter for mapping and ablation and method therefor
US5231995A (en) 1986-11-14 1993-08-03 Desai Jawahar M Method for catheter mapping and ablation
US4901737A (en) 1987-04-13 1990-02-20 Toone Kent J Method and therapeutic apparatus for reducing snoring
US4943290A (en) 1987-06-23 1990-07-24 Concept Inc. Electrolyte purging electrode tip
US4907589A (en) 1988-04-29 1990-03-13 Cosman Eric R Automatic over-temperature control apparatus for a therapeutic heating device
US4947842A (en) 1988-09-22 1990-08-14 Medical Engineering And Development Institute, Inc. Method and apparatus for treating tissue with first and second modalities
US4906203A (en) 1988-10-24 1990-03-06 General Motors Corporation Electrical connector with shorting clip
US4966597A (en) 1988-11-04 1990-10-30 Cosman Eric R Thermometric cardiac tissue ablation electrode with ultra-sensitive temperature detection
DE3838840C2 (en) 1988-11-17 1997-02-20 Leibinger Gmbh High frequency coagulation device for surgical purposes
CA1332905C (en) 1989-03-10 1994-11-08 John A. Murchie Method and apparatus for treatment of snoring
US5125928A (en) 1989-04-13 1992-06-30 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US4976711A (en) 1989-04-13 1990-12-11 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5057107A (en) 1989-04-13 1991-10-15 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5078717A (en) 1989-04-13 1992-01-07 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5122137A (en) 1990-04-27 1992-06-16 Boston Scientific Corporation Temperature controlled rf coagulation
US5083565A (en) 1990-08-03 1992-01-28 Everest Medical Corporation Electrosurgical instrument for ablating endocardial tissue
US5100423A (en) 1990-08-21 1992-03-31 Medical Engineering & Development Institute, Inc. Ablation catheter
ATE135902T1 (en) 1990-10-03 1996-04-15 Ernest Truffer DEVICE FOR PREVENTING SNORING
US5256138A (en) 1990-10-04 1993-10-26 The Birtcher Corporation Electrosurgical handpiece incorporating blade and conductive gas functionality
US5190541A (en) 1990-10-17 1993-03-02 Boston Scientific Corporation Surgical instrument and method
US5368557A (en) 1991-01-11 1994-11-29 Baxter International Inc. Ultrasonic ablation catheter device having multiple ultrasound transmission members
US5094233A (en) 1991-01-11 1992-03-10 Brennan Louis G Turbinate sheath device
US5409453A (en) 1992-08-12 1995-04-25 Vidamed, Inc. Steerable medical probe with stylets
AU1899292A (en) 1991-05-24 1993-01-08 Ep Technologies Inc Combination monophasic action potential/ablation catheter and high-performance filter system
US5383917A (en) 1991-07-05 1995-01-24 Jawahar M. Desai Device and method for multi-phase radio-frequency ablation
US5697909A (en) * 1992-01-07 1997-12-16 Arthrocare Corporation Methods and apparatus for surgical cutting
AU3128593A (en) 1991-11-08 1993-06-07 Ep Technologies Inc Radiofrequency ablation with phase sensitive power detection
US5363861A (en) 1991-11-08 1994-11-15 Ep Technologies, Inc. Electrode tip assembly with variable resistance to bending
ATE241938T1 (en) 1991-11-08 2003-06-15 Boston Scient Ltd ABLATION ELECTRODE WITH INSULATED TEMPERATURE MEASUREMENT ELEMENT
US5257451A (en) 1991-11-08 1993-11-02 Ep Technologies, Inc. Method of making durable sleeve for enclosing a bendable electrode tip assembly
US5906614A (en) * 1991-11-08 1999-05-25 Ep Technologies, Inc. Tissue heating and ablation systems and methods using predicted temperature for monitoring and control
US5328467A (en) 1991-11-08 1994-07-12 Ep Technologies, Inc. Catheter having a torque transmitting sleeve
US5275162A (en) 1991-11-08 1994-01-04 Ep Technologies, Inc. Valve mapping catheter
US5197964A (en) 1991-11-12 1993-03-30 Everest Medical Corporation Bipolar instrument utilizing one stationary electrode and one movable electrode
US5197963A (en) 1991-12-02 1993-03-30 Everest Medical Corporation Electrosurgical instrument with extendable sheath for irrigation and aspiration
US5281216A (en) 1992-03-31 1994-01-25 Valleylab, Inc. Electrosurgical bipolar treating apparatus
US5314466A (en) 1992-04-13 1994-05-24 Ep Technologies, Inc. Articulated unidirectional microwave antenna systems for cardiac ablation
WO1993020886A1 (en) 1992-04-13 1993-10-28 Ep Technologies, Inc. Articulated systems for cardiac ablation
US5281217A (en) 1992-04-13 1994-01-25 Ep Technologies, Inc. Steerable antenna systems for cardiac ablation that minimize tissue damage and blood coagulation due to conductive heating patterns
WO1993020768A1 (en) 1992-04-13 1993-10-28 Ep Technologies, Inc. Steerable microwave antenna systems for cardiac ablation
US5277201A (en) 1992-05-01 1994-01-11 Vesta Medical, Inc. Endometrial ablation apparatus and method
US5562720A (en) * 1992-05-01 1996-10-08 Vesta Medical, Inc. Bipolar/monopolar endometrial ablation device and method
US5318563A (en) * 1992-06-04 1994-06-07 Valley Forge Scientific Corporation Bipolar RF generator
US5281218A (en) 1992-06-05 1994-01-25 Cardiac Pathways Corporation Catheter having needle electrode for radiofrequency ablation
US5456662A (en) 1993-02-02 1995-10-10 Edwards; Stuart D. Method for reducing snoring by RF ablation of the uvula
US5486161A (en) 1993-02-02 1996-01-23 Zomed International Medical probe device and method
US5470308A (en) 1992-08-12 1995-11-28 Vidamed, Inc. Medical probe with biopsy stylet
US5556377A (en) 1992-08-12 1996-09-17 Vidamed, Inc. Medical probe apparatus with laser and/or microwave monolithic integrated circuit probe
US5484400A (en) * 1992-08-12 1996-01-16 Vidamed, Inc. Dual channel RF delivery system
US5514131A (en) 1992-08-12 1996-05-07 Stuart D. Edwards Method for the ablation treatment of the uvula
US5542916A (en) * 1992-08-12 1996-08-06 Vidamed, Inc. Dual-channel RF power delivery system
US5293869A (en) 1992-09-25 1994-03-15 Ep Technologies, Inc. Cardiac probe with dynamic support for maintaining constant surface contact during heart systole and diastole
US5309910A (en) 1992-09-25 1994-05-10 Ep Technologies, Inc. Cardiac mapping and ablation systems
US5401272A (en) 1992-09-25 1995-03-28 Envision Surgical Systems, Inc. Multimodality probe with extendable bipolar electrodes
US5549108A (en) 1992-09-25 1996-08-27 Ep Technologies, Inc. Cardiac mapping and ablation systems
US5313943A (en) 1992-09-25 1994-05-24 Ep Technologies, Inc. Catheters and methods for performing cardiac diagnosis and treatment
US5471982A (en) 1992-09-29 1995-12-05 Ep Technologies, Inc. Cardiac mapping and ablation systems
US5334196A (en) 1992-10-05 1994-08-02 United States Surgical Corporation Endoscopic fastener remover
AU5456494A (en) 1992-11-13 1994-06-08 American Cardiac Ablation Co., Inc. Fluid cooled electrosurgical probe
US5545161A (en) 1992-12-01 1996-08-13 Cardiac Pathways Corporation Catheter for RF ablation having cooled electrode with electrically insulated sleeve
US5348554A (en) 1992-12-01 1994-09-20 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode
CN1119418A (en) 1993-02-02 1996-03-27 怀达医疗公司 Transurethral needle ablation device and method
DE4303882C2 (en) 1993-02-10 1995-02-09 Kernforschungsz Karlsruhe Combination instrument for separation and coagulation for minimally invasive surgery
US5403311A (en) 1993-03-29 1995-04-04 Boston Scientific Corporation Electro-coagulation and ablation and other electrotherapeutic treatments of body tissue
US5365945A (en) 1993-04-13 1994-11-22 Halstrom Leonard W Adjustable dental applicance for treatment of snoring and obstructive sleep apnea
CA2164860C (en) 1993-06-10 2005-09-06 Mir A. Imran Transurethral radio frequency ablation apparatus
DE4323585A1 (en) 1993-07-14 1995-01-19 Delma Elektro Med App Bipolar high-frequency surgical instrument
US5817093A (en) * 1993-07-22 1998-10-06 Ethicon Endo-Surgery, Inc. Impedance feedback monitor with query electrode for electrosurgical instrument
US5496312A (en) * 1993-10-07 1996-03-05 Valleylab Inc. Impedance and temperature generator control
US5545193A (en) 1993-10-15 1996-08-13 Ep Technologies, Inc. Helically wound radio-frequency emitting electrodes for creating lesions in body tissue
US5433739A (en) 1993-11-02 1995-07-18 Sluijter; Menno E. Method and apparatus for heating an intervertebral disc for relief of back pain
US5472441A (en) 1993-11-08 1995-12-05 Zomed International Device for treating cancer and non-malignant tumors and methods
US5536267A (en) 1993-11-08 1996-07-16 Zomed International Multiple electrode ablation apparatus
US5507743A (en) 1993-11-08 1996-04-16 Zomed International Coiled RF electrode treatment apparatus
US5599345A (en) 1993-11-08 1997-02-04 Zomed International, Inc. RF treatment apparatus
US5458597A (en) 1993-11-08 1995-10-17 Zomed International Device for treating cancer and non-malignant tumors and methods
US5423812A (en) 1994-01-31 1995-06-13 Ellman; Alan G. Electrosurgical stripping electrode for palatopharynx tissue
US5545434A (en) 1994-04-01 1996-08-13 Huarng; Hermes Method of making irregularly porous cloth
US5458596A (en) 1994-05-06 1995-10-17 Dorsal Orthopedic Corporation Method and apparatus for controlled contraction of soft tissue
US5575788A (en) * 1994-06-24 1996-11-19 Stuart D. Edwards Thin layer ablation apparatus
US5505730A (en) 1994-06-24 1996-04-09 Stuart D. Edwards Thin layer ablation apparatus
CA2194071C (en) * 1994-06-27 2005-12-13 Roger A. Stern Non-linear control systems and methods for heating and ablating body tissue
EP0768841B1 (en) * 1994-06-27 2003-12-03 Boston Scientific Limited System for controlling tissue ablation using temperature sensors
US5810802A (en) * 1994-08-08 1998-09-22 E.P. Technologies, Inc. Systems and methods for controlling tissue ablation using multiple temperature sensing elements
US5609151A (en) 1994-09-08 1997-03-11 Medtronic, Inc. Method for R-F ablation
US5545171A (en) 1994-09-22 1996-08-13 Vidamed, Inc. Anastomosis catheter
US5558673A (en) 1994-09-30 1996-09-24 Vidamed, Inc. Medical probe device and method having a flexible resilient tape stylet
US5514130A (en) 1994-10-11 1996-05-07 Dorsal Med International RF apparatus for controlled depth ablation of soft tissue
US5868737A (en) * 1995-06-09 1999-02-09 Engineering Research & Associates, Inc. Apparatus and method for determining ablation
US5624439A (en) 1995-08-18 1997-04-29 Somnus Medical Technologies, Inc. Method and apparatus for treatment of air way obstructions
US5772659A (en) * 1995-09-26 1998-06-30 Valleylab Inc. Electrosurgical generator power control circuit and method
US5931836A (en) * 1996-07-29 1999-08-03 Olympus Optical Co., Ltd. Electrosurgery apparatus and medical apparatus combined with the same
US5871481A (en) * 1997-04-11 1999-02-16 Vidamed, Inc. Tissue ablation apparatus and method
US5909614A (en) * 1997-12-08 1999-06-01 Krivoshlykov; Sergei G. Method of improving performance of semiconductor light emitting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233515A (en) * 1990-06-08 1993-08-03 Cosman Eric R Real-time graphic display of heat lesioning parameters in a clinical lesion generator system
WO1997020510A1 (en) * 1995-12-08 1997-06-12 C.R. Bard, Inc. Radio frequency energy delivery system for multipolar electrode catheters

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011015344A1 (en) * 2009-08-06 2011-02-10 Erbe Elektromedizin Gmbh Supply device for at least one medical instrument and method for configuring an associated supply device
US10206733B2 (en) 2010-12-16 2019-02-19 Biosense Webster (Israel) Ltd. System for controlling tissue ablation using temperature sensors
US9993285B2 (en) 2010-12-16 2018-06-12 Biosense Webster (Israel) Ltd. System for controlling tissue ablation using temperature sensors
US11382680B2 (en) 2010-12-16 2022-07-12 Biosense Webster (Israel) Ltd. System for controlling tissue ablation using temperature sensors
US10729485B2 (en) 2010-12-16 2020-08-04 Biosense Webster (Israel) Ltd. System for controlling tissue ablation using temperature sensors
EP3034024A1 (en) * 2010-12-16 2016-06-22 Biosense Webster (Israel) Ltd. System for controlling tissue ablation using temperature sensors
US9737353B2 (en) 2010-12-16 2017-08-22 Biosense Webster (Israel) Ltd. System for controlling tissue ablation using temperature sensors
EP2486884A1 (en) * 2010-12-16 2012-08-15 Biosense Webster (Israel), Ltd. System for controlling tissue ablation using temperature sensors
WO2014181077A1 (en) * 2013-05-08 2014-11-13 Creo Medical Limited Method and apparatus for controlling power delivered by electrosurgical probe
CN107397585A (en) * 2013-05-08 2017-11-28 科瑞欧医疗有限公司 Method and apparatus for controlling the power by electrosurgical probe delivering
US10299850B2 (en) 2013-05-08 2019-05-28 Creo Medical Limited Method and apparatus for controlling power delivered by electrosurgical probe
CN105338918A (en) * 2013-05-08 2016-02-17 科瑞欧医疗有限公司 Method and apparatus for controlling power delivered by electrosurgical probe
KR102304488B1 (en) 2013-05-08 2021-09-23 크리오 메디컬 리미티드 Method and apparatus for controlling power delivered by electrosurgical probe
KR20160005766A (en) * 2013-05-08 2016-01-15 크리오 메디컬 리미티드 Method and apparatus for controlling power delivered by electrosurgical probe
US11759271B2 (en) 2017-04-28 2023-09-19 Stryker Corporation System and method for indicating mapping of console-based surgical systems

Also Published As

Publication number Publication date
US6228079B1 (en) 2001-05-08
US6165173A (en) 2000-12-26
US6309386B1 (en) 2001-10-30
US6139546A (en) 2000-10-31
US6293941B1 (en) 2001-09-25
AU9687598A (en) 1999-04-27
US6231569B1 (en) 2001-05-15

Similar Documents

Publication Publication Date Title
US6231569B1 (en) Dual processor architecture for electro generator
US11147608B2 (en) Computerized electrical signal generator
US20230056660A1 (en) Control Console And Accessories For RF Nerve Ablation And Methods Of Operating The Same
US8560062B2 (en) Method and apparatus for diagnosing and treating neural dysfunction
EP2653128B1 (en) Control of energy delivery to multiple energy delivery devices
EP2965784B1 (en) Tissue ablation system with phase-controlled channels
US6936047B2 (en) Multi-channel RF energy delivery with coagulum reduction
JP4112212B2 (en) Apparatus and method for altering the function of a generator in an ultrasonic surgical system
WO2008102154A2 (en) Electrosurgical systems
EP3034024A1 (en) System for controlling tissue ablation using temperature sensors
CN101027009A (en) A system and method for multi-channel RF energy delivery with coagulum reduction
EP3287090B1 (en) Implant mode for electrosurgical generator
WO1999034743A1 (en) Method and apparatus for monitoring solid tissue heating
CN108784829A (en) A kind of RF ablation device and RF ablation control method
US20190388139A1 (en) Rf generator for an electrosurgical instrument
US11324542B2 (en) RF generator for an electrosurgical instrument
WO2009134463A1 (en) Multi-stage testing of electrodes of implantable medical device, system and method
US20230355298A1 (en) Devices, systems and methods for caculating the amount of energy delivered to tissue during an electrosurgical procedure
KR100500395B1 (en) Electro-cuter for surgical operation and the control methode

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KR US US US US US US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA