WO1999024652A1 - Woven fabric sleeve - Google Patents

Woven fabric sleeve Download PDF

Info

Publication number
WO1999024652A1
WO1999024652A1 PCT/IB1998/001775 IB9801775W WO9924652A1 WO 1999024652 A1 WO1999024652 A1 WO 1999024652A1 IB 9801775 W IB9801775 W IB 9801775W WO 9924652 A1 WO9924652 A1 WO 9924652A1
Authority
WO
WIPO (PCT)
Prior art keywords
members
fill
warp
woven fabric
filamentary
Prior art date
Application number
PCT/IB1998/001775
Other languages
French (fr)
Inventor
Robert J. Brushafer
Gerald T. Lien
Janice R. Maiden
Original Assignee
Federal-Mogul Systems Protection Group Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Federal-Mogul Systems Protection Group Inc. filed Critical Federal-Mogul Systems Protection Group Inc.
Priority to AU95569/98A priority Critical patent/AU9556998A/en
Priority to AT98949208T priority patent/ATE231571T1/en
Priority to DE1998610964 priority patent/DE69810964T2/en
Priority to KR1020007004963A priority patent/KR100544769B1/en
Priority to CA 2307586 priority patent/CA2307586C/en
Priority to HU0100150A priority patent/HUP0100150A3/en
Priority to BR9813995A priority patent/BR9813995A/en
Priority to EP19980949208 priority patent/EP1038060B1/en
Priority to PL98340371A priority patent/PL186947B1/en
Priority to JP2000519640A priority patent/JP2001522950A/en
Publication of WO1999024652A1 publication Critical patent/WO1999024652A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0035Protective fabrics
    • D03D1/0043Protective fabrics for elongated members, i.e. sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L57/00Protection of pipes or objects of similar shape against external or internal damage or wear
    • F16L57/06Protection of pipes or objects of similar shape against external or internal damage or wear against wear
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0035Protective fabrics
    • D03D1/0041Cut or abrasion resistant
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • D03D13/006With additional leno yarn
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/43Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with differing diameters
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/47Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads multicomponent, e.g. blended yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/49Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads textured; curled; crimped
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/593Stiff materials, e.g. cane or slat
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D9/00Open-work fabrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/02Hoses, i.e. flexible pipes made of fibres or threads, e.g. of textile which may or may not be impregnated, or provided with an impermeable layer, e.g. fire-hoses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/10Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements not embedded in the wall
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/04Protective tubing or conduits, e.g. cable ladders or cable troughs
    • H02G3/0462Tubings, i.e. having a closed section
    • H02G3/0481Tubings, i.e. having a closed section with a circular cross-section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1362Textile, fabric, cloth, or pile containing [e.g., web, net, woven, knitted, mesh, nonwoven, matted, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1397Single layer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • Y10T442/322Warp differs from weft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • Y10T442/322Warp differs from weft
    • Y10T442/3228Materials differ

Definitions

  • This invention relates to woven fabric sleeves for use in industrial applications as a protective or insulating covering for hoses, wires, piping and like objects and especially to flexible, conformable woven fabric sleeves.
  • Woven fabric sleeves are used extensively to provide a protective or insulating layer over a vast variety of items.
  • a sleeve of woven material is often fitted over branches of an electrical wiring harness to bundle the individual wires together and to protect the wires against abrasive wear which might otherwise damage the insulation or the conductors and lead to short circuits or broken circuits.
  • Another common application is as an insulator of hot tubing, such as is found in automobile exhaust manifolds or power plant steam lines.
  • Sleeves performing an insulating function are typically woven or braided from insulating yarns or filaments and often laminated with coatings, films or foils which increase their insulating capability, for example, by providing a reflective surface blocking infrared radiation.
  • Woven fabrics are, of course, used extensively to protect items having shapes other than tubular as well.
  • Woven fabrics are economical to manufacture and see extensive use in the protective covering role because woven fabrics provide stable and robust membrane structures due to the orthogonal orientation of the warp and weft yarns comprising the fabric.
  • the orthogonal orientation of a woven fabric also tends to detrimentally inhibit flexibility and conformability.
  • the orthogonal fabric structure of woven fabrics is not as flexible or conformable.
  • This invention provides woven fabric sleeving having increased flexibility and conformability as compared with traditional sleeving.
  • Control of the relative flexibility of the sleeving, according to the invention is provided by alternating circumferentially extending unidirectional zones of relative flexibility separating adjacent zones of inflexibility.
  • the relatively flexible zones serve as pivot points about which the relatively inflexible zones pivot in a manner somewhat analogous to the ridges and valleys of corrugated or convolute tubing.
  • Woven fabrics are typically comprised of a multiplicity of first filamentary members arranged parallel to each other and interlaced with a plurality of second filamentary members oriented orthogonally (at 90°) to the first filamentary members.
  • filamentary members or members is used to mean wires, threads, yarn whether twisted or laid together, monofilaments and combinations of the above, including yarns formed by the DREF process.
  • relatively resilient engineered plastic materials are generally preferred, although resilient wire may sometimes serve as well.
  • Particularly preferred monofilaments have a modulus of elasticity greater than 3250 MN/M 2 (50,000 psi) and preferably up to about 13000 MN/M 2 (200,000 psi).
  • Exemplary monofilament materials include polyester, aramid polymers as sold under the trademark Kevlar nylon 6 and nylon 6/6.
  • warp filamentary members cross over and under the weft filamentary members in an alternating pattern, i.e., for a given warp crossing over a particular weft filamentary member, the adjacent warp filamentary member will cross under the particular fill filamentary member, thereby locking the fill filamentary member in place.
  • a woven fabric sleeve for protecting and covering elongated substrates comprises a woven fabric having orthogonally interlaced fill members and warp members arranged to extend circumferentially and longitudinally of the sleeve, and is characterised by said warp members or said fill members forming circumferentially extending alternating bands of relative flexibility separating bands of inflexibility.
  • art fill members are also known as weft members and in this specification the terms "fill” and "weft” will be used interchangeably.
  • enhanced flexibility of tubular sleeves of woven fabric is achieved by use of alternating fill filamentary members of small and large diameter, thereby creating relatively empty spaces at the locations of the small diameter filamentary members. These relatively empty spaces function as pivot points for the relatively large diameter filamentary members resulting in substantial increases in flexibility and conformability of the fabric in the sleeve.
  • the filamentary member employed in the fill may be relatively rigid or non-rigid. Heat shrinkable monofilaments may be used in preselected zones in the fill as a means of creating a self-locating protective sleeve.
  • tubular sleeves according to this embodiment of the invention are preferably made on a circular weaving machine, conventional looms producing flat fabrics may be employed, and which flat fabrics may incorporate heat settable monofilaments or ductile wire. Where heat settable monofilaments are employed, the monofilaments are heat set on a mandrel to form a tubular sleeve.
  • DREF yarns consisting of polyester monofilaments as a core with spun staple polyester as an outer layer combine the property of being heat settable with the texture and friction of a multifilament.
  • the flat fabric may conveniently be used in the production of laminated sleeves as by application of foils or films to one or both surfaces.
  • pivot points in the product are provided by use of one size diameter fill yarn and an intermittent take-up system.
  • a bellows effect is created by stacking picks at predetermined discrete locations lengthwise of the fabric.
  • This embodiment has the capability of being tailored to meet particular curvatures.
  • Use of the intermittent stacking system allows for incorporation of the bellows at predetermined locations.
  • the warp yarns may be twisted glass fibre and the fill may be wire served with glass fibre.
  • four picks were placed in the fabric before the take-up advanced, thus creating bundles of filaments spaced apart by single picks.
  • the sleeve may be produced as a flat fabric having this structure and curled so that a tubular article having a side opening is formed.
  • the alternating configuration of larger and smaller diameter weft members results in a fabric having alternating adjacent regions of greater and lesser relative flexibility.
  • the regions between the large diameter filamentary members allow for relative pivotal movement of the regions having the large diameter filamentary members due to the tendency of the fabric to pivot more readily about the regions of lesser stiffness; that is, it becomes more flexible and conformable to irregular contours than typical fabric woven with uniform diameter weft filamentary members.
  • the sleeve fabric has the warp members grouped in pairs, each warp member having a neighbour warp member.
  • Fill, or weft, members are interlaced with the warp members, but in between each weft member, the warp member pairs are twisted around one another, in effect eliminating the alternate weft members and reducing the separation of the warp members almost to zero in between the weft members.
  • This is known in the art as a Leno type weave. In this weave, regions of relatively greater stiffness are formed in the fabric along the weft members where the warp members cross and adjacent regions of relatively lesser stiffness are formed in the spaces in between the weft members where the warp member pairs are twisted together.
  • weft member size can be set either by using single strands of a predetermined diameter or pairs of even bundles of strands built up to a desired effective diameter of weft member.
  • Still other embodiments of the invention involve the interlacing of filamentary members utilising so-called mock Leno weaving.
  • the mock Leno weaving places the warp yarns in groups with intervening empty spaces which lock the weft yarns in place in spaced apart relationship, thereby providing a flexible fabric structure characteristic of Leno fabrics without twisting of the warp members.
  • Sleeving produced using fabric having increased flexibility and conformability is advantageously used for industrial purposes as for the covering of piping, wiring and other tubular shaped items.
  • the relative stiffness of the sleeving can be controlled to produce a flexible fabric sleeves tailored to a particular curvature and the flexibility built in at predetermined regions where flexibility is required.
  • a woven fabric sleeve according to the invention laminated with a heat settable wrap is easily conformed to a curved shape, such as a pipe elbow bend, and then heat set into shape.
  • the increased flexibility and conformability of the woven fabric yields a superior covering which adjusts easily to, and holds, complex shapes.
  • the warp and fill members may comprise filamentary members of virtually any fibre, yarn or filament in the various embodiments of the invention.
  • textured polyester multifilament yarns in the warp have been combined with materials such as monofilament polyesters or DREF yarns in the weft with good results.
  • Glass fibre yarns may be used, as well as wires served with glass.
  • Sleeves woven wholly or in part of multifilament yarns may be coated or impregnated with coatings as is well known in the art.
  • conducting weft members made from stranded copper wire for example, are used to avoid unwanted static charge build-up.
  • Heat shrinkable members are especially useful as weft members in the production of heat shrink sleeving.
  • the fill members have extended circumferentially and defined by their size, material and spacing the zones of flexibility
  • a sleeve may be produced from fabric in which it is the warp members which extend in the circumferential direction and equally define the zones of flexibility.
  • Figure 1 shows a cross-sectional side view illustrating the fabric construction of a first embodiment of a woven fabric sleeve according to the invention
  • Figure 1a is a perspective view of a sleeve having the fabric construction of Figure 1,
  • Figure 1b is a perspective view of another form of sleeve of the invention.
  • Figure 2 shows a cross-sectional side view illustrating the fabric construction of a second embodiment of a woven fabric sleeve according to the invention
  • Figure 3 is a cross-sectional side view of a third embodiment illustrating a different fabric construction for carrying out the invention
  • Figure 4 is a plan view of another fabric construction for a fourth sleeve embodiment formed according to the invention.
  • Figure 4a is a sectional view along line 4a-4a of Figure 4, and
  • Figure 5 is a plan view of another embodiment of the invention of similar construction to the embodiment of Figure 4.
  • Figure 1 is a schematic showing a cross-sectional side view of a portion of a fabric 10 of 1/1 plain weave construction formed into a sleeve according to one embodiment of the invention and shown in Figure 1a at 16.
  • Neighbouring warp filamentary members 12a and 12b are interlaced with weft filamentary members 14a and 14b, the warp filamentary members 12a-12b passing alternately above and below the weft filamentary members 14a and 14b.
  • neighbouring warp member pairs such as 12a and 12b do not pass over and under the same weft members together, but alternate, 12a passing over a particular fill, or weft, member 14a while 12b passes under that particular weft member.
  • warp members 12a and 12b are representative of other warp members arrayed adjacent to each other in the plane of the drawing.
  • weft members 14a and 14b are of alternating large and small diameter.
  • 0.25mm (0.010") diameter polyester monofilaments in the warp and 0.686mm (0.027") diameter monofilaments alternating with 0.25mm (0.010") diameter monofilaments in the weft.
  • the warp monofilaments were comprised of two ends.
  • denier texturised polyester multifilament yarn is used in the warp and employed large and small diameter polyester monofilaments of 0.686mm (0.027") and 0.25mm (0.010") diameter, respectively, in an alternating pattern forming a sleeve approximately 25.4mm (1") in diameter. Since these products were made on a circular loom, with the warp members extending substantially longitudinally of the resultant sleeve, but with a slight helical twist introduced in the warp direction. The resulting sleeves were very flexible and conformable. The small diameter monofilaments created circumferential zones of relative flexibility separating the relatively stiff, large diameter monofilaments. This construction allowed for curvature of the sleeves on relatively sharp radii without kinking. Glass fibre yarns may be substituted for polyester in the warp. Stainless steel wire may be substituted for the polyester monofilaments in whole or in part.
  • Sleeve 16 may have laminated to it a cover layer 18 formed, for example, from an adhesive bonded texturised reflective film.
  • a third example incorporating the weave shown in Figure 1 and woven on a circular loom used 1250 denier texturised polyester yarn in the warp and stranded copper wire of about 0.635mm (0.025") diameter in the fill alternating with 1250 denier polyester yarn.
  • the copper wire is provided for the dissipation of static electricity.
  • This sleeve was exceptionally flexible but lacked the circumferential stiffness provided by the first and second of the above examples.
  • FIG. 1 b in a modification of the above similar sleeve woven on a conventional loom is made by weaving a flat fabric and then forming it into tubular shape that is resiliently set by the application of heat.
  • polyester monofilaments as the fill were of about 2.54mm (0.10") in diameter and the flat fabric was wrapped on a mandrel and heated to set the resilient monofilaments.
  • a side opening 20 allows for fitting the sleeve over elongated substrates, as shown at 22, and allows for breakouts.
  • FIG. 2 shows another embodiment of a woven fabric 10 2 according to the invention where fill, or weft, filamentary members 26a are formed from a plurality of individual weft monofilaments 26 formed into a bundle. Bundled weft monofilaments 26a have a greater effective diameter than adjacent weft monofilaments 26b which preferably have a diameter equal to monofilaments 26.
  • This fabric of Figure 2 was constructed with the use of an intermittent take-up by stacking picks at discrete locations extended circumferentially of the fabric.
  • a glass fibre yarn was used in the warp, and relatively ductile wire served with glass was used in the fill. Four picks were placed in the fabric before the take-up advanced.
  • a sleeve was made by weaving the fabric flat on a conventional loom, thereafter placing it on a mandrel where it was curled to form a sleeve similar to the sleeve of Figure 1b, the shape of the sleeve being retained by the curled wires.
  • the flexibility of the sleeve can be controlled by varying the number of picks per inch between stacked picks.
  • FIG. 3 shows a third another embodiment of a woven fabric 10 3 according to the invention wherein fill, or weft, members 28 are spaced apart by twists formed in warps 12a and 12b.
  • warp members 12a are each paired with an adjacent neighbour member 12b.
  • the warp member pairs 12a and 12b are twisted about each other as seen at 30, after passing over and under a weft member 28 utilizing a Leno harness which lifts and twists the warp yams during every weft insertion. This is the characteristic of the so called Leno weave, where every other weft member is eliminated and replaced by a warp member twist 30.
  • the twisting effect secures a filling weft yarn or pick in place and allows for less picks per inch to form a stable but flexible fabric.
  • the empty spaces where the twists occur between the fill members create pivot points which allow the sleeve to readily contour over sharp curves.
  • a preferred method involves coating a sleeve material with a B-stage epoxy and allowing the epoxy to dry without curing and then forming the coated sleeve material with a sleeve shape and before heating to cure the epoxy.
  • the sleeve maintains its shape even at high temperature on account of the thermosetting characteristic of the epoxy.
  • the yarn employed was a Nomex DREF yarn, and the sleeve was made using the Leno weave.
  • the fabric so formed was laminated with aluminum foil using a hot melt adhesive and was slit to width following lamination and then kiss coated with the epoxy.
  • a fourth embodiment of the invention is illustrated in Figures 4 and 4a.
  • the sleeve fabric 10 4 incorporates a so-called mock Leno weave.
  • the mock Leno weave forms the warp members into groups with empty spaces intervening, giving an open fabric structure without a twisting of warp members and giving increased flexibility.
  • spaced groups of three warp members 40 comprise a relatively large diameter warp filamentary member 40, or equivalent bundle of smaller warp members, with pairs of relatively small diameter warp filamentary members 40 2 , 40 3 ⁇ the warp filamentary members woven with fill yarns 43.
  • the fill yarns 43 are locked in place between the groups of three warp filamentary members, the middle warp filamentary member of each group passing in an alternating over-and-under pattern on the opposite side of each fill yarn to the outer warp filamentary members and locking the fill yarns in spaced apart relationship. Zones of relative flexibility are created by determining the separation of the fill yarns. The spaces between the fill members can be varied as required to provide the sleeve with the requisite flexibility and conformability.
  • the fill members may be resiliently settable monofilaments set to cause the fabric to resiliently form a sleeve.
  • the warp filamentary members may be monofilaments or any of the yarns mentioned herein.
  • a fifth embodiment of the invention comprises a sleeve having a fabric construction 10 3 shown in Figure 5.
  • the fabric construction is similar to Figures 4 and 4a in that a mock Leno weave is employed.
  • the warp member 44 comprises a group of three filamentary members 44 ⁇ 44 2 and 44 3 each formed of a texturised polyester multifilament yarn.
  • the fill is a DREF yarn 46 comprised of a polyester monofilament over which staple polyester is spun. As illustrated in the Figure, the fill yarns 46 are placed in spaced apart groups of two, although a greater or smaller number may be employed.
  • the fabric so constructed is formed into tubular shape on a mandrel and heat is applied to cause the core monofilaments of the DREF yarn to resiliently set.
  • the fill members When so formed, the fill members may assume somewhat of a bias relatively to the warps.
  • the resulting sleeve has excellent flexibility, is a relatively closed construction as compared with the fabric 10 4 of Figure 4 and is abrasion resistant.
  • the fill yarns combine the heat setting properties of a monofilament with the texture and feel of a multifilament.
  • the flexibility of the fabric can be tailored by the introduction of zones of flexibility between relatively inflexible zones and sleeves formed with the zones extending circumferentially so that the sleeving flexes similarly to convolute or corrugated tubing.

Abstract

A woven fabric sleeve (16, Figure 1a) for protecting and covering elongated substrates is made up of circumferentially and longitudinally extending interlaced fill and warp members (14a, 14b and 12a, 12b) respectively. The fill members extend through the fabric to form circumferentially extending alternating bands of relative flexibility separating bands of inflexibility. The fill members may be comprised of monofilament or multifilament yarns of alternating large and small diameters and may include wire, especially resilient wire, heat settable materials, including polyester served wire and DREF yarns having resiliently settable cores. The fill members may be held in relation to one another utilizing Leno and mock Leno weaving. The fabric may be woven directly as a closed tubular sleeve or woven flat and folded into sleeve form.

Description

Woven Fabric Sleeve
Field of the Invention
This invention relates to woven fabric sleeves for use in industrial applications as a protective or insulating covering for hoses, wires, piping and like objects and especially to flexible, conformable woven fabric sleeves.
Background of the Invention
Woven fabric sleeves are used extensively to provide a protective or insulating layer over a vast variety of items. For example, a sleeve of woven material is often fitted over branches of an electrical wiring harness to bundle the individual wires together and to protect the wires against abrasive wear which might otherwise damage the insulation or the conductors and lead to short circuits or broken circuits. Another common application is as an insulator of hot tubing, such as is found in automobile exhaust manifolds or power plant steam lines. Sleeves performing an insulating function are typically woven or braided from insulating yarns or filaments and often laminated with coatings, films or foils which increase their insulating capability, for example, by providing a reflective surface blocking infrared radiation. Woven fabrics are, of course, used extensively to protect items having shapes other than tubular as well.
Woven fabrics are economical to manufacture and see extensive use in the protective covering role because woven fabrics provide stable and robust membrane structures due to the orthogonal orientation of the warp and weft yarns comprising the fabric. However, the orthogonal orientation of a woven fabric also tends to detrimentally inhibit flexibility and conformability. When compared with braided fabrics, for example, the orthogonal fabric structure of woven fabrics is not as flexible or conformable. There is clearly a need to provide increased flexibility and conformability to woven fabrics, thereby combining woven fabrics' inherent characteristics of stability and robustness and ease of manufacture with increased flexibility and conformability comparable to braided fabrics. Summary and Objects of the Invention
This invention provides woven fabric sleeving having increased flexibility and conformability as compared with traditional sleeving. Control of the relative flexibility of the sleeving, according to the invention, is provided by alternating circumferentially extending unidirectional zones of relative flexibility separating adjacent zones of inflexibility. The relatively flexible zones serve as pivot points about which the relatively inflexible zones pivot in a manner somewhat analogous to the ridges and valleys of corrugated or convolute tubing.
Woven fabrics are typically comprised of a multiplicity of first filamentary members arranged parallel to each other and interlaced with a plurality of second filamentary members oriented orthogonally (at 90°) to the first filamentary members. As used hereinafter, the terms filamentary members or members is used to mean wires, threads, yarn whether twisted or laid together, monofilaments and combinations of the above, including yarns formed by the DREF process. Where monofilaments are employed, relatively resilient engineered plastic materials are generally preferred, although resilient wire may sometimes serve as well. Particularly preferred monofilaments have a modulus of elasticity greater than 3250 MN/M2 (50,000 psi) and preferably up to about 13000 MN/M2 (200,000 psi). Exemplary monofilament materials include polyester, aramid polymers as sold under the trademark Kevlar nylon 6 and nylon 6/6.
In a simple plain 1/1 weave, warp filamentary members cross over and under the weft filamentary members in an alternating pattern, i.e., for a given warp crossing over a particular weft filamentary member, the adjacent warp filamentary member will cross under the particular fill filamentary member, thereby locking the fill filamentary member in place.
It is an object of the invention to provide a woven fabric sleeve having enhanced flexibility and conformability, as compared with conventional woven fabric sleeves. It is also an object of the invention to provide a woven fabric sleeve of which the relative stiffness of the woven fabrics is controlled.
According to the present invention a woven fabric sleeve for protecting and covering elongated substrates, comprises a woven fabric having orthogonally interlaced fill members and warp members arranged to extend circumferentially and longitudinally of the sleeve, and is characterised by said warp members or said fill members forming circumferentially extending alternating bands of relative flexibility separating bands of inflexibility. Within the woven fabric, art fill members are also known as weft members and in this specification the terms "fill" and "weft" will be used interchangeably.
In one embodiment of the invention, enhanced flexibility of tubular sleeves of woven fabric is achieved by use of alternating fill filamentary members of small and large diameter, thereby creating relatively empty spaces at the locations of the small diameter filamentary members. These relatively empty spaces function as pivot points for the relatively large diameter filamentary members resulting in substantial increases in flexibility and conformability of the fabric in the sleeve. The filamentary member employed in the fill may be relatively rigid or non-rigid. Heat shrinkable monofilaments may be used in preselected zones in the fill as a means of creating a self-locating protective sleeve.
Although tubular sleeves according to this embodiment of the invention are preferably made on a circular weaving machine, conventional looms producing flat fabrics may be employed, and which flat fabrics may incorporate heat settable monofilaments or ductile wire. Where heat settable monofilaments are employed, the monofilaments are heat set on a mandrel to form a tubular sleeve. DREF yarns consisting of polyester monofilaments as a core with spun staple polyester as an outer layer combine the property of being heat settable with the texture and friction of a multifilament. The flat fabric may conveniently be used in the production of laminated sleeves as by application of foils or films to one or both surfaces.
In another embodiment of the invention, pivot points in the product are provided by use of one size diameter fill yarn and an intermittent take-up system. A bellows effect is created by stacking picks at predetermined discrete locations lengthwise of the fabric. This embodiment has the capability of being tailored to meet particular curvatures. Use of the intermittent stacking system allows for incorporation of the bellows at predetermined locations. The warp yarns may be twisted glass fibre and the fill may be wire served with glass fibre. In an exemplary product, four picks were placed in the fabric before the take-up advanced, thus creating bundles of filaments spaced apart by single picks. The sleeve may be produced as a flat fabric having this structure and curled so that a tubular article having a side opening is formed.
In each of these embodiments, the alternating configuration of larger and smaller diameter weft members results in a fabric having alternating adjacent regions of greater and lesser relative flexibility. The regions between the large diameter filamentary members allow for relative pivotal movement of the regions having the large diameter filamentary members due to the tendency of the fabric to pivot more readily about the regions of lesser stiffness; that is, it becomes more flexible and conformable to irregular contours than typical fabric woven with uniform diameter weft filamentary members.
In yet another embodiment, the sleeve fabric has the warp members grouped in pairs, each warp member having a neighbour warp member. Fill, or weft, members are interlaced with the warp members, but in between each weft member, the warp member pairs are twisted around one another, in effect eliminating the alternate weft members and reducing the separation of the warp members almost to zero in between the weft members. This is known in the art as a Leno type weave. In this weave, regions of relatively greater stiffness are formed in the fabric along the weft members where the warp members cross and adjacent regions of relatively lesser stiffness are formed in the spaces in between the weft members where the warp member pairs are twisted together. The empty spaces between weft members function as pivot points resulting in a flexible fabric which readily conforms to complex contours. The relative effectiveness of the pivot points can be augmented or diminished by adjusting the size of the weft members. Weft member size can be set either by using single strands of a predetermined diameter or pairs of even bundles of strands built up to a desired effective diameter of weft member.
Still other embodiments of the invention involve the interlacing of filamentary members utilising so-called mock Leno weaving. The mock Leno weaving places the warp yarns in groups with intervening empty spaces which lock the weft yarns in place in spaced apart relationship, thereby providing a flexible fabric structure characteristic of Leno fabrics without twisting of the warp members.
Sleeving produced using fabric having increased flexibility and conformability is advantageously used for industrial purposes as for the covering of piping, wiring and other tubular shaped items. By using the teaching of the use of the invention, the relative stiffness of the sleeving can be controlled to produce a flexible fabric sleeves tailored to a particular curvature and the flexibility built in at predetermined regions where flexibility is required.
Giving the warp members a helical turn relative to the longitudinal axis of the sleeve has been found to reduce the stiffness of the sleeve because helically extending warp members are eccentrically loaded (not loaded along their center lines) in compression and tension when the sleeve is bent when conforming to a curve. The eccentric loading induces additional bending forces in the warp members not normally present in straight warp members with the result that the warp members yield more readily under compression or tension forces, thus making the sleeve even more conformable and flexible.
All of the embodiments described above, as well as other embodiments incorporating the principles of the invention, are particularly suited to laminating with other materials such as films, foils coatings and heat set wrappings. When laminated, sleeving according to the invention is found to be more flexible and conformable than conventional woven sleeves similarly laminated. This provides a great advantage for example with insulating sleeves laminated with metallic foils which reflect infrared radiation. The stiffening effect of the foil is compensated for by the increased flexibility of the woven fabric substrate, yielding a conforming sleeve with both superior insulating characteristics and enhanced flexibility not otherwise achieved with such laminated sleeves made of conventional woven fabrics. In another example, a woven fabric sleeve according to the invention laminated with a heat settable wrap is easily conformed to a curved shape, such as a pipe elbow bend, and then heat set into shape. The increased flexibility and conformability of the woven fabric yields a superior covering which adjusts easily to, and holds, complex shapes.
The warp and fill members may comprise filamentary members of virtually any fibre, yarn or filament in the various embodiments of the invention. For example, textured polyester multifilament yarns in the warp have been combined with materials such as monofilament polyesters or DREF yarns in the weft with good results. Glass fibre yarns may be used, as well as wires served with glass. Sleeves woven wholly or in part of multifilament yarns may be coated or impregnated with coatings as is well known in the art. For static electricity dissipation applications, conducting weft members made from stranded copper wire, for example, are used to avoid unwanted static charge build-up. Heat shrinkable members are especially useful as weft members in the production of heat shrink sleeving.
Whereas in the above-mentioned embodiments, the fill members have extended circumferentially and defined by their size, material and spacing the zones of flexibility, it is within the overall purview of the invention that a sleeve may be produced from fabric in which it is the warp members which extend in the circumferential direction and equally define the zones of flexibility.
These and other objects will become apparent from a consideration of the following drawings and detailed description of preferred embodiments of the invention. Brief Description of the Drawings
Figure 1 shows a cross-sectional side view illustrating the fabric construction of a first embodiment of a woven fabric sleeve according to the invention,
Figure 1a is a perspective view of a sleeve having the fabric construction of Figure 1,
Figure 1b is a perspective view of another form of sleeve of the invention,
Figure 2 shows a cross-sectional side view illustrating the fabric construction of a second embodiment of a woven fabric sleeve according to the invention,
Figure 3 is a cross-sectional side view of a third embodiment illustrating a different fabric construction for carrying out the invention,
Figure 4 is a plan view of another fabric construction for a fourth sleeve embodiment formed according to the invention,
Figure 4a is a sectional view along line 4a-4a of Figure 4, and
Figure 5 is a plan view of another embodiment of the invention of similar construction to the embodiment of Figure 4.
Detailed Description of Preferred Embodiments
Referring to Figures 1 and 1a, Figure 1 is a schematic showing a cross-sectional side view of a portion of a fabric 10 of 1/1 plain weave construction formed into a sleeve according to one embodiment of the invention and shown in Figure 1a at 16. Neighbouring warp filamentary members 12a and 12b are interlaced with weft filamentary members 14a and 14b, the warp filamentary members 12a-12b passing alternately above and below the weft filamentary members 14a and 14b. As will be recognized, neighbouring warp member pairs such as 12a and 12b do not pass over and under the same weft members together, but alternate, 12a passing over a particular fill, or weft, member 14a while 12b passes under that particular weft member. This pattern is repeated throughout the fabric, thereby locking the weft members in place. Note that warp members 12a and 12b are representative of other warp members arrayed adjacent to each other in the plane of the drawing. In one form of this construction, weft members 14a and 14b are of alternating large and small diameter. Although a variety of filamentary materials may be employed, one example of this embodiment was woven on a circular loom and incorporated 0.25mm (0.010") diameter polyester monofilaments in the warp and 0.686mm (0.027") diameter monofilaments alternating with 0.25mm (0.010") diameter monofilaments in the weft. The warp monofilaments were comprised of two ends.
Alternatively, in a second example 1250 denier texturised polyester multifilament yarn is used in the warp and employed large and small diameter polyester monofilaments of 0.686mm (0.027") and 0.25mm (0.010") diameter, respectively, in an alternating pattern forming a sleeve approximately 25.4mm (1") in diameter. Since these products were made on a circular loom, with the warp members extending substantially longitudinally of the resultant sleeve, but with a slight helical twist introduced in the warp direction. The resulting sleeves were very flexible and conformable. The small diameter monofilaments created circumferential zones of relative flexibility separating the relatively stiff, large diameter monofilaments. This construction allowed for curvature of the sleeves on relatively sharp radii without kinking. Glass fibre yarns may be substituted for polyester in the warp. Stainless steel wire may be substituted for the polyester monofilaments in whole or in part.
Sleeve 16 may have laminated to it a cover layer 18 formed, for example, from an adhesive bonded texturised reflective film.
A third example incorporating the weave shown in Figure 1 and woven on a circular loom used 1250 denier texturised polyester yarn in the warp and stranded copper wire of about 0.635mm (0.025") diameter in the fill alternating with 1250 denier polyester yarn. The copper wire is provided for the dissipation of static electricity. This sleeve was exceptionally flexible but lacked the circumferential stiffness provided by the first and second of the above examples.
Referring to Figure 1 b, in a modification of the above similar sleeve woven on a conventional loom is made by weaving a flat fabric and then forming it into tubular shape that is resiliently set by the application of heat. In the example shown, polyester monofilaments as the fill were of about 2.54mm (0.10") in diameter and the flat fabric was wrapped on a mandrel and heated to set the resilient monofilaments. A side opening 20 allows for fitting the sleeve over elongated substrates, as shown at 22, and allows for breakouts. Referring now to Figure 2, this shows another embodiment of a woven fabric 102 according to the invention where fill, or weft, filamentary members 26a are formed from a plurality of individual weft monofilaments 26 formed into a bundle. Bundled weft monofilaments 26a have a greater effective diameter than adjacent weft monofilaments 26b which preferably have a diameter equal to monofilaments 26. This fabric of Figure 2 was constructed with the use of an intermittent take-up by stacking picks at discrete locations extended circumferentially of the fabric. In the example making use of the structure shown in Figure 2, a glass fibre yarn was used in the warp, and relatively ductile wire served with glass was used in the fill. Four picks were placed in the fabric before the take-up advanced. A sleeve was made by weaving the fabric flat on a conventional loom, thereafter placing it on a mandrel where it was curled to form a sleeve similar to the sleeve of Figure 1b, the shape of the sleeve being retained by the curled wires.
It will be understood that the flexibility of the sleeve can be controlled by varying the number of picks per inch between stacked picks.
Figure 3 shows a third another embodiment of a woven fabric 103 according to the invention wherein fill, or weft, members 28 are spaced apart by twists formed in warps 12a and 12b. In this embodiment warp members 12a are each paired with an adjacent neighbour member 12b. Instead of being interlaced with weft members in an alternating pattern as in the previous embodiments, the warp member pairs 12a and 12b are twisted about each other as seen at 30, after passing over and under a weft member 28 utilizing a Leno harness which lifts and twists the warp yams during every weft insertion. This is the characteristic of the so called Leno weave, where every other weft member is eliminated and replaced by a warp member twist 30. The twisting effect secures a filling weft yarn or pick in place and allows for less picks per inch to form a stable but flexible fabric. The empty spaces where the twists occur between the fill members create pivot points which allow the sleeve to readily contour over sharp curves.
Although other ways of establishing the fabric in a sleeve shape may be employed, such as by use of heat setting resiliently settable monofilaments used in the fill. A preferred method involves coating a sleeve material with a B-stage epoxy and allowing the epoxy to dry without curing and then forming the coated sleeve material with a sleeve shape and before heating to cure the epoxy. The sleeve maintains its shape even at high temperature on account of the thermosetting characteristic of the epoxy. In an example based upon the illustrated embodiment, the yarn employed was a Nomex DREF yarn, and the sleeve was made using the Leno weave. The fabric so formed was laminated with aluminum foil using a hot melt adhesive and was slit to width following lamination and then kiss coated with the epoxy.
A fourth embodiment of the invention is illustrated in Figures 4 and 4a. The sleeve fabric 104 incorporates a so-called mock Leno weave. The mock Leno weave forms the warp members into groups with empty spaces intervening, giving an open fabric structure without a twisting of warp members and giving increased flexibility. As seen from Figure 4, spaced groups of three warp members 40 comprise a relatively large diameter warp filamentary member 40, or equivalent bundle of smaller warp members, with pairs of relatively small diameter warp filamentary members 402, 40 the warp filamentary members woven with fill yarns 43. At each cross over, the fill yarns 43 are locked in place between the groups of three warp filamentary members, the middle warp filamentary member of each group passing in an alternating over-and-under pattern on the opposite side of each fill yarn to the outer warp filamentary members and locking the fill yarns in spaced apart relationship. Zones of relative flexibility are created by determining the separation of the fill yarns. The spaces between the fill members can be varied as required to provide the sleeve with the requisite flexibility and conformability. The fill members may be resiliently settable monofilaments set to cause the fabric to resiliently form a sleeve. The warp filamentary members may be monofilaments or any of the yarns mentioned herein.
A fifth embodiment of the invention comprises a sleeve having a fabric construction 103 shown in Figure 5. The fabric construction is similar to Figures 4 and 4a in that a mock Leno weave is employed. In fabric 103 the warp member 44 comprises a group of three filamentary members 44^ 442 and 443 each formed of a texturised polyester multifilament yarn. The fill is a DREF yarn 46 comprised of a polyester monofilament over which staple polyester is spun. As illustrated in the Figure, the fill yarns 46 are placed in spaced apart groups of two, although a greater or smaller number may be employed. The fabric so constructed is formed into tubular shape on a mandrel and heat is applied to cause the core monofilaments of the DREF yarn to resiliently set. When so formed, the fill members may assume somewhat of a bias relatively to the warps. The resulting sleeve has excellent flexibility, is a relatively closed construction as compared with the fabric 104 of Figure 4 and is abrasion resistant. The fill yarns combine the heat setting properties of a monofilament with the texture and feel of a multifilament. The flexibility of the fabric can be tailored by the introduction of zones of flexibility between relatively inflexible zones and sleeves formed with the zones extending circumferentially so that the sleeving flexes similarly to convolute or corrugated tubing.
The provision of filamentary weft members of large and small diameter in the examples of Figures 1 and 2 produces the pivot points which enable the sleeves to conform to complex shapes and severe curvatures. In Figure 3, this flexibility is accomplished by twisting the warp yarns to create empty spaces between the fill yarns creating pivot points which function similarly to the pivot points of Figures 1 and 2. In the construction of Figures 4 and 4a, open spaces which form pivot points are created between adjacent fill yarns by the use of groups of three warp yarns to lock the fill yarns in place. By virtue of the characteristics of increased flexibility and conformability woven fabric sleeves according to the invention are suitable for a wider variety of applications than heretofore possible with conventionally woven fabric sleeves.

Claims

1. A woven fabric sleeve (16) for protecting and covering elongated substrates, said sleeve comprising a woven fabric (10^ 102, 103, 104, 105) having orthogonally interlaced fill members and warp members (12a, 12b; 40; 44) arranged to extend circumferentially and substantially longitudinally of the sleeve, and characterised in that warp members or said fill members (14a, 14b; 26a, 26b; 28; 43; 46) form circumferentially extending alternating bands of relative flexibility separating bands of inflexibility.
2. A woven fabric sleeve according to claim 1 characterised in that said fill members comprise first fill members (14a; 26a) having a first diameter and second fill members (14b; 26b) having a second diameter smaller than the first, said second fill members being spaced between said first fill members.
3. A woven fabric sleeve according to claim 2 characterised in that said second fill members (26b) comprise stranded wire.
4. A woven fabric sleeve according to any one of claims 1 to 3 characterised in that said first fill members (14a; 28; 43) are monofilaments.
5. A woven fabric sleeve according to claim 4 characterised in that said monofilaments comprising the first fill members are resilient.
6. A woven fabric sleeve according to any one of claims 2 to 5 characterised in that said first fill members have at least twice the diameter of said second fill members.
7. A woven fabric sleeve according to claim 2 or claim 3 characterised in that said first fill members (26a) comprise bundles (26b) of said second fill members.
8. A woven fabric sleeve according to any one of claims 1 to 7 characterised in that said warp members are arranged in groups, the warp members (12a, 12b) of each group being twisted at locations on each of selected fill members (14b; 26b) to lock said selected fill members in place, said locations being positioned within the bands having relatively greater flexibility.
9. A woven fabric sleeve according to claim 8 characterised in that said warp -members are arranged in pairs (12a, 12b).
10. A woven fabric sleeve according to claim 1 characterised in that said warp members comprise groups of relatively flexible filamentary members (40; 44), each group comprising a first warp filamentary member (40╬╣; 44╬╣) disposed between a pair of second warp filamentary members (402, 403; 442l 443), said first warp filamentary member and said pair of second warp filamentary members being woven in interlocking relationship with at least one of said fill filamentary members (46) in a mock Leno weave pattern.
11. A woven fabric sleeve according to claim 10 characterised in that said first filamentary members of each group (40^ 44^ are of larger diameter than the second filamentary members of said group (402, 403; 442l 443).
12. A woven fabric sleeve according to claim 11 characterised in that said warp members are monofilaments.
13. A woven fabric sleeve according to any one of claims 10 to 12 characterised in that said fill filamentary members (46) comprise at least one yarn having a resiliently settable core resiliently set to maintain said sleeve in a substantially tubular configuration.
14. A woven fabric sleeve according to any one of claims 10 to 13 characterised in that said fill filamentary members (46) are grouped in pairs.
PCT/IB1998/001775 1997-11-10 1998-11-06 Woven fabric sleeve WO1999024652A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
AU95569/98A AU9556998A (en) 1997-11-10 1998-11-06 Woven fabric sleeve
AT98949208T ATE231571T1 (en) 1997-11-10 1998-11-06 WOVEN HOSE
DE1998610964 DE69810964T2 (en) 1997-11-10 1998-11-06 WOVEN TUBE
KR1020007004963A KR100544769B1 (en) 1997-11-10 1998-11-06 Woven fabric sleeve
CA 2307586 CA2307586C (en) 1997-11-10 1998-11-06 Woven fabric sleeve
HU0100150A HUP0100150A3 (en) 1997-11-10 1998-11-06 Woven fabric sleeve
BR9813995A BR9813995A (en) 1997-11-10 1998-11-06 Woven cloth glove for protection and coverage of elongated substrates
EP19980949208 EP1038060B1 (en) 1997-11-10 1998-11-06 Woven fabric sleeve
PL98340371A PL186947B1 (en) 1997-11-10 1998-11-06 Sleeve made of a woven fabric
JP2000519640A JP2001522950A (en) 1997-11-10 1998-11-06 Woven sleeve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/966,614 1997-11-10
US08/966,614 US5843542A (en) 1997-11-10 1997-11-10 Woven fabric having improved flexibility and conformability

Publications (1)

Publication Number Publication Date
WO1999024652A1 true WO1999024652A1 (en) 1999-05-20

Family

ID=25511633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB1998/001775 WO1999024652A1 (en) 1997-11-10 1998-11-06 Woven fabric sleeve

Country Status (17)

Country Link
US (1) US5843542A (en)
EP (1) EP1038060B1 (en)
JP (1) JP2001522950A (en)
KR (1) KR100544769B1 (en)
CN (1) CN1092728C (en)
AR (1) AR013752A1 (en)
AT (1) ATE231571T1 (en)
AU (1) AU9556998A (en)
BR (1) BR9813995A (en)
CA (1) CA2307586C (en)
DE (1) DE69810964T2 (en)
ES (1) ES2191345T3 (en)
HU (1) HUP0100150A3 (en)
PL (1) PL186947B1 (en)
PT (1) PT1038060E (en)
RU (1) RU2202663C2 (en)
WO (1) WO1999024652A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3075891A4 (en) * 2013-11-29 2017-08-30 Toray Industries, Inc. Multiple tubular woven structure

Families Citing this family (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2789151B1 (en) 1999-02-01 2001-04-06 Fed Mogul Systems Prot Group THERMAL PROTECTIVE SHEATH AND MANUFACTURING METHOD THEREOF
FI104702B (en) * 1999-06-16 2000-03-31 Tamfelt Oyj Abp A filter material and a replaceable filter module manufactured therefrom
FR2797279B1 (en) * 1999-08-02 2002-03-29 Fed Mogul Systems Prot Group TEXTILE SOUND PROTECTION SHEATH
DE19941669C2 (en) * 1999-09-01 2001-10-25 Raedlinger Maschinen Und Anlag Fabric hose for high pressure fluid lines and method for increasing the nominal pressure level of old fluid lines
US7197853B1 (en) * 2000-08-31 2007-04-03 W. Frank Little, Jr. Demountable and reusable wall and ceiling system
US8502069B2 (en) * 2001-05-18 2013-08-06 Advanced Composite Structures, Llc Protective cover
WO2003014591A2 (en) 2001-08-09 2003-02-20 Federal-Mogul Powertrain, Inc. Vibration damping corrugated flexible sleeving
US6711920B2 (en) 2001-11-14 2004-03-30 Federal-Mogul World Wide, Inc. Knit convolute protective sleeve
FR2838502B1 (en) * 2002-04-12 2004-07-09 Fed Mogul Systems Prot Group SELF-CLOSING THERMAL PROTECTION SHEATH AND MANUFACTURING METHOD THEREOF
US6963031B2 (en) * 2002-08-28 2005-11-08 Federal -Mogul World Wide, Inc. Sleeve assembly for receiving elongated items within a duct
US6984596B2 (en) * 2002-10-17 2006-01-10 Hickory Springs Manufacturing Company Wire-reinforced elastic webbing
US6840066B2 (en) * 2003-04-28 2005-01-11 Hickory Springs Manufacturing Company Webbing reinforced with high-performance polymeric yarns
JP4485473B2 (en) * 2003-09-30 2010-06-23 櫻護謨株式会社 Cylindrical jacket, jacket hose, suction hose, and cylindrical jacket manufacturing equipment
US7410550B2 (en) * 2003-12-11 2008-08-12 Sherwin Michael J Flexible insulating sleeve
JP2008507636A (en) * 2004-07-20 2008-03-13 フェデラル−モーグル・ワールド・ワイド・インコーポレイテッド Self-winding sleeve
US7395680B2 (en) * 2004-07-20 2008-07-08 Federal Mogul Worldwide, Inc. Self-curling knitted sleeve and method of fabrication
FR2876778B1 (en) * 2004-10-15 2007-05-04 Fed Mogul Systems Prot Group S TEXTILE ELEMENT FOR PROTECTING A PLASTIC SUPPORT
JP4960339B2 (en) * 2005-03-14 2012-06-27 フェデラル−モーグル コーポレイション Protective covering member with integral biased flap closure
JP4704459B2 (en) * 2005-03-24 2011-06-15 フェデラル−モーグル コーポレイション Substrate incorporating non-woven elements
US20070074776A1 (en) * 2005-10-03 2007-04-05 Abed Masarwa Irrigation pipe
DE102006010582A1 (en) 2005-11-08 2007-05-16 Kufferath Geb Gkd Fabric with weft wires
US8273429B2 (en) * 2006-01-19 2012-09-25 Federal-Mogul World Wide, Inc. Fabric for end fray resistance and protective sleeves formed therewith and methods of construction
US20070199271A1 (en) 2006-02-27 2007-08-30 Little W Frank Tape
US7600539B2 (en) * 2006-03-03 2009-10-13 Federal-Mogul World Wide, Inc Low profile textile wire bundler sleeve
US9566408B2 (en) * 2006-03-24 2017-02-14 Resmed Limited Air delivery conduit
US20070251595A1 (en) * 2006-05-01 2007-11-01 Ming-Ming Chen Basalt continuous filament insulating and fire-resistant material and sleeves and methods of construction thereof
US8152380B2 (en) * 2006-07-07 2012-04-10 Federal-Mogul World Wide, Inc. Sleeve bearing assembly and method of construction
US8021051B2 (en) 2006-07-07 2011-09-20 Federal-Mogul World Wide, Inc. Sleeve bearing assembly and method of construction
US20080254264A1 (en) * 2007-04-11 2008-10-16 Hiroki Yamaguchi Textile sleeve for protecting elongate members and method of construction
US7799997B2 (en) * 2007-04-27 2010-09-21 Milliken & Company Innerduct structure having increased flexibility
DE102007021505A1 (en) 2007-05-04 2008-11-06 Tesa Ag Heat-reflecting adhesive tape with high abrasion protection
DE102007023062A1 (en) * 2007-05-16 2008-11-20 Iprotex Gmbh & Co. Kg Method for producing a fabric and tissue produced thereby
US8828894B2 (en) * 2007-06-07 2014-09-09 Saint-Gobain Adfors Canada, Ltd. Reinforcement mesh for architectural foam moulding
JP2009024287A (en) * 2007-07-20 2009-02-05 Cordon Co Ltd Sound absorbing sleeve and method for producing the same
FR2918906B1 (en) * 2007-07-20 2011-01-14 Fed Mogul Systems Prot Group PROCESS FOR APPLYING ELASTOMER ON A SHEATH
US8701716B2 (en) * 2008-02-29 2014-04-22 Federal-Mogul Corporation Protective textile sleeve having high edge abrasion resistance and method of construction
US8137779B2 (en) * 2008-02-29 2012-03-20 Ykk Corporation Of America Line of sight hose cover
US8163362B2 (en) * 2008-02-29 2012-04-24 Ykk Corporation Of America Line of sight hose cover
CN101307671B (en) * 2008-07-02 2010-09-15 游龙 Conveniently folding window curtain
KR20120026604A (en) * 2009-06-11 2012-03-19 페더럴-모걸 파워트레인, 인코포레이티드 Flexible, abrasion resistant textile sleeve and method of construction thereof
US8925592B2 (en) * 2009-06-11 2015-01-06 Federal-Mogul Powertrain, Inc. Flexible, abrasion resistant textile sleeve and method of construction thereof
GB2470960A (en) * 2009-06-12 2010-12-15 Vax Ltd Animal bed device
US8057287B2 (en) * 2009-08-10 2011-11-15 Hg Tools Co., Ltd. Abrasive mesh for a powered grinding wheel
US7932469B1 (en) * 2009-10-23 2011-04-26 Neptco, Inc. Metallic wire tracer element including woven protective tube and methods of making same
WO2012024272A1 (en) * 2010-08-16 2012-02-23 Federal-Mogul Powertrain, Inc. Non-kinking self-wrapping woven sleeve and method of construction thereof
US20120073854A1 (en) * 2010-09-23 2012-03-29 Allen Jerry L Conduit innerduct having reduced friction and high strength
US8505339B2 (en) 2010-09-30 2013-08-13 Federal-Mogul Powertrain, Inc. Knit sleeve with knit barrier extension having a barrier therein and method of construction
US20120132309A1 (en) 2010-11-30 2012-05-31 Morris David D Woven textile fabric and innerduct having multiple-inserted filling yarns
EP2719039B1 (en) * 2011-06-09 2015-05-06 Federal-Mogul Powertrain, Inc. Reflective textile sleeve and method of construction thereof
CN103140152A (en) * 2011-06-14 2013-06-05 塔玛拉泰米拉佐瓦纳·戈格别里泽 Fabric fastening method and device for carrying out said method
US9138298B2 (en) * 2011-07-12 2015-09-22 Ribbond, Inc. Fiber reinforced dental appliances and prostheses
US9706804B1 (en) 2011-07-26 2017-07-18 Milliken & Company Flame resistant fabric having intermingled flame resistant yarns
CN103827379B (en) * 2011-08-22 2015-09-09 费德罗-莫格尔动力系公司 Radial collapsible and extensible fabric sleeve and building method thereof
US9297491B2 (en) 2012-02-08 2016-03-29 Federal-Mogul Powertrain, Inc. Thermally resistant convoluted sleeve and method of construction thereof
US9131790B2 (en) 2013-08-15 2015-09-15 Aavn, Inc. Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US9909237B2 (en) 2013-02-04 2018-03-06 Federal-Mogul Powertrain Llc Non-kinking self-wrapping woven sleeve and method of construction thereof
US9913415B2 (en) * 2013-03-13 2018-03-06 Federal-Mogul Powertrain Llc EMI shielding textile fabric, wrappable sleeve constructed therefrom and method of construction thereof
US9277684B2 (en) * 2013-03-13 2016-03-01 Federal-Mogul Powertrain, Inc. Self-wrapping EMI shielding textile sleeve and method of construction thereof
US10132012B2 (en) * 2013-03-14 2018-11-20 Federal-Mogul Powertrain Llc End-fray resistant heat-shrinkable woven sleeve, assembly therewith and methods of construction thereof
JP6415528B2 (en) * 2013-03-15 2018-10-31 フェデラル−モーグル・パワートレイン・リミテッド・ライアビリティ・カンパニーFederal−Mogul Powertrain Llc Flexible, abrasion-resistant textile sleeve and its construction method
EP3005502B1 (en) 2013-05-28 2018-03-07 Federal-Mogul Powertrain, Inc. Wrapped textile sleeve with bonded closure mechanism and method of construction thereof
US10443159B2 (en) 2013-08-15 2019-10-15 Arun Agarwal Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US11168414B2 (en) 2013-08-15 2021-11-09 Arun Agarwal Selective abrading of a surface of a woven textile fabric with proliferated thread count based on simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US10808337B2 (en) 2013-08-15 2020-10-20 Arun Agarwal Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US20150093556A1 (en) * 2013-10-01 2015-04-02 Federal-Mogul Powertrain, Inc. Wrappable laminated textile sleeve with enhanced flexibility and method of reducing cracking in a foil layer of a wrappable textile sleeve
DE102013111219A1 (en) * 2013-10-10 2015-04-16 Coroplast Fritz Müller Gmbh & Co. Kg "Wrapping means for an elongate product and its use"
US9840793B2 (en) * 2014-02-20 2017-12-12 Federal-Mogul Powertrain Llc Non-kinking wrapple knit sleeve and method of construction thereof
GB2524286B (en) * 2014-03-19 2020-09-23 Glanfield Anthony Leak detection apparatus and methods
EP3146099B1 (en) * 2014-05-21 2021-08-25 Federal-Mogul Powertrain LLC Flexible, abrasion resistant woven textile sleeve and method of contruction thereof
KR20170007746A (en) * 2014-05-21 2017-01-20 페더럴-모걸 파워트레인 엘엘씨 Flexible, abrasion resistant woven textile sleeve and method of construction thereof
US20160160406A1 (en) 2014-05-29 2016-06-09 Arun Agarwal Production of high cotton number or low denier core spun yarn for weaving of reactive fabric and enhanced bedding
US10192655B2 (en) 2014-09-30 2019-01-29 Highland Industries, Inc. Anisotropic wire harness
US9869412B2 (en) 2014-09-30 2018-01-16 Highland Industries, Inc. Anisotropic pipe liner
US9664310B2 (en) * 2014-09-30 2017-05-30 Highland Industries, Inc. Anisotropic pipe liner
US10202714B2 (en) * 2014-10-30 2019-02-12 Federal-Mogul Powertrain Llc Braided textile sleeve with self-sustaining expanded and contracted states and method of construction thereof
DE102014119751B4 (en) 2014-12-31 2017-03-02 Michael Lindner Method for producing a protective device
CA2919993C (en) * 2015-02-04 2018-05-08 Marhaygue, Llc Safety barrier for a deck or porch
FR3035276B1 (en) * 2015-04-14 2019-05-17 Zodiac Aerosafety Systems PROTECTIVE SLEEVE, PARTICULARLY FOR ELECTRIC CABLES HOUSING
US10357933B2 (en) 2015-08-04 2019-07-23 Federal-Mogul Powertrain Llc Woven tubular thermal sleeve and method of construction thereof
CN106435923A (en) * 2015-08-05 2017-02-22 东丽纤维研究所(中国)有限公司 Self-lubricating fabric and production method and use of same
AU2016210597B2 (en) * 2015-08-20 2021-07-29 Ragner Technology Corporation Annular-pleated circular braid
RU2597819C1 (en) * 2015-09-23 2016-09-20 Юрий Константинович Краснов Aeromodelling electrical cord
US10208410B2 (en) 2015-11-13 2019-02-19 Federal-Mogul Powertrain Llc Braided textile sleeve with axially collapsible, anti-kinking feature and method of construction thereof
US10254498B2 (en) 2015-11-24 2019-04-09 Milliken & Company Partial float weave fabric
US11421356B2 (en) * 2015-12-09 2022-08-23 Federal-Mogul Powertrain Llc Braided, reflective textile sleeve and method of construction thereof
US9956123B2 (en) * 2016-03-02 2018-05-01 Alphal Engineering Technology Group, Inc. Anti-microbial balanced weave wearable undergarment and process therefore
EP4033019A1 (en) 2016-04-11 2022-07-27 Calik Denim Tekstil San. Ve Tic. A.S. Woven fabric and method of production thereof
US11168415B2 (en) 2016-07-01 2021-11-09 Federal-Mogul Powertrain Llc Circumferentially continuous and constrictable textile sleeve and method of construction thereof
KR101669016B1 (en) * 2016-08-09 2016-11-09 (주)풍전티.티 Manufacturing method of curtain fabrics for blind, and structure of curtain fabrics made by the same method
US11180872B2 (en) 2016-08-24 2021-11-23 Federal-Mogul Powertrain Llc Impact resistant, shrinkable woven tubular sleeve and method of construction thereof
WO2018073497A1 (en) * 2016-10-18 2018-04-26 Zodiac Aerosafety Systems Protective sheath in particular intended for housing electrical cables
US10393307B2 (en) * 2016-10-28 2019-08-27 Federal-Mogul Powertrain Llc Multi-cavity, shrinkable sleeve and method of construction thereof
EP3372714B1 (en) * 2017-03-06 2022-07-06 A. Haberkorn & Co GmbH Structured circular woven fabric
US20180258564A1 (en) * 2017-03-08 2018-09-13 Federal-Mogul Powertrain, Llc Abrasion resistant braided convolute textile sleeve and method of construction thereof
DE102017002902A1 (en) * 2017-03-27 2018-09-27 Iprotex Gmbh & Co. Kg Textile hose
DE102017002901A1 (en) * 2017-03-27 2018-09-27 Iprotex Gmbh & Co. Kg Radially shrinkable textile hose
DE102018112488A1 (en) * 2018-05-24 2019-11-28 Mann+Hummel Gmbh pipe component
CN108859169B (en) * 2018-06-21 2021-04-20 凌乐波 FRP mesh and manufacturing method thereof
US11047072B2 (en) * 2018-12-06 2021-06-29 Vishal Pacheriwala Woven fabric, a composition of the woven fabric and a weaving method thereof
CN111355193A (en) 2018-12-20 2020-06-30 美利肯公司 Multi-cavity folding inner conduit structure
CN211151396U (en) 2018-12-20 2020-07-31 美利肯公司 Multi-cavity inner conduit structure
RU190055U1 (en) * 2019-02-22 2019-06-17 Общество с ограниченной ответственностью "Уральские локомотивы" FLEXIBLE PROTECTIVE SLEEVE
DE102019107481A1 (en) * 2019-03-22 2020-09-24 Yuan Pin Industrial Co., Ltd. Extensible water hose
US20220186408A1 (en) * 2019-03-26 2022-06-16 Federal-Mogul Powertrain Llc Flexible, abrasion resistant, woven sleeve and method of construction thereof
RU2707100C1 (en) * 2019-06-14 2019-11-22 Акционерное общество "Уральский научно-исследовательский институт композиционных материалов" Hollow article in the form of a woven web, method of its formation and method of formation based on it of thick-walled article, including large-size
WO2021179278A1 (en) * 2020-03-13 2021-09-16 深圳市骏鼎达新材料股份有限公司 Protection pipe
US11795588B2 (en) * 2021-07-30 2023-10-24 Vishal Pacheriwala Fabric made of multi-filament polyester warp yarns of yarn size of 75 denier or above and cellulose fiber weft yarns
US20230175612A1 (en) 2021-12-07 2023-06-08 Milliken & Company Blowable flexible innerduct

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191203005A (en) * 1912-02-06 1912-07-25 Gaylard Mack Improvements in the Manufacture of Woven Belting, Fire or other Hose, Paper Makers' Felts, Printers' Pads and Blankets, Duck Cloth and like Woven Fabrics.
FR476809A (en) * 1914-12-18 1915-09-02 Fabric Fire Hose Improvements in tubular tissue
US2239293A (en) * 1938-04-04 1941-04-22 Union Asbestos & Rubber Co Insulating tape
US3669157A (en) * 1970-06-01 1972-06-13 Carolina Narrow Fabric Co Shrinkable tubular fabric
EP0116916A2 (en) * 1983-02-22 1984-08-29 Spanset Inter Ag Loop and a strap or sling made therefrom
EP0288579A1 (en) * 1986-11-04 1988-11-02 Tokyo Gas Kabushiki Kaisha Lining material of pipe-line

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1606810A (en) * 1923-02-13 1926-11-16 Russel Dart Electrical conduit
US5217770A (en) * 1991-08-15 1993-06-08 The B. F. Goodrich Company Braided shaped filamentary structures and methods of making
US5413149A (en) * 1991-11-05 1995-05-09 The Bentley-Harris Manufacturing Company Shaped fabric products and methods of making same
US5613522A (en) * 1991-11-05 1997-03-25 Bentley-Harris Inc. Shaped fabric products

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191203005A (en) * 1912-02-06 1912-07-25 Gaylard Mack Improvements in the Manufacture of Woven Belting, Fire or other Hose, Paper Makers' Felts, Printers' Pads and Blankets, Duck Cloth and like Woven Fabrics.
FR476809A (en) * 1914-12-18 1915-09-02 Fabric Fire Hose Improvements in tubular tissue
US2239293A (en) * 1938-04-04 1941-04-22 Union Asbestos & Rubber Co Insulating tape
US3669157A (en) * 1970-06-01 1972-06-13 Carolina Narrow Fabric Co Shrinkable tubular fabric
EP0116916A2 (en) * 1983-02-22 1984-08-29 Spanset Inter Ag Loop and a strap or sling made therefrom
EP0288579A1 (en) * 1986-11-04 1988-11-02 Tokyo Gas Kabushiki Kaisha Lining material of pipe-line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3075891A4 (en) * 2013-11-29 2017-08-30 Toray Industries, Inc. Multiple tubular woven structure

Also Published As

Publication number Publication date
PL186947B1 (en) 2004-04-30
HUP0100150A2 (en) 2001-05-28
AU9556998A (en) 1999-05-31
BR9813995A (en) 2000-09-26
RU2202663C2 (en) 2003-04-20
KR100544769B1 (en) 2006-01-23
EP1038060B1 (en) 2003-01-22
ATE231571T1 (en) 2003-02-15
CA2307586A1 (en) 1999-05-20
CA2307586C (en) 2007-02-27
JP2001522950A (en) 2001-11-20
CN1092728C (en) 2002-10-16
EP1038060A1 (en) 2000-09-27
DE69810964T2 (en) 2003-06-05
DE69810964D1 (en) 2003-02-27
HUP0100150A3 (en) 2002-03-28
PL340371A1 (en) 2001-01-29
US5843542A (en) 1998-12-01
CN1277643A (en) 2000-12-20
AR013752A1 (en) 2001-01-10
KR20010015801A (en) 2001-02-26
ES2191345T3 (en) 2003-09-01
PT1038060E (en) 2003-06-30

Similar Documents

Publication Publication Date Title
EP1038060B1 (en) Woven fabric sleeve
JP6441887B2 (en) EMI shielding textile fabric, wrappable sleeve constructed therefrom and method of construction thereof
EP1994210B1 (en) Low profile textile wire bundler sleeve
EP2474007B1 (en) Protective sleeve fabricated with hybrid yarn
EP1999762B1 (en) Protective sleeve fabricated with hybrid yarn having wire filaments and method of fabrication
US7288494B2 (en) Electro-magnetic wave shield cover
JPS6183344A (en) Thermal activated article
MX2007000432A (en) Self-curling sleeve.
EP2820177A2 (en) Wrappable end fray resistant protective textile sleeve and method of construction thereof
EP3533122B1 (en) Multi-cavity, shrinkable sleeve and method of construction thereof
JP2023515775A (en) Impact resistant wrappable corrugated multi-layer woven sleeve and method of construction
US5126512A (en) Electrical cable with curved portion
JPS61194251A (en) Extensible fabric containing metal wire
JPS62117845A (en) Circular cloth and hose comprising combination thereof
CN210925537U (en) Flat pencil in battery package and mold processing thereof
MXPA00004477A (en) Woven fabric sleeve
CZ20001718A3 (en) Woven jacketed casing
CN113710839A (en) Flexible abrasion resistant braided sleeve and method of construction thereof
US10192655B2 (en) Anisotropic wire harness
KR0178130B1 (en) Elongata shaped strand
JPH09326210A (en) Semiconductor cushion tape for power cable
JPS6334808A (en) Fabric-like flat wire cable
WO2004055421A1 (en) Coupling adjacent conduits

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98810560.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1998949208

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2307586

Country of ref document: CA

Ref document number: 2307586

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020007004963

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/004477

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: PV2000-1718

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: PV2000-1718

Country of ref document: CZ

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1998949208

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007004963

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998949208

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007004963

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: PV2000-1718

Country of ref document: CZ