WO1999025854A1 - A method for directional stable transformation of eukaryotic cells - Google Patents

A method for directional stable transformation of eukaryotic cells Download PDF

Info

Publication number
WO1999025854A1
WO1999025854A1 PCT/US1998/024609 US9824609W WO9925854A1 WO 1999025854 A1 WO1999025854 A1 WO 1999025854A1 US 9824609 W US9824609 W US 9824609W WO 9925854 A1 WO9925854 A1 WO 9925854A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
sites
cell
site
recombination sites
Prior art date
Application number
PCT/US1998/024609
Other languages
French (fr)
Inventor
William J. Gordon-Kamm
Alexander Leszek Lyznik
Christopher L. Baszczynski
Original Assignee
Pioneer Hi-Bred International, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Hi-Bred International, Inc. filed Critical Pioneer Hi-Bred International, Inc.
Priority to NZ504300A priority Critical patent/NZ504300A/en
Priority to CA002305866A priority patent/CA2305866A1/en
Priority to EP98960262A priority patent/EP1032693A1/en
Priority to AU15905/99A priority patent/AU757672B2/en
Publication of WO1999025854A1 publication Critical patent/WO1999025854A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8203Virus mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed

Abstract

The present invention is drawn to compositions and methods for introducing nucleotide sequences at preferred genomic target sites in a eukaryotic genome. The compositions comprise transfer cassettes which are flanked by nonhomologous recombination sites. The method involves transforming eukaryotic cells containing target sites utilizing non-integrating transformation methods. The method results in efficient integration of nucleotides into predetermined genetic locations and eliminates random DNA integration.

Description

A METHOD FOR DIRECTIONAL STABLE TRANSFORMATION OF EUKARYOTIC CELLS
Field of the Invention The invention relates to the genetic modification of eukaryotes. Particularly, the control of gene integration and expression in plants is provided.
Background of the Invention
Genetic modification techniques enable one to insert exogenous nucleotide sequences into an organism's genome. A number of methods have been described for the genetic modification of plants. All of these methods are based on introducing a foreign DNA into the plant cell, isolation of those cells containing the foreign DNA integrated into the genome, followed by subsequent regeneration of a whole plant. Unfortunately, such methods produce transformed cells that contain the introduced foreign DNA inserted randomly throughout the genome and often in multiple copies.
The random insertion of introduced DNA into the genome of host cells can be lethal if the foreign DNA happens to insert into, and thus mutate, a critically important native gene. In addition, even if a random insertion event does not impair the functioning of a host cell gene, the expression of an inserted foreign gene may be influenced by "position effects" caused by the surrounding genomic DNA. In some cases, the gene is inserted into sites where the position effects are strong enough to prevent the synthesis of an effective amount of product from the introduced gene. In other instances, overproduction of the gene product has deleterious effects on the cell.
Transgene expression is typically governed by the sequences, including promoters and enhancers, which are physically linked to the transgene. Currently, it is difficult to precisely modify the structure of transgenes once they have been introduced into plant cells. In many applications of transgene technology, it would be desirable to introduce the transgene in one form, and then be able to modify the transgene in a defined manner. By this means, transgenes could be activated or inactivated where the sequences that control transgene expression can be altered by either removing sequences present in the original transgene or by inserting additional sequences into the transgene.
Therefore, it is essential to gain more control over foreign DNA integration into the nuclear genome of plant cells to expedite the efficient production of transgenic plants with stable and reliable expression of transgenic traits. Relatively low frequency and randomness of foreign DNA integration make genetic transformation a labor-intensive and unpredictable procedure. Multi-copy, random integrations of transforming DNA molecules frequently lead to aberrant expression of foreign genes, affect expression of endogenous genes, and provide transgenic organisms with unstable transgenic traits. All plant transformation procedures currently in use take advantage of biochemical pathway(s) involving random, illegitimate recombination to integrate foreign DNA. Illegitimate recombinations constitute the intrinsic property of a conventional genetic transformation process. As such, desired DNA integration events cannot be separated, or preferably selected for, from among any excessive random integrations, unless a different mechanism governs the integration of productive events. One approach for gene targeting, which is extensively pursued, involves the use of DNA homologous recombination for integration of foreign DNA into preselected genomic locations. The process involves both productive (homologous, targeted) and non-productive (illegitimate, random) integrations. Innovative strategies have already been proposed to reduce, or eliminate random integration of targeting vectors. They include the use of negative selection markers to eliminate random integrations by selection against actively expressed foreign genes, excisions of randomly integrated copies of foreign genes by the use of site-specific recombinations, or identification and application of specific inhibitors of non- homologous recombinations such as poly-(ADP-ribosylation) inhibitors. The basic problem with current gene targeting procedures, however, is that the efficiency of homologous recombination in somatic cells of higher eukaryotes is extremely low being about 1,000-, 1,000,000-fold less frequent than illegitimate, random integrations. Taking into account that random integrations are barely considered satisfactory in the conventional genetic transformation procedures, routine gene targeting is presently not practical, at least in plant genetic transformation systems. Therefore, methods to control targeting and integration of foreign genes into the genome are needed.
Summary of the Invention
Compositions and methods for introducing nucleotide sequences only at preferred genomic target sites are provided. The compositions comprise transfer cassettes which incorporate site-specific recombination sequences. The method involves transforming eukaryotic cells containing target sites utilizing transformation vectors which do not integrate genomic DNA, or integrate at very low frequency, unless provided with a site-specific integration system. The method results in efficient integration of nucleotides into predetermined genetic locations and minimizes or precludes random DNA integration.
Detailed Description of the Invention
Compositions and methods for introducing nucleotide sequences into predetermined genomic target sites in a plant genome is provided. The methods preclude the random integration of DNA into the genome. The methods use novel recombination sites in a gene targeting system which facilitates directional targeting of desired genes and nucleotide sequences into corresponding recombination sites previously introduced into the target genome. Methods for the production of transgenic plants containing specific recombination sites integrated in the plant genome are described in co-pending patent application entitled "Compositions and Methods for Genetic Modification of Plants" filed concurrently herewith and herein incorporated by reference. Generally, for targeted insertion of nucleotide sequences, two non-identical recombination sites are introduced into the target organism's genome establishing a target site for insertion of nucleotide sequences of interest. These recombination sites may flank other nucleotide sequences. Once a stable plant or cultured tissue is established a second construct, or nucleotide sequence of interest, flanked by corresponding recombination sites as those flanking the target site, is introduced into the stably transformed plant or tissues in the presence of a recombinase protein.
This process results in exchange of the nucleotide sequences between any two identical recombination sites of the target site and the transfer cassette. It is recognized that the transformed organism may comprise multiple target sites; i.e. , sets of non-identical recombination sites. In this manner, multiple manipulations of the target site in the transformed organism are available. By target site in the transformed organism is intended the DNA sequence that has been inserted into the transformed organism's genome and comprises the non-identical recombination sites.
Examples of recombination sites for use in the invention are known in the art and include FRT sites (See, for example, Schlake and Bode (1994) Biochemistry 33: 12746-12751; Huang et al. (1991) Nucleic Acids Research 19:443-448; Paul D. Sadowski (1995) In Progress in Nucleic Acid Research and Molecular Biology vol. 51, pp. 53-91; Michael M. Cox (1989) In Mobile DNA, Berg and Howe (eds)
American Society of Microbiology, Washington D.C., pp. 116-670; Dixon et al. (1995) 18:449-458; Umlauf and Cox (1988) The EMBO Journal 7: 1845-1852; Buchholz et al. (1996) Nucleic Acids Research 24:3118-3119; Kilby et al. (1993) Trends Genet. 9:413-421: Rossant and Geagy (1995) Nat. Med. 1: 592-594; Lox Albert et al. (1995) The Plant J. 7:649-659: Bayley et al. (1992) Plant Mol. Biol.
18:353-361; Odell et al. (1990) Mol. Gen. Genet. 223:369-378; and Dale and Ow (1991) Proc. Natl. Acad. Sci. USA 88:10558-105620; Qui et al. (1994) Proc. Natl. Acad. Sci. USA 91:1706-1710; Stuurman et al. (1996) Plant Mol. Biol. 32:901-913; and Dale et al. (1990) Gene 91:79-85; all of which are herein incorporated by reference.) By "target site" is intended a predetermined genomic location within the nucleus where the integration of a specific transformed nucleotide sequence is to occur. The target site of the invention is characterized by being flanked by non- identical recombination sites corresponding to the non-identical recombination sites flanking the nucleotide sequence to be transformed into the cell, (the transfer cassette), and integrated into the genome. The non-identical recombination sites in combination with recombinase activity result in a recombination event between the non-identical recombination sites of the target site and the target cassette (the integrating sequence). This event produces an integrated nucleotide sequence into the specified genomic location.
To practice the methods of the invention, a transformed organism, particularly a plant, of interest containing a target site integrated into its genome is needed. The target site is characterized by being flanked by non-identical recombination sites. A targeting cassette is additionally required containing a nucleotide sequence flanked by corresponding non-identical recombination sites as those sites contained in the target site of the transformed organism. A recombinase which recognizes the non-identical recombination sites and catalyzes site-specific recombination is required.
By non-identical recombination sites is intended that the flanking recombination sites are not identical. That is, one flanking recombination site may be a ERrsite (SΕQ ID NO: 1) where the second recombination site may be a mutated ER site (SΕQ ID NOs: 2, 3, 4 and 5). The non-identical recombination sites used in the methods of the invention prevent or greatly suppress recombination between the two flanking recombination sites and excision of the nucleotide sequence contained therein. Accordingly, it is recognized that any suitable non- identical recombination sites may be utilized in the invention, including FRT and mutant FRT sites, ERJand lox sites, lox and mutant lox sites, as well as other recombination sites known in the art.
By suitable non-identical recombination site implies that in the presence of active recombinase, excision of sequences between two non-identical recombination sites occurs, if at all, with an efficiency considerably lower than the recombinationally-mediated exchange targeting arrangement of nucleotide sequences into the plant genome. Thus, suitable non-identical sites for use in the invention include those sites where the efficiency of recombination between the sites is low; for example, where the efficiency is less than about 30 to about 50%, preferably less than about 10 to about 30%, more preferably less than about 5 to about 10%, even more preferably less than about 1 % . .
As noted above, the recombination sites in the targeting cassette correspond to those in the target site of the transformed organism. That is, if the target site of the transformed organism contains flanking non-identical recombination sites of FRT and a mutant FRT, the targeting cassette will contain the same FRT and mutant ERr non-identical recombination sites.
It is furthermore recognized that the recombinase, which is used in the invention, will depend upon the recombination sites in the target site of the transformed organism and the targeting cassette. That is, if ERr sites are utilized, the FLP recombinase will be needed. In the same manner, where lox sites are utilized, the Cre recombinase is required. If the non-identical recombination sites comprise both a ERr and a lox site, both the FLP and Cre recombinase will be required in the plant cell. The present invention utilizes nonintegrating vectors and methods of introducing transfer cassettes into the genome of the organism of interest. In this manner, efficient site specific integration of exogenous nucleotide sequences is promoted and random insertion is avoided. By efficient site specific DNA integration is intended the maximization of recombination events between the introduced integrating sequence and the predetermined genomic target sites of transformed cells. That is, the methods prevent random DNA integration and insertion of DNA into sites other than the intended target site within the eukaryotic genome. Prevention of random integration is accomplished through the utilization of non-integrating nucleic acid molecules in association with the gene targeting method set forth in the copending application disclosed above. The methods of the invention can be used to target nucleotide sequences into any eukaryote. By eukaryote is intended to mean any higher eukaryotic organism, more specifically plants and even more specifically monocotyledonous plants.
Transient transformation methods for plants are available in the art and include DNA delivery systems which are capable of introducing nucleotide sequences into a eukaryotic cell, where these sequences either contain no homology to the genomic sequence of the target cell or have been modified in a way that precludes their own recombination or integration into the genome. Such non- integrative DNA delivery systems include the use of Agrobacterium for monocot, modified Agrobacterium-meάiated T-DNA transfer for dicots, and viral vectors.
These systems can effectively deliver DNA into plant cells without random integration. Thus, the nucleotide sequences are only or preferably able to insert at predetermined target sites and under suitable conditions such as those provided in copending application "Compositions and Methods for Genetic Modification of Plants". Thus, by non-integrating methods are intended methods of introducing nucleotide sequences into a cell without subsequent random integration or with minimum random integration. Random integration refers to integration or insertion of the nucleotide sequences at sites other than at corresponding target sites.
The development of plant virus gene vectors for expression of foreign genes in plants provides a means to provide high levels of gene expression within a short time. The benefits of virus-based transient RNA and DNA replicons include rapid and convenient engineering coupled with flexibility for expeditious application in various plant species. In this manner, autonomously replicating viruses offer numerous advantages for use as vehicles for transient expression of foreign genes, including their characteristic high levels of multiplication and concomitant levels of transient gene expression . Such viruses include but are not limited to Bromovirus, Caulimovirus, Furovirus, Geminivirus, Hordeivirus, Potexvirus, Tobamovirus, Tobravirus, Tombusvirus, Poty virus, Como virus, Alfamovirus, Dianthovirus, etc. See, for example, Ugaki et αl.(l991) Nucleic Acids Res. 19:371-377; Timmermans et αl. (1992) Nucleic Acids Res. 20:4047-4054; Louie, Raymond (1995) Phytopathology 85: 139-143; Scholthof et al. (1996) Annu. Rev.
Phytopathol.34: 299-323, and the references cited therein, all of which are herein incorporated by reference.
Viral methods use viral vectors that replicate as extrachromosomal DNA, or RNA molecules. Shuttle vectors may be constructed that contain viral sequences critical to replication. Such vectors can be used to introduce transfer cassettes containing nucleotide sequences into plants and plant cells. Such vectors, which have included viral genomic DNA from the geminiviruses (wheat dwarf virus or maize streak virus) can be transformed into monocotyledonous plants and propagate in the plant cell nucleus to high copy numbers (Timmermans et al. (1992) Nucleic
Acids Res. 20:4047-4054). Once viral particles are in the plant cell, they can accumulate to high copy numbers which will increase the probability that a recombination event will occur between the non-identical recombination sites flanking the target sequence, leading to a successful integration of the nucleotide sequence of interest.
Agrobacterium-mediated gene transfer exploits the natural ability of Agrobacteήum tumefaciens to transfer DNA into plant cells. Agrobacterium is a plant pathogen that transfers a set of genes encoded in a region called T-DNA of the Ti plasmid into plant cells at wound sites. The typical result of gene transfer is a tumorous growth called a crown gall in which the T-DNA is stably integrated into a host chromosome. The ability to cause crown gall disease can be removed by deletion of the genes conferring tumorigenesis in the T-DNA without loss of DNA transfer and integration. The DNA to be transferred is attached to border sequences that define the end points of an integrated T-DNA. Agrobacterium-based transformation methods may also be used in the invention. The Agrobacterium system can be used to introduce transfer cassettes into monocotyledonous plant cells to take advantage of the inability of T-DNA to efficiently integrate into the genome of monocot plants. It is known that in nature Agrobacterium does not transform monocots. Thus, supervirulent strains of Agrobacterium have been developed to utilize Agrobacterium as a vector to transform monocots. The present invention takes advantage of the ability of the
Agrobacterium system to introduce transfer cassettes into monocot cells without the ability to direct incorporation of the transferred sequence into the monocot genome.
It has been demonstrated that the Agrobacterium system can be used to transfer DNA from the bacteria to the plant cell. See, for example Grimsley et al. (1988)
BioTechnology 6: 185-189; Dasgupta et al. (1991) /. Gen. Virol. 72: 1215-1221; and the references cited therein.
It is further recognized that Agrobacterium based transfer systems may be modified such that the Agrobacterium directs introduction and transient expression of the transferred DNA (in this instance the transfer cassette), but is unable to direct efficient integration of T-DNA into the genome of the plant. Such modified Agrobacterium systems are available in the art. See, for example, Narasimhulu et al. (1996) The Plant Cell 8:873-886, herein incorporated by reference. Narasimhulu et al. demonstrate that the C-terminal nuclear localization signal of the VirD2 protein is not essential for nuclear uptake of T-DNA and further show that the t3 domain of VirD2 is required for efficient integration of T-DNA into the plant genome. Thus, mutations into this region will allow introduction and transient expression of the transfer cassette but avoid unwanted random insertion. For example, a nonpolar transposon insertion into the C-terminal coding region of virD2 resulted in only slightly decreased production of mRNA, although this insertion resulted in the loss of the nuclear localization sequence the G5 region from VirD2 protein and rendered the bacterium avirulent. Thus, the modified Agrobacterium is particularly beneficial for use in dicots.
The non-integrating transformation methods can be used to introduce the transfer cassettes into any plant cell. In this manner, genetically modified plants, plant cells, plant tissue, seed, and the like can be obtained. Transformation protocols may vary depending on the type of plant or plant cell, i.e. monocot or dicot, targeted for transformation.
Once the transfer cassettes have been introduced into the plant, the flanking non-identical recombination sites of transfer cassettes recombine with corresponding sites of the target within the plant genome. The cells having a modified genome may be grown into plants in accordance with conventional approaches. See, for example, McCormick et al. (1986) Plant Cell Reports, 5:81-84. These regenerated plants may then be pollinated with either the same transformed strain or different strains, and the resulting hybrid having the desired phenotypic characteristic identified. Two or more generations may be grown to ensure that the subject phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure the desired phenotype or other property has been achieved.
Because of the use of non-integrating means of introducing transfer cassettes provided herein, the plants of the invention may be distinguishable from other transformation methods as the modified plants of the invention will contain nucleotide sequences of interest inserted into the plant genome only or substantially at target sites. By substantially at target sites, is intended that target cassettes are inserted into the genome only about five times at non-target sites, preferably less than about three times, more preferable about one time or less.
It is recognized that the methods of the invention can additionally be used in other eukaryotic cells for efficient insertion of nucleotide sequences of interest, including mammalian cells. In this manner, target sites can be introduced into a cell line and non-integrating methods used to introduce transfer cassettes into the cells. This provides an efficient means of introducing genes of interest into animals, particularly agricultural animals.
Viral means of introducing DNA into mammalian cells are known in the art. In particular, a number of vector systems are known for the introduction of foreign or native genes into mammalian cells. These include SV40 virus (See, e.g., Okayama et al. (1985) Molec. Cell Biol. 5: 1136-1142); Bovine papilloma virus
(See, e.g., DiMaio et al. (1982) Proc. Natl. Acad. Sci. USA 79:4030-4034); adenovirus (See, e.g., Morin et al. (1987) Proc. Natl. Acad. Sci. USA 84:4626; Yifan et al. (1995) Proc. Natl. Acad. Sci. USA 92:1401-1405; Yang et al. (1996) Gene Ther. 3:137-144; Tripathy et al. (1996) Nat. Med. 2:545-550; Quantin et al. (1992) Proc. Natl. Acad. Sci. USA 59:2581-2584; Rosenfeld et al. (1991) Science 252:431-434; Wagner (1992) Proc. Natl. Acad. Sci. USA 59:6099-6103; Curiel et al. (1992) Human Gene Therapy 3:147-154; Curiel (1991) Proc. Natl. Acad. Sci.
USA 55:8850-8854; LeGal LaSalle et al. (1993) Science 259:590-599); Kass-Eisler et al. (1993) Proc. Natl. Acad. Sci. USA 90: 11498-11502); adeno-associated virus (See, e.g., Muzyczka et al. (1994) J. Clin. Invest. 94: 1351; Xiao et al. (1996) J.
Virol. 70:8098-8108); herpes simplex virus (See, e.g., Geller et al. (1988) Science
241:1661; Huard et al. (1995) Gene Therapy 2:385-392; U.S. Patent No.
5,501,979); retrovirus-based vectors (See, for example, Curran et al. (1982) J.
Virol. 44:674-682; Gazit et al. (1986) /. Virol. 60:19-28; Miller, A.D. (1992) Curr. Top. Microbiol. Immunol. 755: 1-24; Cavanaugh et al. (1994) Proc. Natl.
Acad. Sci. USA 97:7071-7075; Smith et al. (1990) Molecular and Cellular Biology 10:3268-3211); herein incorporated by reference. See also, Wu et al. (1991) J. Biol. Chem. 266: 14338-14342; Wu and Wu (J. Biol Chem. (1988)) 263: 14621- 14624; Wu et al. (1989) J. Biol. Chem. 264: 16985-16987; Zenke et al. (1990) Proc. Natl. Acad. Sci. USA 57:3655-3659; Wagner et al. (1990) 57:3410-3414.
Standard techniques for the construction of the vectors of the present invention are well-known to those of ordinary skill in the art and can be found in such references as Sambrook et al. , Molecular Cloning: A Laboratory Manual. 2nd ed. (Cold Spring Harbor, New York, 1989). A variety of strategies are available for ligating fragments of DNA, the choice of which depends on the nature of the termini of the DNA fragments and which choices can be readily made by those of skill in the art.
The following examples are offered by way of illustration not by way of limitation.
EXPERIMENTAL Example 1. Creation of novel non-identical FRT sites DNA fragments containing novel FRT sequences are constructed either by synthesizing, annealing and ligating complementary oligonucleotides or by creating primers for PCR amplification of a DNA product containing the new FRT sequence near the 5' end of the PCR product. The newly constructed ER product includes flanking restriction sites useful for cloning into plant expression units. In general, the 5' end is flanked by an Nhel site and a terminal Ncol site. The Ncol site includes the bases ATG, which are advantageously used in newly developed vector constructs as the recognition sequence to initiate an open reading frame. In sequence-based constructs designated noATG/ERr, the Nhel site is used for cloning thereby eliminating the upstream ATG in the process. At the 3' end of the FRT sequence, a restriction site is included enabling unique identification of the individual spacer sequences. As specific examples, the wild type FRT site
(designated ER7 here, SΕQ ID NO: 2) is cloned with a flanking Bglll site, the FRT5 site (spacer TTCAAAAG) has a Seal site, the FRT6 site (SΕQ ID NO: 4, spacer TTCAAAAA) has an Aatll site, and the ER77 site (SΕQ ID NO: 5) spacer TTCAATAA) has an Spel site. The outermost flanking restriction site is an Xhol site and is used to clone a gene of interest into the open reading frame.
The structures and sequences of the FRT sites as designed and/or used in the present invention example are depicted below with positions of restriction sites, repeats and spacer regions indicated.
FRT\ fSΕO ID NO: 2.
Ncol Nhel Repeat 1 Repeat 2 Spacer Inverted Repeat Bglll Xhol
5 ' CCATGGCTAGC GAAGTTCCTATTCC GAAGTTCCTATTC TCTAGAAA GTATAGGAACTTC AGATCTCGAG
FRT1 tSEO ID NO: 3.
Ncol Nhel Repeat 1 Repeat 2 Spacer Inverted Repeat Seal Xhol
5 ' CCATGGCTAGC GAAGTTCCTATTCC GAAGTTCCTATTC TTCAAAAG GTATAGGAACTTC AGTACTCGAG
FRTβ (SEO ID NO: 4.
Ncol Nhel Repeat 1 Repeat 2 Spacer Inverted Repeat Aatll Xhol
5 ' CCATGGCTAGC GAAGTTCCTATTCC GAAGTTCCTATTC TTCAAAAA GTATAGGAACTTC AGACGTCCTCGAG
FRT1 fSEO ID NO: 5.
Ncol Nhel Repeat 1 Repeat 2 Spacer Inverted Repeat Spel Xhol 5 ' CCATGGCTAGC GAAGTTCCTATTCC GAAGTTCCTATTCTTCAATAA GTATAGGAACTTCACTAGTTCTCGAG
Example 2. Creation of Agrobacterium plant transformation vectors containing novel non-identical FRT sites for dicots.
Bacterial Strains and Growth Conditions Escherichia coli strains are grown at 37 °C on Luria-Bertani medium
(Maniatis, et α/.(1982) Molecular Cloning: A Laboratory Manual (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory)) and Agrobacterium tumefaciens strains at 30 °C on AB-sucrose minimal medium (Lichtenstein, et al. (1986) Genetic engineering of plants, in DNA Cloning: A Practical Approach. Vol. 2, D.M. Glover, ed. (Oxford, UK: IRL Press), pp. 67-119) containing the appropriate antibiotics. Antibiotic concentrations (μg/mL) are as follows: ampicillin, 100; kanamycin, 20 for E. coli; carbenicillin, 100; kanamycin, 100; spectinomycin, 100; rifampicin, 10 for Agrobacterium.
Construction of pBISNl and Its Derivatives
To construct the transferred (T)-DNA binary vectors, one can clone an EcoRI-Sall fragment of pCNL65 (Liu et al. (1992) Plant Mol. Biol. 20:1071- 1087), containing a β-glucuronidase gusA gene with the ST-LS1 second intron (Vancanneyt et α/.(1990) Mol. Gen. Genet. 220:245-250), into pBluescript SK+ (Stratagene). This plasmid is digested with Xhol (upstream of the gusA gene), the overhanging ends filled in, using the Klenow fragment of DNA polymerase I and nucleotide triphosphates, and the gusA-ϊntrcm gene using Sαcl is released. The gusA gene (lacking an intron) from pE1120 (Ni et α/.(1995) Plant J. 7:661-676) is removed by using Smal and Sαcl and replaced with the gusA-intron gene fragment described above. The final plasmid will contain T-DNA border repeat sequences, a nopaline synthase-neomycin phosphotransferase II gene for selection of kanamycin- resistant transgenic plants, and a gusA-mtτon gene under the regulation of the promoter from pE1120. Based on the design of FRT sites as described above, various methods such as PCR, mutagenesis and/or other standard cloning protocols can be used to introduce the FRT sites into desired locations in the plasmid above during the vector creation process. Example methods are described in a co-pending patent application entitled "Compositions and Methods for Genetic Modification of Plants" filed concurrently herewith and herein incorporated by reference.
The plasmid described above is placed into an IncW replicon as described by
Narisasimhulu et al. (1996) The Plant Cell 8:873-886, herein incorporated by reference. The plasmid is mobilized into Agrobacterium strains, using a triparental mating procedure (Figurski and Helinski (1979) Proc. Natl. Acad. Sci. USA 76:1648-1652) and the mobilizing plasmid pRK2013 (Ditta et al. (1980) Proc. Natl. Acad. Sci. USA 77:7347-7351). The trans-conjugants are selected on AB-sucrose minimal medium containing rifampicin and kanamycin or rifampicin and spectinomycin. Alternatively, the Agrobacterium binary system as described by Bevan, M. (1984) Nucl. Acids Res. 72:8711-8721; herein incorporated by reference.
Growth and Infection of Plant Cells and Determination of GUS Activity Nicotiana tabacum BY-2 cells are propagated in Murashige and Skoog medium (Gibco BRL) containing 3% sucrose, 1 μg/mL thiamine, 0.2 μg/mL 2,4-D, and 370 μg/mL KH2PO4. Zea mays Black Mexican Sweet (BMS) cells are propagated in Murashige and Skoog medium containing 2% sucrose, 2 μg/mL 2,4- D, 0.2 mg/mL myoinositol, 0.13 mg/mL L-asparagine, 0.13 μg/mL nicotinic acid, and 0.25 μg/mL each of thiamine, pyridoxine, and pantothenic acid. The cultures are shaken at 140 rpm at 25 °C in continuous light.
To infect plant cells, virulence (vt'r) gene activity is induced in Agrobacterium with acetosyringone. Agrobacterium cells are grown to a density of 2 x 10 9 cells per mL (A = 100, using a Klett-Summerson spectrophotometer, red filter) in AB-sucrose medium. The cells are centrifuged at 10,000g, suspended at a concentration of 1 x 10 9 cells per mL A = 50) in induction medium (AB salts,
0.5% glucose, 2mM sodium phosphate, 50 mM Mes, pH 5.6, 50μM acetosyringone), and incubated with gentle shaking at 25° C for 14 to 18 hr. After washing the bacterial cells in plant culture medium, plant cells are inoculated with induced Agrobacterium (-20 bacterial cells per plant cell, except where noted otherwise) and cocultivated at 25 °C with shaking at 140 rpm for various periods of time. Most of the bacteria is washed off by centrifugation of the cocultivation mixture at 300 rpm (model GLC-2 clinical centrifuge; Beckman Sorvall, Newtown,
CT) for 2 min. The plant cell pellet is suspended and washed once more in plant culture medium and then resuspended in culture containing either 100 μg/mL timentin or 200 μg/mL cefotaxime. To collect plant cells for isolation of RNA, the cells are washed three times, as described above, in plant culture medium. RNA is extracted from these cells either directly after harvesting (either of the two methods listed below) or after freezing in liquid nitrogen and storage at -70 °C (TRIzol reagent [Gibco BRL] extraction method).
The percentage of cells expressing GUS activity is determined by incubating the cells in GUS histochemical staining solution (50 mM NaH2PO4, 10 mM Na2; EDTA, 0.3 M mannitol, 20% methanol, and 1 mM 5-bromo-4-chloro-3-indolyl β- D-glucuronic acid [X-gluc] overnight at 37°C (Kosuge et α/.(1990) Plant Sci. 70:133-140).
Example 3. Creation of Agrobacterium plant transformation vectors containing novel non-identical ERr sites for monocots. Agrobacterium- ediated DNA transfer to maize is roughly as efficient as it is to dicotyledenous plants in different, but functionally equivalent agroinfection systems. See, Grimsley et αl.(1981) Agroinfection, p. 87-107. In: Plant DNA
Infectious Agents. Holm and Schell (Εds.)Springer, New York and Vienna. This observation questions the definition of the host/parasite interaction, since the steps up to and including DNA transfer do seem to occur in a plant that does not produce tumors.
EXPERIMENTAL PROTOCOL
Plasmid constructions, bacterial strains and media. Construction of the transferred (T)-DNA binary vectors including incorporation of FRT sites is essentially as described in Example 2. Plasmids are maintained in Escherichia coli strain DH1 (Maniatis and Sambrook (1982) Molecular Cloning: A Laboratory
Manual. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory)) at 37°C or in A. tumefaciens strain C58 (Holsters et al. (1980) Plasmid 3:212-230) at 28°C. The strain C58(pTiC58,pEAP37) carrying a dimer of MSV genomes in the T-DNA of a binary vector has been described (Grimsley et al. (1987) Nature 325: 177-179). C58(pGV3850::pEAP25) is constructed by (i) cutting pMSV12 (Grimsley et al. (1987) supra) at its unique Sail site, (ii) cutting pEAPl, a 7.6kb large mobilizable plasmid encoding bacterial resistances for ampicillin and kanamycin and a kanamycin resistance gene expressed in plants with Sail, (iii) ligating (i) + (ii) to produce a plasmid, PHMI, which could be selected in E. coli by ampicillin, kanamycin and chloramphenicol resistance, and (iv) mobilization (Rogers et α/.(1986) Meth. Enzymol. 118:627-640) of the plasmid PHMI to C58(pGV3850) (Zambryski et A/. (1983) EMBO J. 2:2143-2150) producing C58(pGV3850::PHMI). Restriction enzyme digestions and ligations are done under conditions recommended by the manufacturer (Biofinex, Switzerland). Prior to inoculation, strains of Agrobacterium are streaked out on YEB (Grimsley et α/.(1986) Proc. Natl. Acad. Sci. USA, 83:3282-3286) plates solidified with 1.5% agar and supplemented with lOOμg/ml rifampicin and 25μg/ml kanamycin and allowed to grow for 48h. A single colony is used to inoculate 10 ml of liquid YEB medium in a 100ml Erlenmeyer flask supplemented with antibiotics as previously. Growth is continued with shaking at 200 r.p.m. for 24h, then 500μl of this culture is used to inoculate a similar flask and growth continued for a further 20h. This procedure yields a final density of viable Agrobacterium cells in the region of 109/ml
(estimated by plating). The cells are then harvested by centrifugation and resuspended in an equal volume of lOmM MgSO4 without antibiotics; such a suspension is subsequently referred to as undiluted or 10° dilution; for experiments involving a dilution series lOmM MgSO4 was also used as the diluent.
Growth of plants: Maize seeds for 10-day old plants are sown in pots in a phytotron in a 12 hour light/dark cycle at 25 °C in a light intensity of about 10000 lux (Sylvania 215W fluorescent lamps type F96T12/CW/VHO) then moved to the BL3 containment laboratory immediately prior to inoculation; subsequent growth conditions have been described (Grimsley et α/.(1987) Nature 325: 177-179). Three-day old seedlings are prepared by (i) sterilization by stirring for 20min in 0.7% calcium hypochlorite solution, (ii) washing three times (stirring for 20min each time) in sterile distilled water (iii) preparing 9cm diameter presterilized Petri dishes with 3 sheets of sterile 8.5cm diameter Macherey-Nagel (Germany) filter paper in the bottom and ca. 10ml of sterile water per dish, (iv) putting ca. 20 seeds into each geranium dish, and (v) incubating in the dark at 28 °C for 3 days, or until the distance between the scutellar node and the apical tip of the coleoptiles is 1-2 cm.
Inoculation of plants: For injections, a 50μl or a lOOμl Hamilton syringe fitted with a 0.4mm diameter disposable needle is loaded with the bacterial suspension avoiding trapped air bubbles. Between inoculations with different bacterial strains the needle is discarded and the syringe flushed out 3 times with 100% ethanol and 3 times with sterile distilled water. 10-day old plants are inoculated by (i) abrasion of an upper leaf, applying 20μl of suspension, and rubbing in with carborundum powder until the leaf appears wet all over, (ii) injection of lOμl of bacterial suspension into the central part of the plant either just above the first leaf blade, or 1cm below the first leaf blade, or at the base of the plant, in the meristematic region where adventitious roots later begin to appear.
Three-day old seedlings are injected with lOμl of bacterial suspension in different ways by (i) pushing the needle down through the apical tip of the coleoptile to the coleoptilar node, (ii) injecting 2mm below the apical tip of the coleoptile, (iii) 2 mm above the coleoptilar node, (iv) at the coleoptilar node, (iv) 2mm below the coleoptilar node, (v) at the scutellar node, and by pushing the needle up through the primary root to a region close to the scutellar node. Ten μl is used as a standard inoculum of bacterial suspension, but only l-2μl routinely remains in the inoculation site, the rest is forced out, usually coming out from the point of entry of the inoculating needle. Following inoculation seedlings are planted immediately in damp soil, incubated as before (Grimsley et α/.(1987) Nature 325:177-179), and observed daily for the appearance of symptoms of viral infection, characterized by the appearance of yellow spots and/or stripes at the base of new leaves.
Histology: Plant pieces containing the site of injection are collected, fixed in Carnoy's fluid (60% ethanol, 30% chloroform, 10% glacial acetic acid) overnight, dehydrated in a series of 50%, 75% and 100% ethanol, and then prepared for the infiltration of paraffin wax in a series of 25% , 50%, 75% and 100% xylene in ethanol (at least 30 min is allowed for each of the serial steps). Finally they are embedded in paraffin at 65 °C and cut with a microtome into slices of 15-35μm depending upon the size of the plant pieces. All procedures are carried out according to Sass (Sass, J.E. (1958). Botanical Microtechnique, p. 14-54. The Iowa State University Press, Ames, Iowa.). All publications and patent applications mentioned in the specification are indicative of the level of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.

Claims

IN THE CLAIMSWhat is claimed is:
1. A method for targeting the insertion of nucleotide sequences of interest to a specific chromosomal site within the genome of a eukaryotic cell, said method comprising: transforming said eukaryotic cell with a transfer cassette, said transfer cassette comprising said nucleotide sequence of interest flanked by or comprising non-identical recombination sites; wherein said eukaryotic genome comprises a target site comprising non- identical recombination sites which correspond to the flanking sites of said transfer cassette; and, providing a recombinase that recognizes and implements recombination at the non-identical recombination sites; wherein said transfer cassettes are introduced into said eukaryotic cell by non-integrating transformation methods.
2. The method of claim 1, wherein said nucleotide sequence of interest is flanked by said non-identical recombination sites.
3. The method of Claim 2, wherein said eukaryotic cell is a plant cell.
4. The method of Claim 2, wherein said non-integrating transformation method is an Agrobacterium-mediated method.
5. The method of Claim 3, wherein said plant cell is a monocotyledonous cell.
6. The method of Claim 5, wherein said monocotyledonous cell is a maize cell.
7. A modified plant made by the method of Claim 5.
8. Seed of the plant of Claim 7.
9. A modified plant made by the method of Claim 6.
10. Seed of the plant of Claim 9.
11. The method of Claim 4, wherein said Agrobacterium-mediated method contains a modified TDNA integration function.
12. The method of Claim 4, wherein said Agrob╬▒cterium-mediatcd method contains a modified VirD2 gene.
13. The method of Claim 12, wherein said plant cell is a dicotyledonous plant cell.
14. A modified plant made by the method of Claim 13.
15. Seed of the plant of Claim 14.
16. The method of Claim 2, wherein said non-integrating transformation method is a virus based method.
17. The method of Claim 1, wherein said non-identical recombination sites are selected from the group consisting of FRT, mutant FRT, LOX, and mutant LOX sites.
18. The method of Claim 2, wherein said sites are a ERr site and a mutated ERr site.
19. The method of Claim 3 wherein said recombinase is provided by genetically transforming said plant with an expression cassette containing a nucleotide sequence encoding said recombinase.
20. The method of Claim 19, wherein said recombinase is FLP.
21. The method of Claim 20, wherein said FLP has been synthesized using maize preferred codons.
22. The method of Claim 18, wherein said mutant FRT site is ER75 (SΕQ ID NO: 3), ERr 6 (SΕQ ID NO: 4) or ERr 7 (SΕQ ID NO: 5).
23. A plant whose genome has been modified by introducing into said plant a transfer cassette, said transfer cassette comprising a nucleotide sequence of interest comprising non-identical recombination sites; wherein said plant genome comprises a target site comprising non-identical recombination sites which correspond to the flanking sites of said transfer cassette; and, providing a recombinase that recognizes and implements recombination at the non-identical recombination sites; wherein said transfer cassettes are introduced into said eukaryotic cell by non-integrating transformation methods.
24. The plant of claim 23, wherein said transfer cassette is flanked by said non-identical recombination sites.
25. The plant of claim 23, wherein said target site comprises non- identical recombination sites.
26. The plant of Claim 23, wherein said non-integrating transformation method is an Agrobacterium-mediated method.
27. The plant of Claim 26, wherein said plant cell is a monocotyledonous cell.
28. The plant of Claim 27, wherein said monocotyledonous cell is a maize cell.
29. Seed of the plant of Claim 23.
30. Seed of the plant of Claim 26.
31. Seed of the plant of Claim 27.
32. Seed of the plant of Claim 28.
33. The plant of Claim 26, wherein said Agrobacterium-mediated method contains a modified VirD2 gene.
34. The plant of Claim 33, wherein said plant cell is a dicotyledonous plant cell.
35. Seed of the plant of Claim 34.
36. The plant of Claim 23, wherein said non-integrating transformation method is a virus based method.
37. The plant of Claim 23, wherein said non-identical recombination sites are selected from the group consisting of FRT, mutant FRT, LOX, and mutant LOX sites.
38. The plant of Claim 24, wherein said sites are a FRT site and a mutated FRT site.
39. The plant of Claim 36, wherein said recombinase is provided by genetically transforming said plant with an expression cassette containing a nucleotide sequence encoding said recombinase.
40. The plant of Claim 39, wherein said recombinase is FLP.
PCT/US1998/024609 1997-11-18 1998-11-17 A method for directional stable transformation of eukaryotic cells WO1999025854A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
NZ504300A NZ504300A (en) 1997-11-18 1998-11-17 A method for directional stable transformation of eukaryotic cells using non-identical recombination sites
CA002305866A CA2305866A1 (en) 1997-11-18 1998-11-17 A method for directional stable transformation of eukaryotic cells
EP98960262A EP1032693A1 (en) 1997-11-18 1998-11-17 A method for directional stable transformation of eukaryotic cells
AU15905/99A AU757672B2 (en) 1997-11-18 1998-11-17 A method for directional stable transformation of eukaryotic cells

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US6562797P 1997-11-18 1997-11-18
US6561397P 1997-11-18 1997-11-18
US60/065,613 1997-11-18
US60/065,627 1997-11-18

Publications (1)

Publication Number Publication Date
WO1999025854A1 true WO1999025854A1 (en) 1999-05-27

Family

ID=26745783

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US1998/024610 WO1999025821A1 (en) 1997-11-18 1998-11-17 Compositions and methods for genetic modification of plants
PCT/US1998/024609 WO1999025854A1 (en) 1997-11-18 1998-11-17 A method for directional stable transformation of eukaryotic cells

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US1998/024610 WO1999025821A1 (en) 1997-11-18 1998-11-17 Compositions and methods for genetic modification of plants

Country Status (11)

Country Link
US (13) US6331661B1 (en)
EP (3) EP1034262B1 (en)
AT (2) ATE401410T1 (en)
AU (3) AU757672B2 (en)
CA (2) CA2306184C (en)
DE (2) DE69831265T2 (en)
DK (1) DK1034262T3 (en)
ES (2) ES2308327T3 (en)
NZ (2) NZ503859A (en)
PT (1) PT1034262E (en)
WO (2) WO1999025821A1 (en)

Cited By (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999055851A2 (en) * 1998-04-28 1999-11-04 Novartis Ag Site-directed transformation of plants
US6632980B1 (en) 1997-10-24 2003-10-14 E. I. Du Pont De Nemours And Company Binary viral expression system in plants
WO2007011733A2 (en) 2005-07-18 2007-01-25 Pioneer Hi-Bred International, Inc. Modified frt recombination sites and methods of use
WO2007103738A2 (en) 2006-03-01 2007-09-13 Pioneer Hi-Bred International, Inc. Compositions related to the quantitative trait locus 6 (qtl6) in maize and methods of use
WO2008002872A2 (en) 2006-06-28 2008-01-03 Pioneer Hi-Bred International, Inc. Soybean event 3560.4.3.5 and compositions and methods for the identification and/or detection thereof
US7351877B2 (en) 2002-03-29 2008-04-01 Syngenta Participations Ag Lambda integrase mediated recombination in plants
EP1967529A1 (en) 2004-07-20 2008-09-10 Symphogen A/S Anti-rhesus D recombinant polyclonal antibody and methods of manufacture
WO2008145629A2 (en) 2007-05-25 2008-12-04 Cropdesign N.V. Yield enhancement in plants by modulation of maize alfins
EP2112223A2 (en) 2005-11-10 2009-10-28 Pioneer Hi-Bred International Inc. DOF (DNA binding with one finger) sequences and method of use
EP2113512A2 (en) 2004-07-02 2009-11-04 Pioneer Hi-Bred International Inc. Antifungal polypeptides
WO2010065867A1 (en) 2008-12-04 2010-06-10 Pioneer Hi-Bred International, Inc. Methods and compositions for enhanced yield by targeted expression of knotted1
WO2010096613A1 (en) 2009-02-19 2010-08-26 Pioneer Hi-Bred International, Inc. Blended refuge deployment via manipulation during hybrid seed production
EP2251349A1 (en) 2006-04-19 2010-11-17 Pioneer Hi-Bred International, Inc. Isolated polynucleotide molecules corresponding to mutant and wild-type alleles of the maize D9 gene and methods of use
WO2010147825A1 (en) 2009-06-09 2010-12-23 Pioneer Hi-Bred International, Inc. Early endosperm promoter and methods of use
WO2011021171A1 (en) 2009-08-21 2011-02-24 Beeologics, Llc Preventing and curing beneficial insect diseases via plant transcribed molecules
WO2011025860A1 (en) 2009-08-28 2011-03-03 E. I. Du Pont De Nemours And Company Compositions and methods to control insect pests
EP2298915A1 (en) 2004-06-30 2011-03-23 Pioneer Hi-Bred International, Inc. Methods of protecting plants from pathogenic fungi
EP2308986A1 (en) 2006-05-17 2011-04-13 Pioneer Hi-Bred International Inc. Artificial plant minichromosomes
US7935862B2 (en) 2003-12-02 2011-05-03 Syngenta Participations Ag Targeted integration and stacking of DNA through homologous recombination
WO2011056544A1 (en) 2009-10-26 2011-05-12 Pioneer Hi-Bred International, Inc. Somatic ovule specific promoter and methods of use
EP2322629A2 (en) 2003-04-29 2011-05-18 Pioneer Hi-Bred International Inc. Novel glyphosate-n-acetyltransferase (GAT) genes
WO2011068567A1 (en) 2009-07-10 2011-06-09 Syngenta Participations Ag Novel hydroxyphenylpyruvate dioxygenase polypeptides and methods of use
EP2333088A1 (en) 2006-05-16 2011-06-15 Pioneer Hi-Bred International, Inc. Antifungal polypeptides
WO2011082310A2 (en) 2009-12-30 2011-07-07 Pioneer Hi-Bred International, Inc. Methods and compositions for targeted polynucleotide modification
WO2011082318A2 (en) 2009-12-30 2011-07-07 Pioneer Hi-Bred International, Inc. Methods and compositions for the introduction and regulated expression of genes in plants
WO2011094205A1 (en) 2010-01-26 2011-08-04 Pioneer Hi-Bred International, Inc. Hppd-inhibitor herbicide tolerance
WO2011139431A1 (en) 2010-05-06 2011-11-10 Pioneer Hi-Bred International, Inc. Maize acc synthase 3 gene and protein and uses thereof
US8058506B2 (en) 2001-03-23 2011-11-15 Icon Genetics Gmbh Site-targeted transformation using amplification vectors
WO2011163590A1 (en) 2010-06-25 2011-12-29 E. I. Du Pont De Nemours And Company Compositions and methods for enhancing resistance to northern leaf blight in maize
EP2405013A2 (en) 2008-01-17 2012-01-11 Pioneer Hi-Bred International Inc. Compositions and methods for the suppression of target polynucleotides from the family Aphididae
WO2012021794A1 (en) 2010-08-13 2012-02-16 Pioneer Hi-Bred International, Inc. Chimeric promoters and methods of use
WO2012027209A2 (en) 2010-08-23 2012-03-01 Pioneer Hi-Bred International, Inc. Novel defensin variants and methods of use
WO2012071039A1 (en) 2010-11-24 2012-05-31 Pioner Hi-Bred International, Inc. Brassica gat event dp-061061-7 and compositions and methods for the identification and/or detection thereof
WO2012071040A1 (en) 2010-11-24 2012-05-31 Pioneer Hi-Bred International, Inc. Brassica gat event dp-073496-4 and compositions and methods for the identification and/or detection thereof
WO2012078949A2 (en) 2010-12-09 2012-06-14 Syngenta Participations Ag Methods and compositions using small interfering rna (sirna) for nematode control in plants
WO2012082548A2 (en) 2010-12-15 2012-06-21 Syngenta Participations Ag Soybean event syht0h2 and compositions and methods for detection thereof
EP2471909A1 (en) 2010-12-30 2012-07-04 SIRION BIOTECH GmbH Nucleic acid molecules for generating adenoviral vectors
WO2012092106A1 (en) 2010-12-28 2012-07-05 Pioneer Hi-Bred International, Inc. Novel bacillus thuringiensis gene with lepidopteran activity
WO2012109515A1 (en) 2011-02-11 2012-08-16 Pioneer Hi-Bred International, Inc. Synthetic insecticidal proteins active against corn rootworm
WO2012112411A1 (en) 2011-02-15 2012-08-23 Pioneer Hi-Bred International, Inc. Root-preferred promoter and methods of use
WO2012122369A1 (en) 2011-03-10 2012-09-13 Pioneer Hi-Bred International, Inc. Novel bacillus thuringiensis gene with lepidopteran activity
WO2012131495A2 (en) 2011-03-30 2012-10-04 Universidad Nacional Autónoma de México Mutant bacillus thuringiensis cry genes and methods of use
WO2012142311A1 (en) 2011-04-15 2012-10-18 Pioneer Hi-Bred International, Inc. Self-reproducing hybrid plants
US8293533B2 (en) 2008-12-19 2012-10-23 E.I. Du Pont De Nemours And Company Site-specific integration and stacking of transgenes in soybean via DNA recombinase mediated cassette exchange
WO2012154824A1 (en) 2011-05-09 2012-11-15 E. I. Du Pont De Nemours And Company Methods and compositions for silencing gene families using artificial micrornas
WO2012161982A1 (en) 2011-05-23 2012-11-29 E. I. Dupont De Nemours & Company Chloroplast transit peptides and methods of their use
EP2548964A2 (en) 2008-01-17 2013-01-23 Pioneer Hi-Bred International Inc. Compositions and methods for the suppression of target polynucleotides from Lepidoptera
WO2013033308A2 (en) 2011-08-31 2013-03-07 Pioneer Hi-Bred International, Inc. Methods for tissue culture and transformation of sugarcane
EP2573183A1 (en) 2009-01-22 2013-03-27 Syngenta Participations AG. Mutant hydroxyphenylpyruvate dioxgenase polypeptids and methods of use
WO2013063344A1 (en) 2011-10-28 2013-05-02 Pioneer Hi-Bred International, Inc. Engineered pep carboxylase variants for improved plant productivity
WO2013063487A1 (en) 2011-10-28 2013-05-02 E. I. Du Pont De Nemours And Company Methods and compositions for silencing genes using artificial micrornas
WO2013103371A1 (en) 2012-01-06 2013-07-11 Pioneer Hi-Bred International, Inc. Ovule specific promoter and methods of use
WO2013103365A1 (en) 2012-01-06 2013-07-11 Pioneer Hi-Bred International, Inc. Pollen preferred promoters and methods of use
WO2013103366A1 (en) 2012-01-06 2013-07-11 Pioneer Hi-Bred International, Inc. A method to screen plants for genetic elements inducing parthenogenesis in plants
WO2013104026A1 (en) 2012-01-11 2013-07-18 The Australian National University Method for modulating plant root architecture
WO2013122720A2 (en) 2012-02-16 2013-08-22 Syngenta Participations Ag Engineered pesticidal proteins
WO2013166113A1 (en) 2012-05-04 2013-11-07 E. I. Du Pont De Nemours And Company Compositions and methods comprising sequences having meganuclease activity
EP2666781A1 (en) 2009-05-04 2013-11-27 Pioneer Hi-Bred International, Inc. Yield enhancement in plants by modulation of AP2 transcription factor
WO2013188501A1 (en) 2012-06-15 2013-12-19 Pioneer Hi-Bred International, Inc. Genetic loci associated with resistance of soybean to cyst nematode and methods of use
WO2013188291A2 (en) 2012-06-15 2013-12-19 E. I. Du Pont De Nemours And Company Methods and compositions involving als variants with native substrate preference
WO2013192256A1 (en) 2012-06-22 2013-12-27 Syngenta Participations Ag Biological control of coleopteran pests
WO2014059155A1 (en) 2012-10-11 2014-04-17 Pioneer Hi-Bred International, Inc. Guard cell promoters and uses thereof
WO2014062544A2 (en) 2012-10-15 2014-04-24 Pioneer Hi-Bred International, Inc. Methods and compositions to enhance activity of cry endotoxins
WO2014093485A1 (en) 2012-12-13 2014-06-19 Pioneer Hi-Bred International, Inc. Methods and compositions for producing and selecting transgenic plants
WO2014100525A2 (en) 2012-12-21 2014-06-26 Pioneer Hi-Bred International, Inc. Compositions and methods for auxin-analog conjugation
WO2014116989A1 (en) 2013-01-25 2014-07-31 Pioneer Hi-Bred International, Inc. Maize event dp-032218-9 and methods for detection thereof
WO2014153234A1 (en) 2013-03-14 2014-09-25 Pioneer Hi-Bred International, Inc. Compositions having dicamba decarboxylase activity and methods of use
WO2014153254A2 (en) 2013-03-14 2014-09-25 Pioneer Hi-Bred International Inc. Compositions and methods to control insect pests
WO2014150914A2 (en) 2013-03-15 2014-09-25 Pioneer Hi-Bred International, Inc. Phi-4 polypeptides and methods for their use
WO2014153242A1 (en) 2013-03-14 2014-09-25 Pioneer Hi-Bred International, Inc. Compositions having dicamba decarboxylase activity and methods of use
WO2014159306A1 (en) 2013-03-13 2014-10-02 Pioneer Hi-Bred International, Inc. Glyphosate application for weed control in brassica
WO2014160383A1 (en) 2013-03-13 2014-10-02 E. I. Dupont De Nemours & Company Production of small interfering rnas in planta
WO2014159113A1 (en) 2013-03-12 2014-10-02 Pioneer Hi-Bred International, Inc. Root-preferred promoter and methods of use
WO2014164961A2 (en) 2013-03-12 2014-10-09 Pioneer Hi-Bred International, Inc. Manipulation of dominant male sterility
WO2014164775A1 (en) 2013-03-11 2014-10-09 Pioneer Hi-Bred International, Inc. Methods and compositions to improve the spread of chemical signals in plants
WO2014164466A1 (en) 2013-03-12 2014-10-09 E. I. Du Pont De Nemours And Company Methods for the identification of variant recognition sites for rare-cutting engineered double-strand-break-inducing agents and compositions and uses thereof
WO2014164399A1 (en) 2013-03-12 2014-10-09 Pioneer Hi-Bred International, Inc. Root-preferred promoter and methods of use
WO2014164828A2 (en) 2013-03-11 2014-10-09 Pioneer Hi-Bred International, Inc. Methods and compositions employing a sulfonylurea-dependent stabilization domain
WO2014201511A1 (en) 2013-06-21 2014-12-24 Gary David Housley Method and apparatus for close-field electroporation
WO2015006105A1 (en) 2013-07-09 2015-01-15 Board Of Trustees Of Michigan State University Transgenic plants produced with a k-domain, and methods and expression cassettes related thereto
WO2015017510A1 (en) 2013-07-31 2015-02-05 E. I. Du Pont De Nemours And Company Modification of soybean seed composition to enhance feed, food and other industrial applications of soybean products
WO2015021139A2 (en) 2013-08-08 2015-02-12 Pioneer Hi-Bred International, Inc. Insecticidal polypeptides having broad spectrum activity and uses thereof
WO2015023846A2 (en) 2013-08-16 2015-02-19 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2015038734A2 (en) 2013-09-13 2015-03-19 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2015038622A1 (en) 2013-09-11 2015-03-19 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof
WO2015057600A1 (en) 2013-10-18 2015-04-23 E. I. Du Pont De Nemours And Company Glyphosate-n-acetyltransferase (glyat) sequences and methods of use
WO2015066011A2 (en) 2013-10-29 2015-05-07 Pioneer Hi-Bred International, Inc. Self-reproducing hybrid plants
WO2015120276A1 (en) 2014-02-07 2015-08-13 Pioneer Hi Bred International Inc Insecticidal proteins and methods for their use
WO2015120270A1 (en) 2014-02-07 2015-08-13 Pioneer Hi Bred International, Inc. Insecticidal proteins and methods for their use
WO2015164457A1 (en) 2014-04-22 2015-10-29 E. I. Du Pont De Nemours And Company Plastidic carbonic anhydrase genes for oil augmentation in seeds with increased dgat expression
WO2016000647A1 (en) 2014-07-03 2016-01-07 Pioneer Overseas Corporation Plants having enhanced tolerance to insect pests and related constructs and methods involving insect tolerance genes
WO2016022516A1 (en) 2014-08-08 2016-02-11 Pioneer Hi-Bred International, Inc. Ubiquitin promoters and introns and methods of use
US9290777B2 (en) 2007-02-05 2016-03-22 National University Of Singapore Putative cytokinin receptor and methods for use thereof
WO2016044092A1 (en) 2014-09-17 2016-03-24 Pioneer Hi Bred International Inc Compositions and methods to control insect pests
WO2016060949A1 (en) 2014-10-16 2016-04-21 Pioneer Hi-Bred International, Inc. Insecticidal polypeptides having broad spectrum activity and uses thereof
WO2016061197A1 (en) 2014-10-16 2016-04-21 Pioneer Hi-Bred International, Inc. Insecticidal polypeptides having improved activity spectrum and uses thereof
WO2016061206A1 (en) 2014-10-16 2016-04-21 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2016094165A1 (en) 2014-12-12 2016-06-16 Syngenta Participations Ag Compositions and methods for controlling plant pests
WO2016100309A1 (en) 2014-12-16 2016-06-23 Pioneer Hi-Bred International, Inc. Restoration of male fertility in wheat
WO2016100333A1 (en) 2014-12-15 2016-06-23 Syngenta Participations Ag Pesticidal microrna carriers and use thereof
WO2016099916A1 (en) 2014-12-19 2016-06-23 E. I. Du Pont De Nemours And Company Polylactic acid compositions with accelerated degradation rate and increased heat stability
WO2016105696A1 (en) 2014-12-23 2016-06-30 Syngenta Participations Ag Biological control of coleopteran pests
WO2016144688A1 (en) 2015-03-11 2016-09-15 Pioneer Hi Bred International Inc Insecticidal combinations of pip-72 and methods of use
EP3091076A1 (en) 2015-05-07 2016-11-09 Limagrain Europe Polynucleotide responsible of haploid induction in maize plants and related processes
WO2016186986A1 (en) 2015-05-19 2016-11-24 Pioneer Hi Bred International Inc Insecticidal proteins and methods for their use
WO2016205445A1 (en) 2015-06-16 2016-12-22 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
WO2017023486A1 (en) 2015-08-06 2017-02-09 Pioneer Hi-Bred International, Inc. Plant derived insecticidal proteins and methods for their use
WO2017040343A1 (en) 2015-08-28 2017-03-09 Pioneer Hi-Bred International, Inc. Ochrobactrum-mediated transformation of plants
WO2017066597A1 (en) 2015-10-16 2017-04-20 Pioneer Hi-Bred International, Inc. Generating maize plants with enhanced resistance to northern leaf blight
WO2017112006A1 (en) 2015-12-22 2017-06-29 Pioneer Hi-Bred International, Inc. Tissue-preferred promoters and methods of use
WO2017161264A1 (en) 2016-03-18 2017-09-21 Pioneer Hi-Bred International, Inc. Methods and compositions for producing clonal, non-reduced, non-recombined gametes
WO2017180715A2 (en) 2016-04-14 2017-10-19 Pioneer Hi-Bred International, Inc. Insecticidal polypeptides having improved activity spectrum and uses thereof
WO2017184673A1 (en) 2016-04-19 2017-10-26 Pioneer Hi-Bred International, Inc. Insecticidal combinations of polypeptides having improved activity spectrum and uses thereof
WO2017192560A1 (en) 2016-05-04 2017-11-09 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
US9816102B2 (en) 2012-09-13 2017-11-14 Indiana University Research And Technology Corporation Compositions and systems for conferring disease resistance in plants and methods of use thereof
WO2017218207A1 (en) 2016-06-16 2017-12-21 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
WO2017222821A2 (en) 2016-06-24 2017-12-28 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof
WO2018005411A1 (en) 2016-07-01 2018-01-04 Pioneer Hi-Bred International, Inc. Insecticidal proteins from plants and methods for their use
WO2018013333A1 (en) 2016-07-12 2018-01-18 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
WO2018026774A1 (en) 2016-08-05 2018-02-08 Syngenta Participations Ag Control of coleopteran pests using rna molecules
CN107709551A (en) * 2015-02-02 2018-02-16 塞尔克蒂斯股份有限公司 The agriculture bacillus mediated genomic modification integrated without T DNA
WO2018078390A1 (en) 2016-10-31 2018-05-03 Institute Of Genetics And Developmental Biology Chinese Academy Of Sciences Compositions and methods for enhancing abiotic stress tolerance
WO2018084936A1 (en) 2016-11-01 2018-05-11 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2018111551A1 (en) 2016-12-14 2018-06-21 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2018118811A1 (en) 2016-12-22 2018-06-28 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2018148001A1 (en) 2017-02-08 2018-08-16 Pioneer Hi-Bred International Inc Insecticidal combinations of plant derived insecticidal proteins and methods for their use
WO2018208882A1 (en) 2017-05-11 2018-11-15 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2018217333A1 (en) 2017-05-26 2018-11-29 Pioneer Hi-Bred International, Inc. Insecticidal polypeptides having improved activity spectrum and uses thereof
EP3441470A1 (en) 2008-09-26 2019-02-13 BASF Agrochemical Products, B.V. Herbicide-resistant ahas-mutants and methods of use
WO2019049111A1 (en) 2017-09-11 2019-03-14 R. J. Reynolds Tobacco Company Methods and compositions for increasing expression of genes of interest in a plant by co-expression with p21
WO2019060383A1 (en) 2017-09-25 2019-03-28 Pioneer Hi-Bred, International, Inc. Tissue-preferred promoters and methods of use
WO2019074598A1 (en) 2017-10-13 2019-04-18 Pioneer Hi-Bred International, Inc. Virus-induced gene silencing technology for insect control in maize
WO2019076891A2 (en) 2017-10-18 2019-04-25 Syngenta Participations Ag Control of hemipteran pests using rna molecules
WO2019162163A1 (en) 2018-02-26 2019-08-29 Devgen Nv Control of insect pests using rna molecules
WO2019169150A1 (en) 2018-03-02 2019-09-06 Pioneer Hi-Bred International, Inc. Plant health assay
US10428336B2 (en) 2013-10-16 2019-10-01 The Australian National University Method for modulating plant growth
WO2019206780A1 (en) 2018-04-27 2019-10-31 Devgen Nv Control of insect pests using rna molecules
WO2019226508A1 (en) 2018-05-22 2019-11-28 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof
WO2020005933A1 (en) 2018-06-28 2020-01-02 Pioneer Hi-Bred International, Inc. Methods for selecting transformed plants
WO2020046701A1 (en) 2018-08-29 2020-03-05 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2020092487A1 (en) 2018-10-31 2020-05-07 Pioneer Hi-Bred International, Inc. Compositions and methods for ochrobactrum-mediated plant transformation
WO2020185751A1 (en) 2019-03-11 2020-09-17 Pioneer Hi-Bred International, Inc. Methods for clonal plant production
WO2020187798A1 (en) 2019-03-21 2020-09-24 Devgen Nv Control of insect pests using rna molecules
WO2020214986A1 (en) 2019-04-18 2020-10-22 Pioneer Hi-Bred International, Inc. Embryogenesis factors for cellular reprogramming of a plant cell
US10822610B2 (en) 2011-03-23 2020-11-03 E. I. Du Pont De Nemours And Company Methods for producing a complex transgenic trait locus
WO2021158455A1 (en) 2020-02-04 2021-08-12 Dow Agrosciences Llc Compositions having pesticidal utility and processes related thereto
WO2021252238A1 (en) 2020-06-12 2021-12-16 Pioneer Hi-Bred International, Inc. Alteration of seed composition in plants
WO2021257206A1 (en) 2020-06-17 2021-12-23 Pioneer Hi-Bred International, Inc. Generating maize plants with enhanced resistance to northern leaf blight
WO2022015619A2 (en) 2020-07-14 2022-01-20 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2022035649A1 (en) 2020-08-10 2022-02-17 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof
WO2022035653A2 (en) 2020-08-10 2022-02-17 E. I. Du Pont De Nemours And Company Compositions and methods for enhancing resistance to northern leaf blight in maize
WO2022087616A1 (en) 2020-10-21 2022-04-28 Pioneer Hi-Bred International, Inc. Parthenogenesis factors and methods of using same
WO2022115524A2 (en) 2020-11-24 2022-06-02 AgBiome, Inc. Pesticidal genes and methods of use
US11459579B2 (en) 2013-07-09 2022-10-04 Board Of Trustees Of Michigan State University Transgenic plants produced with a K-domain, and methods and expression cassettes related thereto
EP4079857A2 (en) 2016-08-05 2022-10-26 Syngenta Participations Ag Control of coleopteran pests using rna molecules
WO2022226316A1 (en) 2021-04-22 2022-10-27 Precision Biosciences, Inc. Compositions and methods for generating male sterile plants
WO2022236060A1 (en) 2021-05-06 2022-11-10 AgBiome, Inc. Pesticidal genes and methods of use
US11560568B2 (en) 2014-09-12 2023-01-24 E. I. Du Pont De Nemours And Company Generation of site-specific-integration sites for complex trait loci in corn and soybean, and methods of use
EP4122947A1 (en) 2017-12-19 2023-01-25 Pioneer Hi-Bred International, Inc. Insecticidal polypeptides and uses thereof
WO2023107943A1 (en) 2021-12-07 2023-06-15 AgBiome, Inc. Pesticidal genes and methods of use
WO2023224815A2 (en) 2022-05-18 2023-11-23 Corteva Agriscience Llc Compositions having pesticidal utility and processes related thereto
WO2024023578A1 (en) 2022-07-28 2024-02-01 Institut Pasteur Hsc70-4 in host-induced and spray-induced gene silencing
US11905518B2 (en) 2018-02-12 2024-02-20 Curators Of The University Of Missouri Small auxin upregulated (SAUR) gene for the improvement of root system architecture, waterlogging tolerance, drought resistance and yield in plants and methods of uses
WO2024044596A1 (en) 2022-08-23 2024-02-29 AgBiome, Inc. Pesticidal genes and methods of use

Families Citing this family (173)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227057B2 (en) 1997-06-03 2007-06-05 Chromatin, Inc. Plant centromere compositions
US7235716B2 (en) 1997-06-03 2007-06-26 Chromatin, Inc. Plant centromere compositions
US7119250B2 (en) 1997-06-03 2006-10-10 The University Of Chicago Plant centromere compositions
US7193128B2 (en) 1997-06-03 2007-03-20 Chromatin, Inc. Methods for generating or increasing revenues from crops
US7102055B1 (en) * 1997-11-18 2006-09-05 Pioneer Hi-Bred International, Inc. Compositions and methods for the targeted insertion of a nucleotide sequence of interest into the genome of a plant
AU745960C (en) 1997-11-18 2003-09-18 Pioneer Hi-Bred International, Inc. A novel method for the integration of foreign DNA into eukaryoticgenomes
AU745238C (en) * 1997-11-18 2003-02-27 Pioneer Hi-Bred International, Inc. Mobilization of viral genomes from T-DNA using site-specific recombination systems
DE69831265T2 (en) * 1997-11-18 2006-06-08 Pioneer Hi-Bred International, Inc. COMPOSITIONS AND METHODS FOR THE GENETIC MODIFICATION OF PLANTS
US7989202B1 (en) 1999-03-18 2011-08-02 The University Of Chicago Plant centromere compositions
US6746870B1 (en) 1999-07-23 2004-06-08 The Regents Of The University Of California DNA recombination in eukaryotic cells by the bacteriophage PHIC31 recombination system
US7126041B1 (en) * 1999-12-10 2006-10-24 North Carolina State Unversity High efficiency gene targeting in plants
EP1238090B1 (en) 1999-12-16 2007-05-09 CropDesign N.V. Optimized t-dna transfer and vectors therefor
US20040231006A1 (en) * 2000-04-12 2004-11-18 Silver Daniel P. Self-extinguishing recombinases, nucleic acids encoding them and methods of using the same
US20020023278A1 (en) * 2000-05-08 2002-02-21 Lyznik Leszek Alexander Genetic transformation in plants using site-specific recombination and wide hybridization
US20030046724A1 (en) * 2000-07-18 2003-03-06 Ranch Jerome P. Methods of transforming plants and identifying parental origin of a chromosome in those plants
IL154063A0 (en) * 2000-07-21 2003-07-31 Us Agriculture Methods for the replacement, translocation and stacking of dna in eukaryotic genomes
US6875907B2 (en) 2000-09-13 2005-04-05 Pioneer Hi-Bred International, Inc. Antimicrobial peptides and methods of use
US7560622B2 (en) * 2000-10-06 2009-07-14 Pioneer Hi-Bred International, Inc. Methods and compositions relating to the generation of partially transgenic organisms
DE10049587A1 (en) 2000-10-06 2002-05-02 Icon Genetics Ag Vector system for plants
DE10061150A1 (en) 2000-12-08 2002-06-13 Icon Genetics Ag Methods and vectors for the production of transgenic plants
DE10102389A1 (en) 2001-01-19 2002-08-01 Icon Genetics Ag Methods and vectors for plastid transformation of higher plants
DE10115507A1 (en) * 2001-03-29 2002-10-10 Icon Genetics Ag Method for coding information in nucleic acids of a genetically modified organism
DE10121283B4 (en) 2001-04-30 2011-08-11 Icon Genetics GmbH, 80333 Methods and vectors for amplification or expression of desired nucleic acid sequences in plants
CA2441937A1 (en) 2001-05-30 2002-12-05 Chromos Molecular Systems, Inc. Chromosome-based platforms
EP1401849A4 (en) * 2001-05-30 2005-05-18 Chromos Molecular Systems Inc Plant artificial chromosomes, uses thereof and methods of preparing plant artificial chromosomes
DE10132780A1 (en) * 2001-07-06 2003-01-16 Icon Genetics Ag Plastid gene expression via autonomously replicating vectors
AU2002355155A1 (en) * 2001-07-24 2003-02-17 Affinium Pharmaceuticals Inc. Methods for gene disruption and uses thereof
CA2460617A1 (en) * 2001-08-28 2003-03-13 Japan Tobacco Inc. Method of modifying genome in higher plant
DE10143237A1 (en) 2001-09-04 2003-03-20 Icon Genetics Ag Manufacture of artificial internal ribosomal entry point elements (Ires elements)
DE10143238A1 (en) 2001-09-04 2003-03-20 Icon Genetics Ag Identification of eukaryotic internal ribosome entry sites (IRES) elements
DE10143205A1 (en) * 2001-09-04 2003-03-20 Icon Genetics Ag Process for protein production in plants
MXPA04002817A (en) 2001-09-27 2004-07-05 Pioneer Hi Bred Int Phytate polynucleotides and methods of use.
US20050158291A1 (en) * 2002-02-21 2005-07-21 Lionel Breton Pet food composition for skin photoprotection
US9155544B2 (en) 2002-03-20 2015-10-13 P Tech, Llc Robotic systems and methods
NZ535602A (en) 2002-04-08 2006-07-28 Pioneer Hi Bred Int Enhanced silk exsertion under stress in Zea mays plants
US7164056B2 (en) * 2002-05-03 2007-01-16 Pioneer Hi-Bred International, Inc. Gene targeting using replicating DNA molecules
US8304233B2 (en) 2002-06-04 2012-11-06 Poetic Genetics, Llc Methods of unidirectional, site-specific integration into a genome, compositions and kits for practicing the same
BR0313281A (en) 2002-08-06 2007-07-24 Verdia Inc ap1 amine oxidase variants
US7365186B2 (en) * 2002-11-22 2008-04-29 Arborgen, Llc Vascular-preferred promoter sequences and uses thereof
US20040137624A1 (en) * 2002-12-27 2004-07-15 Lowe Brenda A. Methods of site-directed transformation
HUE035897T2 (en) 2003-06-23 2018-05-28 Pioneer Hi Bred Int Engineering single-gene-controlled staygreen potential into plants
EP2361984A1 (en) 2003-10-09 2011-08-31 E. I. du Pont de Nemours and Company Gene silencing by using modified micro-RNA molecules
DE10354616A1 (en) * 2003-11-21 2005-06-23 Degussa Ag rubber compounds
US20070169227A1 (en) 2003-12-16 2007-07-19 Pioneer Hi-Bred International Inc. Dominant Gene Suppression Transgenes and Methods of Using Same
WO2005059148A1 (en) * 2003-12-17 2005-06-30 Pioneer Hi-Bred International, Inc. Recombinase mediated gene traps
AU2005206410A1 (en) 2004-01-22 2005-08-04 Dnavec Research Inc. Method of producing minus strand RNA virus vector with the use of hybrid promoter containing cytomegalovirus enhancer and avian beta-actin promoter
WO2005083096A1 (en) * 2004-02-23 2005-09-09 Chromatin, Inc. Plants modified with mini-chromosomes
EP1751180A4 (en) * 2004-02-26 2012-01-04 Israel State Enzymes, cells and methods for site specific recombination at asymmetric sites
US7319403B2 (en) * 2004-03-08 2008-01-15 Noel Woodard Combination carbon monoxide and wireless E-911 location alarm
US20070197474A1 (en) * 2004-03-30 2007-08-23 Clinton William P Methods for controlling plants pathogens using N-phosphonomethylglycine
US8148603B2 (en) * 2004-05-24 2012-04-03 The State Of Israel, Ministry Of Agriculture & Rural Development, Agricultural Research Organization, (A.R.O.), Volcani Center Transgenic ficus, method for producing same and use thereof
KR100579836B1 (en) * 2004-06-04 2006-05-15 삼성전자주식회사 Preparation method of toner having micro radius
US7453025B2 (en) 2004-09-22 2008-11-18 Arborgen, Llc Reproductive ablation constructs
AU2004326206B2 (en) 2004-12-28 2011-03-17 Pioneer Hi-Bred International, Inc. Improved grain quality through altered expression of seed proteins
ATE530656T1 (en) 2005-02-23 2011-11-15 Univ North Carolina State MODIFICATION OF ALKALOID CONTENT IN TOBACCO THROUGH MODIFICATION OF SPECIFIC CYTOCHROME P450 GENES.
US20060272057A1 (en) 2005-05-25 2006-11-30 Pioneer Hi-Bred International, Inc. Methods for improving crop plant architecture and yield
AP2693A (en) 2005-05-27 2013-07-16 Monsanto Technology Llc Soybean event MON89788 and methods for detection thereof
US8222028B2 (en) * 2005-09-08 2012-07-17 Chromatin, Inc. Plants modified with mini-chromosomes
US20070243617A1 (en) * 2005-10-13 2007-10-18 Holt Robert A Modular genomes for synthetic biology and metabolic engineering
US20070199096A1 (en) 2005-11-14 2007-08-23 E.I. Du Pont De Nemours And Company Compositions and Methods for Altering Alpha- and Beta-Tocotrienol Content
US10647960B2 (en) 2005-12-13 2020-05-12 The Trustees Of The University Of Pennsylvania Transcriptome transfer produces cellular phenotype conversion
US9157066B2 (en) 2005-12-13 2015-10-13 The Trustees Of The University Of Pennsylvania Transcriptome transfer produces cellular phenotype conversion
ES2698600T3 (en) 2005-12-13 2019-02-05 Univ Pennsylvania Methods for transfecting nucleic acids in living cells
US20070143881A1 (en) * 2005-12-16 2007-06-21 Pioneer Hi-Bred International, Inc. Methods and Compositions for Improving the Efficiency of Site-Specific Polynucleotide Exchange
US8058509B2 (en) * 2005-12-21 2011-11-15 Pioneer Hi-Bred International, Inc. Methods and compositions for in planta production of inverted repeats
US7592505B2 (en) 2005-12-30 2009-09-22 Pioneer Hi-Bred International, Inc. UDP-xylose synthases (UXS) polynucleotides, polypeptides, and uses thereof
CA2821436A1 (en) 2006-02-09 2007-08-16 Pioneer Hi-Bred International, Inc. Genes for enhancing nitrogen utilization efficiency in crop plants
BRPI0709783B1 (en) 2006-05-09 2017-05-30 Univ Missouri plant artificial minichromosomes produced by telomere truncation and method of production thereof
JP5330231B2 (en) 2006-05-12 2013-10-30 モンサント テクノロジー エルエルシー Methods and compositions for obtaining marker-free transgenic plants
CN105296527B (en) 2006-08-11 2020-11-27 陶氏益农公司 Zinc finger nuclease-mediated homologous recombination
CA2663811A1 (en) 2006-10-05 2008-04-17 E.I. Du Pont De Nemours And Company Maize microrna sequences
BRPI0807573A2 (en) 2007-02-23 2014-07-01 Univ Georgia COMPOSITIONS AND USEFUL METHODS FOR SITE-DIRECTED RECOMBINATION IN PLANTS.
US8614089B2 (en) * 2007-03-15 2013-12-24 Chromatin, Inc. Centromere sequences and minichromosomes
US20080256669A1 (en) * 2007-04-16 2008-10-16 Monsanto Company Plants with Multiple Transgenes on a Chromosome
WO2008145731A1 (en) * 2007-05-31 2008-12-04 Basf Plant Science Gmbh Method of excising a nucleic acid sequence from a plant genome
DE102007027595A1 (en) 2007-06-12 2008-12-18 Henkel Ag & Co. Kgaa adhesive compositions
CA2691440A1 (en) 2007-06-29 2009-01-08 Pioneer Hi-Bred International, Inc. Methods for altering the genome of a monocot plant cell
US8450106B2 (en) * 2007-10-17 2013-05-28 The Ohio State University Research Foundation Oncolytic virus
BRPI0819743A2 (en) 2007-11-20 2014-10-07 Pioneer Hi Bred Int ISOLATED NUCLEIC ACID, EXPRESSION CASSETTE, HOST CELL, TRANSGENIC PLANT, TRANSGENIC SEED, METHOD FOR MODULATING ETHYLEN RESPONSE ON A PLANT, PROTEIN ISOLATED
US7964774B2 (en) 2008-05-14 2011-06-21 Monsanto Technology Llc Plants and seeds of spring canola variety SCV384196
US8125907B2 (en) * 2008-06-12 2012-02-28 Talari Networks Incorporated Flow-based adaptive private network with multiple WAN-paths
EP2344640A1 (en) 2008-10-30 2011-07-20 Pioneer Hi-Bred International Inc. Manipulation of glutamine synthetases (gs) to improve nitrogen use efficiency and grain yield in higher plants
CA2745465A1 (en) 2008-12-31 2010-07-08 Pioneer Hi-Bred International, Inc. Auxotrophic agrobacterium for plant transformation and methods thereof
EP2387567B1 (en) 2009-01-14 2014-06-11 The Salk Institute for Biological Studies Compounds that protect against amyloid diseases
WO2010101818A1 (en) 2009-03-02 2010-09-10 Pioneer Hi-Bred International, Inc. Nac transcriptional activators involved in abiotic stress tolerance
EP3093324A1 (en) * 2009-03-27 2016-11-16 E. I. du Pont de Nemours and Company Dielectric heat-transfer fluid
WO2010118045A1 (en) * 2009-04-07 2010-10-14 The Trustees Of The University Of Pennsylvania Transcriptome transfer produces cellular phenotype conversion
BRPI1014658A2 (en) 2009-04-14 2019-09-24 Pioneer Hi Bred Int "method for enhancing introgenous stress tolerance in a plant, method for enhancing nitrogen stress tolerance under low nitrogen conditions, expression cassette, construct, plant cell, plant and method of inhibiting ethylene production in a plant" . "
US10555527B2 (en) 2009-05-18 2020-02-11 Monsanto Technology Llc Use of glyphosate for disease suppression and yield enhancement in soybean
US10476765B2 (en) 2009-06-11 2019-11-12 Talari Networks Incorporated Methods and apparatus for providing adaptive private network centralized management system discovery processes
US20120204278A1 (en) 2009-07-08 2012-08-09 Kymab Limited Animal models and therapeutic molecules
US9445581B2 (en) 2012-03-28 2016-09-20 Kymab Limited Animal models and therapeutic molecules
EP2564695B1 (en) 2009-07-08 2015-04-15 Kymab Limited Animal models and therapeutic molecules
CA2767724A1 (en) 2009-07-23 2011-01-27 Chromatin, Inc. Sorghum centromere sequences and minichromosomes
EA201200177A1 (en) 2009-07-24 2012-06-29 Пайонир Хай-Бред Интернэшнл, Инк. APPLICATION OF TIES OF DOMAIN COMPONENTS OF DIMERIZATION TO REGULATE PLANT ARCHITECTURE
US20110035843A1 (en) 2009-08-05 2011-02-10 Pioneer Hi-Bred International, Inc. Novel eto1 genes and use of same for reduced ethylene and improved stress tolerance in plants
MX2012002113A (en) 2009-08-20 2012-08-08 Pioneer Hi Bred Int Functional expression of shuffled yeast nitrate transporter (ynti) in maize to improve nitrate uptake under low nitrate environment.
CN102549149A (en) 2009-08-20 2012-07-04 先锋国际良种公司 Functional expression of yeast nitrate transporter (ynt1) in maize to improve nitrate uptake
US8440891B2 (en) 2009-09-22 2013-05-14 Board of Trustees of the University of Akransas, N.A. Rice cultivar CL 142-AR
WO2011041796A1 (en) 2009-10-02 2011-04-07 Pioneer Hi-Bred International, Inc. Down-regulation of acc synthase for improved plant performance
US8440892B2 (en) 2009-10-15 2013-05-14 Board Of Trustees Of The University Of Arkansas, N.A. Rice cultivar CL 181-AR
US8937214B2 (en) * 2009-10-23 2015-01-20 Monsanto Technology Llc Methods and compositions for expression of transgenes in plants
MX2012007681A (en) 2009-12-31 2013-01-29 Pioneer Hi Bred Int Engineering plant resistance to diseases caused by pathogens.
WO2011085062A1 (en) 2010-01-06 2011-07-14 Pioneer Hi-Bred International, Inc. Identification of diurnal rhythms in photosynthetic and non-photosynthetic tissues from zea mays and use in improving crop plants
US20130045492A1 (en) 2010-02-08 2013-02-21 Regeneron Pharmaceuticals, Inc. Methods For Making Fully Human Bispecific Antibodies Using A Common Light Chain
US9796788B2 (en) 2010-02-08 2017-10-24 Regeneron Pharmaceuticals, Inc. Mice expressing a limited immunoglobulin light chain repertoire
EP3095871B1 (en) 2010-02-08 2019-04-10 Regeneron Pharmaceuticals, Inc. Common light chain mouse
CN101886074B (en) * 2010-06-03 2012-05-02 中国农业科学院生物技术研究所 GhPsbP promoter high-effectively expressed by cotton chlorenchyma
US8878548B2 (en) 2010-06-11 2014-11-04 Baker Hughes Incorporated Method for treating and sealing piezoelectric tuning forks
BR112013019510B1 (en) 2011-02-01 2021-09-21 Colorado Wheat Research Foundation, Inc METHOD FOR OBTAINING A WHEAT PLANT, METHOD FOR GROWING A WHEAT PLANT, METHOD FOR PRODUCING A WHEAT PLANT, METHOD FOR IDENTIFYING A WHEAT PLANT THAT IS RESISTANT TO THE HERBICIDAL ACETYL-COA CARBOXYLASE, METHOD FOR GIVING RESISTANCE TO ACCASE HERBICIDES A A PLANT, ISOLATED POLYNUCLEOTIDE, NUCLEIC ACID CONSTRUCT, EXPRESSION CASSETTE, METHOD FOR OBTAINING A TRANSGENIC PLANT AND ISOLATED POLYPEPTIDE WITH ACCASE ACTIVITY
SG194089A1 (en) 2011-04-27 2013-11-29 Amyris Inc Methods for genomic modification
CA2833876A1 (en) 2011-04-29 2012-11-01 Pioneer Hi-Bred International, Inc. Down-regulation of a homeodomain-leucine zipper i-class homeobox gene for improved plant performance
US20140216118A1 (en) 2011-06-14 2014-08-07 Synthon Biopharmaceuticals B.V. Compositions and Methods for Making and Biocontaining Auxotrophic Transgenic Plants
MX2013015174A (en) 2011-06-21 2014-09-22 Pioneer Hi Bred Int Methods and compositions for producing male sterile plants.
WO2013019411A1 (en) 2011-08-03 2013-02-07 E. I. Du Pont De Nemours And Company Methods and compositions for targeted integration in a plant
MY172718A (en) 2011-08-05 2019-12-11 Regeneron Pharma Humanized universal light chain mice
US8785729B2 (en) 2011-08-09 2014-07-22 Nunhems, B.V. Lettuce variety redglace
US8754293B2 (en) 2011-09-09 2014-06-17 Nunhems B.V. Lettuce variety intred
WO2013041844A2 (en) 2011-09-19 2013-03-28 Kymab Limited Antibodies, variable domains & chains tailored for human use
WO2013045916A1 (en) 2011-09-26 2013-04-04 Kymab Limited Chimaeric surrogate light chains (slc) comprising human vpreb
BR112014010537A2 (en) 2011-10-31 2017-05-02 Pioneer Hi Bred Int method for modulating ethylene sensitivity, transgenic plant, isolated protein, isolated polynucleotide sequence, polypeptide with ethylene regulatory activity, method for increasing yield in a plant, method for improving an agronomic parameter of a plant, method assisted by selection marker of a plant
US9253965B2 (en) 2012-03-28 2016-02-09 Kymab Limited Animal models and therapeutic molecules
WO2013096810A1 (en) 2011-12-21 2013-06-27 The Curators Of The University Of Missouri Soybean variety s05-11482
WO2013096818A1 (en) 2011-12-21 2013-06-27 The Curators Of The University Of Missouri Soybean variety s05-11268
US9380756B2 (en) 2012-01-04 2016-07-05 Nunhems B.V. Lettuce variety multigreen 50
AR089793A1 (en) 2012-01-27 2014-09-17 Du Pont METHODS AND COMPOSITIONS TO GENERATE COMPOSITE TRANSGENIC RISK LOCUS
MX2014011038A (en) 2012-03-13 2015-06-02 Pioneer Hi Bred Int Genetic reduction of male fertility in plants.
WO2013138309A1 (en) 2012-03-13 2013-09-19 Pioneer Hi-Bred International, Inc. Genetic reduction of male fertility in plants
US10195581B2 (en) 2012-03-26 2019-02-05 Unchained Labs Parallel reactor systems and methods for preparing materials
GB2502127A (en) 2012-05-17 2013-11-20 Kymab Ltd Multivalent antibodies and in vivo methods for their production
US10251377B2 (en) 2012-03-28 2019-04-09 Kymab Limited Transgenic non-human vertebrate for the expression of class-switched, fully human, antibodies
US8878009B2 (en) 2012-04-26 2014-11-04 Monsanto Technology, LLP Plants and seeds of spring canola variety SCV318181
US8859857B2 (en) 2012-04-26 2014-10-14 Monsanto Technology Llc Plants and seeds of spring canola variety SCV259778
US8835720B2 (en) 2012-04-26 2014-09-16 Monsanto Technology Llc Plants and seeds of spring canola variety SCV967592
US10045499B2 (en) 2012-05-24 2018-08-14 Iowa State University Research Foundation, Inc. Arabidopsis nonhost resistance gene(s) and use thereof to engineer disease resistant plants
WO2014081673A2 (en) 2012-11-20 2014-05-30 Pioneer Hi-Bred International, Inc. Engineering plants for efficient uptake and utilization of urea to improve crop production
US20160002648A1 (en) 2013-03-11 2016-01-07 Mei Guo Genes for improving nutrient uptake and abiotic stress tolerance in plants
WO2014164116A1 (en) 2013-03-13 2014-10-09 Pioneer Hi-Bred International, Inc. Functional expression of bacterial major facilitator superfamily (sfm) gene in maize to improve agronomic traits and grain yield
US20160010101A1 (en) 2013-03-13 2016-01-14 Pioneer Hi-Bred International, Inc. Enhanced nitrate uptake and nitrate translocation by over- expressing maize functional low-affinity nitrate transporters in transgenic maize
WO2014160122A1 (en) 2013-03-14 2014-10-02 Pioneer Hi-Bred International, Inc. Maize stress related transcription factor 18 and uses thereof
WO2014152507A2 (en) 2013-03-15 2014-09-25 Pioneer Hi-Bred International, Inc. Modulation of acc deaminase expression
CA2903555A1 (en) 2013-03-15 2014-09-18 Pioneer Hi-Bred International, Inc. Compositions and methods of use of acc oxidase polynucleotides and polypeptides
US9788534B2 (en) 2013-03-18 2017-10-17 Kymab Limited Animal models and therapeutic molecules
EP2992335B1 (en) 2013-04-30 2018-04-18 Unchained Labs Methods for sampling from non-atmospheric vessels in a parallel reactor system
US11707056B2 (en) 2013-05-02 2023-07-25 Kymab Limited Animals, repertoires and methods
US9783593B2 (en) 2013-05-02 2017-10-10 Kymab Limited Antibodies, variable domains and chains tailored for human use
DE112014004537T5 (en) 2013-10-01 2016-07-21 Kymab Limited Animal models and therapeutic molecules
CN106029886B (en) 2013-12-19 2021-02-05 阿迈瑞斯公司 Method for genomic integration
SG11201607203XA (en) 2014-03-21 2016-09-29 Regeneron Pharma Non-human animals that make single domain binding proteins
US10439908B2 (en) 2014-12-23 2019-10-08 Talari Networks Incorporated Methods and apparatus for providing adaptive private network centralized management system time correlated playback of network traffic
ES2785329T3 (en) 2014-12-23 2020-10-06 Syngenta Participations Ag Methods and Compositions for Identifying and Enriching Cells Comprising Site-Specific Genomic Modifications
BR112017015988B1 (en) 2015-01-27 2024-02-27 Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences METHODS FOR SITE-TARGETED MODIFICATION OF A TARGET FRAGMENT OF A TARGET GENE IN A WHOLE PLANT AND FOR OBTAINING A TRANSGENE-FREE MUTANT PLANT
CA2975279A1 (en) 2015-03-19 2016-09-22 Pioneer Hi-Bred International, Inc. Methods and compositions for accelerated trait introgression
CA2979702A1 (en) 2015-03-19 2016-09-22 Regeneron Pharmaceuticals, Inc. Non-human animals that select for light chain variable regions that bind antigen
EP3095870A1 (en) 2015-05-19 2016-11-23 Kws Saat Se Methods for the in planta transformation of plants and manufacturing processes and products based and obtainable therefrom
KR102127418B1 (en) * 2015-08-14 2020-06-26 인스티튜트 오브 제네틱스 앤드 디벨롭멘털 바이오롤지, 차이니즈 아카데미 오브 사이언시스 Method for obtaining glyphosate-resistant rice through site-specific nucleotide substitution
CN108368517B (en) 2015-10-30 2022-08-02 先锋国际良种公司 Methods and compositions for rapid plant transformation
AU2016350610A1 (en) 2015-11-06 2018-04-12 Pioneer Hi-Bred International, Inc. Methods and compositions of improved plant transformation
US20180258438A1 (en) 2015-11-06 2018-09-13 Pioneer Hi-Bred International, Inc. Generation of complex trait loci in soybean and methods of use
US10372834B2 (en) * 2016-01-15 2019-08-06 DISCUS Software Company Creating and using an integrated technical data package
EP4219731A3 (en) 2016-05-18 2023-08-09 Amyris, Inc. Compositions and methods for genomic integration of nucleic acids into exogenous landing pads
WO2018060881A1 (en) 2016-09-27 2018-04-05 University Of Florida Research Foundation, Inc. Insect toxin delivery mediated by a densovirus coat protein
WO2018140214A1 (en) 2017-01-24 2018-08-02 Pioneer Hi-Bred International, Inc. Nematicidal protein from pseudomonas
JP7402503B2 (en) 2017-06-14 2023-12-21 テクニスチェ ユニベルシタト ドレスデン Methods and means for genetically modifying the genome using designer DNA recombinase
JP2022527766A (en) 2019-03-27 2022-06-06 パイオニア ハイ-ブレッド インターナショナル, インコーポレイテッド Transformation of extraplant fragments
US20220154193A1 (en) 2019-03-28 2022-05-19 Pioneer Hi-Bred International, Inc. Modified agrobacterium strains and use thereof for plant transformation
IL296417A (en) 2020-03-15 2022-11-01 Proteinea Inc Recombinant protein production in insects
BR112023005831A2 (en) 2020-09-30 2023-05-02 Corteva Agriscience Llc RAPID TRANSFORMATION OF MONOCOT LEAF EXPLANTS
EP4232586A1 (en) 2020-10-21 2023-08-30 Pioneer Hi-Bred International, Inc. Doubled haploid inducer
US20220386549A1 (en) 2021-06-02 2022-12-08 Nutrien Ag Solutions, Inc. Inbred rice line dg263l
WO2023012342A1 (en) 2021-08-06 2023-02-09 Kws Vegetables B.V. Durable downy mildew resistance in spinach
WO2023076898A1 (en) 2021-10-25 2023-05-04 The Broad Institute, Inc. Methods and compositions for editing a genome with prime editing and a recombinase
WO2023183918A1 (en) 2022-03-25 2023-09-28 Pioneer Hi-Bred International, Inc. Methods of parthenogenic haploid induction and haploid chromosome doubling

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994017176A1 (en) * 1993-01-29 1994-08-04 Purdue Research Foundation Controlled modification of eukaryotic genomes
WO1997047758A1 (en) * 1996-06-14 1997-12-18 Massachusetts Institute Of Technology Methods and compositions for transforming cells

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2003A (en) * 1841-03-12 Improvement in horizontal windivhlls
GB2174995B (en) 1985-05-13 1989-07-05 Ciba Geigy Ag Method of genetically modifying plants
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
DE69103753T3 (en) * 1990-05-25 2008-01-24 E.I. Dupont De Nemours And Co., Wilmington NUCLEOTIDE SEQUENCE OF THE GENE FOR STEAROYL ACP DESATURASE FROM SOY.
WO1992015694A1 (en) 1991-03-08 1992-09-17 The Salk Institute For Biological Studies Flp-mediated gene modification in mammalian cells, and compositions and cells useful therefor
WO1992017484A1 (en) 1991-03-27 1992-10-15 Research Corporation Technologies, Inc. Single-stranded circular oligonucleotides
WO1993001283A1 (en) 1991-07-08 1993-01-21 The United States Of America As Represented By The Secretary Of Agriculture Selection-gene-free transgenic plants
ATE201236T1 (en) 1992-02-26 2001-06-15 Zeneca Mogen B V AGROBACTERIUM STRAINS CAPABILITY FOR SITE-SPECIFIC RECOMMINATION
JP3720353B2 (en) 1992-12-04 2005-11-24 メディカル リサーチ カウンシル Multivalent and multispecific binding proteins, their production and use
US5866755A (en) 1993-06-14 1999-02-02 Basf Aktiengellschaft Animals transgenic for a tetracycline-regulated transcriptional inhibitor
EP0632054A1 (en) 1993-06-28 1995-01-04 European Molecular Biology Laboratory Regulation of site-specific recombination by site-specific recombinase/nuclear receptor fusion proteins
CA2177367A1 (en) 1993-12-03 1995-06-08 Andrew David Griffiths Recombinant binding proteins and peptides
DE69425903T2 (en) 1993-12-09 2001-02-15 Thomas Jefferson University Ph CONNECTIONS AND METHOD FOR LOCATION-SPECIFIC MUTATION IN EUKARYOTIC CELLS
EG23907A (en) 1994-08-01 2007-12-30 Delta & Pine Land Co Control of plant gene expression
US5723765A (en) * 1994-08-01 1998-03-03 Delta And Pine Land Co. Control of plant gene expression
JP4020429B2 (en) 1995-06-07 2007-12-12 インヴィトロジェン コーポレーション Recombination cloning using engineered recombination sites
FR2735332B1 (en) * 1995-06-13 1997-07-18 Comasec International PERSONAL PROTECTION EQUIPMENT OF A SUPERIOR MEMBER AGAINST MECHANICAL RISKS, DEVICE AND METHOD FOR DETERMINING THE PERFORMANCE OF THIS EQUIPMENT
FR2736926B1 (en) 1995-07-19 1997-08-22 Rhone Poulenc Agrochimie 5-ENOL PYRUVYLSHIKIMATE-3-PHOSPHATE SYNTHASE MUTEE, CODING GENE FOR THIS PROTEIN AND PROCESSED PLANTS CONTAINING THIS GENE
US5801030A (en) * 1995-09-01 1998-09-01 Genvec, Inc. Methods and vectors for site-specific recombination
AUPN523995A0 (en) 1995-09-05 1995-09-28 Crc For Biopharmaceutical Research Pty Ltd Method for producing phage display vectors
US6051409A (en) 1995-09-25 2000-04-18 Novartis Finance Corporation Method for achieving integration of exogenous DNA delivered by non-biological means to plant cells
WO1997013401A1 (en) 1995-10-13 1997-04-17 Purdue Research Foundation Method for the production of hybrid plants
AUPN903196A0 (en) 1996-03-29 1996-04-26 Australian National University, The Single-step excision means
US5731181A (en) 1996-06-17 1998-03-24 Thomas Jefferson University Chimeric mutational vectors having non-natural nucleotides
GB9711015D0 (en) 1997-05-28 1997-07-23 Zeneca Ltd Improvements in or relating to organic compounds
US6774279B2 (en) 1997-05-30 2004-08-10 Carnegie Institution Of Washington Use of FLP recombinase in mice
CA2298886A1 (en) 1997-08-05 1999-02-18 Kimeragen, Inc. The use of mixed duplex oligonucleotides to effect localized genetic changes in plants
US7135608B1 (en) 1997-08-28 2006-11-14 The Salk Institute For Biological Studies Site-specific recombination in eukaryotes and constructs useful therefor
US6161400A (en) * 1997-09-23 2000-12-19 Whizard Protective Wear Corp. Cut-resistant knitted fabric
US6473425B1 (en) * 1997-10-02 2002-10-29 Sun Microsystems, Inc. Mechanism for dispatching packets via a telecommunications network
US6114600A (en) * 1997-10-31 2000-09-05 The United States Of America As Represented By The Secretary Of Agriculture Resolution of complex integration patterns to obtain single copy transgenes
US7102055B1 (en) * 1997-11-18 2006-09-05 Pioneer Hi-Bred International, Inc. Compositions and methods for the targeted insertion of a nucleotide sequence of interest into the genome of a plant
AU1526199A (en) 1997-11-18 1999-06-07 Pioneer Hi-Bred International, Inc. Targeted manipulation of herbicide-resistance genes in plants
AU745960C (en) * 1997-11-18 2003-09-18 Pioneer Hi-Bred International, Inc. A novel method for the integration of foreign DNA into eukaryoticgenomes
AU745238C (en) 1997-11-18 2003-02-27 Pioneer Hi-Bred International, Inc. Mobilization of viral genomes from T-DNA using site-specific recombination systems
DE69831265T2 (en) * 1997-11-18 2006-06-08 Pioneer Hi-Bred International, Inc. COMPOSITIONS AND METHODS FOR THE GENETIC MODIFICATION OF PLANTS
WO1999055851A2 (en) 1998-04-28 1999-11-04 Novartis Ag Site-directed transformation of plants
US6781032B1 (en) 1998-08-14 2004-08-24 The Regents Of The University Of California Homologous recombination in plants
CA2360878A1 (en) 1999-02-03 2000-08-10 The Children's Medical Center Corporation Gene repair involving excision of targeting dna
US6746870B1 (en) 1999-07-23 2004-06-08 The Regents Of The University Of California DNA recombination in eukaryotic cells by the bacteriophage PHIC31 recombination system
WO2001011058A1 (en) 1999-08-09 2001-02-15 Monsanto Technology Llc Novel cloning methods and vectors
US7060499B1 (en) 1999-09-30 2006-06-13 Izumu Saito DNA containing variant FRT sequences
US7126041B1 (en) 1999-12-10 2006-10-24 North Carolina State Unversity High efficiency gene targeting in plants
IL154063A0 (en) 2000-07-21 2003-07-31 Us Agriculture Methods for the replacement, translocation and stacking of dna in eukaryotic genomes
DE10131786A1 (en) 2001-07-04 2003-01-16 Sungene Gmbh & Co Kgaa Recombination systems and methods for removing nucleic acid sequences from the genome of eukaryotic organisms
JP4436130B2 (en) 2001-09-14 2010-03-24 セレクティス Random incorporation of polynucleotides by in vitro linearization
AU2003220642C1 (en) 2002-03-29 2009-01-29 Syngenta Participations Ag Lambda integrase mediated recombination in plants
ATE514782T1 (en) 2003-11-18 2011-07-15 Bayer Bioscience Nv IMPROVED TARGETED DNA INSERTION IN PLANTS
US7935862B2 (en) 2003-12-02 2011-05-03 Syngenta Participations Ag Targeted integration and stacking of DNA through homologous recombination
US20060288444A1 (en) 2004-08-13 2006-12-21 Mccarroll Robert Soybean polymorphisms and methods of genotyping
AP2693A (en) 2005-05-27 2013-07-16 Monsanto Technology Llc Soybean event MON89788 and methods for detection thereof
US20080083042A1 (en) 2006-08-14 2008-04-03 David Butruille Maize polymorphisms and methods of genotyping
CL2008001865A1 (en) 2007-06-22 2008-12-26 Monsanto Technology Llc Method to identify a sample of plant germplasm with a genotype that modulates the performance of a characteristic, and plant cell that contains at least one genomic region identified to modulate the yield of transgenes.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994017176A1 (en) * 1993-01-29 1994-08-04 Purdue Research Foundation Controlled modification of eukaryotic genomes
WO1997047758A1 (en) * 1996-06-14 1997-12-18 Massachusetts Institute Of Technology Methods and compositions for transforming cells

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ALBERT H. ET AL.: "Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome", THE PLANT JOURNAL, vol. 7, no. 4, 1995, pages 649 - 659, XP002097329 *
ARAKI K. ET AL.: "Targeted integration of DNA using mutant lox sites in embryonic stem cells", NUCLEIC ACIDS RESEARCH, vol. 25, no. 4, February 1997 (1997-02-01), pages 868 - 872, XP002097340 *
KARREMAN S ET AL: "ON THE USE OF DOUBLE FLP RECOGNITION TARGETS (FRTS) IN THE LTR OF RETROVIRUSES FOR THE CONSTRUCTION OF HIGH PRODUCER CELL LINES", NUCLEIC ACIDS RESEARCH, vol. 24, no. 9, 1 May 1996 (1996-05-01), pages 1616 - 1624, XP000616161 *
NARASIMHULU S. ET AL.: "Early transcription of Agrobacterium T-DNA genes in tobacco and maize", THE PLANT CELL, vol. 8, no. 5, May 1996 (1996-05-01), pages 873 - 886, XP002097341 *
OW D W ET AL: "GENOME MANIPULATION THROUGH SITE-SPECIFIC RECOMBINATION", CRITICAL REVIEWS IN PLANT SCIENCES, vol. 14, no. 3, 1995, pages 239 - 261, XP000614883 *
SCHLAKE T ET AL: "USE OF MUTATED FLP RECOGNITION TARGET (FRT) SITES FOR THE EXCHANGE OF EXPRESSION CASSETTES AT DEFINED CHROMOSOMAL LOCI", BIOCHEMISTRY, vol. 33, no. 43, 1 November 1994 (1994-11-01), pages 12746 - 12751, XP000616165 *
STORICI F ET AL: "Molecular engineering with the FRT sequence of the yeast 2mum plasmid: [cir deg.] segregant enrichment by counterselection for 2mum site-specific recombination", GENE: AN INTERNATIONAL JOURNAL ON GENES AND GENOMES, vol. 195, no. 2, 22 August 1997 (1997-08-22), pages 245-255, XP004094659 *

Cited By (204)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632980B1 (en) 1997-10-24 2003-10-14 E. I. Du Pont De Nemours And Company Binary viral expression system in plants
WO1999055851A3 (en) * 1998-04-28 2000-01-20 Novartis Ag Site-directed transformation of plants
WO1999055851A2 (en) * 1998-04-28 1999-11-04 Novartis Ag Site-directed transformation of plants
US7115798B1 (en) 1999-11-17 2006-10-03 E. I. Du Pont De Nemours And Company Methods for regulated expression of triats in plants using multiple site-specific recombination systems
US8058506B2 (en) 2001-03-23 2011-11-15 Icon Genetics Gmbh Site-targeted transformation using amplification vectors
US7351877B2 (en) 2002-03-29 2008-04-01 Syngenta Participations Ag Lambda integrase mediated recombination in plants
EP2322629A2 (en) 2003-04-29 2011-05-18 Pioneer Hi-Bred International Inc. Novel glyphosate-n-acetyltransferase (GAT) genes
EP2535414A1 (en) 2003-04-29 2012-12-19 Pioneer Hi-Bred International Inc. Novel glyphosate-n-acetyltransferase (gat) genes
US7935862B2 (en) 2003-12-02 2011-05-03 Syngenta Participations Ag Targeted integration and stacking of DNA through homologous recombination
US8399254B2 (en) 2003-12-02 2013-03-19 Syngenta Participations Ag Targeted integration of DNA through recombination
EP2298914A1 (en) 2004-06-30 2011-03-23 Pioneer Hi-Bred International, Inc. Methods of protecting plants from pathogenic fungi
EP2298915A1 (en) 2004-06-30 2011-03-23 Pioneer Hi-Bred International, Inc. Methods of protecting plants from pathogenic fungi
EP2113512A2 (en) 2004-07-02 2009-11-04 Pioneer Hi-Bred International Inc. Antifungal polypeptides
EP2264053A2 (en) 2004-07-02 2010-12-22 Pioneer-Hi-Bred International, Inc. Antifungal polypeptides
EP2230247A2 (en) 2004-07-02 2010-09-22 Pioneer-Hi-Bred International, Inc. Antifungal polypeptides
EP1967529A1 (en) 2004-07-20 2008-09-10 Symphogen A/S Anti-rhesus D recombinant polyclonal antibody and methods of manufacture
US7736897B2 (en) 2005-07-18 2010-06-15 Pioneer Hi-Bred International, Inc. FRT recombination sites and methods of use
US9234194B2 (en) 2005-07-18 2016-01-12 Pioneer Hi-Bred International, Inc. Modified FRT recombination site libraries and methods of use
US8318493B2 (en) 2005-07-18 2012-11-27 Pioneer Hi-Bred International, Inc. FRT recombination sites and methods of use
US8586361B2 (en) 2005-07-18 2013-11-19 Pioneer Hi-Bred International, Inc. FRT recombination sites and methods of use
US9777284B2 (en) 2005-07-18 2017-10-03 Pioneer Hi-Bred International, Inc. Modified FRT recombination site libraries and methods of use
WO2007011733A2 (en) 2005-07-18 2007-01-25 Pioneer Hi-Bred International, Inc. Modified frt recombination sites and methods of use
US8900869B2 (en) 2005-07-18 2014-12-02 Pioneer Hi-Bred International, Inc. FRT recombination sites and methods of use
EP2112223A2 (en) 2005-11-10 2009-10-28 Pioneer Hi-Bred International Inc. DOF (DNA binding with one finger) sequences and method of use
WO2007103738A2 (en) 2006-03-01 2007-09-13 Pioneer Hi-Bred International, Inc. Compositions related to the quantitative trait locus 6 (qtl6) in maize and methods of use
EP2251349A1 (en) 2006-04-19 2010-11-17 Pioneer Hi-Bred International, Inc. Isolated polynucleotide molecules corresponding to mutant and wild-type alleles of the maize D9 gene and methods of use
EP2333088A1 (en) 2006-05-16 2011-06-15 Pioneer Hi-Bred International, Inc. Antifungal polypeptides
EP2308986A1 (en) 2006-05-17 2011-04-13 Pioneer Hi-Bred International Inc. Artificial plant minichromosomes
WO2008002872A2 (en) 2006-06-28 2008-01-03 Pioneer Hi-Bred International, Inc. Soybean event 3560.4.3.5 and compositions and methods for the identification and/or detection thereof
EP2380987A2 (en) 2006-06-28 2011-10-26 Pioneer Hi-Bred International Inc. Soybean event 3560.4.3.5 and compositions and methods for the identification and/or detection thereof
US9290777B2 (en) 2007-02-05 2016-03-22 National University Of Singapore Putative cytokinin receptor and methods for use thereof
WO2008145629A2 (en) 2007-05-25 2008-12-04 Cropdesign N.V. Yield enhancement in plants by modulation of maize alfins
EP2405013A2 (en) 2008-01-17 2012-01-11 Pioneer Hi-Bred International Inc. Compositions and methods for the suppression of target polynucleotides from the family Aphididae
EP2548964A2 (en) 2008-01-17 2013-01-23 Pioneer Hi-Bred International Inc. Compositions and methods for the suppression of target polynucleotides from Lepidoptera
EP3441470A1 (en) 2008-09-26 2019-02-13 BASF Agrochemical Products, B.V. Herbicide-resistant ahas-mutants and methods of use
WO2010065867A1 (en) 2008-12-04 2010-06-10 Pioneer Hi-Bred International, Inc. Methods and compositions for enhanced yield by targeted expression of knotted1
US8293533B2 (en) 2008-12-19 2012-10-23 E.I. Du Pont De Nemours And Company Site-specific integration and stacking of transgenes in soybean via DNA recombinase mediated cassette exchange
US8574910B2 (en) 2008-12-19 2013-11-05 E. I. Du Pont De Nemours And Company Site-specific integration and stacking of transgenes in soybean via DNA recombinase mediated cassette exchange
EP2573183A1 (en) 2009-01-22 2013-03-27 Syngenta Participations AG. Mutant hydroxyphenylpyruvate dioxgenase polypeptids and methods of use
EP3156489A1 (en) 2009-01-22 2017-04-19 Syngenta Participations Ag Mutant hydroxyphenylpyruvate dioxygenase polypeptides and methods of use
WO2010096613A1 (en) 2009-02-19 2010-08-26 Pioneer Hi-Bred International, Inc. Blended refuge deployment via manipulation during hybrid seed production
EP2666781A1 (en) 2009-05-04 2013-11-27 Pioneer Hi-Bred International, Inc. Yield enhancement in plants by modulation of AP2 transcription factor
WO2010147825A1 (en) 2009-06-09 2010-12-23 Pioneer Hi-Bred International, Inc. Early endosperm promoter and methods of use
WO2011068567A1 (en) 2009-07-10 2011-06-09 Syngenta Participations Ag Novel hydroxyphenylpyruvate dioxygenase polypeptides and methods of use
WO2011021171A1 (en) 2009-08-21 2011-02-24 Beeologics, Llc Preventing and curing beneficial insect diseases via plant transcribed molecules
EP3401404A1 (en) 2009-08-28 2018-11-14 E. I. du Pont de Nemours and Company Compositions and methods to control insect pests
WO2011025860A1 (en) 2009-08-28 2011-03-03 E. I. Du Pont De Nemours And Company Compositions and methods to control insect pests
EP3098317A1 (en) 2009-08-28 2016-11-30 E. I. du Pont de Nemours and Company Compositions and methods to control insect pests
WO2011056544A1 (en) 2009-10-26 2011-05-12 Pioneer Hi-Bred International, Inc. Somatic ovule specific promoter and methods of use
WO2011082310A2 (en) 2009-12-30 2011-07-07 Pioneer Hi-Bred International, Inc. Methods and compositions for targeted polynucleotide modification
WO2011082318A2 (en) 2009-12-30 2011-07-07 Pioneer Hi-Bred International, Inc. Methods and compositions for the introduction and regulated expression of genes in plants
EP3078748A2 (en) 2009-12-30 2016-10-12 Pioneer Hi-Bred International, Inc. Methods and compositions for the introduction and regulated expression of genes in plants
WO2011094199A1 (en) 2010-01-26 2011-08-04 Pioneer Hi-Bred International, Inc. Polynucleotide and polypeptide sequences associated with herbicide tolerance
WO2011094205A1 (en) 2010-01-26 2011-08-04 Pioneer Hi-Bred International, Inc. Hppd-inhibitor herbicide tolerance
WO2011139431A1 (en) 2010-05-06 2011-11-10 Pioneer Hi-Bred International, Inc. Maize acc synthase 3 gene and protein and uses thereof
WO2011163590A1 (en) 2010-06-25 2011-12-29 E. I. Du Pont De Nemours And Company Compositions and methods for enhancing resistance to northern leaf blight in maize
EP3366117A1 (en) 2010-06-25 2018-08-29 E. I. du Pont de Nemours and Company Compositions and methods for enhancing resistance to northern leaf blight in maize
WO2012021785A1 (en) 2010-08-13 2012-02-16 Pioneer Hi-Bred International, Inc. Compositions and methods comprising sequences having hydroxyphenylpyruvate dioxygenase (hppd) activity
WO2012021797A1 (en) 2010-08-13 2012-02-16 Pioneer Hi-Bred International, Inc. Methods and compositions for targeting sequences of interest to the chloroplast
WO2012021794A1 (en) 2010-08-13 2012-02-16 Pioneer Hi-Bred International, Inc. Chimeric promoters and methods of use
WO2012027209A2 (en) 2010-08-23 2012-03-01 Pioneer Hi-Bred International, Inc. Novel defensin variants and methods of use
WO2012071039A1 (en) 2010-11-24 2012-05-31 Pioner Hi-Bred International, Inc. Brassica gat event dp-061061-7 and compositions and methods for the identification and/or detection thereof
WO2012071040A1 (en) 2010-11-24 2012-05-31 Pioneer Hi-Bred International, Inc. Brassica gat event dp-073496-4 and compositions and methods for the identification and/or detection thereof
WO2012078949A2 (en) 2010-12-09 2012-06-14 Syngenta Participations Ag Methods and compositions using small interfering rna (sirna) for nematode control in plants
WO2012082548A2 (en) 2010-12-15 2012-06-21 Syngenta Participations Ag Soybean event syht0h2 and compositions and methods for detection thereof
WO2012092106A1 (en) 2010-12-28 2012-07-05 Pioneer Hi-Bred International, Inc. Novel bacillus thuringiensis gene with lepidopteran activity
EP2471909A1 (en) 2010-12-30 2012-07-04 SIRION BIOTECH GmbH Nucleic acid molecules for generating adenoviral vectors
WO2012089348A1 (en) 2010-12-30 2012-07-05 Sirion Biotech Gmbh Means for generating adenoviral vectors for cloning large nucleic acids
WO2012109515A1 (en) 2011-02-11 2012-08-16 Pioneer Hi-Bred International, Inc. Synthetic insecticidal proteins active against corn rootworm
WO2012112411A1 (en) 2011-02-15 2012-08-23 Pioneer Hi-Bred International, Inc. Root-preferred promoter and methods of use
WO2012122369A1 (en) 2011-03-10 2012-09-13 Pioneer Hi-Bred International, Inc. Novel bacillus thuringiensis gene with lepidopteran activity
US10822610B2 (en) 2011-03-23 2020-11-03 E. I. Du Pont De Nemours And Company Methods for producing a complex transgenic trait locus
WO2012131495A2 (en) 2011-03-30 2012-10-04 Universidad Nacional Autónoma de México Mutant bacillus thuringiensis cry genes and methods of use
WO2012142311A1 (en) 2011-04-15 2012-10-18 Pioneer Hi-Bred International, Inc. Self-reproducing hybrid plants
WO2012154824A1 (en) 2011-05-09 2012-11-15 E. I. Du Pont De Nemours And Company Methods and compositions for silencing gene families using artificial micrornas
WO2012161982A1 (en) 2011-05-23 2012-11-29 E. I. Dupont De Nemours & Company Chloroplast transit peptides and methods of their use
WO2013033308A2 (en) 2011-08-31 2013-03-07 Pioneer Hi-Bred International, Inc. Methods for tissue culture and transformation of sugarcane
WO2013063487A1 (en) 2011-10-28 2013-05-02 E. I. Du Pont De Nemours And Company Methods and compositions for silencing genes using artificial micrornas
WO2013063344A1 (en) 2011-10-28 2013-05-02 Pioneer Hi-Bred International, Inc. Engineered pep carboxylase variants for improved plant productivity
WO2013103366A1 (en) 2012-01-06 2013-07-11 Pioneer Hi-Bred International, Inc. A method to screen plants for genetic elements inducing parthenogenesis in plants
WO2013103365A1 (en) 2012-01-06 2013-07-11 Pioneer Hi-Bred International, Inc. Pollen preferred promoters and methods of use
WO2013103371A1 (en) 2012-01-06 2013-07-11 Pioneer Hi-Bred International, Inc. Ovule specific promoter and methods of use
WO2013104026A1 (en) 2012-01-11 2013-07-18 The Australian National University Method for modulating plant root architecture
WO2013122720A2 (en) 2012-02-16 2013-08-22 Syngenta Participations Ag Engineered pesticidal proteins
WO2013166113A1 (en) 2012-05-04 2013-11-07 E. I. Du Pont De Nemours And Company Compositions and methods comprising sequences having meganuclease activity
WO2013188291A2 (en) 2012-06-15 2013-12-19 E. I. Du Pont De Nemours And Company Methods and compositions involving als variants with native substrate preference
WO2013188501A1 (en) 2012-06-15 2013-12-19 Pioneer Hi-Bred International, Inc. Genetic loci associated with resistance of soybean to cyst nematode and methods of use
WO2013192256A1 (en) 2012-06-22 2013-12-27 Syngenta Participations Ag Biological control of coleopteran pests
US9816102B2 (en) 2012-09-13 2017-11-14 Indiana University Research And Technology Corporation Compositions and systems for conferring disease resistance in plants and methods of use thereof
WO2014059155A1 (en) 2012-10-11 2014-04-17 Pioneer Hi-Bred International, Inc. Guard cell promoters and uses thereof
WO2014062544A2 (en) 2012-10-15 2014-04-24 Pioneer Hi-Bred International, Inc. Methods and compositions to enhance activity of cry endotoxins
WO2014143304A1 (en) 2012-12-13 2014-09-18 Pioneer Hi-Bred International, Inc. Methods and compositions for producing and selecting transgenic plants
WO2014093485A1 (en) 2012-12-13 2014-06-19 Pioneer Hi-Bred International, Inc. Methods and compositions for producing and selecting transgenic plants
WO2014100525A2 (en) 2012-12-21 2014-06-26 Pioneer Hi-Bred International, Inc. Compositions and methods for auxin-analog conjugation
WO2014116989A1 (en) 2013-01-25 2014-07-31 Pioneer Hi-Bred International, Inc. Maize event dp-032218-9 and methods for detection thereof
WO2014164828A2 (en) 2013-03-11 2014-10-09 Pioneer Hi-Bred International, Inc. Methods and compositions employing a sulfonylurea-dependent stabilization domain
WO2014164775A1 (en) 2013-03-11 2014-10-09 Pioneer Hi-Bred International, Inc. Methods and compositions to improve the spread of chemical signals in plants
WO2014164399A1 (en) 2013-03-12 2014-10-09 Pioneer Hi-Bred International, Inc. Root-preferred promoter and methods of use
WO2014159113A1 (en) 2013-03-12 2014-10-02 Pioneer Hi-Bred International, Inc. Root-preferred promoter and methods of use
WO2014164961A2 (en) 2013-03-12 2014-10-09 Pioneer Hi-Bred International, Inc. Manipulation of dominant male sterility
WO2014164466A1 (en) 2013-03-12 2014-10-09 E. I. Du Pont De Nemours And Company Methods for the identification of variant recognition sites for rare-cutting engineered double-strand-break-inducing agents and compositions and uses thereof
WO2014160383A1 (en) 2013-03-13 2014-10-02 E. I. Dupont De Nemours & Company Production of small interfering rnas in planta
WO2014159306A1 (en) 2013-03-13 2014-10-02 Pioneer Hi-Bred International, Inc. Glyphosate application for weed control in brassica
WO2014153242A1 (en) 2013-03-14 2014-09-25 Pioneer Hi-Bred International, Inc. Compositions having dicamba decarboxylase activity and methods of use
EP3744727A1 (en) 2013-03-14 2020-12-02 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
WO2014153234A1 (en) 2013-03-14 2014-09-25 Pioneer Hi-Bred International, Inc. Compositions having dicamba decarboxylase activity and methods of use
WO2014153254A2 (en) 2013-03-14 2014-09-25 Pioneer Hi-Bred International Inc. Compositions and methods to control insect pests
WO2014150914A2 (en) 2013-03-15 2014-09-25 Pioneer Hi-Bred International, Inc. Phi-4 polypeptides and methods for their use
WO2014201511A1 (en) 2013-06-21 2014-12-24 Gary David Housley Method and apparatus for close-field electroporation
US11459579B2 (en) 2013-07-09 2022-10-04 Board Of Trustees Of Michigan State University Transgenic plants produced with a K-domain, and methods and expression cassettes related thereto
US10570409B2 (en) 2013-07-09 2020-02-25 Board Of Trustees Of Michigan State University Transgenic plants produced with a K-domain, and methods and expression cassettes related thereto
WO2015006105A1 (en) 2013-07-09 2015-01-15 Board Of Trustees Of Michigan State University Transgenic plants produced with a k-domain, and methods and expression cassettes related thereto
WO2015017510A1 (en) 2013-07-31 2015-02-05 E. I. Du Pont De Nemours And Company Modification of soybean seed composition to enhance feed, food and other industrial applications of soybean products
WO2015021139A2 (en) 2013-08-08 2015-02-12 Pioneer Hi-Bred International, Inc. Insecticidal polypeptides having broad spectrum activity and uses thereof
WO2015023846A2 (en) 2013-08-16 2015-02-19 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2015038622A1 (en) 2013-09-11 2015-03-19 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof
WO2015038734A2 (en) 2013-09-13 2015-03-19 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
EP4159028A1 (en) 2013-09-13 2023-04-05 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
EP3692786A1 (en) 2013-09-13 2020-08-12 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
US10428336B2 (en) 2013-10-16 2019-10-01 The Australian National University Method for modulating plant growth
WO2015057600A1 (en) 2013-10-18 2015-04-23 E. I. Du Pont De Nemours And Company Glyphosate-n-acetyltransferase (glyat) sequences and methods of use
WO2015066011A2 (en) 2013-10-29 2015-05-07 Pioneer Hi-Bred International, Inc. Self-reproducing hybrid plants
WO2015120270A1 (en) 2014-02-07 2015-08-13 Pioneer Hi Bred International, Inc. Insecticidal proteins and methods for their use
EP3705489A1 (en) 2014-02-07 2020-09-09 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2015120276A1 (en) 2014-02-07 2015-08-13 Pioneer Hi Bred International Inc Insecticidal proteins and methods for their use
WO2015164457A1 (en) 2014-04-22 2015-10-29 E. I. Du Pont De Nemours And Company Plastidic carbonic anhydrase genes for oil augmentation in seeds with increased dgat expression
WO2016000647A1 (en) 2014-07-03 2016-01-07 Pioneer Overseas Corporation Plants having enhanced tolerance to insect pests and related constructs and methods involving insect tolerance genes
WO2016022516A1 (en) 2014-08-08 2016-02-11 Pioneer Hi-Bred International, Inc. Ubiquitin promoters and introns and methods of use
US11560568B2 (en) 2014-09-12 2023-01-24 E. I. Du Pont De Nemours And Company Generation of site-specific-integration sites for complex trait loci in corn and soybean, and methods of use
WO2016044092A1 (en) 2014-09-17 2016-03-24 Pioneer Hi Bred International Inc Compositions and methods to control insect pests
WO2016061197A1 (en) 2014-10-16 2016-04-21 Pioneer Hi-Bred International, Inc. Insecticidal polypeptides having improved activity spectrum and uses thereof
WO2016060949A1 (en) 2014-10-16 2016-04-21 Pioneer Hi-Bred International, Inc. Insecticidal polypeptides having broad spectrum activity and uses thereof
WO2016061206A1 (en) 2014-10-16 2016-04-21 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2016094165A1 (en) 2014-12-12 2016-06-16 Syngenta Participations Ag Compositions and methods for controlling plant pests
EP3795582A1 (en) 2014-12-12 2021-03-24 Syngenta Participations Ag Compositions and methods for controlling plant pests
WO2016100333A1 (en) 2014-12-15 2016-06-23 Syngenta Participations Ag Pesticidal microrna carriers and use thereof
WO2016100309A1 (en) 2014-12-16 2016-06-23 Pioneer Hi-Bred International, Inc. Restoration of male fertility in wheat
WO2016099916A1 (en) 2014-12-19 2016-06-23 E. I. Du Pont De Nemours And Company Polylactic acid compositions with accelerated degradation rate and increased heat stability
WO2016105696A1 (en) 2014-12-23 2016-06-30 Syngenta Participations Ag Biological control of coleopteran pests
CN107709551A (en) * 2015-02-02 2018-02-16 塞尔克蒂斯股份有限公司 The agriculture bacillus mediated genomic modification integrated without T DNA
WO2016144688A1 (en) 2015-03-11 2016-09-15 Pioneer Hi Bred International Inc Insecticidal combinations of pip-72 and methods of use
EP3091076A1 (en) 2015-05-07 2016-11-09 Limagrain Europe Polynucleotide responsible of haploid induction in maize plants and related processes
WO2016177887A1 (en) 2015-05-07 2016-11-10 Limagrain Europe Polynucleotide responsible of haploid induction in maize plants and related processes
EP3453764A1 (en) 2015-05-07 2019-03-13 Institut National De La Recherche Agronomique (INRA) Polynucleotide responsible of haploid induction in maize plants and related processes
WO2016186986A1 (en) 2015-05-19 2016-11-24 Pioneer Hi Bred International Inc Insecticidal proteins and methods for their use
WO2016205445A1 (en) 2015-06-16 2016-12-22 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
EP3943602A1 (en) 2015-08-06 2022-01-26 Pioneer Hi-Bred International, Inc. Plant derived insecticidal proteins and methods for their use
WO2017023486A1 (en) 2015-08-06 2017-02-09 Pioneer Hi-Bred International, Inc. Plant derived insecticidal proteins and methods for their use
WO2017040343A1 (en) 2015-08-28 2017-03-09 Pioneer Hi-Bred International, Inc. Ochrobactrum-mediated transformation of plants
WO2017066597A1 (en) 2015-10-16 2017-04-20 Pioneer Hi-Bred International, Inc. Generating maize plants with enhanced resistance to northern leaf blight
EP4257694A2 (en) 2015-12-22 2023-10-11 Pioneer Hi-Bred International, Inc. Tissue-preferred promoters and methods of use
WO2017112006A1 (en) 2015-12-22 2017-06-29 Pioneer Hi-Bred International, Inc. Tissue-preferred promoters and methods of use
WO2017161264A1 (en) 2016-03-18 2017-09-21 Pioneer Hi-Bred International, Inc. Methods and compositions for producing clonal, non-reduced, non-recombined gametes
WO2017180715A2 (en) 2016-04-14 2017-10-19 Pioneer Hi-Bred International, Inc. Insecticidal polypeptides having improved activity spectrum and uses thereof
WO2017184673A1 (en) 2016-04-19 2017-10-26 Pioneer Hi-Bred International, Inc. Insecticidal combinations of polypeptides having improved activity spectrum and uses thereof
EP3960863A1 (en) 2016-05-04 2022-03-02 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2017192560A1 (en) 2016-05-04 2017-11-09 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2017218207A1 (en) 2016-06-16 2017-12-21 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
EP4083215A1 (en) 2016-06-24 2022-11-02 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof
WO2017222821A2 (en) 2016-06-24 2017-12-28 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof
WO2018005411A1 (en) 2016-07-01 2018-01-04 Pioneer Hi-Bred International, Inc. Insecticidal proteins from plants and methods for their use
EP3954202A1 (en) 2016-07-01 2022-02-16 Pioneer Hi-Bred International, Inc. Insecticidal proteins from plants and methods for their use
WO2018013333A1 (en) 2016-07-12 2018-01-18 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
EP4079857A2 (en) 2016-08-05 2022-10-26 Syngenta Participations Ag Control of coleopteran pests using rna molecules
WO2018026774A1 (en) 2016-08-05 2018-02-08 Syngenta Participations Ag Control of coleopteran pests using rna molecules
WO2018078390A1 (en) 2016-10-31 2018-05-03 Institute Of Genetics And Developmental Biology Chinese Academy Of Sciences Compositions and methods for enhancing abiotic stress tolerance
WO2018084936A1 (en) 2016-11-01 2018-05-11 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
EP4050021A1 (en) 2016-11-01 2022-08-31 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2018111551A1 (en) 2016-12-14 2018-06-21 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2018118811A1 (en) 2016-12-22 2018-06-28 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2018148001A1 (en) 2017-02-08 2018-08-16 Pioneer Hi-Bred International Inc Insecticidal combinations of plant derived insecticidal proteins and methods for their use
WO2018208882A1 (en) 2017-05-11 2018-11-15 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2018217333A1 (en) 2017-05-26 2018-11-29 Pioneer Hi-Bred International, Inc. Insecticidal polypeptides having improved activity spectrum and uses thereof
WO2019049111A1 (en) 2017-09-11 2019-03-14 R. J. Reynolds Tobacco Company Methods and compositions for increasing expression of genes of interest in a plant by co-expression with p21
WO2019060383A1 (en) 2017-09-25 2019-03-28 Pioneer Hi-Bred, International, Inc. Tissue-preferred promoters and methods of use
WO2019074598A1 (en) 2017-10-13 2019-04-18 Pioneer Hi-Bred International, Inc. Virus-induced gene silencing technology for insect control in maize
WO2019076891A2 (en) 2017-10-18 2019-04-25 Syngenta Participations Ag Control of hemipteran pests using rna molecules
EP4122947A1 (en) 2017-12-19 2023-01-25 Pioneer Hi-Bred International, Inc. Insecticidal polypeptides and uses thereof
US11905518B2 (en) 2018-02-12 2024-02-20 Curators Of The University Of Missouri Small auxin upregulated (SAUR) gene for the improvement of root system architecture, waterlogging tolerance, drought resistance and yield in plants and methods of uses
WO2019162163A1 (en) 2018-02-26 2019-08-29 Devgen Nv Control of insect pests using rna molecules
WO2019169150A1 (en) 2018-03-02 2019-09-06 Pioneer Hi-Bred International, Inc. Plant health assay
WO2019206780A1 (en) 2018-04-27 2019-10-31 Devgen Nv Control of insect pests using rna molecules
WO2019226508A1 (en) 2018-05-22 2019-11-28 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof
WO2020005933A1 (en) 2018-06-28 2020-01-02 Pioneer Hi-Bred International, Inc. Methods for selecting transformed plants
WO2020046701A1 (en) 2018-08-29 2020-03-05 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2020092487A1 (en) 2018-10-31 2020-05-07 Pioneer Hi-Bred International, Inc. Compositions and methods for ochrobactrum-mediated plant transformation
WO2020185751A1 (en) 2019-03-11 2020-09-17 Pioneer Hi-Bred International, Inc. Methods for clonal plant production
WO2020187798A1 (en) 2019-03-21 2020-09-24 Devgen Nv Control of insect pests using rna molecules
WO2020214986A1 (en) 2019-04-18 2020-10-22 Pioneer Hi-Bred International, Inc. Embryogenesis factors for cellular reprogramming of a plant cell
WO2021158455A1 (en) 2020-02-04 2021-08-12 Dow Agrosciences Llc Compositions having pesticidal utility and processes related thereto
EP4331364A2 (en) 2020-02-04 2024-03-06 Corteva Agriscience LLC Compositions having pesticidal utility and processes related thereto
WO2021252238A1 (en) 2020-06-12 2021-12-16 Pioneer Hi-Bred International, Inc. Alteration of seed composition in plants
WO2021257206A1 (en) 2020-06-17 2021-12-23 Pioneer Hi-Bred International, Inc. Generating maize plants with enhanced resistance to northern leaf blight
WO2022015619A2 (en) 2020-07-14 2022-01-20 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2022035653A2 (en) 2020-08-10 2022-02-17 E. I. Du Pont De Nemours And Company Compositions and methods for enhancing resistance to northern leaf blight in maize
WO2022035649A1 (en) 2020-08-10 2022-02-17 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof
WO2022087616A1 (en) 2020-10-21 2022-04-28 Pioneer Hi-Bred International, Inc. Parthenogenesis factors and methods of using same
WO2022115524A2 (en) 2020-11-24 2022-06-02 AgBiome, Inc. Pesticidal genes and methods of use
WO2022226316A1 (en) 2021-04-22 2022-10-27 Precision Biosciences, Inc. Compositions and methods for generating male sterile plants
WO2022236060A1 (en) 2021-05-06 2022-11-10 AgBiome, Inc. Pesticidal genes and methods of use
WO2023107943A1 (en) 2021-12-07 2023-06-15 AgBiome, Inc. Pesticidal genes and methods of use
WO2023224815A2 (en) 2022-05-18 2023-11-23 Corteva Agriscience Llc Compositions having pesticidal utility and processes related thereto
WO2024023578A1 (en) 2022-07-28 2024-02-01 Institut Pasteur Hsc70-4 in host-induced and spray-induced gene silencing
WO2024044596A1 (en) 2022-08-23 2024-02-29 AgBiome, Inc. Pesticidal genes and methods of use

Also Published As

Publication number Publication date
US9222098B2 (en) 2015-12-29
US7361508B2 (en) 2008-04-22
US7820880B2 (en) 2010-10-26
EP1574573A3 (en) 2005-10-26
US20030226160A1 (en) 2003-12-04
DE69831265D1 (en) 2005-09-22
EP1574573A2 (en) 2005-09-14
DE69839742D1 (en) 2008-08-28
US6455315B1 (en) 2002-09-24
AU2003202440B2 (en) 2006-04-27
NZ504300A (en) 2002-06-28
PT1034262E (en) 2005-10-31
AU760113B2 (en) 2003-05-08
US6458594B1 (en) 2002-10-01
US20040083500A1 (en) 2004-04-29
US8735158B2 (en) 2014-05-27
AU760113C (en) 2004-04-22
US6331661B1 (en) 2001-12-18
DE69831265T2 (en) 2006-06-08
CA2306184C (en) 2007-05-15
EP1574573B1 (en) 2008-07-16
AU1590599A (en) 1999-06-07
US6187994B1 (en) 2001-02-13
AU2003202440A1 (en) 2003-06-12
CA2305866A1 (en) 1999-05-27
AU757672B2 (en) 2003-02-27
EP1034262A1 (en) 2000-09-13
WO1999025821A1 (en) 1999-05-27
CA2306184A1 (en) 1999-05-27
US6624297B1 (en) 2003-09-23
EP1032693A1 (en) 2000-09-06
ES2245487T3 (en) 2006-01-01
AU2003202440B8 (en) 2007-03-15
DK1034262T3 (en) 2005-11-28
EP1034262B1 (en) 2005-08-17
US7405079B2 (en) 2008-07-29
ATE401410T1 (en) 2008-08-15
US20040003435A1 (en) 2004-01-01
AU1462999A (en) 1999-06-07
NZ503859A (en) 2003-02-28
US20030237107A1 (en) 2003-12-25
US20090093059A1 (en) 2009-04-09
AU2003202440C1 (en) 2007-01-04
ATE302271T1 (en) 2005-09-15
US6573425B1 (en) 2003-06-03
US20080209595A1 (en) 2008-08-28
US6552248B1 (en) 2003-04-22
ES2308327T3 (en) 2008-12-01
EP1574573B9 (en) 2009-03-04
US7572634B2 (en) 2009-08-11

Similar Documents

Publication Publication Date Title
AU757672B2 (en) A method for directional stable transformation of eukaryotic cells
Caplan et al. Introduction of genetic material into plant cells
EP1034286B1 (en) Mobilization of viral genomes from t-dna using site-specific recombination systems
US7303909B2 (en) Binary vectors for the improved transformation of plants systems
US7462766B2 (en) Compositions comprising non-identical recombination sites
US20070039074A1 (en) High efficiency gene targeting in plants
BR112020014017A2 (en) CRISPR / CPF1 SYSTEMS FOR OPTIMIZED PLANTS
KR20220091472A (en) Genetically modified plant and method for manufacturing same
EP1428885A1 (en) Method of modifying genome in higher plant
WO2008095066A2 (en) Auto-regulated expression of bacterial isopentenyltransferase gene promotes t-dna transformaton in soybean
Caplan et al. Introduction of genetic material into plant cells
PEANT Motcut. AR Bology

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AT AU AZ BA BB BG BR BY CA CH CN CU CZ CZ DE DE DK DK EE EE ES FI FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 504300

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 2305866

Country of ref document: CA

Ref country code: CA

Ref document number: 2305866

Kind code of ref document: A

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 1998960262

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15905/99

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1998960262

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 15905/99

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 1998960262

Country of ref document: EP