WO1999032051A1 - Supported graft and methods of making same - Google Patents

Supported graft and methods of making same Download PDF

Info

Publication number
WO1999032051A1
WO1999032051A1 PCT/US1998/014320 US9814320W WO9932051A1 WO 1999032051 A1 WO1999032051 A1 WO 1999032051A1 US 9814320 W US9814320 W US 9814320W WO 9932051 A1 WO9932051 A1 WO 9932051A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire member
prosthesis according
tubular
endoluminal prosthesis
polytetrafluoroethylene
Prior art date
Application number
PCT/US1998/014320
Other languages
French (fr)
Inventor
Christopher E. Banas
Tarun J. Edwin
Brendan J. Mccrea
Rajagopal R. Kowligi
Original Assignee
Impra, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25546495&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1999032051(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Impra, Inc. filed Critical Impra, Inc.
Priority to DE69834425T priority Critical patent/DE69834425T3/en
Priority to EP98933317A priority patent/EP1041941B2/en
Priority to AU82985/98A priority patent/AU8298598A/en
Priority to JP2000525049A priority patent/JP4017821B2/en
Publication of WO1999032051A1 publication Critical patent/WO1999032051A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/88Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/048Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0077Special surfaces of prostheses, e.g. for improving ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/072Encapsulated stents, e.g. wire or whole stent embedded in lining
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/075Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30092Properties of materials and coating materials using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30448Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • A61F2210/0019Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol operated at only one temperature whilst inside or touching the human body, e.g. constrained in a non-operative shape during surgery, another temperature only occurring before the operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0076Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof multilayered, e.g. laminated structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/005Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives

Definitions

  • the present invention relates generally to implantable intraluminal devices, particularly intraluminal grafts.
  • Intraluminal stents are implanted in order to maintain luminal patency, typically after interventional methods have been employed to restore luminal patency from a diseased state, exclude an aneurysmal condition, bypass an occluded or obstructed anatomical region or to shunt body fluids.
  • Surgically implantable prosthetics, particularly vascular prostheses have been employed for many years.
  • Expanded polytetrafluoroethylene (ePTFE) vascular grafts have been used as biocompatible implants for many years and the use of ePTFE as a bio-inert barrier material in intraluminal applications is well documented.
  • ePTFE expanded polytetrafluoroethylene
  • ePTFE vascular grafts typically lack sufficient diametric mechanical rigidity to maintain luminal patency in intraluminal applications.
  • Conventional externally supported ePTFE vascular grafts such as the IMPRA Flex-Graft or the Gore Ring Graft, have an external beading of helically wound non-expanded or solid polytetrafluoroethylene, or of solid fluorinated ethylene-propylene co-polymer (FEP).
  • FEP solid fluorinated ethylene-propylene co-polymer
  • Non-expanded or solid polytetrafluoroethylene is significantly more rigid than the ePTFE material due to its higher density and absence of interstitial voids.
  • intraluminal stents are formed of an open lattice fashioned either to be elastically deformable, such as in the case of self-expanding stainless steel spring stents, plastically deformable, such as in the case of balloon-expandable stainless steel PALMAZ stents, or thermally expandable such as by employing shape memory properties of the material used to form the stent.
  • a common problem of most conventional intraluminal stents is re-occlusion of the vessel after stent placement. Tissue ingrowth and neointimal hyperplasia significantly reduces the open diameter of the treated lumen over time, requiring additional therapies.
  • the present invention makes advantageous use of the known biocompatible and material properties of ePTFE vascular grafts, and adds an abluminal supporting structure capable of being diametrically reduced to an intraluminal delivery profile and self-expanding in vivo to conform to the anatomical topography at the site of intraluminal implantation.
  • the present invention consists of an ePTFE substrate material, such as that described in co-pending U.S. Patent application Serial No. 08/794,871, filed February 5, 1997, as a carrier for a helically wound, open cylindrical support structure made of a shape memory alloy.
  • the inventive intraluminal stent-graft device may be implanted either by percutaneous delivery using an appropriate delivery system, a cut-down procedure in which a surgical incision is made and the intraluminal device implanted through the surgical incision, or by laparoscopic or endoscopic delivery.
  • Shape memory alloys are a group of metal alloys which are characterized by an ability to return to a defined shape or size when subjected to certain thermal or stress conditions. Shape memory alloys are generally capable of being plastically deformed at a relatively low temperature and, upon exposure to a relatively higher temperature, return to the defined shape or size prior to the deformation. Shape memory alloys may be further defined as one that yields a thermoelastic martensite.
  • a shape memory alloy which yields a thermoelastic martensite undergoes a martensitic transformation of a type that permits the alloy to be deformed by a twinning mechanism below the martensitic transformation temperature. The deformation is then reversed when the twinned structure reverts upon heating to the parent austenite phase.
  • the austenite phase occurs when the material is at a low strain state and occurs at a given temperature.
  • the martensite phase may be either temperature induced martensite (TIM) or stress-induced martensite (SIM).
  • M s When a shape memory material is stressed at a temperature above the start of martensite formation, denoted M s , where the austenitic state is initially stable, but below the maximum temperature at which martensite formation can occur, denoted M d , the material first deforms elastically and when a critical stress is reached, it begins to transform by the formation of stress-induced martensite.
  • A the temperature when the deforming stress is released differs. If the temperature is below the stress-induced martensite is stable, however, if the temperature is above A., the martensite is unstable and transforms back to austenite, with the sample returning to its original shape.
  • 5,597,378, 5,067,957 and 4,665,906 disclose devices, including endoluminal stents, which are delivered in the stress-induced martensite phase of shape memory alloy and return to their preprogrammed shape by removal of the stress and transformation from stress-induced martensite to austenite.
  • Shape memory characteristics may be imparted to a shape memory alloy by heating the metal at a temperature above which the transformation from the martensite phase to the austenite phase is complete, / ' . e. , a temperature above which the austenite phase is stable.
  • the shape imparted to the metal during this heat treatment is the shape "remembered.”
  • the heat treated metal is cooled to a temperature at which the martensite phase is stable, causing the austenite phase to transform to the martensite phase.
  • the metal in the martensite phase is then plastically deformed, e.g., to facilitate its delivery into a patient's body.
  • a temperature above the martensite to austenite transformation temperature e.g., body temperature
  • shape memory is used in the art to describe the property of an elastic material to recover a pre-programmed shape after deformation of a shape memory alloy in its martensitic phase and exposing the alloy to a temperature excursion through its austenite transformation temperature, at which temperature the alloy begins to revert to the austenite phase and recover its preprogrammed shape.
  • shape memory alloys where the alloy is stressed at a temperature above the transformation temperature of the alloy and stress-induced martensite is formed above the normal martensite formation temperature. Because it has been formed above its normal temperature, stress-induced martensite reverts immediately to undeformed austenite as soon as the stress is removed provided the temperature remains above the transformation temperature.
  • the present invention employs a wire member made of either a shape memory alloy, preferably a nickel-titanium alloy known as NITINOL, spring stainless steel or other elastic metal or plastic alloys, or composite material, such as carbon fiber. It is preferable that the wire member have either a generally circular, semi-circular, triangular or quadrilateral transverse cross-sectional profile.
  • pre-programmed shape memory is imparted to the wire member by helically winding the wire member about a cylindrical programming mandrel having an outer diametric dimension substantially the same, preferably within a tolerance of about +0 to -15%, as the ePTFE substrate and annealing the programming mandrel and the wire member at a temperature and for a time sufficient to impart the desired shape memory to the wire member.
  • the wire member is removed from the programming mandrel, straightened and helically wound about the abluminal wall surface of an ePTFE tubular member at a temperature below the A s of the shape memory alloy used to form the wire member.
  • a bonding agent capable of bonding the support wire member to the ePTFE tubular member be used at the interface between the wire member and the ePTFE tubular member.
  • Suitable biocompatible bonding agents may be selected from the group consisting of polytetrafluoroethylene, polyurethane, polyethylene, polypropylene, polyamides, polyimides, polyesters, polypropylenes, polyethylenes, polyfluoroethylenes, silicone fluorinated polyolefins, fluorinated ethylene/propylene copolymer, perfluoroalkoxy fluorocarbon, ethylene/tetrafluoroethylene copolymer, and polyvinylpyrolidone.
  • the bonding agent may constitute an interfacial layer intermediate the wire member and the ePTFE tubular member, or may be a polymeric cladding at least partially concentrically surrounding the wire member.
  • the cladding is preferably a polymeric material selected from the group consisting of polytetrafluoroethylene, polyurethane, polyethylene, polypropylene, polyamides, polyimides, polyesters, polypropylenes, polyethylenes, polyfluoroethylenes, silicone fluorinated polyolefins, fluorinated ethylene/propylene copolymer, perfluoroalkoxy fluorocarbon, ethylene/tetrafluoroethylene copolymer, and polyvinylpyrolidone.
  • the cladding may be either co-extruded with the wire member, extruded as a tube into which the wire member is concentrically inserted after annealing the wire member, or provided as an elongate member which a longitudinal recess which co-axially receives the wire member.
  • the bonding agent employed is a melt thermoplastic which has a melt point below the crystalline melt point of polytetrafluoroethylene
  • the melt thermoplastic bonding agent and the wire member are wound about the ePTFE tubular member, and constrained thereupon, such as by application of circumferential pressure, then the assembly is then exposed to the melt temperatures without longitudinally supporting the assembly.
  • bonding of the wire member to the ePTFE tubular member requires exposing the assembly to temperatures above the crystalline melt point of polytetrafluoroethylene in order to effectuate bonding of the wire member to the ePTFE.
  • This is preferably accomplished by introducing the assembly into a sintering oven while the assembly is on a mandrel and the assembly secured to the mandrel by an external helical wrapping of TEFLON tape applied to opposing ends of the assembly to longitudinally constrain the assembly and reduce or eliminate the tendency of the assembly to longitudinally foreshorten during sintering.
  • a stent-graft device which consists generally of tubular member fabricated of a biocompatible polymer selected from the group of microporous expanded polytetrafluoroethylene (“ePTFE”), polyethylene, polyethylene terepthalate, polyurethane and collagen, and at least one winding of an elastically self-expanding wire coupled to either the abluminal or luminal surfaces of the ePTFE tubular member or interdisposed between concentrically positioned ePTFE tubular members.
  • ePTFE microporous expanded polytetrafluoroethylene
  • an adhesive interiayer for bonding the shape memory alloy metal wire to the tubular member, the adhesive interiayer being selected from the group consisting of polytetrafluoroethylene, polyurethane, polyethylene, polypropylene, polyamides, polyimides, polyesters, polypropylenes, polyethylenes, polyfluoroethylenes, silicone, fluorinated polyolefins, fluorinated ethylene/propylene copolymer, perfluoroalkoxy fluorocarbon, ethylene/tetrafluoroethylene copolymer, and polyvinylpyrolidone.
  • Figure 1 is a side elevational view of a supported intraluminal graft in accordance with a preferred embodiment of the present invention.
  • Figure 2 is a cross-sectional view taken along line 2-2 of Figure 1.
  • Figure 3 is a cross-sectional view taken along line 3-3 of Figure 1.
  • Figure 4A is a side elevational cross-sectional view of a graft member mounted onto a mandrel in accordance with a preferred embodiment of the method of the present invention.
  • Figure 4B is a side elevational cross-sectional view as in Figure 4A with support member wrapped about an abluminal surface of the graft member.
  • Figure 4C is a side elevational cross-sectional view as in Figures 4A and 4B illustrating an abluminal covering concentrically superimposed over the support member and the graft member.
  • Figure 5 is a perspective view of a ribbon member clad in a polymeric covering in accordance with the present invention.
  • Figure 6 is a cross-sectional view taken along line 6-6 of Figure 5.
  • Figure 7 is a perspective view of a wire member clad in a polymeric covering in accordance with the present invention.
  • Figure 8 is a cross-sectional view taken along line 8-8 of Figure 7.
  • Figure 9 is a diagrammatic cross-sectional view of a first embodiment of a support member encapsulated in a shaped polymeric cladding covering.
  • Figure 10 is a diagrammatic cross-sectional view of a second embodiment of a support member encapsulated in a shaped polymeric cladding covering.
  • Figure 11 is a diagrammatic cross-sectional view of a third embodiment of a support member encapsulated in a shaped polymeric cladding covering.
  • Figure 12 is a diagrammatic cross-sectional view of a fourth embodiment of a support member coupled to a shaped polymeric cladding covering.
  • Figure 13 is a perspective view of an alternative preferred embodiment of the supported intraluminal graft in accordance with the present invention.
  • Figure 14 is a cross-sectional view taken along line 14-14 of Figure. 13.
  • Figure 15 is a process flow diagram illustrating the process steps for making the supported intraluminal graft in accordance with the method of the present invention.
  • the shape memory alloy supported intraluminal graft 10 of the present invention consists generally of a tubular substrate 12 having a central lumen 13 passing through an entire longitudinal extent of the tubular substrate.
  • the tubular substrate 12 has a luminal wall surface 15 adjacent the central lumen 13 and an abluminal wall surface 17 opposing the central lumen 13.
  • a support member 14 is provided and is preferably at least partially covered by a polymeric cladding 11.
  • the polymeric clad support member 14 is circumferentially disposed about and joined to the abluminal wall surface 17 of the tubular substrate 12, such as by helically winding the polymeric clad support member 14 about the abluminal surface 17 of the tubular substrate 12.
  • a second tubular substrate 19, having an inner diameter sufficiently dimensioned to be concentrically engaged about the abluminal wall surface 17 of the tubular substrate 12 and the polymeric clad support member 14, may be provided.
  • the inventive supported intraluminal graft 10 comprised of a tubular 12 made of a biocompatible polymeric material, such as expanded polytetrafluoroethylene (“ePTFE”), polyethylene terepthalate (“PET”) such as that marketed and sold under the trademark DACRON, polyethylene, or polyurethane.
  • ePTFE expanded polytetrafluoroethylene
  • PET polyethylene terepthalate
  • DACRON polyethylene
  • polyurethane polyurethane
  • Expanded PTFE substrate materials are preferably made by ram extruding an admixture of polytetrafluoroethylene resin and a hydrocarbon lubricant to form a tubular extrudate, drying off the hydrocarbon lubricant, longitudinally expanding the dried tubular extrudate, then sintering the longitudinally expanded dried tubular extrudate at a temperature above the crystalline melt point of polytetrafluoroethylene.
  • the resulting tubular ePTFE material has a microporous microstructure which is composed of spaced-apart nodes interconnected by fibrils, with the fibrils being oriented parallel to the longitudinal axis of the ePTFE tube and parallel to the axis of longitudinal expansion.
  • tubular substrate 12 may also be made by weaving yarn, made of either polyester or ePTFE, into a tubular structure as is well known in the art.
  • the tubular substrate 12 may have a cylindrical profile having a substantially uniform internal diameter along its longitudinal axis, or may have a tapered sidewall in which the tubular substrate 12 assumes a generally frustroconical shape in which the internal diameter of the tubular substrate 12 increases or deceases along the longitudinal axis of the tubular substrate 12.
  • the tubular substrate 12 may have at least one region of stepped diameter in which the internal diameter of the tubular substrate changes at a discrete longitudinal section of the tubular substrate 12.
  • the tubular substrate 12 is an extruded, longitudinally expanded and sintered ePTFE tubular member which has been radially expanded from an initial luminal inner diameter of between about 1.5 mm to about 6 mm to a final luminal inner diameter of between about 3 mm to about 18 mm.
  • tubular substrate 12 is initially fabricated at a first relatively smaller diametric dimension, dried of the hydrocarbon lubricant, and sintered, then radially expanded by application of a radially outwardly directed force applied to the luminal wall surface 15 of the tubular substrate 12, which radially deforms the wall of the tubular substrate 12 from an initial luminal inner diameter, denoted D,, to a second, enlarged luminal inner diameter, denoted D 2 .
  • tubular substrate 12 may be provided as an extruded, longitudinally expanded and sintered ePTFE tubular member having an inner diameter equivalent to the final inner diameter of the supported intraluminal graft, e.g., extruded to a luminal diameter of between about 3 mm to about 18 mm, and a wall thickness sufficient to acceptably minimize the delivery profile of the supported intraluminal graft.
  • Suitable wall thicknesses for the non-radially expanded ePTFE tubular member are considered less than or equal to about 0.3 mm for delivery to peripheral anatomic passageways.
  • the tubular substrate 12 is preferably radially expanded by loading the tubular substrate 12, in its fully or partially sintered state, onto an inflation balloon such that the tubular substrate 12 is concentrically engaged upon the inflation balloon, introducing the inflation balloon and tubular substrate 12 into a tubular housing defining a generally cylindrical cavity having an inner diameter corresponding to the maximum desired outer diameter of the final shape memory alloy supported graft, and applying a fluid pressure to the inflation balloon to inflate the inflation balloon and radially deform the tubular substrate 12 into intimate contact with the generally cylindrical cavity. Pressure is maintained within the inflation balloon for a period of time sufficient to minimize the inherent recoil property of the ePTFE material in the tubular substrate 12, then the pressure is relieved and the inflation balloon permitted to deflate. The radially deformed tubular substrate, now having an inner luminal diameter D 2 , is removed from the generally cylindrical cavity for subsequent processing.
  • the node and fibril microstructure of the ePTFE tubular substrate is deformed.
  • the nodes which have an orientation perpendicular to the longitudinal axis of the tubular substrate 12 and parallel to the radial axis of the tubular substrate 12, deform along the longitudinal axis of each node to form elongated columnar structures, while the length of the fibrils interconnecting adjacent pairs of nodes in the longitudinal axis of the tubular substrate 12, remains substantially constant.
  • a support member 14 which is preferably made of an elastic wire material selected from the group of shape memory alloys, spring stainless steel, elastic metal or plastic alloys, or composite materials, such as woven carbon fibers. Where a shape memory alloy is employed, it is important that the shape memory alloy have a transition temperature below human body temperature, i.e., 37 degrees Celsius, to enable the shape memory alloy to undergo transformation to the austenite phase when the shape memory alloy wire member is exposed to human body temperature in vivo. In accordance with the best mode currently known for the present invention, the preferred shape memory alloy is a near equiatomic alloy of nickel and titanium.
  • a polymeric cladding 11 be provided to at least partially cover the support wire member 14 and facilitate adhesion between the support wire member
  • the polymeric cladding 11 be selected from the group of biocompatible polymeric materials consisting of polytetrafluoroethylene, polyurethane, polyethylene, polypropylene, polyamides, polyimides, polyesters, polypropylenes, polyethylenes, polyfluoroethylenes, silicone, fluorinated polyolefins, fluorinated ethylene/propylene copolymer, perfluoroalkoxy fluorocarbon, ethylene/tetrafluoroethylene copolymer, and polyvinylpyrolidone.
  • biocompatible polymeric materials consisting of polytetrafluoroethylene, polyurethane, polyethylene, polypropylene, polyamides, polyimides, polyesters, polypropylenes, polyethylenes, polyfluoroethylenes, silicone, fluorinated polyolefins, fluorinated ethylene/propylene copolymer, perfluoroalkoxy fluorocarbon, ethylene/tetrafluoroethylene copolymer, and polyvin
  • the polymeric cladding 11 may be coupled to the support wire member 14 by any of a variety of known methodologies.
  • the polymeric cladding 11 may be co-extruded with the support wire member 14, the polymeric cladding 11 may be extruded with an opening passing through the polymeric cladding 11 along its longitudinal axis and dimensioned to receive the support wire member 14 there through, the polymeric cladding 11 may have a longitudinally extending recess dimensioned to receive and retain the support wire member 14 therein, or the polymeric cladding 11 may be applied onto the support wire member 11 in dispersion form, such as by dip-coating or spraying, and the solvent or aqueous vehicle dried thereby forming a covering on the support wire member 11.
  • the support wire member 14 in its polymeric cladding 11 is circumferentially joined to the abluminal wall surface 17 of the tubular substrate 12, such as by helically winding at least one length of polymeric clad support wire member 14 in a regular or irregular helical pattern, or by applying the polymeric clad support wire member 14 as a series of spaced-apart circumferential rings, along at least a portion of the longitudinal axis of the abluminal wall surface 17 of the tubular substrate 12. It is preferable that the tubular substrate 12 be mounted onto a supporting mandrel [not shown] having an outer diameter closely toleranced to the inner diameter of the tubular substrate 12 to permit the tubular substrate 12 to be placed thereupon and secured thereto without deforming the tubular substrate 12.
  • a second tubular member 19 may, optionally, be concentrically engaged about the tubular member 12 and the polymeric clad support wire member 14. As more clearly depicted in Figures 2-3, where the second tubular member 19 is employed and disposed circumferentially about the tubular member 12 and the polymeric clad support wire member 14, the tubular member 12 and the second tubular member 19 encapsulate the polymeric clad support wire member 14. Where the tubular member 12 and the second tubular member 19 are both made of longitudinally expanded ePTFE, each will have a microporous microstructure in which the fibrils are oriented parallel to the longitudinal axis of each of the tubular member 12 and the second tubular member 19, throughout their respective wall thicknesses. The encapsulation of the polymeric clad support wire member 14 is best accomplished by providing both the tubular member 12 and the second tubular member 19 as unsintered or partially sintered tubes.
  • Circumferential pressure may be applied to the assembly by, for example, helically wrapping tetrafluoroethylene film tape about the abluminal surface of the second tubular member 19 along its longitudinal axis, or by securing opposing ends of the assembly on the supporting mandrel, and rolling the assembly to calendar the assembly.
  • the assembly is then introduced into either a convention or radiant heating oven, set at a temperature above the melt point of the material used to fabricate the tubular member 12, the second tubular member 19 and/or the polymeric cladding 11, for a period of time sufficient to bond the tubular member 12, the second tubular member 19 and the polymeric cladding 11 into a substantially monolithic, unitary structure.
  • a convention or radiant heating oven set at a temperature above the melt point of the material used to fabricate the tubular member 12, the second tubular member 19 and/or the polymeric cladding 11, for a period of time sufficient to bond the tubular member 12, the second tubular member 19 and the polymeric cladding 11 into a substantially monolithic, unitary structure.
  • a radiant heating oven where polytetrafluoroethylene is used, it has been found that it is preferable to heat the assembly in a radiant heating oven.
  • Figures 4A-4C depict the method steps for making the inventive shape memory alloy supported intraluminal graft 10.
  • tubular member 12 is concentrically engaged onto a supporting mandrel 22 such that the supporting mandrel 22 resides within the lumen of the tubular member 12.
  • a helical winding of polymeric clad support wire member 14 is applied about the abluminal wall surface 17 of the tubular member 12 at step 25.
  • the helical windings have an interwinding distance 27 which is preferably at least one times the distance 29 which represents the width of the polymer cladding 11, in the case of a planar polymer cladding 11, or the diameter, in the case of a tubular polymer cladding 11 having a circular transverse cross-section.
  • an adhesive material 23 selected from the group consisting of polytetrafluoroethylene, polyurethane, polyethylene, polypropylene, polyamides, polyimides, polyesters, polypropylenes, polyethylenes, polyfluoroethylenes, silicone, fluorinated polyolefins, fluorinated ethylene/propylene copolymer, perfluoroalkoxy fluorocarbon, ethylene/tetrafluoroethylene copolymer, and polyvinylpyrolidone.
  • the adhesive material is preferably applied to the interfacial region 28 of the polymeric clad support wire member 14, but may also be applied in a pattern directly to a surface of the tubular substrate and the SMA wire member 14 brought into contact with the adhesive material. In this manner, as the polymeric clad support wire member 28 is helically applied to the abluminal wall surface 17 of the tubular member 12, the adhesive material 23 forms an interiayer intermediate the polymeric clad support wire member 28 and the abluminal wall surface 17 of the tubular member 12.
  • the resulting assembly of step 25 may be introduced into a heating oven set at the melt temperature of the selected adhesive material 23, for a period of time sufficient to melt the adhesive material 23 and impart an adhesive bond between the polymeric clad support wire member 14 and the tubular member
  • an external covering of a second tubular member 26 may be concentrically engaged about the assembly resulting from step 25, a circumferential pressure exerted to the second tubular member 26, thereby bringing the second tubular member 26, the polymer clad support wire member 11 and the tubular member 12 into intimate contact with one another, and the entire assembly introduced into a sintering oven set at a temperature above the crystalline melt point of polytetrafluoroethylene and for a period of time sufficient to meld the second tubular member 26 and the tubular member 12 to one another to form a resultant substantially monolithic structure which is substantially devoid of interfacial demarcations between the second tubular member 26 and the tubular member 12, with the polymer clad support wire member 14 residing intermediate there between.
  • Figures 5-12 there is depicted numerous alternate configurations of the polymer clad support wire member 14.
  • Figures 5 and 6 depict a first embodiment of the polymer clad support wire member 34 in which the support wire member is formed as a planar ribbon wire 38 having a generally tubular box-like polymer cladding 36 provided about the outer surfaces of the planar ribbon wire 38.
  • the support wire member is formed as a planar ribbon wire 38 having a generally tubular box-like polymer cladding 36 provided about the outer surfaces of the planar ribbon wire 38.
  • both the planar ribbon wire 38 and the polymer cladding 36 have generally quadrilateral cross-sectional configurations.
  • Figures 7-8 depict a second embodiment of the polymer clad support wire member 40 in which the support wire member is formed as a cylindrical wire 44 having a generally tubular polymer cladding 42 provided about the outer circumference of the planar ribbon wire 44.
  • the support wire member is formed as a cylindrical wire 44 having a generally tubular polymer cladding 42 provided about the outer circumference of the planar ribbon wire 44.
  • both the cylindrical wire 44 and the polymer cladding 42 have generally circular cross-sectional configurations.
  • Figures 9-12 are provided in the transverse cross-sectional views only, it being understood that like Figures 5 and 7, each of the embodiments depicted in Figures 9-12 have corresponding perspective configurations.
  • Figure 9 depicts a third embodiment of the polymer clad support wire member 46 in which the support wire member is formed as a cylindrical wire 49 having a generally triangular-shaped polymer cladding 48, with a central longitudinal cylindrical bore to accommodate the cylindrical wire 49 therein, which is provided about the outer surfaces of the cylindrical wire 49.
  • a fourth embodiment of the polymer clad support wire member 50 is depicted in Figure 10.
  • Polymer clad support wire member 50 consists generally of a polymer cladding 52 having a plurality of planar surfaces and having a generally quadrilateral transverse cross-sectional shape, while the support wire member 54 is generally cylindrical with a generally circular transverse cross-section.
  • a fifth embodiment of the polymer clad support wire member 60 is depicted.
  • the support wire member 54 has a generally cylindrical shape with a generally circular transverse cross-section
  • the polymer cladding 62 has a main body portion having a generally circular transverse cross-section, but has additional projections extending radially outward from the generally circular main body portion to increase the bonding surface area of the polymer clad support wire member 60.
  • the sixth embodiment of the polymer clad support wire member 70 is depicted.
  • a generally cylindrical support wire member 76 having a generally circular transverse cross-section, while the polymer cladding 72 is provided with a generally triangular cross- sectional shape, with hemispherical recess 74 formed in an apex of the generally triangular cross- sectional shape.
  • the hemispherical recess 74 subtends at least a 180 degree arc and extends along a substantial longitudinal extent of the polymer cladding 72.
  • the generally cylindrical support wire member 76 is engaged in the hemispherical recess 74 and retained therein by an interference fit, or by other suitable means, such as an adhesive.
  • each of the foregoing embodiments of the polymer clad support wire member may be made by pulltrusion methods in which the shape memory alloy wire member, having a pre-programmed austenite phase, is fed into an extruder during extrusion of the polymer cladding, or by extruding the polymer cladding with a central lumen, dimensioned appropriately to permit engagement of the shape memory alloy wire, then threading the support wire member into the central lumen of the polymer cladding.
  • inventive shape memory alloy supported intraluminal graft 80 may be formed by helically wrapping a length of polymer clad 84 shape memory alloy wire 86 about a supporting winding mandrel, such that the polymer cladding 84 has overlapping regions 88 which form seams. The resulting assembly is then heated above the melt point of the polymer cladding 84 to join and seal the overlapping regions 88 to one another.
  • the inventive method 100 for making the inventive shape memory alloy supported intraluminal graft, described above, is illustrated with reference to Figure 15.
  • An elastic or thermoelastic wire member is provided at step 102 along with a shaping mandrel 104.
  • the shaping mandrel 104 is preferably a solid cylindrical or tubular cylindrical stainless steel member capable of withstanding annealing temperatures of shape memory alloys.
  • the wire member provided at step 102 is wound onto the shaping mandrel provided at step 104.
  • the wire member is preferably helically wound about the shaping mandrel such that adjacent windings are substantially uniformly spaced from one another.
  • the wire member may be wound about the shaping mandrel in any of a wide number of configurations, including non-uniformly spaced windings long portions of the shaping mandrel, such that certain regions of the winding have higher and lower frequency windings than other regions, that the winding be shaped as adjacent circumferential loops such as that shape disclosed in Gianturco, U.S. Patent No. 4,907,336 or Wiktor, U. S. Patent No.
  • thermoelastic shape memory alloy (SMA) wire member Where a thermoelastic shape memory alloy (SMA) wire member is utilized, the SMA wire member is wound about the shaping mandrel, the shape of the wound SMA wire member is programmed at step 108 by annealing the SMA wire member at a temperature and for a time sufficient to impart shape memory properties to the SMA wire member. At step 110, the preprogrammed SMA alloy wire member is then exposed to temperature conditions below the M f temperature of the SMA alloy. While it is maintained below the ]VJ temperature of the SMA alloy, the wire member is removed from the shaping mandrel and straightened to a linear shape at step 112.
  • SMA thermoelastic shape memory alloy
  • a polymeric tubular cladding is provided at step 118 and the SMA alloy wire member is threaded into the lumen of the tubular cladding at step 120. It is preferable that steps 118 and 120 be performed while the SMA alloy wire member is maintained at a temperature below the M f temperature of the SMA alloy to prevent shape recovery of the SMA alloy wire member.
  • an adhesive material may be applied to the SMA alloy wire member at step 122.
  • Step 122 may be conducted while the SMA alloy wire member is at a temperature below the M f temperature, however, due to the fact that most adhesives may not adhere to the SMA alloy wire member at such temperatures, the adhesive is preferably applied to the SMA alloy wire member while it is in the austenite state.
  • an elastic wire member such as a support structure made from stainless steel spring wire, is employed, the shape programming described in the preceding paragraph may, of course, be omitted.
  • step 122 After application of the polymeric cladding at steps 118 and 120, or after the adhesive is applied at step 122, where step 122 is conducted at a temperature below the M f temperature of the SMA alloy, the SMA wire is then exposed to a temperature excursion to above the A f temperature of the SMA alloy at step 114 so that the SMA alloy wire member recovers its programmed shape at step 116. Where an elastic wire member is employed, it is not sensitive to temperature excursions and the temperature excursion step may be omitted.
  • a tubular substrate made of, for example, extruded ePTFE, preferably extruded ePTFE which has been radially deformed from its nominal extruded diameter to an enlarged diameter, or woven polyester, is provided at step 123.
  • the wire member in its enlarged shape which in the case of an SMA wire member is its programmed shape, or in the case of an elastic wire member, is its unstressed state, is concentrically engaged about the tubular substrate at step 124, and joined to the tubular substrate at step 126 by thermally bonding the adhesive or the polymeric cladding to the abluminal or luminal surface of the tubular substrate. It is preferable that step 126 be conducted while the tubular substrate is supported by a support mandrel and that the SMA alloy wire member is retained in intimate contact with a surface of the tubular substrate with at least a portion of the alloy wire member.
  • the wire member either in its clad or unclad state, may be retained in intimate contact against either by tension wrapping the wire member or by an external covering wrap of a release material, such as polytetrafluoroethylene tape, to cover at least a portion of the wire member.
  • a release material such as polytetrafluoroethylene tape
  • the assembly may optionally be sterilized at step 128, such as by exposure to ethylene oxide for a time and under appropriate conditions to sterilize the assembly.
  • the assembly is then exposed to a temperature below the A, temperature of the SMA alloy wire member at step 130 and the assembly is mechanically deformed to a smaller diametric profile at step 132.
  • the assembly is mechanically deformed to a smaller diametric profile at step 132 largely independent of temperature conditions.
  • Step 132 may be performed by any suitable means to reduce the diametric profile of the assembly, such as by drawing it through a reducing die, or manually manipulating the assembly to a reduced diametric profile, or folding the device.
  • the reduced profile assembly is then loaded onto a delivery catheter and covered with a restraining sheath at step 134. Once loaded onto a delivery catheter and covered with a restraining sheath to prevent shape recovery.
  • the wire member is an SMA alloy
  • loading the assembly onto a delivery catheter and covering with a restraining sheath requires that step 134 be performed at a temperature below the A j temperature of the SMA alloy wire in order to prevent thermoelastic recovery of the SMA alloy wire member.
  • the loading step 134 is not largely temperature sensitive and may be performed at room temperature, e.g., above the A, temperature of the SMA alloy wire employed, the restraining sheath of the delivery catheter will prevent the SMA alloy wire member from recovering its programmed shape and carrying the tubular substrate to the programmed shape of the SMA alloy wire member.
  • the sterilization step 128 may also be performed after the assembly is loaded onto the delivery catheter at step 134.

Abstract

Shape memory alloy and elastically self-expanding endoluminal support structures which are at least partially encapsulated in a substantially monolithic expanded polytetrafluoroethylene ('ePTFE') covering. An endoluminal stent, which has a reduced diametric dimension for endoluminal delivery and a larger in vivo final diametric diameter, is encapsulated in an ePTFE covering which circumferentially covers both the luminal and abluminal walls along at least a portion of the longitudinal extent of the endoluminal stent. The shape memory endoluminal stent is fabricated from a shape memory alloy which exhibits either shape memory or pseudoelastic properties or from an elastic material having an inherent spring tension such as spring steel, braided stainless steel wire, or composite materials, such as woven or braided carbon fibers.

Description

SUPPORTED GRAFT AND METHODS OF MAKING SAME
Cross-Reference to Related Applications
This application is a continuation-in-part of co-pending patent application Serial Number PCT/US/95/ 16497, published as International Publication No. WO 97/21401, filed December 8, 1995, co-pending patent application Serial Number 08/833,797, filed April 9,
1997, which is a continuation-in-part of co-pending patent application Serial No. 08/508,033 filed July 27, 1995 which is a continuation-in-part of co-pending patent application Serial No. 08/401,871, filed March 10, 1995, and co-pending U.S. patent application Serial No. 08/794,871, filed February 5, 1997. This application and each of the foregoing co-pending patent applications are commonly assigned .
Background of the Invention
The present invention relates generally to implantable intraluminal devices, particularly intraluminal grafts. Intraluminal stents are implanted in order to maintain luminal patency, typically after interventional methods have been employed to restore luminal patency from a diseased state, exclude an aneurysmal condition, bypass an occluded or obstructed anatomical region or to shunt body fluids. Surgically implantable prosthetics, particularly vascular prostheses, have been employed for many years. Expanded polytetrafluoroethylene (ePTFE) vascular grafts have been used as biocompatible implants for many years and the use of ePTFE as a bio-inert barrier material in intraluminal applications is well documented. Conventional ePTFE vascular grafts, however, typically lack sufficient diametric mechanical rigidity to maintain luminal patency in intraluminal applications. Conventional externally supported ePTFE vascular grafts, such as the IMPRA Flex-Graft or the Gore Ring Graft, have an external beading of helically wound non-expanded or solid polytetrafluoroethylene, or of solid fluorinated ethylene-propylene co-polymer (FEP). Non-expanded or solid polytetrafluoroethylene is significantly more rigid than the ePTFE material due to its higher density and absence of interstitial voids. These externally supported ePTFE vascular grafts are not well-suited to interventional intraluminal procedures due to their inability to assume a reduced profile suitable for percutaneous delivery using a catheter and their inability to recover an enlarged diametric dimension in vivo. Most intraluminal stents are formed of an open lattice fashioned either to be elastically deformable, such as in the case of self-expanding stainless steel spring stents, plastically deformable, such as in the case of balloon-expandable stainless steel PALMAZ stents, or thermally expandable such as by employing shape memory properties of the material used to form the stent. A common problem of most conventional intraluminal stents is re-occlusion of the vessel after stent placement. Tissue ingrowth and neointimal hyperplasia significantly reduces the open diameter of the treated lumen over time, requiring additional therapies.
The present invention makes advantageous use of the known biocompatible and material properties of ePTFE vascular grafts, and adds an abluminal supporting structure capable of being diametrically reduced to an intraluminal delivery profile and self-expanding in vivo to conform to the anatomical topography at the site of intraluminal implantation. More particularly, the present invention consists of an ePTFE substrate material, such as that described in co-pending U.S. Patent application Serial No. 08/794,871, filed February 5, 1997, as a carrier for a helically wound, open cylindrical support structure made of a shape memory alloy.
The inventive intraluminal stent-graft device may be implanted either by percutaneous delivery using an appropriate delivery system, a cut-down procedure in which a surgical incision is made and the intraluminal device implanted through the surgical incision, or by laparoscopic or endoscopic delivery. Shape memory alloys are a group of metal alloys which are characterized by an ability to return to a defined shape or size when subjected to certain thermal or stress conditions. Shape memory alloys are generally capable of being plastically deformed at a relatively low temperature and, upon exposure to a relatively higher temperature, return to the defined shape or size prior to the deformation. Shape memory alloys may be further defined as one that yields a thermoelastic martensite. A shape memory alloy which yields a thermoelastic martensite undergoes a martensitic transformation of a type that permits the alloy to be deformed by a twinning mechanism below the martensitic transformation temperature. The deformation is then reversed when the twinned structure reverts upon heating to the parent austenite phase. The austenite phase occurs when the material is at a low strain state and occurs at a given temperature. The martensite phase may be either temperature induced martensite (TIM) or stress-induced martensite (SIM). When a shape memory material is stressed at a temperature above the start of martensite formation, denoted Ms , where the austenitic state is initially stable, but below the maximum temperature at which martensite formation can occur, denoted Md , the material first deforms elastically and when a critical stress is reached, it begins to transform by the formation of stress-induced martensite. Depending upon whether the temperature is above or below the start of austenite formation, denoted A, , the behavior when the deforming stress is released differs. If the temperature is below the stress-induced martensite is stable, however, if the temperature is above A., the martensite is unstable and transforms back to austenite, with the sample returning to its original shape. U.S. Patent Nos. 5,597,378, 5,067,957 and 4,665,906 disclose devices, including endoluminal stents, which are delivered in the stress-induced martensite phase of shape memory alloy and return to their preprogrammed shape by removal of the stress and transformation from stress-induced martensite to austenite.
Shape memory characteristics may be imparted to a shape memory alloy by heating the metal at a temperature above which the transformation from the martensite phase to the austenite phase is complete, /'. e. , a temperature above which the austenite phase is stable. The shape imparted to the metal during this heat treatment is the shape "remembered." The heat treated metal is cooled to a temperature at which the martensite phase is stable, causing the austenite phase to transform to the martensite phase. The metal in the martensite phase is then plastically deformed, e.g., to facilitate its delivery into a patient's body. Subsequent heating of the deformed martensite phase to a temperature above the martensite to austenite transformation temperature, e.g., body temperature, causes the deformed martensite phase to transform to the austenite phase and during this phase transformation the metal reverts back to its original shape.
The term "shape memory" is used in the art to describe the property of an elastic material to recover a pre-programmed shape after deformation of a shape memory alloy in its martensitic phase and exposing the alloy to a temperature excursion through its austenite transformation temperature, at which temperature the alloy begins to revert to the austenite phase and recover its preprogrammed shape. The term "pseudoelasticity" is used to describe a property of shape memory alloys where the alloy is stressed at a temperature above the transformation temperature of the alloy and stress-induced martensite is formed above the normal martensite formation temperature. Because it has been formed above its normal temperature, stress-induced martensite reverts immediately to undeformed austenite as soon as the stress is removed provided the temperature remains above the transformation temperature.
The present invention employs a wire member made of either a shape memory alloy, preferably a nickel-titanium alloy known as NITINOL, spring stainless steel or other elastic metal or plastic alloys, or composite material, such as carbon fiber. It is preferable that the wire member have either a generally circular, semi-circular, triangular or quadrilateral transverse cross-sectional profile. Where a shape memory alloy material is employed, pre-programmed shape memory is imparted to the wire member by helically winding the wire member about a cylindrical programming mandrel having an outer diametric dimension substantially the same, preferably within a tolerance of about +0 to -15%, as the ePTFE substrate and annealing the programming mandrel and the wire member at a temperature and for a time sufficient to impart the desired shape memory to the wire member. After annealing, the wire member is removed from the programming mandrel, straightened and helically wound about the abluminal wall surface of an ePTFE tubular member at a temperature below the As of the shape memory alloy used to form the wire member.
In order to facilitate bonding of the wire member to the ePTFE tubular member, it is preferable that a bonding agent capable of bonding the support wire member to the ePTFE tubular member be used at the interface between the wire member and the ePTFE tubular member. Suitable biocompatible bonding agents may be selected from the group consisting of polytetrafluoroethylene, polyurethane, polyethylene, polypropylene, polyamides, polyimides, polyesters, polypropylenes, polyethylenes, polyfluoroethylenes, silicone fluorinated polyolefins, fluorinated ethylene/propylene copolymer, perfluoroalkoxy fluorocarbon, ethylene/tetrafluoroethylene copolymer, and polyvinylpyrolidone. The bonding agent may constitute an interfacial layer intermediate the wire member and the ePTFE tubular member, or may be a polymeric cladding at least partially concentrically surrounding the wire member. Where a cladding is provided, the cladding is preferably a polymeric material selected from the group consisting of polytetrafluoroethylene, polyurethane, polyethylene, polypropylene, polyamides, polyimides, polyesters, polypropylenes, polyethylenes, polyfluoroethylenes, silicone fluorinated polyolefins, fluorinated ethylene/propylene copolymer, perfluoroalkoxy fluorocarbon, ethylene/tetrafluoroethylene copolymer, and polyvinylpyrolidone. The cladding may be either co-extruded with the wire member, extruded as a tube into which the wire member is concentrically inserted after annealing the wire member, or provided as an elongate member which a longitudinal recess which co-axially receives the wire member. Where the bonding agent employed is a melt thermoplastic which has a melt point below the crystalline melt point of polytetrafluoroethylene, the melt thermoplastic bonding agent and the wire member are wound about the ePTFE tubular member, and constrained thereupon, such as by application of circumferential pressure, then the assembly is then exposed to the melt temperatures without longitudinally supporting the assembly. However, where the bonding agent is polytetrafluoroethylene, bonding of the wire member to the ePTFE tubular member requires exposing the assembly to temperatures above the crystalline melt point of polytetrafluoroethylene in order to effectuate bonding of the wire member to the ePTFE. This is preferably accomplished by introducing the assembly into a sintering oven while the assembly is on a mandrel and the assembly secured to the mandrel by an external helical wrapping of TEFLON tape applied to opposing ends of the assembly to longitudinally constrain the assembly and reduce or eliminate the tendency of the assembly to longitudinally foreshorten during sintering.
Summary of the Invention
It is a primary objective of the present invention to provide a self-supporting, self- expanding stent-graft device which is capable of being delivered to an anatomical position within a human body in a first constrained configuration, positioned in vivo at a desired anatomical site, and the constraint released to permit the stent-graft device to transform to a radially enlarged second configuration.
It is another primary objective of the present invention to provide a stent-graft device which consists generally of tubular member fabricated of a biocompatible polymer selected from the group of microporous expanded polytetrafluoroethylene ("ePTFE"), polyethylene, polyethylene terepthalate, polyurethane and collagen, and at least one winding of an elastically self-expanding wire coupled to either the abluminal or luminal surfaces of the ePTFE tubular member or interdisposed between concentrically positioned ePTFE tubular members.
It is a further objective of the present invention to couple the at least one winding of the elastically self-expanding wire to the ePTFE tubular member by cladding a support wire in a polymeric material which has a melt point less than or equal to that of the ePTFE tubular member and below the A3 temperature of the shape memory alloy metal wire.
It is a further objective of the present invention to provide an adhesive interiayer for bonding the shape memory alloy metal wire to the tubular member, the adhesive interiayer being selected from the group consisting of polytetrafluoroethylene, polyurethane, polyethylene, polypropylene, polyamides, polyimides, polyesters, polypropylenes, polyethylenes, polyfluoroethylenes, silicone, fluorinated polyolefins, fluorinated ethylene/propylene copolymer, perfluoroalkoxy fluorocarbon, ethylene/tetrafluoroethylene copolymer, and polyvinylpyrolidone. It is another objective of the present invention to provide a method for making a self- expanding stent-graft device comprised generally of an ePTFE tubular member and at least one winding of a shape memory alloy metal wire coupled to the abluminal surface of the ePTFE tubular member.
These and other objects, features and advantages of the present invention will be better understood by those of ordinary skill in the art from the following more detailed description of the present invention taken with reference to the accompanying drawings and its preferred embodiments.
Brief Description of the Drawings Figure 1 is a side elevational view of a supported intraluminal graft in accordance with a preferred embodiment of the present invention.
Figure 2 is a cross-sectional view taken along line 2-2 of Figure 1. Figure 3 is a cross-sectional view taken along line 3-3 of Figure 1. Figure 4A is a side elevational cross-sectional view of a graft member mounted onto a mandrel in accordance with a preferred embodiment of the method of the present invention.
Figure 4B is a side elevational cross-sectional view as in Figure 4A with support member wrapped about an abluminal surface of the graft member.
Figure 4C is a side elevational cross-sectional view as in Figures 4A and 4B illustrating an abluminal covering concentrically superimposed over the support member and the graft member. Figure 5 is a perspective view of a ribbon member clad in a polymeric covering in accordance with the present invention.
Figure 6 is a cross-sectional view taken along line 6-6 of Figure 5.
Figure 7 is a perspective view of a wire member clad in a polymeric covering in accordance with the present invention.
Figure 8 is a cross-sectional view taken along line 8-8 of Figure 7.
Figure 9 is a diagrammatic cross-sectional view of a first embodiment of a support member encapsulated in a shaped polymeric cladding covering.
Figure 10 is a diagrammatic cross-sectional view of a second embodiment of a support member encapsulated in a shaped polymeric cladding covering.
Figure 11 is a diagrammatic cross-sectional view of a third embodiment of a support member encapsulated in a shaped polymeric cladding covering.
Figure 12 is a diagrammatic cross-sectional view of a fourth embodiment of a support member coupled to a shaped polymeric cladding covering. Figure 13 is a perspective view of an alternative preferred embodiment of the supported intraluminal graft in accordance with the present invention.
Figure 14 is a cross-sectional view taken along line 14-14 of Figure. 13.
Figure 15 is a process flow diagram illustrating the process steps for making the supported intraluminal graft in accordance with the method of the present invention.
Detailed Description of the Preferred Embodiments
The shape memory alloy supported intraluminal graft 10 of the present invention consists generally of a tubular substrate 12 having a central lumen 13 passing through an entire longitudinal extent of the tubular substrate. The tubular substrate 12 has a luminal wall surface 15 adjacent the central lumen 13 and an abluminal wall surface 17 opposing the central lumen 13. A support member 14 is provided and is preferably at least partially covered by a polymeric cladding 11. The polymeric clad support member 14 is circumferentially disposed about and joined to the abluminal wall surface 17 of the tubular substrate 12, such as by helically winding the polymeric clad support member 14 about the abluminal surface 17 of the tubular substrate 12. Optionally, a second tubular substrate 19, having an inner diameter sufficiently dimensioned to be concentrically engaged about the abluminal wall surface 17 of the tubular substrate 12 and the polymeric clad support member 14, may be provided.
In accordance with a first preferred embodiment of the present invention, and with particular reference to Figures 1-3, there is provided the inventive supported intraluminal graft 10 comprised of a tubular 12 made of a biocompatible polymeric material, such as expanded polytetrafluoroethylene ("ePTFE"), polyethylene terepthalate ("PET") such as that marketed and sold under the trademark DACRON, polyethylene, or polyurethane. Expanded PTFE substrate materials are preferably made by ram extruding an admixture of polytetrafluoroethylene resin and a hydrocarbon lubricant to form a tubular extrudate, drying off the hydrocarbon lubricant, longitudinally expanding the dried tubular extrudate, then sintering the longitudinally expanded dried tubular extrudate at a temperature above the crystalline melt point of polytetrafluoroethylene. The resulting tubular ePTFE material has a microporous microstructure which is composed of spaced-apart nodes interconnected by fibrils, with the fibrils being oriented parallel to the longitudinal axis of the ePTFE tube and parallel to the axis of longitudinal expansion. U.S. Patent Nos. '390 and '566, both issued to Gore, teach processes for making ePTFE tubular substrates and are hereby incorporated by reference as teaching processes to make ePTFE tubular and planar materials. A tubular substrate may also be made by weaving yarn, made of either polyester or ePTFE, into a tubular structure as is well known in the art. Additionally, the tubular substrate 12 may have a cylindrical profile having a substantially uniform internal diameter along its longitudinal axis, or may have a tapered sidewall in which the tubular substrate 12 assumes a generally frustroconical shape in which the internal diameter of the tubular substrate 12 increases or deceases along the longitudinal axis of the tubular substrate 12. Alternatively, the tubular substrate 12 may have at least one region of stepped diameter in which the internal diameter of the tubular substrate changes at a discrete longitudinal section of the tubular substrate 12.
In accordance with a first preferred embodiment of the present invention, the tubular substrate 12 is an extruded, longitudinally expanded and sintered ePTFE tubular member which has been radially expanded from an initial luminal inner diameter of between about 1.5 mm to about 6 mm to a final luminal inner diameter of between about 3 mm to about 18 mm. Thus, tubular substrate 12 is initially fabricated at a first relatively smaller diametric dimension, dried of the hydrocarbon lubricant, and sintered, then radially expanded by application of a radially outwardly directed force applied to the luminal wall surface 15 of the tubular substrate 12, which radially deforms the wall of the tubular substrate 12 from an initial luminal inner diameter, denoted D,, to a second, enlarged luminal inner diameter, denoted D2. Alternatively, tubular substrate 12 may be provided as an extruded, longitudinally expanded and sintered ePTFE tubular member having an inner diameter equivalent to the final inner diameter of the supported intraluminal graft, e.g., extruded to a luminal diameter of between about 3 mm to about 18 mm, and a wall thickness sufficient to acceptably minimize the delivery profile of the supported intraluminal graft. Suitable wall thicknesses for the non-radially expanded ePTFE tubular member are considered less than or equal to about 0.3 mm for delivery to peripheral anatomic passageways.
The tubular substrate 12 is preferably radially expanded by loading the tubular substrate 12, in its fully or partially sintered state, onto an inflation balloon such that the tubular substrate 12 is concentrically engaged upon the inflation balloon, introducing the inflation balloon and tubular substrate 12 into a tubular housing defining a generally cylindrical cavity having an inner diameter corresponding to the maximum desired outer diameter of the final shape memory alloy supported graft, and applying a fluid pressure to the inflation balloon to inflate the inflation balloon and radially deform the tubular substrate 12 into intimate contact with the generally cylindrical cavity. Pressure is maintained within the inflation balloon for a period of time sufficient to minimize the inherent recoil property of the ePTFE material in the tubular substrate 12, then the pressure is relieved and the inflation balloon permitted to deflate. The radially deformed tubular substrate, now having an inner luminal diameter D2, is removed from the generally cylindrical cavity for subsequent processing.
During radial expansion of the tubular substrate 12 from O1 to D2, the node and fibril microstructure of the ePTFE tubular substrate is deformed. The nodes, which have an orientation perpendicular to the longitudinal axis of the tubular substrate 12 and parallel to the radial axis of the tubular substrate 12, deform along the longitudinal axis of each node to form elongated columnar structures, while the length of the fibrils interconnecting adjacent pairs of nodes in the longitudinal axis of the tubular substrate 12, remains substantially constant. The fibril length is also referred to herein as the "internodal distance." A support member 14, which is preferably made of an elastic wire material selected from the group of shape memory alloys, spring stainless steel, elastic metal or plastic alloys, or composite materials, such as woven carbon fibers. Where a shape memory alloy is employed, it is important that the shape memory alloy have a transition temperature below human body temperature, i.e., 37 degrees Celsius, to enable the shape memory alloy to undergo transformation to the austenite phase when the shape memory alloy wire member is exposed to human body temperature in vivo. In accordance with the best mode currently known for the present invention, the preferred shape memory alloy is a near equiatomic alloy of nickel and titanium.
To facilitate attachment of the elastic or thermoelastic wire member 14 to the tubular substrate 12, it is contemplated that a polymeric cladding 11 be provided to at least partially cover the support wire member 14 and facilitate adhesion between the support wire member
14 and the abluminal wall surface 17 of the tubular substrate 12. In accordance with the best mode for practicing the present invention, it is preferable that the polymeric cladding 11 be selected from the group of biocompatible polymeric materials consisting of polytetrafluoroethylene, polyurethane, polyethylene, polypropylene, polyamides, polyimides, polyesters, polypropylenes, polyethylenes, polyfluoroethylenes, silicone, fluorinated polyolefins, fluorinated ethylene/propylene copolymer, perfluoroalkoxy fluorocarbon, ethylene/tetrafluoroethylene copolymer, and polyvinylpyrolidone. As will hereinafter be described more fully, the polymeric cladding 11 may be coupled to the support wire member 14 by any of a variety of known methodologies. For example, the polymeric cladding 11 may be co-extruded with the support wire member 14, the polymeric cladding 11 may be extruded with an opening passing through the polymeric cladding 11 along its longitudinal axis and dimensioned to receive the support wire member 14 there through, the polymeric cladding 11 may have a longitudinally extending recess dimensioned to receive and retain the support wire member 14 therein, or the polymeric cladding 11 may be applied onto the support wire member 11 in dispersion form, such as by dip-coating or spraying, and the solvent or aqueous vehicle dried thereby forming a covering on the support wire member 11.
The support wire member 14 in its polymeric cladding 11 is circumferentially joined to the abluminal wall surface 17 of the tubular substrate 12, such as by helically winding at least one length of polymeric clad support wire member 14 in a regular or irregular helical pattern, or by applying the polymeric clad support wire member 14 as a series of spaced-apart circumferential rings, along at least a portion of the longitudinal axis of the abluminal wall surface 17 of the tubular substrate 12. It is preferable that the tubular substrate 12 be mounted onto a supporting mandrel [not shown] having an outer diameter closely toleranced to the inner diameter of the tubular substrate 12 to permit the tubular substrate 12 to be placed thereupon and secured thereto without deforming the tubular substrate 12. A second tubular member 19 may, optionally, be concentrically engaged about the tubular member 12 and the polymeric clad support wire member 14. As more clearly depicted in Figures 2-3, where the second tubular member 19 is employed and disposed circumferentially about the tubular member 12 and the polymeric clad support wire member 14, the tubular member 12 and the second tubular member 19 encapsulate the polymeric clad support wire member 14. Where the tubular member 12 and the second tubular member 19 are both made of longitudinally expanded ePTFE, each will have a microporous microstructure in which the fibrils are oriented parallel to the longitudinal axis of each of the tubular member 12 and the second tubular member 19, throughout their respective wall thicknesses. The encapsulation of the polymeric clad support wire member 14 is best accomplished by providing both the tubular member 12 and the second tubular member 19 as unsintered or partially sintered tubes.
After wrapping the polymeric clad support wire member 14 about the abluminal surface of the tubular member 12, and circumferentially engaging the second tubular member 19 thereabout, it is preferable to apply a circumferential pressure to the assembly, while the assembly is on the supporting mandrel [not shown]. Circumferential pressure may be applied to the assembly by, for example, helically wrapping tetrafluoroethylene film tape about the abluminal surface of the second tubular member 19 along its longitudinal axis, or by securing opposing ends of the assembly on the supporting mandrel, and rolling the assembly to calendar the assembly. After the circumferential pressure is applied to the assembly, the assembly is then introduced into either a convention or radiant heating oven, set at a temperature above the melt point of the material used to fabricate the tubular member 12, the second tubular member 19 and/or the polymeric cladding 11, for a period of time sufficient to bond the tubular member 12, the second tubular member 19 and the polymeric cladding 11 into a substantially monolithic, unitary structure. Where polytetrafluoroethylene is used, it has been found that it is preferable to heat the assembly in a radiant heating oven. Figures 4A-4C depict the method steps for making the inventive shape memory alloy supported intraluminal graft 10. With a first step 20, tubular member 12 is concentrically engaged onto a supporting mandrel 22 such that the supporting mandrel 22 resides within the lumen of the tubular member 12. A helical winding of polymeric clad support wire member 14 is applied about the abluminal wall surface 17 of the tubular member 12 at step 25. The helical windings have an interwinding distance 27 which is preferably at least one times the distance 29 which represents the width of the polymer cladding 11, in the case of a planar polymer cladding 11, or the diameter, in the case of a tubular polymer cladding 11 having a circular transverse cross-section. The helical winding of the polymeric clad support wire member 14 contacts the abluminal wall surface 17 of the tubular member 12 at an interfacial region 28. According to one preferred embodiment of the present invention there is provided an adhesive material 23 selected from the group consisting of polytetrafluoroethylene, polyurethane, polyethylene, polypropylene, polyamides, polyimides, polyesters, polypropylenes, polyethylenes, polyfluoroethylenes, silicone, fluorinated polyolefins, fluorinated ethylene/propylene copolymer, perfluoroalkoxy fluorocarbon, ethylene/tetrafluoroethylene copolymer, and polyvinylpyrolidone. The adhesive material is preferably applied to the interfacial region 28 of the polymeric clad support wire member 14, but may also be applied in a pattern directly to a surface of the tubular substrate and the SMA wire member 14 brought into contact with the adhesive material. In this manner, as the polymeric clad support wire member 28 is helically applied to the abluminal wall surface 17 of the tubular member 12, the adhesive material 23 forms an interiayer intermediate the polymeric clad support wire member 28 and the abluminal wall surface 17 of the tubular member 12.
Where the selected adhesive material 23 has a melt point less than the crystalline melt point of polytetrafluoroethylene, i.e., about 327 degrees Centigrade, the resulting assembly of step 25 may be introduced into a heating oven set at the melt temperature of the selected adhesive material 23, for a period of time sufficient to melt the adhesive material 23 and impart an adhesive bond between the polymeric clad support wire member 14 and the tubular member
12. On the other hand, where the selected adhesive material 23 is polytetrafluoroethylene, an external covering of a second tubular member 26 may be concentrically engaged about the assembly resulting from step 25, a circumferential pressure exerted to the second tubular member 26, thereby bringing the second tubular member 26, the polymer clad support wire member 11 and the tubular member 12 into intimate contact with one another, and the entire assembly introduced into a sintering oven set at a temperature above the crystalline melt point of polytetrafluoroethylene and for a period of time sufficient to meld the second tubular member 26 and the tubular member 12 to one another to form a resultant substantially monolithic structure which is substantially devoid of interfacial demarcations between the second tubular member 26 and the tubular member 12, with the polymer clad support wire member 14 residing intermediate there between.
Turning now to Figures 5-12, there is depicted numerous alternate configurations of the polymer clad support wire member 14. Figures 5 and 6 depict a first embodiment of the polymer clad support wire member 34 in which the support wire member is formed as a planar ribbon wire 38 having a generally tubular box-like polymer cladding 36 provided about the outer surfaces of the planar ribbon wire 38. In the transverse cross-sectional view of Figure
6 it will be seen that both the planar ribbon wire 38 and the polymer cladding 36 have generally quadrilateral cross-sectional configurations.
Figures 7-8 depict a second embodiment of the polymer clad support wire member 40 in which the support wire member is formed as a cylindrical wire 44 having a generally tubular polymer cladding 42 provided about the outer circumference of the planar ribbon wire 44. In the transverse cross-sectional view of Figure 8 it will be seen that both the cylindrical wire 44 and the polymer cladding 42 have generally circular cross-sectional configurations.
Figures 9-12 are provided in the transverse cross-sectional views only, it being understood that like Figures 5 and 7, each of the embodiments depicted in Figures 9-12 have corresponding perspective configurations. Figure 9 depicts a third embodiment of the polymer clad support wire member 46 in which the support wire member is formed as a cylindrical wire 49 having a generally triangular-shaped polymer cladding 48, with a central longitudinal cylindrical bore to accommodate the cylindrical wire 49 therein, which is provided about the outer surfaces of the cylindrical wire 49. A fourth embodiment of the polymer clad support wire member 50 is depicted in Figure 10. Polymer clad support wire member 50 consists generally of a polymer cladding 52 having a plurality of planar surfaces and having a generally quadrilateral transverse cross-sectional shape, while the support wire member 54 is generally cylindrical with a generally circular transverse cross-section. As depicted in Figure 11, a fifth embodiment of the polymer clad support wire member 60 is depicted. Here, the support wire member 54 has a generally cylindrical shape with a generally circular transverse cross-section, while the polymer cladding 62 has a main body portion having a generally circular transverse cross-section, but has additional projections extending radially outward from the generally circular main body portion to increase the bonding surface area of the polymer clad support wire member 60. Finally, as depicted in Figure 12, the sixth embodiment of the polymer clad support wire member 70 is depicted. In accordance with this sixth embodiment there is provided a generally cylindrical support wire member 76 having a generally circular transverse cross-section, while the polymer cladding 72 is provided with a generally triangular cross- sectional shape, with hemispherical recess 74 formed in an apex of the generally triangular cross- sectional shape. The hemispherical recess 74 subtends at least a 180 degree arc and extends along a substantial longitudinal extent of the polymer cladding 72. The generally cylindrical support wire member 76 is engaged in the hemispherical recess 74 and retained therein by an interference fit, or by other suitable means, such as an adhesive.
It will be understood by those skilled in the art, that each of the foregoing embodiments of the polymer clad support wire member may be made by pulltrusion methods in which the shape memory alloy wire member, having a pre-programmed austenite phase, is fed into an extruder during extrusion of the polymer cladding, or by extruding the polymer cladding with a central lumen, dimensioned appropriately to permit engagement of the shape memory alloy wire, then threading the support wire member into the central lumen of the polymer cladding.
Finally, an alternative embodiment of a shape memory alloy supported intraluminal graft
80 is depicted in Figures 13 and 14. The inventive shape memory alloy supported intraluminal graft 80 may be formed by helically wrapping a length of polymer clad 84 shape memory alloy wire 86 about a supporting winding mandrel, such that the polymer cladding 84 has overlapping regions 88 which form seams. The resulting assembly is then heated above the melt point of the polymer cladding 84 to join and seal the overlapping regions 88 to one another.
The inventive method 100 for making the inventive shape memory alloy supported intraluminal graft, described above, is illustrated with reference to Figure 15. An elastic or thermoelastic wire member is provided at step 102 along with a shaping mandrel 104. The shaping mandrel 104 is preferably a solid cylindrical or tubular cylindrical stainless steel member capable of withstanding annealing temperatures of shape memory alloys. At step 106, the wire member provided at step 102 is wound onto the shaping mandrel provided at step 104. The wire member is preferably helically wound about the shaping mandrel such that adjacent windings are substantially uniformly spaced from one another. It is also contemplated that the wire member may be wound about the shaping mandrel in any of a wide number of configurations, including non-uniformly spaced windings long portions of the shaping mandrel, such that certain regions of the winding have higher and lower frequency windings than other regions, that the winding be shaped as adjacent circumferential loops such as that shape disclosed in Gianturco, U.S. Patent No. 4,907,336 or Wiktor, U. S. Patent No. 4,969,458, both hereby incorporated by reference as teaching a shape of winding suitable for use with the present invention, or virtually any other shape which is capable for forming an open tubular structural skeleton, including, without limitation, a helical winding having a plurality of sinusoidal bends along a length thereof, as taught by Wiktor, U.S. Patent No. 4,886,062 or Pinchuck, U.S. Patent No. 5,019,090, both hereby incorporated by reference as teaching alternative configurations of helical windings of wire members.
Where a thermoelastic shape memory alloy (SMA) wire member is utilized, the SMA wire member is wound about the shaping mandrel, the shape of the wound SMA wire member is programmed at step 108 by annealing the SMA wire member at a temperature and for a time sufficient to impart shape memory properties to the SMA wire member. At step 110, the preprogrammed SMA alloy wire member is then exposed to temperature conditions below the Mf temperature of the SMA alloy. While it is maintained below the ]VJ temperature of the SMA alloy, the wire member is removed from the shaping mandrel and straightened to a linear shape at step 112. If the SMA alloy wire member is to be covered with a cladding, a polymeric tubular cladding is provided at step 118 and the SMA alloy wire member is threaded into the lumen of the tubular cladding at step 120. It is preferable that steps 118 and 120 be performed while the SMA alloy wire member is maintained at a temperature below the Mf temperature of the SMA alloy to prevent shape recovery of the SMA alloy wire member. Alternatively, if no polymeric cladding is to be employed, but the SMA alloy wire member from step 112 is to be adhered, an adhesive material may be applied to the SMA alloy wire member at step 122.
Step 122 may be conducted while the SMA alloy wire member is at a temperature below the Mf temperature, however, due to the fact that most adhesives may not adhere to the SMA alloy wire member at such temperatures, the adhesive is preferably applied to the SMA alloy wire member while it is in the austenite state. Where an elastic wire member, such as a support structure made from stainless steel spring wire, is employed, the shape programming described in the preceding paragraph may, of course, be omitted.
After application of the polymeric cladding at steps 118 and 120, or after the adhesive is applied at step 122, where step 122 is conducted at a temperature below the Mf temperature of the SMA alloy, the SMA wire is then exposed to a temperature excursion to above the Af temperature of the SMA alloy at step 114 so that the SMA alloy wire member recovers its programmed shape at step 116. Where an elastic wire member is employed, it is not sensitive to temperature excursions and the temperature excursion step may be omitted. A tubular substrate, made of, for example, extruded ePTFE, preferably extruded ePTFE which has been radially deformed from its nominal extruded diameter to an enlarged diameter, or woven polyester, is provided at step 123. The wire member in its enlarged shape, which in the case of an SMA wire member is its programmed shape, or in the case of an elastic wire member, is its unstressed state, is concentrically engaged about the tubular substrate at step 124, and joined to the tubular substrate at step 126 by thermally bonding the adhesive or the polymeric cladding to the abluminal or luminal surface of the tubular substrate. It is preferable that step 126 be conducted while the tubular substrate is supported by a support mandrel and that the SMA alloy wire member is retained in intimate contact with a surface of the tubular substrate with at least a portion of the alloy wire member. The wire member, either in its clad or unclad state, may be retained in intimate contact against either by tension wrapping the wire member or by an external covering wrap of a release material, such as polytetrafluoroethylene tape, to cover at least a portion of the wire member.
After the wire member is joined to the tubular substrate, the assembly may optionally be sterilized at step 128, such as by exposure to ethylene oxide for a time and under appropriate conditions to sterilize the assembly. Where an SMA alloy wire member is employed, the assembly is then exposed to a temperature below the A,, temperature of the SMA alloy wire member at step 130 and the assembly is mechanically deformed to a smaller diametric profile at step 132. Where an elastic wire member is employed, the assembly is mechanically deformed to a smaller diametric profile at step 132 largely independent of temperature conditions. Step 132 may be performed by any suitable means to reduce the diametric profile of the assembly, such as by drawing it through a reducing die, or manually manipulating the assembly to a reduced diametric profile, or folding the device. The reduced profile assembly is then loaded onto a delivery catheter and covered with a restraining sheath at step 134. Once loaded onto a delivery catheter and covered with a restraining sheath to prevent shape recovery. In the case where the wire member is an SMA alloy, loading the assembly onto a delivery catheter and covering with a restraining sheath requires that step 134 be performed at a temperature below the Aj temperature of the SMA alloy wire in order to prevent thermoelastic recovery of the SMA alloy wire member. Where, however, the wire member is fabricated of an elastic material, the loading step 134 is not largely temperature sensitive and may be performed at room temperature, e.g., above the A,, temperature of the SMA alloy wire employed, the restraining sheath of the delivery catheter will prevent the SMA alloy wire member from recovering its programmed shape and carrying the tubular substrate to the programmed shape of the SMA alloy wire member. Optionally, the sterilization step 128 may also be performed after the assembly is loaded onto the delivery catheter at step 134.
While the present invention has been described with reference to its preferred embodiments and the best mode known to the inventor for making the inventive shape memory alloy supported intraluminal graft, it will be appreciated that variations in material selection for the polymer cladding, for the shape memory alloy, or process variations, such as the manner of winding the polymer clad support wire member about either a winding mandrel or a tubular member, or times and conditions of the manufacturing steps, including material selection, may be made without departing from the scope of the present invention which is intended to be limited only by the appended claims.

Claims

What is Claimed is:
1. An endoluminal prosthesis, comprising: a tubular substrate having an abluminal surface and a luminal surface thereof; and a wire member fabricated of an elastically deformable and elastically recoverable material circumferentially disposed about and adhered to the abluminal surface of the tubular substrate by adhesive means interfacing between the wire member and the tubular substrate.
2. The endoluminal prosthesis according to Claim 1, wherein the elastically deformable and elastically recoverable material of the wire member is selected from the group of materials consisting of shape memory alloys, biocompatible spring steels, biocompatible spring metal alloys, and carbon fibers.
3. The endoluminal prosthesis according to Claim 2, wherein the shape memory alloys further comprise nickel-titanium alloys.
4. The endoluminal prosthesis according to Claim 2, wherein the wire member further comprises a shape memory alloy which a pre-programmed austenite dimensional state which is substantially the same diametric dimension as the diametric dimension of the tubular- shaped substrate.
5. The endoluminal prosthesis according to Claim 1, further comprising a polymeric cladding concentrically surrounding the wire member, the cladding being in intimate contact with and joined to the abluminal surface of the tubular-shaped substrate.
6. The endoluminal prosthesis according to Claim 5, wherein the adhesive means further comprises a polymeric covering on the wire member and is selected from the group consisting of polytetrafluoroethylene, polyurethane, polyethylene, polypropylene, polyamide, polyimide, polyesters, polypropylene, polyethylene, polyfluoroethylenes, silicone, fluorinated polyolefins, fluorinated ethylene/propylene copolymer, perfluoroalkoxy fluorocarbon, ethylene/tetrafluoroethylene copolymer, and polyvinylpyrolidone.
7. The endoluminal prosthesis according to Claim 1, wherein the tubular-shaped substrate further comprises a biocompatible material selected from the group consisting of expanded polytetrafluoroethylene, polyethylene, polyethylene terepthalate, polyurethane, and collagen.
8. An endoluminal prosthesis comprising a support wire member joined to a planar expanded polytetrafluoroethylene film member, the support wire member and planar expanded polytetrafluoroethylene film member being helically wound into an open cylindrical configuration with adjacent windings forming overlapping regions of the expanded polytetrafluoroethylene film member bonded to one and other.
9. The endoluminal prosthesis according to Claim 8, further comprising a planar polytetrafluoroethylene film member in intimate contact with and monolithically joined to the planar expanded polytetrafluoroethylene film member, the support wire member being intermediate the second planar expanded polytetrafluoroethylene film member and the planar expanded polytetrafluoroethylene film member.
10. The endoluminal prosthesis according to Claim 8, further comprising a bonding agent joining the support wire member and the planar expanded polytetrafluoroethylene film member.
11. The endoluminal prosthesis according to Claim 9, further comprising an adhesive interiayer interdisposed between the planar polytetrafluoroethylene film member and the planar expanded polytetrafluoroethylene film member.
12. The endoluminal prosthesis according to Claim 9, wherein the planar polytetrafluoroethylene film member further comprises expanded polytetrafluoroethylene.
13. The endoluminal prosthesis according to Claim 10, wherein the adhesive material is selected from the group consisting of polytetrafluoroethylene, polyurethane, polyethylene, polypropylene, polyamide, polyimide, polyesters, polypropylene, polyethylene, polyfluoroethylenes, silicone, fluorinated polyolefins, fluorinated ethylene/propylene copolymer, perfluoroalkoxy fluorocarbon, ethylene/tetrafluoroethylene copolymer, and polyvinylpyrolidone.
14. The endoluminal prosthesis according to Claim 10, wherein the bonding agent is disposed intermediate the wire member and an abluminal wall surface of polytetrafluoroethylene tubular substrate.
15. The endoluminal prosthesis according to Claim 10, wherein the bonding agent further comprises a concentric cladding surrounding the wire member.
16. An endoluminal prosthesis, comprising: a expanded polytetrafluoroethylene tubular-shaped substrate; and a wire member fabricated of a shape memory alloy helically wound about and adhered to an abluminal surface of the expanded polytetrafluoroethylene tubular-shaped substrate.
17. The endoluminal prosthesis according to Claim 16, wherein the shape memory stent further comprises a nickel-titanium alloy.
18. The endoluminal prosthesis according to Claim 17, wherein the nickel-titanium alloy further comprises an alloy consisting essentially of nickel present at about 50 at. %, titanium present at about 50 at. %.
19. The endoluminal prosthesis according to Claim 16, wherein the wire member has a pre-programmed austenite dimensional state which is substantially the same diametric dimension as the diametric dimension of the expanded polytetrafluoroethylene tubular-shaped substrate.
20. The endoluminal prosthesis according to Claim 16, further comprising a polymeric cladding concentrically surrounding the wire member, the cladding being in intimate contact with and joined to the abluminal surface of the tubular-shaped substrate.
21. The endoluminal prosthesis according to Claim 20, wherein the polymeric covering is selected from the group consisting of polytetrafluoroethylene, polyurethane, polyethylene, polypropylene, polyamide, polyimide, polyesters, polypropylene, polyethylene, polyfluoroethylenes, silicone, fluorinated polyolefins, fluorinated ethylene/propylene copolymer, perfluoroalkoxy fluorocarbon, ethylene/tetrafluoroethylene copolymer, and polyvinylpyrolidone.
22. A method for making an endoluminal prosthesis, comprising the step of wrapping a wire member made of a shape memory alloy about and in intimate bonded contact with an abluminal surface of a seamless expanded polytetrafluoroethylene tubular member.
23. The method for making an endoluminal prosthesis according to Claim 22, further comprising the step of providing the wire member with a concentric cladding fabricated of a material capable of bonding to the expanded polytetrafluoroethylene tubular member.
24. The method for making an endoluminal prosthesis according to Claim 23, wherein the step of providing the wire member with a concentric cladding further comprises the step of selecting a cladding material from the group consisting of polytetrafluoroethylene, polyurethane, polyethylene, polypropylene, polyamide, polyimide, polyester, polyfluoroethylenes, silicone, fluorinated polyolefin, fluorinated ethylene/propylene copolymer, perfluoroalkoxy fluorocarbon, ethylene/tetrafluoroethylene copolymer, and polyvinylpyrrolidone.
25. The method for making an endoluminal prosthesis according to Claim 24, wherein the step of providing the wire member further comprises the steps of co-extruding the wire member with a polytetrafluoroethylene cladding.
26. The method for making an endoluminal prosthesis according to Claim 25, further comprising the steps of applying a helical wrapping of polytetrafluoroethylene tape circumferentially about the expanded polytetrafluoroethylene tubular substrate and the wire member co-extruded with the polytetrafluoroethylene cladding and along an entire longitudinal extent of the expanded polytetrafluoroethylene tubular substrate thereby radially and longitudinally securing the expanded polytetrafluoroethylene tubular substrate and sintering the assembly at a temperature above the crystalline melt point of polytetrafluoroethylene and for a period of time sufficient to bond the polytetrafluoroethylene cladding to the expanded polytetrafluoroethylene substrate.
27. The method for making an endoluminal prosthesis according to Claim 24, further comprising the step of heating the expanded polytetrafluoroethylene tubular substrate and the concentrically clad wire member to a temperature above the melt point of the bonding agent for a period of time sufficient to mechanically bond the concentrically clad wire member to the abluminal surface of the polytetrafluoroethylene tubular substrate.
28. The use of an intraluminal prosthesis according to Claim 1 for bypass of an anatomical conduit.
29. The use of an intraluminal prosthesis according to Claim 1 for creating an arterio-venous shunt.
30. The use of an intraluminal prosthesis according to Claim 23 for creating a transluminal intrahepatic portosystemic shunt.
31. The use of an intraluminal prosthesis according to Claim 1 as an intraluminal support structure for maintaining luminal patency.
32. The use of an intraluminal prosthesis according to Claim 25 further comprising the use for restoring luminal patency in an anatomical fluid conduit.
PCT/US1998/014320 1997-12-22 1998-07-09 Supported graft and methods of making same WO1999032051A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69834425T DE69834425T3 (en) 1997-12-22 1998-07-09 SUPPORTED IMPLANT
EP98933317A EP1041941B2 (en) 1997-12-22 1998-07-09 Supported graft
AU82985/98A AU8298598A (en) 1997-12-22 1998-07-09 Supported graft and methods of making same
JP2000525049A JP4017821B2 (en) 1997-12-22 1998-07-09 Supported graft and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/999,583 1997-12-22
US08/999,583 US6264684B1 (en) 1995-03-10 1997-12-22 Helically supported graft

Publications (1)

Publication Number Publication Date
WO1999032051A1 true WO1999032051A1 (en) 1999-07-01

Family

ID=25546495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/014320 WO1999032051A1 (en) 1997-12-22 1998-07-09 Supported graft and methods of making same

Country Status (7)

Country Link
US (9) US6264684B1 (en)
EP (2) EP1041941B2 (en)
JP (1) JP4017821B2 (en)
AU (1) AU8298598A (en)
DE (1) DE69834425T3 (en)
ES (1) ES2264571T5 (en)
WO (1) WO1999032051A1 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001001886A1 (en) * 1999-07-02 2001-01-11 Scimed Life Systems, Inc. Helically formed stent/graft assembly
WO2001006953A1 (en) * 1999-07-26 2001-02-01 Endomed, Inc. Intraluminal stent graft
WO2000044308A3 (en) * 1999-02-01 2001-02-08 Univ Texas Woven intravascular devices and methods for making the same and apparatus for delivery of the same
WO2001024733A1 (en) * 1999-10-01 2001-04-12 Boston Scientific/Scimed Life Systems, Inc. Balloon yielded delivery system and endovascular graft design for easy deployment
WO2001035859A1 (en) * 1999-11-16 2001-05-25 Iowa-India Investments Company, Limited Encapsulated stent preform
US6409750B1 (en) 1999-02-01 2002-06-25 Board Of Regents, The University Of Texas System Woven bifurcated and trifurcated stents and methods for making the same
US6443981B1 (en) 1999-02-04 2002-09-03 Endomed, Inc. Expandable vascular prosthesis
AU755374B2 (en) * 2000-06-30 2002-12-12 Lemaitre Vascular, Inc. AV fistula and function enhancing method
US6652574B1 (en) 2000-09-28 2003-11-25 Vascular Concepts Holdings Limited Product and process for manufacturing a wire stent coated with a biocompatible fluoropolymer
WO2004019821A1 (en) * 2002-08-28 2004-03-11 Boston Scientific Limited Medical devices and methods of making the same
WO2004037126A2 (en) * 2002-10-22 2004-05-06 Medtronic Vascular, Inc. Stent with eccentric coating
WO2004045464A3 (en) * 2002-11-19 2004-07-29 Scimed Life Systems Inc Medical devices
US6792979B2 (en) 1999-02-01 2004-09-21 Board Of Regents, The University Of Texas System Methods for creating woven devices
US7105023B2 (en) 2002-01-17 2006-09-12 Concept Matrix, L.L.C. Vertebral defect device
US7150758B2 (en) 2003-03-06 2006-12-19 Boston Scientific Santa Rosa Corp. Kink resistant endovascular graft
WO2007079067A2 (en) * 2005-12-29 2007-07-12 Med Institute, Inc. Endoprosthesis and method of connecting a structural component and a woven graft material
WO2007100456A1 (en) * 2006-03-01 2007-09-07 Boston Scientific Scimed, Inc. Flexible stent-graft devices and methods of producing the same
US7507218B2 (en) 2004-04-26 2009-03-24 Gyrus Acmi, Inc. Stent with flexible elements
EP2196175A1 (en) * 2008-12-12 2010-06-16 Abbott Laboratories Vascular Enterprises Limited Covered toroid stent and methods of manufacture
US7794490B2 (en) 2004-06-22 2010-09-14 Boston Scientific Scimed, Inc. Implantable medical devices with antimicrobial and biodegradable matrices
US7854756B2 (en) 2004-01-22 2010-12-21 Boston Scientific Scimed, Inc. Medical devices
EP2489334A1 (en) * 2010-03-26 2012-08-22 Olympus Medical Systems Corp. Medical stent
US8267989B2 (en) 2004-01-30 2012-09-18 Trivascular, Inc. Inflatable porous implants and methods for drug delivery
US8696736B2 (en) 2002-05-23 2014-04-15 Allium Medical Solutions Ltd. Medical device having an unravable portion
EP1399200B2 (en) 2001-06-11 2014-07-02 Boston Scientific Limited COMPOSITE ePTFE/TEXTILE PROSTHESIS
US8833402B2 (en) 2010-12-30 2014-09-16 Cook Medical Technologies Llc Woven fabric having composite yarns for endoluminal devices
US8876881B2 (en) 2006-10-22 2014-11-04 Idev Technologies, Inc. Devices for stent advancement
US8966733B2 (en) 2006-10-22 2015-03-03 Idev Technologies, Inc. Secured strand end devices
US9023095B2 (en) 2010-05-27 2015-05-05 Idev Technologies, Inc. Stent delivery system with pusher assembly
US9028859B2 (en) 2006-07-07 2015-05-12 Advanced Cardiovascular Systems, Inc. Phase-separated block copolymer coatings for implantable medical devices
US9517123B2 (en) 2005-12-29 2016-12-13 Cook Medical Technologies Llc Endovascular prosthesis and a method of connecting a structural component and a woven graft material
US9867727B2 (en) 1998-02-09 2018-01-16 Trivascular, Inc. Endovascular graft
US20230000613A1 (en) * 2019-11-22 2023-01-05 Lifetech Scientific (Shenzhen) Co., Ltd. Covered Stent

Families Citing this family (177)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264684B1 (en) * 1995-03-10 2001-07-24 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Helically supported graft
US6451047B2 (en) * 1995-03-10 2002-09-17 Impra, Inc. Encapsulated intraluminal stent-graft and methods of making same
WO2000015144A1 (en) * 1998-06-10 2000-03-23 Advanced Bypass Technologies, Inc. Aortic aneurysm treatment systems
US6755856B2 (en) 1998-09-05 2004-06-29 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protection, coupled with improved protection against restenosis and thrombus formation
US6336937B1 (en) * 1998-12-09 2002-01-08 Gore Enterprise Holdings, Inc. Multi-stage expandable stent-graft
US6398803B1 (en) 1999-02-02 2002-06-04 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Partial encapsulation of stents
US6364903B2 (en) * 1999-03-19 2002-04-02 Meadox Medicals, Inc. Polymer coated stent
US6652570B2 (en) * 1999-07-02 2003-11-25 Scimed Life Systems, Inc. Composite vascular graft
US6733513B2 (en) 1999-11-04 2004-05-11 Advanced Bioprosthetic Surfaces, Ltd. Balloon catheter having metal balloon and method of making same
US10172730B2 (en) 1999-11-19 2019-01-08 Vactronix Scientific, Llc Stents with metallic covers and methods of making same
US6537310B1 (en) 1999-11-19 2003-03-25 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal implantable devices and method of making same
US8458879B2 (en) 2001-07-03 2013-06-11 Advanced Bio Prosthetic Surfaces, Ltd., A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. Method of fabricating an implantable medical device
US6936066B2 (en) * 1999-11-19 2005-08-30 Advanced Bio Prosthetic Surfaces, Ltd. Complaint implantable medical devices and methods of making same
US7736687B2 (en) 2006-01-31 2010-06-15 Advance Bio Prosthetic Surfaces, Ltd. Methods of making medical devices
GB0002663D0 (en) * 2000-02-04 2000-03-29 Biomade B V Method of stabalizing a hydrophobin-containing solution and a method of coating a surface with a hydrophobin
US6974473B2 (en) 2000-06-30 2005-12-13 Vascular Architects, Inc. Function-enhanced thrombolytic AV fistula and method
EA005355B1 (en) * 2000-07-28 2005-02-24 Бригем Янг Юниверсити Structural member and method for forming it
US7118592B1 (en) 2000-09-12 2006-10-10 Advanced Cardiovascular Systems, Inc. Covered stent assembly for reduced-shortening during stent expansion
US6673105B1 (en) 2001-04-02 2004-01-06 Advanced Cardiovascular Systems, Inc. Metal prosthesis coated with expandable ePTFE
US20050148925A1 (en) 2001-04-20 2005-07-07 Dan Rottenberg Device and method for controlling in-vivo pressure
US7510571B2 (en) * 2001-06-11 2009-03-31 Boston Scientific, Scimed, Inc. Pleated composite ePTFE/textile hybrid covering
US7828833B2 (en) * 2001-06-11 2010-11-09 Boston Scientific Scimed, Inc. Composite ePTFE/textile prosthesis
TW565647B (en) 2001-08-17 2003-12-11 Univ Brigham Young Method and apparatus for fabricating complex, composite structures from continuous fibers
US7597775B2 (en) * 2001-10-30 2009-10-06 Boston Scientific Scimed, Inc. Green fluoropolymer tube and endovascular prosthesis formed using same
AU2002357045A1 (en) * 2001-11-28 2003-06-10 Benjamin S. Hsiao Endovascular graft and graft trimmer
US7125464B2 (en) 2001-12-20 2006-10-24 Boston Scientific Santa Rosa Corp. Method for manufacturing an endovascular graft section
US7090693B1 (en) * 2001-12-20 2006-08-15 Boston Scientific Santa Rosa Corp. Endovascular graft joint and method for manufacture
US7147661B2 (en) 2001-12-20 2006-12-12 Boston Scientific Santa Rosa Corp. Radially expandable stent
US6776604B1 (en) 2001-12-20 2004-08-17 Trivascular, Inc. Method and apparatus for shape forming endovascular graft material
DE10219014A1 (en) * 2002-04-27 2003-11-13 Ruesch Willy Gmbh Self-expanding stent for reinforcing and/or keeping open a hollow organ comprise two elastic tubular layers which bracket and positionally fix at least one helical filament
US7887575B2 (en) * 2002-05-22 2011-02-15 Boston Scientific Scimed, Inc. Stent with segmented graft
AU2003256633A1 (en) * 2002-07-22 2004-02-09 Timur Paul Sarac Percutaneous endovascular apparatus for repair of aneurysms and arterial blockages
US11890181B2 (en) * 2002-07-22 2024-02-06 Tmt Systems, Inc. Percutaneous endovascular apparatus for repair of aneurysms and arterial blockages
TWI225531B (en) * 2002-09-04 2004-12-21 Univ Brigham Young Three-dimensional grid panel
JP4995420B2 (en) 2002-09-26 2012-08-08 アドヴァンスド バイオ プロスセティック サーフェシーズ リミテッド High strength vacuum deposited Nitinol alloy film, medical thin film graft material, and method of making same.
US20050004515A1 (en) * 2002-11-15 2005-01-06 Hart Charles C. Steerable kink resistant sheath
US20050165366A1 (en) 2004-01-28 2005-07-28 Brustad John R. Medical tubing having variable characteristics and method of making same
US6923829B2 (en) 2002-11-25 2005-08-02 Advanced Bio Prosthetic Surfaces, Ltd. Implantable expandable medical devices having regions of differential mechanical properties and methods of making same
US8088158B2 (en) * 2002-12-20 2012-01-03 Boston Scientific Scimed, Inc. Radiopaque ePTFE medical devices
ATE531338T1 (en) * 2003-04-28 2011-11-15 Kips Bay Medical Inc ELASTIC VENOUS IMPLANT
US7998188B2 (en) 2003-04-28 2011-08-16 Kips Bay Medical, Inc. Compliant blood vessel graft
US20050131520A1 (en) 2003-04-28 2005-06-16 Zilla Peter P. Compliant blood vessel graft
CN101005812A (en) 2003-05-07 2007-07-25 先进生物假体表面有限公司 Metallic implantable grafts and method of making same
US7189255B2 (en) * 2003-10-28 2007-03-13 Cordis Corporation Prosthesis support ring assembly
US7495307B2 (en) * 2003-11-20 2009-02-24 Ideal Star Inc. Columnar electric device
US20050131515A1 (en) 2003-12-16 2005-06-16 Cully Edward H. Removable stent-graft
US9254213B2 (en) * 2004-01-09 2016-02-09 Rubicon Medical, Inc. Stent delivery device
WO2005079339A2 (en) * 2004-02-12 2005-09-01 The University Of Akron Improved stent for use in arteries
US8377110B2 (en) * 2004-04-08 2013-02-19 Endologix, Inc. Endolumenal vascular prosthesis with neointima inhibiting polymeric sleeve
ES2546393T3 (en) 2004-04-20 2015-09-23 Genzyme Corporation Surgical mesh implant
US8313524B2 (en) 2004-08-31 2012-11-20 C. R. Bard, Inc. Self-sealing PTFE graft with kink resistance
US8029563B2 (en) 2004-11-29 2011-10-04 Gore Enterprise Holdings, Inc. Implantable devices with reduced needle puncture site leakage
CA2587737C (en) * 2004-12-06 2013-12-17 Socovar Societe En Commandite Binding component
US20060149366A1 (en) * 2004-12-31 2006-07-06 Jamie Henderson Sintered structures for vascular graft
US20060149364A1 (en) * 2004-12-31 2006-07-06 Steven Walak Low profile vascular graft
US7806922B2 (en) * 2004-12-31 2010-10-05 Boston Scientific Scimed, Inc. Sintered ring supported vascular graft
US7857843B2 (en) 2004-12-31 2010-12-28 Boston Scientific Scimed, Inc. Differentially expanded vascular graft
US7524445B2 (en) * 2004-12-31 2009-04-28 Boston Scientific Scimed, Inc. Method for making ePTFE and structure containing such ePTFE, such as a vascular graft
US7361384B2 (en) * 2005-01-14 2008-04-22 Covalence Specialty Materials Corp. Corrosion protection system for transport pipe
WO2006133373A2 (en) * 2005-06-08 2006-12-14 C.R. Bard Inc. Grafts and stents having inorganic bio-compatible calcium salt
WO2007001472A2 (en) 2005-06-17 2007-01-04 C. R. Bard, Inc. Vascular graft with kink resistance after clamping
US7622070B2 (en) 2005-06-20 2009-11-24 Advanced Cardiovascular Systems, Inc. Method of manufacturing an implantable polymeric medical device
US20070010781A1 (en) * 2005-06-27 2007-01-11 Venkataramana Vijay Implantable aorto-coronary sinus shunt for myocardial revascularization
US20070010780A1 (en) * 2005-06-27 2007-01-11 Venkataramana Vijay Methods of implanting an aorto-coronary sinus shunt for myocardial revascularization
US20070016242A1 (en) * 2005-07-14 2007-01-18 Israel Henry M Percutaneous device with multiple expandable struts
GB0517085D0 (en) * 2005-08-19 2005-09-28 Angiomed Ag Polymer prosthesis
US20090171436A1 (en) * 2005-11-09 2009-07-02 Casanova R Michael Grafts and stent grafts having a radiopaque beading
EP1945138A4 (en) 2005-11-09 2010-02-10 Bard Inc C R Grafts and stent grafts having a radiopaque marker
WO2007083288A2 (en) 2006-01-23 2007-07-26 Atria Medical Inc. Heart anchor device
US20070179599A1 (en) * 2006-01-31 2007-08-02 Icon Medical Corp. Vascular protective device
US9622850B2 (en) * 2006-02-28 2017-04-18 C.R. Bard, Inc. Flexible stretch stent-graft
US20070293936A1 (en) * 2006-04-28 2007-12-20 Dobak John D Iii Systems and methods for creating customized endovascular stents and stent grafts
US20070253647A1 (en) * 2006-04-28 2007-11-01 Restaurant Technology, Inc. Temperature controlled fluid bath food holding device and method
EP2018336B1 (en) 2006-05-18 2018-08-22 Applied Medical Resources Corporation Method of making medical tubing having variable characteristics using thermal winding
US20080097620A1 (en) 2006-05-26 2008-04-24 Nanyang Technological University Implantable article, method of forming same and method for reducing thrombogenicity
US8157300B2 (en) * 2006-06-06 2012-04-17 Magna Closures Inc. Shaped memory alloy decklid actuator
US8550344B2 (en) * 2006-06-16 2013-10-08 The Invention Science Fund I, Llc Specialty stents with flow control features or the like
US8478437B2 (en) * 2006-06-16 2013-07-02 The Invention Science Fund I, Llc Methods and systems for making a blood vessel sleeve
US20090024152A1 (en) * 2007-07-17 2009-01-22 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Custom-fitted blood vessel sleeve
US7818084B2 (en) * 2006-06-16 2010-10-19 The Invention Science Fund, I, LLC Methods and systems for making a blood vessel sleeve
US8163003B2 (en) * 2006-06-16 2012-04-24 The Invention Science Fund I, Llc Active blood vessel sleeve methods and systems
US8095382B2 (en) * 2006-06-16 2012-01-10 The Invention Science Fund I, Llc Methods and systems for specifying a blood vessel sleeve
US20080133040A1 (en) * 2006-06-16 2008-06-05 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Methods and systems for specifying a blood vessel sleeve
US8551155B2 (en) 2006-06-16 2013-10-08 The Invention Science Fund I, Llc Stent customization system and method
US8147537B2 (en) * 2006-06-16 2012-04-03 The Invention Science Fund I, Llc Rapid-prototyped custom-fitted blood vessel sleeve
US20080172073A1 (en) * 2006-06-16 2008-07-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Active blood vessel sleeve
US20080046073A1 (en) * 2006-08-16 2008-02-21 Elshire H Donel Non-Coagulative Vascular Shunt
WO2008063780A2 (en) 2006-10-12 2008-05-29 C.R. Bard Inc. Vascular grafts with multiple channels and methods for making
US8414910B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Drug releasing coatings for medical devices
US9700704B2 (en) 2006-11-20 2017-07-11 Lutonix, Inc. Drug releasing coatings for balloon catheters
US20080276935A1 (en) * 2006-11-20 2008-11-13 Lixiao Wang Treatment of asthma and chronic obstructive pulmonary disease with anti-proliferate and anti-inflammatory drugs
US9737640B2 (en) 2006-11-20 2017-08-22 Lutonix, Inc. Drug releasing coatings for medical devices
US20080139887A1 (en) * 2006-12-07 2008-06-12 International Polymer Engineering, Inc. Endoscopic working channel and method of making same
TW200849913A (en) * 2007-01-26 2008-12-16 Agency Science Tech & Res A radio frequency identification transceiver
US20080195083A1 (en) * 2007-01-31 2008-08-14 Michael Axelsson Implantable bolus injector
WO2008099023A1 (en) * 2007-02-16 2008-08-21 Cinvention Ag Carbon stents
US8177834B2 (en) * 2007-03-12 2012-05-15 Cook Medical Technologies Llc Woven fabric with shape memory element strands
US8087923B1 (en) 2007-05-18 2012-01-03 C. R. Bard, Inc. Extremely thin-walled ePTFE
US8128679B2 (en) * 2007-05-23 2012-03-06 Abbott Laboratories Vascular Enterprises Limited Flexible stent with torque-absorbing connectors
US9427343B2 (en) 2007-06-22 2016-08-30 David L. Bogert Locked segments pushable stent-graft
US10154917B2 (en) * 2007-06-22 2018-12-18 C. R. Bard, Inc. Helical and segmented stent-graft
GB2463842A (en) * 2007-07-17 2010-03-31 Searete Llc Methods and systems for making a blood vessel sleeve
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
EP2194921B1 (en) 2007-10-04 2018-08-29 TriVascular, Inc. Modular vascular graft for low profile percutaneous delivery
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
US9232968B2 (en) 2007-12-19 2016-01-12 DePuy Synthes Products, Inc. Polymeric pedicle rods and methods of manufacturing
US8196279B2 (en) 2008-02-27 2012-06-12 C. R. Bard, Inc. Stent-graft covering process
US20090274877A1 (en) * 2008-03-11 2009-11-05 Edwin Chan Stimuli-responsive surfaces
US8206635B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US8206636B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
BRPI0917867A2 (en) * 2008-08-15 2017-02-07 Sigma-Tek Llc method and system for forming crosslinked support composite structures
WO2010019802A1 (en) * 2008-08-15 2010-02-18 Gesturetek, Inc. Enhanced multi-touch detection
US9022682B2 (en) * 2008-10-13 2015-05-05 GM Global Technology Operations LLC Active material wire actuators having reinforced structural connectors
US20130268062A1 (en) 2012-04-05 2013-10-10 Zeus Industrial Products, Inc. Composite prosthetic devices
WO2010128501A1 (en) 2009-05-04 2010-11-11 V-Wave Ltd. Device and method for regulating pressure in a heart chamber
US20210161637A1 (en) 2009-05-04 2021-06-03 V-Wave Ltd. Shunt for redistributing atrial blood volume
US10076403B1 (en) 2009-05-04 2018-09-18 V-Wave Ltd. Shunt for redistributing atrial blood volume
US9034034B2 (en) 2010-12-22 2015-05-19 V-Wave Ltd. Devices for reducing left atrial pressure, and methods of making and using same
US9320543B2 (en) 2009-06-25 2016-04-26 DePuy Synthes Products, Inc. Posterior dynamic stabilization device having a mobile anchor
EP2461766A4 (en) * 2009-08-07 2013-09-18 Zeus Ind Products Inc Prosthetic device including electrostatically spun fibrous layer and method for making the same
EP2519189B1 (en) 2009-12-28 2014-05-07 Cook Medical Technologies LLC Endoluminal device with kink-resistant regions
CN101781427B (en) * 2010-02-11 2011-05-18 冷劲松 Shape memory polymer stretchable displayer substrate and methods for preparing same
US9445844B2 (en) * 2010-03-24 2016-09-20 DePuy Synthes Products, Inc. Composite material posterior dynamic stabilization spring rod
US8409224B2 (en) 2010-10-04 2013-04-02 Edgar L Shriver Suturing graft tubes to lumen walls percutaneously
US8591495B2 (en) * 2011-02-23 2013-11-26 Fischell Innovations, Llc Introducer sheath with thin-walled shaft
US8577693B2 (en) 2011-07-13 2013-11-05 The Invention Science Fund I, Llc Specialty stents with flow control features or the like
US11135054B2 (en) 2011-07-28 2021-10-05 V-Wave Ltd. Interatrial shunts having biodegradable material, and methods of making and using same
US10213329B2 (en) 2011-08-12 2019-02-26 W. L. Gore & Associates, Inc. Evertable sheath devices, systems, and methods
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
EP2900291B1 (en) * 2012-09-28 2019-02-13 Koninklijke Philips N.V. Tube and steerable introduction element comprising the tube
US8992607B2 (en) * 2012-10-24 2015-03-31 St. Jude Medical, Cardiology Division, Inc. Prosthetic anatomical device with sewing cuff flange and anti-rotation feature
US8709059B1 (en) 2012-12-10 2014-04-29 Edgar L. Shriver Suturing an expanding, contracting graft tube in artery segment previously occluded
BR112015015238A2 (en) * 2013-01-04 2017-07-11 Gore & Ass implantable intraluminal device
US9763819B1 (en) 2013-03-05 2017-09-19 W. L. Gore & Associates, Inc. Tapered sleeve
EP2999412B1 (en) 2013-05-21 2020-05-06 V-Wave Ltd. Apparatus for delivering devices for reducing left atrial pressure
US9814560B2 (en) 2013-12-05 2017-11-14 W. L. Gore & Associates, Inc. Tapered implantable device and methods for making such devices
US9907641B2 (en) 2014-01-10 2018-03-06 W. L. Gore & Associates, Inc. Implantable intraluminal device
US9675361B2 (en) 2014-02-28 2017-06-13 Cook Medical Technologies Llc Coil occlusion device
US10966850B2 (en) 2014-03-06 2021-04-06 W. L. Gore & Associates, Inc. Implantable medical device constraint and deployment apparatus
US10940296B2 (en) 2015-05-07 2021-03-09 The Medical Research, Infrastructure and Health Services Fund of the Tel Aviv Medical Center Temporary interatrial shunts
CA2985477C (en) 2015-06-05 2020-03-10 W.L. Gore & Associates, Inc. A low bleed implantable prosthesis with a taper
EP3313325B1 (en) 2015-06-29 2023-09-06 Lyra Therapeutics, Inc. Implantable scaffolds for treatment of sinusitis
US10232082B2 (en) 2015-06-29 2019-03-19 480 Biomedical, Inc. Implantable scaffolds for treatment of sinusitis
CA3209217A1 (en) 2015-06-29 2017-01-05 Lyra Therapeutics, Inc. Scaffold loading and delivery systems
CN106794021B (en) * 2015-07-01 2019-06-18 奥林巴斯株式会社 Treatment instrument for endoscope
US10864018B2 (en) * 2015-08-06 2020-12-15 Syntec Corporation Method for manufacturing medical linear member
US10973664B2 (en) 2015-12-30 2021-04-13 Lyra Therapeutics, Inc. Scaffold loading and delivery systems
WO2017130385A1 (en) * 2016-01-29 2017-08-03 株式会社シンテック Method for producing linear medical member
US20170340460A1 (en) 2016-05-31 2017-11-30 V-Wave Ltd. Systems and methods for making encapsulated hourglass shaped stents
US10835394B2 (en) 2016-05-31 2020-11-17 V-Wave, Ltd. Systems and methods for making encapsulated hourglass shaped stents
CN106726004B (en) * 2017-02-15 2018-04-13 中国人民解放军第三军医大学第三附属医院 Vascular anastomosis stent
US11291807B2 (en) 2017-03-03 2022-04-05 V-Wave Ltd. Asymmetric shunt for redistributing atrial blood volume
CN110536657B (en) 2017-03-03 2022-03-11 V-波有限责任公司 Shunt for redistributing atrial blood volume
US10584491B2 (en) 2017-03-06 2020-03-10 Isotruss Industries Llc Truss structure
US10180000B2 (en) 2017-03-06 2019-01-15 Isotruss Industries Llc Composite lattice beam
US10335264B2 (en) * 2017-03-10 2019-07-02 Byung Choo Moon Vascular graft
US11191566B2 (en) 2017-04-28 2021-12-07 Merit Medical Systems, Inc. Introducer with partially annealed reinforcement element and related systems and methods
US10201639B2 (en) 2017-05-01 2019-02-12 480 Biomedical, Inc. Drug-eluting medical implants
DE102017111964A1 (en) * 2017-05-31 2018-12-06 Jotec Gmbh Stentgraft with pockets
EP3694450B1 (en) 2017-10-11 2023-08-02 W. L. Gore & Associates, Inc. Implantable medical device constraint and deployment apparatus
WO2019075343A1 (en) * 2017-10-13 2019-04-18 The Secant Group, Llc Bored hollow lumen
US10898698B1 (en) 2020-05-04 2021-01-26 V-Wave Ltd. Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same
US11458287B2 (en) 2018-01-20 2022-10-04 V-Wave Ltd. Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same
US11744589B2 (en) 2018-01-20 2023-09-05 V-Wave Ltd. Devices and methods for providing passage between heart chambers
USD896401S1 (en) 2018-03-06 2020-09-15 Isotruss Industries Llc Beam
USD895157S1 (en) 2018-03-06 2020-09-01 IsoTruss Indsutries LLC Longitudinal beam
JP6759464B2 (en) * 2018-03-20 2020-09-23 株式会社東芝 Multi-junction solar cell module and photovoltaic power generation system
CA3101217C (en) 2018-06-11 2023-03-28 Boston Scientific Scimed, Inc. Sphincterotomes and methods for using sphincterotomes
US11612385B2 (en) 2019-04-03 2023-03-28 V-Wave Ltd. Systems and methods for delivering implantable devices across an atrial septum
WO2020234751A1 (en) 2019-05-20 2020-11-26 V-Wave Ltd. Systems and methods for creating an interatrial shunt
US11234702B1 (en) 2020-11-13 2022-02-01 V-Wave Ltd. Interatrial shunt having physiologic sensor
WO2023086763A1 (en) * 2021-11-09 2023-05-19 Atrium Medical Corporation Vascular graft with pulsation damping
WO2023199267A1 (en) 2022-04-14 2023-10-19 V-Wave Ltd. Interatrial shunt with expanded neck region

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0146794A2 (en) * 1983-12-16 1985-07-03 B. Braun-SSC AG Method for the production of a artery prosthesis
WO1994013224A1 (en) * 1992-12-11 1994-06-23 W.L. Gore & Associates, Inc. A prosthetic vascular graft
DE19524653A1 (en) * 1994-12-23 1996-06-27 Ruesch Willy Ag Placeholder for placement in a body tube
WO1997021401A1 (en) * 1995-12-08 1997-06-19 Impra, Inc. Endoluminal graft with integral structural support and method for making same

Family Cites Families (285)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US612897A (en) 1898-10-25 Construction of tubes and cylinders
US1505591A (en) 1923-06-06 1924-08-19 Thomas H Edelblute Block for car wheels
US2642625A (en) 1950-06-23 1953-06-23 Sprague Electric Co Process for producing thin polytetrahaloethylene films
US3027601A (en) 1957-07-22 1962-04-03 Minnesota Mining & Mfg Polytetrafluoroethylene films and method for making same
US3105492A (en) 1958-10-01 1963-10-01 Us Catheter & Instr Corp Synthetic blood vessel grafts
US3060517A (en) 1959-08-18 1962-10-30 Du Pont Fabrication of massive shaped articles of polytetrafluoroethylene
BE607748A (en) 1960-09-02
US3281511A (en) 1964-05-15 1966-10-25 Gen Plastics Corp Method of preparing microporous tetrafluoroethylene resin sheets
US3196194A (en) 1964-06-04 1965-07-20 Pennsylvania Fluorocarbon Co I Fep-fluorocarbon tubing process
US3304557A (en) 1965-09-28 1967-02-21 Ethicon Inc Surgical prosthesis
US3887761A (en) 1967-09-07 1975-06-03 Gore & Ass Tape wrapped conductor
US3657744A (en) 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US3767500A (en) 1971-12-28 1973-10-23 Tme Corp Method of laminating long strips of various materials
US3992725A (en) 1973-11-16 1976-11-23 Homsy Charles A Implantable material and appliances and method of stabilizing body implants
US6436135B1 (en) 1974-10-24 2002-08-20 David Goldfarb Prosthetic vascular graft
US4061517A (en) 1975-08-27 1977-12-06 Chemelec Products, Inc. Method of making fluorocarbon resin covered gaskets
JPS5360979A (en) 1976-11-11 1978-05-31 Daikin Ind Ltd Polytetrafluoroethylene fine powder and its preparation
JPS6037734B2 (en) 1978-10-12 1985-08-28 住友電気工業株式会社 Tubular organ prosthesis material and its manufacturing method
DE3019996A1 (en) 1980-05-24 1981-12-03 Institute für Textil- und Faserforschung Stuttgart, 7410 Reutlingen HOHLORGAN
US4324574A (en) 1980-12-19 1982-04-13 E. I. Du Pont De Nemours And Company Felt-like layered composite of PTFE and glass paper
US4416028A (en) 1981-01-22 1983-11-22 Ingvar Eriksson Blood vessel prosthesis
US4604762A (en) 1981-02-13 1986-08-12 Thoratec Laboratories Corporation Arterial graft prosthesis
US4596837A (en) 1982-02-22 1986-06-24 Daikin Industries Ltd. Semisintered polytetrafluoroethylene article and production thereof
SE445884B (en) 1982-04-30 1986-07-28 Medinvent Sa DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION
US4482516A (en) 1982-09-10 1984-11-13 W. L. Gore & Associates, Inc. Process for producing a high strength porous polytetrafluoroethylene product having a coarse microstructure
JPS59109534A (en) 1982-12-14 1984-06-25 Nitto Electric Ind Co Ltd Porous polytetrafluoroethylene object
JPS59109506A (en) 1982-12-14 1984-06-25 Daikin Ind Ltd Novel fine polytetrafluoroethylene powder
US4512338A (en) 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
US4503569A (en) * 1983-03-03 1985-03-12 Dotter Charles T Transluminally placed expandable graft prosthesis
US4647416A (en) 1983-08-03 1987-03-03 Shiley Incorporated Method of preparing a vascular graft prosthesis
US5067957A (en) 1983-10-14 1991-11-26 Raychem Corporation Method of inserting medical devices incorporating SIM alloy elements
US5190546A (en) 1983-10-14 1993-03-02 Raychem Corporation Medical devices incorporating SIM alloy elements
US4665906A (en) 1983-10-14 1987-05-19 Raychem Corporation Medical devices incorporating sim alloy elements
EP0157178B1 (en) 1984-03-01 1988-11-30 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Artificial vessel and process for preparing the same
US4580568A (en) 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
US4655769A (en) 1984-10-24 1987-04-07 Zachariades Anagnostis E Ultra-high-molecular-weight polyethylene products including vascular prosthesis devices and methods relating thereto and employing pseudo-gel states
US4629458A (en) 1985-02-26 1986-12-16 Cordis Corporation Reinforcing structure for cardiovascular graft
US5102417A (en) 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
DE3640745A1 (en) 1985-11-30 1987-06-04 Ernst Peter Prof Dr M Strecker Catheter for producing or extending connections to or between body cavities
FR2600524B1 (en) 1986-01-13 1991-10-18 Galtier Claude ARTIFICIAL ESOPHAGUS.
US4767418A (en) 1986-02-13 1988-08-30 California Institute Of Technology Luminal surface fabrication for cardiovascular prostheses
SE453258B (en) 1986-04-21 1988-01-25 Medinvent Sa ELASTIC, SELF-EXPANDING PROTEST AND PROCEDURE FOR ITS MANUFACTURING
JPS62279920A (en) 1986-05-28 1987-12-04 Daikin Ind Ltd Porous heat-shrinkable tetrafluoroethylene polymer pipe and its manufacture
US5071609A (en) 1986-11-26 1991-12-10 Baxter International Inc. Process of manufacturing porous multi-expanded fluoropolymers
US4907336A (en) 1987-03-13 1990-03-13 Cook Incorporated Method of making an endovascular stent and delivery system
US5061276A (en) 1987-04-28 1991-10-29 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US4816339A (en) * 1987-04-28 1989-03-28 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US5143085A (en) 1987-05-13 1992-09-01 Wilson Bruce C Steerable memory alloy guide wires
US4969458A (en) 1987-07-06 1990-11-13 Medtronic, Inc. Intracoronary stent and method of simultaneous angioplasty and stent implant
US5171805A (en) 1987-08-05 1992-12-15 Daikin Industries Ltd. Modified polytetrafluoroethylene and process for preparing the same
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US5133732A (en) 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US4820298A (en) 1987-11-20 1989-04-11 Leveen Eric G Internal vascular prosthesis
US5192307A (en) 1987-12-08 1993-03-09 Wall W Henry Angioplasty stent
US5124523A (en) 1987-12-23 1992-06-23 Swiss Aluminium Ltd. Process for adapting the frequency band of an oscillating circuit made from a metal-plastic-metal sandwich foil useful as an identification label, and sandwich foil for implementing the process
US4865906A (en) * 1988-01-22 1989-09-12 Smith Novis W Jr Flame retardant yard blend
FR2627982B1 (en) 1988-03-02 1995-01-27 Artemis TUBULAR ENDOPROSTHESIS FOR ANATOMICAL CONDUITS, AND INSTRUMENT AND METHOD FOR ITS PLACEMENT
US5019090A (en) 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
US5219361A (en) 1988-09-16 1993-06-15 Clemson University Soft tissue implant with micron-scale surface texture to optimize anchorage
CA1322628C (en) 1988-10-04 1993-10-05 Richard A. Schatz Expandable intraluminal graft
US5464438A (en) 1988-10-05 1995-11-07 Menaker; Gerald J. Gold coating means for limiting thromboses in implantable grafts
US4935068A (en) 1989-01-23 1990-06-19 Raychem Corporation Method of treating a sample of an alloy
US5078726A (en) 1989-02-01 1992-01-07 Kreamer Jeffry W Graft stent and method of repairing blood vessels
US4969896A (en) 1989-02-01 1990-11-13 Interpore International Vascular graft prosthesis and method of making the same
US4957669A (en) 1989-04-06 1990-09-18 Shiley, Inc. Method for producing tubing useful as a tapered vascular graft prosthesis
JP2678945B2 (en) 1989-04-17 1997-11-19 有限会社ナイセム Artificial blood vessel, method for producing the same, and substrate for artificial blood vessel
US4955899A (en) 1989-05-26 1990-09-11 Impra, Inc. Longitudinally compliant vascular graft
US5152782A (en) 1989-05-26 1992-10-06 Impra, Inc. Non-porous coated ptfe graft
DE3918736C2 (en) 1989-06-08 1998-05-14 Christian Dr Vallbracht Plastic-coated metal mesh stents
US5084065A (en) 1989-07-10 1992-01-28 Corvita Corporation Reinforced graft assembly
ATE120377T1 (en) 1990-02-08 1995-04-15 Howmedica INFLATABLE DILATATOR.
US5344426A (en) 1990-04-25 1994-09-06 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5158548A (en) 1990-04-25 1992-10-27 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5242399A (en) 1990-04-25 1993-09-07 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5123917A (en) 1990-04-27 1992-06-23 Lee Peter Y Expandable intraluminal vascular graft
US5078736A (en) 1990-05-04 1992-01-07 Interventional Thermodynamics, Inc. Method and apparatus for maintaining patency in the body passages
US5135503A (en) 1990-05-16 1992-08-04 Advanced Cardiovascular Systems, Inc. Shaping ribbon for guiding members
EP0461791B1 (en) 1990-06-11 1997-01-02 Hector D. Barone Aortic graft and apparatus for repairing an abdominal aortic aneurysm
US5578071A (en) 1990-06-11 1996-11-26 Parodi; Juan C. Aortic graft
US5360443A (en) 1990-06-11 1994-11-01 Barone Hector D Aortic graft for repairing an abdominal aortic aneurysm
US5064435A (en) 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5236447A (en) 1990-06-29 1993-08-17 Nissho Corporation Artificial tubular organ
US5122154A (en) 1990-08-15 1992-06-16 Rhodes Valentine J Endovascular bypass graft
US5139480A (en) 1990-08-22 1992-08-18 Biotech Laboratories, Inc. Necking stents
DE69114505T2 (en) 1990-08-28 1996-04-18 Meadox Medicals Inc SELF-SUPPORTING WOVEN VESSEL TRANSPLANT.
AR246020A1 (en) 1990-10-03 1994-03-30 Hector Daniel Barone Juan Carl A ball device for implanting an intraluminous aortic prosthesis, for repairing aneurysms.
DE9116881U1 (en) 1990-10-09 1994-07-07 Cook Inc Percutaneous stent
DE69116130T2 (en) 1990-10-18 1996-05-15 Ho Young Song SELF-EXPANDING, ENDOVASCULAR DILATATOR
EP0491349B1 (en) 1990-12-18 1998-03-18 Advanced Cardiovascular Systems, Inc. Method of manufacturing a Superelastic guiding member
US5341818A (en) 1992-12-22 1994-08-30 Advanced Cardiovascular Systems, Inc. Guidewire with superelastic distal portion
US5116360A (en) 1990-12-27 1992-05-26 Corvita Corporation Mesh composite graft
US5163951A (en) 1990-12-27 1992-11-17 Corvita Corporation Mesh composite graft
FR2671482A1 (en) 1991-01-16 1992-07-17 Seguin Jacques Vascular endoprosthesis
US5258027A (en) 1991-01-24 1993-11-02 Willy Rusch Ag Trachreal prosthesis
CA2060067A1 (en) 1991-01-28 1992-07-29 Lilip Lau Stent delivery system
US5156620A (en) 1991-02-04 1992-10-20 Pigott John P Intraluminal graft/stent and balloon catheter for insertion thereof
DE69210225T2 (en) 1991-02-14 1996-12-05 Baxter Int Manufacturing process for flexible biological tissue transplant materials
US5231989A (en) 1991-02-15 1993-08-03 Raychem Corporation Steerable cannula
US5116365A (en) 1991-02-22 1992-05-26 Cordis Corporation Stent apparatus and method for making
US5282847A (en) 1991-02-28 1994-02-01 Medtronic, Inc. Prosthetic vascular grafts with a pleated structure
CA2065634C (en) 1991-04-11 1997-06-03 Alec A. Piplani Endovascular graft having bifurcation and apparatus and method for deploying the same
CA2068584C (en) 1991-06-18 1997-04-22 Paul H. Burmeister Intravascular guide wire and method for manufacture thereof
CA2074349C (en) 1991-07-23 2004-04-20 Shinji Tamaru Polytetrafluoroethylene porous film and preparation and use thereof
US5630806A (en) 1991-08-13 1997-05-20 Hudson International Conductors Spiral wrapped medical tubing
CA2117088A1 (en) 1991-09-05 1993-03-18 David R. Holmes Flexible tubular device for use in medical applications
US5370681A (en) 1991-09-16 1994-12-06 Atrium Medical Corporation Polyumenal implantable organ
US5500013A (en) 1991-10-04 1996-03-19 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5366504A (en) 1992-05-20 1994-11-22 Boston Scientific Corporation Tubular medical prosthesis
US5354309A (en) 1991-10-11 1994-10-11 Angiomed Ag Apparatus for widening a stenosis in a body cavity
US5282860A (en) 1991-10-16 1994-02-01 Olympus Optical Co., Ltd. Stent tube for medical use
JP2961287B2 (en) 1991-10-18 1999-10-12 グンゼ株式会社 Biological duct dilator, method for producing the same, and stent
US5387235A (en) 1991-10-25 1995-02-07 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
CA2380683C (en) 1991-10-28 2006-08-08 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5167614A (en) 1991-10-29 1992-12-01 Medical Engineering Corporation Prostatic stent
US5211658A (en) 1991-11-05 1993-05-18 New England Deaconess Hospital Corporation Method and device for performing endovascular repair of aneurysms
FR2683449A1 (en) 1991-11-08 1993-05-14 Cardon Alain ENDOPROTHESIS FOR TRANSLUMINAL IMPLANTATION.
US5282849A (en) 1991-12-19 1994-02-01 University Of Utah Research Foundation Ventricle assist device with volume displacement chamber
US5316023A (en) 1992-01-08 1994-05-31 Expandable Grafts Partnership Method for bilateral intra-aortic bypass
JP3419797B2 (en) 1992-01-10 2003-06-23 松下電器産業株式会社 Switching power supply
SE469653B (en) 1992-01-13 1993-08-16 Lucocer Ab POROEST IMPLANT
US5507767A (en) 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
US5486193A (en) 1992-01-22 1996-01-23 C. R. Bard, Inc. System for the percutaneous transluminal front-end loading delivery of a prosthetic occluder
US5683448A (en) * 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
US5405377A (en) 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
US5591224A (en) 1992-03-19 1997-01-07 Medtronic, Inc. Bioelastomeric stent
US5282823A (en) 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
US5354329A (en) 1992-04-17 1994-10-11 Whalen Biomedical, Inc. Vascular prosthesis having enhanced compatibility and compliance characteristics
US5540712A (en) 1992-05-01 1996-07-30 Nitinol Medical Technologies, Inc. Stent and method and apparatus for forming and delivering the same
WO1995014500A1 (en) 1992-05-01 1995-06-01 Beth Israel Hospital A stent
DE69333161T2 (en) * 1992-05-08 2004-06-03 Schneider (Usa) Inc., Plymouth Stent for the esophagus
US5405378A (en) 1992-05-20 1995-04-11 Strecker; Ernst P. Device with a prosthesis implantable in the body of a patient
US5383928A (en) 1992-06-10 1995-01-24 Emory University Stent sheath for local drug delivery
US5507771A (en) 1992-06-15 1996-04-16 Cook Incorporated Stent assembly
US5342387A (en) * 1992-06-18 1994-08-30 American Biomed, Inc. Artificial support for a blood vessel
US5429869A (en) 1993-02-26 1995-07-04 W. L. Gore & Associates, Inc. Composition of expanded polytetrafluoroethylene and similar polymers and method for producing same
US5382261A (en) 1992-09-01 1995-01-17 Expandable Grafts Partnership Method and apparatus for occluding vessels
US5562725A (en) 1992-09-14 1996-10-08 Meadox Medicals Inc. Radially self-expanding implantable intraluminal device
EP0664689A4 (en) 1992-10-13 1997-02-26 Boston Scient Corp Stents for body lumens exhibiting peristaltic.
US5383926A (en) 1992-11-23 1995-01-24 Children's Medical Center Corporation Re-expandable endoprosthesis
BE1006440A3 (en) 1992-12-21 1994-08-30 Dereume Jean Pierre Georges Em Luminal endoprosthesis AND METHOD OF PREPARATION.
US5630840A (en) 1993-01-19 1997-05-20 Schneider (Usa) Inc Clad composite stent
US5370691A (en) * 1993-01-26 1994-12-06 Target Therapeutics, Inc. Intravascular inflatable stent
US5433996A (en) 1993-02-18 1995-07-18 W. L. Gore & Associates, Inc. Laminated patch tissue repair sheet material
US5334201A (en) 1993-03-12 1994-08-02 Cowan Kevin P Permanent stent made of a cross linkable material
US5474563A (en) 1993-03-25 1995-12-12 Myler; Richard Cardiovascular stent and retrieval apparatus
US5523092A (en) 1993-04-14 1996-06-04 Emory University Device for local drug delivery and methods for using the same
EP0695152A1 (en) 1993-04-23 1996-02-07 Schneider (Usa) Inc. Covered stent and stent delivery device
DK0621015T3 (en) 1993-04-23 1998-12-21 Schneider Europ Gmbh Stent but a cover layer of an elastic material as well as a method of applying this layer to the stent
US5349964A (en) 1993-05-05 1994-09-27 Intelliwire, Inc. Device having an electrically actuatable section with a portion having a current shunt and method
US5437083A (en) 1993-05-24 1995-08-01 Advanced Cardiovascular Systems, Inc. Stent-loading mechanism
US5458615A (en) 1993-07-06 1995-10-17 Advanced Cardiovascular Systems, Inc. Stent delivery system
US5514115A (en) 1993-07-07 1996-05-07 Device For Vascular Intervention, Inc. Flexible housing for intracorporeal use
US5464449A (en) 1993-07-08 1995-11-07 Thomas J. Fogarty Internal graft prosthesis and delivery system
CA2121159C (en) 1993-07-16 2005-03-29 Kenneth Dean Conger Contoured tire building drum and method of building an extended mobility tire
JPH09501585A (en) 1993-08-18 1997-02-18 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Thin and seamless porous polytetrafluoroethylene tube
US6027779A (en) 1993-08-18 2000-02-22 W. L. Gore & Associates, Inc. Thin-wall polytetrafluoroethylene tube
US5735892A (en) * 1993-08-18 1998-04-07 W. L. Gore & Associates, Inc. Intraluminal stent graft
EP0714270B1 (en) 1993-08-18 2002-09-04 W.L. Gore & Associates, Inc. A tubular intraluminally insertable graft
JPH07102413A (en) 1993-09-16 1995-04-18 Japan Gore Tex Inc Polytetrafluoroethylene filament
GB2281865B (en) 1993-09-16 1997-07-30 Cordis Corp Endoprosthesis having multiple laser welded junctions,method and procedure
ES2217270T3 (en) 1993-09-30 2004-11-01 Endogad Research Pty Limited ENDOLUMINAL GRAFT.
US5609624A (en) 1993-10-08 1997-03-11 Impra, Inc. Reinforced vascular graft and method of making same
US5639278A (en) 1993-10-21 1997-06-17 Corvita Corporation Expandable supportive bifurcated endoluminal grafts
US5723004A (en) 1993-10-21 1998-03-03 Corvita Corporation Expandable supportive endoluminal grafts
US5389106A (en) 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
US5384019A (en) 1993-10-29 1995-01-24 E. I. Du Pont De Nemours And Company Membrane reinforced with modified leno weave fabric
WO1995013033A1 (en) 1993-11-08 1995-05-18 Lazarus Harrison M Intraluminal vascular graft and method
US5527353A (en) 1993-12-02 1996-06-18 Meadox Medicals, Inc. Implantable tubular prosthesis
JP2703510B2 (en) 1993-12-28 1998-01-26 アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド Expandable stent and method of manufacturing the same
US5549635A (en) 1994-01-24 1996-08-27 Solar, Rita & Gaterud, Ltd. Non-deformable self-expanding parallel flow endovascular stent and deployment apparatus therefore
US5507769A (en) 1994-10-18 1996-04-16 Stentco, Inc. Method and apparatus for forming an endoluminal bifurcated graft
US5549663A (en) 1994-03-09 1996-08-27 Cordis Corporation Endoprosthesis having graft member and exposed welded end junctions, method and procedure
US5556413A (en) 1994-03-11 1996-09-17 Advanced Cardiovascular Systems, Inc. Coiled stent with locking ends
US5449373A (en) 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US5556389A (en) 1994-03-31 1996-09-17 Liprie; Samuel F. Method and apparatus for treating stenosis or other constriction in a bodily conduit
US6165210A (en) 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US5693085A (en) 1994-04-29 1997-12-02 Scimed Life Systems, Inc. Stent with collagen
US5554181A (en) 1994-05-04 1996-09-10 Regents Of The University Of Minnesota Stent
WO1995031945A1 (en) 1994-05-19 1995-11-30 Scimed Life Systems, Inc. Improved tissue supporting devices
DE4418336A1 (en) 1994-05-26 1995-11-30 Angiomed Ag Stent for widening and holding open receptacles
DE69518275T3 (en) 1994-06-08 2007-10-18 CardioVascular Concepts, Inc., Portola Valley Blood vessel graft
ATE296140T1 (en) 1994-06-27 2005-06-15 Bard Peripheral Vascular Inc RADIALLY EXPANDABLE POLYTETRAFLUORETHYLENE AND EXPANDABLE ENDOVASCULAR STENTS MOLDED THEREFROM
EP0689805B1 (en) 1994-06-27 2003-05-28 Corvita Corporation Bistable luminal graft endoprostheses
US5522881A (en) 1994-06-28 1996-06-04 Meadox Medicals, Inc. Implantable tubular prosthesis having integral cuffs
JP2749263B2 (en) 1994-07-07 1998-05-13 三洋電機株式会社 Frame synchronous playback circuit
US5556426A (en) 1994-08-02 1996-09-17 Meadox Medicals, Inc. PTFE implantable tubular prostheses with external coil support
US5527355A (en) 1994-09-02 1996-06-18 Ahn; Sam S. Apparatus and method for performing aneurysm repair
US6015429A (en) * 1994-09-08 2000-01-18 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US5723003A (en) 1994-09-13 1998-03-03 Ultrasonic Sensing And Monitoring Systems Expandable graft assembly and method of use
US5649977A (en) 1994-09-22 1997-07-22 Advanced Cardiovascular Systems, Inc. Metal reinforced polymer stent
US5836965A (en) 1994-10-19 1998-11-17 Jendersee; Brad Stent delivery and deployment method
AU3783295A (en) 1994-11-16 1996-05-23 Advanced Cardiovascular Systems Inc. Shape memory locking mechanism for intravascular stent
US5630829A (en) 1994-12-09 1997-05-20 Intervascular, Inc. High hoop strength intraluminal stent
US5637113A (en) 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US5674277A (en) * 1994-12-23 1997-10-07 Willy Rusch Ag Stent for placement in a body tube
US5591226A (en) 1995-01-23 1997-01-07 Schneider (Usa) Inc. Percutaneous stent-graft and method for delivery thereof
US5755770A (en) 1995-01-31 1998-05-26 Boston Scientific Corporatiion Endovascular aortic graft
US5522883A (en) 1995-02-17 1996-06-04 Meadox Medicals, Inc. Endoprosthesis stent/graft deployment system
CA2213403C (en) * 1995-02-22 2007-01-16 Menlo Care, Inc. Covered expanding mesh stent
US5681345A (en) 1995-03-01 1997-10-28 Scimed Life Systems, Inc. Sleeve carrying stent
DE19508805C2 (en) 1995-03-06 2000-03-30 Lutz Freitag Stent for placement in a body tube with a flexible support structure made of at least two wires with different shape memory functions
US5556414A (en) 1995-03-08 1996-09-17 Wayne State University Composite intraluminal graft
US6039755A (en) * 1997-02-05 2000-03-21 Impra, Inc., A Division Of C.R. Bard, Inc. Radially expandable tubular polytetrafluoroethylene grafts and method of making same
US6579314B1 (en) 1995-03-10 2003-06-17 C.R. Bard, Inc. Covered stent with encapsulated ends
US6264684B1 (en) 1995-03-10 2001-07-24 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Helically supported graft
US6451047B2 (en) 1995-03-10 2002-09-17 Impra, Inc. Encapsulated intraluminal stent-graft and methods of making same
US6124523A (en) 1995-03-10 2000-09-26 Impra, Inc. Encapsulated stent
US6053943A (en) 1995-12-08 2000-04-25 Impra, Inc. Endoluminal graft with integral structural support and method for making same
CA2566929C (en) * 1995-03-10 2009-04-21 Bard Peripheral Vascular, Inc. Endoluminal encapsulated stent and methods of manufacture and endoluminal delivery
US5591197A (en) 1995-03-14 1997-01-07 Advanced Cardiovascular Systems, Inc. Expandable stent forming projecting barbs and method for deploying
DK0734698T4 (en) 1995-04-01 2006-07-03 Variomed Ag Stent for transluminal implantation in hollow organs
US5676671A (en) * 1995-04-12 1997-10-14 Inoue; Kanji Device for introducing an appliance to be implanted into a catheter
BE1009277A3 (en) 1995-04-12 1997-01-07 Corvita Europ Guardian self-expandable medical device introduced in cavite body, and method of preparation.
US6863686B2 (en) 1995-04-17 2005-03-08 Donald Shannon Radially expandable tape-reinforced vascular grafts
US5641373A (en) 1995-04-17 1997-06-24 Baxter International Inc. Method of manufacturing a radially-enlargeable PTFE tape-reinforced vascular graft
US5667523A (en) 1995-04-28 1997-09-16 Impra, Inc. Dual supported intraluminal graft
US5591228A (en) 1995-05-09 1997-01-07 Edoga; John K. Methods for treating abdominal aortic aneurysms
US5628786A (en) 1995-05-12 1997-05-13 Impra, Inc. Radially expandable vascular graft with resistance to longitudinal compression and method of making same
DE69634013T2 (en) 1995-05-26 2005-12-15 SurModics, Inc., Eden Prairie PROCESS AND IMPLANTABLE OBJECT FOR PROMOTING ENDOTHELIALIZATION
US5591199A (en) 1995-06-07 1997-01-07 Porter; Christopher H. Curable fiber composite stent and delivery system
US6010530A (en) * 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
MX9601944A (en) 1995-06-07 1997-08-30 Advanced Cardiovascular System Coiled reinforced retractable sleeve for stent delivery catheter.
US5863366A (en) * 1995-06-07 1999-01-26 Heartport, Inc. Method of manufacture of a cannula for a medical device
US5728131A (en) 1995-06-12 1998-03-17 Endotex Interventional Systems, Inc. Coupling device and method of use
EP0850030B1 (en) 1995-08-24 2004-07-21 Bard Peripheral Vascular, Inc. Method of assembly of a covered endoluminal stent
US5824037A (en) 1995-10-03 1998-10-20 Medtronic, Inc. Modular intraluminal prostheses construction and methods
US5776161A (en) 1995-10-16 1998-07-07 Instent, Inc. Medical stents, apparatus and method for making same
US5628788A (en) 1995-11-07 1997-05-13 Corvita Corporation Self-expanding endoluminal stent-graft
US5788626A (en) 1995-11-21 1998-08-04 Schneider (Usa) Inc Method of making a stent-graft covered with expanded polytetrafluoroethylene
US5665117A (en) 1995-11-27 1997-09-09 Rhodes; Valentine J. Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use
US5593417A (en) 1995-11-27 1997-01-14 Rhodes; Valentine J. Intravascular stent with secure mounting means
US6042605A (en) 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
AU1413897A (en) 1995-12-14 1997-07-03 Prograft Medical, Inc. Kink-resistant stent graft
US6428571B1 (en) 1996-01-22 2002-08-06 Scimed Life Systems, Inc. Self-sealing PTFE vascular graft and manufacturing methods
US5800512A (en) 1996-01-22 1998-09-01 Meadox Medicals, Inc. PTFE vascular graft
US5871537A (en) 1996-02-13 1999-02-16 Scimed Life Systems, Inc. Endovascular apparatus
US5607478A (en) 1996-03-14 1997-03-04 Meadox Medicals Inc. Yarn wrapped PTFE tubular prosthesis
CA2199890C (en) * 1996-03-26 2002-02-05 Leonard Pinchuk Stents and stent-grafts having enhanced hoop strength and methods of making the same
US5713949A (en) 1996-08-06 1998-02-03 Jayaraman; Swaminathan Microporous covered stents and method of coating
US5718159A (en) 1996-04-30 1998-02-17 Schneider (Usa) Inc. Process for manufacturing three-dimensional braided covered stent
US6312454B1 (en) 1996-06-13 2001-11-06 Nitinol Devices & Components Stent assembly
US5843161A (en) 1996-06-26 1998-12-01 Cordis Corporation Endoprosthesis assembly for percutaneous deployment and method of deploying same
US5769884A (en) 1996-06-27 1998-06-23 Cordis Corporation Controlled porosity endovascular implant
US20050113909A1 (en) 1996-07-03 2005-05-26 Shannon Donald T. Polymer coated stents
US5928279A (en) * 1996-07-03 1999-07-27 Baxter International Inc. Stented, radially expandable, tubular PTFE grafts
US6120535A (en) 1996-07-29 2000-09-19 Radiance Medical Systems, Inc. Microporous tubular prosthesis
US5755781A (en) 1996-08-06 1998-05-26 Iowa-India Investments Company Limited Embodiments of multiple interconnected stents
US6149681A (en) 1996-09-20 2000-11-21 Converge Medical, Inc. Radially expanding prostheses and systems for their deployment
US5824046A (en) 1996-09-27 1998-10-20 Scimed Life Systems, Inc. Covered stent
US6010529A (en) * 1996-12-03 2000-01-04 Atrium Medical Corporation Expandable shielded vessel support
CA2273887A1 (en) 1996-12-03 1998-06-25 Atrium Medical Corporation Multi-stage prosthesis
US6015431A (en) 1996-12-23 2000-01-18 Prograft Medical, Inc. Endolumenal stent-graft with leak-resistant seal
US5925061A (en) 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
US5961545A (en) 1997-01-17 1999-10-05 Meadox Medicals, Inc. EPTFE graft-stent composite device
US5843166A (en) 1997-01-17 1998-12-01 Meadox Medicals, Inc. Composite graft-stent having pockets for accomodating movement
US5769817A (en) 1997-02-28 1998-06-23 Schneider (Usa) Inc. Coextruded balloon and method of making same
CA2282748C (en) 1997-03-05 2007-11-20 Boston Scientific Limited Conformal laminate stent device
US5851232A (en) 1997-03-15 1998-12-22 Lois; William A. Venous stent
US5824053A (en) * 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Helical mesh endoprosthesis and methods of use
US5824054A (en) 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Coiled sheet graft stent and methods of making and use
US5928258A (en) * 1997-09-26 1999-07-27 Corvita Corporation Method and apparatus for loading a stent or stent-graft into a delivery sheath
US6156062A (en) * 1997-12-03 2000-12-05 Ave Connaught Helically wrapped interlocking stent
US6241691B1 (en) * 1997-12-05 2001-06-05 Micrus Corporation Coated superelastic stent
US6488701B1 (en) 1998-03-31 2002-12-03 Medtronic Ave, Inc. Stent-graft assembly with thin-walled graft component and method of manufacture
US6063111A (en) * 1998-03-31 2000-05-16 Cordis Corporation Stent aneurysm treatment system and method
DE69935716T2 (en) 1998-05-05 2007-08-16 Boston Scientific Ltd., St. Michael STENT WITH SMOOTH ENDS
US6547814B2 (en) 1998-09-30 2003-04-15 Impra, Inc. Selective adherence of stent-graft coverings
US6398803B1 (en) 1999-02-02 2002-06-04 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Partial encapsulation of stents
US6364903B2 (en) 1999-03-19 2002-04-02 Meadox Medicals, Inc. Polymer coated stent
US6673103B1 (en) 1999-05-20 2004-01-06 Scimed Life Systems, Inc. Mesh and stent for increased flexibility
US6364904B1 (en) 1999-07-02 2002-04-02 Scimed Life Systems, Inc. Helically formed stent/graft assembly
GB0003387D0 (en) 2000-02-14 2000-04-05 Angiomed Ag Stent matrix
US6585760B1 (en) * 2000-06-30 2003-07-01 Vascular Architects, Inc AV fistula and function enhancing method
US6808533B1 (en) 2000-07-28 2004-10-26 Atrium Medical Corporation Covered stent and method of covering a stent
US6770086B1 (en) 2000-11-02 2004-08-03 Scimed Life Systems, Inc. Stent covering formed of porous polytetraflouroethylene
US6673105B1 (en) 2001-04-02 2004-01-06 Advanced Cardiovascular Systems, Inc. Metal prosthesis coated with expandable ePTFE
US6716239B2 (en) 2001-07-03 2004-04-06 Scimed Life Systems, Inc. ePTFE graft with axial elongation properties
US7288111B1 (en) 2002-03-26 2007-10-30 Thoratec Corporation Flexible stent and method of making the same
US7789908B2 (en) 2002-06-25 2010-09-07 Boston Scientific Scimed, Inc. Elastomerically impregnated ePTFE to enhance stretch and recovery properties for vascular grafts and coverings
US20050060020A1 (en) 2003-09-17 2005-03-17 Scimed Life Systems, Inc. Covered stent with biologically active material
JP4667393B2 (en) 2003-12-12 2011-04-13 シー・アール・バード・インコーポレーテッド Implantable medical device having a fluorinated polymer coating and application method thereof
US20050131515A1 (en) 2003-12-16 2005-06-16 Cully Edward H. Removable stent-graft
US8585753B2 (en) 2006-03-04 2013-11-19 John James Scanlon Fibrillated biodegradable prosthesis
US8196279B2 (en) 2008-02-27 2012-06-12 C. R. Bard, Inc. Stent-graft covering process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0146794A2 (en) * 1983-12-16 1985-07-03 B. Braun-SSC AG Method for the production of a artery prosthesis
WO1994013224A1 (en) * 1992-12-11 1994-06-23 W.L. Gore & Associates, Inc. A prosthetic vascular graft
DE19524653A1 (en) * 1994-12-23 1996-06-27 Ruesch Willy Ag Placeholder for placement in a body tube
WO1997021401A1 (en) * 1995-12-08 1997-06-19 Impra, Inc. Endoluminal graft with integral structural support and method for making same

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867727B2 (en) 1998-02-09 2018-01-16 Trivascular, Inc. Endovascular graft
US10548750B2 (en) 1998-02-09 2020-02-04 Trivascular, Inc. Endovascular graft
US8876880B2 (en) 1999-02-01 2014-11-04 Board Of Regents, The University Of Texas System Plain woven stents
SG148822A1 (en) * 1999-02-01 2009-01-29 Univ Texas Woven intravascular devices and methods for making the same and apparatus for delivery of the same
US9925074B2 (en) 1999-02-01 2018-03-27 Board Of Regents, The University Of Texas System Plain woven stents
US7048014B2 (en) 1999-02-01 2006-05-23 Board Of Regents, The University Of Texas System Methods for creating woven devices
US7018401B1 (en) 1999-02-01 2006-03-28 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
US6409750B1 (en) 1999-02-01 2002-06-25 Board Of Regents, The University Of Texas System Woven bifurcated and trifurcated stents and methods for making the same
US6792979B2 (en) 1999-02-01 2004-09-21 Board Of Regents, The University Of Texas System Methods for creating woven devices
WO2000044308A3 (en) * 1999-02-01 2001-02-08 Univ Texas Woven intravascular devices and methods for making the same and apparatus for delivery of the same
US8974516B2 (en) 1999-02-01 2015-03-10 Board Of Regents, The University Of Texas System Plain woven stents
US6443981B1 (en) 1999-02-04 2002-09-03 Endomed, Inc. Expandable vascular prosthesis
US6605119B1 (en) 1999-02-04 2003-08-12 Endomed, Inc. Method of making large diameter vascular prostheses and vascular prosthesis made by said method
US6929709B2 (en) 1999-07-02 2005-08-16 Scimed Life Systems, Inc. Helically formed stent/graft assembly
WO2001001886A1 (en) * 1999-07-02 2001-01-11 Scimed Life Systems, Inc. Helically formed stent/graft assembly
US6364904B1 (en) 1999-07-02 2002-04-02 Scimed Life Systems, Inc. Helically formed stent/graft assembly
US6402779B1 (en) 1999-07-26 2002-06-11 Endomed, Inc. Balloon-assisted intraluminal stent graft
WO2001006953A1 (en) * 1999-07-26 2001-02-01 Endomed, Inc. Intraluminal stent graft
EP1579825A3 (en) * 1999-07-26 2007-12-26 LeMaitre Acquisition LLC Intraluminal stent graft
US8048138B2 (en) 1999-10-01 2011-11-01 Boston Scientific Scimed, Inc. Medical device retaining sheath and medical device delivery system employing same
US6533806B1 (en) 1999-10-01 2003-03-18 Scimed Life Systems, Inc. Balloon yielded delivery system and endovascular graft design for easy deployment
WO2001024733A1 (en) * 1999-10-01 2001-04-12 Boston Scientific/Scimed Life Systems, Inc. Balloon yielded delivery system and endovascular graft design for easy deployment
AU780715B2 (en) * 1999-11-16 2005-04-14 Vascular Concepts Holdings Limited Encapsulated stent preform
US6746478B2 (en) 1999-11-16 2004-06-08 Vascular Concepts Holdings Limited Stent formed from encapsulated stent preforms
WO2001035859A1 (en) * 1999-11-16 2001-05-25 Iowa-India Investments Company, Limited Encapsulated stent preform
US6475235B1 (en) 1999-11-16 2002-11-05 Iowa-India Investments Company, Limited Encapsulated stent preform
AU755374B2 (en) * 2000-06-30 2002-12-12 Lemaitre Vascular, Inc. AV fistula and function enhancing method
US6652574B1 (en) 2000-09-28 2003-11-25 Vascular Concepts Holdings Limited Product and process for manufacturing a wire stent coated with a biocompatible fluoropolymer
EP1399200B2 (en) 2001-06-11 2014-07-02 Boston Scientific Limited COMPOSITE ePTFE/TEXTILE PROSTHESIS
US7105023B2 (en) 2002-01-17 2006-09-12 Concept Matrix, L.L.C. Vertebral defect device
US8696736B2 (en) 2002-05-23 2014-04-15 Allium Medical Solutions Ltd. Medical device having an unravable portion
WO2004019821A1 (en) * 2002-08-28 2004-03-11 Boston Scientific Limited Medical devices and methods of making the same
US7029495B2 (en) 2002-08-28 2006-04-18 Scimed Life Systems, Inc. Medical devices and methods of making the same
US7993391B2 (en) 2002-08-28 2011-08-09 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
WO2004037126A2 (en) * 2002-10-22 2004-05-06 Medtronic Vascular, Inc. Stent with eccentric coating
WO2004037126A3 (en) * 2002-10-22 2004-06-10 Medtronic Vascular Inc Stent with eccentric coating
WO2004045464A3 (en) * 2002-11-19 2004-07-29 Scimed Life Systems Inc Medical devices
US8449601B2 (en) 2002-11-19 2013-05-28 Boston Scientific Scimed, Inc. Medical devices
US7150758B2 (en) 2003-03-06 2006-12-19 Boston Scientific Santa Rosa Corp. Kink resistant endovascular graft
US7854756B2 (en) 2004-01-22 2010-12-21 Boston Scientific Scimed, Inc. Medical devices
US8048143B2 (en) 2004-01-22 2011-11-01 Boston Scientific Scimed, Inc. Medical devices
US8267989B2 (en) 2004-01-30 2012-09-18 Trivascular, Inc. Inflatable porous implants and methods for drug delivery
US7507218B2 (en) 2004-04-26 2009-03-24 Gyrus Acmi, Inc. Stent with flexible elements
US7794490B2 (en) 2004-06-22 2010-09-14 Boston Scientific Scimed, Inc. Implantable medical devices with antimicrobial and biodegradable matrices
US8192481B2 (en) 2004-06-22 2012-06-05 Boston Scientific Scimed, Inc. Implantable medical devices with anti-microbial and biodegradable matrices
US9517123B2 (en) 2005-12-29 2016-12-13 Cook Medical Technologies Llc Endovascular prosthesis and a method of connecting a structural component and a woven graft material
WO2007079067A3 (en) * 2005-12-29 2007-09-20 Med Inst Inc Endoprosthesis and method of connecting a structural component and a woven graft material
WO2007079067A2 (en) * 2005-12-29 2007-07-12 Med Institute, Inc. Endoprosthesis and method of connecting a structural component and a woven graft material
WO2007100456A1 (en) * 2006-03-01 2007-09-07 Boston Scientific Scimed, Inc. Flexible stent-graft devices and methods of producing the same
US9028859B2 (en) 2006-07-07 2015-05-12 Advanced Cardiovascular Systems, Inc. Phase-separated block copolymer coatings for implantable medical devices
US8876881B2 (en) 2006-10-22 2014-11-04 Idev Technologies, Inc. Devices for stent advancement
US9585776B2 (en) 2006-10-22 2017-03-07 Idev Technologies, Inc. Secured strand end devices
US8966733B2 (en) 2006-10-22 2015-03-03 Idev Technologies, Inc. Secured strand end devices
US10470902B2 (en) 2006-10-22 2019-11-12 Idev Technologies, Inc. Secured strand end devices
US9149374B2 (en) 2006-10-22 2015-10-06 Idev Technologies, Inc. Methods for manufacturing secured strand end devices
US9895242B2 (en) 2006-10-22 2018-02-20 Idev Technologies, Inc. Secured strand end devices
US9408730B2 (en) 2006-10-22 2016-08-09 Idev Technologies, Inc. Secured strand end devices
US9408729B2 (en) 2006-10-22 2016-08-09 Idev Technologies, Inc. Secured strand end devices
US9629736B2 (en) 2006-10-22 2017-04-25 Idev Technologies, Inc. Secured strand end devices
EP2196175A1 (en) * 2008-12-12 2010-06-16 Abbott Laboratories Vascular Enterprises Limited Covered toroid stent and methods of manufacture
WO2010066445A1 (en) * 2008-12-12 2010-06-17 Abbot Laboratories Vascular Enterprises Limited Covered toroid stent and methods of manufacture
CN102655824A (en) * 2010-03-26 2012-09-05 奥林巴斯医疗株式会社 Medical stent
EP2489334A4 (en) * 2010-03-26 2012-08-22 Olympus Medical Systems Corp Medical stent
EP2489334A1 (en) * 2010-03-26 2012-08-22 Olympus Medical Systems Corp. Medical stent
US9192493B2 (en) 2010-03-26 2015-11-24 Olympus Corporation Medical stent having a marker coil
US8632606B2 (en) 2010-03-26 2014-01-21 Olympus Medical Systems Corp. Medical stent
US9023095B2 (en) 2010-05-27 2015-05-05 Idev Technologies, Inc. Stent delivery system with pusher assembly
US8833402B2 (en) 2010-12-30 2014-09-16 Cook Medical Technologies Llc Woven fabric having composite yarns for endoluminal devices
US20230000613A1 (en) * 2019-11-22 2023-01-05 Lifetech Scientific (Shenzhen) Co., Ltd. Covered Stent
US11918452B2 (en) * 2019-11-22 2024-03-05 Lifetech Scientific (Shenzhen) Co., Ltd. Covered stent

Also Published As

Publication number Publication date
US6264684B1 (en) 2001-07-24
US8157940B2 (en) 2012-04-17
JP4017821B2 (en) 2007-12-05
EP1693024A2 (en) 2006-08-23
US20120193018A1 (en) 2012-08-02
US20060201609A1 (en) 2006-09-14
ES2264571T5 (en) 2009-11-12
US20090311132A1 (en) 2009-12-17
US8337650B2 (en) 2012-12-25
US8647458B2 (en) 2014-02-11
EP1041941B1 (en) 2006-05-03
US20140107766A1 (en) 2014-04-17
AU8298598A (en) 1999-07-12
US20010025131A1 (en) 2001-09-27
JP2001526080A (en) 2001-12-18
US7578899B2 (en) 2009-08-25
DE69834425T2 (en) 2007-04-19
US20010021870A1 (en) 2001-09-13
US6790226B2 (en) 2004-09-14
US20130102839A1 (en) 2013-04-25
EP1041941A1 (en) 2000-10-11
ES2264571T3 (en) 2007-01-01
DE69834425D1 (en) 2006-06-08
EP1041941B2 (en) 2009-06-17
US20030201058A1 (en) 2003-10-30
US7060150B2 (en) 2006-06-13
DE69834425T3 (en) 2010-01-07
EP1693024A3 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
US6264684B1 (en) Helically supported graft
US6004348A (en) Endoluminal encapsulated stent and methods of manufacture and endoluminal delivery
US5749880A (en) Endoluminal encapsulated stent and methods of manufacture and endoluminal delivery
JP3938598B2 (en) Coated stent
EP0714269B1 (en) An intraluminal stent graft
EP1207815B1 (en) Tubular stent-graft composite device and method of manufacture
EP1011529A1 (en) Conformal laminate stent device
EP1767169B1 (en) Tubular stent-graft composite device and method of manufacture

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1998933317

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: KR

WWP Wipo information: published in national office

Ref document number: 1998933317

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1998933317

Country of ref document: EP