WO1999033356A1 - Ultrasonically activated continuous slitter apparatus and method - Google Patents

Ultrasonically activated continuous slitter apparatus and method Download PDF

Info

Publication number
WO1999033356A1
WO1999033356A1 PCT/US1998/027740 US9827740W WO9933356A1 WO 1999033356 A1 WO1999033356 A1 WO 1999033356A1 US 9827740 W US9827740 W US 9827740W WO 9933356 A1 WO9933356 A1 WO 9933356A1
Authority
WO
WIPO (PCT)
Prior art keywords
slitting
cutting edges
tool
slab
ultrasonic
Prior art date
Application number
PCT/US1998/027740
Other languages
French (fr)
Inventor
Roberto A. Capodieci
Original Assignee
Mars, Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mars, Incorporated filed Critical Mars, Incorporated
Priority to DE69842194T priority Critical patent/DE69842194D1/en
Priority to AT98964993T priority patent/ATE502529T1/en
Priority to AU20195/99A priority patent/AU2019599A/en
Priority to EP98964993A priority patent/EP1043939B1/en
Priority to US09/581,982 priority patent/US6368647B1/en
Priority to CA002316215A priority patent/CA2316215C/en
Publication of WO1999033356A1 publication Critical patent/WO1999033356A1/en
Priority to US10/001,494 priority patent/US7141259B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/34Sweetmeats, confectionery or marzipan; Processes for the preparation thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/02Apparatus specially adapted for manufacture or treatment of sweetmeats or confectionery; Accessories therefor
    • A23G3/0236Shaping of liquid, paste, powder; Manufacture of moulded articles, e.g. modelling, moulding, calendering
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/04Production of frozen sweets, e.g. ice-cream
    • A23G9/22Details, component parts or accessories of apparatus insofar as not peculiar to a single one of the preceding groups
    • A23G9/28Details, component parts or accessories of apparatus insofar as not peculiar to a single one of the preceding groups for portioning or dispensing
    • A23G9/281Details, component parts or accessories of apparatus insofar as not peculiar to a single one of the preceding groups for portioning or dispensing at the discharge end of freezing chambers
    • A23G9/285Details, component parts or accessories of apparatus insofar as not peculiar to a single one of the preceding groups for portioning or dispensing at the discharge end of freezing chambers for extruding strips, cutting blocks and manipulating cut blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/06Arrangements for feeding or delivering work of other than sheet, web, or filamentary form
    • B26D7/0625Arrangements for feeding or delivering work of other than sheet, web, or filamentary form by endless conveyors, e.g. belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/08Means for treating work or cutting member to facilitate cutting
    • B26D7/086Means for treating work or cutting member to facilitate cutting by vibrating, e.g. ultrasonically

Definitions

  • the present invention relates generally to the confectionery processing, and more particularly, to the use of ultrasonically energized apparatus for slitting extended, continuous lengths of confectionery stock.
  • the invention relates to a method and apparatus for longitudinally slitting a continuously moving slab of a composite confectionery product such as, for example, a composite slab having layers of nougat and caramel superimposed to form a wide slab.
  • a composite confectionery product such as, for example, a composite slab having layers of nougat and caramel superimposed to form a wide slab.
  • the slab is formed by successively depositing a mass of a first confectionery product component, such as nougat, from a chill roll onto a conveyor, advancing the first confectionery product component formation thus created toward a station adjacent a second chill roll, at which a top layer of a second confectionery product component, such as caramel, is added to form the composite slab.
  • the conveyor continues to advance the slab toward a cutting station at which a properly arranged, suitably adjusted array of ultrasonically energized slitters continuously slit the slab to provide a continuously moving array of spaced apart strips of confectionery product.
  • These strips are subsequently formed into individual confectionery product segments by transverse cutting (ultrasonic or otherwise) and/or molding (ultrasonic or otherwise) .
  • the cut individual shapes can be enrobed with a coating of chocolate.
  • the individual finished products may be wrapped and boxed for sale and shipment.
  • An important aspect of the present invention is the design, construction and arrangement of a slitting tool of a desired configuration. Another aspect of the process relates to the manner of positioning the cutting edges of the slitting tool in arrays and the method of advancing the slabs so as to continuously slit the slab into a plurality of product strips.
  • ultrasonically energized forming tools may be utilized to cut individual pieces of confectionery stock by transverse motion, wherein the stock is compressed between a support surface and a descending knife.
  • ultrasonically energized product forming tools having a cavity shaped in accordance with the configuration of the product to be formed therewith have been found to be effective in simultaneously cutting and shaping an individual piece of confectionery stock from a leading edge of a strip of stock. This again involves compression and reforming of a piece of stock which is substantially captured or surrounded by the active surfaces of the tool.
  • the present invention succeeds in overcoming these shortcomings by providing a high quality, effective cutting action having a number of significant advantages and beneficial characteristics, including reliability, low cost operation and high production speeds. It is, therefore, an object of the present invention to provide an improved apparatus and process for slitting extended, continuous lengths of confectionery stock.
  • Another object of this invention is to provide an apparatus and process which utilizes an ultrasonically energized slitting tool for forming strips from a slab of confectionery material.
  • Another object of the present invention is to provide an apparatus and process for rapidly slitting a continuous slab of confectionery material into a plurality of adjacent strips of a desired width utilizing an ultrasonically energized slitting knives which do not suffer from excessive product build-up characteristic of prior art rotary blade slitters.
  • Another object of the present invention is to provide an apparatus and method which utilize an ultrasonically energized slitting tool for forming a plurality of strips from a slab of confectionery stock which method and apparatus minimize the crunching and fragmentation of inclusions such as nuts and the like and produce product strips which are essentially free of voids.
  • Another object of the present invention is to provide an apparatus and method of slitting a slab of confectionery stock which accommodate a wide variation in product formulations, enabling such slitting to be efficiently accomplished with highly viscous and/or tacky ingredients such as are associated with lower calorie confectionery products.
  • Another object of the present invention is to provide an apparatus and method for continuously slitting a slab of confectionery material into a plurality of strips which apparatus and method are more robust in that they provide greater flexibility in processing parameters and product formulations and conditions than are available with conventional rotary blade slitters.
  • Fig. 1 is a perspective view with portions broken away, showing certain important elements of a preferred form of apparatus of a present invention for slitting a continuous length of confectionery feedstock; • Fig. 2 is a side elevational view with portions broken away of the apparatus of Fig. 1;
  • Fig. 3 is a front view, partly diagrammatic in nature, showing an ultrasonically energized slitter tool used in the apparatus of Figs. 1 and 2;
  • Fig. 4 is a side elevational view of the tool shown in Fig. 3;
  • Fig. 5 is a fragmentary front view of an array of ultrasonically energized slitter tool blades used in the apparatus of Figs. 1 and 2;
  • Fig. 5A is an enlargement of a portion of Fig. 5 illustrating in cross-section the slitter feed belts and underlying support surface of the embodiment of Figs. 1-5;
  • Fig. 6 is a perspective view of an ultrasonically energized slitter horn used in the apparatus and method of the present invention
  • Fig. 7 is a front view of the slitter horn shown in Fig. 6;
  • Fig. 8 is a perspective view of another embodiment of an ultrasonically energized slitter horn used in the apparatus and method of the present invention
  • Fig. 9 is a front view of the slitter horn shown in Fig. 8;
  • Fig. 10 is a perspective view of another embodiment of an ultrasonically energized slitter horn used in the apparatus and method of the present invention.
  • Fig. 11 is a front view of the slitter horn shown in Fig. 10;
  • Fig. 12 is a perspective view of another embodiment of an ultrasonically energized slitter horn used in the apparatus and method of the present invention.
  • Fig. 13 is a front view of the slitter horn shown in Fig. 12;
  • Fig. 14 is a fragmentary diagrammatic side view illustrating a portion of an ultrasonically energized slitter tool in operation slitting a slab of confectionery stock in accordance with the present invention
  • Fig. 14A is an enlargement of a portion of Fig. 14 illustrating in greater detail the operation of the slitter tool of that embodiment
  • Fig. 15 is a fragmentary diagrammatic side view illustrating a portion of an ultrasonically energized slitter tool in operation slitting a slab of confectionery stock in accordance with another embodiment of the present invention
  • Fig. 16 is a fragmentary diagrammatic side view illustrating a portion of an ultrasonically energized slitter tool in operation slitting a slab of confectionery stock in accordance with a further embodiment of the present invention
  • Fig. 17 is a fragmentary perspective view illustrating a strip separation device used in the present invention
  • Fig. 18 is a fragmentary perspective view of one embodiment of slitter feed belt for supplying a slab of confectionery feed stock to an ultrasonically energized slitter tool in accordance with the present invention.
  • Fig. 19 is a fragmentary perspective view of another embodiment of slitter feed belt for supplying a slab of confectionery feed stock to an ultrasonically energized slitter tool in the apparatus of Figs. 1-5.
  • the apparatus of the present invention is capable of being embodied in a number of forms, and the inventive process includes several methods all falling within the general ambit of the inventive concept.
  • Figs. 1-5 show the invention embodied in a confectionery product slitting apparatus generally designated by the reference numeral 30 which includes a lower support frame portion 31, an upper frame portion 32 and an array of ultrasonic stacks or drive assemblies 33a-33d which, in the illustrated embodiment, are of identical construction.
  • each stack or drive assembly comprises a power supply (not shown) that furnishes electrical energy through a radio frequency cable to a converter 34a wherein high frequency (typically 20 kHz) electrical energy is transduced into vibratory mechanical motion, preferably by a plurality of piezoelectric transducer devices.
  • the output of the converter 34a is amplified, in a booster assembly 35a, and the output end face of the booster 35a is secured by suitable means such as a bolt to the upper surface of ultrasonic horn 36a.
  • the components are configured and arranged so that an anti-node or near-maximum mechanical vibration amplitude is provided at the cutting edge 38a of the blade 37a.
  • Amplitudes of vibration may vary depending on the power and the tool design, however, with frequencies from about 20 kHz to about 40 kHz, the amplitudes of the cutting edges that have been useful will range generally from about 10 to about 50 microns. It is possible, however, that vibration amplitudes greater than these could be useful in the practice of the present invention.
  • blades 37a are secured to the horn 36a by a suitable means such as, for example, brazing or electron beam welding.
  • a suitable means such as, for example, brazing or electron beam welding.
  • at the lower portion of each blade is tapered and the corners 39a and 40a rounded to eliminate fracturing or cracking during operation.
  • lower support frame portion 31 has a plurality of elastomeric slitter in-feed belts 42 which overlie a support surface 43 having a plurality of longitudinal channels 43a.
  • channels 43a are separated by ridges 43b that serve as anvils for cutting edges 38a of blades 37a.
  • the elastomeric slitter infeed belts 42 are suitably guided and driven by a plurality of pulleys 44, 45, 46 and 47 in a known manner.
  • elastomeric slitter infeed belts 42 are, in the illustrated embodiment, shown as a plurality of separate belts spaced apart a distance sufficient to receive therebetween the cutting edge portions of the ultrasonically vibrating blades 37, the plurality of individual belts can be replaced by a continuous single belt.
  • a continuous moving slab of confectionery product is supplied to the slitting apparatus 30 in a known manner.
  • This slab can be in the form of a single layer or a composite slab formed by successively depositing a mass of confecrionery material such as nougat from a chill roll (not shown) onto a conveyor (not shown) and advancing that deposited material toward a station wherein a second confectionery material such as caramel is supplied from another chill roll to form a composite slab.
  • the slab is then passed through a cooling tunnel (not shown) and conveyed therefrom to a hold down roller 48 which is supported by a pair of brackets 49 and 51 in a known manner.
  • the slab of confectionery material is supplied to the location of the hold down roller 48 by a conveyor of any suitable type such as, for example, a steel belt conveyor which deposits the slab onto a transfer plate 52.
  • a steel belt conveyor affords the advantage of providing cooling at the bottom of the slab thereby facilitating release of the composite slab onto the transfer plate 52.
  • the cutting edges of the blades 37 are selectively positionable so that they collectively provide a common cutting angle and spacing with respect to the slab of confectionery material being supplied thereto.
  • This can, at least in part, be accompanied by mounting the individual ultrasonic stacks 33a-33d on a carrier plate 56 that is selectively adjustable for height and angle.
  • provisions can be made for separately adjusting the elevation and/or angle of each of the individual stacks. Regulation of these adjustments can be provided by known servo systems such as, for example, linear or rotary servos which can be electrically, hydraulically or pneumatically controlled.
  • the array of individual ultrasonic stacks 33a-33d can be adjusted for height and angle as illustratively shown in Fig. 2.
  • the ultrasonic stacks are supported on the carrier plate 56 which, in turn, is operatively mounted to a rack and pinion adjustment system that includes an upper geared rack 53, a lower geared rack 54 and a pinion gear 55.
  • the carrier plate 56 which is, in turn, fixed to a pivotally mounted stack positioning plate 57 secured to the inside surface of left side plate 32a of upper frame portion 32 and a like stack positioning plate on the inside surface of right side plate 32b of upper frame portion 32.
  • stack positioning plate 57 includes a pair of pins 58a and 59a and the stack positioning plate (not shown) which is secured to the inside surface of right side plate 32b includes like pins 58b and 59b which are respectively received in arcuate slots 61 and 63 in side plates 32a and 32b.
  • the ultrasonic stack positioning plate 57 as shown in Fig. 1, is pivotally fixed to upper frame support plate 32 by a pivot pin 60.
  • the ultrasonic stack positioning plate mounted to the inside surface of upper frame support plate 32b is pivotally mounted thereto by means of a pivot pin 62.
  • Figs. 6-13 illustrate ultrasonic slitter horns of various constructions and configurations which can be used in the practice of the present invention.
  • a composite slitting tool 70 which includes a half wave, low gain slitting horn which is adapted to be ultrasonically vibrated at a specific frequency depending on the dimensions of the horn which typically could be in the range of from about 20 kHz to about 40 kHz.
  • the composite horn includes an ultrasonic horn portion 71 and a plurality of symmetrically V-shaped double edged blades 72 which are secured to the horn portion by any suitable means such as, for example, brazing or electron beam welding.
  • composite horn 73 shown in Figs.
  • a half wave, high gain slitter horn which includes a horn portion 74 and a plurality of double edge V-shaped blades 76 secured to the horn portion in a similar fashion and is likewise adapted to be ultrasonically vibrated.
  • the blades are non-resonating, that is they vibrate in an axial direction by reason of the fact that they are attached to the face of the vibrating horn and there is no nodal point along the blades themselves. Since the embodiment shown in Figs. 6 and 7 is a so-called low gain horn, the blades thereof are vibrated at a lower amplitude than that achieved with the embodiment of Figs. 8 and 9 which is a so-called high gain horn which causes the blades to be vibrated at a higher output amplitude.
  • Figs. 10-13 illustrate two additional embodiments of slitter horns useful in the practice of the present invention. Both of these embodiments are, in the illustrated embodiment, depicted as being of integral or unitary construction. It will be appreciated, however, that the blades thereof can be separately formed and secured to the body of the mother horn in a composite fashion by suitable means such as brazing or electron beam welding. Both of these embodiments can be characterized as full wave, high gain horns with the embodiment of Figs. • 10 and 11 being particularly suited for vibrating at a specific ultrasonic frequency of approximately 40 kHz and the embodiment of Figs. 12 and 13 being particularly suitable for operating it at a specific ultrasonic frequency of approximately 20 kHz. In both of these embodiments, the cutting edges of the blades preferably are at the anti-nodal portion of slitter horn at which near maximum axial vibration is achieved.
  • the slitter horn 77 includes a main body portion 78 and a plurality of blades 79 integrally formed therewith.
  • the embodiment of Figs. 12 and 13 illustrate a slitter horn 81 having a main body portion 82 and a plurality of blades
  • the blades 79 of the embodiment of Figs. 10 and 11 and the blades 83 of Figs. 12 and 13 have respective cutting edges which are similar in configuration to the cutting edge 38a shown in Fig. 4.
  • the lower portion of each of the blades 79 and 83 is tapered and the respective corners thereof are rounded to eliminate fracturing or cracking during operation.
  • the cutting edges of the blades of the Figs. 10-13 embodiments are straight (i.e. not V-shaped) the vibrate at uniform amplitude of vibration along their entire working surfaces.
  • the slitter horn/blade assemblies of all of these embodiments can be composed of any suitable metal, it is preferable that they be formed of titanium alloys.
  • the mechanical properties of these alloys and their compatibility with food products combined with their desirable acoustic properties render them highly suitable for use in the present invention.
  • the blades themselves can be provided with a ceramic coating, a ceramic/Teflon coating, a titanium nitride coating or other suitable coating to enhance their operation.
  • slitter horns of Figs. 6-9 are mounted so that they are generally perpendicular to the plane of the slab of confectionery material supplied thereto while the blades of the slitter horns of Figs. 10-13 are preferably oriented with respect to the horizontal plane of the slab of confectionery material so that the longitudinal axis of each such blade is at an acute angle of from about 40° to about 60° with angles of approximately 45° being particularly preferred. Variations from and within these ranges can be made depending upon the thickness, composition and physical properties of the slab of confectionery material.
  • reference numeral 85 illustrates one form of slitter/slab contacting arrangement which is suitable in the practice of the present invention.
  • this arrangement includes a pulley 86 and flexible steel conveyor belt 87 on which a composite slab of confectionery material 88 is carried for contact with the cutting edge 38a of ultrasonically vibrating blade 37a.
  • the cutting edge 38a and its corner 40a are positioned so that they are in air gap 87 so that they penetrate the full thickness of slab 88 but are not in contact with the top surface of belt 87.
  • the slit product discharged on the downstream side of blade 38a comes in contact with a combination doctor blade-strip separation device 90 for peeling off and discharge of adjacent strips 88a and 88b onto alternate up ramps 90a and horizontal ramps 90b, respectively.
  • the thus formed slits 88a and 88b are then respectively transported for further processing by conveyor belts 91 and 92.
  • conveyor belt 94 is driven around an inner pulley 93 and conveyor belt 92 around an outer pulley 94.
  • Pulleys 93 and 94 co-rotate with each other and are powered by a suitable drive system which is not shown but the construction of which will be apparent to those skilled in this art.
  • a slitter infeed belt 97 is composed of a suitable flexible elastomeric material.
  • the profile of belt 97 preferably is embossed to ensure adequate grip with the composite slab 88 to feed to same through and past the cutting edge 38a of ultrasonically vibrating slitter blade 37a without the slab and slitted strips buckling or flaring.
  • Belt 97 is driven around a pulley 98 which, if desired, can be powered in a known manner.
  • a so-called dead plate 97a can be located on the underside of belt 97 adjacent to pulley 98 directly below cutting edge 38a of blade 37a.
  • a strip separation device 100 which includes alternate inclined and horizontal ramps 101 and 102 for direct discharge onto conveyors 91 and 92 and further processing of the thus-formed strips to provide a desired confectionery product.
  • a further embodiment of slitter/slab contacting arrangement is depicted by the reference number 103 which includes an infeed conveyor 97 and rotary anvil 99.
  • the composite slab 88 of confectionery product is discharged directly into the cutting edge 38a of slitter blade 37a and the strips formed thereby are then discharged onto separation device 100 for further processing as noted above.
  • the portions of the surface of rotary anvil 99 which comes in contact with the corners of the blades 37a are composed of a suitable material to avoid damage to the blade while the remaining portions of that surface can be suitably textured to maintain adequate grip with the bottom of the slab.
  • Figs. 18 and 19 respectively illustrate two embodiments of elastomeric embossed slitter infeed belt upper layers 97b and 97c which can be utilized for the belt 97 of the Figs. 15 and 16 slitter systems.
  • the embodiment of Fig. 18 is designated by the reference numeral 106 and includes a generally planar base surface 107 and a plurality of uniformly spaced generally rectangular projections 108 upwardly extending therefrom.
  • the embodiment of Fig. 19 is designated by the reference numeral 109 and includes a generally planar base surface 110 and a plurality of staggered generally circular upwardly extending projections ill.
  • the height of projections 108 and 111 are such as to raise the slab a sufficient height from the base surfaces 107 and 110, respectively, to permit full penetration of the slab by the cutting edges of the blades without scoring or otherwise damaging the belt.
  • the elastomeric belt 97b is carried on a flexible support base having a grooved or geared bottom surface 113 for cooperation with a timing gear 114.
  • the elastomeric belt 97c is carried on a flexible support base 115 having a V-shaped rib which is adapted to be received in the channels 43a of support surface 43 (Figs. 5 and 5A) .

Abstract

An apparatus (30) and method for ultrasonically energized slitting a slab of confectionery material wherein a slitting tool (33a) incorporates a plurality of slitting knives (37a) spaced apart in accordance with the desired width of the product, which strips are further processed by transverse cutting and/or molding and other processing steps such as chocolate enrobing to provide improved confectionery products.

Description

ULTRΆSONICΆLLY ACTIVATED CONTINUOUS SLITTER APPARATUS AND METHOD
Roberto A. Capodieci
BACKGROUND OF THE INVENTION The present invention relates generally to the confectionery processing, and more particularly, to the use of ultrasonically energized apparatus for slitting extended, continuous lengths of confectionery stock.
In one of its more preferred forms, the invention relates to a method and apparatus for longitudinally slitting a continuously moving slab of a composite confectionery product such as, for example, a composite slab having layers of nougat and caramel superimposed to form a wide slab. According to the process, the slab is formed by successively depositing a mass of a first confectionery product component, such as nougat, from a chill roll onto a conveyor, advancing the first confectionery product component formation thus created toward a station adjacent a second chill roll, at which a top layer of a second confectionery product component, such as caramel, is added to form the composite slab. The conveyor continues to advance the slab toward a cutting station at which a properly arranged, suitably adjusted array of ultrasonically energized slitters continuously slit the slab to provide a continuously moving array of spaced apart strips of confectionery product. These strips are subsequently formed into individual confectionery product segments by transverse cutting (ultrasonic or otherwise) and/or molding (ultrasonic or otherwise) . Depending on the intentions of the producer and the intended destination of the product, the cut individual shapes can be enrobed with a coating of chocolate. Thereafter, the individual finished products may be wrapped and boxed for sale and shipment.
An important aspect of the present invention is the design, construction and arrangement of a slitting tool of a desired configuration. Another aspect of the process relates to the manner of positioning the cutting edges of the slitting tool in arrays and the method of advancing the slabs so as to continuously slit the slab into a plurality of product strips.
Recently, it has been discovered that ultrasonically energized forming tools may be utilized to cut individual pieces of confectionery stock by transverse motion, wherein the stock is compressed between a support surface and a descending knife. In addition, ultrasonically energized product forming tools having a cavity shaped in accordance with the configuration of the product to be formed therewith have been found to be effective in simultaneously cutting and shaping an individual piece of confectionery stock from a leading edge of a strip of stock. This again involves compression and reforming of a piece of stock which is substantially captured or surrounded by the active surfaces of the tool.
The concept of slitting a continuous slab into plural strips, however, has presented problems and difficulties which, heretofore, have not been overcome by prior art slitters which commonly are in the form of rotary blades. For example, use of these rotary blade slitters have resulted in the build-up of product (particularly with soft and tacky confectionery products such as nougat and caramel layered slabs) which has necessitated frequent shutdown and washing, resulting in costly downtime. Efforts to solve this product build-up have involved the use of scrapers which require otherwise unnecessary personnel to monitor and remove the scraped product. Other efforts to solve this product build-up have involved the application of lubricants to the rotary blades which impart an undesirable slickness to the product that interferes which further processing such as chocolate enrobing and can produce a product of relatively short shelf life. Also, the performance of rotary blade slitters is particularly sensitive to product formulations and conditions, variations therein from narrow parameters can cause product jams. Additionally, rotary blade slitters can cause crunching of inclusions such as nuts and the like, leaving voids in the slab which, among other things, also interferes with chocolate enrobing. Accordingly, these prior art rotary blade slitter systems used in the production of confectionery products have created excessive scrap, produced reduced product yields and also suffered from related cleanliness or sanitation problems. The present invention succeeds in overcoming these shortcomings by providing a high quality, effective cutting action having a number of significant advantages and beneficial characteristics, including reliability, low cost operation and high production speeds. It is, therefore, an object of the present invention to provide an improved apparatus and process for slitting extended, continuous lengths of confectionery stock.
Another object of this invention is to provide an apparatus and process which utilizes an ultrasonically energized slitting tool for forming strips from a slab of confectionery material.
Another object of the present invention is to provide an apparatus and process for rapidly slitting a continuous slab of confectionery material into a plurality of adjacent strips of a desired width utilizing an ultrasonically energized slitting knives which do not suffer from excessive product build-up characteristic of prior art rotary blade slitters. Another object of the present invention is to provide an apparatus and method which utilize an ultrasonically energized slitting tool for forming a plurality of strips from a slab of confectionery stock which method and apparatus minimize the crunching and fragmentation of inclusions such as nuts and the like and produce product strips which are essentially free of voids.
Another object of the present invention is to provide an apparatus and method of slitting a slab of confectionery stock which accommodate a wide variation in product formulations, enabling such slitting to be efficiently accomplished with highly viscous and/or tacky ingredients such as are associated with lower calorie confectionery products. Another object of the present invention is to provide an apparatus and method for continuously slitting a slab of confectionery material into a plurality of strips which apparatus and method are more robust in that they provide greater flexibility in processing parameters and product formulations and conditions than are available with conventional rotary blade slitters.
The foregoing and other objects and advantages are achieved by providing an ultrasonically energized slitting tool which contacts a slab of confectionery material wherein slitting tool incorporates a plurality of slitting knives spaced apart in accordance with the desired width of the product steps which strips are further processed by transverse cutting and/or molding and other processing steps such as chocolate enrobing to provide improved confectionery products. The manner in which the foregoing and other objects and advantages are achieved in practice will become more apparent when reference is made to the following detailed description of the preferred embodiments of the invention set forth by way of example and shown in the accompanying drawings wherein like reference numerals indicate corresponding parts throughout.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a perspective view with portions broken away, showing certain important elements of a preferred form of apparatus of a present invention for slitting a continuous length of confectionery feedstock; • Fig. 2 is a side elevational view with portions broken away of the apparatus of Fig. 1;
Fig. 3 is a front view, partly diagrammatic in nature, showing an ultrasonically energized slitter tool used in the apparatus of Figs. 1 and 2; Fig. 4 is a side elevational view of the tool shown in Fig. 3;
Fig. 5 is a fragmentary front view of an array of ultrasonically energized slitter tool blades used in the apparatus of Figs. 1 and 2; Fig. 5A is an enlargement of a portion of Fig. 5 illustrating in cross-section the slitter feed belts and underlying support surface of the embodiment of Figs. 1-5;
Fig. 6 is a perspective view of an ultrasonically energized slitter horn used in the apparatus and method of the present invention;
Fig. 7 is a front view of the slitter horn shown in Fig. 6;
Fig. 8 is a perspective view of another embodiment of an ultrasonically energized slitter horn used in the apparatus and method of the present invention; Fig. 9 is a front view of the slitter horn shown in Fig. 8;
Fig. 10 is a perspective view of another embodiment of an ultrasonically energized slitter horn used in the apparatus and method of the present invention;
Fig. 11 is a front view of the slitter horn shown in Fig. 10;
Fig. 12 is a perspective view of another embodiment of an ultrasonically energized slitter horn used in the apparatus and method of the present invention;
Fig. 13 is a front view of the slitter horn shown in Fig. 12;
Fig. 14 is a fragmentary diagrammatic side view illustrating a portion of an ultrasonically energized slitter tool in operation slitting a slab of confectionery stock in accordance with the present invention;
Fig. 14A is an enlargement of a portion of Fig. 14 illustrating in greater detail the operation of the slitter tool of that embodiment; Fig. 15 is a fragmentary diagrammatic side view illustrating a portion of an ultrasonically energized slitter tool in operation slitting a slab of confectionery stock in accordance with another embodiment of the present invention; Fig. 16 is a fragmentary diagrammatic side view illustrating a portion of an ultrasonically energized slitter tool in operation slitting a slab of confectionery stock in accordance with a further embodiment of the present invention. Fig. 17 is a fragmentary perspective view illustrating a strip separation device used in the present invention;
Fig. 18 is a fragmentary perspective view of one embodiment of slitter feed belt for supplying a slab of confectionery feed stock to an ultrasonically energized slitter tool in accordance with the present invention; and.
Fig. 19 is a fragmentary perspective view of another embodiment of slitter feed belt for supplying a slab of confectionery feed stock to an ultrasonically energized slitter tool in the apparatus of Figs. 1-5.
DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION The apparatus of the present invention is capable of being embodied in a number of forms, and the inventive process includes several methods all falling within the general ambit of the inventive concept.
Accordingly, by way of example only and not by way of limitation, a description will be given of several different forms of apparatus, each capable of practicing the invention and each having individual components capable of being varied in constructional details and arrangements. Illustrative methods, the steps of which may also be modified or altered somewhat in use, are also described herein.
Referring to the drawings. Figs. 1-5 show the invention embodied in a confectionery product slitting apparatus generally designated by the reference numeral 30 which includes a lower support frame portion 31, an upper frame portion 32 and an array of ultrasonic stacks or drive assemblies 33a-33d which, in the illustrated embodiment, are of identical construction. As best shown in Figs. 3 and 4, each stack or drive assembly comprises a power supply (not shown) that furnishes electrical energy through a radio frequency cable to a converter 34a wherein high frequency (typically 20 kHz) electrical energy is transduced into vibratory mechanical motion, preferably by a plurality of piezoelectric transducer devices. The output of the converter 34a is amplified, in a booster assembly 35a, and the output end face of the booster 35a is secured by suitable means such as a bolt to the upper surface of ultrasonic horn 36a. Preferably, in this assembly, the components are configured and arranged so that an anti-node or near-maximum mechanical vibration amplitude is provided at the cutting edge 38a of the blade 37a. Amplitudes of vibration may vary depending on the power and the tool design, however, with frequencies from about 20 kHz to about 40 kHz, the amplitudes of the cutting edges that have been useful will range generally from about 10 to about 50 microns. It is possible, however, that vibration amplitudes greater than these could be useful in the practice of the present invention.
In this illustrated embodiment blades 37a are secured to the horn 36a by a suitable means such as, for example, brazing or electron beam welding. Preferably, at the lower portion of each blade is tapered and the corners 39a and 40a rounded to eliminate fracturing or cracking during operation.
As best shown in Figs. 1 and 2, lower support frame portion 31 has a plurality of elastomeric slitter in-feed belts 42 which overlie a support surface 43 having a plurality of longitudinal channels 43a. As best shown in Fig. 5A, channels 43a are separated by ridges 43b that serve as anvils for cutting edges 38a of blades 37a. The elastomeric slitter infeed belts 42 are suitably guided and driven by a plurality of pulleys 44, 45, 46 and 47 in a known manner. In this regard, it will be appreciated that while elastomeric slitter infeed belts 42 are, in the illustrated embodiment, shown as a plurality of separate belts spaced apart a distance sufficient to receive therebetween the cutting edge portions of the ultrasonically vibrating blades 37, the plurality of individual belts can be replaced by a continuous single belt.
A continuous moving slab of confectionery product is supplied to the slitting apparatus 30 in a known manner. This slab can be in the form of a single layer or a composite slab formed by successively depositing a mass of confecrionery material such as nougat from a chill roll (not shown) onto a conveyor (not shown) and advancing that deposited material toward a station wherein a second confectionery material such as caramel is supplied from another chill roll to form a composite slab. The slab is then passed through a cooling tunnel (not shown) and conveyed therefrom to a hold down roller 48 which is supported by a pair of brackets 49 and 51 in a known manner. In the illustrated embodiment, the slab of confectionery material is supplied to the location of the hold down roller 48 by a conveyor of any suitable type such as, for example, a steel belt conveyor which deposits the slab onto a transfer plate 52. A steel belt conveyor affords the advantage of providing cooling at the bottom of the slab thereby facilitating release of the composite slab onto the transfer plate 52.
In accordance with an important aspect of the present invention, the cutting edges of the blades 37 are selectively positionable so that they collectively provide a common cutting angle and spacing with respect to the slab of confectionery material being supplied thereto. This can, at least in part, be accompanied by mounting the individual ultrasonic stacks 33a-33d on a carrier plate 56 that is selectively adjustable for height and angle. Additionally and/or alternatively, provisions can be made for separately adjusting the elevation and/or angle of each of the individual stacks. Regulation of these adjustments can be provided by known servo systems such as, for example, linear or rotary servos which can be electrically, hydraulically or pneumatically controlled.
If desired, the array of individual ultrasonic stacks 33a-33d can be adjusted for height and angle as illustratively shown in Fig. 2. As shown, the ultrasonic stacks are supported on the carrier plate 56 which, in turn, is operatively mounted to a rack and pinion adjustment system that includes an upper geared rack 53, a lower geared rack 54 and a pinion gear 55. The carrier plate 56 which is, in turn, fixed to a pivotally mounted stack positioning plate 57 secured to the inside surface of left side plate 32a of upper frame portion 32 and a like stack positioning plate on the inside surface of right side plate 32b of upper frame portion 32. As shown, stack positioning plate 57 includes a pair of pins 58a and 59a and the stack positioning plate (not shown) which is secured to the inside surface of right side plate 32b includes like pins 58b and 59b which are respectively received in arcuate slots 61 and 63 in side plates 32a and 32b. The ultrasonic stack positioning plate 57 as shown in Fig. 1, is pivotally fixed to upper frame support plate 32 by a pivot pin 60. Correspondingly, the ultrasonic stack positioning plate mounted to the inside surface of upper frame support plate 32b is pivotally mounted thereto by means of a pivot pin 62.
Horizontal adjustment of the entire assembly is provided by a pair of gears 64 and 66 which ride on a geared rack 65 as shown in Fig. 2. In particular, when gear 66 is in the position illustrated in Fig. 2, the assembly is locked. As shown, gear 64 is mounted on an adjustment shaft 67. Accordingly, when gear 66 is rotated into a position wherein it overlies gear 64, the assembly can be moved by rotating adjustment shaft 67 which, in turn, moves the assembly forward or back along the rack 65 as desired.
Figs. 6-13 illustrate ultrasonic slitter horns of various constructions and configurations which can be used in the practice of the present invention. Referring to Figs. 6 and 7, a composite slitting tool 70 which includes a half wave, low gain slitting horn which is adapted to be ultrasonically vibrated at a specific frequency depending on the dimensions of the horn which typically could be in the range of from about 20 kHz to about 40 kHz. As shown, the composite horn includes an ultrasonic horn portion 71 and a plurality of symmetrically V-shaped double edged blades 72 which are secured to the horn portion by any suitable means such as, for example, brazing or electron beam welding. Correspondingly, composite horn 73 shown in Figs. 8 and 9 is a half wave, high gain slitter horn which includes a horn portion 74 and a plurality of double edge V-shaped blades 76 secured to the horn portion in a similar fashion and is likewise adapted to be ultrasonically vibrated. In both of these embodiments, the blades are non-resonating, that is they vibrate in an axial direction by reason of the fact that they are attached to the face of the vibrating horn and there is no nodal point along the blades themselves. Since the embodiment shown in Figs. 6 and 7 is a so-called low gain horn, the blades thereof are vibrated at a lower amplitude than that achieved with the embodiment of Figs. 8 and 9 which is a so-called high gain horn which causes the blades to be vibrated at a higher output amplitude.
Figs. 10-13 illustrate two additional embodiments of slitter horns useful in the practice of the present invention. Both of these embodiments are, in the illustrated embodiment, depicted as being of integral or unitary construction. It will be appreciated, however, that the blades thereof can be separately formed and secured to the body of the mother horn in a composite fashion by suitable means such as brazing or electron beam welding. Both of these embodiments can be characterized as full wave, high gain horns with the embodiment of Figs. 10 and 11 being particularly suited for vibrating at a specific ultrasonic frequency of approximately 40 kHz and the embodiment of Figs. 12 and 13 being particularly suitable for operating it at a specific ultrasonic frequency of approximately 20 kHz. In both of these embodiments, the cutting edges of the blades preferably are at the anti-nodal portion of slitter horn at which near maximum axial vibration is achieved.
Referring to Figs. 10 and 11, the slitter horn 77 includes a main body portion 78 and a plurality of blades 79 integrally formed therewith. Correspondingly, the embodiment of Figs. 12 and 13 illustrate a slitter horn 81 having a main body portion 82 and a plurality of blades
83. As will be noted, the blades 79 of the embodiment of Figs. 10 and 11 and the blades 83 of Figs. 12 and 13 have respective cutting edges which are similar in configuration to the cutting edge 38a shown in Fig. 4. As was the case with that embodiment, the lower portion of each of the blades 79 and 83 is tapered and the respective corners thereof are rounded to eliminate fracturing or cracking during operation. Also, as will be appreciated, since the cutting edges of the blades of the Figs. 10-13 embodiments are straight (i.e. not V-shaped) the vibrate at uniform amplitude of vibration along their entire working surfaces.
While the slitter horn/blade assemblies of all of these embodiments can be composed of any suitable metal, it is preferable that they be formed of titanium alloys. The mechanical properties of these alloys and their compatibility with food products combined with their desirable acoustic properties render them highly suitable for use in the present invention. If desired, the blades themselves can be provided with a ceramic coating, a ceramic/Teflon coating, a titanium nitride coating or other suitable coating to enhance their operation.
In accordance with an important aspect of the present invention, slitter horns of Figs. 6-9 are mounted so that they are generally perpendicular to the plane of the slab of confectionery material supplied thereto while the blades of the slitter horns of Figs. 10-13 are preferably oriented with respect to the horizontal plane of the slab of confectionery material so that the longitudinal axis of each such blade is at an acute angle of from about 40° to about 60° with angles of approximately 45° being particularly preferred. Variations from and within these ranges can be made depending upon the thickness, composition and physical properties of the slab of confectionery material.
Referring to Figs. 14 and 14A, reference numeral 85 illustrates one form of slitter/slab contacting arrangement which is suitable in the practice of the present invention. As shown, this arrangement includes a pulley 86 and flexible steel conveyor belt 87 on which a composite slab of confectionery material 88 is carried for contact with the cutting edge 38a of ultrasonically vibrating blade 37a. As best shown in Fig. 14A, the cutting edge 38a and its corner 40a are positioned so that they are in air gap 87 so that they penetrate the full thickness of slab 88 but are not in contact with the top surface of belt 87.
The slit product discharged on the downstream side of blade 38a comes in contact with a combination doctor blade-strip separation device 90 for peeling off and discharge of adjacent strips 88a and 88b onto alternate up ramps 90a and horizontal ramps 90b, respectively. The thus formed slits 88a and 88b are then respectively transported for further processing by conveyor belts 91 and 92. As shown, conveyor belt 94 is driven around an inner pulley 93 and conveyor belt 92 around an outer pulley 94. Pulleys 93 and 94 co-rotate with each other and are powered by a suitable drive system which is not shown but the construction of which will be apparent to those skilled in this art.
An alternate embodiment of slitter/slab contacting arrangement is designated in Fig. 15 by the reference numeral 96. In this arrangement, a slitter infeed belt 97 is composed of a suitable flexible elastomeric material. As best shown in Figs. 18 and 19, the profile of belt 97 preferably is embossed to ensure adequate grip with the composite slab 88 to feed to same through and past the cutting edge 38a of ultrasonically vibrating slitter blade 37a without the slab and slitted strips buckling or flaring. Belt 97 is driven around a pulley 98 which, if desired, can be powered in a known manner. If desired, a so-called dead plate 97a can be located on the underside of belt 97 adjacent to pulley 98 directly below cutting edge 38a of blade 37a. As more fully shown in Fig. 17, adjacent strips of confectionery products are discharged onto a strip separation device 100 which includes alternate inclined and horizontal ramps 101 and 102 for direct discharge onto conveyors 91 and 92 and further processing of the thus-formed strips to provide a desired confectionery product.
A further embodiment of slitter/slab contacting arrangement is depicted by the reference number 103 which includes an infeed conveyor 97 and rotary anvil 99. As shown, the composite slab 88 of confectionery product is discharged directly into the cutting edge 38a of slitter blade 37a and the strips formed thereby are then discharged onto separation device 100 for further processing as noted above. The portions of the surface of rotary anvil 99 which comes in contact with the corners of the blades 37a are composed of a suitable material to avoid damage to the blade while the remaining portions of that surface can be suitably textured to maintain adequate grip with the bottom of the slab. The separation device designated by the reference numeral 100 of Figs. 15 and 16, shown in greater detail in Fig. 17, includes a plurality of horizontal ramps 101 which are spaced between inclined ramps 102 so that alternate strips of slit confectionery product will be discharged onto conveyors 91 and 92. In this manner, the dimensional spacing between the adjacent strips is increased immediately after the formation thereof in the slitting station thereby preventing their being re-adhered to each other during further processing.
Figs. 18 and 19 respectively illustrate two embodiments of elastomeric embossed slitter infeed belt upper layers 97b and 97c which can be utilized for the belt 97 of the Figs. 15 and 16 slitter systems. As shown, the embodiment of Fig. 18 is designated by the reference numeral 106 and includes a generally planar base surface 107 and a plurality of uniformly spaced generally rectangular projections 108 upwardly extending therefrom. Correspondingly, the embodiment of Fig. 19 is designated by the reference numeral 109 and includes a generally planar base surface 110 and a plurality of staggered generally circular upwardly extending projections ill. The height of projections 108 and 111 are such as to raise the slab a sufficient height from the base surfaces 107 and 110, respectively, to permit full penetration of the slab by the cutting edges of the blades without scoring or otherwise damaging the belt.
As shown in the Fig. 18 embodiment, the elastomeric belt 97b is carried on a flexible support base having a grooved or geared bottom surface 113 for cooperation with a timing gear 114. In the Fig. 19 embodiment, the elastomeric belt 97c is carried on a flexible support base 115 having a V-shaped rib which is adapted to be received in the channels 43a of support surface 43 (Figs. 5 and 5A) . It will thus be seen that the present invention provides several methods and apparatus for slitting slabs of confectionery products and that representative embodiments of this invention have been described by way of example. It will be appreciated that variations to these described forms of apparatus and method will occur to those skilled in the art and that such variations and changes may be made to the method and apparatus features of this invention without departing from this invention or the scope of the appended claims.

Claims

I CLAIM:
1. A method of forming individual strips of confectionery product, said method including the steps of: providing an ultrasonic slitting tool, having at least a pair of cutting edges, said tool having node and anti-node portions, said cutting edges being spaced apart a given distance equal to the width of a strip to be formed therewith; forming a generally planar and continuous slab of confectionery material; continuously advancing said slab along a given path toward a slitting station; locating said ultrasonic slitting tool in said slitting station; energizing said slitting tool to cause said cutting edges of said slitting tool to vibrate through a given amplitude at a ultrasonic frequency; contacting said slab with said energized slitting tool to form at least one strip of confectionery stock from said slab; and, continuously advancing said strip along said given path past said slitting station for further processing of said strip of confectionery product.
2. The method of claim 1 wherein said tool is ultrasonically vibrated at a frequency of at least ten kHz.
3. The method of claim 1 wherein said tool is ultrasonically vibrated at a frequency of at least about 20 kHz to about 40 kHz.
4. The method of claim 1 wherein the cutting edges of said tool are oriented at an angle of from about 40┬░ to about 60┬░ with respect to the horizontal plane of said slab.
5. The method of claim 1 wherein the amplitude of vibration of the cutting edges of said tool is from about 10 to about 50 microns.
6. The method of claim 1 wherein the amplitude of vibration of the cutting edges of said tool is from about 28 to about 35 microns.
7. The method of claim 1 wherein said slitting tool includes at least three cutting edges which form at least a pair of adjacent strips of confectionery product, said method further comprising the step of increasing the dimensional spacing between said adjacent strips immediately after the formation thereof in said slitting station.
8. The method of claim 1 wherein said slitting tool includes a horn having integrally formed blades and said cutting edges are formed on said blades.
9. The method of claim 8 wherein the said cutting edges of said blades are at said anti-node portion of said tool.
10. The method of claim 1 wherein said slitting tool vibrates in an axial direction upon the energization thereof .
11. The method of claim 1 wherein said slitting tool includes a horn having separately formed blades which are fixed to said horn and said cutting edges are formed on said blades.
12. The method of claim 11 wherein said blades are non-resonant and vibrate in response to the ultrasonic vibration of said horn when said tool is energized.
13. An apparatus for continuous slitting of a slab of confectionery material, said apparatus comprising: a slitting station; an input conveyor for supplying a continuous slab of confectionery stock to said slitting station; and. an ultrasonic stack located in said slitting station, said ultrasonic stack including an energy converter for changing electrical energy into ultrasonic vibration, a booster for increasing the amplitude of said vibration, and an ultrasonic slitting tool which includes an ultrasonic horn having at least a pair of parallel cutting edges spaced apart a given distance equal to the width of a strip to be formed in said slab, said cutting edges being positioned to contact said slab of confectionery material as it is passed through said slitting station.
14. The apparatus of claim 13 wherein said horn and said at least a pair of parallel cutting edges are integrally formed.
15. The apparatus of claim 13 wherein said at least a pair of cutting edges are formed in separate blades which are fixed to said horn.
16. The apparatus of claim 13 wherein said input conveyor comprises a plurality of separate conveyor strips which are spaced apart at a sufficient distance to permit said cutting edges to be received therebetween.
17. The apparatus of claim 13 wherein said slitting tool includes at least three cutting edges which are spaced and positioned to form at least a pair of adjacent strips of confectionery material, said apparatus further comprising means for increasing the dimensional spacing between adjacent strips immediately after the formation thereof in said slitting station.
18. The apparatus of claim 13 wherein each of said cutting edges is oriented at an acute angle of from about 40┬░ to about 60┬░ with respect to the plane of said input conveyor.
19. The apparatus of claim 13 wherein a plurality of said cutting edges are included in each of a plurality of ganged ultrasonic stacks.
20. The apparatus of claim 19 wherein each of said cutting edges is formed on a slitter blade which is oriented at an acute angle of about 45┬░ with respect to the plane of said input conveyor.
PCT/US1998/027740 1997-12-31 1998-12-29 Ultrasonically activated continuous slitter apparatus and method WO1999033356A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE69842194T DE69842194D1 (en) 1997-12-31 1998-12-29 ULTRASONICALLY ACTIVATED CONTINUOUS WORKING COLUMN DEVICE AND METHOD
AT98964993T ATE502529T1 (en) 1997-12-31 1998-12-29 ULTRASONIC ACTIVATED CONTINUOUSLY OPERATING SPLITTING DEVICE AND METHOD
AU20195/99A AU2019599A (en) 1997-12-31 1998-12-29 Ultrasonically activated continuous slitter apparatus and method
EP98964993A EP1043939B1 (en) 1997-12-31 1998-12-29 Ultrasonically activated continuous slitter apparatus and method
US09/581,982 US6368647B1 (en) 1998-12-29 1998-12-29 Ultrasonically activated continuous slitter apparatus and method
CA002316215A CA2316215C (en) 1997-12-31 1998-12-29 Ultrasonically activated continuous slitter apparatus and method
US10/001,494 US7141259B2 (en) 1998-12-29 2001-10-31 Ultrasonically activated continuous slitter apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/001,802 US5928695A (en) 1997-12-31 1997-12-31 Ultrasonically activated continuous slitter apparatus and method
US09/001,802 1997-12-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/581,982 Continuation US6368647B1 (en) 1998-12-29 1998-12-29 Ultrasonically activated continuous slitter apparatus and method

Publications (1)

Publication Number Publication Date
WO1999033356A1 true WO1999033356A1 (en) 1999-07-08

Family

ID=21697906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/027740 WO1999033356A1 (en) 1997-12-31 1998-12-29 Ultrasonically activated continuous slitter apparatus and method

Country Status (8)

Country Link
US (1) US5928695A (en)
EP (1) EP1043939B1 (en)
AT (1) ATE502529T1 (en)
AU (1) AU2019599A (en)
CA (1) CA2316215C (en)
DE (1) DE69842194D1 (en)
ES (1) ES2360664T3 (en)
WO (1) WO1999033356A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1935592A1 (en) * 2006-12-19 2008-06-25 Dr. Wolf & Partner GmbH Ingenieurbüro für Lebensmitteltechnik Device for cutting food with ultrasound and ultrasonically activated cutting tools

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5871783A (en) 1996-08-22 1999-02-16 Mars, Incorporated Apparatus for ultrasonically forming confectionery products
US5861185A (en) 1996-08-22 1999-01-19 Mars, Incorporated Ultrasonic forming of confectionery products
US5871793A (en) 1996-11-27 1999-02-16 Mars Incorporated Puffed cereal cakes
US5846584A (en) 1997-04-30 1998-12-08 Mars, Incorporated Apparatus and method for forming cereal food products
US20020127310A1 (en) * 1998-12-07 2002-09-12 Capodieci Roberto A. Cereal food product and method
US6368647B1 (en) * 1998-12-29 2002-04-09 Mars, Incorporated Ultrasonically activated continuous slitter apparatus and method
GB9926998D0 (en) * 1999-11-15 2000-01-12 Nestle Sa Ultrasonic cutting system
US6574944B2 (en) * 2001-06-19 2003-06-10 Mars Incorporated Method and system for ultrasonic sealing of food product packaging
US6655948B2 (en) 2001-08-31 2003-12-02 Mars, Incorporated System of ultrasonic processing of pre-baked food product
US6635292B2 (en) 2001-10-26 2003-10-21 Mars, Incorporated Ultrasonic rotary forming of food products
US20040134327A1 (en) * 2002-11-20 2004-07-15 Roberto Capodieci Apparatus and method for shaped cutting and slitting of food products
US20070199423A1 (en) * 2006-01-20 2007-08-30 Roberto Capodieci Apparatus and method for ultrasonic cutting
US8268374B2 (en) * 2008-08-18 2012-09-18 Creative Resonance, Inc. Pet food and process of manufacture
CN109093717B (en) * 2018-08-13 2020-12-08 芜湖福路特机械有限公司 Prevent accumulational fruit edge-to-edge cutting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500280A (en) * 1982-07-13 1985-02-19 Legrand Vibration-aided feed device for a molding apparatus
US5667824A (en) * 1994-03-09 1997-09-16 The Wm. Wrigley Jr. Company Method and apparatus for forming miniature size confectionery products

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB672688A (en) * 1948-12-02 1952-05-28 Alan Thurburn Scott Improvements relating to the manufacture of confectionery
DE3529686A1 (en) * 1985-08-20 1987-02-26 Fein C & E Cutting device for cutting elastic materials
FR2620071B1 (en) * 1987-09-07 1996-01-12 Mecasonic Sa DEVICE FOR ULTRA-SOUND CUTTING OF FROZEN FOOD PRODUCTS
GB2270025A (en) * 1992-08-28 1994-03-02 Nestle Sa Ultrasonic cutting
ES2140714T3 (en) * 1994-09-28 2000-03-01 Unilever Nv ULTRASONIC CUTTING PROCEDURE.
GB2299046A (en) * 1995-03-21 1996-09-25 Nestle Sa Ultrasonic cutting device
CH691023A5 (en) * 1996-06-17 2001-04-12 Soremartec Sa Food product cutting apparatus e.g. for layered sponge cake

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500280A (en) * 1982-07-13 1985-02-19 Legrand Vibration-aided feed device for a molding apparatus
US5667824A (en) * 1994-03-09 1997-09-16 The Wm. Wrigley Jr. Company Method and apparatus for forming miniature size confectionery products

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1935592A1 (en) * 2006-12-19 2008-06-25 Dr. Wolf & Partner GmbH Ingenieurbüro für Lebensmitteltechnik Device for cutting food with ultrasound and ultrasonically activated cutting tools

Also Published As

Publication number Publication date
EP1043939A4 (en) 2004-10-06
CA2316215A1 (en) 1999-07-08
EP1043939B1 (en) 2011-03-23
CA2316215C (en) 2006-09-05
ES2360664T3 (en) 2011-06-08
EP1043939A1 (en) 2000-10-18
DE69842194D1 (en) 2011-05-05
ATE502529T1 (en) 2011-04-15
AU2019599A (en) 1999-07-19
US5928695A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
US6368647B1 (en) Ultrasonically activated continuous slitter apparatus and method
US5928695A (en) Ultrasonically activated continuous slitter apparatus and method
US5768970A (en) Ultrasonic cutting system
US5819615A (en) Cutting process
US6530768B1 (en) Ultrasonic cutting system
EP1317881B1 (en) Method and apparatus for producing shredded cheese
US20100011922A1 (en) Apparatus and method for shaped cutting and slitting of food products
JP2003517820A (en) Ultrasonic full width theta
CA2317340A1 (en) Method and apparatus for processing an aerated confectionery foam rope
MXPA01003034A (en) System and method for forming plastic articles.
US5205777A (en) Process and apparatus for processing meat
US20070199423A1 (en) Apparatus and method for ultrasonic cutting
US20200324430A1 (en) Cutting-off machine for the cutting of logs of sheet material and relative cutting method
US4656908A (en) Apparatus and method for continuously cutting shredded grain product
EP3311965B1 (en) Cutting-off machine for the cutting of logs of sheet material and relative cutting method
JPH03277497A (en) Ultrasonic cutting device for kind of bread, processed meat product and the like
AU2014239881B2 (en) Cutter having varied cavity draft angle
US6159518A (en) Process and wire assembly for separating dough sheet from rotating roller surface
EP0943405A2 (en) Ultrasonic cutting device
JP2565393Y2 (en) Ultrasonic cutting equipment for bread and meat storage products
JPH0965833A (en) Production of chewing gum and device used therefor
US20230148561A1 (en) Apparatus and method for longitudinally cutting a ribbon of food, in particular a ribbon of cheese, into strips
JP2000245334A (en) Crust shaver
JP2001047397A (en) Method and device for cutting of molding having attaching property
JP2001062782A (en) Multi-bladed cutting device, method for removing cut product, and manufacture of cut product

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2316215

Country of ref document: CA

Ref country code: CA

Ref document number: 2316215

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1998964993

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 09581982

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998964993

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642