WO1999035988A1 - Electrosurgical device for sphincter treatment - Google Patents

Electrosurgical device for sphincter treatment Download PDF

Info

Publication number
WO1999035988A1
WO1999035988A1 PCT/US1999/000725 US9900725W WO9935988A1 WO 1999035988 A1 WO1999035988 A1 WO 1999035988A1 US 9900725 W US9900725 W US 9900725W WO 9935988 A1 WO9935988 A1 WO 9935988A1
Authority
WO
WIPO (PCT)
Prior art keywords
expandable member
expandable
coupled
electrode
expansion medium
Prior art date
Application number
PCT/US1999/000725
Other languages
French (fr)
Inventor
Stuart D. Edwards
Original Assignee
Conway-Stuart Medical, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conway-Stuart Medical, Inc. filed Critical Conway-Stuart Medical, Inc.
Priority to AU21142/99A priority Critical patent/AU2114299A/en
Publication of WO1999035988A1 publication Critical patent/WO1999035988A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00553Sphincter

Definitions

  • This invention relates generally to an apparatus and method for the treatment of sphincters, and more specifically to an apparatus and method that treat esophageal sphincters.
  • Gastroesophageal reflux disease is a common gastroesophageal disorder in which the stomach contents are ejected into the lower esophagus due to a dysfunction of the lower esophageal sphincter (LES). These contents are highly acidic and potentially injurious to the esophagus resulting in a number of possible complications of varying medical severity.
  • the reported incidence of GERD in the U.S. is as high as 10% of the population (Castell DO; Johnston BT:
  • Gastroesophageal Reflux Disease ' Current Strategies For Patient Management. Arch Fam Med, 5(4):221-7; (1996 April)).
  • Acute symptoms of GERD include heartburn, pulmonary disorders and chest pain.
  • GERD subjects the esophagus to ulcer formation, or esophagitis and may result in more severe complications including esophageal obstruction, significant blood loss and perforation of the esophagus. Severe esophageal ulcerations occur in 20-30% of patients over age 65. Moreover,
  • GERD causes adenocarcinoma, or cancer of the esophagus, which is increasing in incidence faster than any other cancer (Reynolds JC: Influence Of Pathophysiology, Severity, And Cost On The Medical Management Of Gastroesophageal Reflux Disease. Am J Health Syst Pharm, 53(22 Suppl 3):S5- 12 (1996 Nov l5)).
  • Laparoscopic Nissen fundoplication reported by Dallemagne et al. Surgical Laparoscopy and Endoscopy, Vol. 1, No. 3, (1991), pp. 138-43 and by Hindler et al. Surgical Laparoscopy and Endoscopy, Vol. 2, No. 3, (1992), pp. 265-272, involves essentially the same steps as Nissen fundoplication with the exception that surgical manipulation is performed through a plurality of surgical cannula introduced using trocars inserted at various positions in the abdomen.
  • an object of the invention is to provide an apparatus and method for the treatment of GERD.
  • Another object of the invention is to provide an apparatus and method to tighten the LES.
  • a further other object of the invention is to provide an apparatus and method to reduce the frequency of spontaneous relaxation and opening of the LES.
  • Yet another object of the invention is to provide an apparatus and method to reduce the frequency and severity of gastroesophageal reflux events.
  • an apparatus that includes a first expandable member that is expandable by an expansion medium.
  • the first expandable member includes an exterior and a plurality of apertures.
  • the expansion medium is released from the first expandable member when a sufficient pressure is applied to the expansion medium housed in an interior of the first expandable member.
  • a second expandable member is positioned at least partially adjacent to the first expandable member.
  • the second expandable member is configured to receive at least a portion of the expansion medium from the interior of the first expandable member.
  • An electromagnetic energy delivery device is coupled to one of the first or second expandable members and is configured to be coupled to a power source.
  • the first and second expandable members are sized to be expanded sufficiently to open a sphincter.
  • FIG. 1 is an illustrated lateral view of the upper Gl tract including the esophagus and lower esophageal sphincter and the positioning of the GERD treatment apparatus of the present invention the lower esophageal sphincter.
  • FIG. 2 is a lateral view of the present illustrating apertures in the expandable member.
  • FIG. 3 illustrates a lateral view of an embodiment of the invention that includes two expandable members and an electrode coupled to a power source.
  • FIG. 4 illustrates a lateral view of a proximal fitting and distal segments of an embodiment of the invention.
  • FIG. 5 illustrates a lateral view of the deflection mechanism of the invention.
  • FIG. 6A illustrates a lateral view of apertures in the expandable member and conforming member of the invention.
  • FIG. 6B illustrates a lateral view of a microporous membrane used in the fabrication of the expandable member and conforming members of the invention.
  • FIG. 7 is a lateral view illustrating the use of the deflection mechanism to deflect the expandable member of the present invention.
  • FIG. 8 is a lateral view illustrating the use of electrolytic solution to create an enhanced RF electrode.
  • FIG. 9A is a lateral view illustrating a radial distribution of electrodes on the expandable member of the invention.
  • FIG. 9B is a lateral view illustrating a longitudinal distribution of electrodes on the expandable member of the invention.
  • FIG. 9C is a lateral view illustrating a spiral distribution of electrodes on the expandable member of the invention.
  • FIG. 10 is a lateral view illustrating the placement of electrodes on the distal segment of an embodiment the invention.
  • FIG. 11 is a lateral view illustrating the placement of needle electrodes on the expandable member of an embodiment the invention.
  • FIG. 12 is a lateral view illustrating the deployment of needle electrodes into the smooth muscle of the LES.
  • FIG. 13 is a lateral view illustrating the position of needle electrodes in the distal segment of the expandable member.
  • FIG. 14 is a flow chart illustrating the GERD treatment method of the current invention.
  • FIG. 15 A-C are lateral views which illustrate a technique for proper positioning of the GERD treatment apparatus in the LES.
  • FIG. 16 is a lateral view of sphincter smooth muscle tissue illustrating electromagnetic foci and pathways for the origination and conduction of aberrant electrical signals in the smooth muscle of the lower esophageal sphincter.
  • FIG. 17 is a lateral view illustrating a zone of electrodes of the current invention that comprises a flexible circuit that facilitates contact with the lower esophageal sphincter.
  • FIG. 18 is a lateral view of the esophageal wall illustrating the infiltration of tissue healing cells into a lesion in the smooth tissue of a esophageal sphincter following treatment with the GERD treatment apparatus of the present invention.
  • FIG. 19 is a view similar to that of FIG. 18 illustrating shrinkage of the lesion site caused by cell infiltration.
  • FIG. 20 is a lateral view of the esophageal wall illustrating the preferred placement of lesions in the smooth muscle layer of a esophageal sphincter.
  • FIG. 21 is a lateral view illustrating the creation of zones of decreased porosity by sealed conforming members of an embodiment of the present invention.
  • FIG. 22 is a lateral view illustrating the ultrasound transducer, ultrasound lens and ultrasound power source of an embodiment of the present invention.
  • FIG. 23 is a lateral view of the esophageal wall illustrating various patterns of lesions created by the apparatus of the present invention.
  • FIG. 24 is a lateral view of the esophageal wall illustrating the delivery of cooling fluid to the electrode-tissue interface and the creation of cooling zones.
  • FIG. 25 depicts the flow path, fluid connections and control unit employed to deliver fluid to the electrode-tissue interface and electrodes.
  • FIG. 26 is a lateral view illustrating the placement of cooling apertures adjacent to electrodes in the expandable member.
  • FIG. 27 depicts the flow path, fluid connections and control unit employed to deliver fluid to the RF electrodes.
  • FIG. 28 is an enlarged lateral view illustrating the placement of sensors on the expandable member.
  • FIG. 29 depicts a block diagram of the feed back control system that can be used with the GERD treatment apparatus as shown in FIG. 3.
  • FIG. 30 depicts a block diagram of an analog amplifier, analog multiplexer and microprocessor used with the feedback control system of FIG. 29.
  • FIG. 31 depicts a block diagram of the operations performed in the feedback control system depicted in FIG. 29.
  • one embodiment of GERD treatment apparatus 10 that is used to deliver energy to a treatment site 12 to produce lesions 14 in the LES includes a first expandable member 16 with an interior surface 18 and an exterior surface 20.
  • First expandable member 16 which can also be an energy delivery device support member, is configured to receive an expansion medium 22 that inflates first expandable member 16 from a compacted, non- deployed state to a deployed state.
  • Exterior surface 20 includes a plurality of apertures 24. Upon the application of sufficient pressure, first expandable member 16 weeps expansion medium 22 from interior surface 18.
  • expandable member 16 can be made of different compositions or materials, with one or more open or closed cells or chambers.
  • the plurality of such cells or chambers can be compressed or configured in a small diameter for insertion, and are then expanded after insertion to establish the desired electrical contact with the targeted surface of the esophagus.
  • Expansion medium 22 may be a gas, fluid or the like.
  • the expansion medium 22 can be an electrolytic solution.
  • expansion medium 22 can also be a contrast solution to facilitate imaging of the procedure by fluoroscopy or ultrasonography.
  • GERD treatment apparatus 10 can include visualization capability including, but not limited to a viewing scope, ultrasound, an expanded eyepiece, fiber optics (including illumination and imaging fibers), video imaging, a light source and the like.
  • a second expandable member 26 can be positioned at least partially adjacent to first expandable member 16. Second expandable member 26 receives at least a portion of the expansion medium 22 from interior surface 18.
  • An electromagnetic energy delivery device 28 is coupled to one of the first or second expandable members 16 and 26, respectively, and configured to be coupled to a power source 30.
  • First and second expandable members 16 and 26 are sized to be expanded to sufficiently dilate the esophagus such that all or a portion of the interior of the lower esophageal sphincter can be accessible to the energy delivery device 28. Expandable members 16 or 26 can dilate the esophageal sphincter in a range of 5-
  • Such devices capable of being in confined non- deployed states, during their introduction into the esophagus and thereafter expanded to deployed states at or near the LES, can be utilized.
  • Such devices include, but are not limited to, basket-shaped devices made of superelastic metals such as nitinol.
  • an extension member 32 with a distal segment 34 is configured to be coupled to first and/or second expandable members 16 and 26.
  • extension member 32 is rod-like and can be malleable, flexible, articulated and steerable.
  • extension member 32 can contain optics, fluid and gas paths, sensor and electronic cabling.
  • extension member 32 can be a coil-reinforced multilumen catheter, as is well known to those skilled in the art.
  • Extension member 32 has sufficient length to position the first and second expandable members in the LES and/or stomach using a trans-oral approach. Typical lengths include, but are not limited to, a range of 40- 180 cms.
  • a proximal fitting 36 of extension member 32 is maneuverable by a medical practitioner.
  • extension member 32 runs through the center of expandable member 16 and/or 26 and distal segment 34 that extends distally beyond the most distal expandable member. Extension member 32 may be attached to a movable proximal fitting 36 used to control deflection of expandable members 16 or 26, as is more fully explained herein.
  • expandable members 16 and 26 may be initially rolled or folded around extension member 32. Expandable members 16 and 26 can be attached to a deflection mechanism 38, which imparts movement of first and second expandable members 16 and 26 when positioned at the LES.
  • the deflection mechanism can be a pull wire attached to extension member 32 or first expandable member 16 and to a movable proximal fitting 36, as is well known to those skilled in the art.
  • proximal fitting 36 contains a variety of actuators which provide a physician control of GERD treatment apparatus 10, as more fully described hereafter.
  • the actuators can be rocker switches, slider switches and the like, as are well known to those skilled in the art. At least portions of GERD treatment apparatus 10 may be sufficiently radiopaque in order to be visible under fluoroscopy and/or sufficiently echogenic to be visible under ultrasonography.
  • First expandable member 16 is made of a material that can be an insulator.
  • an insulator is a barrier to thermal or electrical energy flow.
  • expandable member 16 is substantially surrounded by a conforming member 40 which is also called a fluid conduit.
  • Conforming member 40 receives electrolytic solution from first expandable member 16, heated or not heated, through a plurality of apertures 24 formed in first expandable member 16, and passes it to conforming member 40.
  • first expandable member 16 is made of a microporous material 42 that does not include distinct apertures.
  • conforming member 40 is made of a material that permits controlled delivery of the electrolytic solution to the treatment site 12 through one or more apertures 24.
  • conforming member 40 can be made of microporous material 42 that does not include distinct apertures.
  • Extension member 32 with first and second expandable members, or alternatively with a single expandable member, is introduced into the esophagus directly, shown in FIG. 1 , or through the use of another introducer such as an endoscope (not shown), as is more fully described hereafter with first and second expandable members 16 and 26 in non-deployed configurations.
  • first expandable member 16 can be deflected from side to side to facilitate maneuvering through the esophagus and positioning in the LES. This movement can be imparted by deflection mechanism 38.
  • a variety of energy sources can be coupled to the porous membrane including, (i) an RF source coupled to an RF electrode, (ii) a coherent source of light coupled to an optical fiber, (iii) an incoherent light source coupled to an optical fiber, (iv) a heated fluid coupled to a catheter with an open channel configured to receive the heated fluid, (v) a heated fluid coupled to a catheter with an open channel configured to receive the heated fluid, (vi) a cooled fluid coupled to a catheter with a closed channel configured to receive the cooled fluid, (vii) a cooled fluid coupled to a catheter with an open channel configured to receive the cooled fluid, (viii) a cryogenic fluid, (ix) a resistive heating source, (x) a microwave source providing energy from 915 MHz to 2.45 GHz and coupled to a microwave antenna, (xi) an ultrasound power source coupled to an ultrasound emitter, wherein the ultrasound power source produces energy in the range of 300 KHZ to 3 GHz or (xii) a microwave source.
  • the energy source utilized is an RF source and electromagnetic energy delivery device 28 is a single or a plurality of RF electrodes 44, also described as electrodes 44.
  • RF electrode 44 may operated in either bipolar or monopolar mode with a ground pad electrode.
  • a monopolar mode of delivering RF energy a single electrode 44 is used in combination with an indifferent electrode patch that is applied to the body to form the other contact and complete an electrical circuit. Bipolar operation is possible when two or more electrodes 44 are used. Multiple electrodes 44 may be used.
  • electrolytic solution serves as an enhanced RF electrode 44' when coupled with an RF electrode 44 (refer to FIG. 8).
  • power source 30 which will now be referred to as a RF energy source 30, may have multiple channels, delivering separately modulated power to each electrode 44. This reduces preferential heating that occurs when more energy is delivered to a zone of greater conductivity and less heating occurs around electrodes 44 which are placed into less conductive tissue. If the tissue hydration or the blood infusion in the tissue is uniform, a single channel RF energy source 30 may be used to provide power for generation of lesions 14 relatively uniform in size.
  • cell injury will include all cellular effects resulting from the delivery of energy from the electrode 44 up to and including cell necrosis.
  • Cell injury can be accomplished as a relatively simple medical procedure with local anesthesia. In one embodiment, cell injury proceeds to a depth of approximately 1-4 mms from the surface of the mucosal layer.
  • electrodes 44 can cover all or a portion of expandable members 16 or 26 and/or conforming member 40. Also, electrodes 44 may be distributed in a variety of patterns along an exterior or interior surface of either expandable member 16 or 26 or conforming member 40, in order to produce a desired placement and pattern of lesions 14. Typical electrode distribution patterns include, but are not limited, to a radial distribution 46 (refer to FIG. 9A) or a longitudinal distribution 48 (refer to FIG. 9B). It will be appreciated that other patterns and geometries for electrode placement, such as a spiral distribution 50 (refer to FIG. 9C) may also be suitable. In one embodiment, electrode 44 is positioned on distal segment 34 of extension member 32 (refer to FIG. 10). These electrodes may be cooled as described hereafter. Additionally, distal segment 34 may include apertures 24 for delivery of cooling and electrolytic solution as described hereafter.
  • Electrodes 44 can have a variety of shapes and sizes. Possible shapes include but are not limited to circular, rectangular, conical and pyramoidal. Electrode surfaces can be smooth or textured and concave or convex. Surface areas can range from 0.1 mm 2 to 200 mm 2 . It will be appreciated that other geometries and surface areas may be equally suitable. In one embodiment, electrodes 44 can be in the shape of needles and of sufficient sharpness and length to penetrate into the smooth muscle of the esophageal wall. In this case, needle electrodes 52 are attached to expandable member 16 or 26 which is located inside conforming member 40 (refer to FIG. 11). During introduction of the GERD treatment apparatus 10 into the esophagus, needle electrodes 52 remain retracted inside conforming member 40.
  • needle electrodes 52 are deployed by expansion of expandable member 16 or 26, resulting in protrusion of needle electrodes 52 through needle apertures 54 in conforming member 40 and into the smooth muscle tissue of the treatment site 12 (refer to FIG. 12).
  • distal segment 34 may also contain needle apertures 54 for protrusion of needle electrodes 52 into the smooth muscle of the esophageal wall.
  • needle electrodes 52 are coupled to an insulated guide wire 56 (known to those skilled in the art) which is advanced through a guide wire lumen 58 in extension member 32.
  • FIG. 14 is a flow chart illustrating one embodiment of the operation of GERD treatment apparatus 10.
  • GERD treatment apparatus 10 is first introduced into the esophagus under local anesthesia.
  • GERD treatment apparatus 10 can be introduced into the esophagus by itself or through a lumen in an endoscope, such as disclosed in U.S. Patents Nos. 5,448,990 and 5,275,608, incorporated herein by reference, or similar esophageal access device known to those skilled in the art.
  • Expandable member 16 or 26 is expanded with the introduction of a fluid or gaseous expansion medium 22, such as an electrolytic solution, or a combination of both.
  • esophageal dilation and subsequent LES fold effacement can be accomplished by insufflation of the esophagus (a known technique) using gas introduced into the esophagus through a channel in the GERD treatment device, or an endoscope or similar esophageal access device as described above.
  • insufflation of the esophagus a known technique
  • gas introduced into the esophagus through a channel in the GERD treatment device, or an endoscope or similar esophageal access device as described above.
  • electrolytic solution is introduced into expandable member 16 or 26, causing it to become distended and be self-retained in the esophagus.
  • Expandable member 16 or 26 can also be expanded mechanically through the use of formed spring wires (not shown) used alone or in combination with a fluid.
  • Electrolytic solution in expandable member 16 may be heated to a temperature, which can be modified and adjusted as necessary.
  • electrolytic solution can be heated and maintained at a temperature between about 65-90°C. It can be initially introduced into first expandable member 16 at the higher temperature, or it can be heated to the higher temperature in first expandable member 16. By providing a heated electrolytic solution, there is a reduction in the amount of time needed to complete a satisfactory degree of tissue injury of targeted cells.
  • the diagnostic phase then begins. This is achieved through a variety of diagnostic methods, including, but not limited to, the following: (I) visualization of the interior surface of the esophagus via an endoscope or other viewing apparatus inserted into the esophagus, (ii) visualization of the interior morphology of the esophageal wall using ultrasonography to establish a baseline for the tissue to be treated, (iii) impedance measurement to determine the electrical conductivity between the esophageal mucosal layers and GERD treatment apparatus 10 and (iv) measurement and surface mapping of the electropotential of the LES during varying time periods which may include such events as depolarization, contraction and repolarization of LES smooth muscle tissue.
  • GERD treatment apparatus 10 When positioned at the LES, GERD treatment apparatus 10 provides a relatively even flow of heated electrolytic solution to facilitate the cell injury process. As shown in FIG.
  • GERD treatment apparatus 10 also may have a plurality of electrodes 44 contained in zones that effectively create a flexible circuit 64 which in turn, facilitates contact of the electrode 44 with all or a portion of the interior surface areas of the LES. Electrodes 44 can be multiplexed in order to treat the targeted site or only a portion thereof. Feedback can be included and is achieved by, (I) visualization, (ii) impedance measurement, (iii) ultrasonography, (iv) temperature measurement; and, (v) sphincter contractile force measurement via manometry. The feedback mechanism permits the selected on-off switching of different electrodes 44 of the flexible circuit 64 in a desired pattern, which can be sequential from one electrode 44 to an adjacent electrode 44, or can jump around between non-adjacent electrodes 44. Individual electrodes 44 are multiplexed and volumetrically controlled by a controller.
  • the area and magnitude of cell injury in the LES can vary. However, it is desirable to deliver sufficient energy to the targeted treatment site 12 to be able to achieve tissue temperatures in the range of 55-95 ° C and produce lesions 14 at depths ranging from 1-4 mm from the interior surface of the LES. Typical energies delivered to the esophageal wall include, but are not limited to, a range between 100 and 50,000 joules per electrode 44. It is also desirable to deliver sufficient energy such that the resulting lesions 14 have a sufficient magnitude and area of cell injury to cause an infiltration of lesion 14 by fibroblasts 66, myofibroblasts 68, macrophages 70 and other cells involved in the tissue healing process (refer to FIG. 18). As shown in FIGs.
  • these cells cause a contraction of tissue around lesion 14, decreasing its volume and, or altering the biomechanical properties at lesion 14 so as to result in a tightening of LES. These changes are reflected in transformed lesion 14' shown in 19 B.
  • the diameter of lesions 14 can vary between 0.1 to 4 mm. It is preferable that lesions 14 are less than 4 mm in diameter in order to reduce the risk of thermal damage to the mucosal layer.
  • a 2 mm diameter lesion 14 centered in the wall of the smooth muscle provides a 1 mm buffer zone to prevent damage to the mucosa, submucosa and adventia, while still allowing for cell infiltration and subsequent tightening on approximately 50% of the thickness of the wall of the smooth muscle (refer to FIG. 20).
  • GERD treatment apparatus 10 conforms tightly with the interior of the esophagus so that all, or nearly all, of the interior circumference of a desired segment of the LES is in contact with a surface of conforming member
  • Conforming member 40 is fitted into the entire LES and expandable member 16 does not have to be moved about the esophagus to complete the treatment.
  • GERD treatment apparatus 10 may not entirely fill the esophagus, and GERD treatment apparatus 10 is then moved about the esophagus in order to treat all of the esophagus, or those sections where tightening of the lower esophageal sphincter is desired.
  • Conforming member 40 is made of a material that substantially conforms to the surface of the LES and, or other sphincters. This provides better conformity than the mere use of expandable member 16. As a result, the delivery of treatment energy to the LES is enhanced. Energy delivery may also be enhanced by use of a conducting surface 72 which may cover all, or part of, the exterior of conforming member 40.
  • the surface of conforming member 40 can be made conductive by a variety of means including, but not limited to chemical coating with a conductive material, implantation with conductive ions and application of a conductive film. Conforming member 40 can have a thickness in the range of about 0.01 to
  • Conforming member 40 can be made of a foam type material. Suitable materials include, but are not limited to, knitted polyester, continuous filament polyester, polyester-cellulose, rayon, polyamide, polyurethane, polyethylene, silicone, and the like. Suitable commercial foams include, (i) Opcell, available from Sentinel Products Corp., Hyannis, Massachusetts and (ii) UltraSorb, HT 4201 or HT 4644MD from Wilshire Contamination Control, Carlsbad, California. Conforming member 40 has characteristics that make it particularly moldable and formable to irregular surfaces. In one embodiment, conforming member 40 is made of an open cell foam, or alternatively it can be a thermoplastic film such as polyurethane, low density polyethylene, or it may be a silicone. Additionally, conforming member 40 can be capable of extruding conductive materials from conforming member 40 itself.
  • FIG. 21 illustrates that conforming member 40 can be created by sealing two smaller conforming members 74 and 76 together. Smaller conforming members 74 and 76 are sealed together between individual electrodes 44. This creates a pocket or zone 78. Zone 78 has a lower porosity for the flow of electrolytic solution than non-zone sections 80, e.g., all other sections of conforming member 40 which do not include a zone 78 with an associated electrode 44. The porosity of non-zone sections 80 is greater than the porosity of zones 78. From a diagnostic standpoint, it is desirable to image the interior surface 18 and wall of the LES including the size and position of created lesions 14.
  • ultrasonography a known procedure
  • ultrasound power source 82 coupled to one or more ultrasound transducers 84 that are positioned in or on expandable member 16 or 26 or conforming member 40.
  • An output is associated with ultrasound power source 82 and RF energy source 30.
  • Each ultrasound transducer 84 can include a piezoelectric crystal 86 mounted on a backing material 88 that is in turn attached to expandable members
  • Each ultrasound transducer 84 transmits ultrasound energy through conforming member 40 or expandable members 16 or 26 into adjacent tissue.
  • Ultrasound transducers 84 can be in the form of an imaging probe such as Model 21362, manufactured and sold by Hewlett Packard Company, Palo Alto, California. In one embodiment, two ultrasound transducers 84 are positioned on opposite sides of expandable member 16 to create an image depicting the size and position of lesion 14 in the LES. It is desirable that lesions 14 are predominantly located in the smooth muscle layer of esophageal wall at the depths ranging from 1 to 4 mms from the interior surface of the sphincter. However, lesions 14 can vary both in number and position within the sphincter wall. It may be desirable to produce a pattern of multiple lesions 14 within the esophageal smooth muscle in order to obtain a selected degree of tightening of the LES.
  • Typical lesion patterns shown in FIGs. 23 A-C include but are not limited to, (i) a concentric circle of lesions 14 all at fixed depth in the smooth muscle layer evenly spaced along the radial axis of the LES, (ii) a wavy or folded circle of lesions 14 at varying depths in the smooth muscle layer evenly spaced along the radial axis of the LES, (iii) lesions 14 randomly distributed at varying depths in the smooth muscle, but evenly spaced in a radial direction; and, (iv) an eccentric pattern of lesions 14 in one or more radial locations in the smooth muscle wall. Accordingly, the depth of RF and thermal energy penetration in the lower esophageal sphincter is controlled and selectable.
  • the selective application of energy to the lower esophageal sphincter may be the even penetration of RF energy to the entire targeted site, a portion of it, or applying different amounts of RF energy to different sites depending on the condition of the sphincter.
  • the area of cell injury can be substantially the same for every treatment event. Referring to FIG. 24, it may be desirable to cool all or a portion of the area near the electrode-tissue interface 96 before during and after the delivery of energy in order to reduce the degree and area of cell injury. Specifically the use of cooling preserves the mucosal layers and protects or otherwise reduces the degree of cell damage to cooled zone 98 in the vicinity of the lesion 14.
  • a cooling fluid 100 that weeps out of the expandable members 16 and 26 or conforming member 40 which is in fluid communication with a continuous lumen 102 in extension member 32 that is, in turn, in fluid communication with fluid reservoir 104 and a control unit 106, whose operation will be described hereafter that controls the delivery of the fluid (Refer to FIG. 25). All or only a portion of electrode 44 may also be cooled. Similarly, it may also be desirable to cool all or a portion of the electrode 44. The rapid delivery of heat through electrode 44, may result in the build up of charred biological matter on electrode 44 (from contact with tissue and fluids e.g.
  • Cooling of the electrode 44 can be accomplished by cooling fluid 100 that weeps out of expandable members 16 and/or 26 and conforming member 40 as described previously.
  • expandable member 16 may contain a plurality of cooling apertures 108 adjacent or directed toward electrode 44 to enhance the flow of cooling solution and, or cooling rate of electrode 44 and adjacent tissue (refer to FIG. 26).
  • electrode 44 may also be cooled via a fluid channel 110 in electrode 44 that is in fluid communication with fluid reservoir 104 and control unit 106 via the continuous lumen 102 in extension member 32 as described previously.
  • one or more sensors 112 may be positioned adjacent or on electrode 44 for sensing the temperature of esophageal tissue at treatment site 12. More specifically, sensors 112 permit accurate determination of the surface temperature of the esophagus at electrode-tissue interface 96. This information can be used to regulate both the delivery of energy and cooling solution to the interior surface of the esophagus. In various embodiments sensors 112 can be positioned at any position on expandable members 16 and 26 and conforming member 40. Suitable sensors that may be used for sensor 112 include: thermocouples, fiber optics, resistive wires, thermocouple IR detectors, and the like. Suitable thermocouples for sensor 112 include: T type with copper constantene, J type, E type and K types as are well known those skilled in the art.
  • Temperature data from sensors 112 are fed back to control unit 106 and through an algorithm which is stored within a microprocessor memory of control unit 106. Instructions are sent to an electronically controlled micropump (not shown) to deliver fluid through the fluid lines at the appropriate flow rate and duration to provide control temperature at the electrode-tissue interface 96 (refer to FIG. 28).
  • the reservoir of control unit 106 may have the ability to control the temperature of the cooling fluid 100 by either cooling the fluid or heating the fluid.
  • a fluid reservoir 104 of sufficient size may be used in which the cooling fluid 100 is introduced at a temperature at or near that of the normal body temperature.
  • a thermally insulated reservoir 114 adequate control of the tissue temperature may be accomplished without need of refrigeration or heating of the cooling fluid 100.
  • Cooling fluid 100 flow is controlled by control unit 106 or another feedback control system (described herein) to provide temperature control at the electrode-tissue interface 96.
  • a second diagnostic phase may be included after the treatment is completed. This provides an indication of lower esophageal tightening treatment success, and whether or not a second phase of treatment, to all or only a portion of the esophagus, now or at some later time, should be conducted.
  • the second diagnostic phase is accomplished through, (I) visualization, (ii) measuring impedance, (iii) ultrasonography or (iv) temperature measurement, (v) measurement of LES tension and contractile force via manometry.
  • GERD treatment apparatus 10 is coupled to an open or closed loop feedback system.
  • an open or closed loop feedback system couples sensor 346 to energy source 392.
  • RF electrode 314 is one or more RF electrodes 314.
  • the temperature of the tissue, or of RF electrode 314 is monitored, and the output power of energy source 392 adjusted accordingly.
  • the physician can, if desired, override the closed or open loop system.
  • a microprocessor can be included and incorporated in the closed or open loop system to switch power on and off, as well as modulate the power.
  • the closed loop system utilizes a microprocessor 394 to serve as a controller, monitor the temperature, adjust the RF power, analyze at the result, refeed the result, and then modulate the power.
  • a tissue adjacent to RF electrode 314 can be maintained at a desired temperature for a selected period of time without impeding out.
  • Each RF electrode 314 is connected to resources which generate an independent output. The output maintains a selected energy at RF electrode 314 for a selected length of time.
  • a control signal is generated by controller 404 that is proportional to the difference between an actual measured value, and a desired value.
  • the control signal is used by power circuits 406 to adjust the power output in an appropriate amount in order to maintain the desired power delivered at respective RF electrodes 314.
  • temperatures detected at sensor 346 provide feedback for maintaining a selected power. Temperature at sensor 346 is used as a safety means to interrupt the delivery of energy when maximum pre-set temperatures are exceeded. The actual temperatures are measured at temperature measurement device 408, and the temperatures are displayed at user interface and display 402.
  • a control signal is generated by controller 404 that is proportional to the difference between an actual measured temperature and a desired temperature.
  • the control signal is used by power circuits 406 to adjust the power output in an appropriate amount in order to maintain the desired temperature delivered at the sensor 346.
  • a multiplexer can be included to measure current, voltage and temperature, at the sensor 346, and energy can be delivered to RF electrode 314 in monopolar or bipolar fashion.
  • Controller 404 can be a digital or analog controller, or a computer with software. When controller 404 is a computer it can include a CPU coupled through a system bus. On this system can be a keyboard, a disk drive, or other non-volatile memory systems, a display, and other peripherals, as are known in the art. Also coupled to the bus is a program memory and a data memory.
  • User interface and display 402 includes operator controls and a display.
  • Controller 404 can be coupled to imaging systems, including but not limited to ultrasound, CT scanners, X-ray, MRJ, mammographic X-ray and the like. Further, direct visualization and tactile imaging can be utilized.
  • controller 404 uses the output of current sensor 396 and voltage sensor 398 to maintain a selected power level at RF electrode 314.
  • the amount of RF energy delivered controls the amount of power.
  • a profile of power delivered can be incorporated in controller 404 and a preset amount of energy to be delivered may also be profiled.
  • Circuitry, software and feedback to controller 404 result in process control, and the maintenance of the selected power setting that is independent of changes in voltage or current, and used to change, (i) the selected power setting, (ii) the duty cycle (on-off time), (iii) bipolar or monopolar energy delivery and (iv) fluid delivery, including flow rate and pressure.
  • process variables are controlled and varied, while maintaining the desired delivery of power independent of changes in voltage or current, based on temperatures monitored at sensor 346.
  • current sensor 396 and voltage sensor 398 are connected to the input of an analog amplifier 410.
  • Analog amplifier 410 can be a conventional differential amplifier circuit for use with sensor 346.
  • the output of analog amplifier 410 is sequentially connected by an analog multiplexer 412 to the input of A/D converter 414.
  • the output of analog amplifier 410 is a voltage which represents the respective sensed temperatures.
  • Digitized amplifier output voltages are supplied by A D converter 414 to microprocessor 394.
  • Microprocessor 394 may be a type 68HCII available from Motorola. However, it will be appreciated that any suitable microprocessor or general purpose digital or analog computer can be used to calculate impedance or temperature.
  • Microprocessor 394 sequentially receives and stores digital representations of impedance and temperature. Each digital value received by microprocessor 394 corresponds to different temperatures and impedances.
  • Calculated power and impedance values can be indicated on user interface and display 402. Alternatively, or in addition to the numerical indication of power or impedance, calculated impedance and power values can be compared by microprocessor 394 with power and impedance limits. When the values exceed predetermined power or impedance values, a warning can be given on user interface and display 402, and additionally, the delivery of RF energy can be reduced, modified or interrupted. A control signal from microprocessor 394 can modify the power level supplied by energy source 392.
  • FIG. 31 illustrates a block diagram of a temperature/impedance feedback system that can be used to control the flow rate and duration of cooling fluid 100 through continuous lumen 102 to expandable and conforming members 16, 26 and 40 and or RF electrode 314.
  • Energy is delivered to RF electrode 314 by energy source 392, and applied to tissue site 424.
  • a monitor 416 ascertains tissue impedance, based on the energy delivered to tissue, and compares the measured impedance value to a set value. If the measured impedance exceeds the set value, a disabling signal 418 is transmitted to energy source 392, ceasing further delivery of energy to RF electrode 314. If measured impedance is within acceptable limits, energy continues to be applied to the tissue.
  • a comparator 420 receives a signal representative of the measured temperature and compares this value to a pre-set signal representative of the desired temperature. Comparator 420 sends a signal to a flow regulator 422 connected to an electronically controlled micropump (not shown) representing a need for an increased cooling fluid 100 flow rate, if the tissue temperature is too high, or to maintain the flow rate if the temperature has not exceeded the desired temperature.

Abstract

An apparatus includes a first expandable member that is expandable by an expansion medium. The first expandable member includes an exterior and a plurality of apertures. The expansion medium is released from the first expandable member when a sufficient pressure is applied to the expansion medium housed in an interior of the first expandable member. A second expandable member is positioned at least partially adjacent to the first expandable member. The second expandable member is configured to receive at least a portion of the expansion medium from the interior of the first expandable member. An electromagnetic energy delivery device is coupled to one of the first or second expandable members and is configured to be coupled to a power source. The first and second expandable members are sized to be expanded sufficiently to open a sphincter.

Description

ELECTROSURGICAL DEVICE FOR SPHINCTER TREATMENT
BACKGROUND OF THE INVENTION Cross-Related Applications This application is a continuation-in-part of U.S. Patent Application Serial
No. 08/731,372, filed October 11, 1996, which is a continuation-in-part of U.S. Patent Application Serial No. 08/319,373, filed October 6, 1994, which is a continuation-in-part of U.S. Application No. 08/286,862, filed August 4, 1994, which is a continuation-in-part of U.S. Patent Application Serial No. 08/272,162, filed July 7, 1994, which is a continuation-in-part of U.S. Patent Application Serial
No. 08/265,459, filed June 24, 1994, and is related to concurrently filed Application entitled "GERD Treatment Apparatus and Method" identified as Attorney Docket 14800-748, all with named inventor Stuart D. Edwards, and all of which are incorporated herein by reference.
Field of the Invention
This invention relates generally to an apparatus and method for the treatment of sphincters, and more specifically to an apparatus and method that treat esophageal sphincters.
Description of Related Art Gastroesophageal reflux disease (GERD) is a common gastroesophageal disorder in which the stomach contents are ejected into the lower esophagus due to a dysfunction of the lower esophageal sphincter (LES). These contents are highly acidic and potentially injurious to the esophagus resulting in a number of possible complications of varying medical severity. The reported incidence of GERD in the U.S. is as high as 10% of the population (Castell DO; Johnston BT:
Gastroesophageal Reflux Disease.' Current Strategies For Patient Management. Arch Fam Med, 5(4):221-7; (1996 April)). Acute symptoms of GERD include heartburn, pulmonary disorders and chest pain. On a chronic basis, GERD subjects the esophagus to ulcer formation, or esophagitis and may result in more severe complications including esophageal obstruction, significant blood loss and perforation of the esophagus. Severe esophageal ulcerations occur in 20-30% of patients over age 65. Moreover,
GERD causes adenocarcinoma, or cancer of the esophagus, which is increasing in incidence faster than any other cancer (Reynolds JC: Influence Of Pathophysiology, Severity, And Cost On The Medical Management Of Gastroesophageal Reflux Disease. Am J Health Syst Pharm, 53(22 Suppl 3):S5- 12 (1996 Nov l5)).
Current drug therapy for GERD includes histamine receptor blockers which reduce stomach acid secretion and other drugs which may completely block stomach acid. However, while pharmacologic agents may provide short term relief, they do not address the underlying cause of LES dysfunction. Invasive procedures requiring percutaneous introduction of instrumentation into the abdomen exist for the surgical correction of GERD. One such procedure, Nissen fundoplication, involves constructing a new "valve" to support the LES by wrapping the gastric fundus around the lower esophagus. Although the operation has a high rate of success, it is an open abdominal procedure with the usual risks of abdominal surgery including: postoperative infection, herniation at the operative site, internal hemorrhage and perforation of the esophagus or of the cardia. In fact, a recent 10 year, 344 patient study reported the morbidity rate for this procedure to be 17% and mortality 1% (Urschel, JD: Complications Of Antireflux Surgery , Am J Surg 166(1): 68-70; (1993 July)). This rate of complication drives up both medical cost and convalescence period for the procedure and may exclude portions of certain patient populations (e.g., the elderly and immuno-compromised).
Efforts to perform Nissen fundoplication by less invasive techniques have resulted in the development of laparoscopic Nissen fundoplication. Laparoscopic Nissen fundoplication, reported by Dallemagne et al. Surgical Laparoscopy and Endoscopy, Vol. 1, No. 3, (1991), pp. 138-43 and by Hindler et al. Surgical Laparoscopy and Endoscopy, Vol. 2, No. 3, (1992), pp. 265-272, involves essentially the same steps as Nissen fundoplication with the exception that surgical manipulation is performed through a plurality of surgical cannula introduced using trocars inserted at various positions in the abdomen.
Another attempt to perform fundoplication by a less invasive technique is reported in U.S. Patent No. 5,088,979. In this procedure, an invagination device containing a plurality of needles is inserted transorally into the esophagus with the needles in a retracted position. The needles are extended to engage the esophagus and fold the attached esophagus beyond the gastroesophageal junction. A remotely operated stapling device, introduced percutaneously through an operating channel in the stomach wall, is actuated to fasten the invaginated gastroesophageal junction to the surrounding involuted stomach wall.
Yet another attempt to perform fundoplication by a less invasive technique is reported in US Patent No. 5,676,674. In this procedure, invagination is done by a jaw-like device and fastening of the invaginated gastroesophageal junction to the fundus of the stomach is done via a transoral approach using a remotely operated fastening device, eliminating the need for an abdominal incision. However, this procedure is still traumatic to the LES and presents the postoperative risks of gastroesophageal leaks, infection and foreign body reaction, the latter two sequela resulting when foreign materials such as surgical staples are implanted in the body.
While the methods reported above are less invasive than an open Nissen fundoplication, some still involve making an incision into the abdomen and hence the increased morbidity and mortality risks and convalescence period associated with abdominal surgery. Others incur the increased risk of infection associated with placing foreign materials into the body. All involve trauma to LES and the risk of leaks developing at the newly created gastroesophageal junction.
There is a need in the art for a less invasive GERD treatment apparatus that does not require major surgical intervention or require the introduction of foreign materials into the body. Yet another need exists for a method of treating GERD that does not involve the medical risks of leakage and infection developing at an artificially created gastroesophageal junction. Yet another need exists for an apparatus that treats GERD with minimum trauma to the LES.
SUMMARY OF THE INVENTION Accordingly, an object of the invention is to provide an apparatus and method for the treatment of GERD.
Another object of the invention is to provide an apparatus and method to treat GERD using minimally invasive surgical methods such as non-percutaneously. Yet another object of the invention is to provide an apparatus and method to treat the esophageal sphincters using minimally invasive surgical methods.
Another object of the invention is to provide an apparatus and method to tighten the LES.
A further other object of the invention is to provide an apparatus and method to reduce the frequency of spontaneous relaxation and opening of the LES. Yet another object of the invention is to provide an apparatus and method to reduce the frequency and severity of gastroesophageal reflux events.
These and other objects of the invention are provided in an apparatus that includes a first expandable member that is expandable by an expansion medium. The first expandable member includes an exterior and a plurality of apertures. The expansion medium is released from the first expandable member when a sufficient pressure is applied to the expansion medium housed in an interior of the first expandable member. A second expandable member is positioned at least partially adjacent to the first expandable member. The second expandable member is configured to receive at least a portion of the expansion medium from the interior of the first expandable member. An electromagnetic energy delivery device is coupled to one of the first or second expandable members and is configured to be coupled to a power source. The first and second expandable members are sized to be expanded sufficiently to open a sphincter. FIG. 1 is an illustrated lateral view of the upper Gl tract including the esophagus and lower esophageal sphincter and the positioning of the GERD treatment apparatus of the present invention the lower esophageal sphincter.
FIG. 2 is a lateral view of the present illustrating apertures in the expandable member.
FIG. 3 illustrates a lateral view of an embodiment of the invention that includes two expandable members and an electrode coupled to a power source.
FIG. 4 illustrates a lateral view of a proximal fitting and distal segments of an embodiment of the invention. FIG. 5 illustrates a lateral view of the deflection mechanism of the invention.
FIG. 6A illustrates a lateral view of apertures in the expandable member and conforming member of the invention.
FIG. 6B illustrates a lateral view of a microporous membrane used in the fabrication of the expandable member and conforming members of the invention.
FIG. 7 is a lateral view illustrating the use of the deflection mechanism to deflect the expandable member of the present invention.
FIG. 8 is a lateral view illustrating the use of electrolytic solution to create an enhanced RF electrode. FIG. 9A is a lateral view illustrating a radial distribution of electrodes on the expandable member of the invention.
FIG. 9B is a lateral view illustrating a longitudinal distribution of electrodes on the expandable member of the invention.
FIG. 9C is a lateral view illustrating a spiral distribution of electrodes on the expandable member of the invention.
FIG. 10 is a lateral view illustrating the placement of electrodes on the distal segment of an embodiment the invention.
FIG. 11 is a lateral view illustrating the placement of needle electrodes on the expandable member of an embodiment the invention. FIG. 12 is a lateral view illustrating the deployment of needle electrodes into the smooth muscle of the LES.
FIG. 13 is a lateral view illustrating the position of needle electrodes in the distal segment of the expandable member. FIG. 14 is a flow chart illustrating the GERD treatment method of the current invention.
FIG. 15 A-C are lateral views which illustrate a technique for proper positioning of the GERD treatment apparatus in the LES.
FIG. 16 is a lateral view of sphincter smooth muscle tissue illustrating electromagnetic foci and pathways for the origination and conduction of aberrant electrical signals in the smooth muscle of the lower esophageal sphincter.
FIG. 17 is a lateral view illustrating a zone of electrodes of the current invention that comprises a flexible circuit that facilitates contact with the lower esophageal sphincter. FIG. 18 is a lateral view of the esophageal wall illustrating the infiltration of tissue healing cells into a lesion in the smooth tissue of a esophageal sphincter following treatment with the GERD treatment apparatus of the present invention.
FIG. 19 is a view similar to that of FIG. 18 illustrating shrinkage of the lesion site caused by cell infiltration. FIG. 20 is a lateral view of the esophageal wall illustrating the preferred placement of lesions in the smooth muscle layer of a esophageal sphincter.
FIG. 21 is a lateral view illustrating the creation of zones of decreased porosity by sealed conforming members of an embodiment of the present invention.
FIG. 22 is a lateral view illustrating the ultrasound transducer, ultrasound lens and ultrasound power source of an embodiment of the present invention.
FIG. 23 is a lateral view of the esophageal wall illustrating various patterns of lesions created by the apparatus of the present invention.
FIG. 24 is a lateral view of the esophageal wall illustrating the delivery of cooling fluid to the electrode-tissue interface and the creation of cooling zones. FIG. 25 depicts the flow path, fluid connections and control unit employed to deliver fluid to the electrode-tissue interface and electrodes.
FIG. 26 is a lateral view illustrating the placement of cooling apertures adjacent to electrodes in the expandable member. FIG. 27 depicts the flow path, fluid connections and control unit employed to deliver fluid to the RF electrodes.
FIG. 28 is an enlarged lateral view illustrating the placement of sensors on the expandable member.
FIG. 29 depicts a block diagram of the feed back control system that can be used with the GERD treatment apparatus as shown in FIG. 3.
FIG. 30 depicts a block diagram of an analog amplifier, analog multiplexer and microprocessor used with the feedback control system of FIG. 29.
FIG. 31 depicts a block diagram of the operations performed in the feedback control system depicted in FIG. 29.
DETAILED DESCRIPTION
Referring now to FIGS. 1 and 2, one embodiment of GERD treatment apparatus 10 that is used to deliver energy to a treatment site 12 to produce lesions 14 in the LES includes a first expandable member 16 with an interior surface 18 and an exterior surface 20. First expandable member 16, which can also be an energy delivery device support member, is configured to receive an expansion medium 22 that inflates first expandable member 16 from a compacted, non- deployed state to a deployed state. Exterior surface 20 includes a plurality of apertures 24. Upon the application of sufficient pressure, first expandable member 16 weeps expansion medium 22 from interior surface 18. While expandable member 16, with a single interior surface 18, is preferred, it will be appreciated that expandable member 16 can be made of different compositions or materials, with one or more open or closed cells or chambers. The plurality of such cells or chambers can be compressed or configured in a small diameter for insertion, and are then expanded after insertion to establish the desired electrical contact with the targeted surface of the esophagus. Expansion medium 22 may be a gas, fluid or the like. In various embodiments, the expansion medium 22 can be an electrolytic solution. In other embodiments, expansion medium 22 can also be a contrast solution to facilitate imaging of the procedure by fluoroscopy or ultrasonography. Yet in other embodiments, GERD treatment apparatus 10 can include visualization capability including, but not limited to a viewing scope, ultrasound, an expanded eyepiece, fiber optics (including illumination and imaging fibers), video imaging, a light source and the like.
Referring to FIG. 3, a second expandable member 26 can be positioned at least partially adjacent to first expandable member 16. Second expandable member 26 receives at least a portion of the expansion medium 22 from interior surface 18. An electromagnetic energy delivery device 28 is coupled to one of the first or second expandable members 16 and 26, respectively, and configured to be coupled to a power source 30.
First and second expandable members 16 and 26 are sized to be expanded to sufficiently dilate the esophagus such that all or a portion of the interior of the lower esophageal sphincter can be accessible to the energy delivery device 28. Expandable members 16 or 26 can dilate the esophageal sphincter in a range of 5-
40 mms. It will be appreciated that other devices capable of being in confined non- deployed states, during their introduction into the esophagus and thereafter expanded to deployed states at or near the LES, can be utilized. Such devices include, but are not limited to, basket-shaped devices made of superelastic metals such as nitinol.
Referring to FIG. 4, an extension member 32 with a distal segment 34 is configured to be coupled to first and/or second expandable members 16 and 26. In one embodiment, extension member 32 is rod-like and can be malleable, flexible, articulated and steerable. In various embodiments, extension member 32 can contain optics, fluid and gas paths, sensor and electronic cabling. In one embodiment, extension member 32 can be a coil-reinforced multilumen catheter, as is well known to those skilled in the art. Extension member 32 has sufficient length to position the first and second expandable members in the LES and/or stomach using a trans-oral approach. Typical lengths include, but are not limited to, a range of 40- 180 cms. A proximal fitting 36 of extension member 32 is maneuverable by a medical practitioner. In one embodiment, extension member 32 runs through the center of expandable member 16 and/or 26 and distal segment 34 that extends distally beyond the most distal expandable member. Extension member 32 may be attached to a movable proximal fitting 36 used to control deflection of expandable members 16 or 26, as is more fully explained herein.
Referring to FIG. 5, expandable members 16 and 26 may be initially rolled or folded around extension member 32. Expandable members 16 and 26 can be attached to a deflection mechanism 38, which imparts movement of first and second expandable members 16 and 26 when positioned at the LES. In one embodiment, the deflection mechanism can be a pull wire attached to extension member 32 or first expandable member 16 and to a movable proximal fitting 36, as is well known to those skilled in the art.
Formed spring wires can be included in first expandable member 16 to assist in opening it to the deployed position. Optionally positioned proximal fitting 36 contains a variety of actuators which provide a physician control of GERD treatment apparatus 10, as more fully described hereafter. The actuators can be rocker switches, slider switches and the like, as are well known to those skilled in the art. At least portions of GERD treatment apparatus 10 may be sufficiently radiopaque in order to be visible under fluoroscopy and/or sufficiently echogenic to be visible under ultrasonography.
One embodiment of GERD treatment apparatus 10 is illustrated in FIG. 6A. First expandable member 16 is made of a material that can be an insulator. For purposes of this disclosure, an insulator is a barrier to thermal or electrical energy flow. In this embodiment, expandable member 16 is substantially surrounded by a conforming member 40 which is also called a fluid conduit. Conforming member 40 receives electrolytic solution from first expandable member 16, heated or not heated, through a plurality of apertures 24 formed in first expandable member 16, and passes it to conforming member 40. In another embodiment, shown in FIG. 6B, first expandable member 16 is made of a microporous material 42 that does not include distinct apertures.
Referring to FIGs. 6A and 6B, conforming member 40 is made of a material that permits controlled delivery of the electrolytic solution to the treatment site 12 through one or more apertures 24. In another embodiment, conforming member 40 can be made of microporous material 42 that does not include distinct apertures. Extension member 32 with first and second expandable members, or alternatively with a single expandable member, is introduced into the esophagus directly, shown in FIG. 1 , or through the use of another introducer such as an endoscope (not shown), as is more fully described hereafter with first and second expandable members 16 and 26 in non-deployed configurations. Referring to FIG. 7, first expandable member 16 can be deflected from side to side to facilitate maneuvering through the esophagus and positioning in the LES. This movement can be imparted by deflection mechanism 38.
A variety of energy sources can be coupled to the porous membrane including, (i) an RF source coupled to an RF electrode, (ii) a coherent source of light coupled to an optical fiber, (iii) an incoherent light source coupled to an optical fiber, (iv) a heated fluid coupled to a catheter with an open channel configured to receive the heated fluid, (v) a heated fluid coupled to a catheter with an open channel configured to receive the heated fluid, (vi) a cooled fluid coupled to a catheter with a closed channel configured to receive the cooled fluid, (vii) a cooled fluid coupled to a catheter with an open channel configured to receive the cooled fluid, (viii) a cryogenic fluid, (ix) a resistive heating source, (x) a microwave source providing energy from 915 MHz to 2.45 GHz and coupled to a microwave antenna, (xi) an ultrasound power source coupled to an ultrasound emitter, wherein the ultrasound power source produces energy in the range of 300 KHZ to 3 GHz or (xii) a microwave source. For ease of discussion for the remainder of this application, the energy source utilized is an RF source and electromagnetic energy delivery device 28 is a single or a plurality of RF electrodes 44, also described as electrodes 44. However, all of the other mentioned energy sources are equally applicable to GERD treatment apparatus 10. For the case of RF energy, RF electrode 44 may operated in either bipolar or monopolar mode with a ground pad electrode. In a monopolar mode of delivering RF energy, a single electrode 44 is used in combination with an indifferent electrode patch that is applied to the body to form the other contact and complete an electrical circuit. Bipolar operation is possible when two or more electrodes 44 are used. Multiple electrodes 44 may be used. Also, electrolytic solution serves as an enhanced RF electrode 44' when coupled with an RF electrode 44 (refer to FIG. 8).
Also when the energy source is RF, power source 30, which will now be referred to as a RF energy source 30, may have multiple channels, delivering separately modulated power to each electrode 44. This reduces preferential heating that occurs when more energy is delivered to a zone of greater conductivity and less heating occurs around electrodes 44 which are placed into less conductive tissue. If the tissue hydration or the blood infusion in the tissue is uniform, a single channel RF energy source 30 may be used to provide power for generation of lesions 14 relatively uniform in size.
Electric current flowing through targeted smooth muscle tissue causes heating due to resistance of the tissue resulting in injury to the tissue which can be sufficient to cause the death of affected cells, also known as necrosis. For ease of discussion for the remainder of this application, cell injury will include all cellular effects resulting from the delivery of energy from the electrode 44 up to and including cell necrosis. Cell injury can be accomplished as a relatively simple medical procedure with local anesthesia. In one embodiment, cell injury proceeds to a depth of approximately 1-4 mms from the surface of the mucosal layer.
Referring now to FIGs 9A-C, electrodes 44 can cover all or a portion of expandable members 16 or 26 and/or conforming member 40. Also, electrodes 44 may be distributed in a variety of patterns along an exterior or interior surface of either expandable member 16 or 26 or conforming member 40, in order to produce a desired placement and pattern of lesions 14. Typical electrode distribution patterns include, but are not limited, to a radial distribution 46 (refer to FIG. 9A) or a longitudinal distribution 48 (refer to FIG. 9B). It will be appreciated that other patterns and geometries for electrode placement, such as a spiral distribution 50 (refer to FIG. 9C) may also be suitable. In one embodiment, electrode 44 is positioned on distal segment 34 of extension member 32 (refer to FIG. 10). These electrodes may be cooled as described hereafter. Additionally, distal segment 34 may include apertures 24 for delivery of cooling and electrolytic solution as described hereafter.
Electrodes 44 can have a variety of shapes and sizes. Possible shapes include but are not limited to circular, rectangular, conical and pyramoidal. Electrode surfaces can be smooth or textured and concave or convex. Surface areas can range from 0.1 mm2 to 200 mm2. It will be appreciated that other geometries and surface areas may be equally suitable. In one embodiment, electrodes 44 can be in the shape of needles and of sufficient sharpness and length to penetrate into the smooth muscle of the esophageal wall. In this case, needle electrodes 52 are attached to expandable member 16 or 26 which is located inside conforming member 40 (refer to FIG. 11). During introduction of the GERD treatment apparatus 10 into the esophagus, needle electrodes 52 remain retracted inside conforming member 40. Once GERD treatment apparatus 10 is properly positioned at the treatment site 12, needle electrodes 52 are deployed by expansion of expandable member 16 or 26, resulting in protrusion of needle electrodes 52 through needle apertures 54 in conforming member 40 and into the smooth muscle tissue of the treatment site 12 (refer to FIG. 12). In another embodiment, distal segment 34 may also contain needle apertures 54 for protrusion of needle electrodes 52 into the smooth muscle of the esophageal wall. In this embodiment, shown in FIG. 13 needle electrodes 52 are coupled to an insulated guide wire 56 (known to those skilled in the art) which is advanced through a guide wire lumen 58 in extension member 32.
FIG. 14 is a flow chart illustrating one embodiment of the operation of GERD treatment apparatus 10. In this embodiment, GERD treatment apparatus 10 is first introduced into the esophagus under local anesthesia. GERD treatment apparatus 10 can be introduced into the esophagus by itself or through a lumen in an endoscope, such as disclosed in U.S. Patents Nos. 5,448,990 and 5,275,608, incorporated herein by reference, or similar esophageal access device known to those skilled in the art. Expandable member 16 or 26 is expanded with the introduction of a fluid or gaseous expansion medium 22, such as an electrolytic solution, or a combination of both. This serves to temporarily dilate the esophagus sufficiently to efface a portion of or all of the folds of the LES. In an alternative embodiment, esophageal dilation and subsequent LES fold effacement can be accomplished by insufflation of the esophagus (a known technique) using gas introduced into the esophagus through a channel in the GERD treatment device, or an endoscope or similar esophageal access device as described above. Once treatment is completed, expandable members 16 or 26 are evacuated of fluid or gas and returned to their predeployed state and GERD treatment apparatus 10 is withdrawn from the esophagus. This results in the LES returning to approximately its pretreatment state and diameter.
In one embodiment, electrolytic solution is introduced into expandable member 16 or 26, causing it to become distended and be self-retained in the esophagus. Expandable member 16 or 26 can also be expanded mechanically through the use of formed spring wires (not shown) used alone or in combination with a fluid.
Electrolytic solution in expandable member 16 may be heated to a temperature, which can be modified and adjusted as necessary. For example, electrolytic solution can be heated and maintained at a temperature between about 65-90°C. It can be initially introduced into first expandable member 16 at the higher temperature, or it can be heated to the higher temperature in first expandable member 16. By providing a heated electrolytic solution, there is a reduction in the amount of time needed to complete a satisfactory degree of tissue injury of targeted cells.
It is important to have proper positioning of the expandable members 16 and 26 and conforming member 40 in the sphincter during both diagnosis and treatment phases. This can be facilitated by the following procedure: (I) carefully advancing one or both of expandable members 16 and 26 in an unexpanded state, distal to the lower esophageal sphincter, (ii) expanding the distal one of the two expandable members and (iii) carefully withdrawing GERD treatment apparatus 10 proximally until resistance is encountered. This procedure is illustrated in FIGs. 15
A-C.
The diagnostic phase then begins. This is achieved through a variety of diagnostic methods, including, but not limited to, the following: (I) visualization of the interior surface of the esophagus via an endoscope or other viewing apparatus inserted into the esophagus, (ii) visualization of the interior morphology of the esophageal wall using ultrasonography to establish a baseline for the tissue to be treated, (iii) impedance measurement to determine the electrical conductivity between the esophageal mucosal layers and GERD treatment apparatus 10 and (iv) measurement and surface mapping of the electropotential of the LES during varying time periods which may include such events as depolarization, contraction and repolarization of LES smooth muscle tissue. This latter technique is done to determine specific sites in the LES to be treated which are acting as foci 60 or pathways 62 for abnormal or inappropriate polarization and relaxation of the smooth muscle of the LES (Refer to FIG. 16). In the treatment phase, the delivery of energy of the targeted site can be conducted under feedback control, manually or a combination of both. Feedback control enables GERD treatment apparatus 10 to be positioned and retained in the esophagus during treatment with minimal attention by the physician. When positioned at the LES, GERD treatment apparatus 10 provides a relatively even flow of heated electrolytic solution to facilitate the cell injury process. As shown in FIG. 17, GERD treatment apparatus 10 also may have a plurality of electrodes 44 contained in zones that effectively create a flexible circuit 64 which in turn, facilitates contact of the electrode 44 with all or a portion of the interior surface areas of the LES. Electrodes 44 can be multiplexed in order to treat the targeted site or only a portion thereof. Feedback can be included and is achieved by, (I) visualization, (ii) impedance measurement, (iii) ultrasonography, (iv) temperature measurement; and, (v) sphincter contractile force measurement via manometry. The feedback mechanism permits the selected on-off switching of different electrodes 44 of the flexible circuit 64 in a desired pattern, which can be sequential from one electrode 44 to an adjacent electrode 44, or can jump around between non-adjacent electrodes 44. Individual electrodes 44 are multiplexed and volumetrically controlled by a controller.
The area and magnitude of cell injury in the LES can vary. However, it is desirable to deliver sufficient energy to the targeted treatment site 12 to be able to achieve tissue temperatures in the range of 55-95 ° C and produce lesions 14 at depths ranging from 1-4 mm from the interior surface of the LES. Typical energies delivered to the esophageal wall include, but are not limited to, a range between 100 and 50,000 joules per electrode 44. It is also desirable to deliver sufficient energy such that the resulting lesions 14 have a sufficient magnitude and area of cell injury to cause an infiltration of lesion 14 by fibroblasts 66, myofibroblasts 68, macrophages 70 and other cells involved in the tissue healing process (refer to FIG. 18). As shown in FIGs. 19A and B, these cells cause a contraction of tissue around lesion 14, decreasing its volume and, or altering the biomechanical properties at lesion 14 so as to result in a tightening of LES. These changes are reflected in transformed lesion 14' shown in 19 B. The diameter of lesions 14 can vary between 0.1 to 4 mm. It is preferable that lesions 14 are less than 4 mm in diameter in order to reduce the risk of thermal damage to the mucosal layer. In one embodiment, a 2 mm diameter lesion 14 centered in the wall of the smooth muscle provides a 1 mm buffer zone to prevent damage to the mucosa, submucosa and adventia, while still allowing for cell infiltration and subsequent tightening on approximately 50% of the thickness of the wall of the smooth muscle (refer to FIG. 20).
In one embodiment, GERD treatment apparatus 10 conforms tightly with the interior of the esophagus so that all, or nearly all, of the interior circumference of a desired segment of the LES is in contact with a surface of conforming member
40. Conforming member 40 is fitted into the entire LES and expandable member 16 does not have to be moved about the esophagus to complete the treatment. Alternatively, GERD treatment apparatus 10 may not entirely fill the esophagus, and GERD treatment apparatus 10 is then moved about the esophagus in order to treat all of the esophagus, or those sections where tightening of the lower esophageal sphincter is desired.
Conforming member 40 is made of a material that substantially conforms to the surface of the LES and, or other sphincters. This provides better conformity than the mere use of expandable member 16. As a result, the delivery of treatment energy to the LES is enhanced. Energy delivery may also be enhanced by use of a conducting surface 72 which may cover all, or part of, the exterior of conforming member 40. The surface of conforming member 40 can be made conductive by a variety of means including, but not limited to chemical coating with a conductive material, implantation with conductive ions and application of a conductive film. Conforming member 40 can have a thickness in the range of about 0.01 to
2.0 cm. Conforming member 40 can be made of a foam type material. Suitable materials include, but are not limited to, knitted polyester, continuous filament polyester, polyester-cellulose, rayon, polyamide, polyurethane, polyethylene, silicone, and the like. Suitable commercial foams include, (i) Opcell, available from Sentinel Products Corp., Hyannis, Massachusetts and (ii) UltraSorb, HT 4201 or HT 4644MD from Wilshire Contamination Control, Carlsbad, California. Conforming member 40 has characteristics that make it particularly moldable and formable to irregular surfaces. In one embodiment, conforming member 40 is made of an open cell foam, or alternatively it can be a thermoplastic film such as polyurethane, low density polyethylene, or it may be a silicone. Additionally, conforming member 40 can be capable of extruding conductive materials from conforming member 40 itself.
FIG. 21 illustrates that conforming member 40 can be created by sealing two smaller conforming members 74 and 76 together. Smaller conforming members 74 and 76 are sealed together between individual electrodes 44. This creates a pocket or zone 78. Zone 78 has a lower porosity for the flow of electrolytic solution than non-zone sections 80, e.g., all other sections of conforming member 40 which do not include a zone 78 with an associated electrode 44. The porosity of non-zone sections 80 is greater than the porosity of zones 78. From a diagnostic standpoint, it is desirable to image the interior surface 18 and wall of the LES including the size and position of created lesions 14. It is desirable to create a map of these structures which can input to a controller and used to direct the delivery of energy to the treatment site. Referring to FIG. 22, this can be accomplished through the use of ultrasonography (a known procedure) which involves the use of an ultrasound power source 82 coupled to one or more ultrasound transducers 84 that are positioned in or on expandable member 16 or 26 or conforming member 40. An output is associated with ultrasound power source 82 and RF energy source 30.
Each ultrasound transducer 84 can include a piezoelectric crystal 86 mounted on a backing material 88 that is in turn attached to expandable members
16 or 26 or conforming member 40. An ultrasound lens 90, fabricated on an electrically insulating material 92, is mounted over the piezoelectric crystal 86 The piezoelectric crystal 86 is connected by electrical leads 94 to ultrasound power source 82. Each ultrasound transducer 84 transmits ultrasound energy through conforming member 40 or expandable members 16 or 26 into adjacent tissue.
Ultrasound transducers 84 can be in the form of an imaging probe such as Model 21362, manufactured and sold by Hewlett Packard Company, Palo Alto, California. In one embodiment, two ultrasound transducers 84 are positioned on opposite sides of expandable member 16 to create an image depicting the size and position of lesion 14 in the LES. It is desirable that lesions 14 are predominantly located in the smooth muscle layer of esophageal wall at the depths ranging from 1 to 4 mms from the interior surface of the sphincter. However, lesions 14 can vary both in number and position within the sphincter wall. It may be desirable to produce a pattern of multiple lesions 14 within the esophageal smooth muscle in order to obtain a selected degree of tightening of the LES. Typical lesion patterns shown in FIGs. 23 A-C include but are not limited to, (i) a concentric circle of lesions 14 all at fixed depth in the smooth muscle layer evenly spaced along the radial axis of the LES, (ii) a wavy or folded circle of lesions 14 at varying depths in the smooth muscle layer evenly spaced along the radial axis of the LES, (iii) lesions 14 randomly distributed at varying depths in the smooth muscle, but evenly spaced in a radial direction; and, (iv) an eccentric pattern of lesions 14 in one or more radial locations in the smooth muscle wall. Accordingly, the depth of RF and thermal energy penetration in the lower esophageal sphincter is controlled and selectable. The selective application of energy to the lower esophageal sphincter may be the even penetration of RF energy to the entire targeted site, a portion of it, or applying different amounts of RF energy to different sites depending on the condition of the sphincter. If desired, the area of cell injury can be substantially the same for every treatment event. Referring to FIG. 24, it may be desirable to cool all or a portion of the area near the electrode-tissue interface 96 before during and after the delivery of energy in order to reduce the degree and area of cell injury. Specifically the use of cooling preserves the mucosal layers and protects or otherwise reduces the degree of cell damage to cooled zone 98 in the vicinity of the lesion 14. This can be accomplished through the use of a cooling fluid 100 that weeps out of the expandable members 16 and 26 or conforming member 40 which is in fluid communication with a continuous lumen 102 in extension member 32 that is, in turn, in fluid communication with fluid reservoir 104 and a control unit 106, whose operation will be described hereafter that controls the delivery of the fluid (Refer to FIG. 25). All or only a portion of electrode 44 may also be cooled. Similarly, it may also be desirable to cool all or a portion of the electrode 44. The rapid delivery of heat through electrode 44, may result in the build up of charred biological matter on electrode 44 (from contact with tissue and fluids e.g. blood) that impedes the flow of both thermal and electrical energy from electrode 44 to adjacent tissue and causes an electrical impedance rise beyond a cutoff value set on RF energy source 30. A similar situation may result from the desiccation of tissue adjacent to electrode 44. Cooling of the electrode 44 can be accomplished by cooling fluid 100 that weeps out of expandable members 16 and/or 26 and conforming member 40 as described previously. In another embodiment, expandable member 16 may contain a plurality of cooling apertures 108 adjacent or directed toward electrode 44 to enhance the flow of cooling solution and, or cooling rate of electrode 44 and adjacent tissue (refer to FIG. 26). Referring now to FIG. 27, electrode 44 may also be cooled via a fluid channel 110 in electrode 44 that is in fluid communication with fluid reservoir 104 and control unit 106 via the continuous lumen 102 in extension member 32 as described previously.
As shown in FIG. 28. one or more sensors 112 may be positioned adjacent or on electrode 44 for sensing the temperature of esophageal tissue at treatment site 12. More specifically, sensors 112 permit accurate determination of the surface temperature of the esophagus at electrode-tissue interface 96. This information can be used to regulate both the delivery of energy and cooling solution to the interior surface of the esophagus. In various embodiments sensors 112 can be positioned at any position on expandable members 16 and 26 and conforming member 40. Suitable sensors that may be used for sensor 112 include: thermocouples, fiber optics, resistive wires, thermocouple IR detectors, and the like. Suitable thermocouples for sensor 112 include: T type with copper constantene, J type, E type and K types as are well known those skilled in the art.
Temperature data from sensors 112 are fed back to control unit 106 and through an algorithm which is stored within a microprocessor memory of control unit 106. Instructions are sent to an electronically controlled micropump (not shown) to deliver fluid through the fluid lines at the appropriate flow rate and duration to provide control temperature at the electrode-tissue interface 96 (refer to FIG. 28).
The reservoir of control unit 106 may have the ability to control the temperature of the cooling fluid 100 by either cooling the fluid or heating the fluid. Alternatively, a fluid reservoir 104 of sufficient size may be used in which the cooling fluid 100 is introduced at a temperature at or near that of the normal body temperature. Using a thermally insulated reservoir 114, adequate control of the tissue temperature may be accomplished without need of refrigeration or heating of the cooling fluid 100. Cooling fluid 100 flow is controlled by control unit 106 or another feedback control system (described herein) to provide temperature control at the electrode-tissue interface 96.
A second diagnostic phase may be included after the treatment is completed. This provides an indication of lower esophageal tightening treatment success, and whether or not a second phase of treatment, to all or only a portion of the esophagus, now or at some later time, should be conducted. The second diagnostic phase is accomplished through, (I) visualization, (ii) measuring impedance, (iii) ultrasonography or (iv) temperature measurement, (v) measurement of LES tension and contractile force via manometry.
In one embodiment, GERD treatment apparatus 10 is coupled to an open or closed loop feedback system. Referring now to FIG. 29, an open or closed loop feedback system couples sensor 346 to energy source 392. In this embodiment, RF electrode 314 is one or more RF electrodes 314.
The temperature of the tissue, or of RF electrode 314 is monitored, and the output power of energy source 392 adjusted accordingly. The physician can, if desired, override the closed or open loop system. A microprocessor can be included and incorporated in the closed or open loop system to switch power on and off, as well as modulate the power. The closed loop system utilizes a microprocessor 394 to serve as a controller, monitor the temperature, adjust the RF power, analyze at the result, refeed the result, and then modulate the power. With the use of sensor 346 and the feedback control system a tissue adjacent to RF electrode 314 can be maintained at a desired temperature for a selected period of time without impeding out. Each RF electrode 314 is connected to resources which generate an independent output. The output maintains a selected energy at RF electrode 314 for a selected length of time.
Current delivered through RF electrode 314 is measured by current sensor 396. Voltage is measured by voltage sensor 398. Impedance and power are then calculated at power and impedance calculation device 400. These values can then be displayed at user interface and display 402. Signals representative of power and impedance values are received by a controller 404.
A control signal is generated by controller 404 that is proportional to the difference between an actual measured value, and a desired value. The control signal is used by power circuits 406 to adjust the power output in an appropriate amount in order to maintain the desired power delivered at respective RF electrodes 314.
In a similar manner, temperatures detected at sensor 346 provide feedback for maintaining a selected power. Temperature at sensor 346 is used as a safety means to interrupt the delivery of energy when maximum pre-set temperatures are exceeded. The actual temperatures are measured at temperature measurement device 408, and the temperatures are displayed at user interface and display 402.
A control signal is generated by controller 404 that is proportional to the difference between an actual measured temperature and a desired temperature. The control signal is used by power circuits 406 to adjust the power output in an appropriate amount in order to maintain the desired temperature delivered at the sensor 346. A multiplexer can be included to measure current, voltage and temperature, at the sensor 346, and energy can be delivered to RF electrode 314 in monopolar or bipolar fashion.
Controller 404 can be a digital or analog controller, or a computer with software. When controller 404 is a computer it can include a CPU coupled through a system bus. On this system can be a keyboard, a disk drive, or other non-volatile memory systems, a display, and other peripherals, as are known in the art. Also coupled to the bus is a program memory and a data memory.
User interface and display 402 includes operator controls and a display. Controller 404 can be coupled to imaging systems, including but not limited to ultrasound, CT scanners, X-ray, MRJ, mammographic X-ray and the like. Further, direct visualization and tactile imaging can be utilized.
The output of current sensor 396 and voltage sensor 398 is used by controller 404 to maintain a selected power level at RF electrode 314. The amount of RF energy delivered controls the amount of power. A profile of power delivered can be incorporated in controller 404 and a preset amount of energy to be delivered may also be profiled.
Circuitry, software and feedback to controller 404 result in process control, and the maintenance of the selected power setting that is independent of changes in voltage or current, and used to change, (i) the selected power setting, (ii) the duty cycle (on-off time), (iii) bipolar or monopolar energy delivery and (iv) fluid delivery, including flow rate and pressure. These process variables are controlled and varied, while maintaining the desired delivery of power independent of changes in voltage or current, based on temperatures monitored at sensor 346. As illustrated in FIG. 30, current sensor 396 and voltage sensor 398 are connected to the input of an analog amplifier 410. Analog amplifier 410 can be a conventional differential amplifier circuit for use with sensor 346. The output of analog amplifier 410 is sequentially connected by an analog multiplexer 412 to the input of A/D converter 414. The output of analog amplifier 410 is a voltage which represents the respective sensed temperatures. Digitized amplifier output voltages are supplied by A D converter 414 to microprocessor 394. Microprocessor 394 may be a type 68HCII available from Motorola. However, it will be appreciated that any suitable microprocessor or general purpose digital or analog computer can be used to calculate impedance or temperature. Microprocessor 394 sequentially receives and stores digital representations of impedance and temperature. Each digital value received by microprocessor 394 corresponds to different temperatures and impedances.
Calculated power and impedance values can be indicated on user interface and display 402. Alternatively, or in addition to the numerical indication of power or impedance, calculated impedance and power values can be compared by microprocessor 394 with power and impedance limits. When the values exceed predetermined power or impedance values, a warning can be given on user interface and display 402, and additionally, the delivery of RF energy can be reduced, modified or interrupted. A control signal from microprocessor 394 can modify the power level supplied by energy source 392.
FIG. 31 illustrates a block diagram of a temperature/impedance feedback system that can be used to control the flow rate and duration of cooling fluid 100 through continuous lumen 102 to expandable and conforming members 16, 26 and 40 and or RF electrode 314. Energy is delivered to RF electrode 314 by energy source 392, and applied to tissue site 424. A monitor 416 ascertains tissue impedance, based on the energy delivered to tissue, and compares the measured impedance value to a set value. If the measured impedance exceeds the set value, a disabling signal 418 is transmitted to energy source 392, ceasing further delivery of energy to RF electrode 314. If measured impedance is within acceptable limits, energy continues to be applied to the tissue. During the application of energy sensor 346 measures the temperature of tissue and/or RF electrode 314. A comparator 420 receives a signal representative of the measured temperature and compares this value to a pre-set signal representative of the desired temperature. Comparator 420 sends a signal to a flow regulator 422 connected to an electronically controlled micropump (not shown) representing a need for an increased cooling fluid 100 flow rate, if the tissue temperature is too high, or to maintain the flow rate if the temperature has not exceeded the desired temperature. The foregoing description of a preferred embodiment of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in this art. It is intended that the scope of the invention be defined by the following claims and their equivalents.
What is claimed is:

Claims

1. An apparatus, comprising: a first expandable member expandable by an expansion media, the first expandable member including an exterior and a plurality of apertures, the first expandable member releasing the expansion medium when a sufficient pressure is applied to the expansion medium housed in an interior of the first expandable member; a second expandable member positioned at least partially adjacent to the first expandable member, the second expandable member being configured to receive at least a portion of the expansion medium from the interior of the first expandable member; wherein the first and second expandable members are sized to be expanded sufficiently to open a sphincter; and an electromagnetic energy delivery device coupled to one of the first or second expandable members, wherein the electromagnetic energy delivery device has a configuration that creates a sphincter with a selectable tightening.
2. The apparatus of claim 1, wherein the configuration of the electromagnetic energy delivery device includes a plurality energy delivery members evenly distributed on an external surface of one of the first or second expandable members.
3. The apparatus of claim 2 wherein the plurality of energy delivery members are evenly distributed around a circumference of the external surface of one of the first or second expandable members.
4. The apparatus of claim 2, wherein the coupling member has a length sufficient to position the first expandable member adjacent to the sphincter.
5. The apparatus of claim 1, wherein the sphincter is the lower esophageal sphincter.
6. The apparatus of claim 2, wherein a proximal portion of the coupling member is manevurable by a medical practionioner.
7. The apparatus of claim 1 , wherein the electromagnetic energy delivery device includes an RF electrode.
8. The apparatus of claim 1, wherein the electromagnetic energy delivery device is a plurality of RF electrodes.
9. The apparatus of claim 8, wherein the plurality of electrodes is a flexible circuit.
10. The apparatus of claim 7, wherein the RF electrode is coupled to the first expandable member.
11. The apparatus of claim 7, wherein the RF electrode is coupled to the second expandable member.
12. The apparatus of claim 10, wherein the RF electrode is positioned on a surface of the first expandable member.
13. The apparatus of claim 10, wherein the RF electrode is positioned on a surface of the second expandable member.
14. The apparatus of claim 10, wherein the RF electrode is positioned in the second expandable member.
15. The apparatus of claim 1 , further comprising: a mechanical expansion device coupled to the first expandable member.
16. The apparatus of claim 1, wherein the first expandable member is a balloon.
17. The apparatus of claim 1, wherein the second expandable member is made of a porous membrane.
18. The apparatus of claim 1, wherein the second expandable member is made of an open cell material.
19. The apparatus of claim 1, further comprising: a groundpad electrode configured to be coupled to an exterior surface of a patient.
20. The apparatus of claim 1, wherein the expansion medium is an electrolytic expansion medium.
21. The apparatus of claim 20, further comprising: an electrolytic solution source; and a fluid delivery device configured to be coupled to the electrolytic solution source and the first expandable member.
22. The apparatus of claim 1, further comprising: a heating device for heating the expansion medium.
23. The apparatus of claim 22, wherein the heating device is positionable in the interior of the first expandable member.
24. The apparatus of claim 22, wherein the heating device is coupled to an expansion medium source.
25. The apparatus of claim 1, further comprising: a visualization device coupled to the first expanable member.
26. The apparatus of claim 25, wherein the visualization device extends beyond a distal portion of the first expandable member.
27. The apparatus of claim 25, wherein at least a portion of the visualization device extends through the first expandable member.
28. An apparatus, comprising: an expandable member expandable by an expansion medium, the expandable member including an exterior and a plurality of apertures, the expandable member releasing the expansion medium when a sufficient pressure is applied to the expansion medium housed in an interior of the expandable member; an electromagnetic energy delivery device coupled to the expandable member and configured to be coupled to a power source; and wherein the expandable member is sized to be expanded sufficiently to open a lower esophageal sphincter.
29. The apparatus of claim 28, further comprising: a coupling member coupled to the expandable member.
30. The apparatus of claim 29, wherein the coupling member has a length sufficient to position at least a portion of the expandable member in the lower esophageal sphincter.
31. The apparatus of claim 29, wherein the coupling member has a length sufficient to position at least a portion of the expandable member distal to the lower esophageal sphincter.
32. The apparatus of claim 29, wherein the coupling member has a length sufficient to position the first expandable member adjacent to the lower esophageal sphincter.
33. The apparatus of claim 29, wherein a proximal portion of the coupling member is manevurable by a medical practionioner.
34. The apparatus of claim 28, wherein the electromagnetic energy delivery device includes an RF electrode.
35. The apparatus of claim 28, wherein the electromagnetic energy delivery device is a plurality of RF electrodes.
36. The apparatus of claim 35, wherein the plurality of electrodes is a flexible circuit.
37. The apparatus of claim 34, wherein the RF electrode is coupled to the expandable member.
38. The apparatus of claim 34, wherein the RF electrode is positioned on a surface of the expandable member.
39. The apparatus of claim 34, wherein the RF electrode is positioned in the expandable member.
40. The apparatus of claim 28, further comprising: a mechanical expansion device coupled to the expandable member.
41. The apparatus of claim 28, wherein the expandable member is a balloon.
42. The apparatus of claim 28, wherein an exterior surface of the expandable member is at least partially made of a porous membrane.
43. The apparatus of claim 28, wherein an exterior surface of the expandable member is at least partially made of an open cell material.
44. The apparatus of claim 28, further comprising: a groundpad electrode configured to be coupled to an exterior surface of a patient.
45. The apparatus of claim 28, wherein the expansion medium is an electrolytic expansion medium.
46. The apparatus of claim 45, further comprising: an electrolytic solution source; and a fluid delivery device configured to be coupled to the electrolytic solution source and the expandable member.
47. The apparatus of claim 28, further comprising: a heating device for heating the expansion medium.
48. The apparatus of claim 47, wherein the heating device is positionable in the interior of the expandable member.
49. The apparatus of claim 47, wherein the heating device is coupled to an expansion medium source.
50. The apparatus of claim 28, further comprising: a visualization device coupled to the expanable member.
51. The apparatus of claim 50, wherein the visualization device extends beyond a distal portion of the expandable member.
52. The apparatus of claim 50, wherein at least a portion of the visualization device extends through the interior of the expandable member.
53. An apparatus, comprising: an endoscope including a lumen; an expandable member expandable by an expansion medium, the expandable member including an exterior and a plurality of apertures, the expandable member releasing the expansion medium when a sufficient pressure is applied to the expansion medium housed in an interior of the expandable member, the expandable member being positionable in the lumen; an electromagnetic energy delivery device coupled to the expandable member and configured to be coupled to a power source; and wherein the expandable members is sized to be expanded sufficiently to open a lower esophageal sphincter.
54. The apparatus of claim 53, further comprising: a coupling member coupled to the expandable member.
55. The apparatus of claim 54, wherein the coupling member has a length sufficient to position at least a portion of the expandable member in the lower esophageal sphincter.
56. The apparatus of claim 54, wherein the coupling member has a length sufficient to position at least a portion of the expandable member distal to the lower esophageal sphincter.
57. The apparatus of claim 54, wherein the coupling member has a length sufficient to position the first expandable member adjacent to the lower esophageal sphincter.
58. The apparatus of claim 54, wherein a proximal portion of the coupling member is manevurable by a medical practionioner.
59. The apparatus of claim 53, wherein the electromagnetic energy delivery device includes an RF electrode.
60. The apparatus of claim 53, wherein the electromagnetic energy delivery device is a plurality of RF electrodes.
61. The apparatus of claim 60, wherein the plurality of electrodes is a flexible circuit.
62. The apparatus of claim 59, wherein the RF electrode is coupled to the expandable member.
63. The apparatus of claim 59, wherein the RF electrode is positioned on a surface of the expandable member.
64. The apparatus of claim 63, wherein the expandable member is configured to be advanced from a distal end of the lumen.
65. The apparatus of claim 53, further comprising: a visualization channel formed in the interior of the endoscope.
66. The apparatus of claim 65, further comprising: a visualization device configured to be positionable in the visualization channel.
67. The apparatus of claim 53, further comprising: a visualization device coupled to the expanable member.
68. The apparatus of claim 67, wherein the visualization device extends beyond a distal portion of the expandable member.
69. The apparatus of claim 67, wherein at least a portion of the visualization device extends through the interior of the expandable member.
PCT/US1999/000725 1998-01-14 1999-01-13 Electrosurgical device for sphincter treatment WO1999035988A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU21142/99A AU2114299A (en) 1998-01-14 1999-01-13 Electrosurgical device for sphincter treatment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US728398A 1998-01-14 1998-01-14
US09/007,283 1998-01-14

Publications (1)

Publication Number Publication Date
WO1999035988A1 true WO1999035988A1 (en) 1999-07-22

Family

ID=21725265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/000725 WO1999035988A1 (en) 1998-01-14 1999-01-13 Electrosurgical device for sphincter treatment

Country Status (3)

Country Link
US (3) US6589238B2 (en)
AU (1) AU2114299A (en)
WO (1) WO1999035988A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000048672A1 (en) * 1999-02-19 2000-08-24 Knowlton Edward W Stomach treatment apparatus and method
EP1064886A1 (en) * 1999-06-29 2001-01-03 Ethicon Endo-Surgery Multiple balloon electrosurgical catheter
US6488658B1 (en) * 1999-06-29 2002-12-03 Ethicon Endo-Surgery, Inc. Method of treating the inner lining of an organ using a bipolar electrosurgical instrument including a plurality of balloon electrodes
US9005195B2 (en) 2009-10-27 2015-04-14 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US10149714B2 (en) 2008-05-09 2018-12-11 Nuvaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US11058879B2 (en) 2008-02-15 2021-07-13 Nuvaira, Inc. System and method for bronchial dilation
US11389233B2 (en) 2009-11-11 2022-07-19 Nuvaira, Inc. Systems, apparatuses, and methods for treating tissue and controlling stenosis

Families Citing this family (234)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464697B1 (en) 1998-02-19 2002-10-15 Curon Medical, Inc. Stomach and adjoining tissue regions in the esophagus
US9023031B2 (en) 1997-08-13 2015-05-05 Verathon Inc. Noninvasive devices, methods, and systems for modifying tissues
AU2317899A (en) * 1998-01-14 1999-08-02 Conway-Stuart Medical, Inc. Gerd treatment apparatus and method
US7165551B2 (en) 1998-02-19 2007-01-23 Curon Medical, Inc. Apparatus to detect and treat aberrant myoelectric activity
US7468060B2 (en) * 1998-02-19 2008-12-23 Respiratory Diagnostic, Inc. Systems and methods for treating obesity and other gastrointestinal conditions
US20100114087A1 (en) * 1998-02-19 2010-05-06 Edwards Stuart D Methods and devices for treating urinary incontinence
CA2320109A1 (en) * 1998-03-06 1999-09-10 Curon Medical, Inc. Apparatus to electrosurgically treat esophageal sphincters
AU3672299A (en) 1998-04-30 1999-11-16 Stuart D Edwards Electrosurgical sphincter treatment apparatus
US6740082B2 (en) * 1998-12-29 2004-05-25 John H. Shadduck Surgical instruments for treating gastro-esophageal reflux
US6591838B2 (en) 1998-07-06 2003-07-15 Scimed Life Systems, Inc. Implant system and method for bulking tissue
US6245062B1 (en) * 1998-10-23 2001-06-12 Afx, Inc. Directional reflector shield assembly for a microwave ablation instrument
WO2000069376A1 (en) * 1999-05-18 2000-11-23 Silhouette Medical Inc. Surgical weight control device
US6663639B1 (en) 1999-06-22 2003-12-16 Ndo Surgical, Inc. Methods and devices for tissue reconfiguration
US7846180B2 (en) 1999-06-22 2010-12-07 Ethicon Endo-Surgery, Inc. Tissue fixation devices and methods of fixing tissue
US6821285B2 (en) 1999-06-22 2004-11-23 Ndo Surgical, Inc. Tissue reconfiguration
US8287554B2 (en) 1999-06-22 2012-10-16 Ethicon Endo-Surgery, Inc. Method and devices for tissue reconfiguration
US6835200B2 (en) 1999-06-22 2004-12-28 Ndo Surgical. Inc. Method and devices for tissue reconfiguration
JP2003508150A (en) * 1999-09-08 2003-03-04 キューロン メディカル,インコーポレイテッド Systems and methods for monitoring and controlling use of medical devices
WO2001018616A2 (en) 1999-09-08 2001-03-15 Curon Medical, Inc. System for controlling use of medical devices
EP1210024A1 (en) 1999-09-08 2002-06-05 Curon Medical, Inc. System for controlling a family of treatment devices
US20060095032A1 (en) * 1999-11-16 2006-05-04 Jerome Jackson Methods and systems for determining physiologic characteristics for treatment of the esophagus
US20040215235A1 (en) * 1999-11-16 2004-10-28 Barrx, Inc. Methods and systems for determining physiologic characteristics for treatment of the esophagus
WO2001035846A1 (en) 1999-11-16 2001-05-25 Ganz Robert A System and method of treating abnormal tissue in the human esophagus
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
ATE347856T1 (en) * 2000-03-27 2007-01-15 Wilson Cook Medical Inc INSTRUMENT FOR MEASURING THE COMPLEXITY OF A Sphincter
US8845632B2 (en) 2000-05-18 2014-09-30 Mederi Therapeutics, Inc. Graphical user interface for monitoring and controlling use of medical devices
ES2435094T3 (en) 2000-05-19 2013-12-18 C.R. Bard, Inc. Device and method of tissue capture and suturing
US7608578B2 (en) 2000-08-11 2009-10-27 Temple University - Of The Commonwealth System Of Higher Education Obesity controlling method
US7737109B2 (en) 2000-08-11 2010-06-15 Temple University Of The Commonwealth System Of Higher Education Obesity controlling method
US7306591B2 (en) 2000-10-02 2007-12-11 Novasys Medical, Inc. Apparatus and methods for treating female urinary incontinence
US7357794B2 (en) 2002-01-17 2008-04-15 Medtronic Vascular, Inc. Devices, systems and methods for acute or chronic delivery of substances or apparatus to extravascular treatment sites
US6699243B2 (en) * 2001-09-19 2004-03-02 Curon Medical, Inc. Devices, systems and methods for treating tissue regions of the body
US7077841B2 (en) * 2001-03-26 2006-07-18 Curon Medical, Inc. Systems and methods employing a guidewire for positioning and stabilizing external instruments deployed within the body
US7615049B2 (en) * 2001-09-19 2009-11-10 Mederi Therapeutics, Inc. Devices, systems and methods for treating tissue regions of the body
US20060155261A1 (en) 2001-09-19 2006-07-13 Curon Medical, Inc. Systems and methods for treating tissue regions of the body
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US7756583B2 (en) 2002-04-08 2010-07-13 Ardian, Inc. Methods and apparatus for intravascularly-induced neuromodulation
US20040106937A1 (en) * 2002-06-21 2004-06-03 Afx, Inc. Clamp accessory and method for an ablation instrument
US6881213B2 (en) * 2002-06-28 2005-04-19 Ethicon, Inc. Device and method to expand treatment array
US20040002747A1 (en) * 2002-06-28 2004-01-01 Ethicon, Inc. Device and method to expand treatment array
US8021359B2 (en) 2003-02-13 2011-09-20 Coaptus Medical Corporation Transseptal closure of a patent foramen ovale and other cardiac defects
US20040226556A1 (en) 2003-05-13 2004-11-18 Deem Mark E. Apparatus for treating asthma using neurotoxin
US7160294B2 (en) * 2003-09-02 2007-01-09 Curon Medical, Inc. Systems and methods for treating hemorrhoids
DE202004021942U1 (en) 2003-09-12 2013-05-13 Vessix Vascular, Inc. Selectable eccentric remodeling and / or ablation of atherosclerotic material
US7150745B2 (en) 2004-01-09 2006-12-19 Barrx Medical, Inc. Devices and methods for treatment of luminal tissue
US20050251116A1 (en) * 2004-05-05 2005-11-10 Minnow Medical, Llc Imaging and eccentric atherosclerotic material laser remodeling and/or ablation catheter
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
US9125667B2 (en) 2004-09-10 2015-09-08 Vessix Vascular, Inc. System for inducing desirable temperature effects on body tissue
US7753907B2 (en) * 2004-10-29 2010-07-13 Boston Scientific Scimed, Inc. Medical device systems and methods
US8088132B2 (en) * 2004-12-21 2012-01-03 Davol, Inc. (a C.R. Bard Company) Anastomotic outlet revision
US20060155343A1 (en) * 2005-01-11 2006-07-13 Vilims Bradley D Combination electrical stimulating and infusion medical device and method
US8066702B2 (en) 2005-01-11 2011-11-29 Rittman Iii William J Combination electrical stimulating and infusion medical device and method
US7945331B2 (en) * 2005-01-11 2011-05-17 Bradley D. Vilims Combination electrical stimulating and infusion medical device and method
US20080009927A1 (en) * 2005-01-11 2008-01-10 Vilims Bradley D Combination Electrical Stimulating and Infusion Medical Device and Method
US7918795B2 (en) * 2005-02-02 2011-04-05 Gynesonics, Inc. Method and device for uterine fibroid treatment
WO2006105121A2 (en) 2005-03-28 2006-10-05 Minnow Medical, Llc Intraluminal electrical tissue characterization and tuned rf energy for selective treatment of atheroma and other target tissues
CA2610885A1 (en) * 2005-06-07 2006-12-14 David R. Staskin Injection guidance system and method
DE102005029270B4 (en) * 2005-06-23 2009-07-30 Siemens Ag Catheter, catheter device and diagnostic imaging device
US7822482B2 (en) * 2005-07-29 2010-10-26 Medtronic, Inc. Electrical stimulation lead with rounded array of electrodes
US7769472B2 (en) * 2005-07-29 2010-08-03 Medtronic, Inc. Electrical stimulation lead with conformable array of electrodes
US20070083192A1 (en) * 2005-10-07 2007-04-12 Eric Welch Apparatus and method for ablation of targeted tissue
US7997278B2 (en) 2005-11-23 2011-08-16 Barrx Medical, Inc. Precision ablating method
US8702694B2 (en) 2005-11-23 2014-04-22 Covidien Lp Auto-aligning ablating device and method of use
US7959627B2 (en) 2005-11-23 2011-06-14 Barrx Medical, Inc. Precision ablating device
US20070142884A1 (en) * 2005-12-16 2007-06-21 Acoustx Corporation Methods and apparatuses for treating an esophageal disorder such as gastroesophageal reflux disease
US20070142699A1 (en) * 2005-12-16 2007-06-21 Acoustx Corporation Methods and implantable apparatuses for treating an esophageal disorder such as gastroesophageal reflux disease
US10058342B2 (en) 2006-01-12 2018-08-28 Gynesonics, Inc. Devices and methods for treatment of tissue
US20070161905A1 (en) * 2006-01-12 2007-07-12 Gynesonics, Inc. Intrauterine ultrasound and method for use
US7815571B2 (en) * 2006-04-20 2010-10-19 Gynesonics, Inc. Rigid delivery systems having inclined ultrasound and needle
US9357977B2 (en) * 2006-01-12 2016-06-07 Gynesonics, Inc. Interventional deployment and imaging system
US7874986B2 (en) 2006-04-20 2011-01-25 Gynesonics, Inc. Methods and devices for visualization and ablation of tissue
US11259825B2 (en) 2006-01-12 2022-03-01 Gynesonics, Inc. Devices and methods for treatment of tissue
US7815641B2 (en) * 2006-01-25 2010-10-19 The Regents Of The University Of Michigan Surgical instrument and method for use thereof
US20070225781A1 (en) * 2006-03-21 2007-09-27 Nidus Medical, Llc Apparatus and methods for altering temperature in a region within the body
US20100057178A1 (en) * 2006-04-18 2010-03-04 Electrocore, Inc. Methods and apparatus for spinal cord stimulation using expandable electrode
US8206300B2 (en) 2008-08-26 2012-06-26 Gynesonics, Inc. Ablation device with articulated imaging transducer
US20100056926A1 (en) * 2008-08-26 2010-03-04 Gynesonics, Inc. Ablation device with articulated imaging transducer
US10595819B2 (en) 2006-04-20 2020-03-24 Gynesonics, Inc. Ablation device with articulated imaging transducer
JP2007291937A (en) * 2006-04-25 2007-11-08 Calsonic Kansei Corp Protective member structure of heat exchanger for vehicles
US8406901B2 (en) * 2006-04-27 2013-03-26 Medtronic, Inc. Sutureless implantable medical device fixation
US8019435B2 (en) 2006-05-02 2011-09-13 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US20080039746A1 (en) 2006-05-25 2008-02-14 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US20070299433A1 (en) * 2006-06-27 2007-12-27 C2 Therapeutics Barrett's Esophagus Cryogenic Ablation System
CA2661191C (en) 2006-08-23 2014-12-02 Svip 2 Llc Devices and methods for altering eating behavior
US8807414B2 (en) * 2006-10-06 2014-08-19 Covidien Lp System and method for non-contact electronic articulation sensing
AU2007310988B2 (en) 2006-10-18 2013-08-15 Vessix Vascular, Inc. Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
AU2007310986B2 (en) 2006-10-18 2013-07-04 Boston Scientific Scimed, Inc. Inducing desirable temperature effects on body tissue
US7765012B2 (en) * 2006-11-30 2010-07-27 Medtronic, Inc. Implantable medical device including a conductive fixation element
US9492657B2 (en) * 2006-11-30 2016-11-15 Medtronic, Inc. Method of implanting a medical device including a fixation element
US20080140074A1 (en) * 2006-12-07 2008-06-12 Cierra, Inc. Multi-electrode apparatus for tissue welding and ablation
US8852216B2 (en) 2007-03-23 2014-10-07 Ethicon Endo-Surgery, Inc. Tissue approximation methods
US8496653B2 (en) 2007-04-23 2013-07-30 Boston Scientific Scimed, Inc. Thrombus removal
WO2008137757A1 (en) 2007-05-04 2008-11-13 Barrx Medical, Inc. Method and apparatus for gastrointestinal tract ablation for treatment of obesity
US8323300B2 (en) * 2007-06-04 2012-12-04 Svip 8 Llc Tissue anchorable devices
US20080312644A1 (en) * 2007-06-14 2008-12-18 Boston Scientific Scimed, Inc. Cryogenic balloon ablation instruments and systems
US8784338B2 (en) 2007-06-22 2014-07-22 Covidien Lp Electrical means to normalize ablational energy transmission to a luminal tissue surface of varying size
US20090012518A1 (en) * 2007-07-06 2009-01-08 Utley David S Method and Apparatus for Ablation of Benign, Pre-Cancerous and Early Cancerous Lesions That Originate Within the Epithelium and are Limited to the Mucosal Layer of the Gastrointestinal Tract
WO2009009443A1 (en) 2007-07-06 2009-01-15 Barrx Medical, Inc. Method and apparatus for gastrointestinal tract ablation to achieve loss of persistent and/or recurrent excess body weight following a weight-loss operation
KR101513926B1 (en) 2007-07-06 2015-04-21 코비디엔 엘피 Ablation in the gastrointestinal tract to achieve hemostasis and eradicate lesions with a propensity for bleeding
US20100049189A1 (en) * 2007-07-22 2010-02-25 Duane Dickens Device and method for treating annular organ structure
US8646460B2 (en) 2007-07-30 2014-02-11 Covidien Lp Cleaning device and methods
US8273012B2 (en) 2007-07-30 2012-09-25 Tyco Healthcare Group, Lp Cleaning device and methods
US8088072B2 (en) 2007-10-12 2012-01-03 Gynesonics, Inc. Methods and systems for controlled deployment of needles in tissue
US20090287081A1 (en) * 2008-04-29 2009-11-19 Gynesonics , Inc Submucosal fibroid ablation for the treatment of menorrhagia
US20090281532A1 (en) * 2008-05-07 2009-11-12 The General Hospital Corporation Arrangement for use with a balloon ablation catheter
US8128617B2 (en) * 2008-05-27 2012-03-06 Boston Scientific Scimed, Inc. Electrical mapping and cryo ablating with a balloon catheter
EP2303390A4 (en) * 2008-06-03 2011-11-30 Svip 8 Llc Tissue-anchored devices
US20090318914A1 (en) * 2008-06-18 2009-12-24 Utley David S System and method for ablational treatment of uterine cervical neoplasia
US8512328B2 (en) * 2008-10-13 2013-08-20 Covidien Lp Antenna assemblies for medical applications
US8386010B2 (en) * 2008-10-23 2013-02-26 Covidien Lp Surgical tissue monitoring system
AU2009314133B2 (en) * 2008-11-17 2015-12-10 Vessix Vascular, Inc. Selective accumulation of energy with or without knowledge of tissue topography
US8382746B2 (en) 2008-11-21 2013-02-26 C2 Therapeutics, Inc. Cryogenic ablation system and method
US20100160995A1 (en) * 2008-12-18 2010-06-24 Jerome Dargent Method for treating obesity
US8945117B2 (en) * 2009-02-11 2015-02-03 Boston Scientific Scimed, Inc. Insulated ablation catheter devices and methods of use
US8197473B2 (en) 2009-02-20 2012-06-12 Vivant Medical, Inc. Leaky-wave antennas for medical applications
US8262574B2 (en) 2009-02-27 2012-09-11 Gynesonics, Inc. Needle and tine deployment mechanism
US9108037B2 (en) * 2009-03-09 2015-08-18 St. Jude Medical, Atrial Fibrillation Division, Inc. Apparatus and method for tissue ablation with near-field cooling
US8551096B2 (en) 2009-05-13 2013-10-08 Boston Scientific Scimed, Inc. Directional delivery of energy and bioactives
JP5444840B2 (en) * 2009-05-21 2014-03-19 東レ株式会社 Ablation catheter with balloon and ablation catheter system with balloon
US10386990B2 (en) 2009-09-22 2019-08-20 Mederi Rf, Llc Systems and methods for treating tissue with radiofrequency energy
CN104905875B (en) 2009-09-22 2017-11-14 麦迪尼治疗公司 For controlling the system and method for using and operating of a kind of different therapeutic systems
US9775664B2 (en) 2009-09-22 2017-10-03 Mederi Therapeutics, Inc. Systems and methods for treating tissue with radiofrequency energy
US9474565B2 (en) 2009-09-22 2016-10-25 Mederi Therapeutics, Inc. Systems and methods for treating tissue with radiofrequency energy
US9750563B2 (en) 2009-09-22 2017-09-05 Mederi Therapeutics, Inc. Systems and methods for treating tissue with radiofrequency energy
US8911439B2 (en) 2009-11-11 2014-12-16 Holaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
US20110208181A1 (en) * 2010-02-05 2011-08-25 Emcision Limited Methods and systems for restoring patency
KR20130108067A (en) 2010-04-09 2013-10-02 베식스 바스큘라 인코포레이티드 Power generating and control apparatus for the treatment of tissue
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US20120029512A1 (en) * 2010-07-30 2012-02-02 Willard Martin R Balloon with surface electrodes and integral cooling for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9084610B2 (en) 2010-10-21 2015-07-21 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US20120157993A1 (en) 2010-12-15 2012-06-21 Jenson Mark L Bipolar Off-Wall Electrode Device for Renal Nerve Ablation
US9775982B2 (en) 2010-12-29 2017-10-03 Medtronic, Inc. Implantable medical device fixation
US10112045B2 (en) 2010-12-29 2018-10-30 Medtronic, Inc. Implantable medical device fixation
WO2012100095A1 (en) 2011-01-19 2012-07-26 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
US10278774B2 (en) * 2011-03-18 2019-05-07 Covidien Lp Selectively expandable operative element support structure and methods of use
CA2832311A1 (en) 2011-04-08 2012-11-29 Covidien Lp Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery
EP2701623B1 (en) 2011-04-25 2016-08-17 Medtronic Ardian Luxembourg S.à.r.l. Apparatus related to constrained deployment of cryogenic balloons for limited cryogenic ablation of vessel walls
US9492113B2 (en) 2011-07-15 2016-11-15 Boston Scientific Scimed, Inc. Systems and methods for monitoring organ activity
CN103813745B (en) 2011-07-20 2016-06-29 波士顿科学西美德公司 In order to visualize, be directed at and to melt transcutaneous device and the method for nerve
JP6106669B2 (en) 2011-07-22 2017-04-05 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. A neuromodulation system having a neuromodulation element that can be placed in a helical guide
TWI471009B (en) * 2011-07-29 2015-01-21 Wistron Corp A display device
EP2744386B1 (en) 2011-08-19 2018-12-19 Cook Medical Technologies LLC Cap for attachment to an endoscope
EP2744437B1 (en) 2011-08-19 2020-12-09 Cook Medical Technologies LLC Ablation cap
WO2013052852A1 (en) * 2011-10-07 2013-04-11 Boston Scientific Scimed, Inc. Methods and systems for detection and thermal treatment of lower urinary tract conditions
WO2013055826A1 (en) 2011-10-10 2013-04-18 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US10085799B2 (en) 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
WO2013058962A1 (en) 2011-10-18 2013-04-25 Boston Scientific Scimed, Inc. Deflectable medical devices
EP2768568B1 (en) 2011-10-18 2020-05-06 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
EP2775948B1 (en) 2011-11-08 2018-04-04 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
SG11201402610QA (en) 2011-12-09 2014-10-30 Metavention Inc Therapeutic neuromodulation of the hepatic system
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
WO2013096916A2 (en) 2011-12-23 2013-06-27 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9433760B2 (en) 2011-12-28 2016-09-06 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9854982B2 (en) 2012-03-26 2018-01-02 Medtronic, Inc. Implantable medical device deployment within a vessel
US10485435B2 (en) 2012-03-26 2019-11-26 Medtronic, Inc. Pass-through implantable medical device delivery catheter with removeable distal tip
US9717421B2 (en) 2012-03-26 2017-08-01 Medtronic, Inc. Implantable medical device delivery catheter with tether
US9339197B2 (en) 2012-03-26 2016-05-17 Medtronic, Inc. Intravascular implantable medical device introduction
US9220906B2 (en) 2012-03-26 2015-12-29 Medtronic, Inc. Tethered implantable medical device deployment
US9833625B2 (en) 2012-03-26 2017-12-05 Medtronic, Inc. Implantable medical device delivery with inner and outer sheaths
US8403927B1 (en) 2012-04-05 2013-03-26 William Bruce Shingleton Vasectomy devices and methods
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
US20140018888A1 (en) * 2012-07-16 2014-01-16 Boston Scientific Scimed, Inc. Flow controlled radiofrequency medical balloon
US9351648B2 (en) 2012-08-24 2016-05-31 Medtronic, Inc. Implantable medical device electrode assembly
US10321946B2 (en) * 2012-08-24 2019-06-18 Boston Scientific Scimed, Inc. Renal nerve modulation devices with weeping RF ablation balloons
US9173696B2 (en) 2012-09-17 2015-11-03 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US20150080867A1 (en) * 2012-09-19 2015-03-19 Wolfgang Neuberger Gastric Reflux Treatment with Lasers
US10549127B2 (en) 2012-09-21 2020-02-04 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
US20140088584A1 (en) * 2012-09-26 2014-03-27 Boston Scientific Scimed, Inc. Medical device balloon catheter
US9526570B2 (en) 2012-10-04 2016-12-27 Cook Medical Technologies Llc Tissue cutting cap
CN104869930B (en) 2012-10-10 2020-12-25 波士顿科学国际有限公司 Renal neuromodulation apparatus and methods
US9398933B2 (en) 2012-12-27 2016-07-26 Holaira, Inc. Methods for improving drug efficacy including a combination of drug administration and nerve modulation
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
EP2967734B1 (en) 2013-03-15 2019-05-15 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9297845B2 (en) 2013-03-15 2016-03-29 Boston Scientific Scimed, Inc. Medical devices and methods for treatment of hypertension that utilize impedance compensation
EP3010437A1 (en) 2013-06-21 2016-04-27 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
CN105473092B (en) 2013-06-21 2019-05-17 波士顿科学国际有限公司 The medical instrument for renal nerve ablation with rotatable shaft
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
WO2015002787A1 (en) 2013-07-01 2015-01-08 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
EP3019106A1 (en) 2013-07-11 2016-05-18 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
WO2015006480A1 (en) 2013-07-11 2015-01-15 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
WO2015010074A1 (en) 2013-07-19 2015-01-22 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
WO2015013205A1 (en) 2013-07-22 2015-01-29 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10695124B2 (en) 2013-07-22 2020-06-30 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
WO2015027096A1 (en) 2013-08-22 2015-02-26 Boston Scientific Scimed, Inc. Flexible circuit having improved adhesion to a renal nerve modulation balloon
EP3041425B1 (en) 2013-09-04 2022-04-13 Boston Scientific Scimed, Inc. Radio frequency (rf) balloon catheter having flushing and cooling capability
WO2015038947A1 (en) 2013-09-13 2015-03-19 Boston Scientific Scimed, Inc. Ablation balloon with vapor deposited cover layer
CN105592778B (en) 2013-10-14 2019-07-23 波士顿科学医学有限公司 High-resolution cardiac mapping electrod-array conduit
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
AU2014334574B2 (en) 2013-10-15 2017-07-06 Boston Scientific Scimed, Inc. Medical device balloon
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
CN105636538B (en) 2013-10-18 2019-01-15 波士顿科学国际有限公司 Foley's tube with flexible wire and its correlation technique for using and manufacturing
CN105658163B (en) 2013-10-25 2020-08-18 波士顿科学国际有限公司 Embedded thermocouple in denervation flexible circuit
WO2015103617A1 (en) 2014-01-06 2015-07-09 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
JP6325121B2 (en) 2014-02-04 2018-05-16 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Alternative placement of temperature sensors on bipolar electrodes
US10709490B2 (en) 2014-05-07 2020-07-14 Medtronic Ardian Luxembourg S.A.R.L. Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods
EP3206612B1 (en) 2014-10-13 2022-06-29 Boston Scientific Scimed Inc. Tissue diagnosis and treatment using mini-electrodes
US10335189B2 (en) 2014-12-03 2019-07-02 PAVmed Inc. Systems and methods for percutaneous division of fibrous structures
US9414878B1 (en) 2015-05-15 2016-08-16 C2 Therapeutics, Inc. Cryogenic balloon ablation system
WO2017200877A1 (en) 2016-05-20 2017-11-23 C2 Therapeutics, Inc. Cryogenic ablation system with rotatable and translatable catheter
US10524859B2 (en) 2016-06-07 2020-01-07 Metavention, Inc. Therapeutic tissue modulation devices and methods
AU2017359338B2 (en) 2016-11-11 2022-09-08 Gynesonics, Inc. Controlled treatment of tissue and dynamic interaction with, and comparison of, tissue and/or treatment data
US20190117991A1 (en) * 2017-10-19 2019-04-25 Robert Der-Yang Tien System and method for treating cancer
US11478298B2 (en) 2018-01-24 2022-10-25 Medtronic Ardian Luxembourg S.A.R.L. Controlled irrigation for neuromodulation systems and associated methods
US11246644B2 (en) 2018-04-05 2022-02-15 Covidien Lp Surface ablation using bipolar RF electrode
US10874850B2 (en) 2018-09-28 2020-12-29 Medtronic, Inc. Impedance-based verification for delivery of implantable medical devices
US11331475B2 (en) 2019-05-07 2022-05-17 Medtronic, Inc. Tether assemblies for medical device delivery systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5088979A (en) 1990-10-11 1992-02-18 Wilson-Cook Medical Inc. Method for esophageal invagination and devices useful therein
US5106360A (en) * 1987-09-17 1992-04-21 Olympus Optical Co., Ltd. Thermotherapeutic apparatus
WO1996000042A1 (en) * 1994-06-24 1996-01-04 Vidacare International Thin layer ablation apparatus
US5575788A (en) 1994-06-24 1996-11-19 Stuart D. Edwards Thin layer ablation apparatus
US5676674A (en) 1994-10-02 1997-10-14 Bolanos; Henry Non-invasive treatment of gastroesophageal reflux disease

Family Cites Families (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1798902A (en) 1928-11-05 1931-03-31 Edwin M Raney Surgical instrument
US3517128A (en) 1968-02-08 1970-06-23 James R Hines Surgical expanding arm dilator
US3901241A (en) 1973-05-31 1975-08-26 Al Corp Du Disposable cryosurgical instrument
DE2513868C2 (en) 1974-04-01 1982-11-04 Olympus Optical Co., Ltd., Tokyo Bipolar electrodiathermy forceps
US4196724A (en) 1978-01-31 1980-04-08 Frecker William H Tongue locking device
WO1981003271A1 (en) 1980-05-13 1981-11-26 American Hospital Supply Corp A multipolar electrosurgical device
JPS5755573A (en) 1980-09-18 1982-04-02 Olympus Optical Co Ltd Cassette storing device
US4411266A (en) 1980-09-24 1983-10-25 Cosman Eric R Thermocouple radio frequency lesion electrode
US4565200A (en) 1980-09-24 1986-01-21 Cosman Eric R Universal lesion and recording electrode system
US5421819A (en) 1992-08-12 1995-06-06 Vidamed, Inc. Medical probe device
US5370675A (en) 1992-08-12 1994-12-06 Vidamed, Inc. Medical probe device and method
US5385544A (en) 1992-08-12 1995-01-31 Vidamed, Inc. BPH ablation method and apparatus
US5435805A (en) 1992-08-12 1995-07-25 Vidamed, Inc. Medical probe device with optical viewing capability
US4601296A (en) 1983-10-07 1986-07-22 Yeda Research And Development Co., Ltd. Hyperthermia apparatus
US4705041A (en) 1984-07-06 1987-11-10 Kim Il G Dilator for Sphincter of Oddi
US5019075A (en) 1984-10-24 1991-05-28 The Beth Israel Hospital Method and apparatus for angioplasty
US5231995A (en) 1986-11-14 1993-08-03 Desai Jawahar M Method for catheter mapping and ablation
US5365926A (en) 1986-11-14 1994-11-22 Desai Jawahar M Catheter for mapping and ablation and method therefor
US5215103A (en) 1986-11-14 1993-06-01 Desai Jawahar M Catheter for mapping and ablation and method therefor
US4901737A (en) 1987-04-13 1990-02-20 Toone Kent J Method and therapeutic apparatus for reducing snoring
US4943290A (en) 1987-06-23 1990-07-24 Concept Inc. Electrolyte purging electrode tip
US5588432A (en) 1988-03-21 1996-12-31 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials, and ablating tissue
US4907589A (en) 1988-04-29 1990-03-13 Cosman Eric R Automatic over-temperature control apparatus for a therapeutic heating device
DE3821544C2 (en) 1988-06-25 1994-04-28 H Prof Dr Med Just Dilatation catheter
US4947842A (en) 1988-09-22 1990-08-14 Medical Engineering And Development Institute, Inc. Method and apparatus for treating tissue with first and second modalities
US4906203A (en) 1988-10-24 1990-03-06 General Motors Corporation Electrical connector with shorting clip
US4955377A (en) 1988-10-28 1990-09-11 Lennox Charles D Device and method for heating tissue in a patient's body
US4966597A (en) 1988-11-04 1990-10-30 Cosman Eric R Thermometric cardiac tissue ablation electrode with ultra-sensitive temperature detection
DE3838840C2 (en) 1988-11-17 1997-02-20 Leibinger Gmbh High frequency coagulation device for surgical purposes
CA1332905C (en) 1989-03-10 1994-11-08 John A. Murchie Method and apparatus for treatment of snoring
US4976711A (en) 1989-04-13 1990-12-11 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5057107A (en) 1989-04-13 1991-10-15 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5125928A (en) 1989-04-13 1992-06-30 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5078717A (en) 1989-04-13 1992-01-07 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
DE3915636C1 (en) 1989-05-12 1990-04-26 Sass, Wolfgang, Dr.
US5084044A (en) 1989-07-14 1992-01-28 Ciron Corporation Apparatus for endometrial ablation and method of using same
EP0490979B1 (en) 1989-09-08 1996-11-13 Boston Scientific Corporation Physiologic low stress angioplasty
US5035696A (en) 1990-02-02 1991-07-30 Everest Medical Corporation Electrosurgical instrument for conducting endoscopic retrograde sphincterotomy
US5205287A (en) 1990-04-26 1993-04-27 Hoechst Aktiengesellschaft Ultrasonic contrast agents, processes for their preparation and the use thereof as diagnostic and therapeutic agents
US5122137A (en) 1990-04-27 1992-06-16 Boston Scientific Corporation Temperature controlled rf coagulation
US5236413B1 (en) 1990-05-07 1996-06-18 Andrew J Feiring Method and apparatus for inducing the permeation of medication into internal tissue
US5190540A (en) 1990-06-08 1993-03-02 Cardiovascular & Interventional Research Consultants, Inc. Thermal balloon angioplasty
US5083565A (en) 1990-08-03 1992-01-28 Everest Medical Corporation Electrosurgical instrument for ablating endocardial tissue
US5100423A (en) 1990-08-21 1992-03-31 Medical Engineering & Development Institute, Inc. Ablation catheter
EP0548122A1 (en) 1990-09-14 1993-06-30 American Medical Systems, Inc. Combined hyperthermia and dilation catheter
US5316020A (en) 1990-10-03 1994-05-31 Ernest Truffer Snoring prevention device
US5256138A (en) 1990-10-04 1993-10-26 The Birtcher Corporation Electrosurgical handpiece incorporating blade and conductive gas functionality
US5190541A (en) 1990-10-17 1993-03-02 Boston Scientific Corporation Surgical instrument and method
US5368557A (en) 1991-01-11 1994-11-29 Baxter International Inc. Ultrasonic ablation catheter device having multiple ultrasound transmission members
US5094233A (en) 1991-01-11 1992-03-10 Brennan Louis G Turbinate sheath device
US5156151A (en) 1991-02-15 1992-10-20 Cardiac Pathways Corporation Endocardial mapping and ablation system and catheter probe
US5345936A (en) 1991-02-15 1994-09-13 Cardiac Pathways Corporation Apparatus with basket assembly for endocardial mapping
US5370901A (en) 1991-02-15 1994-12-06 Bracco International B.V. Compositions for increasing the image contrast in diagnostic investigations of the digestive tract of patients
US5465717A (en) 1991-02-15 1995-11-14 Cardiac Pathways Corporation Apparatus and Method for ventricular mapping and ablation
US5409453A (en) 1992-08-12 1995-04-25 Vidamed, Inc. Steerable medical probe with stylets
DE4107837C2 (en) * 1991-03-12 1997-03-13 Schleicher & Co Int Document shredder
US5275610A (en) 1991-05-13 1994-01-04 Cook Incorporated Surgical retractors and method of use
WO1992021285A1 (en) 1991-05-24 1992-12-10 Ep Technologies, Inc. Combination monophasic action potential/ablation catheter and high-performance filter system
US5383917A (en) 1991-07-05 1995-01-24 Jawahar M. Desai Device and method for multi-phase radio-frequency ablation
US5275608A (en) 1991-10-16 1994-01-04 Implemed, Inc. Generic endoscopic instrument
US5328467A (en) 1991-11-08 1994-07-12 Ep Technologies, Inc. Catheter having a torque transmitting sleeve
US5257451A (en) 1991-11-08 1993-11-02 Ep Technologies, Inc. Method of making durable sleeve for enclosing a bendable electrode tip assembly
US5275162A (en) 1991-11-08 1994-01-04 Ep Technologies, Inc. Valve mapping catheter
AU3128593A (en) 1991-11-08 1993-06-07 Ep Technologies Inc Radiofrequency ablation with phase sensitive power detection
JP3530528B2 (en) 1991-11-08 2004-05-24 ボストン サイエンティフィック リミテッド Ablation electrode with insulated temperature sensing element
US5363861A (en) 1991-11-08 1994-11-15 Ep Technologies, Inc. Electrode tip assembly with variable resistance to bending
US5197964A (en) 1991-11-12 1993-03-30 Everest Medical Corporation Bipolar instrument utilizing one stationary electrode and one movable electrode
US5197963A (en) 1991-12-02 1993-03-30 Everest Medical Corporation Electrosurgical instrument with extendable sheath for irrigation and aspiration
US5304214A (en) * 1992-01-21 1994-04-19 Med Institute, Inc. Transurethral ablation catheter
US5263493A (en) 1992-02-24 1993-11-23 Boaz Avitall Deflectable loop electrode array mapping and ablation catheter for cardiac chambers
US5242441A (en) 1992-02-24 1993-09-07 Boaz Avitall Deflectable catheter with rotatable tip electrode
US5480644A (en) 1992-02-28 1996-01-02 Jsf Consultants Ltd. Use of injectable biomaterials for the repair and augmentation of the anal sphincters
US5281216A (en) 1992-03-31 1994-01-25 Valleylab, Inc. Electrosurgical bipolar treating apparatus
US5281217A (en) 1992-04-13 1994-01-25 Ep Technologies, Inc. Steerable antenna systems for cardiac ablation that minimize tissue damage and blood coagulation due to conductive heating patterns
US5314466A (en) 1992-04-13 1994-05-24 Ep Technologies, Inc. Articulated unidirectional microwave antenna systems for cardiac ablation
WO1993020768A1 (en) 1992-04-13 1993-10-28 Ep Technologies, Inc. Steerable microwave antenna systems for cardiac ablation
WO1993020886A1 (en) 1992-04-13 1993-10-28 Ep Technologies, Inc. Articulated systems for cardiac ablation
US5562720A (en) 1992-05-01 1996-10-08 Vesta Medical, Inc. Bipolar/monopolar endometrial ablation device and method
US5277201A (en) 1992-05-01 1994-01-11 Vesta Medical, Inc. Endometrial ablation apparatus and method
US5443470A (en) 1992-05-01 1995-08-22 Vesta Medical, Inc. Method and apparatus for endometrial ablation
US5281218A (en) 1992-06-05 1994-01-25 Cardiac Pathways Corporation Catheter having needle electrode for radiofrequency ablation
US5324284A (en) 1992-06-05 1994-06-28 Cardiac Pathways, Inc. Endocardial mapping and ablation system utilizing a separately controlled ablation catheter and method
US5254126A (en) 1992-06-24 1993-10-19 Ethicon, Inc. Endoscopic suture punch
WO1994002077A2 (en) 1992-07-15 1994-02-03 Angelase, Inc. Ablation catheter system
US5484400A (en) 1992-08-12 1996-01-16 Vidamed, Inc. Dual channel RF delivery system
US5486161A (en) 1993-02-02 1996-01-23 Zomed International Medical probe device and method
US5672153A (en) 1992-08-12 1997-09-30 Vidamed, Inc. Medical probe device and method
US5470308A (en) 1992-08-12 1995-11-28 Vidamed, Inc. Medical probe with biopsy stylet
US5556377A (en) 1992-08-12 1996-09-17 Vidamed, Inc. Medical probe apparatus with laser and/or microwave monolithic integrated circuit probe
US5456662A (en) 1993-02-02 1995-10-10 Edwards; Stuart D. Method for reducing snoring by RF ablation of the uvula
US5514131A (en) 1992-08-12 1996-05-07 Stuart D. Edwards Method for the ablation treatment of the uvula
US5293869A (en) 1992-09-25 1994-03-15 Ep Technologies, Inc. Cardiac probe with dynamic support for maintaining constant surface contact during heart systole and diastole
US5309910A (en) 1992-09-25 1994-05-10 Ep Technologies, Inc. Cardiac mapping and ablation systems
US5313943A (en) 1992-09-25 1994-05-24 Ep Technologies, Inc. Catheters and methods for performing cardiac diagnosis and treatment
US5401272A (en) 1992-09-25 1995-03-28 Envision Surgical Systems, Inc. Multimodality probe with extendable bipolar electrodes
US5471982A (en) 1992-09-29 1995-12-05 Ep Technologies, Inc. Cardiac mapping and ablation systems
US5305696A (en) * 1992-10-05 1994-04-26 Mendenhall Robert Lamar Process and system for treating contaminated particulate soil compositions
US5334196A (en) 1992-10-05 1994-08-02 United States Surgical Corporation Endoscopic fastener remover
US5415657A (en) 1992-10-13 1995-05-16 Taymor-Luria; Howard Percutaneous vascular sealing method
WO1994010924A1 (en) 1992-11-13 1994-05-26 American Cardiac Ablation Co., Inc. Fluid cooled electrosurgical probe
US5348554A (en) 1992-12-01 1994-09-20 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode
US5409483A (en) 1993-01-22 1995-04-25 Jeffrey H. Reese Direct visualization surgical probe
CN1119418A (en) 1993-02-02 1996-03-27 怀达医疗公司 Transurethral needle ablation device and method
DE4303882C2 (en) 1993-02-10 1995-02-09 Kernforschungsz Karlsruhe Combination instrument for separation and coagulation for minimally invasive surgery
US5403311A (en) 1993-03-29 1995-04-04 Boston Scientific Corporation Electro-coagulation and ablation and other electrotherapeutic treatments of body tissue
US5336222A (en) 1993-03-29 1994-08-09 Boston Scientific Corporation Integrated catheter for diverse in situ tissue therapy
US5365945A (en) 1993-04-13 1994-11-22 Halstrom Leonard W Adjustable dental applicance for treatment of snoring and obstructive sleep apnea
ATE284650T1 (en) 1993-06-10 2005-01-15 Mir A Imran URETHRAL DEVICE FOR ABLATION USING HIGH FREQUENCY
US5860974A (en) 1993-07-01 1999-01-19 Boston Scientific Corporation Heart ablation catheter with expandable electrode and method of coupling energy to an electrode on a catheter shaft
DE4323585A1 (en) 1993-07-14 1995-01-19 Delma Elektro Med App Bipolar high-frequency surgical instrument
US5738096A (en) 1993-07-20 1998-04-14 Biosense, Inc. Cardiac electromechanics
US5433739A (en) 1993-11-02 1995-07-18 Sluijter; Menno E. Method and apparatus for heating an intervertebral disc for relief of back pain
US5507743A (en) 1993-11-08 1996-04-16 Zomed International Coiled RF electrode treatment apparatus
US5472441A (en) 1993-11-08 1995-12-05 Zomed International Device for treating cancer and non-malignant tumors and methods
US5536267A (en) 1993-11-08 1996-07-16 Zomed International Multiple electrode ablation apparatus
US5458597A (en) 1993-11-08 1995-10-17 Zomed International Device for treating cancer and non-malignant tumors and methods
US5599346A (en) 1993-11-08 1997-02-04 Zomed International, Inc. RF treatment system
WO1995020345A1 (en) 1994-01-28 1995-08-03 Ep Technologies, Inc. Minimizing blood contact in cardiac tissue measurements
US5423812A (en) 1994-01-31 1995-06-13 Ellman; Alan G. Electrosurgical stripping electrode for palatopharynx tissue
US5458596A (en) 1994-05-06 1995-10-17 Dorsal Orthopedic Corporation Method and apparatus for controlled contraction of soft tissue
US5609151A (en) 1994-09-08 1997-03-11 Medtronic, Inc. Method for R-F ablation
US6102929A (en) * 1994-09-15 2000-08-15 Mentor Urology, Inc. Prostatic tissue expander
US5558673A (en) 1994-09-30 1996-09-24 Vidamed, Inc. Medical probe device and method having a flexible resilient tape stylet
US5514130A (en) 1994-10-11 1996-05-07 Dorsal Med International RF apparatus for controlled depth ablation of soft tissue
US5588960A (en) 1994-12-01 1996-12-31 Vidamed, Inc. Transurethral needle delivery device with cystoscope and method for treatment of urinary incontinence
US6363937B1 (en) * 1995-06-07 2002-04-02 Arthrocare Corporation System and methods for electrosurgical treatment of the digestive system
US5709224A (en) 1995-06-07 1998-01-20 Radiotherapeutics Corporation Method and device for permanent vessel occlusion
US5702438A (en) 1995-06-08 1997-12-30 Avitall; Boaz Expandable recording and ablation catheter system
US5624439A (en) 1995-08-18 1997-04-29 Somnus Medical Technologies, Inc. Method and apparatus for treatment of air way obstructions
US5836874A (en) 1996-04-08 1998-11-17 Ep Technologies, Inc. Multi-function electrode structures for electrically analyzing and heating body tissue
US5871483A (en) 1996-01-19 1999-02-16 Ep Technologies, Inc. Folding electrode structures
US5830213A (en) 1996-04-12 1998-11-03 Ep Technologies, Inc. Systems for heating and ablating tissue using multifunctional electrode structures
US5957920A (en) * 1997-08-28 1999-09-28 Isothermix, Inc. Medical instruments and techniques for treatment of urinary incontinence
US6073052A (en) * 1996-11-15 2000-06-06 Zelickson; Brian D. Device and method for treatment of gastroesophageal reflux disease
CA2318315A1 (en) 1998-01-14 1999-07-22 Conway-Stuart Medical, Inc. Electrosurgical apparatus for treating gastroesophageal reflux disease (gerd) and method
US6156032A (en) * 1998-09-30 2000-12-05 Scimed Life Systems, Inc. Method for causing a stricture of a body passageway

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106360A (en) * 1987-09-17 1992-04-21 Olympus Optical Co., Ltd. Thermotherapeutic apparatus
US5088979A (en) 1990-10-11 1992-02-18 Wilson-Cook Medical Inc. Method for esophageal invagination and devices useful therein
WO1996000042A1 (en) * 1994-06-24 1996-01-04 Vidacare International Thin layer ablation apparatus
US5505730A (en) 1994-06-24 1996-04-09 Stuart D. Edwards Thin layer ablation apparatus
US5558672A (en) 1994-06-24 1996-09-24 Vidacare, Inc. Thin layer ablation apparatus
US5569241A (en) 1994-06-24 1996-10-29 Vidacare, Inc. Thin layer ablation apparatus
US5575788A (en) 1994-06-24 1996-11-19 Stuart D. Edwards Thin layer ablation apparatus
US5676674A (en) 1994-10-02 1997-10-14 Bolanos; Henry Non-invasive treatment of gastroesophageal reflux disease

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000048672A1 (en) * 1999-02-19 2000-08-24 Knowlton Edward W Stomach treatment apparatus and method
US6427089B1 (en) 1999-02-19 2002-07-30 Edward W. Knowlton Stomach treatment apparatus and method
EP1064886A1 (en) * 1999-06-29 2001-01-03 Ethicon Endo-Surgery Multiple balloon electrosurgical catheter
US6488658B1 (en) * 1999-06-29 2002-12-03 Ethicon Endo-Surgery, Inc. Method of treating the inner lining of an organ using a bipolar electrosurgical instrument including a plurality of balloon electrodes
US11058879B2 (en) 2008-02-15 2021-07-13 Nuvaira, Inc. System and method for bronchial dilation
US10149714B2 (en) 2008-05-09 2018-12-11 Nuvaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US11937868B2 (en) 2008-05-09 2024-03-26 Nuvaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US9005195B2 (en) 2009-10-27 2015-04-14 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
EP2493408B1 (en) * 2009-10-27 2015-06-24 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US11389233B2 (en) 2009-11-11 2022-07-19 Nuvaira, Inc. Systems, apparatuses, and methods for treating tissue and controlling stenosis

Also Published As

Publication number Publication date
US6971395B2 (en) 2005-12-06
US20030195509A1 (en) 2003-10-16
US20030014046A1 (en) 2003-01-16
US8313484B2 (en) 2012-11-20
US20060041256A1 (en) 2006-02-23
US6589238B2 (en) 2003-07-08
AU2114299A (en) 1999-08-02

Similar Documents

Publication Publication Date Title
US6589238B2 (en) Sphincter treatment device
US7462179B2 (en) GERD treatment apparatus and method
US6846312B2 (en) GERD treatment apparatus and method
EP1056403B1 (en) Electrosurgical sphincter treatment apparatus
US6092528A (en) Method to treat esophageal sphincters
US6009877A (en) Method for treating a sphincter
US8454595B2 (en) Sphincter treatment apparatus
US6749607B2 (en) Apparatus to treat esophageal sphincters

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase