WO1999038461A2 - Allogenic intervertebral implant - Google Patents

Allogenic intervertebral implant Download PDF

Info

Publication number
WO1999038461A2
WO1999038461A2 PCT/EP1999/000433 EP9900433W WO9938461A2 WO 1999038461 A2 WO1999038461 A2 WO 1999038461A2 EP 9900433 W EP9900433 W EP 9900433W WO 9938461 A2 WO9938461 A2 WO 9938461A2
Authority
WO
WIPO (PCT)
Prior art keywords
implant
intervertebral implant
height
bone
shape
Prior art date
Application number
PCT/EP1999/000433
Other languages
French (fr)
Other versions
WO1999038461A3 (en
Inventor
David C. Paul
Hansjuerg W. Emch
Beat Schenk
Jeffrey L. Carver
Kelly J. Baker
Original Assignee
Synthes Ag Chur
Synthes (U.S.A.)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synthes Ag Chur, Synthes (U.S.A.) filed Critical Synthes Ag Chur
Priority to EP99907405A priority Critical patent/EP1051134A2/en
Priority to JP2000529197A priority patent/JP2002501782A/en
Priority to CA002319622A priority patent/CA2319622A1/en
Publication of WO1999038461A2 publication Critical patent/WO1999038461A2/en
Publication of WO1999038461A3 publication Critical patent/WO1999038461A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • A61F2/447Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages substantially parallelepipedal, e.g. having a rectangular or trapezoidal cross-section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • A61F2/4465Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages having a circular or kidney shaped cross-section substantially perpendicular to the axis of the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4611Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of spinal prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • A61F2002/30125Rounded shapes, e.g. with rounded corners elliptical or oval
    • A61F2002/30126Rounded shapes, e.g. with rounded corners elliptical or oval oval-O-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30153Convex polygonal shapes rectangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30593Special structural features of bone or joint prostheses not otherwise provided for hollow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30774Apertures or holes, e.g. of circular cross section internally-threaded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/3082Grooves
    • A61F2002/30827Plurality of grooves
    • A61F2002/30828Plurality of grooves parallel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30841Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes
    • A61F2002/30843Pyramidally-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30904Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves serrated profile, i.e. saw-toothed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0008Rounded shapes, e.g. with rounded corners elliptical or oval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • A61F2230/0019Angular shapes rectangular

Definitions

  • This invention concerns a device in accordance with the pre-characterising portion of Claim 1. More particularly, it refers to an allogenic intervertebral implant for use in the treatment of back pain.
  • Intervertebral fusion is a surgical method of alleviating back pain.
  • two adjacent vertebral bodies are fused together by removing the affected intervertebral disc and inserting an implant that would allow for bone to grow between the two vertebral bodies to bridge the gap left by the disc removal .
  • Titanium cages suffer from the disadvantage of requiring drilling and tapping of the vertebral endplates for insertion.
  • the incidence of subsidence in long term use is not known. Due to MRI incompatibility of titanium, determining fusion is problematic. Finally, restoration of lordosis, i.e., the natural curvature of the cervical and lumbar spine is very difficult when a titanium cage is used.
  • Allografts are sections of bone taken from the diaphysis of a long bone, such as the radius, ulna, fibula, humerus, tibia, or femur of a donor. A cross section of the bone is taken and processed using known techniques to preserve the allograft until implantation and reduce the risk of an adverse immunological response when implanted.
  • U.S. Patent No. 4,678,470 discloses a method for processing a bone grafting material which uses glutaraldehyde tanning to produce a non-antigenic, biocompatible material. Allografts have mechanical properties which are similar to the mechanical properties of vertebrae even after processing. This prevents stress shielding that occurs with metallic implants.
  • WO 98/17209 published April 30, 1998, is directed to a spinal spacer and has one embodiment which is an allograft cortical ring having teeth on superior and/or inferior surfaces. These teeth provide the initial, secure interlocking with the vertebrae .
  • allografts are simply sections of bone which, although cut to the approximate height of the disc being replaced, have not been sized and/or machined on the exterior surface to have a uniform shape. As a result, the fusion of the vertebral bodies does not occur in optimal anatomic position in a consistent manner along the surface of the endplates. While a surgeon may do some minimal intraoperative shaping and sizing to customize the allograft for the patient's anatomy, significant shaping and sizing of the allograft is not possible due to the nature of the allograft. Even if extensive shaping and sizing were possible, a surgeon's ability to manually shape and size the allograft to the desired dimensions is severely limited.
  • the invention as claimed aims at solving the above described problems .
  • the present invention provides an allogenic intervertebral implant for use when surgical fusion of vertebral bodies is indicated as defined in Claim 1.
  • the annular plug of allogenic bone is dimensioned in such a way that it conforms in size and shape with end plates of adjacent vertebrae, i.e. a rounded or appriximately circular form.
  • the three-dimensional structure of the intervertebral implant includes a plurality of teeth.
  • the three-dimensional structure has a minimum height of 0,5 mm and a maximum height of 1,5 mm relative to the top and bottom surfaces of the implant .
  • the teeth preferably have a pyramid shape or a saw-tooth shape.
  • the implant has an exterior surface machined to have a uniform shape, such as an oval or a rectangle.
  • the interior space delineated by the annular plug also can have a machined wall to provide the implant with a uniform interior space.
  • the interior space delineated by the annular plug can be filled with spongiosa, bone graft substitutes or artificial bone material .
  • top and bottom surfaces may be flat planar surfaces or curved surfaces to mimic the topography of the end plates of the adjacent vertebrae.
  • anterior height of the implant is greater than the posterior height of the implant so that the implant has a wedge-shaped profile to help restore disc height and the natural curvature of the spine.
  • the implant has channels on the top and bottom surfaces for receiving a surgical tool, e.g. a distractor. These channels can run in the anterior, lateral, or antero-lateral direction to accommodate a variety of different tools used in surgical procedures. Finally, a threaded hole on the anterior, antero-lateral, or lateral side can be provided for receiving a threaded arm of an insertion tool.
  • a surgical tool e.g. a distractor.
  • These channels can run in the anterior, lateral, or antero-lateral direction to accommodate a variety of different tools used in surgical procedures.
  • a threaded hole on the anterior, antero-lateral, or lateral side can be provided for receiving a threaded arm of an insertion tool.
  • the allogenic bone is preferably in the form of a cross section transverse to the longitudinal axis a human long bone, typically with a height of 5 to 8 mm.
  • the allogenic bone has been process frozen or freeze dried.
  • the allogenic bone may also be treated with an antiseptic solution.
  • FIG. 1 is a top view of a first embodiment of the implant according to the present invention
  • FIG. 2 is a front view of the implant of FIG. 1;
  • FIG. 3 is a top view of a second embodiment of the implant
  • FIG. 4 is a side view of the implant of FIG. 1;
  • FIG. 5 is a side view of a third embodiment of the implant;
  • FIG. 6 is a close up of region A from FIG. 4 and FIG. 8;
  • FIG. 7 is a top view of a fourth embodiment of the implant according to the present invention.
  • FIG. 8 is a side view of the implant of FIG. 7;
  • FIG. 9 is a top view of a sixth embodiment of the implant.
  • FIG. 10 shows an alternative tooth configuration
  • FIG. 1 shows a top view of a first embodiment of an allogenic intervertebral implant 10 according to the present invention.
  • Implant 10 is annular and conforms in size and shape with the end plates of the vertebrae between which implant 10 is to be implanted. Because implant 10 is annular, new bone can form in interior 11. Interior 11 can be filled with bone chips or any other osteoconductive material to promote the formation of bone. Although implant 10 will probably be predominantly used in the lumbar region of the spine, implant 10 can be configured for implantation in any region of the spine.
  • Implant 10 has a plurality of teeth 12 on superior and inferior surfaces 14, 16 which provide a mechanical interlock between implant 10 and the end plates. These teeth 12 provide the mechanical interlock by penetrating the end plates.
  • teeth 12 are pyramid-shaped in which the angle formed from the tip to the base may be between about 45 and 75° and is preferably about 60°.
  • the details of teeth 12 are best seen in FIG. 6.
  • the teeth provide an enhanced interlock with the adjacent vertebrae compared to the use of channels, because the teeth impale the vertebrae surfaces. In comparison, channels impart grooves into the vertebrae surfaces and the implant can slide out along the direction of the channels or grooves.
  • teeth 12 have a saw-tooth shape (FIG. 10) .
  • superior surface 14 has a channel 18 and inferior surface 16 has a channel 20 which is parallel to channel 18.
  • Channels 18, 20 are sized to receive a surgical instrument such as an inserter and/or distractor.
  • an inserter is a surgical instrument used to insert implant 10 and a distractor is a surgical instrument used to separate the adjacent vertebrae so that the surgeon has access to the intervertebral space.
  • implant 10 can be provided with optional threaded hole 21.
  • channels 18 and 20 are oriented in the anterior/posterior direction. This orientation is useful if the surgeon prefers an anterior surgical approach.
  • FIG. 3 shows a second embodiment of an allogenic intervertebral implant 110 according to the present invention.
  • implant 110 most of the structure of implant 110 (as well as the embodiments described below) is like or comparable to the structure of implant 10 and, accordingly the same reference numeral is used for like components and discussion of those like components is not believed necessary.
  • channels 18, 20 can run in the antero-lateral direction to facilitate use of implant 110 with an antero-lateral surgical approach.
  • channels 18, 20 could run in the lateral direction for a lateral approach.
  • a threaded hole 21 optionally can be located on the lateral or antero-lateral side of implant 10.
  • implant 10 In order to restore the natural curvature of the spine after the affected disc has been removed, implant 10 is provided with a wedge-shaped profile. As shown in FIG. 4, one way to achieve this wedge shape results from a gradual decrease in height from the anterior side 22 to the posterior side 24. In anatomical terms, the natural curvature of the lumbar spine is referred to as lordosis. When implant 10 is to be used in the lumbar region, angle ⁇ should be approximately 4,2° so that the wedge shape is a lordotic shape which mimics the anatomy of the lumbar spine.
  • the ratio of the height of anterior side 22 (h ⁇ ) to the height of posterior side 24 (h 2 ) should be approximately 1,1-2 with the length of implant 10 (1) being approximately 22 - 30 mm.
  • superior and inferior surfaces 14, 16 are flat planar surfaces so that if the surgeon prepares the endplates to be parallel surfaces with a burr, implant 10 fits tightly between the bone surfaces .
  • FIG. 5 illustrates that superior and inferior surfaces 14, 16 of a third embodiment of an allogenic intervertebral implant 210 can be curved surfaces and still retain the wedge-shaped profile.
  • the curved surface of superior and inferior surfaces 14, 16 is a mirror-image of the topography of the vertebral end plates. Thus, the curved surfaces conform to the contours of the end plates.
  • FIG. 7 shows a top view of a fourth embodiment of an allogenic intervertebral implant 310 according to the present invention.
  • implant 310 will probably be predominantly used in the cervical region of the spine, implant 310 can be configured for implantation in any region of the spine.
  • Interior 11 can be defined by the natural shape of the medullary canal as was the case for implant 10, 110, 210. Alternatively, the medullary canal can be machined so that the wall that formed interior 11 are uniform in shape and texture.
  • teeth 12 are preferably pyramid-shaped in which the angle formed from the tip to the base is preferably about 60°. Pyramid-shaped teeth help prevent expulsion of the implant in all directions. The prevention of movement between implant 310 and the vertebrae is particularly important when the surgeon removes all of the annulus fibrosis, as may be the case for cervical vertebrae.
  • allografts are processed and used without significant machining of the exterior surface.
  • the allografts have substantially the shape of the bone from which the allograft was harvested.
  • an exterior surface 26 of implant 310 has been machined to have a uniform shape. The uniform shape promotes initial stability until biological fixation is achieved with bony fusion.
  • the exterior surface 26 has an oval shape.
  • the oval shape preferably is arranged to have lateral sides 28 along the smaller oval axis and anterior and posterior sides 22, 24 along the longer axis.
  • the exterior surface 26 of implant 410 is rectangular in shape with lateral sides 28 shorter in length than anterior and posterior sides 22, 24.
  • the oval and rectangle shape and size of implants 310, 410 can be made to closely match the shape and size of the affected vertebrae.
  • lateral sides 28 and anterior and posterior sides 22, 24 would be approximately 8-18 mm in length.
  • implant 310 In order to restore the intervertebral space to the proper size after the affected disc has been removed, implant 310 has a height, h, sized to match the height of the removed disc, as shown in FIG. 8. The matched height helps promote fusion by providing direct contact between the bone and implant 310. Typically, h would be approximately 4-20 mm for cervical vertebrae. Implant 310 has a uniform height so that the profile of implant 310 is rectangular. Alternatively, as shown in FIG. 4 and FIG. 5, implant 310 can have a wedge shaped profile with either flat planar surfaces or curved surfaces.
  • implants 310, 410 can be configured so that h would be approximately 10-100 mm. These larger sizes could be used in corpectomy, a surgical procedure in which a section of several vertebrae is removed. Implants 310, 410 would be inserted in the space created by the removed section of bone. Due to the nature of corpectomy, an accurate preoperative determination of the size of the implant needed is not possible. Thus, implant 310, 410 can be cut to the proper size by the surgeon. In such cases, the implants 310, 410 would only have teeth on either superior surface 14 or inferior surface 16.

Abstract

An allogenic intervertebral implant (10) for fusing vertebrae is disclosed. The implant (10) is an annular plug conforming in size and shape with end plates of vertebrae. The implant has either an exterior surface identical to that of the harvest bone or an exterior surface machined to have a uniform shape such as an oval or a rectangle. The top and bottom surfaces (14, 16) of the implant (10) have a plurality of teeth (12) to resist expulsion and provide initial stability. The top and bottom surfaces (14, 16) can be either flat planar surfaces or curved surfaces. Preferably, the anterior height of the implant is greater than the posterior height so that the implant is wedge-shaped profile to help restore disc height and the natural curvature of the spine. In one embodiment, the top and bottom surfaces each have a channel oriented in the anterior, lateral, or antero-lateral direction for receiving a surgical instrument. The implant can also have a hole for attachment of an inserter. Although the interior space formed by the annular plug can be the natural shape defined by the medullary canal, the medullary canal walls can be machined so that the implant has a uniform interior space.

Description

ALLOGENIC INTERVERTEBRAL IMPLANT
This invention concerns a device in accordance with the pre-characterising portion of Claim 1. More particularly, it refers to an allogenic intervertebral implant for use in the treatment of back pain.
A number of medical conditions such as compression of spinal cord nerve roots, degenerative disc disease, and trauma can cause severe back pain. Intervertebral fusion is a surgical method of alleviating back pain. In intervertebral fusion, two adjacent vertebral bodies are fused together by removing the affected intervertebral disc and inserting an implant that would allow for bone to grow between the two vertebral bodies to bridge the gap left by the disc removal .
A number of different implants and implant materials have been used for fusion with varying success. Current implants used include titanium cages and allografts. Titanium cages suffer from the disadvantage of requiring drilling and tapping of the vertebral endplates for insertion. In addition, the incidence of subsidence in long term use is not known. Due to MRI incompatibility of titanium, determining fusion is problematic. Finally, restoration of lordosis, i.e., the natural curvature of the cervical and lumbar spine is very difficult when a titanium cage is used.
Allografts are sections of bone taken from the diaphysis of a long bone, such as the radius, ulna, fibula, humerus, tibia, or femur of a donor. A cross section of the bone is taken and processed using known techniques to preserve the allograft until implantation and reduce the risk of an adverse immunological response when implanted. For example, U.S. Patent No. 4,678,470 discloses a method for processing a bone grafting material which uses glutaraldehyde tanning to produce a non-antigenic, biocompatible material. Allografts have mechanical properties which are similar to the mechanical properties of vertebrae even after processing. This prevents stress shielding that occurs with metallic implants. They are also MRI compatible so that fusion can be more accurately ascertained and promote the formation of bone, i.e., osteoconductive . Although the osteoconductive nature of the allograft provides a biological interlocking between the allograft and the vertebrae for long term mechanical strength, initial and short term mechanical strength of the interface between the allograft and the vertebrae are lacking such that there is a possibility of the allograft being expelled after implantation. U.S. Patent No. 5,728,159 discloses an allograft having grooves on end faces in an attempt to try to promote stability, but there are more effective ways for resisting expulsion.
For example, WO 98/17209, published April 30, 1998, is directed to a spinal spacer and has one embodiment which is an allograft cortical ring having teeth on superior and/or inferior surfaces. These teeth provide the initial, secure interlocking with the vertebrae .
Most allografts are simply sections of bone which, although cut to the approximate height of the disc being replaced, have not been sized and/or machined on the exterior surface to have a uniform shape. As a result, the fusion of the vertebral bodies does not occur in optimal anatomic position in a consistent manner along the surface of the endplates. While a surgeon may do some minimal intraoperative shaping and sizing to customize the allograft for the patient's anatomy, significant shaping and sizing of the allograft is not possible due to the nature of the allograft. Even if extensive shaping and sizing were possible, a surgeon's ability to manually shape and size the allograft to the desired dimensions is severely limited.
As the discussion above illustrates, there is a need for an improved allogenic implant for fusing vertebrae and relieving back pain. The invention as claimed aims at solving the above described problems . The present invention provides an allogenic intervertebral implant for use when surgical fusion of vertebral bodies is indicated as defined in Claim 1.
The annular plug of allogenic bone is dimensioned in such a way that it conforms in size and shape with end plates of adjacent vertebrae, i.e. a rounded or appriximately circular form.
In a preferred embodiment the three-dimensional structure of the intervertebral implant includes a plurality of teeth. Preferably the three-dimensional structure has a minimum height of 0,5 mm and a maximum height of 1,5 mm relative to the top and bottom surfaces of the implant .
The teeth preferably have a pyramid shape or a saw-tooth shape. In one embodiment, the implant has an exterior surface machined to have a uniform shape, such as an oval or a rectangle. The interior space delineated by the annular plug also can have a machined wall to provide the implant with a uniform interior space. The interior space delineated by the annular plug can be filled with spongiosa, bone graft substitutes or artificial bone material .
The top and bottom surfaces may be flat planar surfaces or curved surfaces to mimic the topography of the end plates of the adjacent vertebrae. In a preferred embodiment, the anterior height of the implant is greater than the posterior height of the implant so that the implant has a wedge-shaped profile to help restore disc height and the natural curvature of the spine.
In one embodiment, the implant has channels on the top and bottom surfaces for receiving a surgical tool, e.g. a distractor. These channels can run in the anterior, lateral, or antero-lateral direction to accommodate a variety of different tools used in surgical procedures. Finally, a threaded hole on the anterior, antero-lateral, or lateral side can be provided for receiving a threaded arm of an insertion tool.
The allogenic bone is preferably in the form of a cross section transverse to the longitudinal axis a human long bone, typically with a height of 5 to 8 mm. Preferably the allogenic bone has been process frozen or freeze dried. The allogenic bone may also be treated with an antiseptic solution.
In the drawings :
FIG. 1 is a top view of a first embodiment of the implant according to the present invention;
FIG. 2 is a front view of the implant of FIG. 1;
FIG. 3 is a top view of a second embodiment of the implant;
FIG. 4 is a side view of the implant of FIG. 1; FIG. 5 is a side view of a third embodiment of the implant;
FIG. 6 is a close up of region A from FIG. 4 and FIG. 8;
FIG. 7 is a top view of a fourth embodiment of the implant according to the present invention;
FIG. 8 is a side view of the implant of FIG. 7;
FIG. 9 is a top view of a sixth embodiment of the implant; and
FIG. 10 shows an alternative tooth configuration.
FIG. 1 shows a top view of a first embodiment of an allogenic intervertebral implant 10 according to the present invention. Implant 10 is annular and conforms in size and shape with the end plates of the vertebrae between which implant 10 is to be implanted. Because implant 10 is annular, new bone can form in interior 11. Interior 11 can be filled with bone chips or any other osteoconductive material to promote the formation of bone. Although implant 10 will probably be predominantly used in the lumbar region of the spine, implant 10 can be configured for implantation in any region of the spine. Implant 10 has a plurality of teeth 12 on superior and inferior surfaces 14, 16 which provide a mechanical interlock between implant 10 and the end plates. These teeth 12 provide the mechanical interlock by penetrating the end plates. The initial mechanical stability afforded by teeth 12 minimizes the risk of post-operative expulsion of implant 10. Preferably, teeth 12 are pyramid-shaped in which the angle formed from the tip to the base may be between about 45 and 75° and is preferably about 60°. The details of teeth 12 are best seen in FIG. 6. The teeth provide an enhanced interlock with the adjacent vertebrae compared to the use of channels, because the teeth impale the vertebrae surfaces. In comparison, channels impart grooves into the vertebrae surfaces and the implant can slide out along the direction of the channels or grooves. In an alternative embodiment, teeth 12 have a saw-tooth shape (FIG. 10) .
As shown in FIG. 1 and FIG. 2, superior surface 14 has a channel 18 and inferior surface 16 has a channel 20 which is parallel to channel 18. Channels 18, 20 are sized to receive a surgical instrument such as an inserter and/or distractor. As the names imply, an inserter is a surgical instrument used to insert implant 10 and a distractor is a surgical instrument used to separate the adjacent vertebrae so that the surgeon has access to the intervertebral space. If the inserter has a threaded arm, implant 10 can be provided with optional threaded hole 21. In FIG. 1 and FIG. 2, channels 18 and 20 are oriented in the anterior/posterior direction. This orientation is useful if the surgeon prefers an anterior surgical approach. FIG. 3 shows a second embodiment of an allogenic intervertebral implant 110 according to the present invention. In general, most of the structure of implant 110 (as well as the embodiments described below) is like or comparable to the structure of implant 10 and, accordingly the same reference numeral is used for like components and discussion of those like components is not believed necessary. As shown in FIG. 3, channels 18, 20 can run in the antero-lateral direction to facilitate use of implant 110 with an antero-lateral surgical approach. As another alternative embodiment, channels 18, 20 could run in the lateral direction for a lateral approach. Similarly, a threaded hole 21 optionally can be located on the lateral or antero-lateral side of implant 10.
In order to restore the natural curvature of the spine after the affected disc has been removed, implant 10 is provided with a wedge-shaped profile. As shown in FIG. 4, one way to achieve this wedge shape results from a gradual decrease in height from the anterior side 22 to the posterior side 24. In anatomical terms, the natural curvature of the lumbar spine is referred to as lordosis. When implant 10 is to be used in the lumbar region, angle α should be approximately 4,2° so that the wedge shape is a lordotic shape which mimics the anatomy of the lumbar spine. Furthermore, when used in the lumbar region, the ratio of the height of anterior side 22 (hχ) to the height of posterior side 24 (h2) should be approximately 1,1-2 with the length of implant 10 (1) being approximately 22 - 30 mm. In FIG. 4, superior and inferior surfaces 14, 16 are flat planar surfaces so that if the surgeon prepares the endplates to be parallel surfaces with a burr, implant 10 fits tightly between the bone surfaces .
FIG. 5 illustrates that superior and inferior surfaces 14, 16 of a third embodiment of an allogenic intervertebral implant 210 can be curved surfaces and still retain the wedge-shaped profile. The curved surface of superior and inferior surfaces 14, 16 is a mirror-image of the topography of the vertebral end plates. Thus, the curved surfaces conform to the contours of the end plates.
FIG. 7 shows a top view of a fourth embodiment of an allogenic intervertebral implant 310 according to the present invention. Although implant 310 will probably be predominantly used in the cervical region of the spine, implant 310 can be configured for implantation in any region of the spine. Interior 11 can be defined by the natural shape of the medullary canal as was the case for implant 10, 110, 210. Alternatively, the medullary canal can be machined so that the wall that formed interior 11 are uniform in shape and texture.
As previously noted, teeth 12 are preferably pyramid-shaped in which the angle formed from the tip to the base is preferably about 60°. Pyramid-shaped teeth help prevent expulsion of the implant in all directions. The prevention of movement between implant 310 and the vertebrae is particularly important when the surgeon removes all of the annulus fibrosis, as may be the case for cervical vertebrae.
Most allografts are processed and used without significant machining of the exterior surface. In other words, the allografts have substantially the shape of the bone from which the allograft was harvested. As shown in FIG. 7, an exterior surface 26 of implant 310 has been machined to have a uniform shape. The uniform shape promotes initial stability until biological fixation is achieved with bony fusion.
As shown in FIG. 7, the exterior surface 26 has an oval shape. The oval shape preferably is arranged to have lateral sides 28 along the smaller oval axis and anterior and posterior sides 22, 24 along the longer axis. In another embodiment of the invention shown in FIG. 9, the exterior surface 26 of implant 410 is rectangular in shape with lateral sides 28 shorter in length than anterior and posterior sides 22, 24. The oval and rectangle shape and size of implants 310, 410 can be made to closely match the shape and size of the affected vertebrae. Typically, lateral sides 28 and anterior and posterior sides 22, 24 would be approximately 8-18 mm in length.
In order to restore the intervertebral space to the proper size after the affected disc has been removed, implant 310 has a height, h, sized to match the height of the removed disc, as shown in FIG. 8. The matched height helps promote fusion by providing direct contact between the bone and implant 310. Typically, h would be approximately 4-20 mm for cervical vertebrae. Implant 310 has a uniform height so that the profile of implant 310 is rectangular. Alternatively, as shown in FIG. 4 and FIG. 5, implant 310 can have a wedge shaped profile with either flat planar surfaces or curved surfaces.
It should be noted that implants 310, 410 can be configured so that h would be approximately 10-100 mm. These larger sizes could be used in corpectomy, a surgical procedure in which a section of several vertebrae is removed. Implants 310, 410 would be inserted in the space created by the removed section of bone. Due to the nature of corpectomy, an accurate preoperative determination of the size of the implant needed is not possible. Thus, implant 310, 410 can be cut to the proper size by the surgeon. In such cases, the implants 310, 410 would only have teeth on either superior surface 14 or inferior surface 16.

Claims

1. Intervertebral implant (10) comprising an annular plug of allogenic bone conforming in size and shape with end plates of vertebrae, wherein top and bottom surfaces (14,16) of the implant
(10) include a three-dimensional structure (12) positioned thereon for interlocking with adjacent vertebrae.
2. Intervertebral implant (10) according to claim 1, wherein said three-dimensional structure (12) includes a plurality of teeth.
3. Intervertebral implant (10) according to claim 1 or 2, wherein said three-dimensional structure (12) has a minimum height of 0,5 mm relative to the top and bottom surfaces (14,16) .
4. Intervertebral implant (10) according to one of the claims 1 to 3, wherein said three-dimensional structure (12) has a maximum height of 1,5 mm relative to the top and bottom surfaces (14,16) .
5. Intervertebral implant (10) according to one of the claims 1 to 4, wherein said allogenic bone has been obtained from a human long bone, preferably from a femur, humerus, radius, ulna or fibula.
6. Intervertebral implant (10) according to claim 5, wherein said allogenic bone is a cross section transverse to the longitudinal axis of said long bone, preferably with a height of 5 to 8 mm.
7. Intervertebral implant (10) according to one of the claims 1 to 6, wherein said allogenic bone is treated with an antiseptic solution.
8. Intervertebral implant (10) according to one of the claims 1 to 7, wherein said allogenic bone has been process frozen or freeze dried.
9. Intervertebral implant (10) according to one of the claims 1 to 8, wherein the allogenic bone comprises glutaraldehyde .
10. Intervertebral implant (10) according to one of the claims 1 to 9, wherein the interior space delineated by the annular plug is filled with spongiosa, bone graft substitutes or artificial bone material .
11. Intervertebral implant (10) according to one of the claims 1 to 10, wherein the top and bottom (14,16) surfaces each have a channel (18,20) for receiving a surgical instrument.
12. Intervertebral implant (10) according to claim 11, wherein the channels (18,20) run in an anterior-posterior direction.
13. Intervertebral implant (10) according to claim 11, wherein the channels (18,20) run in an antero-lateral direction.
14. Intervertebral implant (10) according to claim 11, wherein the channels (18,20) run in a lateral direction.
15. Intervertebral implant (10) according to one of the claims 1 to 14, wherein the implant has a wedge-shaped profile to help restore disc height and spine curvature.
16. Intervertebral implant (10) according to claim 15, wherein said implant has an anterior height which is greater than a posterior height to produce the wedge-shaped profile.
17. Intervertebral implant (10) according to one of the claims 1 to 16, wherein the teeth (12) have a pyramidal shape.
18. Intervertebral implant (10) according to one of the claims 1 to 17, wherein at least one side of the implant (10) has at least one hole for attachment of an inserter.
19. Intervertebral implant (10) according to claim 18, wherein the at least one hole is threaded.
20. Intervertebral implant (10) according to claim 19, wherein the at least one hole is provided in an anterior, antero-lateral, or lateral side.
21. Intervertebral implant (10) according to one of the claims 1 to 20, wherein the top and bottom surfaces (14,16) are flat planar surfaces.
22. Intervertebral implant (10) according to one of the claims 1 to 20, wherein the top and bottom surfaces (14,16) are curved surfaces which are contoured to mimic the end plates of the adjacent vertebrae.
23. Intervertebral implant (10) according to one of the claims 1 to 22, wherein the exterior surface of said implant has a uniform shape .
24. Intervertebral implant (10) according to claim 23, wherein the exterior surface has an oval shape .
25. Intervertebral implant (10) according to claim 23, wherein the exterior surface has a rectangular shape.
26. Intervertebral implant (10) according to one of the claims 1 to 25, wherein the annular plug includes an interior surface of a machined wall.
27. Intervertebral implant (10) according to one of the claims 1 to 26, wherein, the teeth have a saw tooth shape.
PCT/EP1999/000433 1998-01-30 1999-01-22 Allogenic intervertebral implant WO1999038461A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP99907405A EP1051134A2 (en) 1998-01-30 1999-01-22 Allogenic intervertebral implant
JP2000529197A JP2002501782A (en) 1998-01-30 1999-01-22 Allogeneic intervertebral implant
CA002319622A CA2319622A1 (en) 1998-01-30 1999-01-22 Allogenic intervertebral implant

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US7327198P 1998-01-30 1998-01-30
US60/073,271 1998-01-30
US9542598P 1998-08-05 1998-08-05
US60/095,425 1998-08-05

Publications (2)

Publication Number Publication Date
WO1999038461A2 true WO1999038461A2 (en) 1999-08-05
WO1999038461A3 WO1999038461A3 (en) 1999-11-04

Family

ID=26754303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/000433 WO1999038461A2 (en) 1998-01-30 1999-01-22 Allogenic intervertebral implant

Country Status (5)

Country Link
US (1) US6143033A (en)
EP (1) EP1051134A2 (en)
JP (1) JP2002501782A (en)
CA (1) CA2319622A1 (en)
WO (1) WO1999038461A2 (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042954A3 (en) * 1999-01-22 2000-11-30 Osteotech Inc Intervertebral implant
FR2799639A1 (en) * 1999-10-18 2001-04-20 Dimso Sa Inter-vertebral disc prosthesis has opposing main faces with parallel profiled teeth with non-rectilinear profile
US6251140B1 (en) 1998-05-27 2001-06-26 Nuvasive, Inc. Interlocking spinal inserts
DE20004693U1 (en) * 2000-03-14 2001-08-30 Sofamor Danek Gmbh Vertebral implant for insertion in an intervertebral space
US6368325B1 (en) 1998-05-27 2002-04-09 Nuvasive, Inc. Bone blocks and methods for inserting bone blocks into intervertebral spaces
EP1204386A1 (en) * 1999-06-08 2002-05-15 Osteotech, Inc. Ramp-shaped intervertebral implant
WO2001070136A3 (en) * 2000-03-22 2002-05-30 Synthes Usa Plugs for filling bony defects
US6485518B1 (en) 1999-12-10 2002-11-26 Nuvasive Facet screw and bone allograft intervertebral support and fusion system
JP2003508119A (en) * 1999-08-27 2003-03-04 ジンテーズ アクチエンゲゼルシャフト クール Intervertebral implant
WO2003020142A1 (en) * 2001-08-29 2003-03-13 Synthes (U.S.A.) Unilateral laminoplasty implants
US6632247B2 (en) 2000-03-22 2003-10-14 Synthes (Usa) Implants formed of coupled bone
US6652593B2 (en) 2001-02-28 2003-11-25 Synthes (Usa) Demineralized bone implants
WO2004078075A1 (en) * 2003-03-06 2004-09-16 Fehling Instruments Gmbh Intervertebral disk prosthesis for the cervical spine
USRE38614E1 (en) 1998-01-30 2004-10-05 Synthes (U.S.A.) Intervertebral allograft spacer
US7087082B2 (en) 1998-08-03 2006-08-08 Synthes (Usa) Bone implants with central chambers
EP1905391A1 (en) * 2006-09-27 2008-04-02 K2M, Inc. Spinal interbody spacer
EP1889587A3 (en) * 2001-08-16 2008-04-09 Biomet Spain Orthopaedics S.L. Intersomatic cage for posterior fusion surgery to the lumbar column and for surgery involving the insertion of a transforaminal implant
US8105366B2 (en) 2002-05-30 2012-01-31 Warsaw Orthopedic, Inc. Laminoplasty plate with flanges
US8608804B2 (en) 2004-03-29 2013-12-17 Nuvasive, Inc. Systems and methods for spinal fusion
USD721808S1 (en) 2011-11-03 2015-01-27 Nuvasive, Inc. Intervertebral implant
US9039775B2 (en) 2003-03-31 2015-05-26 DePuy Synthes Products, Inc. Spinal fixation plates
USD731063S1 (en) 2009-10-13 2015-06-02 Nuvasive, Inc. Spinal fusion implant
US9192419B2 (en) 2008-11-07 2015-11-24 DePuy Synthes Products, Inc. Zero-profile interbody spacer and coupled plate assembly
US9610171B2 (en) 2005-07-28 2017-04-04 Nuvasive, Inc. Total disc replacement system and related methods
US9636233B2 (en) 2009-03-12 2017-05-02 Nuvasive, Inc. Vertebral body replacement
US9655744B1 (en) 2011-10-31 2017-05-23 Nuvasive, Inc. Expandable spinal fusion implants and related methods
US9687357B2 (en) 2009-03-12 2017-06-27 Nuvasive, Inc. Vertebral body replacement
US9744049B2 (en) 2007-11-16 2017-08-29 DePuy Synthes Products, Inc. Low profile intervertebral implant
US9757246B1 (en) 2009-04-16 2017-09-12 Nuvasive, Inc. Methods and apparatus for performing spine surgery
US9808350B2 (en) 2012-01-31 2017-11-07 Stryker European Holdings I, Llc Laminoplasty implant, method and instrumentation
US9848992B2 (en) 2010-12-21 2017-12-26 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US9867718B2 (en) 2014-10-22 2018-01-16 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US9907672B1 (en) 2008-02-29 2018-03-06 Nuvasive, Inc. Implants and methods for spinal fusion
US9918852B2 (en) 2007-03-07 2018-03-20 Nuvasive, Inc. System and methods for spinal fusion
US10064740B2 (en) 2003-02-06 2018-09-04 DePuy Synthes Products, LLC Intervertebral implant
US10195047B2 (en) 2005-07-20 2019-02-05 Nuvasive, Inc. Systems and methods for treating spinal deformities
US10327750B1 (en) 2009-04-16 2019-06-25 Nuvasive, Inc. Method and apparatus for performing spine surgery
US10390961B2 (en) 2000-07-17 2019-08-27 Nuvasive, Inc. Stackable interlocking intervertebral support system
US10492922B2 (en) 2002-02-19 2019-12-03 DePuy Synthes Products, Inc. Intervertebral implant
US10512548B2 (en) 2006-02-27 2019-12-24 DePuy Synthes Products, Inc. Intervertebral implant with fixation geometry

Families Citing this family (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609635A (en) * 1988-06-28 1997-03-11 Michelson; Gary K. Lordotic interbody spinal fusion implants
FR2767675B1 (en) 1997-08-26 1999-12-03 Materiel Orthopedique En Abreg INTERSOMATIC IMPLANT AND ANCILLARY OF PREPARATION SUITABLE FOR ALLOWING ITS POSITION
DE29901613U1 (en) * 1998-01-23 1999-04-08 Aesculap Ag & Co Kg Intervertebral implant
WO2000007527A1 (en) * 1998-08-03 2000-02-17 Synthes Ag Chur Intervertebral allograft spacer
EP1102568A1 (en) 1998-08-06 2001-05-30 SDGI Holdings, Inc. Composited intervertebral bone spacers
ATE380531T1 (en) * 1998-10-30 2007-12-15 Warsaw Orthopedic Inc SELF-REAVING, ROTATABLE, INSERTABLE INTERVERBEL IMPLANT
US6025538A (en) * 1998-11-20 2000-02-15 Musculoskeletal Transplant Foundation Compound bone structure fabricated from allograft tissue
US6929662B1 (en) * 1999-02-04 2005-08-16 Synthes (Usa) End member for a bone fusion implant
CA2594492A1 (en) 1999-03-07 2000-09-14 Active Implants Corporation Method and apparatus for computerized surgery
US6432107B1 (en) * 2000-01-15 2002-08-13 Bret A. Ferree Enhanced surface area spinal fusion devices
US20040122424A1 (en) * 2000-01-15 2004-06-24 Ferree Bret A. Enhanced surface area spinal fusion devices and alignment apparatus therefor
US6436101B1 (en) * 1999-10-13 2002-08-20 James S. Hamada Rasp for use in spine surgery
US6592624B1 (en) 1999-11-24 2003-07-15 Depuy Acromed, Inc. Prosthetic implant element
US6827740B1 (en) * 1999-12-08 2004-12-07 Gary K. Michelson Spinal implant surface configuration
US7115143B1 (en) * 1999-12-08 2006-10-03 Sdgi Holdings, Inc. Orthopedic implant surface configuration
US6648915B2 (en) * 1999-12-23 2003-11-18 John A. Sazy Intervertebral cage and method of use
AU2624801A (en) 1999-12-30 2001-07-16 Osteotech, Inc. Intervertebral implants
US6582441B1 (en) 2000-02-24 2003-06-24 Advanced Bionics Corporation Surgical insertion tool
WO2001091686A1 (en) * 2000-05-30 2001-12-06 Lin Paul S Implant for placement between cervical vertebrae
US6579318B2 (en) * 2000-06-12 2003-06-17 Ortho Development Corporation Intervertebral spacer
USD494274S1 (en) 2000-06-12 2004-08-10 Ortho Development Corporation Implant
US7018416B2 (en) * 2000-07-06 2006-03-28 Zimmer Spine, Inc. Bone implants and methods
FR2811543B1 (en) * 2000-07-12 2003-07-04 Spine Next Sa INTERSOMATIC IMPLANT
CA2420898A1 (en) * 2000-08-28 2002-03-07 Advanced Bio Surfaces, Inc. Method for mammalian joint resurfacing
US8628575B2 (en) 2000-08-29 2014-01-14 Nabil L. Muhanna Vertebral body replacement and method of use
US6824565B2 (en) * 2000-09-08 2004-11-30 Nabil L. Muhanna System and methods for inserting a vertebral spacer
US6443987B1 (en) * 2000-09-15 2002-09-03 Donald W. Bryan Spinal vertebral implant
US6500206B1 (en) 2000-09-15 2002-12-31 Donald W. Bryan Instruments for inserting spinal vertebral implant
US20030120274A1 (en) 2000-10-20 2003-06-26 Morris John W. Implant retaining device
US6520993B2 (en) 2000-12-29 2003-02-18 Depuy Acromed, Inc. Spinal implant
US6468311B2 (en) * 2001-01-22 2002-10-22 Sdgi Holdings, Inc. Modular interbody fusion implant
WO2002098332A1 (en) * 2001-02-16 2002-12-12 Sulzer Spine-Tech Inc. Bone implants and methods
US6719794B2 (en) 2001-05-03 2004-04-13 Synthes (U.S.A.) Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
US6974480B2 (en) 2001-05-03 2005-12-13 Synthes (Usa) Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
US6554864B2 (en) * 2001-07-16 2003-04-29 Spinecore, Inc Surgical method of treating scoliosis
US7018412B2 (en) 2001-08-20 2006-03-28 Ebi, L.P. Allograft spinal implant
US6635087B2 (en) 2001-08-29 2003-10-21 Christopher M. Angelucci Laminoplasty implants and methods of use
AU2002330146B2 (en) * 2001-09-28 2007-10-18 Zimmer Spine, Inc. Skeletal stabilization implant
AU2002340306A1 (en) * 2001-10-30 2003-05-12 Osteotech, Inc. Bone implant and insertion tools
US8025684B2 (en) * 2001-11-09 2011-09-27 Zimmer Spine, Inc. Instruments and methods for inserting a spinal implant
US6855167B2 (en) 2001-12-05 2005-02-15 Osteotech, Inc. Spinal intervertebral implant, interconnections for such implant and processes for making
US7238203B2 (en) * 2001-12-12 2007-07-03 Vita Special Purpose Corporation Bioactive spinal implants and method of manufacture thereof
US20040030390A1 (en) * 2002-04-23 2004-02-12 Ferree Bret A. Intradiscal component installation apparatus and methods
EP2002805A3 (en) 2002-09-19 2009-01-07 Malan De Villiers Intervertebral prosthesis
US7125425B2 (en) 2002-10-21 2006-10-24 Sdgi Holdings, Inc. Systems and techniques for restoring and maintaining intervertebral anatomy
US7063725B2 (en) 2002-10-21 2006-06-20 Sdgi Holdings, Inc. Systems and techniques for restoring and maintaining intervertebral anatomy
US20050124993A1 (en) * 2002-12-02 2005-06-09 Chappuis James L. Facet fusion system
US7192447B2 (en) * 2002-12-19 2007-03-20 Synthes (Usa) Intervertebral implant
EP2329778A3 (en) 2003-01-31 2012-06-20 Spinalmotion, Inc. Spinal midline indicator
WO2004066884A1 (en) 2003-01-31 2004-08-12 Spinalmotion, Inc. Intervertebral prosthesis placement instrument
WO2004084742A1 (en) 2003-03-24 2004-10-07 Theken Surgical Llc Spinal implant adjustment device
US20040215189A1 (en) * 2003-04-23 2004-10-28 Kung-Chia Li Pedicle augmenter for vertebral body reconstruction
US10052211B2 (en) 2003-05-27 2018-08-21 Simplify Medical Pty Ltd. Prosthetic disc for intervertebral insertion
US7575599B2 (en) 2004-07-30 2009-08-18 Spinalmotion, Inc. Intervertebral prosthetic disc with metallic core
WO2004105638A2 (en) 2003-05-27 2004-12-09 Spinalmotion, Inc. Prosthetic disc for intervertebral insertion
US7806932B2 (en) 2003-08-01 2010-10-05 Zimmer Spine, Inc. Spinal implant
US20060229627A1 (en) 2004-10-29 2006-10-12 Hunt Margaret M Variable angle spinal surgery instrument
US20050049703A1 (en) * 2003-08-26 2005-03-03 Lee Casey K. Spinal implant
US7226482B2 (en) 2003-09-02 2007-06-05 Synthes (U.S.A.) Multipiece allograft implant
EP1708651A4 (en) 2004-01-27 2011-11-02 Osteotech Inc Stabilized bone graft
US7247169B1 (en) * 2004-02-23 2007-07-24 Aesculap Implant Systems, Inc. Kit of spine gauge blocks and a tool assembly
US20050267555A1 (en) 2004-05-28 2005-12-01 Marnfeldt Goran N Engagement tool for implantable medical devices
US7585326B2 (en) 2004-08-06 2009-09-08 Spinalmotion, Inc. Methods and apparatus for intervertebral disc prosthesis insertion
DE102004043995A1 (en) * 2004-09-08 2006-03-30 Aesculap Ag & Co. Kg Surgical instrument
US7875080B2 (en) * 2004-11-10 2011-01-25 Warsaw Orthopedic, Inc. Intervertebral spacer
US8021392B2 (en) 2004-11-22 2011-09-20 Minsurg International, Inc. Methods and surgical kits for minimally-invasive facet joint fusion
US20060111779A1 (en) 2004-11-22 2006-05-25 Orthopedic Development Corporation, A Florida Corporation Minimally invasive facet joint fusion
US20060111780A1 (en) 2004-11-22 2006-05-25 Orthopedic Development Corporation Minimally invasive facet joint hemi-arthroplasty
US20070038303A1 (en) * 2006-08-15 2007-02-15 Ebi, L.P. Foot/ankle implant and associated method
WO2006062518A2 (en) * 2004-12-08 2006-06-15 Interpore Spine Ltd. Continuous phase composite for musculoskeletal repair
US8535357B2 (en) 2004-12-09 2013-09-17 Biomet Sports Medicine, Llc Continuous phase compositions for ACL repair
US8083797B2 (en) 2005-02-04 2011-12-27 Spinalmotion, Inc. Intervertebral prosthetic disc with shock absorption
US7591853B2 (en) 2005-03-09 2009-09-22 Vertebral Technologies, Inc. Rail-based modular disc nucleus prosthesis
US8066742B2 (en) 2005-03-31 2011-11-29 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US7959675B2 (en) * 2005-04-08 2011-06-14 G&L Consulting, Llc Spine implant insertion device and method
US7740794B1 (en) 2005-04-18 2010-06-22 Biomet Sports Medicine, Llc Methods of making a polymer and ceramic composite
US20060235520A1 (en) * 2005-04-19 2006-10-19 Pannu Yashdip S Spinal implant apparatus, method and system
US7674296B2 (en) * 2005-04-21 2010-03-09 Globus Medical, Inc. Expandable vertebral prosthesis
US7909825B2 (en) 2006-11-22 2011-03-22 Sonoma Orthepedic Products, Inc. Fracture fixation device, tools and methods
US9060820B2 (en) 2005-05-18 2015-06-23 Sonoma Orthopedic Products, Inc. Segmented intramedullary fracture fixation devices and methods
US8287539B2 (en) 2005-05-18 2012-10-16 Sonoma Orthopedic Products, Inc. Fracture fixation device, tools and methods
US8961516B2 (en) 2005-05-18 2015-02-24 Sonoma Orthopedic Products, Inc. Straight intramedullary fracture fixation devices and methods
US20060264951A1 (en) 2005-05-18 2006-11-23 Nelson Charles L Minimally Invasive Actuable Bone Fixation Devices Having a Retractable Interdigitation Process
US20070005064A1 (en) * 2005-06-27 2007-01-04 Sdgi Holdings Intervertebral prosthetic device for spinal stabilization and method of implanting same
US8623088B1 (en) 2005-07-15 2014-01-07 Nuvasive, Inc. Spinal fusion implant and related methods
CA2625264C (en) 2005-10-13 2015-12-15 Synthes (U.S.A.) Drug-impregnated sleeve for a medical implant
US8357181B2 (en) 2005-10-27 2013-01-22 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US7862591B2 (en) 2005-11-10 2011-01-04 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US8083795B2 (en) 2006-01-18 2011-12-27 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US20070198016A1 (en) * 2006-02-21 2007-08-23 Osteomed, L.P. Compression stabilizing spacers
US7615077B2 (en) * 2006-03-31 2009-11-10 Warsaw Orthopedic, Inc. Intervertebral implants with radial teeth and methods of use
US8734519B2 (en) 2006-04-12 2014-05-27 Spinalmotion, Inc. Posterior spinal device and method
US20070250166A1 (en) * 2006-04-25 2007-10-25 Sdgi Holdings, Inc. Facet fusion implants and methods of use
US8002837B2 (en) * 2006-05-19 2011-08-23 Pioneer Surgical Technology Spinal stabilization device and methods
USD741488S1 (en) 2006-07-17 2015-10-20 Nuvasive, Inc. Spinal fusion implant
US8043377B2 (en) 2006-09-02 2011-10-25 Osprey Biomedical, Inc. Implantable intervertebral fusion device
US8641764B2 (en) * 2006-10-11 2014-02-04 G&L Consulting, Llc Spine implant insertion device and method
US20080161810A1 (en) * 2006-10-18 2008-07-03 Warsaw Orthopedic, Inc. Guide and Cutter for Contouring Facet Joints and Methods of Use
US9737414B2 (en) 2006-11-21 2017-08-22 Vertebral Technologies, Inc. Methods and apparatus for minimally invasive modular interbody fusion devices
US20080140085A1 (en) * 2006-12-11 2008-06-12 G&L Consulting, Llc Steerable spine implant insertion device and method
US8097037B2 (en) * 2006-12-20 2012-01-17 Depuy Spine, Inc. Methods and devices for correcting spinal deformities
USD580551S1 (en) * 2007-02-01 2008-11-11 Zimmer Spine, Inc. Spinal implant
CA2677903A1 (en) 2007-02-12 2008-08-21 Osteotech, Inc. Joint revision implant
USD566842S1 (en) * 2007-02-19 2008-04-15 Zimmer Spine, Inc. Spinal implant
US20080234825A1 (en) * 2007-03-16 2008-09-25 Chappuis James L Modular Lumbar Interbody Fixation Systems and Methods
US8992616B2 (en) * 2007-03-19 2015-03-31 James L. Chappuis Modular lumbar interbody fixation systems and methods with reconstruction endplates
US20090043391A1 (en) 2007-08-09 2009-02-12 Spinalmotion, Inc. Customized Intervertebral Prosthetic Disc with Shock Absorption
USD671645S1 (en) 2007-09-18 2012-11-27 Nuvasive, Inc. Intervertebral implant
US8758441B2 (en) 2007-10-22 2014-06-24 Spinalmotion, Inc. Vertebral body replacement and method for spanning a space formed upon removal of a vertebral body
US9101491B2 (en) 2007-12-28 2015-08-11 Nuvasive, Inc. Spinal surgical implant and related methods
US8764833B2 (en) 2008-03-11 2014-07-01 Spinalmotion, Inc. Artificial intervertebral disc with lower height
US9034038B2 (en) 2008-04-11 2015-05-19 Spinalmotion, Inc. Motion limiting insert for an artificial intervertebral disc
KR20110009216A (en) 2008-05-05 2011-01-27 스피날모우션, 인코포레이티드 Polyaryletherketone artificial intervertebral disc
US8425514B2 (en) 2008-06-25 2013-04-23 Westmark Medical, Llc. Spinal fixation device
US9220603B2 (en) 2008-07-02 2015-12-29 Simplify Medical, Inc. Limited motion prosthetic intervertebral disc
EP2299944A4 (en) 2008-07-17 2013-07-31 Spinalmotion Inc Artificial intervertebral disc placement system
EP2299941A1 (en) 2008-07-18 2011-03-30 Spinalmotion Inc. Posterior prosthetic intervertebral disc
EP2149352A1 (en) * 2008-07-29 2010-02-03 DERU GmbH Intervertebral Implant
CA2738478A1 (en) 2008-09-26 2010-04-01 Sonoma Orthopedic Products, Inc. Bone fixation device, tools and methods
USD621509S1 (en) 2008-10-15 2010-08-10 Nuvasive, Inc. Intervertebral implant
USD754346S1 (en) 2009-03-02 2016-04-19 Nuvasive, Inc. Spinal fusion implant
US8979748B2 (en) * 2009-10-23 2015-03-17 James L. Chappuis Devices and methods for temporarily retaining spinal rootlets within dural sac
US8764806B2 (en) * 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US20110184468A1 (en) * 2010-01-28 2011-07-28 Warsaw Orthopedic, Inc., An Indiana Corporation Spinous process fusion plate with osteointegration insert
WO2012012327A1 (en) * 2010-07-20 2012-01-26 X-Spine Systems, Inc. Composite orthopedic implant having a low friction material substrate with primary frictional features and secondary frictional features
US8900309B2 (en) 2010-08-31 2014-12-02 Meditech Spine, Llc Spinal implants
US9241809B2 (en) 2010-12-21 2016-01-26 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US9358122B2 (en) 2011-01-07 2016-06-07 K2M, Inc. Interbody spacer
WO2012099852A1 (en) 2011-01-17 2012-07-26 Cibor, Inc. Reinforced carbon fiber/carbon foam intervertebral spine fusion device
US8961606B2 (en) 2011-09-16 2015-02-24 Globus Medical, Inc. Multi-piece intervertebral implants
US10881526B2 (en) 2011-09-16 2021-01-05 Globus Medical, Inc. Low profile plate
US9398960B2 (en) 2011-09-16 2016-07-26 Globus Medical, Inc. Multi-piece intervertebral implants
US9770340B2 (en) 2011-09-16 2017-09-26 Globus Medical, Inc. Multi-piece intervertebral implants
US9681959B2 (en) 2011-09-16 2017-06-20 Globus Medical, Inc. Low profile plate
US9149365B2 (en) 2013-03-05 2015-10-06 Globus Medical, Inc. Low profile plate
US9204975B2 (en) 2011-09-16 2015-12-08 Globus Medical, Inc. Multi-piece intervertebral implants
US9237957B2 (en) 2011-09-16 2016-01-19 Globus Medical, Inc. Low profile plate
US10245155B2 (en) 2011-09-16 2019-04-02 Globus Medical, Inc. Low profile plate
US9848994B2 (en) 2011-09-16 2017-12-26 Globus Medical, Inc. Low profile plate
US9539109B2 (en) 2011-09-16 2017-01-10 Globus Medical, Inc. Low profile plate
USD675320S1 (en) 2011-11-03 2013-01-29 Nuvasive, Inc. Intervertebral implant
TWI590843B (en) 2011-12-28 2017-07-11 信迪思有限公司 Films and methods of manufacture
US9510953B2 (en) 2012-03-16 2016-12-06 Vertebral Technologies, Inc. Modular segmented disc nucleus implant
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US10172651B2 (en) 2012-10-25 2019-01-08 Warsaw Orthopedic, Inc. Cortical bone implant
US9265609B2 (en) 2013-01-08 2016-02-23 Warsaw Orthopedic, Inc. Osteograft implant
US9549822B2 (en) 2013-05-03 2017-01-24 DePuy Synthes Products, Inc. Vertebral body replacement or fusion device
CN105555328B (en) 2013-06-21 2019-01-11 德普伊新特斯产品公司 film and manufacturing method
USD745159S1 (en) 2013-10-10 2015-12-08 Nuvasive, Inc. Intervertebral implant
US10478313B1 (en) 2014-01-10 2019-11-19 Nuvasive, Inc. Spinal fusion implant and related methods
US9770278B2 (en) 2014-01-17 2017-09-26 Arthrex, Inc. Dual tip guide wire
US9814499B2 (en) 2014-09-30 2017-11-14 Arthrex, Inc. Intramedullary fracture fixation devices and methods
US10568672B2 (en) * 2014-10-16 2020-02-25 Arthrex, Inc. Anatomic osteotomy wedge
USD858769S1 (en) 2014-11-20 2019-09-03 Nuvasive, Inc. Intervertebral implant
US10420597B2 (en) * 2014-12-16 2019-09-24 Arthrex, Inc. Surgical implant with porous region
US9987051B2 (en) * 2015-01-27 2018-06-05 K2M, Inc. Interbody spacer
US10028841B2 (en) 2015-01-27 2018-07-24 K2M, Inc. Interbody spacer
WO2016137983A1 (en) 2015-02-24 2016-09-01 X-Spine Systems, Inc. Modular interspinous fixation system with threaded component
US9474624B1 (en) * 2015-04-28 2016-10-25 Aegis Spine, Inc. Intervertebral fusion cage
US11452608B2 (en) 2017-04-05 2022-09-27 Globus Medical, Inc. Decoupled spacer and plate and method of installing the same
US10376385B2 (en) 2017-04-05 2019-08-13 Globus Medical, Inc. Decoupled spacer and plate and method of installing the same
JP2020533070A (en) 2017-09-08 2020-11-19 パイオニア サージカル テクノロジー インコーポレイテッド Intervertebral implants, instruments, and methods
USD907771S1 (en) 2017-10-09 2021-01-12 Pioneer Surgical Technology, Inc. Intervertebral implant
US11759324B2 (en) * 2021-08-31 2023-09-19 Haroon Fiaz Choudhri Intervertebral implants having positioning grooves and kits and methods of use thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950296A (en) * 1988-04-07 1990-08-21 Mcintyre Jonathan L Bone grafting units
WO1997014378A2 (en) * 1995-10-16 1997-04-24 Sdgi Holdings, Inc. Intervertebral spacers
WO1997025945A1 (en) * 1996-01-16 1997-07-24 University Of Florida, Tissue Bank, Inc. Diaphysial cortical dowel
WO1997032547A1 (en) * 1996-03-05 1997-09-12 Thalgott John S Prosthetic intervertebral disc
US5728159A (en) * 1997-01-02 1998-03-17 Musculoskeletal Transplant Foundation Serrated bone graft
WO1998017209A2 (en) * 1996-10-23 1998-04-30 Sdgi Holdings, Inc. Spinal spacer
WO1999009914A1 (en) * 1997-08-27 1999-03-04 University Of Florida Tissue Bank, Inc. Cortical bone cervical smith-robinson fusion implant

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053049A (en) * 1985-05-29 1991-10-01 Baxter International Flexible prostheses of predetermined shapes and process for making same
US4627853A (en) * 1985-05-29 1986-12-09 American Hospital Supply Corporation Method of producing prostheses for replacement of articular cartilage and prostheses so produced
US4678470A (en) * 1985-05-29 1987-07-07 American Hospital Supply Corporation Bone-grafting material
US5015247A (en) * 1988-06-13 1991-05-14 Michelson Gary K Threaded spinal implant
US5593409A (en) * 1988-06-13 1997-01-14 Sofamor Danek Group, Inc. Interbody spinal fusion implants
CA1333209C (en) * 1988-06-28 1994-11-29 Gary Karlin Michelson Artificial spinal fusion implants
DE8912648U1 (en) * 1989-10-23 1990-11-22 Mecron Medizinische Produkte Gmbh, 1000 Berlin, De
US5092893A (en) * 1990-09-04 1992-03-03 Smith Thomas E Human orthopedic vertebra implant
US5275954A (en) * 1991-03-05 1994-01-04 Lifenet Process for demineralization of bone using column extraction
US5320644A (en) * 1991-08-30 1994-06-14 Sulzer Brothers Limited Intervertebral disk prosthesis
US5306303A (en) * 1991-11-19 1994-04-26 The Medical College Of Wisconsin, Inc. Bone induction method
FR2699408B1 (en) * 1992-12-21 1995-03-24 Bioland Method for treating bone tissue and corresponding implantable biomaterials.
ATE205069T1 (en) * 1993-02-09 2001-09-15 Acromed Corp DISC
DE4315757C1 (en) * 1993-05-11 1994-11-10 Plus Endoprothetik Ag Vertebral implant
DE4323034C1 (en) * 1993-07-09 1994-07-28 Lutz Biedermann Placeholders, especially for an intervertebral disc
US5514180A (en) * 1994-01-14 1996-05-07 Heggeness; Michael H. Prosthetic intervertebral devices
JP3509103B2 (en) * 1994-05-23 2004-03-22 スルザー スパイン−テック インコーポレイテッド Intervertebral fusion implant
US5556379A (en) * 1994-08-19 1996-09-17 Lifenet Research Foundation Process for cleaning large bone grafts and bone grafts produced thereby
US5797871A (en) * 1994-08-19 1998-08-25 Lifenet Research Foundation Ultrasonic cleaning of allograft bone
US5702449A (en) * 1995-06-07 1997-12-30 Danek Medical, Inc. Reinforced porous spinal implants
US6039762A (en) * 1995-06-07 2000-03-21 Sdgi Holdings, Inc. Reinforced bone graft substitutes
US5888222A (en) * 1995-10-16 1999-03-30 Sdgi Holding, Inc. Intervertebral spacers
US5989289A (en) * 1995-10-16 1999-11-23 Sdgi Holdings, Inc. Bone grafts
KR100415064B1 (en) * 1995-10-20 2005-04-06 신테스 아게 츄어 Intervertebral implant
US5766253A (en) * 1996-01-16 1998-06-16 Surgical Dynamics, Inc. Spinal fusion device
US5722977A (en) * 1996-01-24 1998-03-03 Danek Medical, Inc. Method and means for anterior lumbar exact cut with quadrilateral osteotome and precision guide/spacer
US5702455A (en) * 1996-07-03 1997-12-30 Saggar; Rahul Expandable prosthesis for spinal fusion
US6120506A (en) * 1997-03-06 2000-09-19 Sulzer Spine-Tech Inc. Lordotic spinal implant
US6033438A (en) * 1997-06-03 2000-03-07 Sdgi Holdings, Inc. Open intervertebral spacer
US5972368A (en) * 1997-06-11 1999-10-26 Sdgi Holdings, Inc. Bone graft composites and spacers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950296A (en) * 1988-04-07 1990-08-21 Mcintyre Jonathan L Bone grafting units
WO1997014378A2 (en) * 1995-10-16 1997-04-24 Sdgi Holdings, Inc. Intervertebral spacers
WO1997025945A1 (en) * 1996-01-16 1997-07-24 University Of Florida, Tissue Bank, Inc. Diaphysial cortical dowel
WO1997032547A1 (en) * 1996-03-05 1997-09-12 Thalgott John S Prosthetic intervertebral disc
WO1998017209A2 (en) * 1996-10-23 1998-04-30 Sdgi Holdings, Inc. Spinal spacer
US5728159A (en) * 1997-01-02 1998-03-17 Musculoskeletal Transplant Foundation Serrated bone graft
WO1999009914A1 (en) * 1997-08-27 1999-03-04 University Of Florida Tissue Bank, Inc. Cortical bone cervical smith-robinson fusion implant

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE38614E1 (en) 1998-01-30 2004-10-05 Synthes (U.S.A.) Intervertebral allograft spacer
US6251140B1 (en) 1998-05-27 2001-06-26 Nuvasive, Inc. Interlocking spinal inserts
US6368325B1 (en) 1998-05-27 2002-04-09 Nuvasive, Inc. Bone blocks and methods for inserting bone blocks into intervertebral spaces
US7087082B2 (en) 1998-08-03 2006-08-08 Synthes (Usa) Bone implants with central chambers
US6547823B2 (en) * 1999-01-22 2003-04-15 Osteotech, Inc. Intervertebral implant
WO2000042954A3 (en) * 1999-01-22 2000-11-30 Osteotech Inc Intervertebral implant
US6530955B2 (en) 1999-06-08 2003-03-11 Osteotech, Inc. Ramp-shaped intervertebral implant
EP1204386A1 (en) * 1999-06-08 2002-05-15 Osteotech, Inc. Ramp-shaped intervertebral implant
EP1204386A4 (en) * 1999-06-08 2002-09-18 Osteotech Inc Ramp-shaped intervertebral implant
JP2003508119A (en) * 1999-08-27 2003-03-04 ジンテーズ アクチエンゲゼルシャフト クール Intervertebral implant
JP2003516174A (en) * 1999-10-18 2003-05-13 ストライカー スパイン Disc prosthesis with toothed surface
US7637950B2 (en) 1999-10-18 2009-12-29 Stryker Spine Intervertebral implant with toothed faces
AU776427B2 (en) * 1999-10-18 2004-09-09 Stryker European Holdings I, Llc Intervertebral disk prosthesis with toothed surfaces
WO2001028463A1 (en) * 1999-10-18 2001-04-26 Stryker Spine Intervertebral disk prosthesis with toothed surfaces
FR2799639A1 (en) * 1999-10-18 2001-04-20 Dimso Sa Inter-vertebral disc prosthesis has opposing main faces with parallel profiled teeth with non-rectilinear profile
US6485518B1 (en) 1999-12-10 2002-11-26 Nuvasive Facet screw and bone allograft intervertebral support and fusion system
DE20004693U1 (en) * 2000-03-14 2001-08-30 Sofamor Danek Gmbh Vertebral implant for insertion in an intervertebral space
US7087087B2 (en) 2000-03-22 2006-08-08 Boyer Ii Michael L Implants formed of coupled bone
WO2001070136A3 (en) * 2000-03-22 2002-05-30 Synthes Usa Plugs for filling bony defects
US6632247B2 (en) 2000-03-22 2003-10-14 Synthes (Usa) Implants formed of coupled bone
US7115146B2 (en) 2000-03-22 2006-10-03 Boyer Ii Michael L Multipiece implants formed of bone material
US10390961B2 (en) 2000-07-17 2019-08-27 Nuvasive, Inc. Stackable interlocking intervertebral support system
US7608113B2 (en) 2001-02-28 2009-10-27 Synthes Usa, Llc Demineralized bone implants
US6652593B2 (en) 2001-02-28 2003-11-25 Synthes (Usa) Demineralized bone implants
US6855169B2 (en) 2001-02-28 2005-02-15 Synthes (Usa) Demineralized bone-derived implants
US7753963B2 (en) 2001-02-28 2010-07-13 Synthes Usa, Llc Demineralized bone-derived implants
US6776800B2 (en) 2001-02-28 2004-08-17 Synthes (U.S.A.) Implants formed with demineralized bone
EP1889587A3 (en) * 2001-08-16 2008-04-09 Biomet Spain Orthopaedics S.L. Intersomatic cage for posterior fusion surgery to the lumbar column and for surgery involving the insertion of a transforaminal implant
WO2003020142A1 (en) * 2001-08-29 2003-03-13 Synthes (U.S.A.) Unilateral laminoplasty implants
US10492922B2 (en) 2002-02-19 2019-12-03 DePuy Synthes Products, Inc. Intervertebral implant
US8105366B2 (en) 2002-05-30 2012-01-31 Warsaw Orthopedic, Inc. Laminoplasty plate with flanges
US10314621B2 (en) 2002-05-30 2019-06-11 Warsaw Orthopedic, Inc. Laminoplasty devices and methods
US10660765B2 (en) 2003-02-06 2020-05-26 DePuy Synthes Products, Inc. Intervertebral implant
US10064740B2 (en) 2003-02-06 2018-09-04 DePuy Synthes Products, LLC Intervertebral implant
WO2004078075A1 (en) * 2003-03-06 2004-09-16 Fehling Instruments Gmbh Intervertebral disk prosthesis for the cervical spine
US9039775B2 (en) 2003-03-31 2015-05-26 DePuy Synthes Products, Inc. Spinal fixation plates
US9320549B2 (en) 2003-03-31 2016-04-26 DePuy Synthes Products, Inc. Spinal fixation plates
US8608804B2 (en) 2004-03-29 2013-12-17 Nuvasive, Inc. Systems and methods for spinal fusion
US9744053B2 (en) 2004-03-29 2017-08-29 Nuvasive, Inc. Systems and methods for spinal fusion
US11013611B2 (en) 2005-07-20 2021-05-25 Nuvasive, Inc. Systems and methods for treating spinal deformities
US10195047B2 (en) 2005-07-20 2019-02-05 Nuvasive, Inc. Systems and methods for treating spinal deformities
US9610171B2 (en) 2005-07-28 2017-04-04 Nuvasive, Inc. Total disc replacement system and related methods
US11696837B2 (en) 2006-02-27 2023-07-11 DePuy Synthes Products, Inc. Intervertebral implant with fixation geometry
US10512548B2 (en) 2006-02-27 2019-12-24 DePuy Synthes Products, Inc. Intervertebral implant with fixation geometry
EP1905391A1 (en) * 2006-09-27 2008-04-02 K2M, Inc. Spinal interbody spacer
US8801791B2 (en) 2006-09-27 2014-08-12 K2M, Inc. Spinal interbody spacer
US9918852B2 (en) 2007-03-07 2018-03-20 Nuvasive, Inc. System and methods for spinal fusion
US11638652B2 (en) 2007-03-07 2023-05-02 Nuvasive, Inc. Systems and methods for spinal fusion
US10543102B2 (en) 2007-11-16 2020-01-28 DePuy Synthes Products, Inc. Low profile intervertebral implant
US9744049B2 (en) 2007-11-16 2017-08-29 DePuy Synthes Products, Inc. Low profile intervertebral implant
US10137003B2 (en) 2007-11-16 2018-11-27 DePuy Synthes Products, Inc. Low profile intervertebral implant
US9907672B1 (en) 2008-02-29 2018-03-06 Nuvasive, Inc. Implants and methods for spinal fusion
US10842646B2 (en) 2008-02-29 2020-11-24 Nuvasive, In.C Implants and methods for spinal fusion
US10531960B2 (en) 2008-11-07 2020-01-14 DePuy Synthes Products, Inc. Zero-profile interbody spacer and coupled plate assembly
US11517444B2 (en) 2008-11-07 2022-12-06 DePuy Synthes Products, Inc. Zero-profile interbody spacer and coupled plate assembly
US11612492B2 (en) 2008-11-07 2023-03-28 DePuy Synthes Products, Inc. Zero-profile interbody spacer and coupled plate assembly
US9192419B2 (en) 2008-11-07 2015-11-24 DePuy Synthes Products, Inc. Zero-profile interbody spacer and coupled plate assembly
US10433976B2 (en) 2008-11-07 2019-10-08 DePuy Synthes Products, Inc. Zero-profile interbody spacer and coupled plate assembly
US9687357B2 (en) 2009-03-12 2017-06-27 Nuvasive, Inc. Vertebral body replacement
US10413421B2 (en) 2009-03-12 2019-09-17 Nuvasive, Inc. Vertebral body replacement
US11712344B2 (en) 2009-03-12 2023-08-01 Nuvasive, Inc. Vertebral body replacement
US9636233B2 (en) 2009-03-12 2017-05-02 Nuvasive, Inc. Vertebral body replacement
US10390960B2 (en) 2009-03-12 2019-08-27 Nuvasive, Inc. Vertebral body replacement
US11458025B2 (en) 2009-03-12 2022-10-04 Nuvasive, Inc. Vertebral body replacement
US9757246B1 (en) 2009-04-16 2017-09-12 Nuvasive, Inc. Methods and apparatus for performing spine surgery
US10426627B2 (en) 2009-04-16 2019-10-01 Nuvasive, Inc. Methods and apparatus for performing spine surgery
US10327750B1 (en) 2009-04-16 2019-06-25 Nuvasive, Inc. Method and apparatus for performing spine surgery
US11647999B1 (en) 2009-04-16 2023-05-16 Nuvasive, Inc. Method and apparatus for performing spine surgery
US11246713B2 (en) 2009-04-16 2022-02-15 Nuvasive, Inc. Methods and apparatus for performing spine surgery
USD731063S1 (en) 2009-10-13 2015-06-02 Nuvasive, Inc. Spinal fusion implant
US11458027B2 (en) 2010-12-21 2022-10-04 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US9848992B2 (en) 2010-12-21 2017-12-26 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US10507117B2 (en) 2010-12-21 2019-12-17 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US9655744B1 (en) 2011-10-31 2017-05-23 Nuvasive, Inc. Expandable spinal fusion implants and related methods
USD721808S1 (en) 2011-11-03 2015-01-27 Nuvasive, Inc. Intervertebral implant
US9808350B2 (en) 2012-01-31 2017-11-07 Stryker European Holdings I, Llc Laminoplasty implant, method and instrumentation
US10039646B2 (en) 2012-01-31 2018-08-07 Stryker European Holdings I, Llc Laminoplasty implant, method and instrumentation
US10702394B2 (en) 2014-10-22 2020-07-07 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US9867718B2 (en) 2014-10-22 2018-01-16 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US11540927B2 (en) 2014-10-22 2023-01-03 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US10010432B2 (en) 2014-10-22 2018-07-03 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
US10130492B2 (en) 2014-10-22 2018-11-20 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use

Also Published As

Publication number Publication date
JP2002501782A (en) 2002-01-22
US6143033A (en) 2000-11-07
WO1999038461A3 (en) 1999-11-04
CA2319622A1 (en) 1999-08-05
EP1051134A2 (en) 2000-11-15

Similar Documents

Publication Publication Date Title
US6143033A (en) Allogenic intervertebral implant
US9554919B2 (en) Intervertebral implant
US7601173B2 (en) Multipiece allograft implant
CA2338881C (en) Intervertebral allograft spacer
USRE38614E1 (en) Intervertebral allograft spacer
US6986788B2 (en) Intervertebral allograft spacer
US6520993B2 (en) Spinal implant
WO2001095838A1 (en) Intervertebral spacer
US20090012620A1 (en) Implantable Cervical Fusion Device
US20050049703A1 (en) Spinal implant

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999907405

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2319622

Country of ref document: CA

Ref country code: CA

Ref document number: 2319622

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1999907405

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999907405

Country of ref document: EP