WO1999039646A1 - Percutaneous catheter directed constricting occlusion device - Google Patents

Percutaneous catheter directed constricting occlusion device Download PDF

Info

Publication number
WO1999039646A1
WO1999039646A1 PCT/US1998/021342 US9821342W WO9939646A1 WO 1999039646 A1 WO1999039646 A1 WO 1999039646A1 US 9821342 W US9821342 W US 9821342W WO 9939646 A1 WO9939646 A1 WO 9939646A1
Authority
WO
WIPO (PCT)
Prior art keywords
enlarged diameter
recited
diameter portions
pull
medical device
Prior art date
Application number
PCT/US1998/021342
Other languages
French (fr)
Inventor
Kurt Amplatz
Michael R. Afremov
Original Assignee
Aga Medical Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=21794150&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1999039646(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Aga Medical Corp. filed Critical Aga Medical Corp.
Priority to AU10748/99A priority Critical patent/AU737934C/en
Priority to DE69838436T priority patent/DE69838436T2/en
Priority to EA200000739A priority patent/EA002106B1/en
Priority to CA002319521A priority patent/CA2319521C/en
Priority to DK98953347T priority patent/DK1052944T3/en
Priority to EP98953347A priority patent/EP1052944B1/en
Priority to JP2000530153A priority patent/JP3524494B2/en
Publication of WO1999039646A1 publication Critical patent/WO1999039646A1/en
Priority to HK01103575A priority patent/HK1032892A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/08Wound clamps or clips, i.e. not or only partly penetrating the tissue ; Devices for bringing together the edges of a wound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00592Elastic or resilient implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00597Implements comprising a membrane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00606Implements H-shaped in cross-section, i.e. with occluders on both sides of the opening

Definitions

  • the present invention relates generally to a device and non-surgical method for treating certain cardiac defects. More particularly, the present invention relates to a low profile occlusion device for non-surgical treatment of a patient having a Patent Foramen Ovale (PFO) and resulting paradoxical cerebral emboli.
  • PFO Patent Foramen Ovale
  • the device made in accordance with the invention is capable of automatically adjusting to a septal defect having eccentric openings and is particularly well suited for delivery through a catheter or the like to a remote location in a patient's heart or in analogous vessel or organ within a patient's body.
  • intra cardiac devices are used in various medical procedures.
  • Certain intravascular devices such as catheters and guide wires, may be used to deliver fluids or other medical devices to a specific location within a patient's heart.
  • a catheter may be used to reach a selective coronary artery within the vascular system or the catheter and/or guidewire may be used to deliver a device to an interior chamber of the patient's heart.
  • Complex devices may be delivered and used in treating specific abnormal conditions, such as devices used in removing vascular occlusions or devices used in treating septal defects and the like.
  • an expandable balloon is carried on a distal end of the catheter.
  • the balloon is filled with a fluid until it substantially fills the vessel and becomes lodged therein.
  • Resins which will harden inside the balloon such as an acrylonitrile, can be employed to permanently fix the size and shape of the balloon.
  • the balloon can then be detached from the end of the catheter and left in place.
  • the '936 device is expanded and hardened by a ternary system that modifies the pH and hydrophilicity of the device (see '936 patent, col. 6, In 40-45). If these devices are not expanded completely they may not firmly lodge in the septal defect and may rotate and loosen -2- from the septal wall, thereby releasing into the blood stream.. Overfilling the '204 device is an equally undesirable occurrence which may lead to the rupture of the balloon and release of resins into the patient's bloodstream.
  • the devices typically include a pair of spaced apart patches each having an internal collapsible frame (similar to the frame and outer membrane of an umbrella), wherein the opposing patch and frame are interconnected by a conjoint member.
  • the patches are typically aligned and attached to a common axis of the conjoint member.
  • the conjoint member may be a rigid or semi-rigid hub which minimizes the movement of the patches both laterally and fore and aft to thereby firmly retain the patches against the septal wall adjacent the defect.
  • Patches that are attached to a common axis of the hub may become problematic when the septal defect to be occluded has eccentric openings. Since the patches are attached to a common rigid axis, at least one of the eccentric openings may not be completely covered by the respective patch.
  • the rigid or semi-rigid hub prevents adjustment of the patches to compensate for the eccentric openings.
  • the thickness of the septal wall near the defect and the approximate width of the defect must be determined in order that an appropriately sized device may be provided.
  • a balloon catheter and a calibrated guidewire having radiopaque regions of known length may be utilized by a physician during a preliminary fluoroscopic procedure to estimate the defect's size, shape and thickness of the septal wall near the defect.
  • the defects exact size and shape cannot be determined, thereby increasing the possibility of leakage around the occluding device.
  • a device that inherently adjusts to the shape and thickness of the defect would be desirable.
  • the size of the prior devices is inherently limited by the structure and form of the device.
  • occluding devices such as those disclosed in the '089, '388, '217, or '420 patents to occlude a septal defect, the pressure and therefore the chance of dislodgment of the device increases with an increase in size of the defect. Consequently, the prior devices require an oversized retention skirt positioned on each side of the defect.
  • the position of the septal defect dictates the size of the retention skirt.
  • these disclosed devices tend to be rather expensive and time-consuming to manufacture.
  • the shape of the prior devices for example squares, triangles, pentagons, hexagons and octagons
  • PFO Patent Foramen Ovale
  • the abnormal opening or septal defect may not extend perpendicularly through the septal wall. Rather, the center of the opening in the septal wall in the left atrium may be eccentric to the center of the opening in the septal wall in the right atrium, thereby requiring eccentric positioned "patches" to effectively occlude the defect.
  • the septal wall may be very thin requiring a minimal separation distance between the two -4- occluding "patches".
  • the device of the present invention is preferably formed from a continuous tubular metal fabric and includes two opposing spaced apart "discs", patches, or retention skirts interconnected by a flexible or resilient central member. The central member flexes both laterally and in the fore and aft directions while providing an inward tension against each of the discs.
  • these intravascular devices When forming these intravascular devices from a resilient metal fabric a plurality of resilient strands or wires are provided, with the metal fabric being formed by braiding the resilient strands to create a resilient material.
  • This braided fabric is then deformed to generally conform to a molding surface of a molding element and the braided fabric is heat treated in contact with the surface of the molding element at an elevated temperature. The time and temperature of the heat treatment is selected to substantially set the braided fabric in its deformed state. After the heat treatment, the fabric is removed from contact with the molding element and will substantially retain its shape in the deformed state.
  • the braided fabric so treated defines a relaxed state of a medical device which can be stretched or expanded and deployed through a catheter into a channel in a patient's body.
  • the device of the present invention has a specific shape which is particularly well suited for occluding a PFO.
  • the device has a relaxed low-profile configuration and includes clamps that allow attachment of the device to an end of a delivery device or guide wire (allowing recovery of the device after placement).
  • a guide catheter is positioned and advanced in a patient's body such that the distal end of the catheter is adjacent a desired treatment site for treating a physiological condition.
  • the medical device of the present invention having a predetermined shape is then stretched and inserted into the lumen of the catheter.
  • the device is urged through the catheter and out the distal end, whereupon, due to its shape memory property it will tend to substantially return to its relaxed state adjacent the treatment site.
  • the guide wire or delivery catheter is then released from the clamp and removed.
  • Another object of the present invention is to provide a device suitable for occluding septal defects having eccentric openings, wherein the device is particularly well suited for delivery through a catheter or the like to a remote location in a patient's heart or in an analogous vessel or organ within a patient's body.
  • a further object of the present invention is to provide an occluding device having outer occluding portions and a flexible resilient central portion that pulls the outer occluding portions together.
  • Figure 1 is a perspective view of a Patent Foramen Ovale occluding device in accordance with the present invention
  • Figure 2 is a side elevational view of the medical device of the type shown in Figure 1;
  • Figure 3 is a partial sectional side elevational view of the medical device of the type shown in Figure 2, shown partially stretched along its longitudinal axis;
  • Figure 4 is a side elevational view of the medical device of the type shown in Figure 3, shown stretched along its longitudinal axis slightly more than in Figure 3;
  • Figure 5 is a side elevational view of the medical device of the type shown in Figure 4, shown stretched along its longitudinal axis slightly more than in Figure 4;
  • Figure 6 is a side elevational view of the medical device of the type shown in Figure 1 shown partially stretched, wherein the outer perimeter of the spaced apart discs are offset;
  • Figure 7 is a partial sectional side elevational view of the medical device of the type shown in Figure 1, shown partially stretched along its longitudinal axis;
  • Figure 8 is a side elevational view of another embodiment of the present invention -6- shown partially stretched along its longitudinal axis;
  • Figure 9 is a side elevational view of another embodiment of the present invention shown partially stretched along its longitudinal axis;
  • Figure 10 is a side elevational view of another embodiment of the present invention shown partially stretched along its longitudinal axis;
  • Figure 11 is a partial sectional side elevational view of the embodiment of Figure 8 shown occluding a PFO of the septal wall;
  • Figure 12 is a partial sectional side elevational view of the embodiment of Figure 8 shown occluding a PFO of the septal wall; and Figure 13 is a partial sectional side elevational view of the embodiment of Figure 1 shown occluding an atrial septal defect.
  • the present invention provides a percutaneous catheter directed occlusion device for use in occluding an abnormal opening in a patient's body that is particularly well suited for occluding a PFO (see Figures 11-13).
  • the occluding device includes two spaced apart occluding members interconnected by a flexible, resilient center portion.
  • a clamp is attached to an outer end of each occluding member, wherein the clamps are adapted for coupling to the end of a guidewire or catheter for delivery to a pre-selected site within the patient.
  • the occluding device is formed from a single continuous tubular metal fabric.
  • the tubular fabric is formed from a plurality of wire strands having a predetermined relative orientation between the strands. Those skilled in the art will appreciate that the pick and pitch of the braided wires may be varied depending upon the desired density of the fabric.
  • the tubular fabric has metal strands which define two sets of essentially parallel generally spiraling and overlapping strands, with the strands of one set having a "hand", i.e. a direction of rotation, opposite that of the other set. This tubular fabric is known in the fabric industry as a tubular braid.
  • the pitch of the wire strands i.e. the angle defined between the turns of the wire and the axis of the braid
  • the pick of the fabric i.e. the number of turns per unit length
  • some other factors such as the number of wires employed in a tubular braid, the size or diameter of each wire in the braid, and the diameter of the braid are all important in -7- determining a number of important properties of the device. For example, the greater the pick and pitch of the fabric, and hence the greater the density of the wire strands in the fabric, the stiffer the device will be. Also, the greater the diameter of each wire of the braid, the stiffer the device will be.
  • a tubular braid to form a device of the present invention, a tubular braid of about 4 mm in diameter having approximately 72 braided wires is suitable for fabricating devices capable of occluding abnormal openings and/or septal defects.
  • the wire strands of the tubular metal fabric are preferably manufactured from so-called shape memory alloys.
  • shape memory alloys tend to have a temperature induced phase change which will cause the material to have a preferred configuration which can be fixed by heating the material above a certain transition temperature to induce a change in the phase of the material.
  • the alloy When the alloy is cooled back down, the alloy will "remember" the shape it was in during the heat treatment and will tend to assume that configuration unless constrained from so doing.
  • suitable wire strand materials may be selected from a group consisting of a cobalt-based low thermal expansion alloy referred to in the field as ELGELOY, nickel-based high temperature high-strength "superalloys" (including nitinol) commercially available from, for example, Haynes International under the trade name HASTELLOY, nickel-based heat treatable alloys sold under the name INCOLOY by International Nickel, and a number of different grades of stainless steel.
  • ELGELOY cobalt-based low thermal expansion alloy
  • superalloys including nitinol
  • the important factor in choosing a suitable material for the wire strands is that the wires retain a suitable amount of the deformation induced by a molding surface (as described below) when subjected to a predetermined heat treatment.
  • the wire strands are made from a shape memory alloy, NiTi (known as nitinol) which is an approximately stoichiometric alloy of nickel and titanium and may also include other minor amounts of other metals to achieve desired properties. Handling requirements and variations of NiTi alloy composition are known in the art, and therefore such alloys need not be discussed in detail here.
  • nitinol a shape memory alloy
  • NiTi alloys are preferred, at least in part, because they are commercially available and more is known about handling such alloys than other known shape memory alloys.
  • NiTi alloys are also very elastic and are said to be “super elastic” or "pseudo elastic”. This elasticity allows a device of the invention to return to a preset configuration after deployment.
  • an appropriately sized piece of tubular metal fabric is inserted into a mold, whereby the fabric deforms to generally conform to the shape of the cavities within the mold.
  • the shape of the cavities are such that the metal fabric deforms into substantially the shape of the desired medical device. Cores within the cavities may be used to further form the shape of the fabric within the cavities.
  • the ends of the wire strands of the tubular metal fabric should be secured to prevent the metal fabric from unraveling. A clamp or welding, as further described below, may be used to secure the ends of the wire strands.
  • a molding element may be positioned within the lumen of the tubular braid prior to insertion into the mold to thereby further define the molding surface. If the ends of the tubular metal fabric have already been fixed by a clamp or welding, the molding element may be inserted into the lumen by manually moving the wire strands of the fabric apart and inserting the molding element into the lumen of the tubular fabric. By using such a molding element, the dimensions and shape of the finished medical device can be fairly accurately controlled and ensures that the fabric conforms to the mold cavity.
  • the molding element may be formed of a material selected to allow the molding element to be destroyed or removed from the interior of the metal fabric.
  • the molding element may be formed of a brittle or friable material. Once the material has been heat treated in contact with the mold cavities and molding element, the molding element can be broken into smaller pieces which can be readily removed from within the metal fabric. If this material is glass, for example, the molding element and the metal fabric can be struck against a hard surface, causing the glass to shatter. The glass shards can then be removed from the enclosure of the metal fabric.
  • the molding element can be formed of a material that can be chemically dissolved, or otherwise broken down, by a chemical agent which will not substantially adversely affect the properties of the metal wire strands.
  • the molding element -9- can be formed of a temperature resistant plastic resin which is capable of being dissolved with a suitable organic solvent.
  • the metal fabric and the molding element can be subjected to a heat treatment to substantially set the shape of the fabric in conformance with the mold cavity and molding element, whereupon the molding element and the metal fabric can be emersed in the solvent. Once the molding element is substantially dissolved, the metal fabric can be removed from the solvent.
  • the molding element could be formed of a material having a melting point above the temperature necessary to set the shape of the wire strands, but below the melting point of the metal forming the strands.
  • the molding element and metal fabric could then be heat treated to set the shape of the metal fabric, whereupon the temperature would be increased to substantially completely melt the molding element, thereby removing the molding element from within the metal fabric.
  • the specific shape of the molding element produces a specific shape of the molded device.
  • the molding element and mold may have additional parts including a camming arrangement, but if a simpler shape is being formed, the mold may have few parts.
  • the number of parts in a given mold and the shapes of those parts will be dictated almost entirely by the shape of the desired medical device to which the metal fabric will generally conform.
  • the wire strands forming the tubular braid When the tubular braid, for example, is in its preformed relaxed configuration, the wire strands forming the tubular braid will have a first predetermined relative orientation with respect to one another. As the tubular braid is compressed along its axis, the fabric will tend to flare out away from the axis conforming to the shape of the mold. When the fabric is so deformed the relative orientation of the wire strands of the metal fabric will change. When the mold is assembled, the metal fabric will generally conform to the molding surface of the interior cavity. After undergoing the shape memory process, the resulting medical device has a preset relaxed configuration and a collapsed or stretched configuration which allows the device to be passed through a catheter or other similar delivery device. The relaxed configuration is generally defined by the shape of the fabric when it is deformed to generally to conform to the molding surface of the mold. -10-
  • the fabric can be subjected to a heat treatment while it remains in contact with the molding surface.
  • Suitable heat treatment processing of nitinol wire to set a desired shape are well known in the art.
  • Spirally wound nitinol coils for example, are used in a number of medical devices, such as in forming the coils commonly carried around distal links of guide wires.
  • a wide body of knowledge exists for forming nitinol in such devices, so there is no need to go into great detail here on the parameters of a heat treatment for the nitinol fabric preferred for use in the present invention.
  • nitinol fabric at about 500 degrees centigrade to about 550 degrees centigrade for a period of about 1 to 30 minutes, depending upon the softness or hardness of the device to be made will tend to set the fabric in its deformed state, i.e., wherein it conforms to the molding surface of the mold cavities.
  • the heat treatment time will tend to be greater (e.g., about 1 hour at about 350 degrees centigrade) and at higher temperatures the time will tend to be shorter (e.g., about 30 seconds at about 900 degrees centigrade).
  • These parameters can be varied as necessary to accommodate variations in the exact composition of the nitinol, prior heat treatment of the nitinol, the desired properties of the nitinol in the finished article, and other factors known to those skilled in this field.
  • Heat treating the metal fabric at temperatures ranging between 500-550 degrees centigrade substantially sets the shapes of the wire strands in a reoriented relative position conforming the shape of the fabric to the molding surface.
  • the fabric maintains the shape of the molding surfaces of the mold cavities to thereby define a medical device having a desired shape.
  • the fabric is removed from contact with the molding cavity and will substantially retain its shape in a deformed state. If a molding element is used, this molding element can be removed as described above.
  • the time required for the heat treating process will depend in large part upon the material of which the wire strands of the metal fabric are formed and mass of the mold, but the time and temperature of the heat treatment should be selected to substantially set the fabric in its deformed state, i.e., wherein the wire strands are in their reoriented relative configuration and the fabric generally conforms to the molding surface.
  • the required time and temperature of the heat treatment can vary greatly depending upon the material used in forming the wire strands.
  • one preferred class of materials for forming the wire strands are shape memory alloys, with nitinol, a nickel titanium alloy, being particularly preferred.
  • the wire strands will tend to be very elastic when the metal is in its austenitic phase; this very elastic phase is frequently referred to as a super elastic or pseudo elastic phase.
  • the crystal structure of the nitinol metal will tend to "set" the shape of the fabric and the relative configuration of the wire strands in the positions in which they are held during the heat treatment.
  • a catheter or other suitable delivery device may be positioned within a channel in a patient's body to place the distal end of the delivery device adjacent the desired treatment cite, such as immediately adjacent (or even within) the shunt of an abnormal opening in the patient's organ for example.
  • the delivery device (not shown) can take any suitable shape, but desirably comprises an elongate flexible metal shaft having a threaded distal end.
  • the delivery device can be used to urge the medical device through the lumen of a catheter for deployment in a channel of a patient's body. When the device is deployed out the distal end of the catheter, the device will still be retained by the delivery device. Once the medical device is properly positioned within the shunt of the abnormal opening, the distal end of the catheter may be pressed against the -12- medical device and the metal shaft or guidewire can be rotated about its axis to unscrew the medical device from the threaded distal end of the shaft. The catheter and guidewire are then withdrawn.
  • a threaded clamp attached to the medical device allows the operator to control the manner in which the medical device is deployed out the distal end of the catheter.
  • the device exits the catheter it will tend to resiliently return to a preferred relaxed shape.
  • the device springs back into this shape it may tend to act against the distal end of the catheter effectively urging itself forward beyond the end of the catheter. This spring action could conceivably result in improper positioning of the device if the location of the device within a channel is critical, such as where it is being positioned in a shunt between two vessels. Since the threaded clamp can enable the operator to maintain a hold on the device during deployment, the spring action of the device can be controlled by the operator to ensure proper positioning during deployment.
  • the medical device can be collapsed into its collapsed configuration and inserted into the lumen of the catheter.
  • the collapsed configuration of the device may be of any shape suitable for easy passage through the lumen of a catheter and proper deployment out the distal end of the catheter.
  • the PFO occluding device may have a relatively elongated collapsed configuration wherein the device is stretched along its longitudinal axis (see Figure
  • This collapsed configuration can be achieved simply by stretching the device generally along its axis, e.g. by manually grasping the clamps and pulling them apart, which will tend to collapse the relaxed diameter portions of the device inwardly toward the device's axis. Loading such a device into a catheter may be done at the time of implantation and does not require pre-loading of the introducer or catheter.
  • the device is to be used to permanently occlude a channel in the patient's body, one can simply retract the catheter and remove it from the patient's body. This leaves the medical device deployed in the patient's vascular system so that it may occlude the blood vessel or other channel in the patient's body.
  • the medical device may be attached to a delivery system in such a manner as to secure the device to the end of the delivery means. Before removing the catheter in such a system, it may be necessary to detach -13- the medical device from the delivery means before removing the catheter and the delivery means.
  • thrombi When the device is deployed in a patient, thrombi will tend to collect on the surface of the wires. By having a greater wire density, the total surface area of the wires will be increased, increasing the thrombotic activity of the device and permitting it to relatively rapidly occlude the vessel in which it is deployed. It is believed that forming the occlusion device from a 4 mm diameter tubular braid having a pick of at least about 40 and a pitch of at least about 30° will provide sufficient surface area to substantially completely occlude an abnormal opening in the septal wall. If it is desired to increase the rate at which the device occludes, any of a wide variety of known thrombotic agents can be applied to the device. Those skilled in the art will appreciate that an occluding membrane, fiber, or mesh may be positioned within either or both discs 12 and 14 to further enhance the occluding feature of each disc (see Figure 3).
  • the device 10 suitable for occluding a Patent Foramen Ovale (PFO).
  • PFO Patent Foramen Ovale
  • the device 10 In its relaxed, unstretched state (see Figure 2), the device 10 generally includes two aligned discs 12 and 14 linked together by a resilient central portion 16.
  • the plurality of braided wires form an outer 18 and inner 20 surface of each disc.
  • the inner surface 20 of each disc may be concave or cupped (see also Figure 7) to ensure that the outer perimeter edge 22 and 24 of each disc 12 and 14 respective contacts the septal wall 40.
  • ends 26 and 28 of the tubular braided metal fabric device 10 are welded or clamped together with corresponding clamps 30 and 32 to avoid fraying.
  • ends may alternately be held together by other means readily known to those skilled in the art.
  • fastening means may be attached to the ends
  • the clamps 30 and 32 tying together the wire strands at corresponding ends 26 and 28 also serve to connect the device to a delivery system.
  • the clamps 30 and 32 are generally cylindrical in shape and have a threaded bore 34 (see Figure 7) for receiving the ends 26 and 28 of the metal fabric to substantially prevent the wires from moving relative to one another.
  • the threaded bore 34 is adapted to receive and engage a threaded distal end of a delivery device.
  • Figures 8-10 show additional embodiments of the device 10 wherein the shape of the resilient central portion 16 is varied.
  • the central portion 16 is flexible in both the lateral and fore and aft directions. This flexibility provides a self centering feature of the device, wherein the discs 12 and 14 tend to automatically center themselves around the adjacent opening of the defect (see Figures 11 and 12) while tending to pull the discs toward the other.
  • the central portion 16 may include a helical spring-like shape (see Figure 9), a coil shape (see Figure 10), or a bent shape (see Figure 2).
  • the device 10 is sized in proportion to the shunt to be occluded.
  • the diameter of each disc 12 and 14 may be varied as desired for differently sized openings in the septal wall.
  • the length of the resilient central portion may be varied depending upon the thickness of the septal wall, and may range between 4 to 40 mm.
  • the PFO occlusion device 10 can advantageously be made in accordance with the method outlined above.
  • the device is preferably made from a .005 inch nitinol wire mesh.
  • the braiding of the wire mesh may be carried out with 28 picks per inch at a shield angle of about 64 degrees using a Maypole braider with 72 wire carriers.
  • the stiffness of the PFO device 10 may be increased or decreased by altering the wire size, the shield angle, the pick size, braid diameter, the number of wire carriers, or the heat treatment process.
  • the cavities of a mold must be -15- shaped consistent with the desired shape of the PFO device.
  • the strands When using untreated NiTi fabrics, the strands will tend to return to their unbraided configuration and the braid can unravel fairly quickly unless the ends of the length of the braid are constrained relative to one another.
  • the clamps 30 and 32 are useful to prevent the braid from unraveling at either end, thereby effectively defining an empty space within a sealed length of fabric. These clamps 30 and 32 hold the ends of the cut braid together and prevent the braid from unraveling.
  • soldering and brazing of NiTi alloys has proven to be fairly difficult, the ends may be welded together, such as by spot welding with a laser welder. When cutting the fabric to the desired dimensions, care should be taken to ensure that the fabric will not unravel.
  • the individual strands will tend to return to their heat set configuration unless constrained. If the braid is heat treated to set the strands in the braided configuration, they will tend to remain in the braided form and only the ends will become frayed. However, it may be more economical to simply form the braid without heat treating the braid since the fabric will be heat treated again in forming the medical device.
  • the device may be delivered and properly placed using two dimensional echocardiography and Doppler color flow mapping.
  • the delivery device can take any suitable shape, preferably comprising an elongated flexible metal shaft similar to a conventional guide wire.
  • the delivery device is used to advance the PFO occlusion device through the lumen of a small diameter cylindrical tube, such as a delivery catheter, for deployment.
  • the PFO device 10 is loaded into the small diameter cylindrical tube by using a loading sheath to stretch the device and put the same in an elongated or stretched condition.
  • the device may be inserted into the lumen of the tube during the procedure or preassembled at a manufacturing facility, in that the devices of the present invention do not take on a permanent set when maintained in a compressed state.
  • the delivery catheter or tube is passed across the PFO.
  • the device 10 is advanced through the delivery catheter until the distal end becomes unconstrained on exiting the end of the catheter, whereupon it assumes its disc-like shape in the left atrium (see Figure 13).
  • the delivery catheter is then pulled back in the proximal direction across the PFO and the delivery device is likewise pulled in a proximal direction, -16- urging the distal disc against the septum.
  • the delivery catheter is then further pulled away from the septum, allowing the proximal disc to extend out of the delivery catheter, where it resiliently returns to its predefined relaxed disc-like shape.
  • the PFO device is positioned such that the distal disc presses against one side of the septum while the proximal disc presses against the other side of the septum.
  • the device can contain polyester fibers or a nylon fabric (see Figure 3).
  • the device may be recovered by pulling the delivery device proximally, thereby retracting the device 10 back into the delivery catheter prior to a second attempt at positioning the device relative to the defect.
  • the physician rotates the guidewire, unscrewing the threaded distal end of the guidewire from the clamp 30 or 32 of the occluding device 10.
  • the threads on the clamp are such that the rotation of the guidewire unscrews the guidewire from the clamp of the occluding device 10, rather than merely rotating the occluding device.
  • the threaded clamp can also enable the operator to maintain a hold on the device during deployment, or enables the operator to control the spring action during deployment of the device to ensure proper positioning.

Abstract

A collapsible medical device (10) and associated method for occluding an abnormal opening in, for example, a body organ, wherein the medical device (10) is shaped from a shape memory metal fabric. The device is preferably made from a continuous tubular metal fabric and includes two outer occluding portions (12, 14), and a resilient central, spring-like interconnecting member (16). The device (10) includes a fastener (30, 32) for attaching to the end of a guide wire or delivery catheter.

Description

PERCUTANEOUS CATHETER DIRECTED
CONSTRICTING OCCLUSION DEVICE
BACKGROUND OF THE INVENTION
I. FIELD OF THE INVENTION The present invention relates generally to a device and non-surgical method for treating certain cardiac defects. More particularly, the present invention relates to a low profile occlusion device for non-surgical treatment of a patient having a Patent Foramen Ovale (PFO) and resulting paradoxical cerebral emboli. The device made in accordance with the invention is capable of automatically adjusting to a septal defect having eccentric openings and is particularly well suited for delivery through a catheter or the like to a remote location in a patient's heart or in analogous vessel or organ within a patient's body.
II. DESCRIPTION OF THE RELATED ART
A wide variety of intra cardiac devices are used in various medical procedures. Certain intravascular devices, such as catheters and guide wires, may be used to deliver fluids or other medical devices to a specific location within a patient's heart. For example, a catheter may be used to reach a selective coronary artery within the vascular system or the catheter and/or guidewire may be used to deliver a device to an interior chamber of the patient's heart. Complex devices may be delivered and used in treating specific abnormal conditions, such as devices used in removing vascular occlusions or devices used in treating septal defects and the like.
Balloon catheters and collapsible preformed polymeric devices similar to that disclosed by Landymore et al. in U.S. Pat. No. 4,836,204 and Linden et al. in U.S. Pat. No. 5,634,936 respectively have been used to occlude a septal defect. When using a balloon catheter similar to that disclosed in the '204 patent, an expandable balloon is carried on a distal end of the catheter. When the catheter is guided to the desired location, the balloon is filled with a fluid until it substantially fills the vessel and becomes lodged therein. Resins which will harden inside the balloon, such as an acrylonitrile, can be employed to permanently fix the size and shape of the balloon. The balloon can then be detached from the end of the catheter and left in place. The '936 device is expanded and hardened by a ternary system that modifies the pH and hydrophilicity of the device (see '936 patent, col. 6, In 40-45). If these devices are not expanded completely they may not firmly lodge in the septal defect and may rotate and loosen -2- from the septal wall, thereby releasing into the blood stream.. Overfilling the '204 device is an equally undesirable occurrence which may lead to the rupture of the balloon and release of resins into the patient's bloodstream.
Mechanical embolization devices have been proposed in the past for occluding defects in a patient's intravascular system. The devices typically include a pair of spaced apart patches each having an internal collapsible frame (similar to the frame and outer membrane of an umbrella), wherein the opposing patch and frame are interconnected by a conjoint member. The patches are typically aligned and attached to a common axis of the conjoint member. The conjoint member may be a rigid or semi-rigid hub which minimizes the movement of the patches both laterally and fore and aft to thereby firmly retain the patches against the septal wall adjacent the defect. Patches that are attached to a common axis of the hub may become problematic when the septal defect to be occluded has eccentric openings. Since the patches are attached to a common rigid axis, at least one of the eccentric openings may not be completely covered by the respective patch. The rigid or semi-rigid hub prevents adjustment of the patches to compensate for the eccentric openings.
Representative examples of such mechanical devices are disclosed in King et al., U.S. Pat. No. 3,874,388 (the '388 patent), Das, U.S. Pat. No. 5,334,217 (the '217 patent), European application No. 0541,063 A2 (the '063 application), Sideris, U.S. Pat. No. 4,917,089 (the '089 patent), and Marks, U.S. Pat. No. 5,108,420 (the '420 patent). These devices are typically pre-loaded into an introducer or delivery catheter prior to the implantation procedure and are not commonly loaded by the physician during the medical procedure. During deployment of these devices, recapture into the delivery catheter is difficult if not impossible, thereby limiting the effectiveness of these devices.
Prior to implantation of these devices, the thickness of the septal wall near the defect and the approximate width of the defect must be determined in order that an appropriately sized device may be provided. A balloon catheter and a calibrated guidewire having radiopaque regions of known length, may be utilized by a physician during a preliminary fluoroscopic procedure to estimate the defect's size, shape and thickness of the septal wall near the defect. Although useful, the defects exact size and shape cannot be determined, thereby increasing the possibility of leakage around the occluding device. Hence, a device that inherently adjusts to the shape and thickness of the defect would be desirable. -3-
Significantly, the size of the prior devices is inherently limited by the structure and form of the device. Also, when using occluding devices such as those disclosed in the '089, '388, '217, or '420 patents to occlude a septal defect, the pressure and therefore the chance of dislodgment of the device increases with an increase in size of the defect. Consequently, the prior devices require an oversized retention skirt positioned on each side of the defect.
Oftentimes, the position of the septal defect dictates the size of the retention skirt. In a membranous type septal defect, it is difficult if not improbable to be able to effectively position the '388, '217, '089, or '420 device without at least partially closing off the aorta. Also, these disclosed devices tend to be rather expensive and time-consuming to manufacture. Further, the shape of the prior devices (for example squares, triangles, pentagons, hexagons and octagons) require a larger surface contact area and have corners which may extend to the free wall of the atria. Each time the atria contracts (approximately 100,000 times per day) the corners extending to the atria walls are bent, creating structural fatigue fractures in approximately 30 percent of all cases. Furthermore, the previous devices require a French 14-16 introducing catheter, making it impossible to treat children affected with congenital defects with these devices. Hence, it would be advantageous to provide a reliable embolization device which is both easy to deploy through a 6-7 French catheter and which automatically adjusts to the shape and thickness of the defect. The present invention addresses these and other disadvantages of the prior art. SUMMARY OF THE INVENTION
It is accordingly a principal object of the present invention to provide a reliable, low- profile, intra cardiac occlusion device capable of automatically adjusting the alignment within a septal defect having eccentric openings, wherein the device is suitable for treating septal defects including a Patent Foramen Ovale (PFO). PFO is essentially a condition wherein an abnormal, wide, opening is present in the septal wall between the two atria of the heart.
Blood can flow directly between these two atria, compromising the normal flow of blood and efficiency of the patient's heart. The abnormal opening or septal defect may not extend perpendicularly through the septal wall. Rather, the center of the opening in the septal wall in the left atrium may be eccentric to the center of the opening in the septal wall in the right atrium, thereby requiring eccentric positioned "patches" to effectively occlude the defect.
Also, the septal wall may be very thin requiring a minimal separation distance between the two -4- occluding "patches". The device of the present invention is preferably formed from a continuous tubular metal fabric and includes two opposing spaced apart "discs", patches, or retention skirts interconnected by a flexible or resilient central member. The central member flexes both laterally and in the fore and aft directions while providing an inward tension against each of the discs.
When forming these intravascular devices from a resilient metal fabric a plurality of resilient strands or wires are provided, with the metal fabric being formed by braiding the resilient strands to create a resilient material. This braided fabric is then deformed to generally conform to a molding surface of a molding element and the braided fabric is heat treated in contact with the surface of the molding element at an elevated temperature. The time and temperature of the heat treatment is selected to substantially set the braided fabric in its deformed state. After the heat treatment, the fabric is removed from contact with the molding element and will substantially retain its shape in the deformed state. The braided fabric so treated defines a relaxed state of a medical device which can be stretched or expanded and deployed through a catheter into a channel in a patient's body. Those skilled in the art will appreciate that the cavities of the molds must mirror the desired shape of the device and further molding elements are described in co-pending application Serial No. 08/647,712 filed on May 14, 1996, and entitled PERCUTANEOUS CATHETER DIRECTED INTRAVASCULAR OCCLUSION DEVICE which is assigned to the same assignee as the present invention, the entire disclosure of which is incorporated herein by reference.
The device of the present invention has a specific shape which is particularly well suited for occluding a PFO. The device has a relaxed low-profile configuration and includes clamps that allow attachment of the device to an end of a delivery device or guide wire (allowing recovery of the device after placement). In use, a guide catheter is positioned and advanced in a patient's body such that the distal end of the catheter is adjacent a desired treatment site for treating a physiological condition. The medical device of the present invention having a predetermined shape is then stretched and inserted into the lumen of the catheter. The device is urged through the catheter and out the distal end, whereupon, due to its shape memory property it will tend to substantially return to its relaxed state adjacent the treatment site. The guide wire or delivery catheter is then released from the clamp and removed. -5-
OBJECTS
It is accordingly a principal object of the present invention to provide a device suitable for occluding a septal defect that is capable of automatically adjusting to eccentric openings of the septal defect while providing an inward tension on the occluding portions of the device. Another object of the present invention is to provide a device suitable for occluding septal defects having eccentric openings, wherein the device is particularly well suited for delivery through a catheter or the like to a remote location in a patient's heart or in an analogous vessel or organ within a patient's body.
A further object of the present invention is to provide an occluding device having outer occluding portions and a flexible resilient central portion that pulls the outer occluding portions together.
These and other objects, as well as these and other features and advantages of the present invention will become readily apparent to those skilled in the art from a review of the following detailed description of the preferred embodiment in conjunction with the accompanying claims and drawings in which like numerals in the several views refer to corresponding parts.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a perspective view of a Patent Foramen Ovale occluding device in accordance with the present invention; Figure 2 is a side elevational view of the medical device of the type shown in Figure 1;
Figure 3 is a partial sectional side elevational view of the medical device of the type shown in Figure 2, shown partially stretched along its longitudinal axis;
Figure 4 is a side elevational view of the medical device of the type shown in Figure 3, shown stretched along its longitudinal axis slightly more than in Figure 3; Figure 5 is a side elevational view of the medical device of the type shown in Figure 4, shown stretched along its longitudinal axis slightly more than in Figure 4;
Figure 6 is a side elevational view of the medical device of the type shown in Figure 1 shown partially stretched, wherein the outer perimeter of the spaced apart discs are offset; Figure 7 is a partial sectional side elevational view of the medical device of the type shown in Figure 1, shown partially stretched along its longitudinal axis;
Figure 8 is a side elevational view of another embodiment of the present invention -6- shown partially stretched along its longitudinal axis;
Figure 9 is a side elevational view of another embodiment of the present invention shown partially stretched along its longitudinal axis;
Figure 10 is a side elevational view of another embodiment of the present invention shown partially stretched along its longitudinal axis;
Figure 11 is a partial sectional side elevational view of the embodiment of Figure 8 shown occluding a PFO of the septal wall;
Figure 12 is a partial sectional side elevational view of the embodiment of Figure 8 shown occluding a PFO of the septal wall; and Figure 13 is a partial sectional side elevational view of the embodiment of Figure 1 shown occluding an atrial septal defect.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The present invention provides a percutaneous catheter directed occlusion device for use in occluding an abnormal opening in a patient's body that is particularly well suited for occluding a PFO (see Figures 11-13). The occluding device includes two spaced apart occluding members interconnected by a flexible, resilient center portion. A clamp is attached to an outer end of each occluding member, wherein the clamps are adapted for coupling to the end of a guidewire or catheter for delivery to a pre-selected site within the patient. In the preferred embodiment, the occluding device is formed from a single continuous tubular metal fabric.
The tubular fabric is formed from a plurality of wire strands having a predetermined relative orientation between the strands. Those skilled in the art will appreciate that the pick and pitch of the braided wires may be varied depending upon the desired density of the fabric. The tubular fabric has metal strands which define two sets of essentially parallel generally spiraling and overlapping strands, with the strands of one set having a "hand", i.e. a direction of rotation, opposite that of the other set. This tubular fabric is known in the fabric industry as a tubular braid.
The pitch of the wire strands (i.e. the angle defined between the turns of the wire and the axis of the braid) and the pick of the fabric (i.e. the number of turns per unit length) as well as some other factors, such as the number of wires employed in a tubular braid, the size or diameter of each wire in the braid, and the diameter of the braid are all important in -7- determining a number of important properties of the device. For example, the greater the pick and pitch of the fabric, and hence the greater the density of the wire strands in the fabric, the stiffer the device will be. Also, the greater the diameter of each wire of the braid, the stiffer the device will be. Having a greater wire density will also provide the device with a greater wire surface area, which will generally enhance the tendency of the device to occlude the area in which it is deployed. This thrombogenicity can be either enhanced by a coating of a thrombolytic agent, or abated by a coating of a lubricious, anti-thrombogenic compound. When using a tubular braid to form a device of the present invention, a tubular braid of about 4 mm in diameter having approximately 72 braided wires is suitable for fabricating devices capable of occluding abnormal openings and/or septal defects.
The wire strands of the tubular metal fabric are preferably manufactured from so-called shape memory alloys. Such alloys tend to have a temperature induced phase change which will cause the material to have a preferred configuration which can be fixed by heating the material above a certain transition temperature to induce a change in the phase of the material. When the alloy is cooled back down, the alloy will "remember" the shape it was in during the heat treatment and will tend to assume that configuration unless constrained from so doing.
Without any limitation intended, suitable wire strand materials may be selected from a group consisting of a cobalt-based low thermal expansion alloy referred to in the field as ELGELOY, nickel-based high temperature high-strength "superalloys" (including nitinol) commercially available from, for example, Haynes International under the trade name HASTELLOY, nickel-based heat treatable alloys sold under the name INCOLOY by International Nickel, and a number of different grades of stainless steel. The important factor in choosing a suitable material for the wire strands is that the wires retain a suitable amount of the deformation induced by a molding surface (as described below) when subjected to a predetermined heat treatment.
In the preferred embodiment, the wire strands are made from a shape memory alloy, NiTi (known as nitinol) which is an approximately stoichiometric alloy of nickel and titanium and may also include other minor amounts of other metals to achieve desired properties. Handling requirements and variations of NiTi alloy composition are known in the art, and therefore such alloys need not be discussed in detail here. U.S. Patents 5,067,489 (Lind) and
4,991,602 (Amplatz et al.), the teachings of which are incorporated herein by reference, -8- discuss the use of shape memory NiTi alloys in guide wires. Such NiTi alloys are preferred, at least in part, because they are commercially available and more is known about handling such alloys than other known shape memory alloys. NiTi alloys are also very elastic and are said to be "super elastic" or "pseudo elastic". This elasticity allows a device of the invention to return to a preset configuration after deployment.
When forming a medical device in accordance with the present invention, an appropriately sized piece of tubular metal fabric is inserted into a mold, whereby the fabric deforms to generally conform to the shape of the cavities within the mold. The shape of the cavities are such that the metal fabric deforms into substantially the shape of the desired medical device. Cores within the cavities may be used to further form the shape of the fabric within the cavities. The ends of the wire strands of the tubular metal fabric should be secured to prevent the metal fabric from unraveling. A clamp or welding, as further described below, may be used to secure the ends of the wire strands.
During the molding procedure, a molding element may be positioned within the lumen of the tubular braid prior to insertion into the mold to thereby further define the molding surface. If the ends of the tubular metal fabric have already been fixed by a clamp or welding, the molding element may be inserted into the lumen by manually moving the wire strands of the fabric apart and inserting the molding element into the lumen of the tubular fabric. By using such a molding element, the dimensions and shape of the finished medical device can be fairly accurately controlled and ensures that the fabric conforms to the mold cavity.
The molding element may be formed of a material selected to allow the molding element to be destroyed or removed from the interior of the metal fabric. For example, the molding element may be formed of a brittle or friable material. Once the material has been heat treated in contact with the mold cavities and molding element, the molding element can be broken into smaller pieces which can be readily removed from within the metal fabric. If this material is glass, for example, the molding element and the metal fabric can be struck against a hard surface, causing the glass to shatter. The glass shards can then be removed from the enclosure of the metal fabric.
Alternatively, the molding element can be formed of a material that can be chemically dissolved, or otherwise broken down, by a chemical agent which will not substantially adversely affect the properties of the metal wire strands. For example, the molding element -9- can be formed of a temperature resistant plastic resin which is capable of being dissolved with a suitable organic solvent. In this instance, the metal fabric and the molding element can be subjected to a heat treatment to substantially set the shape of the fabric in conformance with the mold cavity and molding element, whereupon the molding element and the metal fabric can be emersed in the solvent. Once the molding element is substantially dissolved, the metal fabric can be removed from the solvent.
Care should be taken to ensure that the materials selected to form the molding element are capable of withstanding the heat treatment without losing its shape, at least until the shape of the fabric has been set. For example, the molding element could be formed of a material having a melting point above the temperature necessary to set the shape of the wire strands, but below the melting point of the metal forming the strands. The molding element and metal fabric could then be heat treated to set the shape of the metal fabric, whereupon the temperature would be increased to substantially completely melt the molding element, thereby removing the molding element from within the metal fabric. Those skilled in the art will appreciate that the specific shape of the molding element produces a specific shape of the molded device. If a more complex shape is desired, the molding element and mold may have additional parts including a camming arrangement, but if a simpler shape is being formed, the mold may have few parts. The number of parts in a given mold and the shapes of those parts will be dictated almost entirely by the shape of the desired medical device to which the metal fabric will generally conform.
When the tubular braid, for example, is in its preformed relaxed configuration, the wire strands forming the tubular braid will have a first predetermined relative orientation with respect to one another. As the tubular braid is compressed along its axis, the fabric will tend to flare out away from the axis conforming to the shape of the mold. When the fabric is so deformed the relative orientation of the wire strands of the metal fabric will change. When the mold is assembled, the metal fabric will generally conform to the molding surface of the interior cavity. After undergoing the shape memory process, the resulting medical device has a preset relaxed configuration and a collapsed or stretched configuration which allows the device to be passed through a catheter or other similar delivery device. The relaxed configuration is generally defined by the shape of the fabric when it is deformed to generally to conform to the molding surface of the mold. -10-
Once the tubular or planar metal fabric is properly positioned within a preselected mold with the metal fabric generally conforming to the molding surface of the cavities therein, the fabric can be subjected to a heat treatment while it remains in contact with the molding surface. Suitable heat treatment processing of nitinol wire to set a desired shape are well known in the art. Spirally wound nitinol coils, for example, are used in a number of medical devices, such as in forming the coils commonly carried around distal links of guide wires. A wide body of knowledge exists for forming nitinol in such devices, so there is no need to go into great detail here on the parameters of a heat treatment for the nitinol fabric preferred for use in the present invention. Briefly, though, it has been found that holding a nitinol fabric at about 500 degrees centigrade to about 550 degrees centigrade for a period of about 1 to 30 minutes, depending upon the softness or hardness of the device to be made will tend to set the fabric in its deformed state, i.e., wherein it conforms to the molding surface of the mold cavities. At lower temperatures, the heat treatment time will tend to be greater (e.g., about 1 hour at about 350 degrees centigrade) and at higher temperatures the time will tend to be shorter (e.g., about 30 seconds at about 900 degrees centigrade). These parameters can be varied as necessary to accommodate variations in the exact composition of the nitinol, prior heat treatment of the nitinol, the desired properties of the nitinol in the finished article, and other factors known to those skilled in this field.
Instead of relying on convection heating or the like, it is also known in the art to apply an electrical current to the nitinol to heat it. In the present invention, this can be accomplished by, for example, connecting electrodes to each end of the metal fabric. The wire can then be heated by resistance heating of the wires in order to achieve the desired heat treatment, which will tend to eliminate the need to heat the entire mold to the desired heat treating temperature in order to heat the metal fabric to the desired temperature. The materials, molding elements and methods of molding a medical device from a tubular or planar metal fabric is further described in co-pending U.S. Patent Application Serial No. 08/647,712, filed May 14, 1996 and assigned to the same assignee as the present invention, the entire disclosure of which is incorporated herein by reference.
Heat treating the metal fabric at temperatures ranging between 500-550 degrees centigrade substantially sets the shapes of the wire strands in a reoriented relative position conforming the shape of the fabric to the molding surface. When the metal fabric is removed -11- from the mold, the fabric maintains the shape of the molding surfaces of the mold cavities to thereby define a medical device having a desired shape. After the heat treatment, the fabric is removed from contact with the molding cavity and will substantially retain its shape in a deformed state. If a molding element is used, this molding element can be removed as described above.
The time required for the heat treating process will depend in large part upon the material of which the wire strands of the metal fabric are formed and mass of the mold, but the time and temperature of the heat treatment should be selected to substantially set the fabric in its deformed state, i.e., wherein the wire strands are in their reoriented relative configuration and the fabric generally conforms to the molding surface. The required time and temperature of the heat treatment can vary greatly depending upon the material used in forming the wire strands. As noted above, one preferred class of materials for forming the wire strands are shape memory alloys, with nitinol, a nickel titanium alloy, being particularly preferred. If nitinol is used in making the wire strands of the fabric, the wire strands will tend to be very elastic when the metal is in its austenitic phase; this very elastic phase is frequently referred to as a super elastic or pseudo elastic phase. By heating the nitinol above a certain phase transition temperature, the crystal structure of the nitinol metal will tend to "set" the shape of the fabric and the relative configuration of the wire strands in the positions in which they are held during the heat treatment. Once a device having a preselected shape has been formed, the device may be used to treat a physiological condition of a patient. A medical device suitable for treating the condition is selected. Once the appropriate medical device is selected, a catheter or other suitable delivery device may be positioned within a channel in a patient's body to place the distal end of the delivery device adjacent the desired treatment cite, such as immediately adjacent (or even within) the shunt of an abnormal opening in the patient's organ for example.
The delivery device (not shown) can take any suitable shape, but desirably comprises an elongate flexible metal shaft having a threaded distal end. The delivery device can be used to urge the medical device through the lumen of a catheter for deployment in a channel of a patient's body. When the device is deployed out the distal end of the catheter, the device will still be retained by the delivery device. Once the medical device is properly positioned within the shunt of the abnormal opening, the distal end of the catheter may be pressed against the -12- medical device and the metal shaft or guidewire can be rotated about its axis to unscrew the medical device from the threaded distal end of the shaft. The catheter and guidewire are then withdrawn.
By keeping the medical device attached to the delivery means, the operator can retract the device for repositioning relative to the abnormal opening, if it is determined that the device is not properly positioned within the shunt. A threaded clamp attached to the medical device allows the operator to control the manner in which the medical device is deployed out the distal end of the catheter. When the device exits the catheter, it will tend to resiliently return to a preferred relaxed shape. When the device springs back into this shape, it may tend to act against the distal end of the catheter effectively urging itself forward beyond the end of the catheter. This spring action could conceivably result in improper positioning of the device if the location of the device within a channel is critical, such as where it is being positioned in a shunt between two vessels. Since the threaded clamp can enable the operator to maintain a hold on the device during deployment, the spring action of the device can be controlled by the operator to ensure proper positioning during deployment.
The medical device can be collapsed into its collapsed configuration and inserted into the lumen of the catheter. The collapsed configuration of the device may be of any shape suitable for easy passage through the lumen of a catheter and proper deployment out the distal end of the catheter. For example, the PFO occluding device may have a relatively elongated collapsed configuration wherein the device is stretched along its longitudinal axis (see Figure
5). This collapsed configuration can be achieved simply by stretching the device generally along its axis, e.g. by manually grasping the clamps and pulling them apart, which will tend to collapse the relaxed diameter portions of the device inwardly toward the device's axis. Loading such a device into a catheter may be done at the time of implantation and does not require pre-loading of the introducer or catheter.
If the device is to be used to permanently occlude a channel in the patient's body, one can simply retract the catheter and remove it from the patient's body. This leaves the medical device deployed in the patient's vascular system so that it may occlude the blood vessel or other channel in the patient's body. In some circumstances, the medical device may be attached to a delivery system in such a manner as to secure the device to the end of the delivery means. Before removing the catheter in such a system, it may be necessary to detach -13- the medical device from the delivery means before removing the catheter and the delivery means.
When the device is deployed in a patient, thrombi will tend to collect on the surface of the wires. By having a greater wire density, the total surface area of the wires will be increased, increasing the thrombotic activity of the device and permitting it to relatively rapidly occlude the vessel in which it is deployed. It is believed that forming the occlusion device from a 4 mm diameter tubular braid having a pick of at least about 40 and a pitch of at least about 30° will provide sufficient surface area to substantially completely occlude an abnormal opening in the septal wall. If it is desired to increase the rate at which the device occludes, any of a wide variety of known thrombotic agents can be applied to the device. Those skilled in the art will appreciate that an occluding membrane, fiber, or mesh may be positioned within either or both discs 12 and 14 to further enhance the occluding feature of each disc (see Figure 3).
Having described the details of the invention, specific reference to the Figures will next be presented. The several Figures illustrate several embodiments of the invention wherein the central portion is resilient and pulls the outer discs towards each other. Referring first to the Figures 1 and 2, there is shown generally the device 10 suitable for occluding a Patent Foramen Ovale (PFO). In its relaxed, unstretched state (see Figure 2), the device 10 generally includes two aligned discs 12 and 14 linked together by a resilient central portion 16. The plurality of braided wires form an outer 18 and inner 20 surface of each disc. The inner surface 20 of each disc may be concave or cupped (see also Figure 7) to ensure that the outer perimeter edge 22 and 24 of each disc 12 and 14 respective contacts the septal wall 40.
When the device 10 is in a relaxed state, the discs 12 and 14 tend to overlap and the central portion 16 extends into the recess formed by the inner surface of the discs 12 and 14. In this manner, when the discs 12 and 14 are pulled apart (see Figure 3) the spring-like action of the central portion 16 will cause the perimeter edge 22 and 24 of the corresponding disc to fully engage the sidewall of the septum (see Figures 11 and 12). Figures 3-5 illustrates sequentially the stretching, spring-like action of the bent central portion 16. Without any limitation intended, during the formation of the device 10, the tubular braid (in the region forming the central portion 16) is partially flattened to enhance the spring-like action of the central portion 16. Figure 6 illustrates that the discs 12 and 14 may be offset laterally by -14- stretching the central portion 16.
The ends 26 and 28 of the tubular braided metal fabric device 10 are welded or clamped together with corresponding clamps 30 and 32 to avoid fraying. Of course the ends may alternately be held together by other means readily known to those skilled in the art. Further, it is to be understood that other suitable fastening means may be attached to the ends
26 and 28 in other ways, such as by welding, soldering, brazing, use of biocompatable cementious material or in any other suitable fashion. The clamps 30 and 32 tying together the wire strands at corresponding ends 26 and 28 also serve to connect the device to a delivery system. In the embodiment shown, the clamps 30 and 32 are generally cylindrical in shape and have a threaded bore 34 (see Figure 7) for receiving the ends 26 and 28 of the metal fabric to substantially prevent the wires from moving relative to one another. The threaded bore 34 is adapted to receive and engage a threaded distal end of a delivery device.
Figures 8-10 show additional embodiments of the device 10 wherein the shape of the resilient central portion 16 is varied. The central portion 16 is flexible in both the lateral and fore and aft directions. This flexibility provides a self centering feature of the device, wherein the discs 12 and 14 tend to automatically center themselves around the adjacent opening of the defect (see Figures 11 and 12) while tending to pull the discs toward the other. The central portion 16 may include a helical spring-like shape (see Figure 9), a coil shape (see Figure 10), or a bent shape (see Figure 2). Those skilled in the art will appreciate that the device 10 is sized in proportion to the shunt to be occluded. The diameter of each disc 12 and 14 may be varied as desired for differently sized openings in the septal wall. Further, the length of the resilient central portion may be varied depending upon the thickness of the septal wall, and may range between 4 to 40 mm. The PFO occlusion device 10 can advantageously be made in accordance with the method outlined above. The device is preferably made from a .005 inch nitinol wire mesh. The braiding of the wire mesh may be carried out with 28 picks per inch at a shield angle of about 64 degrees using a Maypole braider with 72 wire carriers. The stiffness of the PFO device 10 may be increased or decreased by altering the wire size, the shield angle, the pick size, braid diameter, the number of wire carriers, or the heat treatment process. Those skilled in the art will recognize from the preceding discussion that the cavities of a mold must be -15- shaped consistent with the desired shape of the PFO device.
When using untreated NiTi fabrics, the strands will tend to return to their unbraided configuration and the braid can unravel fairly quickly unless the ends of the length of the braid are constrained relative to one another. The clamps 30 and 32 are useful to prevent the braid from unraveling at either end, thereby effectively defining an empty space within a sealed length of fabric. These clamps 30 and 32 hold the ends of the cut braid together and prevent the braid from unraveling. Although soldering and brazing of NiTi alloys has proven to be fairly difficult, the ends may be welded together, such as by spot welding with a laser welder. When cutting the fabric to the desired dimensions, care should be taken to ensure that the fabric will not unravel. In the case of tubular braids formed of NiTi alloys, for example, the individual strands will tend to return to their heat set configuration unless constrained. If the braid is heat treated to set the strands in the braided configuration, they will tend to remain in the braided form and only the ends will become frayed. However, it may be more economical to simply form the braid without heat treating the braid since the fabric will be heat treated again in forming the medical device.
Use of a device 10 of the present invention will now be discussed in greater detail with respect to occluding a PFO. The device may be delivered and properly placed using two dimensional echocardiography and Doppler color flow mapping. As indicated above, the delivery device can take any suitable shape, preferably comprising an elongated flexible metal shaft similar to a conventional guide wire. The delivery device is used to advance the PFO occlusion device through the lumen of a small diameter cylindrical tube, such as a delivery catheter, for deployment. The PFO device 10 is loaded into the small diameter cylindrical tube by using a loading sheath to stretch the device and put the same in an elongated or stretched condition. The device may be inserted into the lumen of the tube during the procedure or preassembled at a manufacturing facility, in that the devices of the present invention do not take on a permanent set when maintained in a compressed state.
From a femoral vein approach, the delivery catheter or tube is passed across the PFO. The device 10 is advanced through the delivery catheter until the distal end becomes unconstrained on exiting the end of the catheter, whereupon it assumes its disc-like shape in the left atrium (see Figure 13). The delivery catheter is then pulled back in the proximal direction across the PFO and the delivery device is likewise pulled in a proximal direction, -16- urging the distal disc against the septum. The delivery catheter is then further pulled away from the septum, allowing the proximal disc to extend out of the delivery catheter, where it resiliently returns to its predefined relaxed disc-like shape. In this manner, the PFO device is positioned such that the distal disc presses against one side of the septum while the proximal disc presses against the other side of the septum. In order to increase its occluding ability, the device can contain polyester fibers or a nylon fabric (see Figure 3). In instances where the device is improperly deployed on a first try, the device may be recovered by pulling the delivery device proximally, thereby retracting the device 10 back into the delivery catheter prior to a second attempt at positioning the device relative to the defect. When the PFO occluding device is properly placed, the physician rotates the guidewire, unscrewing the threaded distal end of the guidewire from the clamp 30 or 32 of the occluding device 10. The threads on the clamp are such that the rotation of the guidewire unscrews the guidewire from the clamp of the occluding device 10, rather than merely rotating the occluding device. As noted above, the threaded clamp can also enable the operator to maintain a hold on the device during deployment, or enables the operator to control the spring action during deployment of the device to ensure proper positioning.
This invention has been described herein in considerable detail in order to comply with the Patent Statutes and to provide those skilled in the art with the information needed to apply the novel principles and to construct and use embodiments of the example as required. However, it is to be understood that the invention can be carried out by specifically different devices and that various modifications can be accomplished without departing from the scope of the invention itself.
What is claimed is:

Claims

-17-CLAIMS
1. A collapsible medical device, comprising a tubular metal fabric including a plurality of woven metal strands having a proximal end and a distal end, each end having means for securing the metal fabric attached thereto, thereby inhibiting unraveling of the metal fabric, said metal fabric having a relaxed configuration having two enlarged diameter portions and an elastic central portion disposed between the two enlarged diameter portions, said device further having a collapsed configuration for delivery through a channel in a patient's body.
2. The device as recited in claim 1, wherein each enlarged diameter portion has an inner and outer wall such that the inner wall of at least one of the enlarged diameter portions is at least partially concave.
3. The device as recited in claim 1, wherein said elastic central portion is shaped to form a resilient portion to thereby pull the two enlarged diameter portions toward the other.
4. The device as recited in claim 1, wherein said elastic central portion is helically shaped to form a resilient portion to thereby pull the two enlarged diameter portions toward the other.
5. The device as recited in claim 1 , wherein said elastic central portion is coiled to form a resilient portion to thereby pull the two enlarged diameter portions toward the other.
6. The device as recited in claim 1, wherein said elastic central portion is bent to form a resilient portion to thereby pull the two enlarged diameter portions toward the other.
7. The device as recited in claim 2, wherein said elastic central portion is shaped to form a resilient portion to thereby pull the two enlarged diameter portions toward the other.
8. The device as recited in claim 1, wherein a separation distance between the two enlarged diameter portions is less than a thickness of a patient's atrial septum. -18-
9. The medical device as recited in claim 1, wherein an inner surface of a first enlarged diameter portion is at least partially concave and a length of the elastic central portion is dimensioned such that a perimeter edge of the first enlarged diameter portion overlaps a perimeter edge of a second enlarged diameter portion.
10. The medical device as recited in claim 1, said two enlarged diameter portions consisting of a first enlarged partially concave diameter portion and a second enlarged partially concave diameter portion.
11. The medical device as recited in claim 1 , said two enlarged diameter portions consisting of a first enlarged diameter portion and a second enlarged diameter portion, wherein the elastic central portion may be flexed such that a first central axis of the first enlarged diameter portion is offset from a second central axis of the second enlarged diameter portion.
12. The medical device as recited in claim 1, wherein said means for securing includes means for attachment to a delivery device.
13. A collapsible medical device, comprising a tubular metal fabric including a plurality of woven metal strands having a proximal end and a distal end, each end having means for securing the metal fabric attached thereto, thereby inhibiting unraveling of the metal fabric, said metal fabric having a relaxed configuration having two enlarged diameter portions and a resilient portion disposed between the two enlarged diameter portions, said device further having a collapsed configuration for delivery through a channel in a patient's body.
14. The device as recited in claim 13, wherein each enlarged diameter portion has an inner and outer wall such that the inner wall of at least one of the enlarged diameter portions is at least partially concave.
15. The device as recited in claim 13, wherein said resilient portion is shaped to thereby pull the two enlarged diameter portions toward the other. -19-
16. The device as recited in claim 13, wherein said resilient portion is helically shaped to thereby pull the two enlarged diameter portions toward the other.
17. The device as recited in claim 13, wherein said resilient portion is coiled to thereby pull the two enlarged diameter portions toward the other.
18. The device as recited in claim 13, wherein said resilient portion is bent to thereby pull the two enlarged diameter portions toward the other.
19. The medical device as recited in claim 13, said two enlarged diameter portions consisting of a first enlarged diameter portion and a second enlarged diameter portion, wherein the resilient portion may be flexed such that a first central axis of the first enlarged diameter portion is offset from a second central axis of the second enlarged diameter portion.
20. A collapsible medical device, comprising two enlarged diameter portions and an elastic central portion interconnecting the two enlarged diameter portions, said device having a proximal end and a distal end, wherein at least one of the proximal and distal end includes means for securing said device to a delivery system, said device having a collapsed configuration for delivery through a channel in a patient's body.
21. The device as recited in claim 20, wherein said device is formed from a continuous tubular metal fabric consisting of a plurality of woven metal strands.
22. The device as recited in claim 20, wherein each enlarged diameter portion has an inner and outer wall such that the inner wall of at least one of the enlarged diameter portions is at least partially concave.
23. The device as recited in claim 20, wherein said elastic central portion is shaped to form a resilient portion to thereby pull the two enlarged diameter portions toward the other.
24. The device as recited in claim 21 , wherein said elastic central portion is shaped -20- to form a resilient portion to thereby pull the two enlarged diameter portions toward the other.
25. The device as recited in claim 20, wherein a separation distance between the two enlarged diameter portions is less than a thickness of a patient's atrial septum.
26. The medical device as recited in claim 20, wherein an inner surface of a first enlarged diameter portion is at least partially concave and a length of the elastic central portion is dimensioned such that a perimeter edge of the first enlarged diameter portion overlaps a perimeter edge of a second enlarged diameter portion.
27. The medical device as recited in claim 20, wherein said means for securing includes means for attachment to a delivery device.
PCT/US1998/021342 1998-02-06 1998-10-12 Percutaneous catheter directed constricting occlusion device WO1999039646A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU10748/99A AU737934C (en) 1998-02-06 1998-10-12 Percutaneous catheter directed constricting occlusion device
DE69838436T DE69838436T2 (en) 1998-02-06 1998-10-12 PERKUTANKATHETER FOR SETTING AN OKKLUSIONS- BZW. The tourniquet
EA200000739A EA002106B1 (en) 1998-02-06 1998-10-12 Percutaneous catheter directed constricting occlusion device
CA002319521A CA2319521C (en) 1998-02-06 1998-10-12 Percutaneous catheter directed constricting occlusion device
DK98953347T DK1052944T3 (en) 1998-02-06 1998-10-12 Percutaneous catheter for routing an occluding occlusion device
EP98953347A EP1052944B1 (en) 1998-02-06 1998-10-12 Percutaneous catheter directed constricting occlusion device
JP2000530153A JP3524494B2 (en) 1998-02-06 1998-10-12 Percutaneous catheter guided contractile occlusion device
HK01103575A HK1032892A1 (en) 1998-02-06 2001-05-23 Percutaneous catheter directed constricting occlusion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/019,620 1998-02-06
US09/019,620 US5944738A (en) 1998-02-06 1998-02-06 Percutaneous catheter directed constricting occlusion device

Publications (1)

Publication Number Publication Date
WO1999039646A1 true WO1999039646A1 (en) 1999-08-12

Family

ID=21794150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/021342 WO1999039646A1 (en) 1998-02-06 1998-10-12 Percutaneous catheter directed constricting occlusion device

Country Status (14)

Country Link
US (1) US5944738A (en)
EP (3) EP1052944B1 (en)
JP (1) JP3524494B2 (en)
KR (1) KR100400506B1 (en)
CN (1) CN1102373C (en)
AT (1) ATE372727T1 (en)
CA (1) CA2319521C (en)
DE (1) DE69838436T2 (en)
DK (1) DK1052944T3 (en)
EA (1) EA002106B1 (en)
ES (2) ES2294820T3 (en)
HK (1) HK1032892A1 (en)
PT (1) PT1052944E (en)
WO (1) WO1999039646A1 (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596013B2 (en) 2001-09-20 2003-07-22 Scimed Life Systems, Inc. Method and apparatus for treating septal defects
EP1409771A2 (en) * 2001-06-11 2004-04-21 ev3 Inc. A method of training nitinol wire
EP1487353A2 (en) * 2002-03-25 2004-12-22 NMT Medical, Inc. Patent foramen ovale (pfo) closure clips
WO2005099365A2 (en) 2004-04-08 2005-10-27 Aga Medical Corporation Flange occlusion devices and methods
EP1673132A2 (en) * 2003-09-18 2006-06-28 Cardia, Inc. Self centering closure device for septal occlusion
GB2441589A (en) * 2006-09-05 2008-03-12 Anthony Walter Anson Heat treatment method for composite textiles
EP2399524A1 (en) 2010-06-22 2011-12-28 Occlutech Holding AG Medical implant and manufacturing method thereof
EP2014239A3 (en) * 2007-06-21 2012-01-25 Aga Medical Corporation Multi-layer braided structures for occluding vascular defects
US8262719B2 (en) 2007-03-13 2012-09-11 Medtronic Vascular, Inc. Braided flange branch graft for branch vessel
US8313505B2 (en) 2004-03-19 2012-11-20 Aga Medical Corporation Device for occluding vascular defects
US8398670B2 (en) 2004-03-19 2013-03-19 Aga Medical Corporation Multi-layer braided structures for occluding vascular defects and for occluding fluid flow through portions of the vasculature of the body
WO2013041721A1 (en) * 2011-09-22 2013-03-28 Occlutech Holding Ag Medical implantable occlusion device, and method for implantation thereof
US8747453B2 (en) 2008-02-18 2014-06-10 Aga Medical Corporation Stent/stent graft for reinforcement of vascular abnormalities and associated method
WO2014113632A3 (en) * 2013-01-18 2014-10-23 W.L. Gore & Associates, Inc. Sealing device
US8876880B2 (en) 1999-02-01 2014-11-04 Board Of Regents, The University Of Texas System Plain woven stents
US8956389B2 (en) 2009-06-22 2015-02-17 W. L. Gore & Associates, Inc. Sealing device and delivery system
US8966733B2 (en) 2006-10-22 2015-03-03 Idev Technologies, Inc. Secured strand end devices
US9011482B2 (en) 2012-02-09 2015-04-21 Tw Medical Technologies, Llc Vaso-occlusive devices including a friction element and methods of use
US9039724B2 (en) 2004-03-19 2015-05-26 Aga Medical Corporation Device for occluding vascular defects
US9060777B1 (en) 2014-05-28 2015-06-23 Tw Medical Technologies, Llc Vaso-occlusive devices and methods of use
US9078630B2 (en) 2001-06-01 2015-07-14 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods and tools, and related methods of use
US9381006B2 (en) 2009-06-22 2016-07-05 W. L. Gore & Associates, Inc. Sealing device and delivery system
US9474517B2 (en) 2008-03-07 2016-10-25 W. L. Gore & Associates, Inc. Heart occlusion devices
EP2244666A4 (en) * 2008-02-19 2017-07-26 AGA Medical Corporation Medical devices for treating a target site and associated method
US9770232B2 (en) 2011-08-12 2017-09-26 W. L. Gore & Associates, Inc. Heart occlusion devices
US9808230B2 (en) 2014-06-06 2017-11-07 W. L. Gore & Associates, Inc. Sealing device and delivery system
EP2422709B1 (en) 2006-03-24 2017-11-08 Occlutech Holding AG Occlusion instrument and method for its production
EP3122284A4 (en) * 2014-03-27 2017-12-13 Nasser Rafiee Devices and methods for closure of transvascular or transcameral access ports
US9861346B2 (en) 2003-07-14 2018-01-09 W. L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure device with linearly elongating petals
WO2018069523A1 (en) * 2016-10-13 2018-04-19 Cormos Medical Gmbh Laa occluder for closing the left atrial appendage
US9949728B2 (en) 2007-04-05 2018-04-24 W.L. Gore & Associates, Inc. Septal closure device with centering mechanism
US10045765B2 (en) 2014-03-27 2018-08-14 Transmural Systems Llc Devices and methods for closure of transvascular or transcameral access ports
US10159490B2 (en) 2015-05-08 2018-12-25 Stryker European Holdings I, Llc Vaso-occlusive devices
EP3603576A1 (en) * 2004-03-11 2020-02-05 Percutaneous Cardiovascular Solutions Pty Limited Percutaneous heart valve prosthesis
IT201800020707A1 (en) * 2018-12-21 2020-06-21 Eustaquio Maria Onorato Patent foramen ovale occlusion device.
US10792025B2 (en) 2009-06-22 2020-10-06 W. L. Gore & Associates, Inc. Sealing device and delivery system
WO2021032773A1 (en) * 2019-08-20 2021-02-25 Holistick Medical Medical implant and delivery device for a medical implant
EP4059445A1 (en) * 2021-03-18 2022-09-21 HoliStick Medical Medical implant and catheter device for a medical implant
US11633190B2 (en) 2014-05-28 2023-04-25 Stryker European Holdings I, Llc Vaso-occlusive devices and methods of use
US11911272B2 (en) 2019-01-18 2024-02-27 W. L. Gore & Associates, Inc. Bioabsorbable medical devices

Families Citing this family (662)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879366A (en) * 1996-12-20 1999-03-09 W.L. Gore & Associates, Inc. Self-expanding defect closure device and method of making and using
US6168622B1 (en) * 1996-01-24 2001-01-02 Microvena Corporation Method and apparatus for occluding aneurysms
US6006134A (en) * 1998-04-30 1999-12-21 Medtronic, Inc. Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
US6217585B1 (en) 1996-08-16 2001-04-17 Converge Medical, Inc. Mechanical stent and graft delivery system
WO1998007375A1 (en) * 1996-08-22 1998-02-26 The Trustees Of Columbia University Endovascular flexible stapling device
US6293955B1 (en) 1996-09-20 2001-09-25 Converge Medical, Inc. Percutaneous bypass graft and securing system
US6149681A (en) * 1996-09-20 2000-11-21 Converge Medical, Inc. Radially expanding prostheses and systems for their deployment
AU721415B2 (en) 1996-11-08 2000-07-06 Converge Medical, Inc. Percutaneous bypass graft and securing system
US6406420B1 (en) * 1997-01-02 2002-06-18 Myocor, Inc. Methods and devices for improving cardiac function in hearts
US20030045771A1 (en) * 1997-01-02 2003-03-06 Schweich Cyril J. Heart wall tension reduction devices and methods
US6077214A (en) * 1998-07-29 2000-06-20 Myocor, Inc. Stress reduction apparatus and method
US6183411B1 (en) 1998-09-21 2001-02-06 Myocor, Inc. External stress reduction device and method
US7883539B2 (en) 1997-01-02 2011-02-08 Edwards Lifesciences Llc Heart wall tension reduction apparatus and method
US6050936A (en) 1997-01-02 2000-04-18 Myocor, Inc. Heart wall tension reduction apparatus
US7569066B2 (en) 1997-07-10 2009-08-04 Boston Scientific Scimed, Inc. Methods and devices for the treatment of aneurysms
FR2767672B1 (en) * 1997-08-27 1999-11-26 Ethnor PROSTHESES FOR SEALING HERNIA CANALS
US5954766A (en) 1997-09-16 1999-09-21 Zadno-Azizi; Gholam-Reza Body fluid flow control device
US6332893B1 (en) 1997-12-17 2001-12-25 Myocor, Inc. Valve to myocardium tension members device and method
JP3799810B2 (en) * 1998-03-30 2006-07-19 ニプロ株式会社 Transcatheter surgery closure plug and catheter assembly
WO2000015144A1 (en) 1998-06-10 2000-03-23 Advanced Bypass Technologies, Inc. Aortic aneurysm treatment systems
US6260552B1 (en) 1998-07-29 2001-07-17 Myocor, Inc. Transventricular implant tools and devices
US6183496B1 (en) * 1998-11-02 2001-02-06 Datascope Investment Corp. Collapsible hemostatic plug
US7044134B2 (en) * 1999-11-08 2006-05-16 Ev3 Sunnyvale, Inc Method of implanting a device in the left atrial appendage
EP1582179A3 (en) * 1999-02-01 2009-04-01 Board of Regents, The University of Texas System Apparatus for delivery of woven intravascular devices delivery of the same
CA2360620C (en) * 1999-02-01 2009-09-01 Hideki Hyodoh Woven intravascular devices and methods for making the same and apparatus for delivery of the same
WO2000044309A2 (en) 1999-02-01 2000-08-03 Board Of Regents, The University Of Texas System Woven bifurcated and trifurcated stents and methods for making the same
AU2004200062B2 (en) * 1999-02-01 2007-09-06 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
US6206907B1 (en) * 1999-05-07 2001-03-27 Cardia, Inc. Occlusion device with stranded wire support arms
US7416554B2 (en) 2002-12-11 2008-08-26 Usgi Medical Inc Apparatus and methods for forming and securing gastrointestinal tissue folds
US7618426B2 (en) 2002-12-11 2009-11-17 Usgi Medical, Inc. Apparatus and methods for forming gastrointestinal tissue approximations
US6626899B2 (en) 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
US8574243B2 (en) 1999-06-25 2013-11-05 Usgi Medical, Inc. Apparatus and methods for forming and securing gastrointestinal tissue folds
US7637905B2 (en) 2003-01-15 2009-12-29 Usgi Medical, Inc. Endoluminal tool deployment system
US6293951B1 (en) * 1999-08-24 2001-09-25 Spiration, Inc. Lung reduction device, system, and method
US6494889B1 (en) 1999-09-01 2002-12-17 Converge Medical, Inc. Additional sutureless anastomosis embodiments
US20020173809A1 (en) * 1999-09-01 2002-11-21 Fleischman Sidney D. Sutureless anastomosis system deployment concepts
AU5812299A (en) * 1999-09-07 2001-04-10 Microvena Corporation Retrievable septal defect closure device
US8083766B2 (en) 1999-09-13 2011-12-27 Rex Medical, Lp Septal defect closure device
US6939361B1 (en) 1999-09-22 2005-09-06 Nmt Medical, Inc. Guidewire for a free standing intervascular device having an integral stop mechanism
US6592625B2 (en) 1999-10-20 2003-07-15 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and spinal disc annulus stent
US7951201B2 (en) 1999-10-20 2011-05-31 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US7004970B2 (en) 1999-10-20 2006-02-28 Anulex Technologies, Inc. Methods and devices for spinal disc annulus reconstruction and repair
US7935147B2 (en) 1999-10-20 2011-05-03 Anulex Technologies, Inc. Method and apparatus for enhanced delivery of treatment device to the intervertebral disc annulus
US8632590B2 (en) 1999-10-20 2014-01-21 Anulex Technologies, Inc. Apparatus and methods for the treatment of the intervertebral disc
US7615076B2 (en) 1999-10-20 2009-11-10 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US8128698B2 (en) 1999-10-20 2012-03-06 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US7052516B2 (en) 1999-10-20 2006-05-30 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and deformable spinal disc annulus stent
US6994092B2 (en) * 1999-11-08 2006-02-07 Ev3 Sunnyvale, Inc. Device for containing embolic material in the LAA having a plurality of tissue retention structures
KR100349803B1 (en) * 1999-11-10 2002-08-22 원용순 A Device for Closing the Loss part of Heart, and a Pipe for moving that
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US8016877B2 (en) 1999-11-17 2011-09-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US20040068278A1 (en) * 1999-12-06 2004-04-08 Converge Medical Inc. Anastomosis systems
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US6623492B1 (en) * 2000-01-25 2003-09-23 Smith & Nephew, Inc. Tissue fastener
US7749245B2 (en) 2000-01-27 2010-07-06 Medtronic, Inc. Cardiac valve procedure methods and devices
US8474460B2 (en) 2000-03-04 2013-07-02 Pulmonx Corporation Implanted bronchial isolation devices and methods
US6679264B1 (en) 2000-03-04 2004-01-20 Emphasys Medical, Inc. Methods and devices for use in performing pulmonary procedures
US20030070683A1 (en) * 2000-03-04 2003-04-17 Deem Mark E. Methods and devices for use in performing pulmonary procedures
US6537198B1 (en) 2000-03-21 2003-03-25 Myocor, Inc. Splint assembly for improving cardiac function in hearts, and method for implanting the splint assembly
AU4942001A (en) 2000-03-23 2001-10-03 Cook Inc Catheter introducer sheath
US6468303B1 (en) * 2000-03-27 2002-10-22 Aga Medical Corporation Retrievable self expanding shunt
US6425924B1 (en) 2000-03-31 2002-07-30 Ethicon, Inc. Hernia repair prosthesis
US6805695B2 (en) 2000-04-04 2004-10-19 Spinalabs, Llc Devices and methods for annular repair of intervertebral discs
US6551344B2 (en) 2000-04-26 2003-04-22 Ev3 Inc. Septal defect occluder
ATE432664T1 (en) * 2000-05-03 2009-06-15 Bard Inc C R DEVICE FOR MULTI-DIMENSIONAL DISPLAY AND ABLATION IN ELECTROPHYSIOLOGICAL PROCEDURES
US6334864B1 (en) 2000-05-17 2002-01-01 Aga Medical Corp. Alignment member for delivering a non-symmetric device with a predefined orientation
WO2002005888A1 (en) 2000-06-30 2002-01-24 Viacor Incorporated Intravascular filter with debris entrapment mechanism
US6440152B1 (en) 2000-07-28 2002-08-27 Microvena Corporation Defect occluder release assembly and method
JP2004506469A (en) 2000-08-18 2004-03-04 アトリテック, インコーポレイテッド Expandable implantable device for filtering blood flow from the atrial appendage
ES2326784T3 (en) * 2000-09-07 2009-10-20 Synthes Gmbh DEVICE FOR FIXING SURGICAL IMPLANTS.
JP2004508879A (en) 2000-09-21 2004-03-25 アトリテック, インコーポレイテッド Apparatus for implanting a device in the atrial appendage
US6723038B1 (en) 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US6616684B1 (en) * 2000-10-06 2003-09-09 Myocor, Inc. Endovascular splinting devices and methods
US6623509B2 (en) 2000-12-14 2003-09-23 Core Medical, Inc. Apparatus and methods for sealing vascular punctures
US6896692B2 (en) 2000-12-14 2005-05-24 Ensure Medical, Inc. Plug with collet and apparatus and method for delivering such plugs
US6890343B2 (en) 2000-12-14 2005-05-10 Ensure Medical, Inc. Plug with detachable guidewire element and methods for use
US6846319B2 (en) 2000-12-14 2005-01-25 Core Medical, Inc. Devices for sealing openings through tissue and apparatus and methods for delivering them
US8083768B2 (en) 2000-12-14 2011-12-27 Ensure Medical, Inc. Vascular plug having composite construction
US6702763B2 (en) * 2001-02-28 2004-03-09 Chase Medical, L.P. Sizing apparatus and method for use during ventricular restoration
US20020133227A1 (en) * 2001-02-28 2002-09-19 Gregory Murphy Ventricular restoration patch apparatus and method of use
US7798147B2 (en) 2001-03-02 2010-09-21 Pulmonx Corporation Bronchial flow control devices with membrane seal
US7011094B2 (en) 2001-03-02 2006-03-14 Emphasys Medical, Inc. Bronchial flow control devices and methods of use
US20040074491A1 (en) * 2001-03-02 2004-04-22 Michael Hendricksen Delivery methods and devices for implantable bronchial isolation devices
CA2441119A1 (en) * 2001-03-08 2002-09-19 Atritech, Inc. Atrial filter implants
US6923646B2 (en) * 2001-04-18 2005-08-02 Air Techniques, Inc. Process and apparatus for treating an exhaust stream from a dental operatory
US20060069429A1 (en) * 2001-04-24 2006-03-30 Spence Paul A Tissue fastening systems and methods utilizing magnetic guidance
US6619291B2 (en) * 2001-04-24 2003-09-16 Edwin J. Hlavka Method and apparatus for catheter-based annuloplasty
US8202315B2 (en) 2001-04-24 2012-06-19 Mitralign, Inc. Catheter-based annuloplasty using ventricularly positioned catheter
US6537300B2 (en) 2001-05-30 2003-03-25 Scimed Life Systems, Inc. Implantable obstruction device for septal defects
US6712859B2 (en) * 2001-06-28 2004-03-30 Ethicon, Inc. Hernia repair prosthesis and methods for making same
US8771302B2 (en) 2001-06-29 2014-07-08 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US8623077B2 (en) 2001-06-29 2014-01-07 Medtronic, Inc. Apparatus for replacing a cardiac valve
US7544206B2 (en) 2001-06-29 2009-06-09 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
FR2826863B1 (en) 2001-07-04 2003-09-26 Jacques Seguin ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT
US20030229365A1 (en) * 2002-06-10 2003-12-11 Whayne James G. Angled vascular anastomosis system
US20060064119A9 (en) * 2001-07-05 2006-03-23 Converge Medical, Inc. Vascular anastomosis systems
US6626920B2 (en) * 2001-07-05 2003-09-30 Converge Medical, Inc. Distal anastomosis system
US6858035B2 (en) 2001-07-05 2005-02-22 Converge Medical, Inc. Distal anastomosis system
US6972023B2 (en) * 2001-07-05 2005-12-06 Converge Medical, Inc. Distal anastomosis system
US7011671B2 (en) * 2001-07-18 2006-03-14 Atritech, Inc. Cardiac implant device tether system and method
FR2828091B1 (en) 2001-07-31 2003-11-21 Seguin Jacques ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT
US7288105B2 (en) 2001-08-01 2007-10-30 Ev3 Endovascular, Inc. Tissue opening occluder
US7485088B2 (en) * 2001-09-05 2009-02-03 Chase Medical L.P. Method and device for percutaneous surgical ventricular repair
US20040243170A1 (en) * 2001-09-05 2004-12-02 Mitta Suresh Method and device for percutaneous surgical ventricular repair
US7226466B2 (en) * 2001-09-06 2007-06-05 Nmt Medical, Inc. Flexible delivery system
US20060052821A1 (en) 2001-09-06 2006-03-09 Ovalis, Inc. Systems and methods for treating septal defects
US6776784B2 (en) 2001-09-06 2004-08-17 Core Medical, Inc. Clip apparatus for closing septal defects and methods of use
US6702835B2 (en) 2001-09-07 2004-03-09 Core Medical, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US7097659B2 (en) 2001-09-07 2006-08-29 Medtronic, Inc. Fixation band for affixing a prosthetic heart valve to tissue
WO2003022131A2 (en) 2001-09-07 2003-03-20 Mardil, Inc. Method and apparatus for external heart stabilization
US20030050648A1 (en) 2001-09-11 2003-03-13 Spiration, Inc. Removable lung reduction devices, systems, and methods
EP1434615B1 (en) * 2001-10-11 2007-07-11 Emphasys Medical, Inc. Bronchial flow control device
US6592594B2 (en) 2001-10-25 2003-07-15 Spiration, Inc. Bronchial obstruction device deployment system and method
US7318833B2 (en) 2001-12-19 2008-01-15 Nmt Medical, Inc. PFO closure device with flexible thrombogenic joint and improved dislodgement resistance
US6764510B2 (en) 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
CA2471871A1 (en) 2002-01-14 2003-07-24 Nmt Medical, Inc. Patent foramen ovale (pfo) closure method and device
CA2474324C (en) 2002-01-25 2011-09-20 Atritech, Inc. Atrial appendage blood filtration systems
US6869436B2 (en) * 2002-02-07 2005-03-22 Scimed Life Systems, Inc. Surgical clip with a self-releasing fluid reservoir
US6929637B2 (en) * 2002-02-21 2005-08-16 Spiration, Inc. Device and method for intra-bronchial provision of a therapeutic agent
WO2003075796A2 (en) * 2002-03-08 2003-09-18 Emphasys Medical, Inc. Methods and devices for inducing collapse in lung regions fed by collateral pathways
US20030216769A1 (en) 2002-05-17 2003-11-20 Dillard David H. Removable anchored lung volume reduction devices and methods
US20030181922A1 (en) 2002-03-20 2003-09-25 Spiration, Inc. Removable anchored lung volume reduction devices and methods
US6755868B2 (en) * 2002-03-22 2004-06-29 Ethicon, Inc. Hernia repair device
US20030195553A1 (en) * 2002-04-12 2003-10-16 Scimed Life Systems, Inc. System and method for retaining vaso-occlusive devices within an aneurysm
US8721713B2 (en) 2002-04-23 2014-05-13 Medtronic, Inc. System for implanting a replacement valve
US8241308B2 (en) * 2002-04-24 2012-08-14 Boston Scientific Scimed, Inc. Tissue fastening devices and processes that promote tissue adhesion
US7976564B2 (en) 2002-05-06 2011-07-12 St. Jude Medical, Cardiology Division, Inc. PFO closure devices and related methods of use
US20040039250A1 (en) * 2002-05-28 2004-02-26 David Tholfsen Guidewire delivery of implantable bronchial isolation devices in accordance with lung treatment
WO2003101312A1 (en) 2002-06-03 2003-12-11 Nmt Medical, Inc. Device with biological tissue scaffold for intracardiac defect closure
WO2003103476A2 (en) 2002-06-05 2003-12-18 Nmt Medical, Inc. Patent foramen ovale (pfo) closure device with radial and circumferential support
US8348963B2 (en) * 2002-07-03 2013-01-08 Hlt, Inc. Leaflet reinforcement for regurgitant valves
US20040010209A1 (en) * 2002-07-15 2004-01-15 Spiration, Inc. Device and method for measuring the diameter of an air passageway
US20040059263A1 (en) * 2002-09-24 2004-03-25 Spiration, Inc. Device and method for measuring the diameter of an air passageway
EP1524942B1 (en) 2002-07-26 2008-09-10 Emphasys Medical, Inc. Bronchial flow control devices with membrane seal
EP1526810B1 (en) * 2002-07-31 2009-04-15 Abbott Laboratories Vascular Enterprises Limited Apparatus for sealing surgical punctures
EP1592367B1 (en) * 2002-08-28 2016-04-13 HLT, Inc. Method and device for treating diseased valve
US20040127855A1 (en) * 2002-10-10 2004-07-01 Nmt Medical, Inc. Hemostasis valve
US8979923B2 (en) 2002-10-21 2015-03-17 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
BR0315392A (en) 2002-10-21 2005-08-23 Mitralign Inc Incrementing catheters and methods of performing annuloplasty
WO2004037333A1 (en) 2002-10-25 2004-05-06 Nmt Medical, Inc. Expandable sheath tubing
CA2503349A1 (en) * 2002-11-06 2004-05-27 Nmt Medical, Inc. Medical devices utilizing modified shape memory alloy
US7112219B2 (en) 2002-11-12 2006-09-26 Myocor, Inc. Devices and methods for heart valve treatment
US7247134B2 (en) 2002-11-12 2007-07-24 Myocor, Inc. Devices and methods for heart valve treatment
US7814912B2 (en) 2002-11-27 2010-10-19 Pulmonx Corporation Delivery methods and devices for implantable bronchial isolation devices
DE60329625D1 (en) * 2002-11-27 2009-11-19 Pulmonx Corp INTRODUCTION FOR IMPLANTABLE BRONCHIAL INSULATION DEVICES
EP1572003B1 (en) * 2002-12-09 2017-03-08 W.L. Gore & Associates, Inc. Septal closure devices
US7942884B2 (en) 2002-12-11 2011-05-17 Usgi Medical, Inc. Methods for reduction of a gastric lumen
US7942898B2 (en) 2002-12-11 2011-05-17 Usgi Medical, Inc. Delivery systems and methods for gastric reduction
DE10362223B4 (en) * 2003-01-21 2010-02-04 pfm Produkte für die Medizin AG Basic coil shape
US7115135B2 (en) * 2003-01-22 2006-10-03 Cardia, Inc. Occlusion device having five or more arms
US7780700B2 (en) 2003-02-04 2010-08-24 ev3 Endovascular, Inc Patent foramen ovale closure system
US7257450B2 (en) 2003-02-13 2007-08-14 Coaptus Medical Corporation Systems and methods for securing cardiovascular tissue
US8021359B2 (en) 2003-02-13 2011-09-20 Coaptus Medical Corporation Transseptal closure of a patent foramen ovale and other cardiac defects
US20040176788A1 (en) * 2003-03-07 2004-09-09 Nmt Medical, Inc. Vacuum attachment system
US7658747B2 (en) 2003-03-12 2010-02-09 Nmt Medical, Inc. Medical device for manipulation of a medical implant
US7473266B2 (en) 2003-03-14 2009-01-06 Nmt Medical, Inc. Collet-based delivery system
US7972330B2 (en) 2003-03-27 2011-07-05 Terumo Kabushiki Kaisha Methods and apparatus for closing a layered tissue defect
US6939348B2 (en) 2003-03-27 2005-09-06 Cierra, Inc. Energy based devices and methods for treatment of patent foramen ovale
US8021362B2 (en) 2003-03-27 2011-09-20 Terumo Kabushiki Kaisha Methods and apparatus for closing a layered tissue defect
US7293562B2 (en) 2003-03-27 2007-11-13 Cierra, Inc. Energy based devices and methods for treatment of anatomic tissue defects
US7165552B2 (en) 2003-03-27 2007-01-23 Cierra, Inc. Methods and apparatus for treatment of patent foramen ovale
WO2004087235A2 (en) 2003-03-27 2004-10-14 Cierra, Inc. Methods and apparatus for treatment of patent foramen ovale
US7186251B2 (en) 2003-03-27 2007-03-06 Cierra, Inc. Energy based devices and methods for treatment of patent foramen ovale
US7100616B2 (en) * 2003-04-08 2006-09-05 Spiration, Inc. Bronchoscopic lung volume reduction method
US20040267306A1 (en) * 2003-04-11 2004-12-30 Velocimed, L.L.C. Closure devices, related delivery methods, and related methods of use
US8372112B2 (en) 2003-04-11 2013-02-12 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods, and related methods of use
US7122043B2 (en) 2003-05-19 2006-10-17 Stout Medical Group, L.P. Tissue distention device and related methods for therapeutic intervention
US7311701B2 (en) 2003-06-10 2007-12-25 Cierra, Inc. Methods and apparatus for non-invasively treating atrial fibrillation using high intensity focused ultrasound
US7316706B2 (en) * 2003-06-20 2008-01-08 Medtronic Vascular, Inc. Tensioning device, system, and method for treating mitral valve regurgitation
US8480706B2 (en) 2003-07-14 2013-07-09 W.L. Gore & Associates, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
ES2428967T3 (en) 2003-07-14 2013-11-12 W.L. Gore & Associates, Inc. Oval foramen tubular permeable closure device (FOP) with retention system
US20050055050A1 (en) * 2003-07-24 2005-03-10 Alfaro Arthur A. Intravascular occlusion device
US7533671B2 (en) * 2003-08-08 2009-05-19 Spiration, Inc. Bronchoscopic repair of air leaks in a lung
US8216252B2 (en) 2004-05-07 2012-07-10 Usgi Medical, Inc. Tissue manipulation and securement system
US7963952B2 (en) 2003-08-19 2011-06-21 Wright Jr John A Expandable sheath tubing
DE10338702B9 (en) * 2003-08-22 2007-04-26 Occlutech Gmbh Occlusioninstrument
EP1663014B1 (en) * 2003-09-11 2008-08-13 NMT Medical, Inc. Suture sever tube
WO2005034763A1 (en) 2003-09-11 2005-04-21 Nmt Medical, Inc. Devices, systems, and methods for suturing tissue
US7144410B2 (en) * 2003-09-18 2006-12-05 Cardia Inc. ASD closure device with self centering arm network
US9579194B2 (en) 2003-10-06 2017-02-28 Medtronic ATS Medical, Inc. Anchoring structure with concave landing zone
US20050192627A1 (en) * 2003-10-10 2005-09-01 Whisenant Brian K. Patent foramen ovale closure devices, delivery apparatus and related methods and systems
US7361183B2 (en) 2003-10-17 2008-04-22 Ensure Medical, Inc. Locator and delivery device and method of use
US8852229B2 (en) 2003-10-17 2014-10-07 Cordis Corporation Locator and closure device and method of use
US7419498B2 (en) 2003-10-21 2008-09-02 Nmt Medical, Inc. Quick release knot attachment system
DE602004009335T2 (en) * 2003-10-24 2008-07-03 ev3 Endovascular, Inc., Plymouth CLOSING SYSTEM FOR OPEN FORMS OVAL
US8292910B2 (en) 2003-11-06 2012-10-23 Pressure Products Medical Supplies, Inc. Transseptal puncture apparatus
US7666203B2 (en) 2003-11-06 2010-02-23 Nmt Medical, Inc. Transseptal puncture apparatus
US20050273119A1 (en) 2003-12-09 2005-12-08 Nmt Medical, Inc. Double spiral patent foramen ovale closure clamp
US7186265B2 (en) 2003-12-10 2007-03-06 Medtronic, Inc. Prosthetic cardiac valves and systems and methods for implanting thereof
US7361180B2 (en) 2004-05-07 2008-04-22 Usgi Medical, Inc. Apparatus for manipulating and securing tissue
US20050251189A1 (en) 2004-05-07 2005-11-10 Usgi Medical Inc. Multi-position tissue manipulation assembly
US7347863B2 (en) 2004-05-07 2008-03-25 Usgi Medical, Inc. Apparatus and methods for manipulating and securing tissue
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US7824442B2 (en) 2003-12-23 2010-11-02 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US8864822B2 (en) 2003-12-23 2014-10-21 Mitralign, Inc. Devices and methods for introducing elements into tissue
US7329279B2 (en) 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US7748389B2 (en) 2003-12-23 2010-07-06 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US7431726B2 (en) 2003-12-23 2008-10-07 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
EP1702247B8 (en) 2003-12-23 2015-09-09 Boston Scientific Scimed, Inc. Repositionable heart valve
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US8287584B2 (en) 2005-11-14 2012-10-16 Sadra Medical, Inc. Medical implant deployment tool
US7824443B2 (en) 2003-12-23 2010-11-02 Sadra Medical, Inc. Medical implant delivery and deployment tool
US8052749B2 (en) 2003-12-23 2011-11-08 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US20050192626A1 (en) 2004-01-30 2005-09-01 Nmt Medical, Inc. Devices, systems, and methods for closure of cardiac openings
CA2553940A1 (en) 2004-01-30 2005-08-18 Nmt Medical, Inc. Devices, systems, and methods for closure of cardiac openings
US8206684B2 (en) 2004-02-27 2012-06-26 Pulmonx Corporation Methods and devices for blocking flow through collateral pathways in the lung
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
JP2007526087A (en) 2004-03-03 2007-09-13 エヌエムティー メディカル, インコーポレイティッド Delivery / recovery system for septal occluder
US7976539B2 (en) 2004-03-05 2011-07-12 Hansen Medical, Inc. System and method for denaturing and fixing collagenous tissue
US7703459B2 (en) 2004-03-09 2010-04-27 Usgi Medical, Inc. Apparatus and methods for mapping out endoluminal gastrointestinal surgery
US20050228434A1 (en) * 2004-03-19 2005-10-13 Aga Medical Corporation Multi-layer braided structures for occluding vascular defects
US20050267524A1 (en) 2004-04-09 2005-12-01 Nmt Medical, Inc. Split ends closure device
US20050228413A1 (en) * 2004-04-12 2005-10-13 Binmoeller Kenneth F Automated transluminal tissue targeting and anchoring devices and methods
US8425539B2 (en) 2004-04-12 2013-04-23 Xlumena, Inc. Luminal structure anchoring devices and methods
BRPI0510107A (en) 2004-04-23 2007-09-25 3F Therapeutics Inc implantable protein valve
US8361110B2 (en) 2004-04-26 2013-01-29 W.L. Gore & Associates, Inc. Heart-shaped PFO closure device
US8308760B2 (en) 2004-05-06 2012-11-13 W.L. Gore & Associates, Inc. Delivery systems and methods for PFO closure device with two anchors
US7842053B2 (en) 2004-05-06 2010-11-30 Nmt Medical, Inc. Double coil occluder
US7842069B2 (en) 2004-05-07 2010-11-30 Nmt Medical, Inc. Inflatable occluder
US8057511B2 (en) 2004-05-07 2011-11-15 Usgi Medical, Inc. Apparatus and methods for positioning and securing anchors
WO2005110240A1 (en) 2004-05-07 2005-11-24 Nmt Medical, Inc. Catching mechanisms for tubular septal occluder
US7736374B2 (en) 2004-05-07 2010-06-15 Usgi Medical, Inc. Tissue manipulation and securement system
US8444657B2 (en) 2004-05-07 2013-05-21 Usgi Medical, Inc. Apparatus and methods for rapid deployment of tissue anchors
US7918869B2 (en) 2004-05-07 2011-04-05 Usgi Medical, Inc. Methods and apparatus for performing endoluminal gastroplasty
US8257394B2 (en) 2004-05-07 2012-09-04 Usgi Medical, Inc. Apparatus and methods for positioning and securing anchors
US7704268B2 (en) 2004-05-07 2010-04-27 Nmt Medical, Inc. Closure device with hinges
WO2005112813A1 (en) 2004-05-17 2005-12-01 C.R. Bard, Inc. Method and apparatus for mapping and7or ablation of cardiac tissue
GB0411348D0 (en) * 2004-05-21 2004-06-23 Univ Cranfield Fabrication of polymeric structures using laser initiated polymerisation
US8267985B2 (en) 2005-05-25 2012-09-18 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US7695493B2 (en) 2004-06-09 2010-04-13 Usgi Medical, Inc. System for optimizing anchoring force
US7736379B2 (en) 2004-06-09 2010-06-15 Usgi Medical, Inc. Compressible tissue anchor assemblies
US7678135B2 (en) 2004-06-09 2010-03-16 Usgi Medical, Inc. Compressible tissue anchor assemblies
US8206417B2 (en) 2004-06-09 2012-06-26 Usgi Medical Inc. Apparatus and methods for optimizing anchoring force
US7367975B2 (en) 2004-06-21 2008-05-06 Cierra, Inc. Energy based devices and methods for treatment of anatomic tissue defects
US20060047337A1 (en) 2004-08-27 2006-03-02 Brenneman Rodney A Device and method for establishing an artificial arterio-venous fistula
US7828814B2 (en) 2004-08-27 2010-11-09 Rox Medical, Inc. Device and method for establishing an artificial arterio-venous fistula
US9706997B2 (en) * 2004-08-27 2017-07-18 Rox Medical, Inc. Device and method for establishing an artificial arterio-venous fistula
US20060052867A1 (en) 2004-09-07 2006-03-09 Medtronic, Inc Replacement prosthetic heart valve, system and method of implant
US7641688B2 (en) 2004-09-16 2010-01-05 Evera Medical, Inc. Tissue augmentation device
US7244270B2 (en) 2004-09-16 2007-07-17 Evera Medical Systems and devices for soft tissue augmentation
CA2581677C (en) 2004-09-24 2014-07-29 Nmt Medical, Inc. Occluder device double securement system for delivery/recovery of such occluder device
US7473252B2 (en) 2004-10-07 2009-01-06 Coaptus Medical Corporation Systems and methods for shrinking and/or securing cardiovascular tissue
US20060089711A1 (en) * 2004-10-27 2006-04-27 Medtronic Vascular, Inc. Multifilament anchor for reducing a compass of a lumen or structure in mammalian body
US7722629B2 (en) * 2004-10-29 2010-05-25 Jeffrey W. Chambers, M.D. System and method for catheter-based septal defect repair
US8562672B2 (en) 2004-11-19 2013-10-22 Medtronic, Inc. Apparatus for treatment of cardiac valves and method of its manufacture
US7771472B2 (en) 2004-11-19 2010-08-10 Pulmonx Corporation Bronchial flow control devices and methods of use
JP5111112B2 (en) 2004-12-08 2012-12-26 エックスルミナ, インコーポレイテッド Device for performing needle-guided therapy
US20060241677A1 (en) 2005-01-03 2006-10-26 Eric Johnson Methods for maintaining a filtering device within a lumen
US20060155323A1 (en) * 2005-01-07 2006-07-13 Porter Stephen C Intra-aneurysm devices
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
CN100389732C (en) * 2005-01-28 2008-05-28 先健科技(深圳)有限公司 Heart septal defect stopper with self regulating function
US8366743B2 (en) * 2005-01-28 2013-02-05 Lifetech Scientific (Shenzhen) Co., Ltd Heart septal defect occlusion device
ITTO20050074A1 (en) 2005-02-10 2006-08-11 Sorin Biomedica Cardio Srl CARDIAC VALVE PROSTHESIS
US20060259074A1 (en) * 2005-02-22 2006-11-16 Brian Kelleher Methods and devices for anchoring to soft tissue
US8876791B2 (en) 2005-02-25 2014-11-04 Pulmonx Corporation Collateral pathway treatment using agent entrained by aspiration flow current
US20060241687A1 (en) * 2005-03-16 2006-10-26 Glaser Erik N Septal occluder with pivot arms and articulating joints
US20060217760A1 (en) * 2005-03-17 2006-09-28 Widomski David R Multi-strand septal occluder
WO2006102213A1 (en) 2005-03-18 2006-09-28 Nmt Medical, Inc. Catch member for pfo occluder
US8372113B2 (en) * 2005-03-24 2013-02-12 W.L. Gore & Associates, Inc. Curved arm intracardiac occluder
JP5033787B2 (en) 2005-04-11 2012-09-26 テルモ株式会社 Method and apparatus for effecting closure of a lamellar tissue defect
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US8926654B2 (en) 2005-05-04 2015-01-06 Cordis Corporation Locator and closure device and method of use
US8088144B2 (en) 2005-05-04 2012-01-03 Ensure Medical, Inc. Locator and closure device and method of use
US20060253184A1 (en) * 2005-05-04 2006-11-09 Kurt Amplatz System for the controlled delivery of stents and grafts
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
JP4945714B2 (en) 2005-05-25 2012-06-06 タイコ ヘルスケア グループ リミテッド パートナーシップ System and method for supplying and deploying an occlusion device in a conduit
US8273101B2 (en) 2005-05-25 2012-09-25 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US9585651B2 (en) 2005-05-26 2017-03-07 Usgi Medical, Inc. Methods and apparatus for securing and deploying tissue anchors
US8298291B2 (en) 2005-05-26 2012-10-30 Usgi Medical, Inc. Methods and apparatus for securing and deploying tissue anchors
US8784437B2 (en) 2005-06-09 2014-07-22 Xlumena, Inc. Methods and devices for endosonography-guided fundoplexy
US8777967B2 (en) 2005-06-09 2014-07-15 Xlumena, Inc. Methods and devices for anchoring to tissue
US8951285B2 (en) * 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
US8579936B2 (en) 2005-07-05 2013-11-12 ProMed, Inc. Centering of delivery devices with respect to a septal defect
MX2008000491A (en) 2005-07-19 2008-04-17 Stout Medical Group Lp Embolic filtering method and apparatus.
JP4376836B2 (en) * 2005-07-29 2009-12-02 富士フイルム株式会社 Magnetic recording device
US7837619B2 (en) * 2005-08-19 2010-11-23 Boston Scientific Scimed, Inc. Transeptal apparatus, system, and method
US7998095B2 (en) * 2005-08-19 2011-08-16 Boston Scientific Scimed, Inc. Occlusion device
US7766906B2 (en) 2005-08-19 2010-08-03 Boston Scientific Scimed, Inc. Occlusion apparatus
US7824397B2 (en) 2005-08-19 2010-11-02 Boston Scientific Scimed, Inc. Occlusion apparatus
US8062309B2 (en) * 2005-08-19 2011-11-22 Boston Scientific Scimed, Inc. Defect occlusion apparatus, system, and method
WO2007022519A2 (en) 2005-08-19 2007-02-22 Chf Technologies, Inc. Steerable heart implants for congestive heart failure
US7846179B2 (en) 2005-09-01 2010-12-07 Ovalis, Inc. Suture-based systems and methods for treating septal defects
US20070185530A1 (en) 2005-09-01 2007-08-09 Chao Chin-Chen Patent foramen ovale closure method
US7797056B2 (en) 2005-09-06 2010-09-14 Nmt Medical, Inc. Removable intracardiac RF device
US9259267B2 (en) 2005-09-06 2016-02-16 W.L. Gore & Associates, Inc. Devices and methods for treating cardiac tissue
US7712606B2 (en) 2005-09-13 2010-05-11 Sadra Medical, Inc. Two-part package for medical implant
US20070088388A1 (en) * 2005-09-19 2007-04-19 Opolski Steven W Delivery device for implant with dual attachment sites
US20070123934A1 (en) * 2005-09-26 2007-05-31 Whisenant Brian K Delivery system for patent foramen ovale closure device
US20070078510A1 (en) 2005-09-26 2007-04-05 Ryan Timothy R Prosthetic cardiac and venous valves
DE102005053906A1 (en) * 2005-11-11 2007-05-24 Occlutech Gmbh Occlusion device e.g. for septal defects in medical technology, has interlaced structure of thin wires or threads whereby holder, on its free end, has top section with eyelet in form of cross bore
US7632308B2 (en) 2005-11-23 2009-12-15 Didier Loulmet Methods, devices, and kits for treating mitral valve prolapse
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US20070167981A1 (en) 2005-12-22 2007-07-19 Nmt Medical, Inc. Catch members for occluder devices
US9078781B2 (en) 2006-01-11 2015-07-14 Medtronic, Inc. Sterile cover for compressible stents used in percutaneous device delivery systems
US8726909B2 (en) 2006-01-27 2014-05-20 Usgi Medical, Inc. Methods and apparatus for revision of obesity procedures
WO2007097983A2 (en) 2006-02-14 2007-08-30 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US20070203391A1 (en) * 2006-02-24 2007-08-30 Medtronic Vascular, Inc. System for Treating Mitral Valve Regurgitation
US8075615B2 (en) 2006-03-28 2011-12-13 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
US7691151B2 (en) 2006-03-31 2010-04-06 Spiration, Inc. Articulable Anchor
US8551135B2 (en) 2006-03-31 2013-10-08 W.L. Gore & Associates, Inc. Screw catch mechanism for PFO occluder and method of use
US8870913B2 (en) 2006-03-31 2014-10-28 W.L. Gore & Associates, Inc. Catch system with locking cap for patent foramen ovale (PFO) occluder
JP2009532125A (en) 2006-03-31 2009-09-10 エヌエムティー メディカル, インコーポレイティッド Deformable flap catch mechanism for occluder equipment
CN101049269B (en) * 2006-04-03 2010-12-29 孟坚 Medical use obstruction appliance
US7625403B2 (en) 2006-04-04 2009-12-01 Medtronic Vascular, Inc. Valved conduit designed for subsequent catheter delivered valve therapy
US7524331B2 (en) 2006-04-06 2009-04-28 Medtronic Vascular, Inc. Catheter delivered valve having a barrier to provide an enhanced seal
US7740655B2 (en) 2006-04-06 2010-06-22 Medtronic Vascular, Inc. Reinforced surgical conduit for implantation of a stented valve therein
US7591848B2 (en) 2006-04-06 2009-09-22 Medtronic Vascular, Inc. Riveted stent valve for percutaneous use
EP1842490B1 (en) * 2006-04-07 2011-09-14 Lifetech Scientific (Shenzhen) Co., Ltd. Occlusion devices for treating of congenital heart disease with auto-adjusting function
US20070244494A1 (en) * 2006-04-18 2007-10-18 Downing Stephen W Methods and devices for treating atrial septal defects
DE102006036649A1 (en) * 2006-04-27 2007-10-31 Biophan Europe Gmbh Occluder for human or animal heart, has intermediate piece eccentrically connected with each closing body in edge area of bodies in closing condition, where occluder or its part forms electrical resonant oscillating circuit
US20070265658A1 (en) * 2006-05-12 2007-11-15 Aga Medical Corporation Anchoring and tethering system
AU2007257785B2 (en) * 2006-06-09 2013-05-02 Cardinal Health 529, Llc Single disc occlusionary patent foramen ovale closure device
US7691115B2 (en) * 2006-06-19 2010-04-06 Cardia, Inc. Occlusion device with flexible fabric connector
US7927351B2 (en) * 2006-06-19 2011-04-19 Cardia, Inc. Occlusion device with flexible wire connector
CN100471468C (en) * 2006-07-06 2009-03-25 何健峰 Occlusive device for treating septal defect of congenital heart disease
US8870916B2 (en) * 2006-07-07 2014-10-28 USGI Medical, Inc Low profile tissue anchors, tissue anchor systems, and methods for their delivery and use
CN101120893B (en) * 2006-08-08 2010-05-12 先健科技(深圳)有限公司 Heart septal defect blocking device
US8529597B2 (en) * 2006-08-09 2013-09-10 Coherex Medical, Inc. Devices for reducing the size of an internal tissue opening
US9138208B2 (en) * 2006-08-09 2015-09-22 Coherex Medical, Inc. Devices for reducing the size of an internal tissue opening
US20080039743A1 (en) 2006-08-09 2008-02-14 Coherex Medical, Inc. Methods for determining characteristics of an internal tissue opening
US20080051830A1 (en) * 2006-08-24 2008-02-28 Boston Scientific Scimed, Inc. Occluding device and method
US8075576B2 (en) * 2006-08-24 2011-12-13 Boston Scientific Scimed, Inc. Closure device, system, and method
US20080065205A1 (en) * 2006-09-11 2008-03-13 Duy Nguyen Retrievable implant and method for treatment of mitral regurgitation
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
US11304800B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US8414643B2 (en) 2006-09-19 2013-04-09 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
DE102006045545A1 (en) * 2006-09-25 2008-04-03 Peter Osypka Stiftung Stiftung des bürgerlichen Rechts Medical device
US20080077180A1 (en) * 2006-09-26 2008-03-27 Nmt Medical, Inc. Scaffold for tubular septal occluder device and techniques for attachment
US8166978B2 (en) * 2006-10-04 2012-05-01 Ethicon Endo-Surgery, Inc. Methods and systems for manipulating tissue
WO2008047354A2 (en) 2006-10-16 2008-04-24 Ventor Technologies Ltd. Transapical delivery system with ventriculo-arterial overflow bypass
MX344492B (en) 2006-10-22 2016-12-16 Idev Tech Inc * Devices and methods for stent advancement.
US10413284B2 (en) 2006-11-07 2019-09-17 Corvia Medical, Inc. Atrial pressure regulation with control, sensing, monitoring and therapy delivery
US9232997B2 (en) 2006-11-07 2016-01-12 Corvia Medical, Inc. Devices and methods for retrievable intra-atrial implants
US20110257723A1 (en) 2006-11-07 2011-10-20 Dc Devices, Inc. Devices and methods for coronary sinus pressure relief
CA2664557C (en) 2006-11-07 2015-05-26 David Stephen Celermajer Devices and methods for the treatment of heart failure
EP1923019B1 (en) 2006-11-20 2010-10-20 SeptRx, Inc. Device for preventing the undesired passage of emboli from a venous blood pool to an arterial blood pool
WO2008070797A2 (en) 2006-12-06 2008-06-12 Medtronic Corevalve, Inc. System and method for transapical delivery of an annulus anchored self-expanding valve
US20080140069A1 (en) * 2006-12-07 2008-06-12 Cierra, Inc. Multi-electrode apparatus for tissue welding and ablation
US20080188892A1 (en) * 2007-02-01 2008-08-07 Cook Incorporated Vascular occlusion device
US8617205B2 (en) 2007-02-01 2013-12-31 Cook Medical Technologies Llc Closure device
WO2008094706A2 (en) * 2007-02-01 2008-08-07 Cook Incorporated Closure device and method of closing a bodily opening
US8623074B2 (en) 2007-02-16 2014-01-07 Medtronic, Inc. Delivery systems and methods of implantation for replacement prosthetic heart valves
US8845723B2 (en) 2007-03-13 2014-09-30 Mitralign, Inc. Systems and methods for introducing elements into tissue
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US8911461B2 (en) * 2007-03-13 2014-12-16 Mitralign, Inc. Suture cutter and method of cutting suture
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
EP2460476B1 (en) * 2007-04-16 2020-11-25 Occlutech Holding AG Occluder for closing a cardiac auricle and manufacturing method therefor
US9138562B2 (en) 2007-04-18 2015-09-22 W.L. Gore & Associates, Inc. Flexible catheter system
FR2915087B1 (en) 2007-04-20 2021-11-26 Corevalve Inc IMPLANT FOR TREATMENT OF A HEART VALVE, IN PARTICULAR OF A MITRAL VALVE, EQUIPMENT INCLUDING THIS IMPLANT AND MATERIAL FOR PLACING THIS IMPLANT.
WO2008149355A2 (en) * 2007-06-04 2008-12-11 Mor Research Applications Ltd. Cardiac valve leaflet augmentation
EP2157937B1 (en) 2007-06-04 2017-03-22 Sequent Medical, Inc. Devices for treatment of vascular defects
AU2013270508B2 (en) * 2007-07-12 2015-09-03 St. Jude Medical, Cardiology Division, Inc. Percutaneous catheter directed intravascular occlusion devices
US8034061B2 (en) * 2007-07-12 2011-10-11 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US8361138B2 (en) * 2007-07-25 2013-01-29 Aga Medical Corporation Braided occlusion device having repeating expanded volume segments separated by articulation segments
US20090112251A1 (en) * 2007-07-25 2009-04-30 Aga Medical Corporation Braided occlusion device having repeating expanded volume segments separated by articulation segments
EP2324775B1 (en) 2007-08-02 2012-06-20 Occlutech Holding AG Method of producing a medical implantable device
US8747458B2 (en) 2007-08-20 2014-06-10 Medtronic Ventor Technologies Ltd. Stent loading tool and method for use thereof
US8734483B2 (en) * 2007-08-27 2014-05-27 Cook Medical Technologies Llc Spider PFO closure device
US20090062838A1 (en) * 2007-08-27 2009-03-05 Cook Incorporated Spider device with occlusive barrier
US8025495B2 (en) * 2007-08-27 2011-09-27 Cook Medical Technologies Llc Apparatus and method for making a spider occlusion device
US8308752B2 (en) * 2007-08-27 2012-11-13 Cook Medical Technologies Llc Barrel occlusion device
US8366741B2 (en) 2007-09-13 2013-02-05 Cardia, Inc. Occlusion device with centering arm
US20090084386A1 (en) * 2007-10-01 2009-04-02 Mcclellan Annette M L Tubal ligation
WO2009046441A1 (en) * 2007-10-05 2009-04-09 Coaptus Medical Corporation Systems and methods for transeptal cardiac procedures
US10856970B2 (en) 2007-10-10 2020-12-08 Medtronic Ventor Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US9414842B2 (en) * 2007-10-12 2016-08-16 St. Jude Medical, Cardiology Division, Inc. Multi-component vascular device
US9848981B2 (en) 2007-10-12 2017-12-26 Mayo Foundation For Medical Education And Research Expandable valve prosthesis with sealing mechanism
US8136230B2 (en) 2007-10-12 2012-03-20 Spiration, Inc. Valve loader method, system, and apparatus
US8043301B2 (en) 2007-10-12 2011-10-25 Spiration, Inc. Valve loader method, system, and apparatus
US20090118745A1 (en) * 2007-11-06 2009-05-07 Cook Incorporated Patent foramen ovale closure apparatus and method
CN101450013B (en) * 2007-11-28 2011-03-23 王涛 Blocking device of heart atrial, ventricular septal defect and patent oval foramen
US9492263B2 (en) * 2007-12-10 2016-11-15 Incept, Llc Retrieval apparatus and methods for use
US20090171386A1 (en) 2007-12-28 2009-07-02 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US9743918B2 (en) * 2008-01-18 2017-08-29 St. Jude Medical, Cardiology Division, Inc. Percutaneous catheter directed intravascular occlusion device
US9393115B2 (en) 2008-01-24 2016-07-19 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US9089422B2 (en) 2008-01-24 2015-07-28 Medtronic, Inc. Markers for prosthetic heart valves
EP3572044B1 (en) 2008-01-24 2021-07-28 Medtronic, Inc. Stents for prosthetic heart valves
US8157853B2 (en) 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US9149358B2 (en) 2008-01-24 2015-10-06 Medtronic, Inc. Delivery systems for prosthetic heart valves
US20090198329A1 (en) 2008-02-01 2009-08-06 Kesten Randy J Breast implant with internal flow dampening
US20090209999A1 (en) * 2008-02-14 2009-08-20 Michael Afremov Device and Method for Closure of Atrial Septal Defects
AU2013273779B2 (en) * 2008-02-19 2015-09-24 St. Jude Medical, Cardiology Division, Inc. Medical devices for treating a target site and associated method
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
BR112012021347A2 (en) 2008-02-26 2019-09-24 Jenavalve Tecnology Inc stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
US20090264989A1 (en) 2008-02-28 2009-10-22 Philipp Bonhoeffer Prosthetic heart valve systems
US20090227938A1 (en) * 2008-03-05 2009-09-10 Insitu Therapeutics, Inc. Wound Closure Devices, Methods of Use, and Kits
US8828008B2 (en) 2008-03-05 2014-09-09 Allston J. Stubbs Apparatus for arthroscopic assisted arthroplasty of the hip joint
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
DE102008015781B4 (en) * 2008-03-26 2011-09-29 Malte Neuss Device for sealing defects in the vascular system
WO2009121001A1 (en) * 2008-03-28 2009-10-01 Coherex Medical, Inc. Delivery systems for a medical device and related methods
US20090264920A1 (en) * 2008-03-31 2009-10-22 Alejandro Berenstein Catheter-based septal occlusion device and adhesive delivery system
US8430927B2 (en) 2008-04-08 2013-04-30 Medtronic, Inc. Multiple orifice implantable heart valve and methods of implantation
EP3970633A1 (en) 2008-04-21 2022-03-23 Covidien LP Braid-ball embolic devices and delivery systems
US9597087B2 (en) * 2008-05-02 2017-03-21 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
WO2009137755A2 (en) * 2008-05-09 2009-11-12 University Of Pittsburgh- Commonwealth System Of Higher Education Biologic matrix for cardiac repair
US20090281379A1 (en) 2008-05-12 2009-11-12 Xlumena, Inc. System and method for transluminal access
US8454632B2 (en) 2008-05-12 2013-06-04 Xlumena, Inc. Tissue anchor for securing tissue layers
US9675482B2 (en) 2008-05-13 2017-06-13 Covidien Lp Braid implant delivery systems
EP2119417B2 (en) 2008-05-16 2020-04-29 Sorin Group Italia S.r.l. Atraumatic prosthetic heart valve prosthesis
US20100016885A1 (en) * 2008-07-21 2010-01-21 Eidenschink Tracee E J Device to close openings in body tissue
CN102137626A (en) 2008-07-22 2011-07-27 微治疗公司 Vascular remodeling device
US9232992B2 (en) * 2008-07-24 2016-01-12 Aga Medical Corporation Multi-layered medical device for treating a target site and associated method
US9351715B2 (en) * 2008-07-24 2016-05-31 St. Jude Medical, Cardiology Division, Inc. Multi-layered medical device for treating a target site and associated method
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US8945211B2 (en) 2008-09-12 2015-02-03 Mitralign, Inc. Tissue plication device and method for its use
US8998981B2 (en) 2008-09-15 2015-04-07 Medtronic, Inc. Prosthetic heart valve having identifiers for aiding in radiographic positioning
US8721714B2 (en) 2008-09-17 2014-05-13 Medtronic Corevalve Llc Delivery system for deployment of medical devices
ES2409693T3 (en) 2008-10-10 2013-06-27 Sadra Medical, Inc. Medical devices and supply systems to supply medical devices
US8137398B2 (en) 2008-10-13 2012-03-20 Medtronic Ventor Technologies Ltd Prosthetic valve having tapered tip when compressed for delivery
US8163022B2 (en) 2008-10-14 2012-04-24 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US8986361B2 (en) 2008-10-17 2015-03-24 Medtronic Corevalve, Inc. Delivery system for deployment of medical devices
US20100160862A1 (en) * 2008-12-22 2010-06-24 Cook Incorporated Variable stiffness introducer sheath with transition zone
EP2201911B1 (en) 2008-12-23 2015-09-30 Sorin Group Italia S.r.l. Expandable prosthetic valve having anchoring appendages
US10702275B2 (en) * 2009-02-18 2020-07-07 St. Jude Medical Cardiology Division, Inc. Medical device with stiffener wire for occluding vascular defects
US8029534B2 (en) 2009-03-16 2011-10-04 Cook Medical Technologies Llc Closure device with string retractable umbrella
US9636204B2 (en) 2009-04-16 2017-05-02 Cvdevices, Llc Deflection devices, systems and methods for the prevention of stroke
US9681967B2 (en) 2009-04-16 2017-06-20 Cvdevices, Llc Linked deflection devices, systems and methods for the prevention of stroke
WO2010121192A1 (en) 2009-04-16 2010-10-21 Cvdevices, Llc Devices, systems, and methods for the prevention of stroke
US9364259B2 (en) 2009-04-21 2016-06-14 Xlumena, Inc. System and method for delivering expanding trocar through a sheath
US20110137394A1 (en) * 2009-05-29 2011-06-09 Xlumena, Inc. Methods and systems for penetrating adjacent tissue layers
EP2246011B1 (en) 2009-04-27 2014-09-03 Sorin Group Italia S.r.l. Prosthetic vascular conduit
WO2010138277A1 (en) 2009-05-29 2010-12-02 Xlumena, Inc. Apparatus and method for deploying stent across adjacent tissue layers
US9757107B2 (en) 2009-09-04 2017-09-12 Corvia Medical, Inc. Methods and devices for intra-atrial shunts having adjustable sizes
US8808369B2 (en) 2009-10-05 2014-08-19 Mayo Foundation For Medical Education And Research Minimally invasive aortic valve replacement
US20110152993A1 (en) 2009-11-05 2011-06-23 Sequent Medical Inc. Multiple layer filamentary devices or treatment of vascular defects
US20110202085A1 (en) * 2009-11-09 2011-08-18 Siddharth Loganathan Braid Ball Embolic Device Features
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US8460319B2 (en) 2010-01-11 2013-06-11 Anulex Technologies, Inc. Intervertebral disc annulus repair system and method
EP2528541B1 (en) 2010-01-28 2016-05-18 Covidien LP Vascular remodeling device
CN102740799A (en) 2010-01-28 2012-10-17 泰科保健集团有限合伙公司 Vascular remodeling device
AU2011210741B2 (en) 2010-01-29 2013-08-15 Corvia Medical, Inc. Devices and methods for reducing venous pressure
EP2528646A4 (en) 2010-01-29 2017-06-28 DC Devices, Inc. Devices and systems for treating heart failure
US8500776B2 (en) 2010-02-08 2013-08-06 Covidien Lp Vacuum patch for rapid wound closure
US9226826B2 (en) 2010-02-24 2016-01-05 Medtronic, Inc. Transcatheter valve structure and methods for valve delivery
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US9795482B2 (en) * 2010-04-27 2017-10-24 Medtronic, Inc. Prosthetic heart valve devices and methods of valve repair
US20180049731A1 (en) * 2010-04-29 2018-02-22 Muffin Incorporated Closing device for tissue openings
US10568628B2 (en) * 2017-05-23 2020-02-25 Muffin Incorporated Closing device for tissue openings
US8419767B2 (en) * 2010-05-04 2013-04-16 Mustafa H. Al-Qbandi Steerable atrial septal occluder implantation device with flexible neck
IT1400327B1 (en) 2010-05-21 2013-05-24 Sorin Biomedica Cardio Srl SUPPORT DEVICE FOR VALVULAR PROSTHESIS AND CORRESPONDING CORRESPONDENT.
CA2799459A1 (en) 2010-05-25 2011-12-01 Jenavalve Technology Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US9023095B2 (en) 2010-05-27 2015-05-05 Idev Technologies, Inc. Stent delivery system with pusher assembly
EP2588042A4 (en) 2010-06-29 2015-03-18 Artventive Medical Group Inc Reducing flow through a tubular structure
US9247942B2 (en) 2010-06-29 2016-02-02 Artventive Medical Group, Inc. Reversible tubal contraceptive device
CN103249374B (en) * 2010-07-02 2015-08-05 Pfm医疗股份公司 Left atrial appendage occlusion device
US9918833B2 (en) 2010-09-01 2018-03-20 Medtronic Vascular Galway Prosthetic valve support structure
EP2613735B1 (en) 2010-09-10 2018-05-09 Covidien LP Devices for the treatment of vascular defects
EP4119107A3 (en) 2010-09-10 2023-02-15 Boston Scientific Limited Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
US8998947B2 (en) 2010-09-10 2015-04-07 Medina Medical, Inc. Devices and methods for the treatment of vascular defects
WO2012051489A2 (en) 2010-10-15 2012-04-19 Cook Medical Technologies Llc Occlusion device for blocking fluid flow through bodily passages
US9149277B2 (en) 2010-10-18 2015-10-06 Artventive Medical Group, Inc. Expandable device delivery
JP2013545517A (en) 2010-10-25 2013-12-26 エックスルミナ, インコーポレイテッド Device and method for penetrating and expanding membranes of adjacent tissue
CN103635226B (en) 2011-02-10 2017-06-30 可维亚媒体公司 Device for setting up and keeping intra-atrial pressure power release aperture
AU2012214240B2 (en) 2011-02-11 2015-03-12 Covidien Lp Two-stage deployment aneurysm embolization devices
ES2641902T3 (en) 2011-02-14 2017-11-14 Sorin Group Italia S.R.L. Sutureless anchoring device for cardiac valve prostheses
EP2486894B1 (en) 2011-02-14 2021-06-09 Sorin Group Italia S.r.l. Sutureless anchoring device for cardiac valve prostheses
WO2012127309A1 (en) 2011-03-21 2012-09-27 Ontorfano Matteo Disk-based valve apparatus and method for the treatment of valve dysfunction
US8821529B2 (en) 2011-03-25 2014-09-02 Aga Medical Corporation Device and method for occluding a septal defect
US20120245674A1 (en) 2011-03-25 2012-09-27 Tyco Healthcare Group Lp Vascular remodeling device
US10201336B2 (en) 2011-03-25 2019-02-12 St. Jude Medical, Cardiology Division, Inc. Device and method for delivering a vascular device
US8562643B2 (en) 2011-04-21 2013-10-22 Cook Medical Technologies Llc Self closing occulsion device with a twist
EP2520251A1 (en) 2011-05-05 2012-11-07 Symetis SA Method and Apparatus for Compressing Stent-Valves
US8795241B2 (en) 2011-05-13 2014-08-05 Spiration, Inc. Deployment catheter
CA2835893C (en) 2011-07-12 2019-03-19 Boston Scientific Scimed, Inc. Coupling system for medical devices
WO2013028998A2 (en) 2011-08-25 2013-02-28 Tyco Health Care Group Lp Systems, devices, and methods for treatment of luminal tissue
EP2758010B1 (en) 2011-09-23 2017-02-08 Pulmonx, Inc Implant loading system
WO2013049448A1 (en) 2011-09-29 2013-04-04 Covidien Lp Vascular remodeling device
CN106192198B (en) 2011-10-17 2020-06-05 后续医疗股份有限公司 Knitting mechanism
US8261648B1 (en) 2011-10-17 2012-09-11 Sequent Medical Inc. Braiding mechanism and methods of use
CA2855003C (en) 2011-11-08 2019-01-15 Boston Scientific Scimed, Inc. Handle assembly for a left atrial appendage occlusion device
US10219931B2 (en) * 2011-11-09 2019-03-05 Easynotes Ltd. Obstruction device
US9131926B2 (en) 2011-11-10 2015-09-15 Boston Scientific Scimed, Inc. Direct connect flush system
US8940014B2 (en) 2011-11-15 2015-01-27 Boston Scientific Scimed, Inc. Bond between components of a medical device
US8758389B2 (en) 2011-11-18 2014-06-24 Aga Medical Corporation Devices and methods for occluding abnormal openings in a patient's vasculature
US8951243B2 (en) 2011-12-03 2015-02-10 Boston Scientific Scimed, Inc. Medical device handle
US9510945B2 (en) 2011-12-20 2016-12-06 Boston Scientific Scimed Inc. Medical device handle
US10321988B2 (en) 2011-12-21 2019-06-18 The Trustees Of The University Of Pennsylvania Platforms for mitral valve replacement
WO2013096965A1 (en) 2011-12-22 2013-06-27 Dc Devices, Inc. Methods and devices for intra-atrial devices having selectable flow rates
EP2609893B1 (en) 2011-12-29 2014-09-03 Sorin Group Italia S.r.l. A kit for implanting prosthetic vascular conduits
US10548706B2 (en) 2012-01-13 2020-02-04 Volcano Corporation Retrieval snare device and method
US10426501B2 (en) 2012-01-13 2019-10-01 Crux Biomedical, Inc. Retrieval snare device and method
WO2013112547A1 (en) 2012-01-25 2013-08-01 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
WO2013120082A1 (en) 2012-02-10 2013-08-15 Kassab Ghassan S Methods and uses of biological tissues for various stent and other medical applications
US10213288B2 (en) 2012-03-06 2019-02-26 Crux Biomedical, Inc. Distal protection filter
US9821145B2 (en) 2012-03-23 2017-11-21 Pressure Products Medical Supplies Inc. Transseptal puncture apparatus and method for using the same
US9265514B2 (en) 2012-04-17 2016-02-23 Miteas Ltd. Manipulator for grasping tissue
EP3636164A1 (en) 2012-05-17 2020-04-15 Boston Scientific Scimed Inc. Devices for access across adjacent tissue layers
US10952732B2 (en) 2013-02-21 2021-03-23 Boston Scientific Scimed Inc. Devices and methods for forming an anastomosis
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
US9155647B2 (en) 2012-07-18 2015-10-13 Covidien Lp Methods and apparatus for luminal stenting
US9056002B2 (en) 2012-10-18 2015-06-16 Medtronic, Inc. Stent-graft and method for percutaneous access and closure of vessels
US20140114346A1 (en) * 2012-10-23 2014-04-24 Medtronic, Inc. Transapical Entry Point Closure Device
US9314248B2 (en) 2012-11-06 2016-04-19 Covidien Lp Multi-pivot thrombectomy device
CN104918565B (en) 2012-11-13 2018-04-27 柯惠有限合伙公司 plugging device
US9295571B2 (en) 2013-01-17 2016-03-29 Covidien Lp Methods and apparatus for luminal stenting
AU2014209124A1 (en) 2013-01-28 2015-09-17 Cartiva, Inc. Systems and methods for orthopedic repair
US9737294B2 (en) 2013-01-28 2017-08-22 Cartiva, Inc. Method and system for orthopedic repair
US9095344B2 (en) 2013-02-05 2015-08-04 Artventive Medical Group, Inc. Methods and apparatuses for blood vessel occlusion
US8984733B2 (en) 2013-02-05 2015-03-24 Artventive Medical Group, Inc. Bodily lumen occlusion
AU2014214700B2 (en) 2013-02-11 2018-01-18 Cook Medical Technologies Llc Expandable support frame and medical device
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
US9463105B2 (en) 2013-03-14 2016-10-11 Covidien Lp Methods and apparatus for luminal stenting
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
US10426590B2 (en) 2013-03-14 2019-10-01 Volcano Corporation Filters with echogenic characteristics
CN105142545B (en) 2013-03-15 2018-04-06 柯惠有限合伙公司 Locking device
US20140309684A1 (en) * 2013-04-10 2014-10-16 Mustafa H. Al-Qbandi Atrial septal occluder device and method
CN103284772B (en) * 2013-05-03 2016-02-03 广东省心血管病研究所 A kind of adjustable tracheo esophageal fistula locking device
EP2991586A1 (en) 2013-05-03 2016-03-09 Medtronic Inc. Valve delivery tool
EP3038537A1 (en) * 2013-05-30 2016-07-06 Malakan Rad, Elaheh Asymmetric occluder device
US9737306B2 (en) 2013-06-14 2017-08-22 Artventive Medical Group, Inc. Implantable luminal devices
US9636116B2 (en) 2013-06-14 2017-05-02 Artventive Medical Group, Inc. Implantable luminal devices
US10149968B2 (en) 2013-06-14 2018-12-11 Artventive Medical Group, Inc. Catheter-assisted tumor treatment
US9737308B2 (en) 2013-06-14 2017-08-22 Artventive Medical Group, Inc. Catheter-assisted tumor treatment
US8870948B1 (en) 2013-07-17 2014-10-28 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US10010328B2 (en) 2013-07-31 2018-07-03 NeuVT Limited Endovascular occlusion device with hemodynamically enhanced sealing and anchoring
US9681876B2 (en) 2013-07-31 2017-06-20 EMBA Medical Limited Methods and devices for endovascular embolization
US9955976B2 (en) 2013-08-16 2018-05-01 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
US9078658B2 (en) 2013-08-16 2015-07-14 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
US9867694B2 (en) 2013-08-30 2018-01-16 Jenavalve Technology Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US10070857B2 (en) 2013-08-31 2018-09-11 Mitralign, Inc. Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US10350098B2 (en) 2013-12-20 2019-07-16 Volcano Corporation Devices and methods for controlled endoluminal filter deployment
JP6661539B2 (en) 2013-12-20 2020-03-11 テルモ株式会社 Vessel closure
US9730701B2 (en) 2014-01-16 2017-08-15 Boston Scientific Scimed, Inc. Retrieval wire centering device
CN103845096B (en) * 2014-03-10 2016-05-04 上海形状记忆合金材料有限公司 Left atrial appendage occlusion device and preparation method thereof
US10675450B2 (en) 2014-03-12 2020-06-09 Corvia Medical, Inc. Devices and methods for treating heart failure
WO2017185082A1 (en) * 2016-04-23 2017-10-26 Nasser Rafiee Devices and methods for closure of transvascular or transcameral access ports
US9629635B2 (en) 2014-04-14 2017-04-25 Sequent Medical, Inc. Devices for therapeutic vascular procedures
US9913744B2 (en) 2014-04-30 2018-03-13 Lean Medical Technologies, Inc. Gastrointestinal device
US10363043B2 (en) 2014-05-01 2019-07-30 Artventive Medical Group, Inc. Treatment of incompetent vessels
US9913649B2 (en) 2014-05-28 2018-03-13 Boston Scientific Scimed, Inc. Catheter with radiofrequency cutting tip and heated balloon
US10632292B2 (en) 2014-07-23 2020-04-28 Corvia Medical, Inc. Devices and methods for treating heart failure
CN105455922B (en) * 2014-09-09 2018-09-14 先健科技(深圳)有限公司 Plugging device and preparation method thereof
CN104173120A (en) * 2014-09-11 2014-12-03 山东省立医院 Postoperation perivalvular leakage plugging device
CN104173122A (en) * 2014-09-11 2014-12-03 山东省立医院 Plugging device suitable for postoperation perivalvular leakage
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
US10524792B2 (en) 2014-12-04 2020-01-07 Edwards Lifesciences Corporation Percutaneous clip for repairing a heart valve
WO2016093877A1 (en) 2014-12-09 2016-06-16 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US10449043B2 (en) 2015-01-16 2019-10-22 Boston Scientific Scimed, Inc. Displacement based lock and release mechanism
CN104546054B (en) * 2015-01-19 2017-02-22 上海形状记忆合金材料有限公司 Adjustable plugging device and release method
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
US10201417B2 (en) 2015-02-03 2019-02-12 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US10426617B2 (en) 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
US9375333B1 (en) 2015-03-06 2016-06-28 Covidien Lp Implantable device detachment systems and associated devices and methods
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
GB2550099B (en) 2015-03-24 2020-09-02 Gyrus Acmi Inc Airway stent
US20160287228A1 (en) * 2015-03-31 2016-10-06 Ruben Quintero Amnio opening occlusion device
EP3288495B1 (en) 2015-05-01 2019-09-25 JenaValve Technology, Inc. Device with reduced pacemaker rate in heart valve replacement
EP4335415A2 (en) 2015-05-14 2024-03-13 Cephea Valve Technologies, Inc. Replacement mitral valves
WO2016183523A1 (en) 2015-05-14 2016-11-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
US10517726B2 (en) 2015-05-14 2019-12-31 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10195392B2 (en) 2015-07-02 2019-02-05 Boston Scientific Scimed, Inc. Clip-on catheter
WO2017004377A1 (en) 2015-07-02 2017-01-05 Boston Scientific Scimed, Inc. Adjustable nosecone
US10179041B2 (en) 2015-08-12 2019-01-15 Boston Scientific Scimed Icn. Pinless release mechanism
US10136991B2 (en) 2015-08-12 2018-11-27 Boston Scientific Scimed Inc. Replacement heart valve implant
EP3349667A4 (en) * 2015-09-18 2019-06-12 Nageswara, Rao Koneti Multi-functional occluder
US10478194B2 (en) 2015-09-23 2019-11-19 Covidien Lp Occlusive devices
WO2017083660A1 (en) 2015-11-13 2017-05-18 Cardiac Pacemakers, Inc. Bioabsorbable left atrial appendage closure with endothelialization promoting surface
CN106923886B (en) * 2015-12-31 2022-04-22 先健科技(深圳)有限公司 Left auricle plugging device
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
WO2017161283A1 (en) 2016-03-17 2017-09-21 Swaminathan Jayaraman Occluding anatomical structures
US10799676B2 (en) 2016-03-21 2020-10-13 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10835714B2 (en) 2016-03-21 2020-11-17 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US11219746B2 (en) 2016-03-21 2022-01-11 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10799677B2 (en) 2016-03-21 2020-10-13 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10799675B2 (en) 2016-03-21 2020-10-13 Edwards Lifesciences Corporation Cam controlled multi-direction steerable handles
US10813644B2 (en) 2016-04-01 2020-10-27 Artventive Medical Group, Inc. Occlusive implant and delivery system
CN105997304B (en) * 2016-04-29 2017-11-28 肖书娜 Heart valve annulus compression apparatus
US10583005B2 (en) 2016-05-13 2020-03-10 Boston Scientific Scimed, Inc. Medical device handle
EP4183371A1 (en) 2016-05-13 2023-05-24 JenaValve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US10245136B2 (en) 2016-05-13 2019-04-02 Boston Scientific Scimed Inc. Containment vessel with implant sheathing guide
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
WO2017202437A1 (en) * 2016-05-25 2017-11-30 Coramaze Technologies Gmbh Heart implant
US11331187B2 (en) 2016-06-17 2022-05-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
US10973638B2 (en) 2016-07-07 2021-04-13 Edwards Lifesciences Corporation Device and method for treating vascular insufficiency
US10478195B2 (en) 2016-08-04 2019-11-19 Covidien Lp Devices, systems, and methods for the treatment of vascular defects
JP7199344B2 (en) 2016-08-15 2023-01-05 ザ クリーヴランド クリニック ファウンデーション Apparatus and method for at least partially supporting heart valve leaflets with regurgitation
RU2648344C2 (en) * 2016-08-24 2018-03-23 Общество с ограниченной ответственностью "Эндоваскулярная исследовательская лаборатория" Method of manufacture of the framework of the aortal heart valve endovascular prosthesis
CN106419973A (en) * 2016-10-12 2017-02-22 上海形状记忆合金材料有限公司 Using method of spring suturing device
US9994980B2 (en) 2016-10-14 2018-06-12 Inceptus Medical, Llc Braiding machine and methods of use
US10653862B2 (en) 2016-11-07 2020-05-19 Edwards Lifesciences Corporation Apparatus for the introduction and manipulation of multiple telescoping catheters
US10905554B2 (en) 2017-01-05 2021-02-02 Edwards Lifesciences Corporation Heart valve coaptation device
CA3051272C (en) 2017-01-23 2023-08-22 Cephea Valve Technologies, Inc. Replacement mitral valves
EP4209196A1 (en) 2017-01-23 2023-07-12 Cephea Valve Technologies, Inc. Replacement mitral valves
WO2018138658A1 (en) 2017-01-27 2018-08-02 Jenavalve Technology, Inc. Heart valve mimicry
WO2018156962A1 (en) 2017-02-24 2018-08-30 Inceptus Medical LLC Vascular occlusion devices and methods
WO2018156897A1 (en) 2017-02-24 2018-08-30 Tc1 Llc Minimally invasive methods and devices for ventricular assist device implantation
LT3558169T (en) * 2017-04-18 2022-02-10 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11224511B2 (en) 2017-04-18 2022-01-18 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
EP3614933A1 (en) 2017-04-27 2020-03-04 Boston Scientific Scimed, Inc. Occlusive medical device with fabric retention barb
US10799312B2 (en) 2017-04-28 2020-10-13 Edwards Lifesciences Corporation Medical device stabilizing apparatus and method of use
US10959846B2 (en) 2017-05-10 2021-03-30 Edwards Lifesciences Corporation Mitral valve spacer device
WO2018226915A1 (en) 2017-06-08 2018-12-13 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
EP3661458A1 (en) 2017-08-01 2020-06-10 Boston Scientific Scimed, Inc. Medical implant locking mechanism
CN111225633B (en) 2017-08-16 2022-05-31 波士顿科学国际有限公司 Replacement heart valve coaptation assembly
US10675036B2 (en) 2017-08-22 2020-06-09 Covidien Lp Devices, systems, and methods for the treatment of vascular defects
US11051940B2 (en) 2017-09-07 2021-07-06 Edwards Lifesciences Corporation Prosthetic spacer device for heart valve
US11065117B2 (en) 2017-09-08 2021-07-20 Edwards Lifesciences Corporation Axisymmetric adjustable device for treating mitral regurgitation
US11110251B2 (en) 2017-09-19 2021-09-07 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US11885051B2 (en) 2017-10-14 2024-01-30 Inceptus Medical, Llc Braiding machine and methods of use
US10993807B2 (en) 2017-11-16 2021-05-04 Medtronic Vascular, Inc. Systems and methods for percutaneously supporting and manipulating a septal wall
JP7013591B2 (en) 2017-12-18 2022-01-31 ボストン サイエンティフィック サイムド,インコーポレイテッド Closure device with expandable members
US10973639B2 (en) 2018-01-09 2021-04-13 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10238493B1 (en) 2018-01-09 2019-03-26 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10130475B1 (en) 2018-01-09 2018-11-20 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10105222B1 (en) 2018-01-09 2018-10-23 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10507109B2 (en) 2018-01-09 2019-12-17 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10136993B1 (en) 2018-01-09 2018-11-27 Edwards Lifesciences Corporation Native valve repair devices and procedures
WO2019139904A1 (en) 2018-01-09 2019-07-18 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10076415B1 (en) 2018-01-09 2018-09-18 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10245144B1 (en) 2018-01-09 2019-04-02 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10123873B1 (en) 2018-01-09 2018-11-13 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10231837B1 (en) 2018-01-09 2019-03-19 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10111751B1 (en) 2018-01-09 2018-10-30 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10159570B1 (en) 2018-01-09 2018-12-25 Edwards Lifesciences Corporation Native valve repair devices and procedures
JP7047106B2 (en) 2018-01-19 2022-04-04 ボストン サイエンティフィック サイムド,インコーポレイテッド Medical device delivery system with feedback loop
EP3740160A2 (en) 2018-01-19 2020-11-25 Boston Scientific Scimed Inc. Inductance mode deployment sensors for transcatheter valve system
WO2019144072A1 (en) 2018-01-19 2019-07-25 Boston Scientific Scimed, Inc. Occlusive medical device with delivery system
US11147668B2 (en) 2018-02-07 2021-10-19 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
WO2019165394A1 (en) 2018-02-26 2019-08-29 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
US11389297B2 (en) 2018-04-12 2022-07-19 Edwards Lifesciences Corporation Mitral valve spacer device
US11207181B2 (en) 2018-04-18 2021-12-28 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
WO2019213274A1 (en) 2018-05-02 2019-11-07 Boston Scientific Scimed, Inc. Occlusive sealing sensor system
EP3793450A1 (en) 2018-05-15 2021-03-24 Boston Scientific Scimed, Inc. Occlusive medical device with charged polymer coating
WO2019222367A1 (en) 2018-05-15 2019-11-21 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
WO2019224577A1 (en) 2018-05-23 2019-11-28 Sorin Group Italia S.R.L. A cardiac valve prosthesis
US11672541B2 (en) 2018-06-08 2023-06-13 Boston Scientific Scimed, Inc. Medical device with occlusive member
US11123079B2 (en) 2018-06-08 2021-09-21 Boston Scientific Scimed, Inc. Occlusive device with actuatable fixation members
US11241310B2 (en) 2018-06-13 2022-02-08 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
CN112566566A (en) 2018-07-06 2021-03-26 波士顿科学医学有限公司 Closed medical device
CA3203550A1 (en) * 2018-07-18 2020-01-23 W. L. Gore & Associates, Inc. Medical devices for shunts, occluders, fenestrations and related systems and methods
EP3840670B1 (en) 2018-08-21 2023-11-15 Boston Scientific Scimed, Inc. Projecting member with barb for cardiovascular devices
US20200069426A1 (en) 2018-08-28 2020-03-05 Edwards Lifesciences Corporation Methods and devices for ventricular reshaping and heart valve reshaping
US10945844B2 (en) 2018-10-10 2021-03-16 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11564692B2 (en) 2018-11-01 2023-01-31 Terumo Corporation Occlusion systems
WO2020123486A1 (en) 2018-12-10 2020-06-18 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
US11129621B2 (en) 2018-12-17 2021-09-28 Covidien Lp Devices, systems, and methods for the treatment of vascular defects
US20200196944A1 (en) 2018-12-21 2020-06-25 W. L. Gore & Associates, Inc. Implantable cardiac sensors
CN109745094B (en) * 2018-12-29 2021-09-03 先健科技(深圳)有限公司 Plugging device
WO2020168081A1 (en) 2019-02-14 2020-08-20 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11317921B2 (en) 2019-03-15 2022-05-03 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
EP3908208A4 (en) 2019-03-15 2022-10-19 Sequent Medical, Inc. Filamentary devices having a flexible joint for treatment of vascular defects
JP2022525316A (en) 2019-03-15 2022-05-12 シークエント メディカル インコーポレイテッド Filamentous devices for the treatment of angiopathy
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading
US11540838B2 (en) 2019-08-30 2023-01-03 Boston Scientific Scimed, Inc. Left atrial appendage implant with sealing disk
CN114630627A (en) 2019-11-04 2022-06-14 柯惠有限合伙公司 Devices, systems, and methods for treating intracranial aneurysms
EP4125634A1 (en) 2020-03-24 2023-02-08 Boston Scientific Scimed Inc. Medical system for treating a left atrial appendage

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874388A (en) 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US4836204A (en) 1987-07-06 1989-06-06 Landymore Roderick W Method for effecting closure of a perforation in the septum of the heart
US4917089A (en) 1988-08-29 1990-04-17 Sideris Eleftherios B Buttoned device for the transvenous occlusion of intracardiac defects
US5067489A (en) 1988-08-16 1991-11-26 Flexmedics Corporation Flexible guide with safety tip
US5108420A (en) 1991-02-01 1992-04-28 Temple University Aperture occlusion device
EP0541063A2 (en) 1991-11-05 1993-05-12 The Children's Medical Center Corporation Improved occluder for repair of cardiac and vascular defects
US5334217A (en) 1992-01-21 1994-08-02 Regents Of The University Of Minnesota Septal defect closure device
US5634936A (en) 1995-02-06 1997-06-03 Scimed Life Systems, Inc. Device for closing a septal defect
US5725552A (en) * 1994-07-08 1998-03-10 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US5733294A (en) * 1996-02-28 1998-03-31 B. Braun Medical, Inc. Self expanding cardiovascular occlusion device, method of using and method of making the same

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007743A (en) * 1975-10-20 1977-02-15 American Hospital Supply Corporation Opening mechanism for umbrella-like intravascular shunt defect closure device
US4665906A (en) * 1983-10-14 1987-05-19 Raychem Corporation Medical devices incorporating sim alloy elements
US5067957A (en) * 1983-10-14 1991-11-26 Raychem Corporation Method of inserting medical devices incorporating SIM alloy elements
US5190546A (en) * 1983-10-14 1993-03-02 Raychem Corporation Medical devices incorporating SIM alloy elements
FR2641692A1 (en) 1989-01-17 1990-07-20 Nippon Zeon Co Plug for closing an opening for a medical application, and device for the closure plug making use thereof
US4991602A (en) 1989-06-27 1991-02-12 Flexmedics Corporation Flexible guide wire with safety tip
CA2075489C (en) * 1990-01-08 2002-01-01 Leroy M. Wood Submersible lens fiberoptic assembly
US5171259A (en) * 1990-04-02 1992-12-15 Kanji Inoue Device for nonoperatively occluding a defect
IL94138A (en) * 1990-04-19 1997-03-18 Instent Inc Device for the treatment of constricted fluid conducting ducts
EP0545091B1 (en) * 1991-11-05 1999-07-07 The Children's Medical Center Corporation Occluder for repair of cardiac and vascular defects
DE4222291C1 (en) * 1992-07-07 1994-01-20 Krmek Mirko Prosthesis for closing atrial or ventricular-septal defect - comprises two equally shaped units of elastic sprung material with six radially running arms spaced apart by equal edges
US5527338A (en) * 1992-09-02 1996-06-18 Board Of Regents, The University Of Texas System Intravascular device
AU4926193A (en) * 1992-09-21 1994-04-12 Vitaphore Corporation Embolization plugs for blood vessels
US5382259A (en) * 1992-10-26 1995-01-17 Target Therapeutics, Inc. Vasoocclusion coil with attached tubular woven or braided fibrous covering
EP0666065A1 (en) * 1994-02-02 1995-08-09 Katsushi Mori Stent for biliary, urinary or vascular system
US6123715A (en) * 1994-07-08 2000-09-26 Amplatz; Curtis Method of forming medical devices; intravascular occlusion devices
US5702421A (en) * 1995-01-11 1997-12-30 Schneidt; Bernhard Closure device for closing a vascular opening, such as patent ductus arteriosus
US5645558A (en) * 1995-04-20 1997-07-08 Medical University Of South Carolina Anatomically shaped vasoocclusive device and method of making the same
DE69612507T2 (en) * 1995-10-30 2001-08-09 Childrens Medical Center SELF-CENTERING, SHIELD-LIKE DEVICE FOR CLOSING A SEPTAL DEFECT
DE19604817C2 (en) * 1996-02-09 2003-06-12 Pfm Prod Fuer Die Med Ag Device for closing defect openings in the human or animal body
GB9614950D0 (en) 1996-07-16 1996-09-04 Anson Medical Ltd A ductus stent and delivery catheter

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874388A (en) 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US4836204A (en) 1987-07-06 1989-06-06 Landymore Roderick W Method for effecting closure of a perforation in the septum of the heart
US5067489A (en) 1988-08-16 1991-11-26 Flexmedics Corporation Flexible guide with safety tip
US4917089A (en) 1988-08-29 1990-04-17 Sideris Eleftherios B Buttoned device for the transvenous occlusion of intracardiac defects
US5108420A (en) 1991-02-01 1992-04-28 Temple University Aperture occlusion device
EP0541063A2 (en) 1991-11-05 1993-05-12 The Children's Medical Center Corporation Improved occluder for repair of cardiac and vascular defects
US5334217A (en) 1992-01-21 1994-08-02 Regents Of The University Of Minnesota Septal defect closure device
US5725552A (en) * 1994-07-08 1998-03-10 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US5634936A (en) 1995-02-06 1997-06-03 Scimed Life Systems, Inc. Device for closing a septal defect
US5733294A (en) * 1996-02-28 1998-03-31 B. Braun Medical, Inc. Self expanding cardiovascular occlusion device, method of using and method of making the same

Cited By (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8876880B2 (en) 1999-02-01 2014-11-04 Board Of Regents, The University Of Texas System Plain woven stents
US8974516B2 (en) 1999-02-01 2015-03-10 Board Of Regents, The University Of Texas System Plain woven stents
US9925074B2 (en) 1999-02-01 2018-03-27 Board Of Regents, The University Of Texas System Plain woven stents
US9078630B2 (en) 2001-06-01 2015-07-14 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods and tools, and related methods of use
EP1409771A2 (en) * 2001-06-11 2004-04-21 ev3 Inc. A method of training nitinol wire
EP1409771A4 (en) * 2001-06-11 2004-10-13 Ev3 Inc A method of training nitinol wire
US7413622B2 (en) 2001-06-11 2008-08-19 Ev3 Inc. Method of training nitinol wire
US6596013B2 (en) 2001-09-20 2003-07-22 Scimed Life Systems, Inc. Method and apparatus for treating septal defects
EP1487353A2 (en) * 2002-03-25 2004-12-22 NMT Medical, Inc. Patent foramen ovale (pfo) closure clips
US9241695B2 (en) 2002-03-25 2016-01-26 W.L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure clips
EP1487353A4 (en) * 2002-03-25 2008-04-16 Nmt Medical Inc Patent foramen ovale (pfo) closure clips
US9861346B2 (en) 2003-07-14 2018-01-09 W. L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure device with linearly elongating petals
US11375988B2 (en) 2003-07-14 2022-07-05 W. L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure device with linearly elongating petals
EP1673132A4 (en) * 2003-09-18 2009-12-30 Cardia Inc Self centering closure device for septal occlusion
EP1673132A2 (en) * 2003-09-18 2006-06-28 Cardia, Inc. Self centering closure device for septal occlusion
EP3603576A1 (en) * 2004-03-11 2020-02-05 Percutaneous Cardiovascular Solutions Pty Limited Percutaneous heart valve prosthesis
US9445798B2 (en) 2004-03-19 2016-09-20 St. Jude Medical, Cardiology Division, Inc. Multi-layer braided structures for occluding vascular defects
US8398670B2 (en) 2004-03-19 2013-03-19 Aga Medical Corporation Multi-layer braided structures for occluding vascular defects and for occluding fluid flow through portions of the vasculature of the body
US8313505B2 (en) 2004-03-19 2012-11-20 Aga Medical Corporation Device for occluding vascular defects
US9039724B2 (en) 2004-03-19 2015-05-26 Aga Medical Corporation Device for occluding vascular defects
US11134933B2 (en) 2004-03-19 2021-10-05 St. Jude Medical, Cardiology Division, Inc. Multi-layer braided structures for occluding vascular defects
US8777974B2 (en) 2004-03-19 2014-07-15 Aga Medical Corporation Multi-layer braided structures for occluding vascular defects
US10624619B2 (en) 2004-03-19 2020-04-21 St. Jude Medical, Cardiology Division, Inc. Multi-layer braided structures for occluding vascular defects and for occluding fluid flow through portions of the vasculature of the body
US9445799B2 (en) 2004-03-19 2016-09-20 St. Jude Medical, Cardiology Division, Inc. Multi-layer braided structures for occluding vascular defects
US9877710B2 (en) 2004-03-19 2018-01-30 St. Jude Medical, Cardiology Division, Inc. Multi-layer braided structures for occluding vascular defects and for occluding fluid flow through portions of the vasculature of the body
US11045202B2 (en) 2004-04-08 2021-06-29 St. Jude Medical, Cardiology Division, Inc. Flanged occlusion devices and methods
EP2856949A1 (en) * 2004-04-08 2015-04-08 Aga Medical Corporation Flanged occlusion devices
US10231737B2 (en) 2004-04-08 2019-03-19 St. Jude Medical, Cardiology Division, Inc. Flanged occlusion devices and methods
EP2644226A1 (en) * 2004-04-08 2013-10-02 Aga Medical Corporation Langed occlusion devices
US11839379B2 (en) 2004-04-08 2023-12-12 St. Jude Medical, Cardiology Division, Inc. Flanged occlusion devices and methods
EP1761296A4 (en) * 2004-04-08 2009-11-11 Aga Medical Corp Flange occlusion devices and methods
EP1761296A2 (en) * 2004-04-08 2007-03-14 Aga Medical Corporation Flange occlusion devices and methods
US9743932B2 (en) 2004-04-08 2017-08-29 St. Jude Medical, Cardiology Division, Inc. Flanged occlusion devices and methods
WO2005099365A2 (en) 2004-04-08 2005-10-27 Aga Medical Corporation Flange occlusion devices and methods
EP2422709B2 (en) 2006-03-24 2020-06-17 Occlutech Holding AG Occlusion instrument and method for its production
EP2266465B2 (en) 2006-03-24 2023-07-26 Occlutech Holding AG Occlusion instrument and method for its production
EP2422709B1 (en) 2006-03-24 2017-11-08 Occlutech Holding AG Occlusion instrument and method for its production
GB2441589A (en) * 2006-09-05 2008-03-12 Anthony Walter Anson Heat treatment method for composite textiles
US8966733B2 (en) 2006-10-22 2015-03-03 Idev Technologies, Inc. Secured strand end devices
US9408730B2 (en) 2006-10-22 2016-08-09 Idev Technologies, Inc. Secured strand end devices
US9895242B2 (en) 2006-10-22 2018-02-20 Idev Technologies, Inc. Secured strand end devices
US9408729B2 (en) 2006-10-22 2016-08-09 Idev Technologies, Inc. Secured strand end devices
US10470902B2 (en) 2006-10-22 2019-11-12 Idev Technologies, Inc. Secured strand end devices
US9585776B2 (en) 2006-10-22 2017-03-07 Idev Technologies, Inc. Secured strand end devices
US9629736B2 (en) 2006-10-22 2017-04-25 Idev Technologies, Inc. Secured strand end devices
US9149374B2 (en) 2006-10-22 2015-10-06 Idev Technologies, Inc. Methods for manufacturing secured strand end devices
US8262719B2 (en) 2007-03-13 2012-09-11 Medtronic Vascular, Inc. Braided flange branch graft for branch vessel
US10485525B2 (en) 2007-04-05 2019-11-26 W.L. Gore & Associates, Inc. Septal closure device with centering mechanism
US9949728B2 (en) 2007-04-05 2018-04-24 W.L. Gore & Associates, Inc. Septal closure device with centering mechanism
EP3202333A1 (en) * 2007-06-21 2017-08-09 St. Jude Medical, Cardiology Division, Inc. Multi-layer braided structures for occluding vascular defects
EP2014239A3 (en) * 2007-06-21 2012-01-25 Aga Medical Corporation Multi-layer braided structures for occluding vascular defects
US8747453B2 (en) 2008-02-18 2014-06-10 Aga Medical Corporation Stent/stent graft for reinforcement of vascular abnormalities and associated method
EP2244666A4 (en) * 2008-02-19 2017-07-26 AGA Medical Corporation Medical devices for treating a target site and associated method
US10278705B2 (en) 2008-03-07 2019-05-07 W. L. Gore & Associates, Inc. Heart occlusion devices
US9474517B2 (en) 2008-03-07 2016-10-25 W. L. Gore & Associates, Inc. Heart occlusion devices
US11596391B2 (en) 2009-06-22 2023-03-07 W. L. Gore & Associates, Inc. Sealing device and delivery system
US9636094B2 (en) 2009-06-22 2017-05-02 W. L. Gore & Associates, Inc. Sealing device and delivery system
US10806437B2 (en) 2009-06-22 2020-10-20 W. L. Gore & Associates, Inc. Sealing device and delivery system
US9381006B2 (en) 2009-06-22 2016-07-05 W. L. Gore & Associates, Inc. Sealing device and delivery system
US9451939B2 (en) 2009-06-22 2016-09-27 W. L. Gore & Associates, Inc. Sealing device and delivery system
US8956389B2 (en) 2009-06-22 2015-02-17 W. L. Gore & Associates, Inc. Sealing device and delivery system
US9468430B2 (en) 2009-06-22 2016-10-18 W. L. Gore & Associates, Inc. Sealing device and delivery system
US11589853B2 (en) 2009-06-22 2023-02-28 W. L. Gore & Associates, Inc. Sealing device and delivery system
US11564672B2 (en) 2009-06-22 2023-01-31 W. L. Gore & Associates, Inc. Sealing device and delivery system
US10792025B2 (en) 2009-06-22 2020-10-06 W. L. Gore & Associates, Inc. Sealing device and delivery system
EP2399524A1 (en) 2010-06-22 2011-12-28 Occlutech Holding AG Medical implant and manufacturing method thereof
WO2011161136A1 (en) 2010-06-22 2011-12-29 Occlutech Holding Ag Medical implant and manufacturing method thereof
US9770232B2 (en) 2011-08-12 2017-09-26 W. L. Gore & Associates, Inc. Heart occlusion devices
US10905406B2 (en) 2011-09-22 2021-02-02 Occlutech Holding Ag Medical implantable occlusion device, and method for implantation thereof
US9901330B2 (en) 2011-09-22 2018-02-27 Occlutech Holding Ag Medical implantable occlusion device, and method for implantation thereof
WO2013041721A1 (en) * 2011-09-22 2013-03-28 Occlutech Holding Ag Medical implantable occlusion device, and method for implantation thereof
US9375209B2 (en) 2011-09-22 2016-06-28 Occlutech Holding Ag Medical implantable occlusion device, and method for implantation thereof
US10729445B2 (en) 2012-02-09 2020-08-04 Stryker European Holdings I, Llc Vaso-occlusive devices including a friction element
US9011482B2 (en) 2012-02-09 2015-04-21 Tw Medical Technologies, Llc Vaso-occlusive devices including a friction element and methods of use
US9907557B2 (en) 2012-02-09 2018-03-06 Stryker European Holdings I, Llc Vaso-occlusive devices including a friction element
CN107961045A (en) * 2013-01-18 2018-04-27 W.L.戈尔及同仁股份有限公司 Sealing device and delivery system
WO2014113632A3 (en) * 2013-01-18 2014-10-23 W.L. Gore & Associates, Inc. Sealing device
US10828019B2 (en) 2013-01-18 2020-11-10 W.L. Gore & Associates, Inc. Sealing device and delivery system
US11771408B2 (en) 2013-01-18 2023-10-03 W. L. Gore & Associates, Inc. Sealing device and delivery system
CN107961045B (en) * 2013-01-18 2021-10-12 W.L.戈尔及同仁股份有限公司 Sealing device and delivery system
US10058315B2 (en) 2014-03-27 2018-08-28 Transmural Systems Llc Devices and methods for closure of transvascular or transcameral access ports
US10045765B2 (en) 2014-03-27 2018-08-14 Transmural Systems Llc Devices and methods for closure of transvascular or transcameral access ports
EP3122284A4 (en) * 2014-03-27 2017-12-13 Nasser Rafiee Devices and methods for closure of transvascular or transcameral access ports
US10383635B2 (en) 2014-05-28 2019-08-20 Stryker European Holdings I, Llc Vaso-occlusive devices and methods of use
US11633190B2 (en) 2014-05-28 2023-04-25 Stryker European Holdings I, Llc Vaso-occlusive devices and methods of use
US9060777B1 (en) 2014-05-28 2015-06-23 Tw Medical Technologies, Llc Vaso-occlusive devices and methods of use
US11298116B2 (en) 2014-06-06 2022-04-12 W. L. Gore & Associates, Inc. Sealing device and delivery system
US9808230B2 (en) 2014-06-06 2017-11-07 W. L. Gore & Associates, Inc. Sealing device and delivery system
US10368853B2 (en) 2014-06-06 2019-08-06 W. L. Gore & Associates, Inc. Sealing device and delivery system
US10925612B2 (en) 2015-05-08 2021-02-23 Stryker European Holdings I, Llc Vaso-occlusive devices
US11751880B2 (en) 2015-05-08 2023-09-12 Stryker European Holdings I, Llc Vaso-occlusive devices
US10159490B2 (en) 2015-05-08 2018-12-25 Stryker European Holdings I, Llc Vaso-occlusive devices
WO2018069523A1 (en) * 2016-10-13 2018-04-19 Cormos Medical Gmbh Laa occluder for closing the left atrial appendage
IT201800020707A1 (en) * 2018-12-21 2020-06-21 Eustaquio Maria Onorato Patent foramen ovale occlusion device.
US11911272B2 (en) 2019-01-18 2024-02-27 W. L. Gore & Associates, Inc. Bioabsorbable medical devices
WO2021032773A1 (en) * 2019-08-20 2021-02-25 Holistick Medical Medical implant and delivery device for a medical implant
WO2022195058A1 (en) * 2021-03-18 2022-09-22 Holistick Medical Medical implant and catheter device for a medical implant
EP4059445A1 (en) * 2021-03-18 2022-09-21 HoliStick Medical Medical implant and catheter device for a medical implant

Also Published As

Publication number Publication date
EP1844717A2 (en) 2007-10-17
KR20010040637A (en) 2001-05-15
EP1844717B1 (en) 2013-08-28
US5944738A (en) 1999-08-31
EA002106B1 (en) 2001-12-24
EP2263569A1 (en) 2010-12-22
CA2319521C (en) 2004-05-04
CN1283973A (en) 2001-02-14
CA2319521A1 (en) 1999-08-12
EA200000739A1 (en) 2001-04-23
JP3524494B2 (en) 2004-05-10
ATE372727T1 (en) 2007-09-15
PT1052944E (en) 2007-10-12
KR100400506B1 (en) 2003-10-08
JP2002502625A (en) 2002-01-29
AU1074899A (en) 1999-08-23
EP1844717A3 (en) 2008-09-24
ES2294820T3 (en) 2008-04-01
ES2431563T3 (en) 2013-11-27
EP1052944A4 (en) 2006-06-14
EP1052944B1 (en) 2007-09-12
DE69838436T2 (en) 2008-06-12
CN1102373C (en) 2003-03-05
DE69838436D1 (en) 2007-10-25
DK1052944T3 (en) 2007-11-05
AU737934B2 (en) 2001-09-06
HK1032892A1 (en) 2001-08-10
EP1052944A1 (en) 2000-11-22

Similar Documents

Publication Publication Date Title
US5944738A (en) Percutaneous catheter directed constricting occlusion device
US5846261A (en) Percutaneous catheter directed occlusion devices
EP1923005B1 (en) Multi-Layer braided structures for occluding vascular defects
AU2001249146B2 (en) Retrievable self expanding shunt
US20180132835A1 (en) Multi-layer braided structures for occluding vascular defects and for occluding fluid flow through portions of the vasculature of the body
US5725552A (en) Percutaneous catheter directed intravascular occlusion devices
AU2001249146A1 (en) Retrievable self expanding shunt

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98813470.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998953347

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10748/99

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2319521

Country of ref document: CA

Ref document number: 2319521

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020007008508

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200000739

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2000 530153

Country of ref document: JP

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1998953347

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007008508

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 10748/99

Country of ref document: AU

WWR Wipo information: refused in national office

Ref document number: 1020007008508

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998953347

Country of ref document: EP