WO1999044846A1 - Vehicle improved in outward sight and device and method for reducing glare - Google Patents

Vehicle improved in outward sight and device and method for reducing glare Download PDF

Info

Publication number
WO1999044846A1
WO1999044846A1 PCT/JP1998/001863 JP9801863W WO9944846A1 WO 1999044846 A1 WO1999044846 A1 WO 1999044846A1 JP 9801863 W JP9801863 W JP 9801863W WO 9944846 A1 WO9944846 A1 WO 9944846A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
section
dimming
glass
eye
Prior art date
Application number
PCT/JP1998/001863
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshikazu Ichiyama
Original Assignee
Yoshikazu Ichiyama
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshikazu Ichiyama filed Critical Yoshikazu Ichiyama
Publication of WO1999044846A1 publication Critical patent/WO1999044846A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13318Circuits comprising a photodetector

Definitions

  • the present invention relates to a vehicle, an anti-glare device and a method for improving visibility in front and around by reducing strong incident light from an external light source.
  • the present invention relates to a vehicle, an anti-glare device, and a method for improving external visibility by selectively dimming only light rays incident on an occupant's eyes from an external light source that is a source of the vehicle.
  • an object of the present invention is to provide an anti-glare device and method capable of selectively illuminating or blocking only light rays having an intensity of a certain level or higher that impede the occupant's external visibility and entering the occupant's eyes. And to provide vehicles at low cost.
  • the present invention provides a vehicle, an anti-glare device and a method capable of selectively dimming or blocking light rays incident on the eyes of these occupants based on the fact that they are local.
  • the vehicle uses a dimmable window glass that can be dimmed separately, and furthermore, a dimming window drive unit and a means for identifying the dimmable window glass located between the occupant's eyes and the external light source.
  • a general control unit that controls the entire system, identifies the section of the dimming window glass interposed between the external strong light source and the eye of the anti-glare subject, and controls the dimming window driving section.
  • the dimmable window glass is composed of a liquid crystal material that has multiple sections and is sealed between the electrodes. It can control the light transmittance by applying a voltage between the electrodes, and is widely used in display devices and the like. Is a well-known technique.
  • Each of these sections is electrically selected by the dimming window driver, and is electrically controlled to individually adjust and control the light transmittance.
  • the most important point in realizing the system is to specify in real time the section on the dimming window through which the light beam entering the occupant's eye passes with respect to the moving external light source. Means are proposed.
  • the first means is to attach a head mount sensor to the occupant to be anti-glare, place the sensor near the eyes, and modulate the light transmittance for each section in such a way that the section of the dimming window can be specified. Then, the section whose light transmittance is changed in the same manner as the output fluctuation of the head mount sensor is identified as the section to be dimmed.
  • the second means is to install a beam direction detector on the dashboard near the occupant or on the ceiling to monitor the direction of the incident beam.
  • the dimming control is performed by specifying the corresponding section on the dimming window from the output of the beam direction detector.
  • the division on the dimming window to be controlled for dimming from the output of the beam direction detector depends on a predetermined correspondence map, but a learning process is applied to form this correspondence map.
  • the first method is used in the learning process for automation.
  • the first method to identify the dimming window section can directly identify the dimming window section, and requires any adjustments or other processing in the system, such as increasing the number of head-mounted sensors, moving them, and so on. And not.
  • the second means requires a correspondence map between the beam direction detector output and the dimming window section, but this is also automatically formed by the learning process using the first means, and these systems are used. No adjustment or setting of elements is required.
  • the constituent elements are installed and moved flexibly, and only light rays incident on the eyes of the occupant are selectively dimmed or blocked.
  • a vehicle and an anti-glare device and method capable of improving external visibility can be realized at low cost.
  • Fig. 1 shows the background of the present invention and the basic concept, showing the case in which the car and the occupant, and the headlights of other cars before and after, are occupied by the front headlight through the windshield.
  • the light beam enters the eyes of the occupant, and from the rear headlights enters the occupant's eyes through the rear window and knock mirror, which may impair the occupant's external visibility.
  • these rays illuminate almost the entire car, but if they are limited to rays that enter the occupant's eyes, they may pass through extremely local parts of the front and rear windows. Also shown.
  • FIG. 1 shows the background of the present invention and the basic concept, showing the case in which the car and the occupant, and the headlights of other cars before and after, are occupied by the front headlight through the windshield.
  • the light beam enters the eyes of the occupant, and from the rear headlights enters the occupant's eyes through the rear window and knock mirror, which may impair the occupant's external visibility.
  • FIG. 2 is a view for explaining the first embodiment of the present invention, in which a dimmable glass that can be dimmed dimmably is used for the window glass, so that the occupant can arrange the photodetector near the eyes.
  • Attach a suitable head mount sensor FIG. 3 shows an example of a head mount sensor in which a light detecting element is held on a spectacle-like support so as to be arranged around the eye.
  • Figure 4 shows the case where the light transmittance of each section of the dimming window is changed in a binary manner to control the average light transmittance. Then, an example of specifying the classification by comparing it with the output of the head mount sensor is shown.
  • Figure 5 shows the case where the light transmittance of each section of the dimming window is changed in a binary manner to control the average light transmittance.
  • the light transmittance of the light is emphasized and the timing is changed for each section with modulation, and the output of the head mount sensor is output.
  • 5 shows an example of a following mode to be compared with the following.
  • Fig. 6 shows a simple flow diagram for controlling the light transmittance by specifying the dimming window section using a head-mounted sensor.
  • FIG. 7 shows an example of a head mount sensor and a light detecting element in which a reflective element is held on a spectacle-like support so as to be arranged around the eye.
  • FIG. 8 shows the structure of a head-mounted sensor in which a light-blocking filter is arranged on the light-sensing element of the head-mounted sensor so that it does not pass red light.
  • FIG. 9 is a view for explaining a second embodiment of the present invention, in which a dimming glass that can be controlled in a piecewise manner is used for a rear window, and a light beam incident on an occupant's eye through a rearview mirror is used as a head mount sensor. An example is shown in which the dimming control is selectively performed and the light control is selectively performed.
  • FIG. 10 is a view for explaining a third embodiment of the present invention, which has a light direction detector and a head mount sensor, and identifies a dimming window in combination with a learning process to identify an occupant's eye.
  • An example is shown in which dimming control is selectively performed on a light beam incident on.
  • Figure 11 shows a flow diagram including a learning process for forming a correspondence map showing the correspondence between the beam direction detector output and the dimming window section.
  • Fig. 12 shows an example of a beam direction detector having a small aperture and an image sensor.
  • Fig. 13 shows an example of a beam direction detector having a simple imaging optical system and an image sensor.
  • Fig. 14 shows an example of setting the light transmittance stepwise in the dimming section.
  • FIG. 15 is a diagram for explaining a fourth embodiment of the present invention, and shows a configuration example in which a light control rear mirror is controlled using a light beam direction detector and a head mount sensor.
  • FIG. 16 is a diagram for explaining the fifth embodiment of the present invention, and shows a configuration example in which dimming control of the front and rear windows is simultaneously performed using a light beam direction detector and a head mount sensor.
  • Fig. 1 shows the structure of a vehicle window glass, rearview mirror, etc. for viewing outside, the occupants, and also the external light source, etc., to explain the background and basic concept of the present invention.
  • headlights 15 and 17 of other vehicles are located before and after the vehicle 10 and light beams indicated by numbers 16 and 18 are incident on the eyes of the occupant 11 from them.
  • Ray 16 passes through the front window 12, and ray 18 enters the occupant's 11 eye through the rear window 13 and the knock mirror 14.
  • the light from the headlights of other vehicles is incident from the front and rear at night, but sunlight is also incident during the day, which significantly impairs the visibility especially outside. There are many.
  • some window glasses are colored to reduce the light transmittance, or some rearview mirrors can change the reflectance during the day and at night.
  • the light transmittance of the entire window is reduced uniformly too much to fear the incident light, the external visibility will be significantly reduced.
  • only the rays incident on the occupant's eyes are harmful regardless of the sunlight or the headlights of other vehicles, and they are local when considered only when passing through the window glass. Based on the fact that only the rays incident on these occupants' eyes are selectively dimmed or 63 Consider a vehicle that can block light and anti-glare devices and methods. That is, in Fig.
  • the headlights 15 and 17 illuminate the entire vehicle 10 but the rays 16 incident on the eyes of the occupant 11 pass through the front window 12
  • a vehicle or an anti-glare device or method for controlling the light transmittance of only the section 20, etc., when the section 19 and the light beam 18 pass through the rear window # 13 is proposed.
  • the section 19 where the light beam 16 passes through the front window, or the section 20 where the light beam 18 passes through the rear window, etc. are specified and controlled, and their light transmittance is controlled.
  • Light rays 16 and 18 entering the eyes of the occupant 11 from the headlights 15 and 17 are selectively reduced to improve the external visibility of the occupant 11.
  • FIG. 2 is a functional block diagram of the first embodiment of the present invention, showing an example in which dimming control of a front window is performed using a head-mounted sensor.
  • the basic configuration consists of at least a dimming glass optical system, a dimming glass driving unit, a head mount sensor, and a general control unit.
  • Light control glass optics are electrically composed of dimming lath with controllable capacity plurality of divided light transmittance selectable in and electrically independently front window 1 2.
  • the dimming glass is composed of liquid crystal and electrodes encapsulated, and is a well-known technology for display devices and so on, and its description is omitted.
  • the dimming glass drive unit 21 is instructed by the section of the front window 12 and the light transmittance of the section, electrically selects the section, and generates an electric signal corresponding to the target light transmittance. Is added to control and adjust the light transmittance in a piecewise manner.
  • the light transmittance of the light control glass section changes according to the applied voltage.
  • the voltage is changed and controlled in an analog manner so as to conform to the desired light transmittance, or the applied voltage is binary. That is, there is a method of controlling the average light transmittance by changing and controlling the duration of each of high and low on the time axis as two types of light transmittance, high and low.
  • the latter method is advantageous in terms of cost and the description of the present invention is exclusively based on the latter method.
  • the present invention can also be realized by the former method.
  • the overall control unit 22 performs various kinds of settings such as classification and identification in cooperation with the head mount sensor 24, start / stop of the whole system, setting of the light intensity level to be anti-glare, or level of dimming control. Controls the operation of the entire system.
  • the head mount sensor 24 detects the intensity of the light beam incident on the eyes of the occupant 11 as a structure in which the light detecting element 25 is arranged near the eyes when worn by the occupant 11.
  • the light beam 16 entering the eyes of the occupant 11 from the headlight 15 of another vehicle through the front window 12 is detected by the head mount sensor 24, and the intensity is detected by the brightness sensor.
  • the general control unit 22 instructs the light control glass drive unit 21 to identify each part of the front window 12
  • the light transmittance is modulated as described above, and the section 19 through which the light beam 16 passes is specified based on the variation of the light intensity detected by the head mount sensor 124, and the position of the section and the degree of decrease in the light transmittance are determined. Instruct the light control glass drive unit 21 to reduce the light transmittance and reduce the intensity of the light beam 16 incident on the occupant 11's eye.
  • the brightness sensor 23 has a light detection element and is arranged so that the incident light does not enter directly, and detects the surrounding brightness.
  • a head mount sensor 24 has a light-sensitive element 25 attached to a spectacle-like support portion 26 around the eye. It is arranged on the side and detects the intensity of the light beam incident on the eye.
  • Numeral 27 is the output line of the photodetector 25, but wireless transmission is possible using electromagnetic waves, infrared rays, and the like.
  • the accuracy can be further improved if the transparent photodetector is configured directly on the spectacle lens and placed in front of the eye.
  • number 41 indicates the reference timing
  • numbers 42, 43, and 44 indicate the voltage waveforms applied to each section.
  • the voltage applied to each section of the light control glass is such that the higher the voltage, the higher the light transmittance, and the lower the voltage, the lower the light transmittance.
  • the voltage of each section decreases the voltage in a short-time pulse manner at different timings based on the reference timing 41 to reduce the light transmittance. If a strong light ray 16 enters the eyes of the occupant 1 1, the force detected by the head mount sensor 2 4 is output. is there.
  • the number 45 indicates the output voltage from the head mount sensor 124.
  • the section where the transmittance is reduced can be identified as the section through which the light beam 16 passes.
  • the category corresponding to No. 43 corresponds to the voltage waveform No. 47 that modulates the light transmittance and the No. 49, which is the change in the output waveform of the head mount sensor 24. ing.
  • section identification is directly possible by modulating the light transmittance so that each section can be identified, and monitoring the output of the head mount sensor 24.
  • the number of sections is small as a whole, it is possible to change the timing of light transmittance modulation in all sections, and drive is possible.
  • Fig. 5 is a diagram for explaining the control of each section after the section is specified, and the method of section following in accordance with the movement of the light source.
  • the section indicated by No. 43 is determined to be the section to be dimmed
  • the average amount of light is reduced by increasing the ratio of dimming within the reference timing.
  • the section where the light is dimmed is shown as No. 53 in the output of the head mount sensor 1 indicated by No. 51.
  • the level increases slightly, and the output of the head mount sensor decreases as indicated by the number 55 at the same timing as the timing 48 when the light transmittance of the section indicated by the number 44 decreases. In this way, it is easy to monitor and follow the movement of the section to be dimmed due to the movement of the light source.
  • the sections to be searched by modulating the light transmittance as shown by numbers 42 and 44 can be limited to the area around the current section 43.
  • Fig. 7 describes an example in which a reflection element is used to make wireless.
  • the head mount sensor 70 is assumed to have a reflective element 71 on a spectacle-like support 72, and is reflected to the periphery of the eye so that a ray 16 incident on the eye is reflected.
  • the element 71 is arranged.
  • a light detecting element 73 is arranged above or in front of the occupant 11 and near the upper side of the front window 12 so that the light beam 16 incident on the occupant 11's eye is reflected by the reflecting element 71 (number 7 4) Then, the light is detected by the photodetector 73.
  • the reflection element 71 Since the relative relationship between the reflection element 71 and the light detection element 73 is undefined, the reflection element 71 has a structure in which the direction is determined to some extent and irregularly reflected, or a curved surface shape which concentrates and reflects in a certain area. Is desirable. An example of selecting light beams to be dimmed by color will be described with reference to FIG. According to the first embodiment shown in FIG. 2, the head mount sensor 24 detects a harmful light beam and selectively dims it in an extremely short time, thereby improving the external visibility of the occupant. However, red is generally used for stop lamps or emergency lights in automobiles, etc.
  • a filter 81 for preventing the transmission of red light is disposed in the light detecting element 25 of the head mount sensor 24, and the head mount sensor 24 is configured to detect only light beams other than red light. I do.
  • the head mount sensor 2 does not output red light, so if the external light source is only red, the dimming function does not work and the eyes of the occupants are unified with a red system. The danger signal is incident without dimming and does not impair the occupants' perception.
  • FIG. 9 shows a functional block diagram of the second embodiment of the present invention, in which the eyes of an occupant are viewed from behind a vehicle. An example will be described in which the light rays incident on the light are selectively reduced.
  • the basic configuration is composed of at least a dimming glass optical system, a dimming glass driving unit, a head mount sensor, and a general control unit. Only the configuration of the light control glass optical system differs slightly from the figure.
  • the dimming glass optical system consists of a rear window 13 composed of dimming glass that can be dimmed in a piecewise manner and a normal back mirror 14.
  • FIG. 10 schematically shows a third embodiment of the present invention.
  • the dimming control using a head-mounted sensor makes it easy to identify the section, but on the other hand, there remains a problem that mounting is troublesome.
  • a beam direction detector was used to overcome this problem.
  • This structure eliminates the need for a head mount sensor after the learning process.
  • This figure is an example of application to the front window 12 as in the first embodiment shown in Fig. 2.
  • the basic configuration consists of at least a light control glass optical system, a light control glass drive unit, a head mount sensor, and a light beam direction. It consists of a detector, a general control unit, and so on.
  • the dimming glass optical system is a front window 12 composed of dimming glass that can be dimmed in the same way as in Fig. 2, and the other dimming glass drive unit 21 and the head mount sensor 24 are also included. This is the same as the first embodiment shown in FIG.
  • the beam direction detector 120 is located near the occupant 11 around the front window 12 and is composed of a small aperture and a two-dimensional image sensor.
  • the light spot to be created is detected at the pixel position of the built-in image sensor to determine the direction of the light beam.
  • ambient brightness is detected based on an average output level other than the light spot.
  • the general control unit 101 cooperates with the head mount sensor 24 and the beam direction detector 120. It supervises the operation of the system as a whole, specifying various categories, starting and stopping the entire system, setting the light intensity level to be used for anti-glare, or setting the level of dimming control.
  • the direction of the light beam 16 is detected by the light direction detector 120 and the general control unit 101, and the corresponding map is referred to.
  • the dimming control is performed by specifying the section of the front window 12.
  • the correspondence map showing the correspondence between the output of the beam direction detector 120 and the section of the front window 12 is a head. It is automatically formed by learning using the mount sensor 24.
  • the overall control unit 101 monitors the output of the beam direction detector 120 to detect the surrounding brightness, When a light beam with a predetermined level or higher than the ambient brightness is detected, the pixel position on the image sensor of the light beam direction detector 120 where the light spot created by the light beam is located is defined as the light beam direction, and the pixel position and the corresponding map are used. , The section of the window 12 is specified as the section 19 to be dimmed.
  • the ray 102 incident on the ray direction detector 120 originates from the same light source 15 but is strictly different from the ray 16 incident on the eyes of the occupant 11 and therefore passes through the front window 12 The classification is also different.
  • the distance between the occupant 11 and the headlight 15 is at least several meters, while the distance between the occupant 11 and the beam direction detector 120 is within several tens of centimeters. 16 and 102 can be approximated as almost parallel, and the output of the beam direction detector 120 can be used to estimate the direction of the beam 16 incident on the occupant's 11 eye. Therefore, if the correspondence between the pixel position in the image sensor, which is the output of the light direction detector 120, and the division in the front window 122 is correctly given, the output of the light direction detector 120 is used as the output of the front window 122. Can be specified.
  • the relationship between this pixel position and the divisions in the front window 12 may be given as a correspondence map from the beginning, but the position of the beam direction detector 120, the posture of the occupant 11 or the occupant 11 It is impossible to give a fixed map when considering the change of Noh.
  • the correspondence map is automatically formed by learning using the means for specifying the division by the head mount sensor 24, and after the correspondence map is completed. Is operated without the head mount sensor 24.
  • FIG. 11 shows a flowchart for forming a correspondence map by a learning process. As shown in the figure, it takes time to form corresponding maps for all pixel positions or all sections of the front window.
  • the general control unit 101 can complete the corresponding map by interpolation work.
  • the process of specifying the section on the front window 12 in the third embodiment shown in FIG. 10 will be described in further detail.
  • the ray direction detector 120 outputs the direction of the ray 16 as the pixel position of the built-in image sensor, and the overall control unit 101 sends the front window through the dimming glass control unit 21.
  • the light transmittance of each section in section 12 is modulated to be identifiable, and section 19 is specified from the output fluctuation mode of the head mount sensor 24.
  • the overall control unit 101 stores the correspondence between the pixel position and the specified section 19 and controls the dimming of the section 19.
  • the light direction detector detects the distance to the light source together with the direction of the light beam and learns the correspondence map between the light direction and the distance to the light source and the light control glass section by learning. Let's make it.
  • Distance to light source In order to detect separation, two identical light direction detectors are placed depending on the position of the lens that forms the imaging optical system that minimizes the light spot by using an imaging optical system as the light direction detector. It is also possible to use the difference between the directions of the light beams output by both.
  • the distance from the light source it is not necessary to calculate the distance from the light source, and it is sufficient to obtain the parameters required to specify it.
  • the difference between the beam directions and their outputs and the corresponding map between the dimmable glass sections or the two outputs and the dimmable glass section are calculated. The purpose can be achieved if it is formed by the learning process as it is.
  • FIG. 9 shows the structure of the beam direction detector.
  • the beam direction detector 120 is configured by incorporating a two-dimensional image sensor 123 in a housing 121 having a minute opening 122.
  • the position of the light spot 1 25 formed on the image sensor 1 23 by the light beam 1 2 4 radiated from the small aperture 1 2 2 is detected by the pixels composing the image sensor 1 2 3. Let the position be the direction of ray 1 2 4.
  • the beam direction detector 130 shown in FIG. 13 has an imaging lens 13 2 in place of the minute aperture 122 shown in FIG.
  • the light beam direction detector 130 is constructed by incorporating a two-dimensional image sensor 133 inside a housing 131 having an imaging lens 132 in an opening.
  • the position of the light spot 135 formed on the image sensor 133 by the light beam 134 irradiated by the imaging lens 133 is detected by the pixels constituting the image sensor 133, and the position of the pixel is determined by the pixel position.
  • the direction of the beam 1 34 is assumed. Although the principle and operation of the beam direction detectors shown in Figs. 12 and 13 are the same, the size of a commonly used CCD image sensor is several millimeters square. Therefore, the beam direction detector 130 shown in FIG. 13 which can make the light spot 135 on the image sensor 133 smaller may be practical.
  • the image sensor built into these beam direction detectors outputs color information in addition to the pixel position of the light spot as an image sensor corresponding to a color image, and the general control unit uses the color information for emergency use.
  • the degree of dimming can be reduced and controlled so that information recognition for safety is not impaired. included.
  • Fig. 14 shows an example of setting the light transmittance stepwise in the dimming section.
  • the light transmittance is set low only for the section through which the light beam passes, the front scene seen through the window changes stepwise, and a slight unnaturalness can be denied when looking ahead.
  • dimming up to section 14 1 around it also absorbs section-specific errors.
  • the light transmittance is changed stepwise from the center to the periphery to match the surroundings, so that the front scene seen from the front window 12 has less discomfort.
  • two levels of light transmittance are set in the dimming region.
  • the basic configuration consists of at least a dimming glass optical system, a dimming glass driving unit, a head mount sensor, a beam direction detector, and a general control unit.
  • the light control glass is configured by enclosing a liquid crystal and an electrode, and is a well-known technique for display devices and the like, and therefore description thereof is omitted.
  • the beam direction detector 15 3 is placed at a position where the rearview mirror 15 1 is viewed from the side of the occupant 11 to detect the direction of the light beam 91, or at the rearview mirror 15 1 to look behind. To detect the direction of ray 18. Since the distance from the knock mirror 151 to the eyes of the occupant 11 is short and the angle change of the light beam 91 is small, it is generally difficult to detect the direction. Monitor. Figure 15 shows the latter example.
  • FIG. 16 shows a fifth embodiment of the present invention, in which a head-mounted sensor and a beam direction detector are used to deal with light beams from the front and rear of a vehicle.
  • the basic configuration in this embodiment is composed of at least a light control glass optical system, a light control glass drive unit, a head mount sensor, a light beam direction detector, and a general control unit.
  • the dimming glass optical system has a front window 12, a rear window 13 and a normal rearview mirror 14, which are made of dimming glass that can be dimmed in a piecewise manner.
  • the beam direction detector has a beam direction detector 161 for detecting the direction of the beam from the front and a beam direction detector 162 for detecting the direction of the beam from the rear. It is placed near the occupant 11 around the dove 12, the latter being mounted on the rearview mirror 14.
  • Two PCT / JP98 / 01863 light control glass drive units are used to drive and control each of the front window 12 and the rear window 13.
  • the light control glass of the front window 12 and the rear window 13 can be controlled by one light control glass drive unit assuming that the integrated light control glass is simply divided.
  • FIG. 16 does not particularly show the light control glass driving unit.
  • the head-mounted sensor 124 receives the light 16 entering the occupant's 11 eye from the front via the front window 12 and the occupant's 11 eye from the rear via the rear window 13 and the rearview mirror 14. A light beam 18 incident on is detected, and one head mount sensor 24 responds to light beams from the front and rear.
  • the overall control unit identifies the front window 12 and rear window 13 in coordination with the head-mounted sensor 24, the beam direction detectors 161, 162, starts and stops the entire system, and prevents glare. It supervises the setting of the target light intensity level or various settings such as the dimming control level and the operation of the entire system. 10 differs from the third embodiment shown in FIG. 10 in that a rear window 13, a back mirror 14, and a beam direction detector 162 for monitoring the rear are added. However, if the dimming glass is divided into a front window 12 and a rear window 13, the operation principle is exactly the same if one understands that the integrated dimming glass is merely a division.
  • the beam direction detectors 16 1 and 16 2 search for light beams 16 and 18 having a predetermined intensity or higher from the brightness while detecting the surrounding brightness.
  • the front window 12 and the rear window 13 modulate the light transmittance so that they can be identified, identify the section based on the output fluctuation of the head mounted sensor 24, and adjust the section.
  • the light is controlled so that the intensity of the light beam incident on the eyes of the occupant 11 becomes lower than a predetermined level.
  • the correspondence between the output of the beam direction output by the beam direction detectors 16 1 and 16 2 and the specified section is stored.
  • This process is repeated to form a corresponding map, and when the degree of perfection reaches a predetermined level, a part lacking the corresponding map is complemented automatically or instructed by interpolation work.
  • the classification is specified by the output of the beam direction detectors 16 1 and 16 2 and the corresponding map without using the head-mounted sensor 24. Dimming control.
  • the configuration, the principle operation, the operation, and the like of the present invention are described with reference to the embodiments. Focusing on the fact that the light is local, a vehicle that can improve external visibility by selectively reducing only harmful light by using a dimmable glass that can be dimmed in the window ⁇ A method was proposed and explained. The most important point is to identify and follow the section to be dimmed under conditions where the direction of the light beam from the outside fluctuates. However, a direct section determination method using a head-mounted sensor and a learning process are also adopted. We proposed an indirect classification estimation method using a beam direction detector.
  • the above-described apparatus and method according to the present invention are characterized by a simple configuration principle and low cost, and are further characterized by a flexible system configuration that can easily cope with fluctuations in environmental conditions such as an increase in occupants and movement of equipment. .
  • the present invention has been described by taking a car as an example, the arrangement of each component is not fixed, and it is possible to function with adaptability under arbitrarily installed conditions. It can be used for controlling unnecessary light beams in various optical devices and the like in addition to being mounted on vehicles such as automobiles. They are also important objects of the present invention.
  • the vehicle and the anti-glare device and the method for improving the external visibility according to the present invention, only the light emitted from the external light source and incident on the occupant's eyes is selectively dimmed to improve the external visibility. It provides vehicles that can be used, anti-glare devices, and application methods, and is effective for application to automobiles, trains, and aircraft. In addition, it can be applied to selective control of harmful rays incident on buildings, optical equipment, etc., not limited to vehicles.

Abstract

A vehicle improved in the outward sight of a driver on both the front and rear sides by reducing intense glaring light rays exceeding a given level incident to the eyes of the driver from an external light source, such as the sun, head lamps of approaching cars, etc., by selectively controlling the light transmittance to effect dimming through a light modulating window by using liquid crystal window glass which can sectionally modulate the light; and a device and method for reducing glare. The outward sight of the driver (11) is improved by reducing only light rays (16 and 18) incident to the eyes of the driver (11) from head lamps (15, 17) etc., by sectionally using light modulating window glass for the front window (12), rear window (13), etc., and specifying the section (19) of the front window (12) which transmits the light rays (16) or the section (20) of the rear window (13) which transmits the light rays (18) and controlling the light transmittance of the section (19 or 20) by making the driver (11) wear a head-mount sensor, etc., provided with a photodetector element which is brought nearer to the eyes of the driver.

Description

明細書 外部視認性を向上する乗り物及び防眩装置及び方法  Description Vehicle and anti-glare device and method for improving external visibility
技術分野 Technical field
本発明は外部光源からの強い入射光線を低減せしめて前方及び周囲の視認性を改善す る乗り物, 防眩装置及び方法に係わり, 特に区分的に調光可能な液晶ウィンドウガラス を用い, 眩しさの源となる外部光源から乗員の眼に入射する光線のみを調光ウィンドウ で選択的に減光して外部視認性を向上する乗り物, 防眩装置及び方法に係わる。  The present invention relates to a vehicle, an anti-glare device and a method for improving visibility in front and around by reducing strong incident light from an external light source. The present invention relates to a vehicle, an anti-glare device, and a method for improving external visibility by selectively dimming only light rays incident on an occupant's eyes from an external light source that is a source of the vehicle.
背景技術 Background art
自動車等の乗り物で太陽光或いは対向車のへッドライト等の入射により乗員の前方或 いは後方視認機能が著しく低下する事は広く知られており, 様々な工夫が為されてきた。 ウィンドウガラスの着色或は材質の工夫, バックミラーの反射率制御等である。 これら の手段には最近の技術成果の導入も検討されている。 例えば, 自動車のウィンドウガラ スに調光ガラスを用い, 光センサーにより強い外光を検出してウィンドウガラスの光透 過率を制御するようなもの, バックミラーに液晶ガラスを採用して反射率を制御するも の等である。 しかしながら, これらはウィンドウ全体或いはバックミラー全体の光透過 率或いは反射率を制御するもので必要以上の視野を遮る欠点を有する。 これら乗員の外部視認性を困難にする太陽光にしても或いは夜間の対向車のヘッドラ ィトにしても有害であるのは乗員の眼に入射する光線のみであってウィンドウガラスを 通過する点について考えれば局所的である。 このような観点に立ち, ウィンドウガラス の必要部分のみの光透過率を制御して乗員の眼に入る光線のみを減光する事が望ましく, 米国特許第 5 3 0 5 0 1 2号にある調光ガラスを採用した提案例はその趣旨に沿ってい る。 しかし重要な点は如何に調光ウインドウガラスに於いて制御すべき区分を特定する かであるが, 米国特許第 5 3 0 5 0 1 2号に提案されている例では, 立体カメラを用い て光源の位置を三次元座標上で特定し, また乗員の瞳を同じく別の立体カメラで三次元 座標上での位置特定を行って光線の通過する調光ウィンドウ上の区分を算出するもので その区分特定に至るプロセスが複雑でハ一ドウエアのコストも高く, 実用化には問題が 大きい。 また, 原理上システム要素の移動, 或いは対象乗員の追加等調整或いはコスト を要する要因が多く実用化は困難な面がある。 したがって, 本発明の目的とする処は乗員の外部視認性を妨げる一定レベル以上の強 度を有する光線の乗員の眼に入射する光線のみを選択的に减光或いは遮光出来る防眩装 置, 方法及び乗り物を安価に実現提供する事である。 It is widely known that sunlight or a headlight of an oncoming vehicle in a vehicle such as a car or the like significantly reduces the ability to visually recognize the front or rear of the occupant, and various devices have been devised. This includes coloring the window glass or devising the material, and controlling the reflectance of the rearview mirror. The introduction of recent technological achievements is being considered for these measures. For example, a light control glass is used for the window glass of an automobile, and a light sensor detects strong external light to control the light transmittance of the window glass. It is something to control. However, these control the light transmittance or reflectivity of the entire window or the entire rearview mirror, and have the disadvantage of blocking the field of view more than necessary. It is only light rays incident on the eyes of the occupants that pass through the window glass that are harmful to sunlight or the headlights of oncoming vehicles at night, which make the external visibility of the occupants difficult. Considered local. From this point of view, it is desirable to control the light transmittance of only the necessary portion of the window glass to diminish only the light rays entering the occupant's eyes, as disclosed in US Pat. No. 5,350,012. The proposal example using light glass is in line with the purpose. You. However, the important point is how to specify the section to be controlled in the dimming window glass. In the example proposed in US Pat. No. 5,350,012, a stereo camera is used. The position of the light source is specified on the three-dimensional coordinates, and the pupil of the occupant is also specified on the three-dimensional coordinates by another three-dimensional camera to calculate the division on the dimming window through which the light beam passes. The process of identifying the category is complicated and the hardware cost is high, which poses a serious problem for practical use. In addition, there are many factors that require adjustments such as the movement of system elements or the addition of target occupants, or cost, which makes practical application difficult. Accordingly, an object of the present invention is to provide an anti-glare device and method capable of selectively illuminating or blocking only light rays having an intensity of a certain level or higher that impede the occupant's external visibility and entering the occupant's eyes. And to provide vehicles at low cost.
発明の開示 Disclosure of the invention
乗り物の乗員の眼に入って外部視認性を妨げる恐れのある太陽光にしても他車のへッ ドライ トにしても乗員の眼に入射する光線だけが有害であり, ウィンドウガラスを通過 する場面に限って考えればそれらは局所的であるとの事実に立脚してこれら乗員の眼に 入射する光線のみを選択的に減光或いは遮光出来る乗り物, 防眩装置及び方法を提供す る。 具体的には, 乗り物に区分的に調光可能なウィンドウガラスを用い, 更に調光ウィン ドウ駆動部, 乗員の眼と外部光源との中間に位置する調光可能なウィンドウガラスの区 分特定手段, システム全体の制御を行う統括制御部等で構成し, 外部の強い光源と防眩 対象者の眼との間に介在する調光ウインドウガラスの区分を特定し, 調光ウインドウ駆 動部により調光ウインドウガラス該区分の光透過率を制御して外部の強い光源から防眩 対象者の眼への入射光のみを選択的に減光或いは遮光する乗り物, 防眩装置及び方法を 実現する。 調光可能なウインドウガラスは複数の区分を有して電極間に封入された液晶材料で構 成され, 電極間に電圧を加えて光透過率を制御できるもので広く表示機器等に利用され ている周知の技術である。 それらの各区分は調光ウインドウ駆動部により電気的に選択 され, 電気的に制御されて光透過率が個々に調整制御される。 システムを実現する上で最も重要な点は, 移動する外部光源に対して乗員の眼に入る 光線が通過する調光ウィンドウ上の区分を実時間で特定し続ける事であり, 本発明では 二種類の手段方法を提案している。 第一の手段は, 防眩対象とする乗員にヘッドマウン トセンサーを装着させて眼の近傍にセンサーを配置し, 調光ウインドウの区分を特定で きるような様式で区分毎に光透過率を変調し, へッドマウントセンサーの出力変動と同 一の様式で光透過率を変化させた区分を以て調光すべき区分と特定する。 第二の手段は, 乗員の近くのダッシュポード上, 或いは天井等に光線方向検知器を配置して入射光線の 方向を監視し, 予め定めた以上の強度の入射光線があった場合にはその光線方向検知器 の出力から対応する調光ウインドウ上の区分を特定して調光制御する。 後者の手段に於 いて, 光線方向検知器の出力から調光制御すべき調光ウィンドウ上の区分を決定するに は予め定めた対応マップに依るが, この対応マップの形成には学習過程を応用し, 特に 第一の手段を学習過程に利用して自動化する。 このように本発明に依れば, 区分的調光ウィンドウを用いた乗り物に於いて, シンプ ルな機器 ·方法により調光すべき区分の特定が可能である。 調光ウインドウの区分を特 定する第一の手段では直接的に調光ウィンドウの区分を特定でき, へッドマウントセン サ一の数を増やす事も, 移動も, 何らシステムでの調整その他の処理を必要としない。 また, 第二の手段では光線方向検知器出力と調光ウィンドウ区分との対応マップを必要 とするが, これも第一の手段を使用しての学習過程により自動的に形成する事でそれら システム要素の調整, 設定等の作業は必要としない。 等々本発明によれば構成する要素 の設置 ·移動が柔軟であって, 乗員の眼に入射する光線のみを選択的に減光或いは遮光 して外部視認性を向上できる乗り物及び防眩装置, 方法を安価に実現できる。 Even when sunlight enters the eyes of a vehicle occupant and hinders external visibility, even if it is a headlight of another vehicle, only light rays incident on the occupant's eyes are harmful and pass through the window glass. In view of the fact that they are local, the present invention provides a vehicle, an anti-glare device and a method capable of selectively dimming or blocking light rays incident on the eyes of these occupants based on the fact that they are local. Specifically, the vehicle uses a dimmable window glass that can be dimmed separately, and furthermore, a dimming window drive unit and a means for identifying the dimmable window glass located between the occupant's eyes and the external light source. , A general control unit that controls the entire system, identifies the section of the dimming window glass interposed between the external strong light source and the eye of the anti-glare subject, and controls the dimming window driving section. A vehicle, an anti-glare device and a method for selectively dimming or blocking only light incident on an eye of an anti-glare subject from an external strong light source by controlling the light transmittance of the section of the light window glass. The dimmable window glass is composed of a liquid crystal material that has multiple sections and is sealed between the electrodes. It can control the light transmittance by applying a voltage between the electrodes, and is widely used in display devices and the like. Is a well-known technique. Each of these sections is electrically selected by the dimming window driver, and is electrically controlled to individually adjust and control the light transmittance. The most important point in realizing the system is to specify in real time the section on the dimming window through which the light beam entering the occupant's eye passes with respect to the moving external light source. Means are proposed. The first means is to attach a head mount sensor to the occupant to be anti-glare, place the sensor near the eyes, and modulate the light transmittance for each section in such a way that the section of the dimming window can be specified. Then, the section whose light transmittance is changed in the same manner as the output fluctuation of the head mount sensor is identified as the section to be dimmed. The second means is to install a beam direction detector on the dashboard near the occupant or on the ceiling to monitor the direction of the incident beam. The dimming control is performed by specifying the corresponding section on the dimming window from the output of the beam direction detector. In the latter method, the division on the dimming window to be controlled for dimming from the output of the beam direction detector depends on a predetermined correspondence map, but a learning process is applied to form this correspondence map. In particular, the first method is used in the learning process for automation. Thus, according to the present invention, in a vehicle using a piecewise dimming window, it is possible to specify a section to be dimmed by a simple device and method. The first method to identify the dimming window section can directly identify the dimming window section, and requires any adjustments or other processing in the system, such as increasing the number of head-mounted sensors, moving them, and so on. And not. In addition, the second means requires a correspondence map between the beam direction detector output and the dimming window section, but this is also automatically formed by the learning process using the first means, and these systems are used. No adjustment or setting of elements is required. According to the present invention, the constituent elements are installed and moved flexibly, and only light rays incident on the eyes of the occupant are selectively dimmed or blocked. Thus, a vehicle and an anti-glare device and method capable of improving external visibility can be realized at low cost.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
本発明の原理作用動作を説明する為に用いた図面類の簡単な説明を行う。  A brief description of the drawings used to explain the operation of the principle of the present invention will be given.
第 1図は, 本発明の背景と基本的な考え方を示す為に自動車と乗員, 更に前後に他車 のヘッドライトが存在する場合を示し, 前方のヘッドライトからはフロントウィンドウ ガラスを介して乗員の眼に光線が入射し, 後方のヘッドライトからはリアウィンドウ, ノ ックミラーを介して乗員の眼に光線が入射して乗員の外部視認性を損なう可能性を示 す。 同図に於いて, それらの光線はほぼ自動車全体を照射する事になるが, 乗員の眼に 入射する光線に限定すれば, フロントウィンドウ, リアウィンドウの極めて局所的な部 分を通過する事も併せて示している。 第 2図は, 本発明の第一の実施例を説明する為の図でウィンドウガラスに区分的に調 光可能な調光ガラスを用い, 乗員は眼の近傍に光検知素子が配置されるようなへッドマ ゥントセンサーを装着する。 第 3図は, 眼の周辺に配置されるよう光検知素子が眼鏡様の支持部に保持されたへッ ドマゥントセンサーの例を示す。 第 4図は, 調光ウィンドウの各区分の光透過率を二値的に変更して平均としての光透 過率を制御する場合に於いて, 区分毎にはタイミングを変えて識別可能に変調し, へッ ドマゥントセンサーの出力と比較して区分を特定する例を示す。 第 5図は, 調光ウィンドウの各区分の光透過率を二値的に変更して平均としての光透 過率を制御する場合に於いて, 既に特定された調光ウインドウ区分を含む周辺区分の光 透過率を重点に区分毎にはタイミングを変えて変調し, へッドマゥントセンサーの出力 と比較する追従モードの例を示す。 第 6図は, ヘッドマウントセンサ一を用いて調光ウィンドウ区分を特定し, 光透過率 を制御する簡単なフロ一図を示す。 第 7図は, 眼の周辺に配置されるよう反射素子が眼鏡様の支持部に保持されたへッド マウントセンサ一及び光検知素子の例を示す。 第 8図は, へッドマウントセンサーの光検知素子に赤色を通過させないようなフィル ターを配し, 赤色には反応しないようなへッドマウントセンサー構造を示す。 第 9図は, 本発明の第二の実施例を説明する為の図でリアウィンドウに区分的に制御 可能な調光ガラスを用い, バックミラーを通して乗員の眼に入射する光線をへッドマウ ントセンサーにより区分特定して選択的に調光制御する例を示す。 第 1 0図は, 本発明の第三の実施例を説明する為の図で光線方向検知器とへッドマウ ントセンサーを有し, 学習過程併用で調光ウィンドウの区分特定をして乗員の眼に入射 する光線を選択的に調光制御する例を示す。 第 1 1図は, 光線方向検知器出力と調光ウィンドウ区分との対応を示す対応マップを 形成する為の学習過程を含むフロー図を示す。 第 1 2図は, 微小開口とイメージセンサーを有する光線方向検知器の例を示す。 第 1 3図は, 簡単な結像光学系とイメージセンサーを有する光線方向検知器の例を示 す。 第 1 4図は, 調光区分領域で光透過率を段階的に設定する例を示す。 第 1 5図は, 本発明の第四の実施例を説明する為の図で光線方向検知器, ヘッドマウ ントセンサーを用いて調光バックミラーの制御を行う構成例を示す。 第 1 6図は, 本発明の第五の実施例を説明する為の図で光線方向検知器, ヘッドマウ ントセンサ一を用いてフロント, 及びリアのウインドウの調光制御を同時に行う構成例 を示す。 Fig. 1 shows the background of the present invention and the basic concept, showing the case in which the car and the occupant, and the headlights of other cars before and after, are occupied by the front headlight through the windshield. The light beam enters the eyes of the occupant, and from the rear headlights enters the occupant's eyes through the rear window and knock mirror, which may impair the occupant's external visibility. In the figure, these rays illuminate almost the entire car, but if they are limited to rays that enter the occupant's eyes, they may pass through extremely local parts of the front and rear windows. Also shown. FIG. 2 is a view for explaining the first embodiment of the present invention, in which a dimmable glass that can be dimmed dimmably is used for the window glass, so that the occupant can arrange the photodetector near the eyes. Attach a suitable head mount sensor. FIG. 3 shows an example of a head mount sensor in which a light detecting element is held on a spectacle-like support so as to be arranged around the eye. Figure 4 shows the case where the light transmittance of each section of the dimming window is changed in a binary manner to control the average light transmittance. Then, an example of specifying the classification by comparing it with the output of the head mount sensor is shown. Figure 5 shows the case where the light transmittance of each section of the dimming window is changed in a binary manner to control the average light transmittance. The light transmittance of the light is emphasized and the timing is changed for each section with modulation, and the output of the head mount sensor is output. 5 shows an example of a following mode to be compared with the following. Fig. 6 shows a simple flow diagram for controlling the light transmittance by specifying the dimming window section using a head-mounted sensor. FIG. 7 shows an example of a head mount sensor and a light detecting element in which a reflective element is held on a spectacle-like support so as to be arranged around the eye. Fig. 8 shows the structure of a head-mounted sensor in which a light-blocking filter is arranged on the light-sensing element of the head-mounted sensor so that it does not pass red light. FIG. 9 is a view for explaining a second embodiment of the present invention, in which a dimming glass that can be controlled in a piecewise manner is used for a rear window, and a light beam incident on an occupant's eye through a rearview mirror is used as a head mount sensor. An example is shown in which the dimming control is selectively performed and the light control is selectively performed. FIG. 10 is a view for explaining a third embodiment of the present invention, which has a light direction detector and a head mount sensor, and identifies a dimming window in combination with a learning process to identify an occupant's eye. An example is shown in which dimming control is selectively performed on a light beam incident on. Figure 11 shows a flow diagram including a learning process for forming a correspondence map showing the correspondence between the beam direction detector output and the dimming window section. Fig. 12 shows an example of a beam direction detector having a small aperture and an image sensor. Fig. 13 shows an example of a beam direction detector having a simple imaging optical system and an image sensor. Fig. 14 shows an example of setting the light transmittance stepwise in the dimming section. FIG. 15 is a diagram for explaining a fourth embodiment of the present invention, and shows a configuration example in which a light control rear mirror is controlled using a light beam direction detector and a head mount sensor. FIG. 16 is a diagram for explaining the fifth embodiment of the present invention, and shows a configuration example in which dimming control of the front and rear windows is simultaneously performed using a light beam direction detector and a head mount sensor.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明の構成, 原理, 動作について以下に図面を用いて詳しく説明する。  The configuration, principle, and operation of the present invention will be described below in detail with reference to the drawings.
第 1図は自動車のウィンドウガラス, バックミラー等外部視認の為の構造と乗員, 更 に外部の光源等を示し, これにより本発明の背景と基本的な考え方を説明する。 同図に 於いて自動車 1 0の前後に他車のヘッドライト 1 5, 1 7があり, それらから番号 1 6, 1 8で示す光線が乗員 1 1の眼に入射しているものとする。 光線 1 6はフロントウィン ドウ 1 2を通り, 光線 1 8はリアウィンドウ 1 3, ノ ックミラー 1 4を介して乗員 1 1 の眼に入射する。 図では夜間に於いてそれぞれ前後から他車のヘッドライトの光が入射 する事を想定しているが, 昼間に於いても太陽光の入射があり, 外部特に前方への視認 性を著しく損なう場合が多い。 これらに対処して, ウィンドウガラスには着色して光透 過率を減少せしめたり, 或はバックミラーでは昼間, 夜間で反射率を変更できる製品も ある。 しかしながら, 徒にそれら入射光を恐れるあまりにウィンドウ全体の光透過率を 一様に低下させては外部視認性を著しく低下させてしまう結果となる。 本発明では, これらの太陽光にしても他車のヘッドライトにしても乗員の眼に入射す る光線だけが有害であり, ウィンドウガラスを通過する場面に限つて考えればそれらは 局所的であるとの事実に立脚してこれら乗員の眼に入射する光線のみを選択的に減光或 63 いは遮光出来る乗り物及び防眩装置, 方法を考える。 即ち, 第 1図に於いてヘッドライ ト 1 5及ぴ 1 7は自動車 1 0全体を照射しているが, 乗員 1 1の眼に入射する光線 1 6 がフロントウィンドウ 1 2を通過する際に通る区分 1 9, 及び光線 1 8がリアウィンド ゥ 1 3を通過するに際して通る区分 2 0等のみの光透過率を制御する乗り物或いは防眩 装置或いは方法を提案する。 Fig. 1 shows the structure of a vehicle window glass, rearview mirror, etc. for viewing outside, the occupants, and also the external light source, etc., to explain the background and basic concept of the present invention. In this figure, it is assumed that headlights 15 and 17 of other vehicles are located before and after the vehicle 10 and light beams indicated by numbers 16 and 18 are incident on the eyes of the occupant 11 from them. Ray 16 passes through the front window 12, and ray 18 enters the occupant's 11 eye through the rear window 13 and the knock mirror 14. In the figure, it is assumed that the light from the headlights of other vehicles is incident from the front and rear at night, but sunlight is also incident during the day, which significantly impairs the visibility especially outside. There are many. In response to this, some window glasses are colored to reduce the light transmittance, or some rearview mirrors can change the reflectance during the day and at night. However, if the light transmittance of the entire window is reduced uniformly too much to fear the incident light, the external visibility will be significantly reduced. In the present invention, only the rays incident on the occupant's eyes are harmful regardless of the sunlight or the headlights of other vehicles, and they are local when considered only when passing through the window glass. Based on the fact that only the rays incident on these occupants' eyes are selectively dimmed or 63 Consider a vehicle that can block light and anti-glare devices and methods. That is, in Fig. 1, the headlights 15 and 17 illuminate the entire vehicle 10 but the rays 16 incident on the eyes of the occupant 11 pass through the front window 12 A vehicle or an anti-glare device or method for controlling the light transmittance of only the section 20, etc., when the section 19 and the light beam 18 pass through the rear window # 13 is proposed.
しかしながら, 自動車を初め航空機にしても乗り物は自身で方向転換をするものであ り, 他車もまた同じく走行中に方向変換をし, 更に対向車の場合は相互に近づきすれ違 うので必然的に入射する光線の方向は変化する。 すなわち, 光線 1 6がフロントウィン ドウ 1 2を通過する区分及び光線 1 8がリアウィンドウ 1 3を通過する区分は時間と共 に移動するのでこの光透過率を制御する区分の特定及ぴ追従が最重要課題となる。 本発明の考え方をを第 1図を用いて再度簡潔に述べれば, フロントウィンドウ 1 2, 或はリアウィンドウ 1 3或いは更に必要なら側面のウィンドウ, 上部ウィンドウ等には 区分的に調光可能な調光ウィンドウガラスを用い, 光線 1 6がフロントウィンドウを通 過する区分 1 9 , 或は光線 1 8がリアウィンドウを通過する区分 2 0等を特定, 追従し てその光透過率を制御し, へッドライト 1 5, 1 7から乗員 1 1の眼に入射する光線 1 6 , 1 8を選択的に低滅せしめて乗員 1 1の外部視認性を向上する。  However, even in the case of vehicles such as automobiles, vehicles change direction on their own, and other vehicles also change direction while traveling, and in the case of oncoming vehicles, they approach each other and are inevitable. The direction of the light beam incident on is changed. In other words, the section where the ray 16 passes through the front window 12 and the section where the ray 18 passes through the rear window 13 move with time, so that the section that controls the light transmittance cannot be specified and followed. This is the most important issue. The concept of the present invention will be briefly described again with reference to FIG. 1. If the front window 12 or the rear window 13 or, if necessary, the side window, the upper window, and the like, the dimmable dimming is possible. Using an optical window glass, the section 19 where the light beam 16 passes through the front window, or the section 20 where the light beam 18 passes through the rear window, etc. are specified and controlled, and their light transmittance is controlled. Light rays 16 and 18 entering the eyes of the occupant 11 from the headlights 15 and 17 are selectively reduced to improve the external visibility of the occupant 11.
第 2図は, 本発明の第一の実施例の機能ブロック図を示し, ヘッドマウントセンサー を用いてフロントウィンドウの調光制御を行う例を示す。 基本的な構成は少なくとも調 光ガラス光学系, 調光ガラス駆動部, ヘッドマウントセンサー, 統括制御部とより構成 される。 FIG. 2 is a functional block diagram of the first embodiment of the present invention, showing an example in which dimming control of a front window is performed using a head-mounted sensor. The basic configuration consists of at least a dimming glass optical system, a dimming glass driving unit, a head mount sensor, and a general control unit.
調光ガラス光学系は, 電気的に選択可能で且つ電気的に各々独立に光透過率を制御可 能な複数の区分を持つ調光 ラスより構成されるフロントウィンドウ 1 2である。 調光 ガラスは液晶, 電極を封入して構成され, 表示機器等で既に周知の技術であるので説明 は省略する。 調光ガラス駆動部 2 1は, フロントウィンドウ 1 2の区分と, その区分での光透過率 の とを指示されて当該区分を電気的に選択し, 目標とする光透過率に見合つた電気 信号を加える事で光透過率を区分的に制御調整する。 調光ガラス区分の光透過率は加え る電圧によって変化するが, 制御の方法としては, 目的とする光透過率に適合するよう アナログ的に電圧を変更制御する, 或いは加える電圧は二値的とし, 即ち光透過率も高 低の二種類として時間軸上で高, 低それぞれの持続時間を変更制御する事で平均として の光透過率を制御する方法がある。 マイクロコンピュータ一によるディジタル制御が一 般化した今日では後者の方法がコスト的に有利で本発明の説明も専ら後者の方法に依る が, 前者の方法でも本発明は実現できる。 Light control glass optics are electrically composed of dimming lath with controllable capacity plurality of divided light transmittance selectable in and electrically independently front window 1 2. The dimming glass is composed of liquid crystal and electrodes encapsulated, and is a well-known technology for display devices and so on, and its description is omitted. The dimming glass drive unit 21 is instructed by the section of the front window 12 and the light transmittance of the section, electrically selects the section, and generates an electric signal corresponding to the target light transmittance. Is added to control and adjust the light transmittance in a piecewise manner. The light transmittance of the light control glass section changes according to the applied voltage. As a control method, the voltage is changed and controlled in an analog manner so as to conform to the desired light transmittance, or the applied voltage is binary. That is, there is a method of controlling the average light transmittance by changing and controlling the duration of each of high and low on the time axis as two types of light transmittance, high and low. Today, when digital control by a microcomputer is generalized, the latter method is advantageous in terms of cost and the description of the present invention is exclusively based on the latter method. However, the present invention can also be realized by the former method.
統括制御部 2 2は, ヘッドマウントセンサ一 2 4と共同しての区分特定, システム全 体の起動停止, 防眩対象とする光線強度レベルの設定, 或いは減光制御のレベル等各種 の設定及びシステム全体の動作を統括する。  The overall control unit 22 performs various kinds of settings such as classification and identification in cooperation with the head mount sensor 24, start / stop of the whole system, setting of the light intensity level to be anti-glare, or level of dimming control. Controls the operation of the entire system.
へッドマウントセンサー 2 4は乗員 1 1が装着する事により眼の近傍に光検知素子 2 5が配置されるような構造として乗員 1 1の眼に入射する光線強度を検知する。 上記の構成に於いて, 他車のへッドライ ト 1 5からフロントウインドウ 1 2を通って 乗員 1 1の眼に入る光線 1 6はヘッドマウントセンサー 2 4により検知され, その強度 が明るさセンサ一 2 3によって検知される周囲の明るさに比して所定以上に大である時, 統括制御部 2 2は調光ガラス駆動部 2 1に指示してフロントウィンドウ 1 2の各部分が 識別可能なように光透過率を変調し, へッドマウントセンサ一 2 4で検知する光線強度 の変動態様から光線 1 6が通過する区分 1 9を特定し, 区分位置と光透過率の低下の程 度等を調光ガラス駆動部 2 1に指示して光透過率を滅少させ, 乗員 1 1の眼に入射する 光線 1 6の強度を減少させる。 明るさセンサー 2 3は光検知素子を持ち, 入射光線が直 接に入射しないように配置されて周囲の明るさを検知する。 第 3図は第 2図の例で使用するへッドマウントセンサー 2 4の構成例を示す。 同図に 於いて, へッドマウントセンサ一 2 4は眼鏡様の支持部 2 6に光検知素子 2 5を眼の周 辺に配置して構成し, 眼への入射光線の強度を検知する。 番号 2 7は光検知素子 2 5の 出力線であるが, 電磁波, 赤外線等を利用してワイヤレス化も可能である。 また, 透明 な光検知素子を直接眼鏡レンズの上に構成して眼の前面に配置すれば精度を更に向上す る事が可能である。 本発明の第一の実施例で示すように重要な点はフロントウインドウ 1 2で調光すべき 区分 1 9の特定であり, 第 4図, 第 5図を用いてウィンドウ各区分での光透過率変調を する電圧波形例, 或いはへッドマウントセンサー 2 4の出力波形等を示して区分特定の 方法を更に詳しく説明する。 これらの図に於いては, 各区分の光透過率は高低の二値の みを取り得るとして区分の特定, 調光制御を行う例を説明する。 The head mount sensor 24 detects the intensity of the light beam incident on the eyes of the occupant 11 as a structure in which the light detecting element 25 is arranged near the eyes when worn by the occupant 11. In the above configuration, the light beam 16 entering the eyes of the occupant 11 from the headlight 15 of another vehicle through the front window 12 is detected by the head mount sensor 24, and the intensity is detected by the brightness sensor. When the brightness is higher than a predetermined value compared to the ambient brightness detected by 23, the general control unit 22 instructs the light control glass drive unit 21 to identify each part of the front window 12 The light transmittance is modulated as described above, and the section 19 through which the light beam 16 passes is specified based on the variation of the light intensity detected by the head mount sensor 124, and the position of the section and the degree of decrease in the light transmittance are determined. Instruct the light control glass drive unit 21 to reduce the light transmittance and reduce the intensity of the light beam 16 incident on the occupant 11's eye. The brightness sensor 23 has a light detection element and is arranged so that the incident light does not enter directly, and detects the surrounding brightness. FIG. 3 shows a configuration example of the head mount sensor 24 used in the example of FIG. In the same figure, a head mount sensor 24 has a light-sensitive element 25 attached to a spectacle-like support portion 26 around the eye. It is arranged on the side and detects the intensity of the light beam incident on the eye. Numeral 27 is the output line of the photodetector 25, but wireless transmission is possible using electromagnetic waves, infrared rays, and the like. In addition, the accuracy can be further improved if the transparent photodetector is configured directly on the spectacle lens and placed in front of the eye. An important point as shown in the first embodiment of the present invention is the specification of the section 19 to be dimmed in the front window 12 and the light transmission in each section of the window is described with reference to FIGS. An example of a voltage waveform for rate modulation or an output waveform of the head mount sensor 24 will be described to explain the method of specifying the division in more detail. In these figures, examples are given in which sections are specified and dimming control is performed, assuming that the light transmittance of each section can take only binary values, high and low.
第 4図に於いて, 番号 4 1は基準タイミングを示し, 番号 4 2, 4 3, 4 4は各区分 に加える電圧波形を示す。 調光ガラス各区分に加える電圧は, 高い電圧で光透過率は高 く, 低い電圧で光透過率は低く対応するものとする。 各区分の電圧は番号 4 6, 4 7, 4 8にそれらの波形を示すように基準タイミング 4 1を基準に異なったタイミングで短 時間パルス的に電圧を低下させて光透過率を減少させる。 乗員 1 1の眼に強い光線 1 6 が入射すればへッドマウントセンサー 2 4により検知される力 へッドマウントセンサ 一 2 4の出力には上記光透過率の変調も検出される害である。 同図に於いて, 番号 4 5 はへッドマゥントセンサ一 2 4での出力電圧を示すが, 番号 4 9に示すように出力が減 少する波形が見られ, これと同一タイミングで光透過率が低下させられている区分が光 線 1 6の通過している区分と特定できる。 同図に於いて, 番号 4 3に相当する区分がそ れであり, 光透過率を変調する電圧波形番号 4 7とへッドマウントセンサー 2 4の出力 波形変化である番号 4 9が対応している。 このように区分特定は各区分を識別可能なよ うに光透過率を変調し, へッドマウントセンサー 2 4の出力を監視する事で直接的に可 能である。 区分の数が全体として少ない場合には全部の区分での光透過率変調のタイミ ングを変えて駆動する事も可能であるが, 分解能を挙げる為に区分の数を増した場合に は縦横の帯状の領域毎にタイミングを変えて区分を追い込んで行く方法が実用的である。 区分特定後に当該区分の光透過率を低下させるには, 基準タイミング間隔内で光透過 率を低下させる時間の割合を増加させて行う。 この場合は, 番号 4 7に相当する光透過 率を低下させる領域の占める時間を長くして平均としての光透過率を下げて乗員の眼に 入射する光線の強度を低減する。 当然にこれらの繰り返しの程度は人間が視認できない ほどの早さで行う必要があり, 基準タイミングの繰り返しは 1秒間に数十回以上に設定 する。 また, 特定された区分の光透過率の最適レベル設定, 光線強度の監視は平均とし てのへッドマゥントセンサー出力が所定のレベルとなるようフィードバック制御し, 光 透過率を減少していない時間帯の瞬時強度を以て光線の強度を監視する。 第 5図では区分特定後の各区分の制御, 及び光源移動に伴う区分追従の方法について 説明する為の図である。 同図に於いて, 番号 4 3で示す区分が調光すべき区分と判定さ れた後, 基準タイミング内での減光すべき割合を増加する事で平均としての光量を减少 せしめる。 番号 5 1で示すへッドマゥントセンサ一の出力にその光線の減光する区間が 番号 5 3として現わされている。 本発明の主要な応用面である乗り物等では光源が必然 的に移動するので調光すべき区分をリアルタイムで捕捉する必要がある。 同図の場合, 区分 4 3に於いて光透過率が高い時間帯に他の番号 4 2 , 4 4で示す区分の光透過率を それぞれ識別可能なように基準タイミング 4 1からの時間を異ならせて短くパルス状に 滅光している。 光線の通過する区分が 4 3のみである場合には番号 5 1で示すようにへ ッドマゥントセンサー 2 4の出力には何らの波形変化も現れないが, 光線が移動して番 号 4 4で示す区分までも通過している場合には番号 4 3で示す区分通過の割合が減る為 にへッドマウントセンサー出力は番号 5 2で示すように番号 5 4で示す减光部分の出力 レベルが若干上昇し, 番号 4 4で示す区分の光透過度が減少するタイミング 4 8と同一 タイミングでへッドマウントセンサーの出力が番号 5 5で示すように減少している。 こ のようにして光源移動に伴う調光すべき区分移動を監視して追従する事も容易に可能で ある。 また, 光線移動の連続性は考慮できるので番号 4 2, 4 4で示すように光透過率 を変調して探索する区分は現在の区分 4 3の周辺に限定して実施する事もできる。 これ らのプロセスは第 6図にフロー図として示してある。 /JP 8/01863 へッドマウントセンサ一を用いてウィンドウ内の調光すべき区分の特定は容易に且つ 精度良くできるが, 一方では常に出力線を有するへッドマウントセンサーを装着するの は煩わしいと感じられる。 電磁波, 赤外線等を利用してワイヤレスで構成する方法もあ るが, 第 7図では反射素子を応用してワイヤレスとした例を説明する。 同図に於いて, へッドマゥントセンサー 7 0を眼鏡様の支持体 7 2に反射素子 7 1を有するものとし, 眼への入射光線 1 6が反射されるように眼の周辺に反射素子 7 1を配置する。 一方, 乗 員 1 1の頭上或いは前方, フロントウィンドウ 1 2の上辺近傍に光検知素子 7 3を配置 し, 乗員 1 1の眼に入射した光線 1 6を前記反射素子 7 1により反射させ (番号 7 4 ) , しかる後に光検知素子 7 3により検知する。 反射素子 7 1と光検知素子 7 3との相対関 係は不定であるので反射素子 7 1は方向を或程度定めて乱反射する構造, 或いは或程度 の領域に集中して反射するような曲面形状が望ましい。 第 8図を用いて, 調光対象の光線を色で選別する例を説明する。 第 2図に示す第一の 実施例によればへッドマウントセンサー 2 4が有害な光線を検知して極めて短時間の内 に選択的に減光し, 乗員の外部視認性を向上出来る。 しかしながら, 一般に赤色は自動 車のストップランプ, 或いは非常灯等に通常用いられるが, この赤色にまで反応して減 光しては, 乗員の認識に過誤をもたらし, 逆に自動車の安全な運行に支障を来して本発 明の趣旨に反しかねない。 本実施例ではへッドマウントセンサー 2 4の光検知素子 2 5 に赤色を透過させないようなフィルター 8 1を配置し, へッドマゥントセンサー 2 4は 赤色以外の光線のみを検知できるよう構成する。 このように構成すれば, ヘッドマウン トセンサー 2 は赤色の光線には出力しないので, もし外部の光源が赤色のみで有れば, 調光機能は働かず, 乗員の眼に赤色系統で統一された危険信号は減光されずに入射し, 乗員が認識を損なう事は無い。 更に, ヘッドマウントセンサー 2 4の光検知素子 2 5を 色彩識別可能な素子を用いて統括制御部との連携で赤色その他の光線に対しては減光の 程度を軽減するなど調光態様を変えて外部の安全確認を向上させる事も可能である。. 第 9図は本発明の第二の実施例の機能プロック図を示し, 自動車の後方から乗員の眼 に入射する光線を選択的に低减する例を説明する。 第 2図に示した第一の実施例と同様 に基本的な構成は少なくとも調光ガラス光学系, 調光ガラス駆動部, ヘッドマウントセ ンサ一, 統括制御部とより構成されるが, 第 2図とは調光ガラス光学系の構成のみが少 し異なる。 第 9図の例では, 調光ガラス光学系は, 区分的に調光可能な調光ガラスで構 成されたリアウィンドウ 1 3と通常のバックミラ一 1 4とで構成する。 In Fig. 4, number 41 indicates the reference timing, and numbers 42, 43, and 44 indicate the voltage waveforms applied to each section. The voltage applied to each section of the light control glass is such that the higher the voltage, the higher the light transmittance, and the lower the voltage, the lower the light transmittance. As shown in the waveforms of numbers 46, 47, and 48, the voltage of each section decreases the voltage in a short-time pulse manner at different timings based on the reference timing 41 to reduce the light transmittance. If a strong light ray 16 enters the eyes of the occupant 1 1, the force detected by the head mount sensor 2 4 is output. is there. In the figure, the number 45 indicates the output voltage from the head mount sensor 124. As shown in the number 49, a waveform in which the output decreases is seen. The section where the transmittance is reduced can be identified as the section through which the light beam 16 passes. In the figure, the category corresponding to No. 43 corresponds to the voltage waveform No. 47 that modulates the light transmittance and the No. 49, which is the change in the output waveform of the head mount sensor 24. ing. In this way, section identification is directly possible by modulating the light transmittance so that each section can be identified, and monitoring the output of the head mount sensor 24. When the number of sections is small as a whole, it is possible to change the timing of light transmittance modulation in all sections, and drive is possible. However, when the number of sections is increased to increase the resolution, vertical and horizontal It is practical to change the timing for each band-shaped area to drive the sections. To reduce the light transmittance of a section after the section is specified, the light transmission must be performed within the reference timing interval. Do this by increasing the percentage of time to decrease the rate. In this case, the time occupied by the area where the light transmittance is reduced, which corresponds to No. 47, is extended to lower the average light transmittance and reduce the intensity of the light rays entering the occupant's eyes. Naturally, these repetitions must be performed so quickly that humans cannot see them, and the repetition of the reference timing is set to several tens of times or more per second. In addition, the optimum level of the light transmittance for the specified section and the monitoring of the light intensity are feedback-controlled so that the average output of the head mount sensor is at a predetermined level, and the light transmittance is not reduced. The light intensity is monitored based on the instantaneous intensity in the time zone. Fig. 5 is a diagram for explaining the control of each section after the section is specified, and the method of section following in accordance with the movement of the light source. In the figure, after the section indicated by No. 43 is determined to be the section to be dimmed, the average amount of light is reduced by increasing the ratio of dimming within the reference timing. The section where the light is dimmed is shown as No. 53 in the output of the head mount sensor 1 indicated by No. 51. In a vehicle or the like which is a main application of the present invention, it is necessary to capture a section to be dimmed in real time because a light source necessarily moves. In the case of this figure, if the time from the reference timing 41 is different so that the light transmittance of the other segments 42 and 44 can be distinguished during the time zone where the light transmittance is high in category 43, respectively. And the light is shortly pulsed. When the light beam passes through only 43, no waveform change appears in the output of the head mount sensor 24 as shown by number 51, but the light beam moves and the number 4 When passing through the section indicated by 4, the output of the head mount sensor is indicated by the number 54. The level increases slightly, and the output of the head mount sensor decreases as indicated by the number 55 at the same timing as the timing 48 when the light transmittance of the section indicated by the number 44 decreases. In this way, it is easy to monitor and follow the movement of the section to be dimmed due to the movement of the light source. In addition, since the continuity of ray movement can be taken into account, the sections to be searched by modulating the light transmittance as shown by numbers 42 and 44 can be limited to the area around the current section 43. These processes are shown as a flow diagram in FIG. / JP 8/01863 Although it is easy and accurate to identify the section to be dimmed in a window using a head-mounted sensor, it is difficult to always use a head-mounted sensor with an output line. I feel annoying. There is also a wireless configuration method using electromagnetic waves, infrared rays, etc., but Fig. 7 describes an example in which a reflection element is used to make wireless. In this figure, the head mount sensor 70 is assumed to have a reflective element 71 on a spectacle-like support 72, and is reflected to the periphery of the eye so that a ray 16 incident on the eye is reflected. The element 71 is arranged. On the other hand, a light detecting element 73 is arranged above or in front of the occupant 11 and near the upper side of the front window 12 so that the light beam 16 incident on the occupant 11's eye is reflected by the reflecting element 71 (number 7 4) Then, the light is detected by the photodetector 73. Since the relative relationship between the reflection element 71 and the light detection element 73 is undefined, the reflection element 71 has a structure in which the direction is determined to some extent and irregularly reflected, or a curved surface shape which concentrates and reflects in a certain area. Is desirable. An example of selecting light beams to be dimmed by color will be described with reference to FIG. According to the first embodiment shown in FIG. 2, the head mount sensor 24 detects a harmful light beam and selectively dims it in an extremely short time, thereby improving the external visibility of the occupant. However, red is generally used for stop lamps or emergency lights in automobiles, etc. However, if the red light is used in response to this red light, it will cause erroneous recognition of occupants, and conversely, the safe operation of vehicles. It may hinder the purpose of the present invention. In the present embodiment, a filter 81 for preventing the transmission of red light is disposed in the light detecting element 25 of the head mount sensor 24, and the head mount sensor 24 is configured to detect only light beams other than red light. I do. With this configuration, the head mount sensor 2 does not output red light, so if the external light source is only red, the dimming function does not work and the eyes of the occupants are unified with a red system. The danger signal is incident without dimming and does not impair the occupants' perception. In addition, the light detection element 25 of the head mount sensor 24 uses a color-identifiable element to cooperate with the overall control unit to reduce the degree of dimming of red and other light rays, and to change the dimming mode. It is also possible to improve external safety checks. FIG. 9 shows a functional block diagram of the second embodiment of the present invention, in which the eyes of an occupant are viewed from behind a vehicle. An example will be described in which the light rays incident on the light are selectively reduced. Similar to the first embodiment shown in FIG. 2, the basic configuration is composed of at least a dimming glass optical system, a dimming glass driving unit, a head mount sensor, and a general control unit. Only the configuration of the light control glass optical system differs slightly from the figure. In the example shown in Fig. 9, the dimming glass optical system consists of a rear window 13 composed of dimming glass that can be dimmed in a piecewise manner and a normal back mirror 14.
同図に於いて, 後方の車のへッドライト 1 7からの光線 1 8はリアウィンドウ 1 3, ノくックミラー 1 4を介して乗員 1 1の眼に入射する。 第 2図と異なる処はリアウィンド ゥ 1 3と乗員 1 1との間に通常のバックミラー 1 4が存在するのみであり, 他は第 2図 と同一の調光ガラス駆動部 2 1, 統括制御部 2 2, 明るさセンサ一 2 3及びヘッドマウ ントセンサー 2 4で構成する。 動作, 原理, 作用等は第 2図に示した第一の実施例と同 様であるので説明は省略する。 第 1 0図は本発明の第三の実施例を模式的に示す。 ヘッドマウントセンサーを用いて の調光制御は区分特定が容易ではあるが, その一方で装着が煩わしいとの課題が残り, 第三の実施例はこの課題を克服すべく光線方向検知器を用い, 学習過程を経てへッドマ ゥントセンサーを不要とする構造である。 同図は第 2図で示した第一の実施例と同じく フロントウィンドウ 1 2への応用例で, 基本的な構成は少なくとも調光ガラス光学系, 調光ガラス駆動部, ヘッドマウントセンサー, 光線方向検知器, 及び統括制御部等とよ り構成される。 In the figure, the light beam 18 from the headlight 17 of the car behind enters the occupant's 11 eye through the rear window 13 and the knock mirror 14. 2 is different from FIG. 2 only in that there is a normal rearview mirror 14 between the rear window 13 and the occupant 11; controller 2 2, constituted by the brightness sensor-2 3 and Heddomau cement sensor 2 4. The operation, principle, operation, and the like are the same as in the first embodiment shown in FIG. FIG. 10 schematically shows a third embodiment of the present invention. The dimming control using a head-mounted sensor makes it easy to identify the section, but on the other hand, there remains a problem that mounting is troublesome. In the third embodiment, a beam direction detector was used to overcome this problem. This structure eliminates the need for a head mount sensor after the learning process. This figure is an example of application to the front window 12 as in the first embodiment shown in Fig. 2. The basic configuration consists of at least a light control glass optical system, a light control glass drive unit, a head mount sensor, and a light beam direction. It consists of a detector, a general control unit, and so on.
調光ガラス光学系は, 第 2図と同じく区分的に調光可能な調光ガラスより構成された フロントウィンドウ 1 2であり, 他の調光ガラス駆動部 2 1, ヘッドマウントセンサー 2 4等も第 2図に示す第一の実施例と同一である。  The dimming glass optical system is a front window 12 composed of dimming glass that can be dimmed in the same way as in Fig. 2, and the other dimming glass drive unit 21 and the head mount sensor 24 are also included. This is the same as the first embodiment shown in FIG.
光線方向検知器 1 2 0は, フロントウィンドウ 1 2の周辺で乗員 1 1の近くに配置さ れ, 微小な開口と二次元のィメ一ジセンサーとで構成されて入射光線がィメージセンサ —上に作る光点を内蔵するイメージセンサーのピクセル位置で検出して光線の方向とす る。 同時にその光点以外の平均的な出力レベルを以て周囲の明るさを検知する。  The beam direction detector 120 is located near the occupant 11 around the front window 12 and is composed of a small aperture and a two-dimensional image sensor. The light spot to be created is detected at the pixel position of the built-in image sensor to determine the direction of the light beam. At the same time, ambient brightness is detected based on an average output level other than the light spot.
統括制御部 1 0 1は, ヘッドマウントセンサー 2 4, 光線方向検知器 1 2 0と共同し ての区分特定, システム全体の起動停止, 防眩対象とする光線強度レベルの設定, 或い は減光制御のレベル等各種の設定及びシステム全体の動作を統括する。 The general control unit 101 cooperates with the head mount sensor 24 and the beam direction detector 120. It supervises the operation of the system as a whole, specifying various categories, starting and stopping the entire system, setting the light intensity level to be used for anti-glare, or setting the level of dimming control.
その他のへッドマゥントセンサー 2 4, 調光ガラス駆動部 2 1等は第 2図の例と同一 であるので説明は省略する。 第 1 0図に示す第三の実施例に於いて, 基本的には光線方向検知器 1 2 0及び統括制 御部 1 0 1により光線 1 6の方向を検出し, 対応マップを参照してフロントウィンドウ 1 2の区分を特定して調光制御する事を基本にするが, この光線方向検知器 1 2 0の出 力とフロントウィンドウ 1 2の区分との対応を示す対応マップはへッドマウントセンサ 一 2 4を用いて学習的に自動形成する。  Other head mount sensor 24, light control glass drive unit 21 and the like are the same as in the example of FIG. In the third embodiment shown in Fig. 10, basically, the direction of the light beam 16 is detected by the light direction detector 120 and the general control unit 101, and the corresponding map is referred to. Basically, the dimming control is performed by specifying the section of the front window 12. The correspondence map showing the correspondence between the output of the beam direction detector 120 and the section of the front window 12 is a head. It is automatically formed by learning using the mount sensor 24.
光線方向検知器 1 2 0の出力からフロントウィンドウ 1 2の区分特定の過程では, 統 括制御部 1 0 1が光線方向検知器 1 2 0の出力を監視して周囲の明るさを検出し, 周囲 の明るさより所定のレベル以上の光線を検出した時はその光線の作る光点が位置する光 線方向検知器 1 2 0のイメージセンサー上のピクセル位置を以て光線方向とし, ピクセ ル位置と対応マップを参照してウィンドウ 1 2の区分を調光すべき区分 1 9と特定する。 光線方向検知器 1 2 0に入射する光線 1 0 2は同一の光源 1 5から発するが厳密には乗 員 1 1の眼に入射する光線 1 6とは異なり, 従ってフロントウィンドウ 1 2を通過する 区分も異なる。 し力 し, 乗員 1 1とヘッドライト 1 5との距離は少なくとも数メ一トル 以上有り, 一方乗員 1 1と光線方向検知器 1 2 0との距離は数十センチメートル内であ るので光線 1 6, 1 0 2はほぼ平行として近似でき, 光線方向検知器 1 2 0の出力を以 て乗員 1 1の眼に入射する光線 1 6の方向を推定できる。 したがって, 光線方向検知器 1 2 0の出力であるイメージセンサー内のピクセノレ位置とフロントウィンドウ 1 2内の 区分との対応関係が正しく与えられれば光線方向検知器 1 2 0の出力を以てフロントウ インドウ 1 2の調光すべき区分特定を行う事が出来る。  In the process of identifying the front window 12 from the output of the beam direction detector 120, the overall control unit 101 monitors the output of the beam direction detector 120 to detect the surrounding brightness, When a light beam with a predetermined level or higher than the ambient brightness is detected, the pixel position on the image sensor of the light beam direction detector 120 where the light spot created by the light beam is located is defined as the light beam direction, and the pixel position and the corresponding map are used. , The section of the window 12 is specified as the section 19 to be dimmed. The ray 102 incident on the ray direction detector 120 originates from the same light source 15 but is strictly different from the ray 16 incident on the eyes of the occupant 11 and therefore passes through the front window 12 The classification is also different. The distance between the occupant 11 and the headlight 15 is at least several meters, while the distance between the occupant 11 and the beam direction detector 120 is within several tens of centimeters. 16 and 102 can be approximated as almost parallel, and the output of the beam direction detector 120 can be used to estimate the direction of the beam 16 incident on the occupant's 11 eye. Therefore, if the correspondence between the pixel position in the image sensor, which is the output of the light direction detector 120, and the division in the front window 122 is correctly given, the output of the light direction detector 120 is used as the output of the front window 122. Can be specified.
このピクセノレ位置とフロントウィンドウ 1 2内の区分との関係を対応マップとして当 初から与える事も考えられるが, 光線方向検知器 1 2 0の位置変更, 乗員 1 1の姿勢変 更或いは乗員 1 1の交代等への対応を考慮すると対応マップを固定的に与える事は不可 能である。 本発明はこの点に関して第 2図の第一の実施例に示したようにへッドマゥン トセンサー 2 4で区分特定を行う手段を利用して学習的に対応マップを自動形成させ, 対応マップ完成後はへッドマゥントセンサー 2 4を装着せずに動作させる事とする。 第 1 1図には学習過程により対応マップを形成するフロー図が示されている。 同図に 示したように全てのピクセル位置, 或いはフロントウィンドウの全ての区分に対して対 応マップを形成する事は徒に時間を要するので, 或程度の対応マップが出来た時点で自 動的に或いは統括制御部 1 0 1に指示して補間作業により対応マップを完成させる。 第 1 0図, 第 1 1図を参照して第 1 0図に示す第三の実施例でフロントウィンドウ 1 2上の区分特定を行うプロセスについて更に詳しく説明する。 学習過程に於いて, 光線 方向検知器 1 2 0は光線 1 6の方向を内蔵するイメージセンサーのピクセル位置として 出力し, 統括制御部 1 0 1は調光ガラス制御部 2 1を介してフロントウィンドウ 1 2の 各区分の光透過率を識別可能に変調し, へッドマゥントセンサー 2 4の出力変動態様か ら区分 1 9を特定する。 統括制御部 1 0 1はピクセル位置と特定された区分 1 9の対応 関係を記憶すると共に区分 1 9を調光制御する。 この過程を繰り返し, ピクセル位置と フロントウィンドウ 1 2の区分との対応関係が集積された段階で自動的に或いは統括制 御部 1 0 1が別途指示されて補間作業を行って対応マップを完成させ, 学習過程を終了 する。 学習過程終了後は光線方向検知器 1 2 0の出力のみでフロントウィンドウ 1 2の 区分を対応マップを利用して特定し, フロントウィンドウ 1 2の各区分を調光制御して 乗員 1 1の眼に入射する外部からの光線 1 6を減光する。 このようにして, 学習過程を経てへッドマウントセンサー 2 4を装用せずにフロント ウィンドウ 1 2の区分的な調光制御を可能にするが, 光源が比較的近い場合には乗員の 眼に入射する光線と光線方向検知器に入射する光線との間の角度が大となり区分特定の 誤差が大きくなる事は当然に予測される。 この点で精度を更に上げるには光線方向検知 器に於いて光線の方向と共に光源までの距離を検出して光線方向及び光源までの距離と 調光ガラス区分との間の対応マップを学習的に形成する事にすればよレ、。 光源までの距 離を検出するには光線方向検知器に結像光学系を用いて光スポットが最小となる結像光 学系を構成するレンズの位置によっても, 同一の光線方向検知器を 2個離して配置して 両者が出力する光線方向の差を以てしても可能である。 何れにしても光源からの距離を 算出する必要は無く, それを特定するに必要なパラメ一ターが得られれば十分である。 後者の場合は二つの光線方向検知器の光線方向を示す出力から, 光線方向及びそれら出 力の差と調光ガラス区分, 或いはそれら二つの出力と調光ガラス区分との間の対応マツ プをそのまま学習プロセスで形成すれば目的は達せられる。 It is conceivable that the relationship between this pixel position and the divisions in the front window 12 may be given as a correspondence map from the beginning, but the position of the beam direction detector 120, the posture of the occupant 11 or the occupant 11 It is impossible to give a fixed map when considering the change of Noh. According to the present invention, as shown in the first embodiment of FIG. 2, the correspondence map is automatically formed by learning using the means for specifying the division by the head mount sensor 24, and after the correspondence map is completed. Is operated without the head mount sensor 24. FIG. 11 shows a flowchart for forming a correspondence map by a learning process. As shown in the figure, it takes time to form corresponding maps for all pixel positions or all sections of the front window. Or instruct the general control unit 101 to complete the corresponding map by interpolation work. With reference to FIGS. 10 and 11, the process of specifying the section on the front window 12 in the third embodiment shown in FIG. 10 will be described in further detail. In the learning process, the ray direction detector 120 outputs the direction of the ray 16 as the pixel position of the built-in image sensor, and the overall control unit 101 sends the front window through the dimming glass control unit 21. The light transmittance of each section in section 12 is modulated to be identifiable, and section 19 is specified from the output fluctuation mode of the head mount sensor 24. The overall control unit 101 stores the correspondence between the pixel position and the specified section 19 and controls the dimming of the section 19. This process is repeated, and when the correspondence between the pixel position and the division of the front window 12 is accumulated, automatically or when the general control unit 101 is separately instructed to perform the interpolation work to complete the correspondence map. , End the learning process. After the learning process is completed, the division of the front window 1 2 is identified using only the output of the beam direction detector 120 using the corresponding map, and the dimming control of each section of the front window 1 2 is performed to control the eyes of the occupant 11. Attenuates external light rays 16 incident on. In this way, the dimming control of the front window 12 can be performed without wearing the head mount sensor 24 through the learning process, but if the light source is relatively close, it can be seen by the occupants. It is naturally expected that the angle between the incident light beam and the light beam incident on the beam direction detector will be large, and the error in specifying the section will be large. In order to further improve the accuracy in this regard, the light direction detector detects the distance to the light source together with the direction of the light beam and learns the correspondence map between the light direction and the distance to the light source and the light control glass section by learning. Let's make it. Distance to light source In order to detect separation, two identical light direction detectors are placed depending on the position of the lens that forms the imaging optical system that minimizes the light spot by using an imaging optical system as the light direction detector. It is also possible to use the difference between the directions of the light beams output by both. In any case, it is not necessary to calculate the distance from the light source, and it is sufficient to obtain the parameters required to specify it. In the latter case, from the outputs indicating the beam directions of the two beam direction detectors, the difference between the beam directions and their outputs and the corresponding map between the dimmable glass sections or the two outputs and the dimmable glass section are calculated. The purpose can be achieved if it is formed by the learning process as it is.
また, 実際の使用に当たって乗員 1 1の位置の変更, 交替, 或いは光線方向検知機 1 2 0の移動等の条件では新たに学習過程を経る必要がある。 更に, 一旦学習過程が終了 した状態で乗員を増加させる場合には複数のへッドマウントセンサーを必要とする事無 く, 学習過程の追加として同一のへッドマウントセンサ一を別な乗員が装着して学習過 程を経て対応マップを追加する事で可能となる。 第 9図で示した第二の実施例で後方か らの入射光線に対する構造とする場合も同様に応用出来る。 但し, この場合は後方を監 視する光線方向検知器を用レ、る必要がある。 第 1 2図及び第 1 3図は光線方向検知器の構造を示す。 第 1 2図に於いて, 光線方向 検知器 1 2 0は微小な開口 1 2 2を有する筐体 1 2 1内に二次元のイメージセンサー 1 2 3を内蔵して構成する。 光線 1 2 4が照射されて微小な開口 1 2 2から入射した光線 がイメージセンサー 1 2 3上に作る光点 1 2 5の位置はイメージセンサー 1 2 3を構成 するピクセルにより検知され, そのピクセル位置を以て光線 1 2 4の方向とする。 第 1 3図に示す光線方向検知器 1 3 0は, 第 1 2図の微小な開口 1 2 2の代わりに結 像レンズ 1 3 2を有する。 光線方向検知器 1 3 0は開口に結像レンズ 1 3 2を有する筐 体 1 3 1内に二次元のイメージセンサー 1 3 3を内蔵して構成する。 光線 1 3 4が照射 されて結像レンズ 1 3 2によりイメージセンサ一 1 3 3上に作る光点 1 3 5の位置はィ メージセンサー 1 3 3を構成するピクセルにより検知され, そのピクセル位置を以て光 線 1 3 4の方向とする。 第 1 2図及び第 1 3図に示す光線方向検知器の原理作用は同一 であるが, 一般に使用される C C Dイメージセンサーの大きさは数ミリメートル角であ るのでイメージセンサー 1 3 3上での光点 1 3 5を小さく出来る第 1 3図の光線方向検 知器 1 3 0が実用的であろう。 これら光線方向検知器に内蔵されるイメージセンサーをカラー画像対応のイメージセ ンサ一として光点のピクセル位置に加えて色彩情報をも出力し, 統括制御部がそれら色 彩情報を利用して非常用に使用される可能性のある光線, 例えば赤色等の光線に関して は減光の度合いを軽減制御して安全の為の情報認識を損なう事の無いように構成する事 もでき, これも本発明に含まれる。 第 1 4図は, 調光区分領域で光透過率を段階的に設定する例を示す。 第 1 0図に示す 本発明の第三の実施例で取り入れた光線方向検知器による区分特定はへッドマウントセ ンサーを装用せずに区分特定を行えるものであるが, 間接的な区分特定であるので若干 の誤差を含む事は考慮する必要がある。 また, 光線の通過する区分のみ光透過率を低く 設定するとウィンドウを通してみる前方情景がステップ的に変化し, 些か前方視認に於 いて不自然の感を否めない。 そのような点を考慮して第 1 4図に示す例では光線の通過 する区分 1 9の他にその周囲の区分 1 4 1までを調光する事にして区分特定の誤差を吸 収する事にし, 更に中心から周辺に向けて光透過率を段階的に変化させて周囲に合わせ る事でフロントウィンドウ 1 2から見た前方情景に違和感が少ないようにした。 第 1 4 図では簡単の為に調光領域に於いて二段階の光透過率を設定する事にし, 中心の区分 1 9では例えば 4 0 %の光透過率, その周囲の区分 1 4 1では 6 5 %の透過率としてその 他区分の透過率 8 5 %に段階的に合わせるよう設定する。 図では二段階としたが, 更に 多段に変化させる事も容易で, これらの調光する範囲及び段階等は統括制御部から予め 指示する。 また, へッドマウントセンサーを用いる学習課程とその後の光線方向検知器により区 分推定をする段階とでは区分特定の精度が異なるので光線毎に調光する領域を前者の学 習課程では小に, 後者では大とするよう統括制御部が領域指定を切り替えて外部視認性 を最大限に確保する事も重要であり, これも本発明に含まれる。 第 1 5図は, 本発明の第四の実施例を示し, バックミラー 1 5 1を調光ガラスで構成 した例を示す。 基本的な構成は少なくとも調光ガラス光学系, 調光ガラス駆動部, へッ ドマウントセンサー, 光線方向検知器, 統括制御部とより構成される。 Also, in actual use, a new learning process must be performed under conditions such as a change or replacement of the position of the occupant 11 or a movement of the beam direction detector 120. Furthermore, when the number of occupants is increased once the learning process has been completed, there is no need for multiple head-mounted sensors, and another occupant can use the same head-mounted sensor as an additional learning process. It becomes possible by adding a corresponding map after attaching and learning process. The second embodiment shown in FIG. 9 can be similarly applied to the case of a structure for incident light rays from the rear. However, in this case, it is necessary to use a beam direction detector that monitors the rear. FIGS. 12 and 13 show the structure of the beam direction detector. In FIG. 12, the beam direction detector 120 is configured by incorporating a two-dimensional image sensor 123 in a housing 121 having a minute opening 122. The position of the light spot 1 25 formed on the image sensor 1 23 by the light beam 1 2 4 radiated from the small aperture 1 2 2 is detected by the pixels composing the image sensor 1 2 3. Let the position be the direction of ray 1 2 4. The beam direction detector 130 shown in FIG. 13 has an imaging lens 13 2 in place of the minute aperture 122 shown in FIG. The light beam direction detector 130 is constructed by incorporating a two-dimensional image sensor 133 inside a housing 131 having an imaging lens 132 in an opening. The position of the light spot 135 formed on the image sensor 133 by the light beam 134 irradiated by the imaging lens 133 is detected by the pixels constituting the image sensor 133, and the position of the pixel is determined by the pixel position. The direction of the beam 1 34 is assumed. Although the principle and operation of the beam direction detectors shown in Figs. 12 and 13 are the same, the size of a commonly used CCD image sensor is several millimeters square. Therefore, the beam direction detector 130 shown in FIG. 13 which can make the light spot 135 on the image sensor 133 smaller may be practical. The image sensor built into these beam direction detectors outputs color information in addition to the pixel position of the light spot as an image sensor corresponding to a color image, and the general control unit uses the color information for emergency use. For light rays that may be used for light, such as red light, the degree of dimming can be reduced and controlled so that information recognition for safety is not impaired. included. Fig. 14 shows an example of setting the light transmittance stepwise in the dimming section. Although the classification specified by the beam direction detector incorporated in the third embodiment of the present invention shown in FIG. 10 can be performed without using a head mount sensor, it is indirect classification specification. It is necessary to consider including some errors. In addition, if the light transmittance is set low only for the section through which the light beam passes, the front scene seen through the window changes stepwise, and a slight unnaturalness can be denied when looking ahead. In consideration of such points, in the example shown in Fig. 14, in addition to section 19 through which light passes, dimming up to section 14 1 around it also absorbs section-specific errors. In addition, the light transmittance is changed stepwise from the center to the periphery to match the surroundings, so that the front scene seen from the front window 12 has less discomfort. In Fig. 14, for the sake of simplicity, two levels of light transmittance are set in the dimming region. For example, 40% light transmittance in the center section 19, and 40% light transmittance in the surrounding section 14 1 Set the transmittance to 65% in order to gradually adjust to the transmittance of 85% for other categories. In the figure, there are two steps, but it is easy to change them in more steps, and the range and step of dimming are specified in advance by the general control unit. In addition, since the accuracy of section identification differs between the learning process using a head-mounted sensor and the subsequent stage of estimating the segmentation using a ray direction detector, the dimming area for each light beam is reduced in the former learning process. , In the latter case, the general control unit switches the area designation to increase the external visibility. It is also important to ensure the maximum, which is also included in the present invention. FIG. 15 shows a fourth embodiment of the present invention, and shows an example in which the rearview mirror 151 is made of light control glass. The basic configuration consists of at least a dimming glass optical system, a dimming glass driving unit, a head mount sensor, a beam direction detector, and a general control unit.
調光ガラス光学系は, 電気的に選択可能で且つ電気的に各々独立に光透過率を制御可 能な複数の区分を持つ調光ガラスの裏面に反射層を設けたバックミラー 1 5 1と通常の リアウィンドウ 1 5 4とより構成される。 調光ガラスは液晶と電極を封入して構成され, 表示機器等で既に周知の技術であるので説明は省略する。 Light control glass optics, the electrically selectable in and electrically rearview mirror 1 5 1 provided with the back surface reflective layer of the light control glass having a controllable capacity plurality of divided light transmittance independently It consists of a normal rear window 1 54. The light control glass is configured by enclosing a liquid crystal and an electrode, and is a well-known technique for display devices and the like, and therefore description thereof is omitted.
光線方向検知器 1 5 3は, 乗員 1 1の側からバックミラー 1 5 1を見る位置に配置し て光線 9 1の方向を検知する, 或いは後方を見るためにバックミラー 1 5 1に配置して 光線 1 8の方向を検知する。 ノ ックミラ一 1 5 1から乗員 1 1の眼までの距離は短く, 光線 9 1の角度変化は微小であるので方向検知は一般に困難であり, 望ましくはバック ミラー 1 5 1に配置して後方を監視する。 第 1 5図では後者の例を示す。  The beam direction detector 15 3 is placed at a position where the rearview mirror 15 1 is viewed from the side of the occupant 11 to detect the direction of the light beam 91, or at the rearview mirror 15 1 to look behind. To detect the direction of ray 18. Since the distance from the knock mirror 151 to the eyes of the occupant 11 is short and the angle change of the light beam 91 is small, it is generally difficult to detect the direction. Monitor. Figure 15 shows the latter example.
その他の調光ガラス駆動部, ヘッドマウントセンサー 2 4, 統括制御部等の構成, 及 ぴ調光すべき区分 1 5 2とを特定する手順, 動作等は第 1 0図に示した本発明の第三の 実施例と同一であるので説明は省略する。 第 1 6図は, 本発明の第五の実施例を示し, ヘッドマウントセンサー及び光線方向検 知器を用いて自動車の前方及び後方からの光線に対処する例を示す。 本実施例での基本 的な構成は少なくとも調光ガラス光学系, 調光ガラス駆動部, ヘッドマウントセンサー, 光線方向検知器, 及び統括制御部等とより構成される。  The other components of the dimming glass driving unit, head mount sensor 24, general control unit, etc., and the procedure and operation for specifying the section to be dimmed 152 are the same as those of the present invention shown in FIG. The description is omitted because it is the same as the third embodiment. FIG. 16 shows a fifth embodiment of the present invention, in which a head-mounted sensor and a beam direction detector are used to deal with light beams from the front and rear of a vehicle. The basic configuration in this embodiment is composed of at least a light control glass optical system, a light control glass drive unit, a head mount sensor, a light beam direction detector, and a general control unit.
調光ガラス光学系は, 区分的に調光可能な調光ガラスより構成されたフロントウィン ドウ 1 2, リアウィンドウ 1 3及び通常のバックミラー 1 4を有する。  The dimming glass optical system has a front window 12, a rear window 13 and a normal rearview mirror 14, which are made of dimming glass that can be dimmed in a piecewise manner.
光線方向検知器は, 前方からの光線の方向を検知する光線方向検知器 1 6 1, 後方か らの光線の方向を検知するための光線方向検知器 1 6 2を有し, 前者はフロントウィン ドウ 1 2の周辺で乗員 1 1の近くに配置され, 後者はバックミラー 1 4に装着される。 „ The beam direction detector has a beam direction detector 161 for detecting the direction of the beam from the front and a beam direction detector 162 for detecting the direction of the beam from the rear. It is placed near the occupant 11 around the dove 12, the latter being mounted on the rearview mirror 14. „
PCT/JP98/01863 調光ガラス駆動部は, フロントウィンドウ 1 2, リアウィンドウ 1 3のそれぞれを駆 動制御するよう 2個用いる。 フロントウィンドウ 1 2及びリアウィンドウ 1 3の調光ガ ラスを一体の調光ガラスが単に区分されたと見なして 1個の調光ガラス駆動部で制御す る事も可能である。 第 1 6図では特に調光ガラス駆動部は図示していない。  Two PCT / JP98 / 01863 light control glass drive units are used to drive and control each of the front window 12 and the rear window 13. The light control glass of the front window 12 and the rear window 13 can be controlled by one light control glass drive unit assuming that the integrated light control glass is simply divided. FIG. 16 does not particularly show the light control glass driving unit.
へッドマウントセンサ一 2 4は, フロントウィンドウ 1 2を介して前方から乗員 1 1 の眼に入射する光線 1 6及びリアウィンドウ 1 3, バックミラー 1 4を介して後方から 乗員 1 1の眼に入射する光線 1 8を検知し, 1個のヘッドマウントセンサー 2 4で前方 及び後方からの光線に対応する。 The head-mounted sensor 124 receives the light 16 entering the occupant's 11 eye from the front via the front window 12 and the occupant's 11 eye from the rear via the rear window 13 and the rearview mirror 14. A light beam 18 incident on is detected, and one head mount sensor 24 responds to light beams from the front and rear.
統括制御部は, ヘッドマウントセンサ一 2 4, 光線方向検知器 1 6 1, 1 6 2と共同 してのフロントウィンドウ 1 2及びリアウィンドウ 1 3の区分特定, システム全体の起 動停止, 防眩対象とする光線強度レベルの設定, 或いは減光制御のレベル等各種の設定 及ぴシステム全体の動作を統括する。 同図に於いて, 第 1 0図に示す第三の実施例と異なる処はリアウィンドウ 1 3, バッ クミラー 1 4, 及び後方を監視する光線方向検知器 1 6 2が加わった事である。 しかし, 調光ガラスはフロントウィンドウ 1 2, リアウィンドウ 1 3と分かれても一体の調光ガ ラスが単に区分されたに過ぎないとの理解に立てば, 動作原理も全く同様である。  The overall control unit identifies the front window 12 and rear window 13 in coordination with the head-mounted sensor 24, the beam direction detectors 161, 162, starts and stops the entire system, and prevents glare. It supervises the setting of the target light intensity level or various settings such as the dimming control level and the operation of the entire system. 10 differs from the third embodiment shown in FIG. 10 in that a rear window 13, a back mirror 14, and a beam direction detector 162 for monitoring the rear are added. However, if the dimming glass is divided into a front window 12 and a rear window 13, the operation principle is exactly the same if one understands that the integrated dimming glass is merely a division.
光線方向検知器 1 6 1 , 1 6 2は周囲の明るさを検知しながらその明るさから所定以 上の強度を有する光線 1 6, 1 8を探索し, もし所定の値より大きい光線が検知された 場合には, フロントウィンドウ 1 2, リアウィンドウ 1 3の各区分が識別可能に光透過 率を変調し, ヘッドマウントセンサー 2 4の出力変動の態様から区分を特定し, その区 分を調光制御して乗員 1 1の眼に入射する光線の強度が所定のレベル以下となるよう制 御する。 同時に光線方向検知器 1 6 1, 1 6 2の出力する光線方向の出力と特定された 区分の対応関係を記憶する。 この過程を繰り返して対応マップを形成して行き, 完成度 が所定のレベルに達したら自動的に或いは指示されて対応マップに欠ける処は補間作業 により補って完成させる。 対応マップが完成した後は, ヘッドマウントセンサー 2 4を 装用せずに光線方向検知器 1 6 1, 1 6 2の出力と対応マップとにより区分特定を行つ て調光制御する。 The beam direction detectors 16 1 and 16 2 search for light beams 16 and 18 having a predetermined intensity or higher from the brightness while detecting the surrounding brightness. In this case, the front window 12 and the rear window 13 modulate the light transmittance so that they can be identified, identify the section based on the output fluctuation of the head mounted sensor 24, and adjust the section. The light is controlled so that the intensity of the light beam incident on the eyes of the occupant 11 becomes lower than a predetermined level. At the same time, the correspondence between the output of the beam direction output by the beam direction detectors 16 1 and 16 2 and the specified section is stored. This process is repeated to form a corresponding map, and when the degree of perfection reaches a predetermined level, a part lacking the corresponding map is complemented automatically or instructed by interpolation work. After the corresponding map is completed, the classification is specified by the output of the beam direction detectors 16 1 and 16 2 and the corresponding map without using the head-mounted sensor 24. Dimming control.
以上, 本発明の構成, 原理動作, 作用等について実施例を挙げて説明したように, 乗 り物の乗員の眼に外部から入射して外部視認性を損なう光線に限ればウィンドウを通過 する時点では局所的であるとの点に着目し, 区分的に調光可能な調光ガラスをウインド ゥに用いて有害な光線のみを選択的に減じて外部視認性を向上出来る乗り物, 防眩装置 及ぴ方法を提案説明した。 外部からの光線の方向が変動する条件下での調光すべき区分 特定, 及ぴ追従が最も重要な点であるが, ヘッドマウントセンサーによる直接的な区分 決定方法, 更に学習過程をも採用して光線方向検知器による間接的な区分推定方法等を 提案した。 本発明による上記装置, 方法は構成原理がシンプルでコストが安い事に特徴 があり, 更に乗員の増加, 機器の移動等環境条件の変動にも容易に対応できる柔軟なシ ステム構成に特徴がある。 As described above, the configuration, the principle operation, the operation, and the like of the present invention are described with reference to the embodiments. Focusing on the fact that the light is local, a vehicle that can improve external visibility by selectively reducing only harmful light by using a dimmable glass that can be dimmed in the window 及ぴ A method was proposed and explained. The most important point is to identify and follow the section to be dimmed under conditions where the direction of the light beam from the outside fluctuates. However, a direct section determination method using a head-mounted sensor and a learning process are also adopted. We proposed an indirect classification estimation method using a beam direction detector. The above-described apparatus and method according to the present invention are characterized by a simple configuration principle and low cost, and are further characterized by a flexible system configuration that can easily cope with fluctuations in environmental conditions such as an increase in occupants and movement of equipment. .
本発明は, 自動車を例に取って説明したが, それぞれの構成要素の配置は固定的では 無く, 任意に設置された条件で適応性を以て機能する事は上記の説明の通りで携帯式に 構成して自動車等の乗り物に搭載される以外に各種光学機器等に於ける不要光線の制御 に用いる事が出来る。 それらもまた本発明の重要な目的である。  Although the present invention has been described by taking a car as an example, the arrangement of each component is not fixed, and it is possible to function with adaptability under arbitrarily installed conditions. It can be used for controlling unnecessary light beams in various optical devices and the like in addition to being mounted on vehicles such as automobiles. They are also important objects of the present invention.
産業上の利用可能性 Industrial applicability
以上, 本発明による外部視認性を向上する乗り物及び防眩装置及び方法によれば, 外 部の光源から発して乗員の眼に入射する光線のみを選択的に減光して外部視認性を向上 できる乗り物, 防眩装置, 及ぴ方法を提供するもので, 自動車, 電車, 航空機等への応 用に有効である。 また, 乗り物に限らず建物, 或いは光学機器等への入射有害光線の選 択的制御等に応用できる。  As described above, according to the vehicle and the anti-glare device and the method for improving the external visibility according to the present invention, only the light emitted from the external light source and incident on the occupant's eyes is selectively dimmed to improve the external visibility. It provides vehicles that can be used, anti-glare devices, and application methods, and is effective for application to automobiles, trains, and aircraft. In addition, it can be applied to selective control of harmful rays incident on buildings, optical equipment, etc., not limited to vehicles.

Claims

請求の範囲  The scope of the claims
1 . 電気的に選択可能で光透過率を独立に制御可能な複数の区分より成る調光ガラスか ら構成される調光ガラス光学系と, 調光ガラスの各区分を電気的に選択し電気信号を加 えて光透過率を制御する調光ガラス駆動部と, 光検知手段を有し統括制御部と共同して 外部光源から乗員の眼に飛来する予め定めた以上の強度を有する光線が通過する調光ガ ラス区分を特定する区分特定手段と, システム全体の動作を統括する統括制御部と等よ り構成され, 外部の光源から乗員の眼に入射する予め定めた以上の強度を有する光線を その光線が通過する調光ガラス区分を特定し, その調光ガラス区分の光透過率を制御減 少せしめる事で選択的に減光して外部視認性を向上する事を特徴とする乗り物 1. Light control glass optical system consisting of light control glass consisting of multiple sections that can be selected electrically and whose light transmittance can be controlled independently. A light control glass drive unit that controls the light transmittance by adding a signal, and a light beam that has a higher intensity than a predetermined level and that passes from an external light source to the occupant's eyes passes through in cooperation with the general control unit that has light detection means A light source having an intensity higher than a predetermined intensity that is incident on the occupant's eyes from an external light source and is composed of a section specifying means for specifying the dimming glass section to be controlled, and a general control section for controlling the operation of the entire system The vehicle is characterized in that the light-controlling glass section through which the light beam passes is specified, and the light transmittance of the light-controlling glass section is controlled and reduced, thereby selectively dimming and improving external visibility.
2 . 調光ガラス光学系は, 電気的に選択可能で光透過率を独立に制御可能な複数の区分 より成る液晶調光ガラスをウィンドウに用いて構成される事を特徴とする請求の範囲第 1項記載の乗り物。 2. The light control glass optical system is configured by using a liquid crystal light control glass composed of a plurality of sections that can be electrically selected and independently controlled in light transmittance for a window. The vehicle described in item 1.
3 . 調光ガラス光学系は, 電気的に選択可能で光透過率を独立に制御可能な複数の区分 より成る液晶調光ガラスをウィンドウに用い, そのウィンドウと乗員との間に存在する ミラ一とより構成される事を特徴とする請求の範囲第 1項記載の乗り物。 3. The light control glass optical system uses a liquid crystal light control glass composed of a plurality of sections that can be selected electrically and whose light transmittance can be independently controlled, and uses a mirror between the window and the occupant. 2. The vehicle according to claim 1, wherein the vehicle comprises:
4 . 調光ガラス光学系は, 電気的に選択可能で光透過率を独立に制御可能な複数の区分 より成る液晶調光ガラスを用いた調光バックミラーより構成される事を特徴とする請求 の範囲第 1項記載の乗り物。 4. The dimming glass optical system is composed of a dimming rear-view mirror using a liquid crystal dimming glass composed of a plurality of sections that can be electrically selected and whose light transmittance can be independently controlled. The vehicle according to paragraph 1 of the above.
5 . 区分特定手段は, 光検知手段として少なくともヘッドマウントセンサーを有し, 調 光ガラス駆動部を通じて各調光ガラス区分の光透過率を識別可能に変調し, 乗員は眼の 前面或いは眼の近傍に光検知素子が配置されるよう構成されたへッドマウントセンサ一 を装着してへッドマゥントセンサー出力信号の変動態様より外部の光源から乗員の眼に 至る光線が通過する調光ガラスの区分特定を行う事を特徴とする請求の範囲第 1項記載 の乗り物。 5. The section identification means has at least a head mount sensor as a light detection means, modulates the light transmittance of each light control glass section through the light control glass driving section so as to be identifiable, and the occupant is in front of or near the eye. The head mount sensor, which is configured so that the light detecting element is arranged in the vehicle, is attached to the occupant's eyes from an external light source according to the variation of the output signal of the head mount sensor. 2. The vehicle according to claim 1, wherein the dimming glass through which the light beam passes is specified.
6 . 請求の範囲第 5項記載の区分特定手段に於いて, ヘッドマウントセンサーは眼の前 面或いは眼の近傍に配置された 1以上の光検知素子及び支持部分とより構成されて乗員 が装着する事により, 乗員の眼及び近傍に入射する光線強度を検知する事を特徴とする 請求の範囲第 1項記載の乗り物。 6. The classification specifying means according to claim 5, wherein the head-mounted sensor comprises one or more light-detecting elements and a supporting portion disposed in front of or near the eye, and is mounted on an occupant. 2. The vehicle according to claim 1, wherein the intensity of the light beam incident on and near the occupant's eye is detected.
7 . 請求の範囲第 5項記載の区分特定手段に於いて, ヘッドマウントセンサーは眼の近 傍に配置された 1以上の光反射素子, その支持部分及ぴ乗員の近傍周囲に配置された光 検知素子とより構成されて乗員がへッドマウントセンサ一を装着し, 光反射素子により 反射された光線を光検知素子が検出する事により, 乗員の眼及ぴその近傍に入射する光 線強度を検知する事を特徴とする請求の範囲第 1項記載の乗り物。 7. The classification specifying means according to claim 5, wherein the head-mounted sensor is one or more light-reflecting elements arranged near the eye, and a light-reflecting element arranged around the supporting part and the occupant. The occupant is equipped with a head mounted sensor, which is composed of a sensing element, and the light detecting element detects the light beam reflected by the light reflecting element. The vehicle according to claim 1, wherein the vehicle is detected.
8 . 区分特定手段は, 光検知手段として少なくとも光線方向検知器を有し, 予め定めた 以上の強度を有する光線の方向を検出し, 光線方向検知器の出力する光線方向と予め定 めた対応関係にある調光ガラスの区分を調光すべき区分と特定する事を特徴とする請求 の範囲第 1項記載の乗り物。 8. The classification specifying means has at least a light direction detector as a light detecting means, detects a direction of a light beam having a predetermined intensity or more, and determines a predetermined correspondence with the light direction output by the light direction detector. 2. The vehicle according to claim 1, wherein a category of the dimming glass having a relationship is specified as a category to be dimmed.
9 . 区分特定手段は, 光検知手段として少なくとも光線方向検知器, ヘッドマウントセ ンサーを有し, 光線方向検知器は予め定めた以上の強度を有する光線の方向を検出し, 同時に調光ガラス駆動部を通じて調光ガラスの各区分の光透過率を各区分が識別可能に 変調し, 乗員は眼の前面或いは眼の近傍に光検知素子が配置されるよう構成されたへッ ドマゥントセンサーを装着してヘッドマウントセンサーの出力信号の変動態様より外部 の光源から乗員の眼に至る光線が通過する調光ガラスの区分特定を行い, 前記光線方向 検知器の検出した光線方向と特定された調光ガラス区分との対応マップを形成する学習 過程を有し, 前記対応マップ形成後は光線方向検知器の出力から前記対応マップを参照 して調光ガラス区分の特定を行う事を特徴とする請求の範囲第 1項記載の乗り物。 9. The section identification means has at least a light direction detector and a head mount sensor as light detection means, and the light direction detector detects the direction of light having a predetermined intensity or more, and simultaneously drives the light control glass. The occupant modulates the light transmittance of each section of the light control glass through the section so that each section can be identified, and the occupant uses a head mount sensor configured so that a light detection element is arranged in front of or near the eye. The light-directed glass through which the light from the external light source to the occupant's eye passes is specified based on the variation of the output signal of the head-mounted sensor when mounted, and the light direction detected by the light-direction detector and the light specified by the light-direction detector are specified. It has a learning process of forming a correspondence map with light glass sections, and after the formation of the correspondence map, refers to the correspondence map from the output of the light beam direction detector 2. The vehicle according to claim 1, wherein the dimming glass section is specified by performing the following.
1 0 . 請求の範囲第 8項及び 9項記載の区分特定手段に於いて, 光線方向検知器は微小 開口部より入射された光スボットを検出するイメージセンサーを有し, 光スポット存在 を検知したイメージセンサ一のピクセル位置を以て光線方向とする事を特徵とする請求 の範囲第 1項記載の乗り物。 10. The classification specifying means according to claims 8 and 9, wherein the light beam direction detector has an image sensor for detecting a light spot incident from a minute opening, and detects the presence of a light spot. 2. The vehicle according to claim 1, wherein the light beam direction is defined by a pixel position of the image sensor.
1 1 . 区分特定手段は, 光検知手段として少なくとも光線方向検知器, ヘッドマウント センサ一を有し, 光線方向検知器は予め定めた以上の強度を有する光線の方向及び光源 からの距離を出力し, 同時に調光ガラス駆動部を通じて調光ガラスの各区分の光透過率 を各区分が識別可能に変調し, 乗員は眼の前面或いは眼の近傍に光検知素子が配置され るよう構成されたへッドマゥントセンサ一を装着してへッドマゥントセンサーの出力信 号の変動態様より外部の光源から乗員の眼に至る光線が通過する調光ガラスの区分特定 を行い, 前記光線方向検知器の検出した光線方向及び光源からの距離と特定された調光 ガラス区分との対応マップを形成する学習過程を有し, 前記対応マップ形成後は光線方 向検知器の出力から前記対応マップを参照して調光ガラス区分の特定を行う事を特徴と する請求の範囲第 1項記載の乗り物。 11 1. The section identification means has at least a light direction detector and a head-mounted sensor as light detection means, and the light direction detector outputs the direction of the light having a predetermined intensity or more and the distance from the light source. At the same time, the light transmittance of each section of the light control glass is modulated through the light control glass drive unit so that each section can be identified, and the occupant is configured so that the light detection element is placed in front of or near the eye. The headlight sensor is mounted on the headlight sensor, and the type of the light control glass through which the light from the external light source to the occupant's eye passes is identified based on the variation of the output signal of the headmount sensor. A learning process for forming a correspondence map between the light direction detected by the detector and the distance from the light source to the specified light control glass section, and after forming the correspondence map, the correspondence map is obtained from the output of the light direction detector. Transportation ranging first claim of claim, characterized in that perform specific irradiation to the light control glass partition.
1 2 . 調光ガラス駆動部は, 外部光源から乗員の眼に入射する光線が通過する区分及び 当該区分を中心とした周辺区分の光透過率を制御する事を特徴とする請求の範囲第 1項 記載の乗り物。 12. The light control glass drive section controls the light transmittance of a section through which a light beam entering the occupant's eye from an external light source passes and a peripheral section centered on the section. The vehicle described in section.
1 3 . 調光ガラス駆動部は, 外部光源から乗員の眼に入射する光線が通過する区分及ぴ 当該区分を中心とした周辺区分の光透過率を制御するものとし, その領域中心から周辺 区分に向けて光透過率が段階的に変化するよう調整する事を特徴とする請求の範囲第 1 項記載の乗り物。 13. The dimming glass drive unit shall control the section through which the light beam entering the occupant's eye from the external light source passes and the light transmittance of the surrounding section centered on the section. 2. The vehicle according to claim 1, wherein the light transmittance is adjusted so as to change stepwise toward the vehicle.
1 4 . 請求の範囲第 9項記載の学習過程を有する場合に於いて, 調光ガラス駆動部は調 光する区分範囲を区分特定手段の学習過程では狭く, 学習後では広く制御して乗員の眼 に入射する光線の減光制御を確実に行う事を特徴とする請求の範囲第 1項記載の乗り物。 14. In the case of having the learning process described in Claim 9, the dimming glass drive unit controls the dimming range to be narrower in the learning process of the classifying means and broader after learning to control the occupant. 2. The vehicle according to claim 1, wherein the dimming control of the light beam entering the eye is reliably performed.
1 5 . 調光区分の光透過率は離散的に設定され, 視認し難いほどの早い繰り返しサイク ル内で各離散的な光透過率の平均としての占有時間を制御する事で平均的としての光透 過率を制御する事を特徴とする請求の範囲第 1項記載の乗り物。 15 5. The light transmittance of the dimming section is set discretely, and the average occupation time of each discrete light transmittance is controlled within a repetition cycle that is so fast that it is difficult to see it. 2. The vehicle according to claim 1, wherein the light transmittance is controlled.
1 6 . 請求の範囲第 1 5項に於いて, 調光区分の光透過率は高低の二値に設定される事 を特徴とする請求の範囲第 1項記載の乗り物。 16. The vehicle according to claim 1, wherein the light transmittance of the dimming section is set to a high value or a low value in claim 15.
1 7 . 調光ガラス光学系の内側に配置するヘッドマウントセンサー或いは光線方向検知 器により光線強度を監視しての調光区分の光透過率制御に於いて, 通過光線の平均的強 度で当該区分の平均光透過率を制御し, 光透過率の高い時間帯での通過光線の瞬時強度 で光線の強度監視する事を特徴とする請求の範囲第 1項及び第 1 5項記載の乗り物。 17. In controlling the light transmittance of the dimming section by monitoring the light intensity with a head-mounted sensor or a light direction detector placed inside the dimming glass optical system, the average intensity of the passing light is used. 16. The vehicle according to claim 1, wherein the average light transmittance of the sections is controlled, and the light intensity is monitored based on the instantaneous intensity of a passing light beam in a time zone where the light transmittance is high.
1 8 . 区分特定手段は入射光線の色彩識別機能を有し, 安全上に必要な色彩の光線に対 しては減光の程度を軽減調整する事を特徴とする請求の範囲第 1項記載の乗り物。 18. The classification according to claim 1, wherein the classification specifying means has a function of identifying the color of the incident light, and reduces and adjusts the degree of dimming of the light of a color necessary for safety. Rides.
1 9 . 電気的に選択可能で光透過率を独立に制御可能な複数の区分より成る調光ガラス から構成される調光ガラス光学系と, 調光ガラスの各区分を電気的に選択し電気信号を 加えて光透過率を制御する調光ガラス駆動部と, 光検知手段を有し統括制御部と共同し て外部光源から防眩対象者の眼に飛来する予め定めた以上の強度を有する光線が通過す る調光ガラス区分を特定する区分特定手段と, システム全体の動作を統括する統括制御 部と等より構成され, 外部の光源から防眩対象者の眼に入射する予め定めた以上の強度 を有する光線をその光線が通過する調光ガラス区分を特定し, その調光ガラス区分の光 透過率を制御減少せしめる事で選択的に減光して外部視認性を向上する事を特徴とする 防眩装置 1 9. Light control glass optical system consisting of light control glass consisting of multiple sections that can be selected electrically and whose light transmittance can be controlled independently. A dimming glass drive unit that controls the light transmittance by adding a signal, and has an intensity higher than a predetermined value that can fly from the external light source to the eye of the anti-glare target in cooperation with the overall control unit that has light detection means. It is composed of a section specifying means for specifying the section of the dimming glass through which the light beam passes, a general control section for controlling the operation of the entire system, and the like. The light control glass section through which the light beam having the intensity of the light passes is specified, and the light transmittance of the light control glass section is controlled and reduced. To be Anti-glare device
2 0 . 調光ガラス光学系は, 電気的に選択可能で光透過率を独立に制御可能な複数の区 分より成る液晶調光ガラスをウインドウに用いて構成される事を特徴とする請求の範囲 第 1 9項記載の防眩装置。 20. The light control glass optical system is characterized by using a liquid crystal light control glass composed of a plurality of sections which can be electrically selected and independently control light transmittance for a window. Range The anti-glare device according to item 19.
2 1 . 調光ガラス光学系は, 電気的に選択可能で光透過率を独立に制御可能な複数の区 分より成る液晶調光ガラスを用いた調光バックミラーより構成される事を特徴とする請 求の範囲第 1 9項記載の防眩装置。 2.1. The dimming glass optical system is characterized by being composed of a dimming rearview mirror using a liquid crystal dimming glass consisting of a plurality of sections that can be electrically selected and whose light transmittance can be independently controlled. 10. The anti-glare device according to claim 19, wherein the request is made.
2 2 . 区分特定手段は, 光検知手段として少なくともヘッドマウントセンサ一を有し, 調光ガラス駆動部を通じて各調光ガラス区分の光透過率を識別可能に変調し, 防眩対象 者は眼の前面或いは眼の近傍に光検知素子が配置されるよう構成されたへッドマウント センサーを装着してへッドマウントセンサー出力信号の変動態様より外部の光源から防 眩対象者の眼に至る光線が通過する調光ガラスの区分特定を行う事を特徴とする請求の 範囲第 1 9項記載の防眩装置。 22. The section identification means has at least a head-mounted sensor as a light detection means, modulates the light transmittance of each light control glass section through a light control glass drive unit in an identifiable manner, and the anti-glare target person A head-mounted sensor with a light-detecting element arranged in front or near the eye is attached, and light from an external light source to the eye of the anti-glare target passes through the head-mounted sensor according to the variation of the output signal of the head-mounted sensor. 10. The anti-glare device according to claim 19, wherein the division of the light control glass is performed.
2 3 . 請求の範囲第 2 2項の区分特定手段に於いて, へッドマゥントセンサ一は眼の前 面或いは眼の近傍に配置された 1以上の光検知素子及び支持部分とより構成されて防眩 対象者が装着する事により, 防眩対象者の眼及び近傍に入射する光線強度を検知する事 を特徴とする請求の範囲第 1 9項記載の防眩装置。 23. In the classification means according to claim 22, the head mount sensor comprises one or more light-detecting elements and a supporting portion disposed in front of or near the eye. The anti-glare device according to claim 19, wherein the intensity of light rays incident on and near the eye of the anti-glare target is detected by being worn by the anti-glare target person.
2 4 . 区分特定手段は, 光検知手段として少なくとも光線方向検知器を有し, 予め定め た以上の強度を有する光線の方向を検出し, 光線方向検知器の出力する光線方向と予め 定めた対応関係にある調光ガラスの区分を調光すべき区分と特定する事を特徴とする請 求の範囲第 1 9項記載の防眩装置。 24. The classification specifying means has at least a light direction detector as a light detecting means, detects a direction of a light beam having an intensity higher than a predetermined value, and determines a light direction output from the light direction detector in a predetermined correspondence. 10. The anti-glare device according to claim 19, wherein a category of the dimming glass having a relationship is specified as a category to be dimmed.
2 5 . 区分特定手段は, 光検知手段として少なくとも光線方向検知器, ヘッドマウント センサーを有し, 光線方向検知器は予め定めた以上の強度を有する光線の方向を検出し, 同時に調光ガラス駆動部を通じて調光ガラスの各区分の光透過率を各区分が識別可能に 変調し, 防眩対象者は眼の前面或いは眼の近傍に光検知素子が配置されるよう構成され たへッドマゥントセンサーを装着してへッドマウントセンサーの出力信号の変動態様か ら外部の光源から防眩対象者の眼に至る光線が通過する調光ガラスの区分特定を行レ \ 前記光線方向検知器の検出した光線方向と特定された調光ガラス区分との対応マップを 形成する学習過程を有し, 前記対応マップ形成後は光線方向検知器の出力から前記対応 マップを参照して調光ガラス区分の特定を行う事を特徴とする請求の範囲第 1 9項記載 の防眩装置。 25. The section identification means has at least a light direction detector and a head mount sensor as light detection means, and the light direction detector detects the direction of light having a predetermined intensity or more, and simultaneously drives the light control glass. The light transmittance of each section of the light control glass is modulated through the section so that each section is identifiable, and the anti-glare target person is provided with a head manger in which a photodetector is arranged in front of or near the eye. The light direction detector detects the direction of the light control glass through which the light beam from the external light source to the eye of the anti-glare subject passes through from the variation of the output signal of the head mount sensor by attaching the light sensor. And a learning process for forming a correspondence map between the detected light direction and the specified light control glass section. After the formation of the correspondence map, the light control glass section is referred to from the output of the light direction detector with reference to the correspondence map. Features It antiglare device of the first 9 Claims claims, wherein performing.
2 6 . 請求の範囲第 2 4項及び 2 5項記載の区分特定手段に於いて, 光線方向検知器は 微小開口部より入射された光スポットを検出するイメージセンサーを有し, 光スポット 存在を検知したィメ一ジセンサ一のピクセル位置を以て光線方向とする事を特徴とする 請求の範囲第 1 9項記載の防眩装置。 26. The classification specifying means according to claims 24 and 25, wherein the light beam direction detector has an image sensor for detecting a light spot incident from a minute opening, and detects the presence of the light spot. 10. The anti-glare device according to claim 19, wherein the light beam direction is determined based on the detected pixel position of the image sensor.
2 7 . 区分特定手段は, 光検知手段として少なくとも光線方向検知器, ヘッドマウント センサ一を有し, 光線方向検知器は予め定めた以上の強度を有する光線の方向及び光源 からの距離を出力し, 同時に調光ガラス駆動部を通じて調光ガラスの各区分の光透過率 を各区分が識別可能に変調し, 乗員は眼の前面或いは眼の近傍に光検知素子が配置され るよう構成されたへッドマウントセンサーを装着してへッドマウントセンサ一の出力信 号の変動態様より外部の光源から乗員の眼に至る光線が通過する調光ガラスの区分特定 を行い, 前記光線方向検知器の検出した光線方向及び光源からの距離と特定された調光 ガラス区分との対応マップを形成する学習過程を有し, 前記対応マップ形成後は光線方 向検知器の出力から前記対応マップを参照して調光ガラス区分の特定を行う事を特徴と する請求の範囲第 1 9項記載の防眩装置。 2 8 . 調光ガラス駆動部は, 統括制御部の指示により外部光源から防眩対象者の眼に入 射する光線が通過する区分及び当該区分を中心とした周辺区分の光透過率を制御するも のとし, その領域中心から周辺区分に向けて光透過率が段階的に変化するよう調整する 事を特徴とする請求の範囲第 1 9項記載の防眩装置。 27. The classification specifying means has at least a light direction detector and a head-mounted sensor as light detecting means, and the light direction detector outputs the direction of the light having a predetermined intensity or more and the distance from the light source. At the same time, the light transmittance of each section of the light control glass is modulated through the light control glass drive unit so that each section can be identified, and the occupant is configured so that the light detection element is placed in front of or near the eye. A light-mounting sensor is attached, and a light-controlling glass through which a light beam from an external light source to an occupant's eye passes is identified based on a variation mode of an output signal of the head-mount sensor. And a learning step of forming a correspondence map between the detected light direction and the distance from the light source and the specified light control glass section. After the formation of the correspondence map, the correspondence map is obtained from the output of the light direction detector. Anti-glare device ranging first 9 claim of claim, characterized in that perform specific irradiation to the light control glass partition. 28. The dimming glass drive unit controls the light transmittance of the section through which the light beam from the external light source enters the eye of the anti-glare subject and the surrounding sections centered on the section under the direction of the general control unit. 10. The anti-glare device according to claim 19, wherein the light transmittance is adjusted so as to change stepwise from the center of the area toward the peripheral section.
2 9 . 請求の範囲第 2 5項記載の学習過程を有する場合に於いて, 調光ガラス駆動部は 調光する区分範囲を区分特定手段の学習過程では狭く, 学習後では広く制御して防眩対 象者の眼に入射する光線の滅光制御を確実に行う事を特徴とする請求の範囲第 1 9項記 載の防眩装置。 29. In the case of having the learning process described in claim 25, the dimming glass driving unit controls the dimming range to be dimmed narrowly in the learning process of the segment specifying means and broadly after learning to prevent. 20. The anti-glare device according to claim 19, wherein the anti-glare device surely controls light extinction of light rays incident on the eyes of the person to be glareed.
3 0 . 調光区分の光透過率は離散的に設定され, 視認し難いほどの早い繰り返しサイク ル内で各離散的な光透過率の平均としての占有時間を制御する事で平均的としての光透 過率を制御する事を特徴とする請求の範囲第 1 9項記載の防眩装置。 30. The light transmittance of the dimming section is set discretely, and by controlling the occupation time as the average of each discrete light transmittance within a repetition cycle that is so fast that it is difficult to see, the average The anti-glare device according to claim 19, wherein light transmittance is controlled.
3 1 . 請求の範囲第 3 0項に於いて, 調光区分の光透過率は高低の二値に設定される事 を特徴とする請求の範囲第 1 9項記載の防眩装置。 31. The anti-glare device according to claim 19, wherein in claim 30, the light transmittance of the dimming section is set to a high or low binary value.
3 2 . 調光ガラス光学系の内側に配置するへッドマゥントセンサ一或いは光線方向検知 器により光線強度を監視しての調光区分の光透過率制御に於いて, 通過光線の平均的強 度で当該区分の平均光透過率を制御し, 光透過率の高い時間帯での通過光線の瞬時強度 で光線の強度監視する事を特徴とする請求の範囲第 1 9項及び第 3 0項記載の防眩装置。 32. In controlling the light transmittance of the dimming section by monitoring the light intensity with a head mount sensor or a light direction detector placed inside the dimming glass optical system, the average of the transmitted light Claims 19 and 30 wherein the average light transmittance of the relevant section is controlled by the intensity, and the intensity of the light is monitored by the instantaneous intensity of the passing light in a time zone where the light transmittance is high. The anti-glare device according to claim.
3 3 . 区分特定手段は入射光線の色彩識別機能を有し, 統括制御部は指定された特定の 色彩の光線に対しては減光の程度を軽減調整する事を特徴とする請求の範囲第 1 9項記 載の防眩装置。 33. The classification specifying means has a function of identifying the color of an incident light beam, and the general control unit reduces and adjusts the degree of dimming for a light beam of a specified specific color. 19 Anti-glare device described in item 9.
3 4 . 電気的に選択可能で光透過率を独立に制御可能な複数の区分より成る調光ガラス から構成される調光ガラス光学系と, 調光ガラスの各区分を電気的に選択し電気信号を 加えて光透過率を制御する調光ガラス駆動部と, 光検知手段を有し統括制御部と共同し て外部光源から防眩対象者の眼に飛来する予め定めた以上の強度を有する光線が通過す る調光ガラス区分を特定する区分特定手段と, システム全体の動作を統括する統括制御 部と等より構成されるシステムに於いて, 以下のステップによりウィンドウ外から飛来 して防眩対象者の眼に入射する予め定めた以上の強度を有する光線が通過する調光ガラ ス区分をへッドマウントセンサ一により直接的に特定し, その区分の光透過率を低減制 御して防眩対象者の眼に入る光線部分のみを選択的に減光して外部視認性を向上する方 法; 3 4. Light control glass consisting of multiple sections that can be selected electrically and whose light transmittance can be controlled independently A dimming glass optical system consisting of: a dimming glass driving unit that electrically selects each section of the dimming glass and adds an electric signal to control the light transmittance; Section identification means for identifying the section of the dimming glass through which light beams having a predetermined intensity or higher that fly from the external light source to the eye of the anti-glare subject pass through together with the external light source, and the overall control for overall operation of the system In the system composed of the parts and the like, the following steps are taken to divide the dimming glass section through which the light rays having a higher intensity than the predetermined intensity which fly out of the window and enter the eye of the anti-glare subject pass. A method of directly identifying by a head mounted sensor, controlling the light transmittance of the section to reduce, and selectively dimming only the light rays entering the eye of the anti-glare subject to improve external visibility Law;
( 1 ) へッドマウントセンサーの出力から入射光線の強度が所定以上である事を検出す る。  (1) It is detected from the output of the head mount sensor that the intensity of the incident light beam is higher than a predetermined value.
( 2 ) 調光ガラス駆動部が各調光ガラス区分の光透過率をそれぞれ識別できるような態 様で変調する。  (2) Modulate in such a way that the light control glass drive unit can identify the light transmittance of each light control glass section.
( 3 ) へッドマウントセンサーの出力変動と各調光ガラス区分の変調態様とから減光制 御すべき調光ガラス区分を特定する。  (3) Identify the dimming glass section to be dimmed from the output fluctuation of the head mount sensor and the modulation mode of each dimming glass section.
( 4 ) 調光ガラス駆動部が特定された調光ガラス区分を電気的に選択し, 加える電気信 号を制御して光透過率を減じ, 防眩対象者の眼に入射する光線強度を減じる。  (4) The dimming glass drive section electrically selects the specified dimming glass section, controls the applied electric signal to reduce the light transmittance, and reduces the light intensity incident on the eye of the anti-glare subject. .
3 5 . 請求の範囲第 3 4項のステップ (2 ) に於いて, 全調光ガラス区分が識別可能な ようにタイミングを異ならせて各調光ガラス区分の光透過率を変調する事を特徴とする 請求の範囲第 3 4項記載の外部視認性を向上する方法。 35. In step (2) of claim 34, the light transmittance of each light control glass section is modulated by changing the timing so that all the light control glass sections can be identified. A method for improving external visibility according to claim 34.
3 6 . 請求の範囲第 3 4項のステップ (2 ) に於いて, 調光ガラス区分の縦, 横の帯状 区分毎にタイミングを異ならせて光透過率を変調して各調光ガラス区分を識別可能にす る事を特徴とする請求の範囲第 3 4項記載の外部視認性を向上する方法。 36. In step (2) of Claim 34, the light transmittance is modulated by changing the timing for each of the vertical and horizontal strips of the light control glass section, and each light control glass section is controlled. The method for improving external visibility according to claim 34, wherein the external visibility is made identifiable.
3 7 . 電気的に選択可能で光透過率を独立に制御可能な複数の区分より成る調光ガラス から構成される調光ガラス光学系と, 調光ガラスの各区分を電気的に選択し電気信号を 加えて光透過率を制御する調光ガラス駆動部と, 光検知手段を有し統括制御部と共同し て外部光源から防眩対象者の眼に飛来する予め定めた以上の強度を有する光線が通過す る調光ガラス区分を特定する区分特定手段と, システム全体の動作を統括する統括制御 部と等より構成されるシステムに於いて, 以下のステップによりウィンドウ外から飛来 して防眩対象者の眼に入射する予め定めた以上の強度を有する光線が通過する調光ガラ ス区分を光線方向検知器により特定して防眩対象者の眼に入射する光線を選択的に減光 して外部視認性を向上する方法; 3 7. Light control glass consisting of multiple sections that can be selected electrically and whose light transmittance can be controlled independently A dimming glass optical system consisting of: a dimming glass driving unit that electrically selects each section of the dimming glass and adds an electric signal to control the light transmittance; Section identification means for identifying the section of the dimming glass through which light beams having a predetermined intensity or higher that fly from the external light source to the eye of the anti-glare subject pass through together with the external light source, and the overall control for overall operation of the system In the system composed of the parts and the like, the following steps are used to divide the dimming glass section through which the light beam having a higher intensity than a predetermined intensity that passes from outside the window and enters the eye of the anti-glare subject passes. A method for selectively dimming light rays incident on the eyes of the anti-glare target by specifying the direction detector to improve external visibility;
(1) 光線方向検知器の出力と調光ガラス区分との対応マップを新たに形成或いは修正 の指示が無ければステップ (9) から開始する。 対応マップの形成或いは修正の 指示があれば以下のステップ (2) — (8) より成る学習過程により対応マップ を形成或いは修正する。  (1) If there is no instruction to newly form or modify the correspondence map between the output of the beam direction detector and the light control glass section, start from step (9). If there is an instruction to form or modify the correspondence map, the correspondence map is formed or modified by the learning process consisting of the following steps (2) to (8).
(2) 入射光線の強度が所定以上である事を検出する。  (2) Detecting that the intensity of the incident light beam is equal to or higher than a predetermined value.
(3) 別途の手段により防眩対象者の眼に入射する光線が通過する調光ガラス区分を指 定する。  (3) Specify the dimming glass section through which the light beam entering the anti-glare subject's eye passes by another means.
(4) 当該調光ガラス区分の光透過率を調整制御して入射光線を選択的に減光する。 (4) Adjusting and controlling the light transmittance of the light control glass section to selectively diminish incident light.
(5) 光線方向検知器から入射光線の方向を出力する。 (5) The direction of the incident light is output from the light direction detector.
(6) ステップ (5) での光線方向検知器出力とステップ (2) での指定された調光ガ ラス区分との対応関係を記憶する。  (6) The correspondence between the beam direction detector output in step (5) and the specified dimming glass section in step (2) is stored.
(7) ステップ (2) — (6) を繰り返して光線方向検知器の出力と調光ガラス区分と の対応マップを学習的に形成する。  (7) Repeat steps (2)-(6) to learn the correspondence map between the output of the beam direction detector and the section of the light control glass.
(8) 学習過程終了後は, 以下のステップ (9) - (12) を繰り返す。  (8) After the learning process, repeat the following steps (9) to (12).
(9) 入射光線の強度が所定以上である事を検出する。  (9) Detect that the intensity of the incident light beam is higher than a predetermined value.
(10) 光線方向検知器から入射光線の方向として内蔵するイメージセンサーのピクセ ル位置を出力する。  (10) The pixel position of the built-in image sensor is output from the beam direction detector as the direction of the incident beam.
(1 1) ステップ (10) での光線方向検知器出力から前記対応マップを参照して調光 ガラス区分を特定する (12) 当該調光ガラス区分の光透過率を調整して入射光線を選択的に減光する。 (1 1) Refer to the corresponding map from the beam direction detector output in step (10) to specify the dimming glass section (12) Adjusting the light transmittance of the light control glass section to selectively diminish incident light.
38. 請求の範囲第 37項のステップ (3) に於ける調光ガラス区分の指定を請求の範 囲第 34項記載の方法による事を特徴とする請求の範囲第 37項記載の外部視認性を向 上する方法。 38. The external visibility according to claim 37, wherein the designation of the light control glass category in step (3) of claim 37 is performed by the method described in claim 34. How to improve.
39. 請求の範囲第 37項のステップ (7) に於いて, 対応マップが予め指示した完成 度に達した時点で自動的に或いは指示されて補間作業を実施して対応マップを完成させ る事を特徴とする請求の範囲第 37項記載の外部視認性を向上する方法。 39. In step (7) of Claim 37, when the corresponding map reaches the completion degree specified in advance, the interpolation work is performed automatically or instructed to complete the corresponding map. 38. The method for improving external visibility according to claim 37, characterized in that:
40. 請求の範囲第 37項のステップ (5) に於いて, 光線方向検知器は光線方向に加 えて光源までの距離を算出するに足る情報を出力し, 請求の範囲第 37項のステップ40. In step (5) of claim 37, the beam direction detector outputs information sufficient to calculate the distance to the light source in addition to the beam direction, and the step of claim 37
(6) に於いて, それら出力と請求の範囲第 37項のステップ (2) での指定された調 光ガラス区分との対応関係を記憶する事を特徴とする請求の範囲第 37項記載の外部視 認性を向上する方法。 The method according to claim 37, wherein in step (6), the correspondence between the output and the specified dimming glass section in step (2) of claim 37 is stored. A way to improve external visibility.
PCT/JP1998/001863 1998-03-04 1998-04-23 Vehicle improved in outward sight and device and method for reducing glare WO1999044846A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6945598 1998-03-04
JP10/69455 1998-03-04

Publications (1)

Publication Number Publication Date
WO1999044846A1 true WO1999044846A1 (en) 1999-09-10

Family

ID=13403150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001863 WO1999044846A1 (en) 1998-03-04 1998-04-23 Vehicle improved in outward sight and device and method for reducing glare

Country Status (1)

Country Link
WO (1) WO1999044846A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2368403A (en) * 2000-10-26 2002-05-01 Autoliv Dev Head-up displays
JP2004093873A (en) * 2002-08-30 2004-03-25 Asahi Glass Co Ltd Light control window
GB2445365A (en) * 2007-01-05 2008-07-09 Michael Robert Garrard Anti-dazzle apparatus
CN103723004A (en) * 2012-10-15 2014-04-16 华东师范大学 Anti-dazzling driving auxiliary system based on liquid crystal glass and anti-dazzling method of anti-dazzling driving auxiliary system
GB2557712A (en) * 2016-10-20 2018-06-27 Ford Global Tech Llc Vehicle-window-transmittance-control apparatus and method
JP2020510572A (en) * 2017-03-01 2020-04-09 スイッチ マテリアルズ インコーポレイテッドSwitch Materials Inc. Vehicle windows with variable transmittance
CN113496197A (en) * 2020-03-19 2021-10-12 Aptiv技术有限公司 Optical system and method for monitoring the line of sight of a vehicle driver
KR20230060591A (en) * 2021-10-27 2023-05-08 한국자동차연구원 Camera system for vehicle and operating method thereof
CN113496197B (en) * 2020-03-19 2024-04-12 Aptiv技术股份公司 Optical system and method for monitoring the line of sight of a vehicle driver

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145816U (en) * 1988-03-31 1989-10-06
JPH02117414A (en) * 1988-10-26 1990-05-01 Mazda Motor Corp Liquid crystal spot visor of vehicle
JPH0295319U (en) * 1989-01-17 1990-07-30
JPH02216316A (en) * 1989-02-16 1990-08-29 Nissan Motor Co Ltd Glare shielding device
JPH0463718A (en) * 1990-06-30 1992-02-28 Aisin Seiki Co Ltd Window-light adjusting device
JPH04127123A (en) * 1990-09-18 1992-04-28 Toyo Commun Equip Co Ltd Dimming device
JPH04238724A (en) * 1991-01-10 1992-08-26 Oki Electric Ind Co Ltd Glare shield device
JPH05203906A (en) * 1992-01-29 1993-08-13 Toyota Central Res & Dev Lab Inc Antidazzling system
JPH0563929U (en) * 1992-02-07 1993-08-24 日産ディーゼル工業株式会社 Electronic sun visor device
US5305012A (en) * 1992-04-15 1994-04-19 Reveo, Inc. Intelligent electro-optical system and method for automatic glare reduction
JPH06320954A (en) * 1993-05-17 1994-11-22 Nissan Motor Co Ltd Rear window device for vehicle

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145816U (en) * 1988-03-31 1989-10-06
JPH02117414A (en) * 1988-10-26 1990-05-01 Mazda Motor Corp Liquid crystal spot visor of vehicle
JPH0295319U (en) * 1989-01-17 1990-07-30
JPH02216316A (en) * 1989-02-16 1990-08-29 Nissan Motor Co Ltd Glare shielding device
JPH0463718A (en) * 1990-06-30 1992-02-28 Aisin Seiki Co Ltd Window-light adjusting device
JPH04127123A (en) * 1990-09-18 1992-04-28 Toyo Commun Equip Co Ltd Dimming device
JPH04238724A (en) * 1991-01-10 1992-08-26 Oki Electric Ind Co Ltd Glare shield device
JPH05203906A (en) * 1992-01-29 1993-08-13 Toyota Central Res & Dev Lab Inc Antidazzling system
JPH0563929U (en) * 1992-02-07 1993-08-24 日産ディーゼル工業株式会社 Electronic sun visor device
US5305012A (en) * 1992-04-15 1994-04-19 Reveo, Inc. Intelligent electro-optical system and method for automatic glare reduction
JPH06320954A (en) * 1993-05-17 1994-11-22 Nissan Motor Co Ltd Rear window device for vehicle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2368403A (en) * 2000-10-26 2002-05-01 Autoliv Dev Head-up displays
GB2368403B (en) * 2000-10-26 2004-04-28 Autoliv Dev Improvements in or relating to a head-up display
JP2004093873A (en) * 2002-08-30 2004-03-25 Asahi Glass Co Ltd Light control window
GB2445365A (en) * 2007-01-05 2008-07-09 Michael Robert Garrard Anti-dazzle apparatus
CN103723004A (en) * 2012-10-15 2014-04-16 华东师范大学 Anti-dazzling driving auxiliary system based on liquid crystal glass and anti-dazzling method of anti-dazzling driving auxiliary system
US10192125B2 (en) 2016-10-20 2019-01-29 Ford Global Technologies, Llc Vehicle-window-transmittance-control apparatus and method
GB2557712A (en) * 2016-10-20 2018-06-27 Ford Global Tech Llc Vehicle-window-transmittance-control apparatus and method
US10832067B2 (en) 2016-10-20 2020-11-10 Ford Global Technologies, Llc Vehicle-window-transmittance-control apparatus and method
JP2020510572A (en) * 2017-03-01 2020-04-09 スイッチ マテリアルズ インコーポレイテッドSwitch Materials Inc. Vehicle windows with variable transmittance
CN113496197A (en) * 2020-03-19 2021-10-12 Aptiv技术有限公司 Optical system and method for monitoring the line of sight of a vehicle driver
CN113496197B (en) * 2020-03-19 2024-04-12 Aptiv技术股份公司 Optical system and method for monitoring the line of sight of a vehicle driver
KR20230060591A (en) * 2021-10-27 2023-05-08 한국자동차연구원 Camera system for vehicle and operating method thereof
KR102565627B1 (en) * 2021-10-27 2023-08-10 한국자동차연구원 Camera system for vehicle and operating method thereof

Similar Documents

Publication Publication Date Title
EP1683668B1 (en) Variable transmissivity window system
US7199767B2 (en) Enhanced vision for driving
JP6138908B2 (en) Adaptive glasses for car drivers or passengers
CN110682855B (en) Vehicle with a steering wheel
JP4473937B2 (en) Anti-glare system for vehicles
JP4469839B2 (en) Anti-glare system for vehicles
US10189396B2 (en) Vehicle headlamp control device
US11938795B2 (en) Vehicular vision system with glare reducing windshield
US20160288627A1 (en) Method for operating a dazzle protection system for a vehicle
CN108162729B (en) Automobile anti-glare system and method
JP2000108660A (en) Vehicle improved in exernal visual confirmability and glare proof device and method
JP4688196B2 (en) Night vision system for automobile
WO1999044846A1 (en) Vehicle improved in outward sight and device and method for reducing glare
CN107000552B (en) Motor vehicle driving assistance system and motor vehicle
CN108916807B (en) Vehicle headlamp system with photochromic lens and lens heating system
JP2010143463A (en) Light control glass device
CN109591704B (en) Anti-glare device and rearview mirror
US20060181759A1 (en) Electrochromatic polymer mirror surface for vehicle blind spot exposure
GB2562248A (en) Driver anti-blinding system
WO2022130007A1 (en) Vehicle systems and methods for assistance drivers to reduce reflective light interference from rear sides
CN216507830U (en) Photosensitive protection windshield color changing device
CN114670609A (en) Photosensitive protection windshield color-changing system
CN116583434A (en) Headlight for vehicle
KR20070067392A (en) Electro chromic device controller
JPS63312229A (en) External light shielding controller for passenger in vehicle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 2000534418

Format of ref document f/p: F