WO1999047076A2 - Wire-tubular hybrid stent - Google Patents

Wire-tubular hybrid stent Download PDF

Info

Publication number
WO1999047076A2
WO1999047076A2 PCT/US1999/003797 US9903797W WO9947076A2 WO 1999047076 A2 WO1999047076 A2 WO 1999047076A2 US 9903797 W US9903797 W US 9903797W WO 9947076 A2 WO9947076 A2 WO 9947076A2
Authority
WO
WIPO (PCT)
Prior art keywords
stent
shaped elements
cylindrical sections
longitudinal axis
along
Prior art date
Application number
PCT/US1999/003797
Other languages
French (fr)
Other versions
WO1999047076A3 (en
Inventor
Kenny L. Dang
Original Assignee
Medtronic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic, Inc. filed Critical Medtronic, Inc.
Priority to DE69920127T priority Critical patent/DE69920127T2/en
Priority to AT99937811T priority patent/ATE275889T1/en
Priority to EP99937811A priority patent/EP0989831B1/en
Publication of WO1999047076A2 publication Critical patent/WO1999047076A2/en
Publication of WO1999047076A3 publication Critical patent/WO1999047076A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91508Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a difference in amplitude along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91516Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a change in frequency along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91566Adjacent bands being connected to each other connected trough to trough
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0054V-shaped

Definitions

  • the present invention relates to intravascular stent implants for maintaining vascular patency in humans and animals and more particularly to a stent having a plurality of radially expandable sections interconnected along the longitudinal length of the stent.
  • PTCA Percutaneous transluminal coronary angioplasty
  • a first guidewire of about .038 inches in diameter is steered through the vascular system to the site of therapy.
  • a guiding catheter for example, can then be advanced over the first guidewire to a point just proximal of the stenosis.
  • the first guidewire is then removed.
  • a balloon catheter on a smaller .014 inch diameter second guidewire is advanced within the guiding catheter to a point just proximal of the stenosis.
  • the second guidewire is advanced into the stenosis, followed by the balloon on the distal end of the catheter.
  • the balloon is inflated causing the site of the stenosis to widen.
  • Dilatation of the occlusion can form flaps, fissures and dissections which threaten reclosure of the dilated vessel or even perforations in the vessel wall.
  • Implantation of a metal stent can provide support for such flaps and dissections and thereby prevent reclosure of the vessel or provide a patch repair for a perforated vessel wall until corrective surgery can be performed. It has also been shown that the use of intravascular stents can measurably decrease the incidence of restenosis after angioplasty thereby reducing the likelihood that a secondary angioplasty procedure or a surgical bypass operation will be necessary.
  • An implanted prosthesis such as a stent can preclude additional procedures and maintain vascular patency by mechanically supporting dilated vessels to prevent vessel reclosure.
  • Stents can also be used to repair aneurysms, to support artificial vessels as liners of vessels or to repair dissections.
  • Stents are suited to the treatment of any body lumen, including the vas deferens, ducts of the gallbladder, prostate gland, trachea, bronchus and liver.
  • the body lumens range in diameter from small coronary vessels of 3 mm or less to 28 mm in the aortic vessel.
  • the invention applies to acute and chronic closure or reclosure of body lumens.
  • a typical stent is a cylindrically shaped wire formed device intended to act as a permanent prosthesis.
  • a typical stent ranges from 5 mm to 50 mm in length.
  • a stent is deployed in a body lumen from a radially compressed configuration into a radially expanded configuration which allows it to contact and support a body lumen.
  • the stent can be made to be radially self-expanding or expandable by the use of an expansion device.
  • the self expanding stent is made from a resilient springy material while the device expandable stent is made from a material which is plastically deformable.
  • a plastically deformable stent can be implanted during a single angioplasty procedure by using a balloon catheter bearing a stent which has been crimped onto the balloon. Stents radially expand as the balloon is inflated, forcing the stent into contact with the interior of the body lumen thereby forming a supporting relationship with the vessel walls.
  • Low pressure balloons are those which fall into rated burst pressures below 6 atm.
  • Medium pressure balloons are those which fall into rated burst pressures between 6 and 12 atm.
  • High pressure balloons are those which fall into rated burst pressures above 12 atm. Burst pressure is determined by material selection, wall thickness and tensile strength.
  • the biocompatible metal stent props open blocked coronary arteries, keeping them from reclosing after balloon angioplasty.
  • a balloon of appropriate size and pressure is first used to open the lesion. The process is repeated with a stent crimped on a second balloon.
  • the second balloon may be a high pressure type of balloon, e.g., more than 12 atmospheres, to insure that the stent is fully deployed upon inflation.
  • the stent is deployed when the balloon is inflated.
  • the stent remains as a permanent scaffold after the balloon is withdrawn.
  • a high pressure balloon is preferable for stent deployment because the stent must be forced against the artery's interior wall so that it will fully expand thereby precluding the ends of the stent from hanging down into the channel encouraging the formation of thrombus.
  • stents are made of wire wound and bent into desired configurations
  • stents may also be formed using thin-walled tubes that are laser cut or otherwise formed to allow the tubes to be compressed into a smaller diameter for delivery to a desired location within a body lumen.
  • Such stents commonly referred to as tubular stents, provide advantages in terms of increased torsional stability and hoop strength as compared to stents formed from wires.
  • One disadvantage is that such stents typically exhibit limited longitudinal flexibility which can limit delivery through tortuous pathways and their deployment in curved body lumens.
  • the present invention provides a radially expandable stent for implantation within a body vessel including a plurality of cylindrical sections successively arranged along a longitudinal axis of the stent; a plurality of W-shaped elements in each of the cylindrical sections, each of the W-shaped elements including a center section and two outside legs, the plurality of W-shaped elements in each of the cylindrical sections opening in alternating directions along the longitudinal axis of the stent, wherein the W-shaped elements in adjacent cylindrical sections alternate between pairs of W-shaped elements that open towards each other along the longitudinal axis and pairs of W-shaped elements that open away from each other along the longitudinal axis when moving about the circumference of the adjacent cylindrical sections; and a plurality of tie members connecting adjacent cylindrical sections along the longitudinal axis of the stent, the tie members connecting center sections of the pairs of W-shaped elements that open towards each other along the longitudinal axis in each pair of adjacent cylindrical sections.
  • the present invention provides a radially expandable stent for implantation within a body vessel including a plurality of cylindrical sections successively arranged along a longitudinal axis of the stent; a plurality of W-shaped elements in each of the cylindrical sections, each of the W-shaped elements including a center section and two outside legs, wherein the center section of each of the W-shaped elements is shorter in the longitudinal direction than the outside legs of the W-shaped element, the plurality of W-shaped elements in each of the cylindrical sections opening in alternating directions along the longitudinal axis of the stent, wherein the W-shaped elements in adjacent cylindrical sections alternate between pairs of W-shaped elements that open towards each other along the longitudinal axis and pairs of W-shaped elements that open away from each other along the longitudinal axis when moving about the circumference of the adjacent cylindrical sections; and a plurality of tie members connecting adjacent cylindrical sections along the longitudinal axis of the stent, the tie members connecting center sections of the pairs of W-shaped elements that open towards each other along the longitudinal axis
  • the present invention provides a method of implanting a radially expandable stent within a body lumen by providing radially expandable stent in a compressed state, the stent including a plurality of cylindrical sections successively arranged along a longitudinal axis of the stent; a plurality of W-shaped elements in each of the cylindrical sections, each of the W-shaped elements including a center section and two outside legs, the plurality of W-shaped elements in each of the cylindrical sections opening in alternating directions along the longitudinal axis of the stent, wherein the W- shaped elements in adjacent cylindrical sections alternate between pairs of W-shaped elements that open towards each other along the longitudinal axis and pairs of W-shaped elements that open away from each other along the longitudinal axis when moving about the circumference of the adjacent cylindrical sections; and a plurality of tie members connecting adjacent cylindrical sections along the longitudinal axis of the stent, the tie members connecting center sections of the pairs of W-shaped elements that open towards each other along the longitudinal axis in each pair of adjacent
  • FIG. 1 is a perspective view of one stent according to the present invention
  • FIG. 2 is a plan view of the stent of Figure 1 after unrolling the stent from its tubular shape;
  • FIG. 3 is an enlarged view of a portion of the stent of Figures 1 and 2;
  • FIG. 4 is a plan view of an alternative stent according to the present invention after unrolling of the stent from its tubular shape;
  • FIG. 5 is an enlarged view of a portion of the stent of Figure 4.
  • FIG. 6 is a view of a portion of another alternative stent according to the present invention
  • FIG. 7 is a view of a portion of another alternative stent according to the present invention.
  • FIG. 8 is an end view of a stent located on a balloon catheter in a body lumen before deployment of the stent; and
  • FIG. 9 is an end view of the stent of Figure 8after deployment and removal of the balloon catheter.
  • the present invention provides radially-expandable stents that provide improved longitudinal flexibility and stability, improved torsional flexibility and stability, improved trackability and conformability, and improved hoop strength.
  • the stents according to the present invention combine the advantages typically associated with wire stents with those typically associated longitudinal stability.
  • FIG. 1 depicts one illustrative radially-expandable stent according to the present invention.
  • the depicted stent 10 includes a generally tubular body defining a passageway 12 extending along a longitudinal axis 14.
  • the stent 10 is preferably formed from a plurality of cylindrical sections 20a, 20b, 20c, 20d, and 20e (collectively referred to as cylindrical sections 20 below) arranged successively along the longitudinal axis 14.
  • the stent 10 is depicted in Figure 1 in its expanded state in which the cylindrical sections 20 have been expanded radially outward from the longitudinal axis 14.
  • the stent 10 can be radially compressed into a smaller diameter to ease delivery of the stent 10 to a desired location within a body lumen where the stent 10 can then be radially expanded to provide the desired support to the lumen.
  • FIG 2 is a plan view of a portion of the stent 10 depicted in Figure 1 in which the body has been unrolled from the tubular shape of Figure 1 and Figure 3 is an enlarged view of a portion of Figure 2.
  • Each of the cylindrical sections 20 has a length along the longitudinal axis 14 and includes a plurality of W-shaped elements 30
  • the W-shaped elements 30 open in alternating directions along the longitudinal axis 14 of the stent 10 about the perimeter or circumference of the cylindrical sections 20 (i.e., in the hoop direction).
  • W-shaped elements 30a and 30b are depicted in Figure 3.
  • Each of the W-shaped elements 30 includes a center section 36a/36b and two outside legs 32a/32b and 34a/34b.
  • the center sections 36a/36b of the W-shaped elements 30 te ⁇ ninate at peaks or apexes 37a/37b that are located at about the midpoint of the cylindrical sections 20, i.e., the midpoint along the longitudinal length of the cylindrical sections 20.
  • the outside legs 32a/32b and 34a/34b are shared or common to the adjacent W-shaped element 30 within each of the cylindrical sections 20.
  • each of the W-shaped elements 30 are curved or rounded to reduce stress-concentration points in the stent 10.
  • the cylindrical sections 20 are preferably arranged such that the W-shaped elements 30 in adjacent cylindrical sections 20 alternate between pairs of W-shaped elements 30 that open towards each other and pairs of W-shaped elements 30 that open away from each other when moving around the perimeter or circumference of the stent 10 (i.e., transverse to the axis 14 in Figure 2).
  • Figure 3 depicts one such pair of W-shaped elements 30a and 30b that open towards each other from adjacent cylindrical sections 20.
  • the W-shaped elements 30a/30b are connected to each other by a tie member 50 that is attached to the center sections 36a/36b of each of the W-shaped elements 30a/30b. It is preferred that the tie members 50 are attached to the W-shaped elements 30 at the peak or apex
  • each of the cylindrical sections 20 is alternating between attachment to the cylindrical sections on either side.
  • cylindrical section 20c alternates between attachment via a tie member 50 to cylindrical section 20b on one side and attachment via a tie member 50 to cylindrical section 20d on the opposite side as one moves about the circumference of the stent 10 (transverse to the longitudinal axis 14 or in the hoop direction).
  • the pairs of W-shaped elements 30 that open towards each other in adjacent cylindrical sections 20 can be described as forming cells 40a, 40b, and 40c (collectively referred to as cells 40) as seen in Figure 2.
  • the cells 40a and 40c are aligned along the longitudinal axis 14.
  • Cell 40b which bridges the longitudinal gap between the abutting cells 40a and 40c, is offset from the cells 40a and 40c about the circumference of the stent 10 (i.e., in the hoop direction).
  • Figures 4 and 5 depict an alternative embodiment of a stent 110 according to the present invention.
  • Figure 4 is a plan view of a portion of the body of the stent 110 in which the body has been unrolled from the tubular shape and
  • Figure 5 is an enlarged view of a portion of Figure 4.
  • the stent 110 also includes cylindrical sections 120a, 120b, 120c, 120d, and 120e (collectively referred to as cylindrical sections 120) located successively along a longitudinal axis 114.
  • Each of the cylindrical sections 120 has a length along the longitudinal axis 114 and includes a plurality of W-shaped elements 130 (only one of which is denoted by a reference number).
  • the W-shaped elements 130 open in alternating directions along the longitudinal axis 114 of the stent 110 about the perimeter or circumference of the cylindrical sections 120 (i.e., in the hoop direction).
  • W-shaped elements 130a and 130b that open towards each other from adjacent cylindrical sections 120b and 120c are depicted in Figure 5.
  • Each of the W-shaped elements 130 includes a center section 136a/136b and two outside legs 132a/132b and 134a/134b.
  • the center sections 136a/ 136b of the W-shaped elements 130 tera ⁇ nate at peaks or apexes 137a/137b that are generally aligned along one side of the cylindrical sections 120.
  • the outside legs 132a/132b and 134a/134b are shared or common to the adjacent W- shaped element 130 within each of the cylindrical sections 120.
  • the bends between the outside legs 132a/132b and 134a/134b and the center sections 136a/136b are curved or rounded to reduce stress-concentration points in the stent 110.
  • the cylindrical sections 120 are preferably arranged such that the W-shaped elements 130 in adjacent cylindrical sections 120 alternate between pairs of W-shaped elements 130 that open towards each other and pairs of W-shaped elements 130 that open away from each other when moving around the perimeter or circumference of the stent 110 (i.e. , transverse to the axis 114 in Figure 4 or in the hoop direction).
  • FIG. 5 depicts one such pair of W-shaped elements 130a and 130b that open towards each other from adjacent cylindrical sections 120.
  • the W-shaped elements 130a/ 130b are connected to each other by a tie member 150 that is attached to the center sections 136a/ 136b of each of the W-shaped elements 130a/ 130b. Because the W-shaped elements 130 in each of the cylindrical sections 120 open in opposite directions as one moves about the circumference of the stent 110 (i.e., in the hoop direction), each of the cylindrical sections 120 alternates between attachment to the cylindrical sections 120 on either side.
  • cylindrical section 120c alternates between attachment via a tie member 150 to cylindrical section 120b on one side and attachment via a tie member 150 to cylindrical section 120d on the opposite side as one moves about the circumference of the stent 110 (transverse to the longitudinal axis 114 or in the hoop direction).
  • the pairs of W-shaped elements 130 that open towards each other in adjacent cylindrical sections 120 can be described as forming cells 140a, 140b, and 140c (collectively referred to as cells 140) as seen in Figure 4. Because the cylindrical sections 120 are connected to the adjacent cylindrical sections 120 in an alternating fashion on opposing sides as described above, the cells 140a and 140c are aligned along the longitudinal axis 114. Cell 140b, which bridges the longitudinal gap between the abutting cells 140a and 140c, is offset from the cells 140a and 140c about the circumference of the stent 110 (i.e. , in the hoop direction).
  • the result of the interconnections between the cells 140 in the stent 110 as shown is that forces along the longitudinal axis 114 of the stent 110 are dispersed about the circumference of the stent 110. Similarly, forces acting torsionally on the stent 110 about axis 114 are also dispersed throughout the body of the stent 110. In addition, forces acting radially inward are also dispersed throughout the stent, thereby improving its hoop strength. The dispersion of forces gives the stent 110 its unique combination of flexibility and stability in both the longitudinal direction, in torsion and in hoop strength.
  • longitudinal bending flexibility is improved both when the stent is in the compressed state during delivery and upon deployment of the stent in its expanded state within a body lumen.
  • Increased longitudinal bending flexibility when compressed permits threading of the stent through long tortuous vessels and lesions.
  • Increased longitudinal bending flexibility when expanded allows for deployment in highly curved vessels or lumens.
  • the longitudinal flexibility of the stents 10/110 according to the present invention can be adjusted by varying the length of the tie members 50/150 connecting the cylindrical sections 20/120.
  • a shorter tie member will improve longitudinal flexibility and a longer tie member will decrease longitudinal flexibility.
  • Longitudinal flexibility must however, be balanced with torsional stability and the decrease in tie member length to obtain increased longitudinal flexibility may result in reduced torsional stability.
  • increasing the length of the tie members can increase torsional stability while decreasing longitudinal flexibility.
  • FIG. 6 depicts another embodiment of a stent 210 according to the present invention in a plan view of a portion of the body of the stent 210 in which the body has been unrolled from the tubular shape.
  • the stent 210 also includes cylindrical sections 220a, 220b, 220c, and 220d (collectively referred to as cylindrical sections 220) located successively along a longitudinal axis 214.
  • Each of the cylindrical sections 220 has a length along the longitudinal axis 214 and includes a plurality of W- shaped elements 230 (only one of which is denoted by a reference number).
  • the W- shaped elements 230 open in alternating directions along the longitudinal axis 214 of the stent 210 about the perimeter or circumference of the cylindrical sections 220 (i.e., in the hoop direction).
  • the cylindrical sections 220 are preferably arranged such that the W-shaped elements 230 in adjacent cylindrical sections 220 alternate between pairs of W-shaped elements 230 that open towards each other and pairs of W-shaped elements 230 that open away from each other when moving around the perimeter or circumference of the stent 210 (i.e., transverse to the axis 214 or in the hoop direction).
  • the pairs of W-shaped elements 230 that open towards each other from adjacent cylindrical sections 220 are connected by tie members 250 to form cells 240 in a manner similar to that described above with respect to stents 10 and 110.
  • Figure 7 depicts another embodiment of a stent 310 according to the present invention in a plan view of a portion of the body of the stent 310 in which the body has been unrolled from the tubular shape.
  • the stent 310 also includes cylindrical sections 320a, 320b, 320c, and 320d (collectively referred to as cylindrical sections 320) located successively along a longitudinal axis 314.
  • Each of the cylindrical sections 320 has a length along the longitudinal axis 314 and includes a plurality of W- shaped elements 330 (only one of which is denoted by a reference number).
  • the W- shaped elements 330 open in alternating directions along the longitudinal axis 314 of the stent 310 about the perimeter or circumference of the cylindrical sections 320 (i.e., in the hoop direction).
  • the cylindrical sections have been rotated about the longitudinal axis 314 such that the W-shaped elements 330 in adjacent cylindrical sections 320 that are aligned along the longitudinal axis 314 open in the same direction.
  • the tie members 350 are curved to attach the W-shaped elements 330 in the adjacent cylindrical sections 320 that open toward each other to form cells 340.
  • the adjacent cylindrical sections 320 are out-of-phase with each other.
  • the adjacent cylindrical sections are out-of-phase by one of the W-shaped elements 330, although it will be understood that the W-shaped elements may be out-of-phase by different amounts.
  • cylindrical sections of the stents 10, 110 and 210 can be described as being in-phase with the tie members 50, 150, 250 connecting W-shaped elements 30, 130, 230 to form cells 40, 140, 240 being generally aligned with the longitudinal axes of the stents 10, 110 and 210.
  • stents such as the illustrative embodiments described above may be provided as self-expanding stents or as stents that are not self- expanding, i.e., stents that must be expanded by a balloon or some other method.
  • the radially expandable stents depicted and described above with respect to Figures 1-7 can be formed as a one-piece, completely integral units from a thin- walled tube of suitable material. If so formed, the stents will be cut or machined from a tube using, e.g., laser, water jet, EDM (electrical discharge machining), chemical etcliing, stamping, or high velocity foirning techniques. As a result, the stents can be formed without welds or joints. It is also envisioned, however, that stents according to the present invention could be formed from a sheet of material using, e.g., laser, water jet, EDM, chemical etching, stamping, or high velocity forming techniques. If the stent was formed from a sheet of material, the bodies 10/110 as seen in Figures 2 and
  • the stents could be manufactured from wire formed on a mandrel or through the mtermeshing of gears as is known in the art.
  • the W-shaped elements of the cylindrical sections would be formed followed by welding of the successive cylindrical sections together using the tie members.
  • attachment techniques including, but not limited to twisting, biocompatible adhesives, brazing, crimping, stamping, etc.
  • Preferred materials for stents according to the present invention include those materials that can provide the desired functional characteristics with respect to biological compatibility, modulus of elasticity, radio-opacity, etc.
  • self-expanding stents be capable of significant recoverable strain to assume a low profile for delivery to a desired location within a body lumen. After release of the compressed self-expanding stent, it is preferred that the stent be capable of radially expanding back to its original diameter or close to its original diameter.
  • Particularly preferred materials for self-expanding stents according to the present invention are nickel titanium alloys and other alloys that exhibit superelastic behavior, i.e., are capable of significant distortion without plastic deformation.
  • Stents manufactured of such materials may be significantly compressed without permanent plastic deformation, i.e., they are compressed such that the maximum strain level in the stent is below the recoverable strain limit of the material.
  • Discussions relating to nickel titanium alloys and other alloys that exhibit behaviors suitable for stents according to the present invention can be found in, e.g., U.S. Patent No. 5,597,378
  • Nickel titanium alloys suitable for use in manufacturing stents according to the present invention can be obtained from, e.g., Memry Corp., Brookfield, Connecticut.
  • the stents are designed to be expanded by a balloon or some other device (i.e., the stents are not self-expanding), they may be manufactured from an inert, biocompatible material with high corrosion resistance that can be plastically deformed at low-moderate stress levels, such as tantalum.
  • Other acceptable materials include stainless steel, titanium ASTM F63-83 Grade 1, niobium or high carat gold K 19-22.
  • the radially outward directed force developed by the stents according to the present invention serves two functions.
  • One function is to hold the body lumen open against a force directed radially inward, e.g., a spasm, as well as preventing restriction of the passageway through the lumen by intimal flaps or dissections generated by, e.g., prior balloon angioplasty.
  • Another function is to fix the position of the stent within the body lumen by intimate contact between the stent and the walls of the lumen. The outwardly directed forces must not be excessive, however, to avoid traumatization of the lumen walls by the stent.
  • the diameters of some preferred stents when in the compressed state for delivery to a desired location within a body lumen is typically reduced from about two to about six times the diameter of the stents when in their expanded state before compression.
  • typical stents may have a compressed external diameter of about 1 millimeter to about 3 millimeters for delivery and an expanded external diameter in a body lumen of about 3 millimeters to about 15 millimeters when released from compression in a large arterial vessel.
  • Some preferred stents used in coronary arteries may have a compressed external diameter of about 1 millimeter and an expanded external diameter in a body lumen of up to about 5 millimeters.
  • One stent 410 according to the present invention is depicted in Figure 8 as located on a balloon 460 that is, in turn, located on a delivery catheter 470 according to methods known to those skilled in the art.
  • the stent 410 can be crimped by hand or with a suitable crimping tool (not shown) onto the balloon 460.
  • the delivery system will typically include some method of containing the stent 410 in the compressed state depicted in Figure 8 such as an outer sleeve, etc. Furthermore, if the stent 410 is self-expanding, it may be supplied without the balloon 460 located within the stent 410.
  • the stent 410 and balloon 470 can be transported to a desired location within the body lumen 480 via a standard guiding catheter (not shown) using known methods and procedures. Once in location, the stent 410 can be expanded radially by inflating the balloon 460 to force the stent 410 against the inner surface of the lumen 480 using standard angioplasty procedures and techniques. It is preferred that the expanding balloon 460 together with the stent 410 compresses the plaque in the stenosis located in the lumen 480 to reduce the chance of reocclusion of the lumen 480.
  • Figure 9 depicts the stent 410 in its expanded state in contact with the lumen 480 after the balloon 460 and its associated catheter 470 have been removed.
  • balloon 460 is deflated and withdrawn along with its catheter 470, leaving stent 410 firmly implanted within lumen 480.
  • Previously occluded lumen 480 is recannalized and patency is restored. It is preferred that the stent 410 be firmly implanted and imbedded in compressed plaque in the lumen 480, providing adequate support to the lumen 480. 7076

Abstract

Radially-expandable stents are provided with improved longitudinal flexibility and stability, improved torsional flexibility and stability, improved trackability and conformability, and improved hoop strength. The stents combine the advantages typically associated with wire stents with those typically associated longitudinal stability. The stents include a plurality of cylindrical sections successively arranged along a longitudinal axis of the stent, a plurality of W-shaped elements in each of the cylindrical sections, each of the W-shaped elements having a center section and two outside legs, the plurality of W-shaped elements in each of the cylindrical sections opening in alternating directions along the longitudinal axis of the stent, wherein the W-shaped elements in adjacent cylindrical sections alternate between pairs of W-shaped elements that open towards each other along the longitudinal axis and pairs of W-shaped elements that open away from each other along the longitudinal axis when moving about the circumference of the adjacent cylindrical sections; and a plurality of tie members connecting adjacent cylindrical sections along the longitudinal axis of the stent, the tie members connecting center sections of the pairs of W-shaped elements that open towards each other along the longitudinal axis in each pair of adjacent cylindrical sections. Methods of implanting the stents in body lumens are also disclosed.

Description

WIRE-TUBULAR HYBRID STENT
Field of the Invention
The present invention relates to intravascular stent implants for maintaining vascular patency in humans and animals and more particularly to a stent having a plurality of radially expandable sections interconnected along the longitudinal length of the stent.
Background of the Invention Percutaneous transluminal coronary angioplasty (PTCA) is used to increase the lumen diameter of a coronary artery partially or totally obstructed by a build-up of cholesterol fats or atherosclerotic plaque. Typically a first guidewire of about .038 inches in diameter is steered through the vascular system to the site of therapy. A guiding catheter, for example, can then be advanced over the first guidewire to a point just proximal of the stenosis. The first guidewire is then removed. A balloon catheter on a smaller .014 inch diameter second guidewire is advanced within the guiding catheter to a point just proximal of the stenosis. The second guidewire is advanced into the stenosis, followed by the balloon on the distal end of the catheter. The balloon is inflated causing the site of the stenosis to widen. Dilatation of the occlusion, however, can form flaps, fissures and dissections which threaten reclosure of the dilated vessel or even perforations in the vessel wall. Implantation of a metal stent can provide support for such flaps and dissections and thereby prevent reclosure of the vessel or provide a patch repair for a perforated vessel wall until corrective surgery can be performed. It has also been shown that the use of intravascular stents can measurably decrease the incidence of restenosis after angioplasty thereby reducing the likelihood that a secondary angioplasty procedure or a surgical bypass operation will be necessary.
An implanted prosthesis such as a stent can preclude additional procedures and maintain vascular patency by mechanically supporting dilated vessels to prevent vessel reclosure. Stents can also be used to repair aneurysms, to support artificial vessels as liners of vessels or to repair dissections. Stents are suited to the treatment of any body lumen, including the vas deferens, ducts of the gallbladder, prostate gland, trachea, bronchus and liver. The body lumens range in diameter from small coronary vessels of 3 mm or less to 28 mm in the aortic vessel. The invention applies to acute and chronic closure or reclosure of body lumens.
A typical stent is a cylindrically shaped wire formed device intended to act as a permanent prosthesis. A typical stent ranges from 5 mm to 50 mm in length. A stent is deployed in a body lumen from a radially compressed configuration into a radially expanded configuration which allows it to contact and support a body lumen. The stent can be made to be radially self-expanding or expandable by the use of an expansion device. The self expanding stent is made from a resilient springy material while the device expandable stent is made from a material which is plastically deformable. A plastically deformable stent can be implanted during a single angioplasty procedure by using a balloon catheter bearing a stent which has been crimped onto the balloon. Stents radially expand as the balloon is inflated, forcing the stent into contact with the interior of the body lumen thereby forming a supporting relationship with the vessel walls.
Conventional angioplasty balloons fall into high, medium and low pressure ranges. Low pressure balloons are those which fall into rated burst pressures below 6 atm. Medium pressure balloons are those which fall into rated burst pressures between 6 and 12 atm. High pressure balloons are those which fall into rated burst pressures above 12 atm. Burst pressure is determined by material selection, wall thickness and tensile strength.
The biocompatible metal stent props open blocked coronary arteries, keeping them from reclosing after balloon angioplasty. A balloon of appropriate size and pressure is first used to open the lesion. The process is repeated with a stent crimped on a second balloon. The second balloon may be a high pressure type of balloon, e.g., more than 12 atmospheres, to insure that the stent is fully deployed upon inflation. The stent is deployed when the balloon is inflated. The stent remains as a permanent scaffold after the balloon is withdrawn. A high pressure balloon is preferable for stent deployment because the stent must be forced against the artery's interior wall so that it will fully expand thereby precluding the ends of the stent from hanging down into the channel encouraging the formation of thrombus.
Although many stents are made of wire wound and bent into desired configurations, stents may also be formed using thin-walled tubes that are laser cut or otherwise formed to allow the tubes to be compressed into a smaller diameter for delivery to a desired location within a body lumen. Such stents, commonly referred to as tubular stents, provide advantages in terms of increased torsional stability and hoop strength as compared to stents formed from wires. One disadvantage, however, is that such stents typically exhibit limited longitudinal flexibility which can limit delivery through tortuous pathways and their deployment in curved body lumens.
As a result, a need exists for a stent that provides the longitudinal flexibility associated with wire-wound stents in combination with the hoop strength and torsional stability of a tubular stent.
Summary of the Invention
It is an object of the invention to provide a stent having good longitudinal flexibility to maneuver through tortuous vessels and other body lumens similar to wire stents. It is another object of the present invention to provide a stent having radial or hoop strength similar to tubular stents.
It is a further object of the present invention to provide a stent having good torsional stability similar to tubular stents.
It is a further object of the present invention to provide a stent having good longitudinal stability.
In one aspect, the present invention provides a radially expandable stent for implantation within a body vessel including a plurality of cylindrical sections successively arranged along a longitudinal axis of the stent; a plurality of W-shaped elements in each of the cylindrical sections, each of the W-shaped elements including a center section and two outside legs, the plurality of W-shaped elements in each of the cylindrical sections opening in alternating directions along the longitudinal axis of the stent, wherein the W-shaped elements in adjacent cylindrical sections alternate between pairs of W-shaped elements that open towards each other along the longitudinal axis and pairs of W-shaped elements that open away from each other along the longitudinal axis when moving about the circumference of the adjacent cylindrical sections; and a plurality of tie members connecting adjacent cylindrical sections along the longitudinal axis of the stent, the tie members connecting center sections of the pairs of W-shaped elements that open towards each other along the longitudinal axis in each pair of adjacent cylindrical sections. In another aspect, the present invention provides a radially expandable stent for implantation within a body vessel including a plurality of cylindrical sections successively arranged along a longitudinal axis of the stent; a plurality of W-shaped elements in each of the cylindrical sections, each of the W-shaped elements including a center section and two outside legs, wherein the center section of each of the W-shaped elements is shorter in the longitudinal direction than the outside legs of the W-shaped element, the plurality of W-shaped elements in each of the cylindrical sections opening in alternating directions along the longitudinal axis of the stent, wherein the W-shaped elements in adjacent cylindrical sections alternate between pairs of W-shaped elements that open towards each other along the longitudinal axis and pairs of W-shaped elements that open away from each other along the longitudinal axis when moving about the circumference of the adjacent cylindrical sections; and a plurality of tie members connecting adjacent cylindrical sections along the longitudinal axis of the stent, the tie members connecting center sections of the pairs of W-shaped elements that open towards each other along the longitudinal axis in each pair of adjacent cylindrical sections; wherein the stent comprises first, second, and third cylindrical sections arranged along the longitudinal axis in that order, and further wherein the tie members connecting the center sections of the pairs of W-shaped elements that open towards each other in the first and second cylindrical sections are offset about the circumference of the stent from the tie members connecting the centers of the pairs of W-shaped elements that open towards each other in the second and third cylindrical sections. In another aspect, the present invention provides a method of implanting a radially expandable stent within a body lumen by providing radially expandable stent in a compressed state, the stent including a plurality of cylindrical sections successively arranged along a longitudinal axis of the stent; a plurality of W-shaped elements in each of the cylindrical sections, each of the W-shaped elements including a center section and two outside legs, the plurality of W-shaped elements in each of the cylindrical sections opening in alternating directions along the longitudinal axis of the stent, wherein the W- shaped elements in adjacent cylindrical sections alternate between pairs of W-shaped elements that open towards each other along the longitudinal axis and pairs of W-shaped elements that open away from each other along the longitudinal axis when moving about the circumference of the adjacent cylindrical sections; and a plurality of tie members connecting adjacent cylindrical sections along the longitudinal axis of the stent, the tie members connecting center sections of the pairs of W-shaped elements that open towards each other along the longitudinal axis in each pair of adjacent cylindrical sections; followed by advancing the stent to a desired location within a body lumen; and radially expanding the stent within the body lumen.
These and other features and advantages of the present invention are discussed below with respect to illustrative embodiments of the invention.
Brief Description of the Drawings
FIG. 1 is a perspective view of one stent according to the present invention;
FIG. 2 is a plan view of the stent of Figure 1 after unrolling the stent from its tubular shape;
FIG. 3 is an enlarged view of a portion of the stent of Figures 1 and 2; FIG. 4 is a plan view of an alternative stent according to the present invention after unrolling of the stent from its tubular shape;
FIG. 5 is an enlarged view of a portion of the stent of Figure 4;
FIG. 6 is a view of a portion of another alternative stent according to the present invention; FIG. 7 is a view of a portion of another alternative stent according to the present invention;
FIG. 8 is an end view of a stent located on a balloon catheter in a body lumen before deployment of the stent; and FIG. 9 is an end view of the stent of Figure 8after deployment and removal of the balloon catheter.
Detailed Description of the Preferred Embodiments
The present invention provides radially-expandable stents that provide improved longitudinal flexibility and stability, improved torsional flexibility and stability, improved trackability and conformability, and improved hoop strength. In many respects, the stents according to the present invention combine the advantages typically associated with wire stents with those typically associated longitudinal stability. Although the following discussion, along with the figures, describes illustrative preferred embodiments and methods according to the present invention, those skilled in the art will understand that variations are possible. For example, although stents having two or more cylindrical sections are described herein, it will be understood that stents manufactured according to the present invention could have any number of desired cylindrical sections needed to obtain a stent with a desired longitudinal length.
Furthermore, it will be understood that the figures are schematic only, and that the relative dimensions of the various illustrated features are not intended to limit the scope of the present invention.
Figure 1 depicts one illustrative radially-expandable stent according to the present invention. The depicted stent 10 includes a generally tubular body defining a passageway 12 extending along a longitudinal axis 14. The stent 10 is preferably formed from a plurality of cylindrical sections 20a, 20b, 20c, 20d, and 20e (collectively referred to as cylindrical sections 20 below) arranged successively along the longitudinal axis 14. The stent 10 is depicted in Figure 1 in its expanded state in which the cylindrical sections 20 have been expanded radially outward from the longitudinal axis 14. Although not depicted, it will be understood that the stent 10 can be radially compressed into a smaller diameter to ease delivery of the stent 10 to a desired location within a body lumen where the stent 10 can then be radially expanded to provide the desired support to the lumen.
Figure 2 is a plan view of a portion of the stent 10 depicted in Figure 1 in which the body has been unrolled from the tubular shape of Figure 1 and Figure 3 is an enlarged view of a portion of Figure 2. Each of the cylindrical sections 20 has a length along the longitudinal axis 14 and includes a plurality of W-shaped elements 30
(only one of which is denoted by a reference number). The W-shaped elements 30 open in alternating directions along the longitudinal axis 14 of the stent 10 about the perimeter or circumference of the cylindrical sections 20 (i.e., in the hoop direction).
Two W-shaped elements 30a and 30b (collectively referred to as W-shaped elements 30) in adjacent cylindrical sections 20b and 20c are depicted in Figure 3.
Each of the W-shaped elements 30 includes a center section 36a/36b and two outside legs 32a/32b and 34a/34b. In the design depicted in Figure 2, the center sections 36a/36b of the W-shaped elements 30 teπninate at peaks or apexes 37a/37b that are located at about the midpoint of the cylindrical sections 20, i.e., the midpoint along the longitudinal length of the cylindrical sections 20. Referring back to Figure 2, it can be seen that the outside legs 32a/32b and 34a/34b are shared or common to the adjacent W-shaped element 30 within each of the cylindrical sections 20. It is preferred, but not required, that the bends in each of the W-shaped elements 30 are curved or rounded to reduce stress-concentration points in the stent 10. The cylindrical sections 20 are preferably arranged such that the W-shaped elements 30 in adjacent cylindrical sections 20 alternate between pairs of W-shaped elements 30 that open towards each other and pairs of W-shaped elements 30 that open away from each other when moving around the perimeter or circumference of the stent 10 (i.e., transverse to the axis 14 in Figure 2). Figure 3 depicts one such pair of W-shaped elements 30a and 30b that open towards each other from adjacent cylindrical sections 20. As depicted, the W-shaped elements 30a/30b are connected to each other by a tie member 50 that is attached to the center sections 36a/36b of each of the W-shaped elements 30a/30b. It is preferred that the tie members 50 are attached to the W-shaped elements 30 at the peak or apex
37 of the center sections 36 of the opposing W-shaped elements 30.
Because the W-shaped elements 30 in each of the cylindrical sections 20 open in opposite directions as one moves about the circumference of the stent 10, each of the cylindrical sections is alternating between attachment to the cylindrical sections on either side. As best seen in Figure 2, cylindrical section 20c alternates between attachment via a tie member 50 to cylindrical section 20b on one side and attachment via a tie member 50 to cylindrical section 20d on the opposite side as one moves about the circumference of the stent 10 (transverse to the longitudinal axis 14 or in the hoop direction). The pairs of W-shaped elements 30 that open towards each other in adjacent cylindrical sections 20 can be described as forming cells 40a, 40b, and 40c (collectively referred to as cells 40) as seen in Figure 2. Because the cylindrical sections 20 are connected to the adjacent cylindrical sections 20 in an alternating fashion on opposing sides as described above, the cells 40a and 40c are aligned along the longitudinal axis 14. Cell 40b, which bridges the longitudinal gap between the abutting cells 40a and 40c, is offset from the cells 40a and 40c about the circumference of the stent 10 (i.e., in the hoop direction).
The result of the interconnections between the W-shaped elements 30 and the cells 40 formed by the W-shaped elements 30 in the stent 10 as shown is that forces along the longitudinal axis 14 of the stent 10 are dispersed about the circumference of the stent 10. Similarly, forces acting torsionally about axis 14 are also dispersed throughout the body of the stent 10. In addition, forces acting radially inward are also dispersed throughout the stent 10, thereby reducing localized stress concentration and improving the overall hoop strength of the stent 10. The dispersion of forces gives the stent 10 its unique combination of flexibility and stability in both the longitudinal direction, in torsion and in hoop strength.
Although these concepts have been described with reference to three successive cylindrical sections, it will be understood that the concepts can be extended along the entire length of a stent incorporating as few as two cylindrical sections or as many cylindrical sections as desired.
Figures 4 and 5 depict an alternative embodiment of a stent 110 according to the present invention. Figure 4 is a plan view of a portion of the body of the stent 110 in which the body has been unrolled from the tubular shape and Figure 5 is an enlarged view of a portion of Figure 4. As seen in Figure 4, the stent 110 also includes cylindrical sections 120a, 120b, 120c, 120d, and 120e (collectively referred to as cylindrical sections 120) located successively along a longitudinal axis 114. Each of the cylindrical sections 120 has a length along the longitudinal axis 114 and includes a plurality of W-shaped elements 130 (only one of which is denoted by a reference number). The W-shaped elements 130 open in alternating directions along the longitudinal axis 114 of the stent 110 about the perimeter or circumference of the cylindrical sections 120 (i.e., in the hoop direction).
Two W-shaped elements 130a and 130b (collectively referred to as W-shaped elements 130) that open towards each other from adjacent cylindrical sections 120b and 120c are depicted in Figure 5. Each of the W-shaped elements 130 includes a center section 136a/136b and two outside legs 132a/132b and 134a/134b. In the design depicted in Figure 4, the center sections 136a/ 136b of the W-shaped elements 130 teraύnate at peaks or apexes 137a/137b that are generally aligned along one side of the cylindrical sections 120. Referring back to Figure 4, it can be seen that the outside legs 132a/132b and 134a/134b are shared or common to the adjacent W- shaped element 130 within each of the cylindrical sections 120. It is preferred, but not required, that the bends between the outside legs 132a/132b and 134a/134b and the center sections 136a/136b are curved or rounded to reduce stress-concentration points in the stent 110. The cylindrical sections 120 are preferably arranged such that the W-shaped elements 130 in adjacent cylindrical sections 120 alternate between pairs of W-shaped elements 130 that open towards each other and pairs of W-shaped elements 130 that open away from each other when moving around the perimeter or circumference of the stent 110 (i.e. , transverse to the axis 114 in Figure 4 or in the hoop direction).
Figure 5 depicts one such pair of W-shaped elements 130a and 130b that open towards each other from adjacent cylindrical sections 120. As depicted, the W-shaped elements 130a/ 130b are connected to each other by a tie member 150 that is attached to the center sections 136a/ 136b of each of the W-shaped elements 130a/ 130b. Because the W-shaped elements 130 in each of the cylindrical sections 120 open in opposite directions as one moves about the circumference of the stent 110 (i.e., in the hoop direction), each of the cylindrical sections 120 alternates between attachment to the cylindrical sections 120 on either side. As best seen in Figure 4, cylindrical section 120c alternates between attachment via a tie member 150 to cylindrical section 120b on one side and attachment via a tie member 150 to cylindrical section 120d on the opposite side as one moves about the circumference of the stent 110 (transverse to the longitudinal axis 114 or in the hoop direction).
The pairs of W-shaped elements 130 that open towards each other in adjacent cylindrical sections 120 can be described as forming cells 140a, 140b, and 140c (collectively referred to as cells 140) as seen in Figure 4. Because the cylindrical sections 120 are connected to the adjacent cylindrical sections 120 in an alternating fashion on opposing sides as described above, the cells 140a and 140c are aligned along the longitudinal axis 114. Cell 140b, which bridges the longitudinal gap between the abutting cells 140a and 140c, is offset from the cells 140a and 140c about the circumference of the stent 110 (i.e. , in the hoop direction).
The result of the interconnections between the cells 140 in the stent 110 as shown is that forces along the longitudinal axis 114 of the stent 110 are dispersed about the circumference of the stent 110. Similarly, forces acting torsionally on the stent 110 about axis 114 are also dispersed throughout the body of the stent 110. In addition, forces acting radially inward are also dispersed throughout the stent, thereby improving its hoop strength. The dispersion of forces gives the stent 110 its unique combination of flexibility and stability in both the longitudinal direction, in torsion and in hoop strength.
Although these concepts have been described with reference to three successive cylindrical sections, it will be understood that the concepts can be extended along the entire length of a stent incorporating as few as two cylindrical sections or as many cylindrical sections as desired.
It is significant to note that in stents manufactured according to the present invention, longitudinal bending flexibility is improved both when the stent is in the compressed state during delivery and upon deployment of the stent in its expanded state within a body lumen. Increased longitudinal bending flexibility when compressed permits threading of the stent through long tortuous vessels and lesions. Increased longitudinal bending flexibility when expanded allows for deployment in highly curved vessels or lumens. Furthermore, the longitudinal flexibility of the stents 10/110 according to the present invention can be adjusted by varying the length of the tie members 50/150 connecting the cylindrical sections 20/120. Typically, a shorter tie member will improve longitudinal flexibility and a longer tie member will decrease longitudinal flexibility. Longitudinal flexibility must however, be balanced with torsional stability and the decrease in tie member length to obtain increased longitudinal flexibility may result in reduced torsional stability. Correspondingly, increasing the length of the tie members can increase torsional stability while decreasing longitudinal flexibility.
Figure 6 depicts another embodiment of a stent 210 according to the present invention in a plan view of a portion of the body of the stent 210 in which the body has been unrolled from the tubular shape. The stent 210 also includes cylindrical sections 220a, 220b, 220c, and 220d (collectively referred to as cylindrical sections 220) located successively along a longitudinal axis 214. Each of the cylindrical sections 220 has a length along the longitudinal axis 214 and includes a plurality of W- shaped elements 230 (only one of which is denoted by a reference number). The W- shaped elements 230 open in alternating directions along the longitudinal axis 214 of the stent 210 about the perimeter or circumference of the cylindrical sections 220 (i.e., in the hoop direction).
The cylindrical sections 220 are preferably arranged such that the W-shaped elements 230 in adjacent cylindrical sections 220 alternate between pairs of W-shaped elements 230 that open towards each other and pairs of W-shaped elements 230 that open away from each other when moving around the perimeter or circumference of the stent 210 (i.e., transverse to the axis 214 or in the hoop direction). The pairs of W-shaped elements 230 that open towards each other from adjacent cylindrical sections 220 are connected by tie members 250 to form cells 240 in a manner similar to that described above with respect to stents 10 and 110.
Figure 7 depicts another embodiment of a stent 310 according to the present invention in a plan view of a portion of the body of the stent 310 in which the body has been unrolled from the tubular shape. The stent 310 also includes cylindrical sections 320a, 320b, 320c, and 320d (collectively referred to as cylindrical sections 320) located successively along a longitudinal axis 314. Each of the cylindrical sections 320 has a length along the longitudinal axis 314 and includes a plurality of W- shaped elements 330 (only one of which is denoted by a reference number). The W- shaped elements 330 open in alternating directions along the longitudinal axis 314 of the stent 310 about the perimeter or circumference of the cylindrical sections 320 (i.e., in the hoop direction).
One difference between the design of the stent 310 and the stents described above is that the cylindrical sections have been rotated about the longitudinal axis 314 such that the W-shaped elements 330 in adjacent cylindrical sections 320 that are aligned along the longitudinal axis 314 open in the same direction. As a result, the tie members 350 are curved to attach the W-shaped elements 330 in the adjacent cylindrical sections 320 that open toward each other to form cells 340. In other words, the adjacent cylindrical sections 320 are out-of-phase with each other. In the depicted embodiment, the adjacent cylindrical sections are out-of-phase by one of the W-shaped elements 330, although it will be understood that the W-shaped elements may be out-of-phase by different amounts. In contrast, the cylindrical sections of the stents 10, 110 and 210 can be described as being in-phase with the tie members 50, 150, 250 connecting W-shaped elements 30, 130, 230 to form cells 40, 140, 240 being generally aligned with the longitudinal axes of the stents 10, 110 and 210.
It will be understood that stents such as the illustrative embodiments described above may be provided as self-expanding stents or as stents that are not self- expanding, i.e., stents that must be expanded by a balloon or some other method.
The radially expandable stents depicted and described above with respect to Figures 1-7 can be formed as a one-piece, completely integral units from a thin- walled tube of suitable material. If so formed, the stents will be cut or machined from a tube using, e.g., laser, water jet, EDM (electrical discharge machining), chemical etcliing, stamping, or high velocity foirning techniques. As a result, the stents can be formed without welds or joints. It is also envisioned, however, that stents according to the present invention could be formed from a sheet of material using, e.g., laser, water jet, EDM, chemical etching, stamping, or high velocity forming techniques. If the stent was formed from a sheet of material, the bodies 10/110 as seen in Figures 2 and
4 would be formed into a tube and welded or otherwise joined along the length of the stents. Those skilled in the art will recognize other attachment techniques including, but not limited to twisting, biocompatible adhesives, brazing, crimping, stamping, etc.
Alternatively, the stents could be manufactured from wire formed on a mandrel or through the mtermeshing of gears as is known in the art. In those methods of manufacturing, the W-shaped elements of the cylindrical sections would be formed followed by welding of the successive cylindrical sections together using the tie members. Those skilled in the art will recognize other attachment techniques including, but not limited to twisting, biocompatible adhesives, brazing, crimping, stamping, etc.
Preferred materials for stents according to the present invention include those materials that can provide the desired functional characteristics with respect to biological compatibility, modulus of elasticity, radio-opacity, etc. For example, it is preferred that self-expanding stents be capable of significant recoverable strain to assume a low profile for delivery to a desired location within a body lumen. After release of the compressed self-expanding stent, it is preferred that the stent be capable of radially expanding back to its original diameter or close to its original diameter.
Particularly preferred materials for self-expanding stents according to the present invention are nickel titanium alloys and other alloys that exhibit superelastic behavior, i.e., are capable of significant distortion without plastic deformation. Stents manufactured of such materials may be significantly compressed without permanent plastic deformation, i.e., they are compressed such that the maximum strain level in the stent is below the recoverable strain limit of the material. Discussions relating to nickel titanium alloys and other alloys that exhibit behaviors suitable for stents according to the present invention can be found in, e.g., U.S. Patent No. 5,597,378
(Jervis) and WO 95/31945 (Burmeister et al.). Nickel titanium alloys suitable for use in manufacturing stents according to the present invention can be obtained from, e.g., Memry Corp., Brookfield, Connecticut.
If the stents are designed to be expanded by a balloon or some other device (i.e., the stents are not self-expanding), they may be manufactured from an inert, biocompatible material with high corrosion resistance that can be plastically deformed at low-moderate stress levels, such as tantalum. Other acceptable materials include stainless steel, titanium ASTM F63-83 Grade 1, niobium or high carat gold K 19-22.
The radially outward directed force developed by the stents according to the present invention, whether self-expanding or radially-expandable, serves two functions. One function is to hold the body lumen open against a force directed radially inward, e.g., a spasm, as well as preventing restriction of the passageway through the lumen by intimal flaps or dissections generated by, e.g., prior balloon angioplasty. Another function is to fix the position of the stent within the body lumen by intimate contact between the stent and the walls of the lumen. The outwardly directed forces must not be excessive, however, to avoid traumatization of the lumen walls by the stent.
The diameters of some preferred stents when in the compressed state for delivery to a desired location within a body lumen is typically reduced from about two to about six times the diameter of the stents when in their expanded state before compression. For example, typical stents may have a compressed external diameter of about 1 millimeter to about 3 millimeters for delivery and an expanded external diameter in a body lumen of about 3 millimeters to about 15 millimeters when released from compression in a large arterial vessel. Some preferred stents used in coronary arteries may have a compressed external diameter of about 1 millimeter and an expanded external diameter in a body lumen of up to about 5 millimeters.
One stent 410 according to the present invention is depicted in Figure 8 as located on a balloon 460 that is, in turn, located on a delivery catheter 470 according to methods known to those skilled in the art. For expandable stents, the stent 410 can be crimped by hand or with a suitable crimping tool (not shown) onto the balloon 460.
Manually squeezing the stent 410 over the balloon 460 is also acceptable. If the stent
410 is self-expanding, the delivery system will typically include some method of containing the stent 410 in the compressed state depicted in Figure 8 such as an outer sleeve, etc. Furthermore, if the stent 410 is self-expanding, it may be supplied without the balloon 460 located within the stent 410.
The stent 410 and balloon 470 can be transported to a desired location within the body lumen 480 via a standard guiding catheter (not shown) using known methods and procedures. Once in location, the stent 410 can be expanded radially by inflating the balloon 460 to force the stent 410 against the inner surface of the lumen 480 using standard angioplasty procedures and techniques. It is preferred that the expanding balloon 460 together with the stent 410 compresses the plaque in the stenosis located in the lumen 480 to reduce the chance of reocclusion of the lumen 480.
Figure 9 depicts the stent 410 in its expanded state in contact with the lumen 480 after the balloon 460 and its associated catheter 470 have been removed. When the angioplasty procedure is completed, balloon 460 is deflated and withdrawn along with its catheter 470, leaving stent 410 firmly implanted within lumen 480. Previously occluded lumen 480 is recannalized and patency is restored. It is preferred that the stent 410 be firmly implanted and imbedded in compressed plaque in the lumen 480, providing adequate support to the lumen 480. 7076
16
The preceding specific embodiments are illustrative of the practice of the invention. It is to be understood, however, that other expedients known to those skilled in the art or disclosed herein, may be employed without departing from the scope of the appended claims.

Claims

WHAT IS CLAIMED IS:
1. A radially expandable stent for implantation within a body vessel, comprising: a plurality of cylindrical sections successively arranged along a longitudinal axis of the stent; a plurality of W-shaped elements in each of the cylindrical sections, each of the
W-shaped elements comprising a center section and two outside legs, the plurality of W- shaped elements in each of the cylindrical sections opening in alternating directions along the longitudinal axis of the stent, wherein the W-shaped elements in adjacent cylindrical sections alternate between pairs of W-shaped elements that open towards each other along the longitudinal axis and pairs of W-shaped elements that open away from each other along the longitudinal axis when moving about the circumference of the adjacent cylindrical sections; and a plurality of tie members connecting adjacent cylindrical sections along the longitudinal axis of the stent, the tie members connecting center sections of the pairs of W-shaped elements that open towards each other along the longitudinal axis in each pair of adjacent cylindrical sections.
2. A stent according to claim 1, wherein the center section of each of the W-shaped elements is shorter in the longitudinal direction than the outside legs of the W-shaped element.
3. A stent according to claim 1 , wherein the center section of each of the W-shaped elements have a longitudinal length that is about half of the longitudinal length of the outside legs of the W-shaped element.
4. A stent according to claim 1, wherein the stent comprises first, second, and third cylindrical sections arranged along the longitudinal axis in that order, and further wherein the tie members connecting the center sections of the pairs of W-shaped elements that open towards each other in the first and second cylindrical sections are offset about the circumference of the stent from the tie members connecting the centers of the pairs of W-shaped elements that open towards each other in the second and third cylindrical sections.
5. A stent according to claim 1 , wherein the center section of each of the W-shaped elements is connected to the outside legs of the W-shaped element with rounded bends.
6. A stent according to claim 1, wherein the cylindrical sections are in-phase with each other.
7. A stent according to claim 1, wherein the cylindrical sections are out-of-phase with each other.
8. A radially expandable stent for implantation within a body vessel, comprising: a plurality of cylindrical sections successively arranged along a longitudinal axis of the stent; a plurality of W-shaped elements in each of the cylindrical sections, each of the W-shaped elements comprising a center section and two outside legs, wherein the center section of each of the W-shaped elements is shorter in the longitudinal direction than the outside legs of the W-shaped element, the plurality of W-shaped elements in each of the cylindrical sections opening in alternating directions along the longitudinal axis of the stent, wherein the W-shaped elements in adjacent cylindrical sections alternate between pairs of W-shaped elements that open towards each other along the longitudinal axis and pairs of W-shaped elements that open away from each other along the longitudinal axis when moving about the circumference of the adjacent cylindrical sections; and a plurality of tie members connecting adjacent cylindrical sections along the longitudinal axis of the stent, the tie members connecting center sections of the pairs of W-shaped elements that open towards each other along the longitudinal axis in each pair of adjacent cylindrical sections; wherein the stent comprises first, second, and third cylindrical sections arranged along the longitudinal axis in that order, and further wherein the tie members connecting the center sections of the pairs of W-shaped elements that open towards each other in the first and second cylindrical sections are offset about the circumference of the stent from the tie members connecting the centers of the pairs of W-shaped elements that open towards each other in the second and third cylindrical sections.
9. A stent according to claim 8, wherein the center section of each of the W-shaped elements is connected to the outside legs of the W-shaped element with rounded bends.
10. A stent according to claim 8, wherein the cylindrical sections are in-phase with each other.
11. A stent according to claim 8, wherein the cylindrical sections are out-of-phase with each other.
12. A method of implanting a radially expandable stent within a body lumen comprising the steps of: a) providing radially expandable stent in a compressed state comprising: a plurality of cylindrical sections successively arranged along a longitudinal axis of the stent, a plurality of W-shaped elements in each of the cylindrical sections, each of the
W-shaped elements comprising a center section and two outside legs, the plurality of W- shaped elements in each of the cylindrical sections opening in alternating directions along the longitudinal axis of the stent, wherein the W-shaped elements in adjacent cylindrical sections alternate between pairs of W-shaped elements that open towards each other along the longitudinal axis and pairs of W-shaped elements that open away from each other along the longitudinal axis when moving about the circumference of the adjacent cylindrical sections; and a plurality of tie members connecting adjacent cylindrical sections along the longitudinal axis of the stent, the tie members connecting center sections of the pairs of W-shaped elements that open towards each other along the longitudinal axis in each pair of adjacent cylindrical sections; b) advancing the stent to a desired location within a body lumen; and c) radially expanding the stent within the body lumen.
13. A method according to claim 12, wherein the center section of each of the W- shaped elements is shorter in the longitudinal direction than the outside legs of the W- shaped element.
14. A method according to claim 12, wherein the center section of each of the W- shaped elements have a longitudinal length that is about half of the longitudinal length of the outside legs of the W-shaped element.
15. A method according to claim 12, wherein the stent comprises first, second, and third cylindrical sections arranged along the longitudinal axis in that order, and further wherein the tie members connecting the center sections of the pairs of W-shaped elements that open towards each other in the first and second cylindrical sections are offset about the circumference of the stent from the tie members connecting the centers of the pairs of W-shaped elements that open towards each other in the second and third cylindrical sections.
16. A method according to claim 12, wherein the center section of each of the W- shaped elements is connected to the outside legs of the W-shaped element with rounded bends.
17. A method according to claim 12, wherein the cylindrical sections are in-phase with each other.
18. A method according to claim 12, wherein the cylindrical sections are out-of- phase with each other.
PCT/US1999/003797 1998-03-16 1999-02-22 Wire-tubular hybrid stent WO1999047076A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69920127T DE69920127T2 (en) 1998-03-16 1999-02-22 TUBULAR DRAHTHYBRIDSTENT
AT99937811T ATE275889T1 (en) 1998-03-16 1999-02-22 TUBULAR WIRE HYBRID STENT
EP99937811A EP0989831B1 (en) 1998-03-16 1999-02-22 Wire-tubular hybrid stent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/039,671 1998-03-16
US09/039,671 US5935162A (en) 1998-03-16 1998-03-16 Wire-tubular hybrid stent

Publications (2)

Publication Number Publication Date
WO1999047076A2 true WO1999047076A2 (en) 1999-09-23
WO1999047076A3 WO1999047076A3 (en) 1999-11-04

Family

ID=21906750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/003797 WO1999047076A2 (en) 1998-03-16 1999-02-22 Wire-tubular hybrid stent

Country Status (5)

Country Link
US (1) US5935162A (en)
EP (1) EP0989831B1 (en)
AT (1) ATE275889T1 (en)
DE (1) DE69920127T2 (en)
WO (1) WO1999047076A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8784467B2 (en) 2009-05-15 2014-07-22 Lemaitre Vascular, Inc. Non-occlusive dilation devices

Families Citing this family (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7204848B1 (en) 1995-03-01 2007-04-17 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US6013091A (en) * 1997-10-09 2000-01-11 Scimed Life Systems, Inc. Stent configurations
ATE471132T1 (en) 1998-03-04 2010-07-15 Boston Scient Ltd STENT WITH IMPROVED CELL CONFIGURATION
US6179868B1 (en) * 1998-03-27 2001-01-30 Janet Burpee Stent with reduced shortening
US6461380B1 (en) 1998-07-28 2002-10-08 Advanced Cardiovascular Systems, Inc. Stent configuration
US6872187B1 (en) 1998-09-01 2005-03-29 Izex Technologies, Inc. Orthoses for joint rehabilitation
US6290728B1 (en) 1998-09-10 2001-09-18 Percardia, Inc. Designs for left ventricular conduit
ATE322230T1 (en) 1998-09-10 2006-04-15 Percardia Inc TMR DEVICE
US6641610B2 (en) 1998-09-10 2003-11-04 Percardia, Inc. Valve designs for left ventricular conduits
US7314477B1 (en) 1998-09-25 2008-01-01 C.R. Bard Inc. Removable embolus blood clot filter and filter delivery unit
US6190403B1 (en) 1998-11-13 2001-02-20 Cordis Corporation Low profile radiopaque stent with increased longitudinal flexibility and radial rigidity
EP1152710A1 (en) * 1999-01-22 2001-11-14 Khalid Al-Saadon Expandable intravascular tubular stents
US6317615B1 (en) 1999-04-19 2001-11-13 Cardiac Pacemakers, Inc. Method and system for reducing arterial restenosis in the presence of an intravascular stent
US7033372B1 (en) 1999-08-04 2006-04-25 Percardia, Inc. Corkscrew reinforced left ventricle to coronary artery channel
US6638237B1 (en) 1999-08-04 2003-10-28 Percardia, Inc. Left ventricular conduits and methods for delivery
US6605053B1 (en) 1999-09-10 2003-08-12 Percardia, Inc. Conduit designs and related methods for optimal flow control
WO2001028454A2 (en) * 1999-10-05 2001-04-26 Amjad Ahmad Intra vascular stent
EP1225935A4 (en) * 1999-10-12 2009-07-29 Allan R Will Methods and devices for protecting a passageway in a body
US8458879B2 (en) * 2001-07-03 2013-06-11 Advanced Bio Prosthetic Surfaces, Ltd., A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. Method of fabricating an implantable medical device
DE10012460A1 (en) * 2000-03-15 2001-09-20 Biotronik Mess & Therapieg Stent consists of several adjacent lengthwise tubular sections joined by first and second connections consisting of cell-type elements of one orientation.
US6616689B1 (en) 2000-05-03 2003-09-09 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6854467B2 (en) 2000-05-04 2005-02-15 Percardia, Inc. Methods and devices for delivering a ventricular stent
ES2369784T3 (en) * 2000-05-19 2011-12-05 Advanced Bio Prosthetic Surfaces, Ltd. METHODS AND APPLIANCES FOR THE MANUFACTURE OF AN INTRAVASCULAR EXTENSOR.
US6652579B1 (en) 2000-06-22 2003-11-25 Advanced Cardiovascular Systems, Inc. Radiopaque stent
US6805704B1 (en) 2000-06-26 2004-10-19 C. R. Bard, Inc. Intraluminal stents
US6740061B1 (en) 2000-07-28 2004-05-25 Ev3 Inc. Distal protection device
US6669722B2 (en) 2000-09-22 2003-12-30 Cordis Corporation Stent with optimal strength and radiopacity characteristics
US6506211B1 (en) * 2000-11-13 2003-01-14 Scimed Life Systems, Inc. Stent designs
US6626935B1 (en) 2000-12-21 2003-09-30 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6929660B1 (en) 2000-12-22 2005-08-16 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6790227B2 (en) * 2001-03-01 2004-09-14 Cordis Corporation Flexible stent
US6998060B2 (en) * 2001-03-01 2006-02-14 Cordis Corporation Flexible stent and method of manufacture
US6679911B2 (en) 2001-03-01 2004-01-20 Cordis Corporation Flexible stent
US6942689B2 (en) * 2001-03-01 2005-09-13 Cordis Corporation Flexible stent
US20030069630A1 (en) * 2001-03-02 2003-04-10 Robert Burgermeister Stent with radiopaque markers incorporated thereon
US6602283B2 (en) * 2001-04-06 2003-08-05 Scimed Life Systems, Inc. Stent design
DE10118944B4 (en) 2001-04-18 2013-01-31 Merit Medical Systems, Inc. Removable, essentially cylindrical implants
US6939373B2 (en) * 2003-08-20 2005-09-06 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6629994B2 (en) 2001-06-11 2003-10-07 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6635083B1 (en) 2001-06-25 2003-10-21 Advanced Cardiovascular Systems, Inc. Stent with non-linear links and method of use
US6749629B1 (en) 2001-06-27 2004-06-15 Advanced Cardiovascular Systems, Inc. Stent pattern with figure-eights
US7520892B1 (en) 2001-06-28 2009-04-21 Advanced Cardiovascular Systems, Inc. Low profile stent with flexible link
US6607554B2 (en) 2001-06-29 2003-08-19 Advanced Cardiovascular Systems, Inc. Universal stent link design
WO2003009773A2 (en) 2001-07-26 2003-02-06 Alveolus Inc. Removable stent and method of using the same
US7537607B2 (en) * 2001-12-21 2009-05-26 Boston Scientific Scimed, Inc. Stent geometry for improved flexibility
US20030225451A1 (en) * 2002-01-14 2003-12-04 Rangarajan Sundar Stent delivery system, device, and method for coating
US7105198B2 (en) * 2002-01-14 2006-09-12 Medtronic Vascular, Inc. Method for coating stent
US7354450B2 (en) * 2002-01-30 2008-04-08 Boston Scientific Scimed, Inc. Stent with wishbone connectors and serpentine bands
US7331992B2 (en) * 2002-02-20 2008-02-19 Bard Peripheral Vascular, Inc. Anchoring device for an endoluminal prosthesis
US9204956B2 (en) 2002-02-20 2015-12-08 C. R. Bard, Inc. IVC filter with translating hooks
WO2008051294A2 (en) * 2006-05-02 2008-05-02 C. R. Bard, Inc. Ivc filter with translating hooks
US6656220B1 (en) 2002-06-17 2003-12-02 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6878162B2 (en) * 2002-08-30 2005-04-12 Edwards Lifesciences Ag Helical stent having improved flexibility and expandability
US9561123B2 (en) 2002-08-30 2017-02-07 C.R. Bard, Inc. Highly flexible stent and method of manufacture
US6786922B2 (en) * 2002-10-08 2004-09-07 Cook Incorporated Stent with ring architecture and axially displaced connector segments
US7223283B2 (en) * 2002-10-09 2007-05-29 Boston Scientific Scimed, Inc. Stent with improved flexibility
US20040093056A1 (en) 2002-10-26 2004-05-13 Johnson Lianw M. Medical appliance delivery apparatus and method of use
US7637942B2 (en) 2002-11-05 2009-12-29 Merit Medical Systems, Inc. Coated stent with geometry determinated functionality and method of making the same
US7875068B2 (en) 2002-11-05 2011-01-25 Merit Medical Systems, Inc. Removable biliary stent
US7959671B2 (en) 2002-11-05 2011-06-14 Merit Medical Systems, Inc. Differential covering and coating methods
US7527644B2 (en) 2002-11-05 2009-05-05 Alveolus Inc. Stent with geometry determinated functionality and method of making the same
EP1575451B1 (en) 2002-12-19 2010-05-05 Invatec S.p.A Endolumenal prosthesis
US20040180131A1 (en) * 2003-03-14 2004-09-16 Medtronic Ave. Stent coating method
US7637934B2 (en) 2003-03-31 2009-12-29 Merit Medical Systems, Inc. Medical appliance optical delivery and deployment apparatus and method
US6777647B1 (en) * 2003-04-16 2004-08-17 Scimed Life Systems, Inc. Combination laser cutter and cleaner
EP1621226B1 (en) * 2003-04-30 2015-10-07 Nipro Corporation Extendable soft stent with excellent follow-up capability to blood vessel
US7604660B2 (en) 2003-05-01 2009-10-20 Merit Medical Systems, Inc. Bifurcated medical appliance delivery apparatus and method
US7131993B2 (en) * 2003-06-25 2006-11-07 Boston Scientific Scimed, Inc. Varying circumferential spanned connectors in a stent
US7402170B2 (en) * 2003-12-30 2008-07-22 Scimed Life Systems, Inc. Crimp and weld wire connection
US20050185061A1 (en) * 2004-02-23 2005-08-25 Andy Baker Self photographing camera system
US7704267B2 (en) 2004-08-04 2010-04-27 C. R. Bard, Inc. Non-entangling vena cava filter
US20060064155A1 (en) * 2004-09-01 2006-03-23 Pst, Llc Stent and method for manufacturing the stent
US7763067B2 (en) 2004-09-01 2010-07-27 C. R. Bard, Inc. Stent and method for manufacturing the stent
US7887579B2 (en) 2004-09-29 2011-02-15 Merit Medical Systems, Inc. Active stent
CA2587960C (en) * 2004-11-12 2013-05-21 Kabushikikaisha Igaki Iryo Sekkei Stent for vessel
US8308794B2 (en) 2004-11-15 2012-11-13 IZEK Technologies, Inc. Instrumented implantable stents, vascular grafts and other medical devices
WO2006055547A2 (en) 2004-11-15 2006-05-26 Izex Technologies, Inc. Instrumented orthopedic and other medical implants
US8613754B2 (en) 2005-05-12 2013-12-24 C. R. Bard, Inc. Tubular filter
MX2007013932A (en) 2005-05-12 2008-01-28 Bard Inc C R Removable embolus blood clot filter.
US7731654B2 (en) 2005-05-13 2010-06-08 Merit Medical Systems, Inc. Delivery device with viewing window and associated method
CA2616818C (en) 2005-08-09 2014-08-05 C.R. Bard, Inc. Embolus blood clot filter and delivery system
MX344147B (en) 2005-11-18 2016-12-07 Bard Inc C R Vena cava filter with filament.
CA2948428C (en) 2006-02-14 2020-06-30 Angiomed Gmbh & Co. Medizintechnik Kg Highly flexible stent and method of manufacture
US20070191926A1 (en) * 2006-02-14 2007-08-16 Advanced Cardiovascular Systems, Inc. Stent pattern for high stent retention
US7318837B2 (en) * 2006-03-30 2008-01-15 Medtronic Vascular, Inc. Customized alloys for stents
US7955383B2 (en) * 2006-04-25 2011-06-07 Medtronics Vascular, Inc. Laminated implantable medical device having a metallic coating
US9480552B2 (en) 2006-04-26 2016-11-01 The Cleveland Clinic Foundation Apparatus and method for treating cardiovascular diseases
US10188496B2 (en) 2006-05-02 2019-01-29 C. R. Bard, Inc. Vena cava filter formed from a sheet
US7691400B2 (en) * 2006-05-05 2010-04-06 Medtronic Vascular, Inc. Medical device having coating with zeolite drug reservoirs
CA2655158A1 (en) 2006-06-05 2007-12-13 C.R. Bard Inc. Embolus blood clot filter utilizable with a single delivery system or a single retrieval system in one of a femoral or jugular access
US20070283969A1 (en) * 2006-06-12 2007-12-13 Medtronic Vascular, Inc. Method of Diagnosing and Treating Erectile Dysfunction
US7988720B2 (en) 2006-09-12 2011-08-02 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US8778009B2 (en) * 2006-10-06 2014-07-15 Abbott Cardiovascular Systems Inc. Intravascular stent
US20080119927A1 (en) * 2006-11-17 2008-05-22 Medtronic Vascular, Inc. Stent Coating Including Therapeutic Biodegradable Glass, and Method of Making
US20080133000A1 (en) * 2006-12-01 2008-06-05 Medtronic Vascular, Inc. Bifurcated Stent With Variable Length Branches
US7651527B2 (en) 2006-12-15 2010-01-26 Medtronic Vascular, Inc. Bioresorbable stent
EP4005537A1 (en) * 2007-02-12 2022-06-01 C.R. Bard Inc. Highly flexible stent and method of manufacture
US8333799B2 (en) 2007-02-12 2012-12-18 C. R. Bard, Inc. Highly flexible stent and method of manufacture
US20080208352A1 (en) * 2007-02-27 2008-08-28 Medtronic Vascular, Inc. Stent Having Controlled Porosity for Improved Ductility
US20080206441A1 (en) * 2007-02-27 2008-08-28 Medtronic Vascular, Inc. Ion Beam Etching a Surface of an Implantable Medical Device
US8512392B2 (en) * 2007-03-09 2013-08-20 Boston Scientific Scimed, Inc. Stent design with struts of various angles and stiffness
US20080234800A1 (en) * 2007-03-20 2008-09-25 Medtronic Vascular, Inc. Stent Including a Toggle Lock
US20080249458A1 (en) * 2007-04-09 2008-10-09 Medtronic Vascular, Inc. Intraventricular Shunt and Methods of Use Therefor
DE102007034041A1 (en) * 2007-07-20 2009-01-22 Biotronik Vi Patent Ag Medication depots for medical implants
US20090248034A1 (en) * 2008-03-28 2009-10-01 Medtronic Vascular, Inc. Method of Diagnosing and Treating Benign Prostatic Hyperplasia
US8147898B2 (en) * 2008-07-25 2012-04-03 Medtronic Vascular, Inc. Low temperature drug deposition
US20100036471A1 (en) * 2008-08-05 2010-02-11 Medtronic Vascular, Inc. Method of Diagnosing and Treating Lower Urinary Tract Symptoms
US20100174357A1 (en) * 2009-01-07 2010-07-08 Lemaitre Vascular, Inc. Vascular Prosthesis of Varying Flexibility
US20100204770A1 (en) * 2009-02-10 2010-08-12 Medtronic Vascular, Inc. Stent Delivery System Permitting in Vivo Stent Repositioning
US8021420B2 (en) * 2009-03-12 2011-09-20 Medtronic Vascular, Inc. Prosthetic valve delivery system
US8052741B2 (en) * 2009-03-23 2011-11-08 Medtronic Vascular, Inc. Branch vessel prosthesis with a roll-up sealing assembly
US20100256723A1 (en) * 2009-04-03 2010-10-07 Medtronic Vascular, Inc. Prosthetic Valve With Device for Restricting Expansion
US9066785B2 (en) 2009-04-06 2015-06-30 Medtronic Vascular, Inc. Packaging systems for percutaneously deliverable bioprosthetic valves
US20100261737A1 (en) * 2009-04-10 2010-10-14 Medtronic Vascular, Inc. Method of Treating Erectile Dysfunction
US20100268320A1 (en) 2009-04-17 2010-10-21 Medtronic Vascular, Inc. Endovascular Implant Having an Integral Graft Component and Method of Manufacture
US8052737B2 (en) * 2009-05-05 2011-11-08 Medtronic Vascular, Inc. Implantable temporary flow restrictor device
US8298279B2 (en) * 2009-09-24 2012-10-30 Medtronic Vascular, Inc. Stent including a toggle lock strut
US20110098799A1 (en) 2009-10-27 2011-04-28 Medtronic Vascular, Inc. Stent Combined with a Biological Scaffold Seeded With Endothelial Cells
US8882824B2 (en) * 2010-04-20 2014-11-11 Cg Bio Co., Ltd. Expanding vascular stent
EP2658484A1 (en) 2010-12-30 2013-11-06 Boston Scientific Scimed, Inc. Multi stage opening stent designs
US9839540B2 (en) 2011-01-14 2017-12-12 W. L. Gore & Associates, Inc. Stent
US10166128B2 (en) 2011-01-14 2019-01-01 W. L. Gore & Associates. Inc. Lattice
EP2680797B1 (en) 2011-03-03 2016-10-26 Boston Scientific Scimed, Inc. Low strain high strength stent
US8790388B2 (en) 2011-03-03 2014-07-29 Boston Scientific Scimed, Inc. Stent with reduced profile
US9744033B2 (en) 2011-04-01 2017-08-29 W.L. Gore & Associates, Inc. Elastomeric leaflet for prosthetic heart valves
WO2012149205A1 (en) 2011-04-27 2012-11-01 Dolan Mark J Nerve impingement systems including an intravascular prosthesis and an extravascular prosthesis and associated systems and methods
CN102302389B (en) * 2011-07-14 2013-10-16 张海明 Pipe network type stent in blood vessel
US9554806B2 (en) 2011-09-16 2017-01-31 W. L. Gore & Associates, Inc. Occlusive devices
US9510935B2 (en) 2012-01-16 2016-12-06 W. L. Gore & Associates, Inc. Articles including expanded polytetrafluoroethylene membranes with serpentine fibrils and having a discontinuous fluoropolymer layer thereon
CA3081285C (en) * 2012-05-14 2022-05-31 C.R. Bard, Inc. Uniformly expandable stent
US9931193B2 (en) 2012-11-13 2018-04-03 W. L. Gore & Associates, Inc. Elastic stent graft
US10279084B2 (en) 2012-12-19 2019-05-07 W. L. Gore & Associates, Inc. Medical balloon devices and methods
US9144492B2 (en) 2012-12-19 2015-09-29 W. L. Gore & Associates, Inc. Truncated leaflet for prosthetic heart valves, preformed valve
US9101469B2 (en) 2012-12-19 2015-08-11 W. L. Gore & Associates, Inc. Prosthetic heart valve with leaflet shelving
US9968443B2 (en) 2012-12-19 2018-05-15 W. L. Gore & Associates, Inc. Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
USD723165S1 (en) 2013-03-12 2015-02-24 C. R. Bard, Inc. Stent
US11911258B2 (en) 2013-06-26 2024-02-27 W. L. Gore & Associates, Inc. Space filling devices
US10085859B2 (en) 2013-07-03 2018-10-02 Medtronic Vascular, Inc. Methods of manufacturing a drug-eluting stent
US10842918B2 (en) 2013-12-05 2020-11-24 W.L. Gore & Associates, Inc. Length extensible implantable device and methods for making such devices
US9827094B2 (en) 2014-09-15 2017-11-28 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
US9381103B2 (en) * 2014-10-06 2016-07-05 Abbott Cardiovascular Systems Inc. Stent with elongating struts
JP2018515246A (en) 2015-05-14 2018-06-14 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Devices and methods for atrial appendage occlusion
EP4233806A3 (en) 2016-04-21 2023-09-06 W. L. Gore & Associates, Inc. Diametrically adjustable endoprostheses
US10905578B2 (en) 2017-02-02 2021-02-02 C. R. Bard, Inc. Short stent
US10238513B2 (en) 2017-07-19 2019-03-26 Abbott Cardiovascular Systems Inc. Intravascular stent
US11020221B2 (en) 2017-09-27 2021-06-01 W. L. Gore & Associates, Inc. Prosthetic valve with expandable frame and associated systems and methods
US11173023B2 (en) 2017-10-16 2021-11-16 W. L. Gore & Associates, Inc. Medical devices and anchors therefor
CA3078606C (en) 2017-10-31 2023-09-05 W.L. Gore & Associates, Inc. Medical valve and leaflet promoting tissue ingrowth
US10575973B2 (en) 2018-04-11 2020-03-03 Abbott Cardiovascular Systems Inc. Intravascular stent having high fatigue performance
US11083604B2 (en) 2019-01-18 2021-08-10 Lawrence Livermore National Security, Llc Preventing stent failure using adaptive shear responsive endovascular implant
US11497601B2 (en) 2019-03-01 2022-11-15 W. L. Gore & Associates, Inc. Telescoping prosthetic valve with retention element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0686379A2 (en) * 1994-06-08 1995-12-13 Cardiovascular Concepts, Inc. Apparatus for endoluminal graft placement
WO1996026689A1 (en) * 1995-03-01 1996-09-06 Scimed Life Systems, Inc. Improved longitudinally flexible expandable stent

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292331A (en) * 1989-08-24 1994-03-08 Applied Vascular Engineering, Inc. Endovascular support device
US5674278A (en) * 1989-08-24 1997-10-07 Arterial Vascular Engineering, Inc. Endovascular support device
US5344426A (en) * 1990-04-25 1994-09-06 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5135536A (en) * 1991-02-05 1992-08-04 Cordis Corporation Endovascular stent and method
CA2380683C (en) * 1991-10-28 2006-08-08 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5370683A (en) * 1992-03-25 1994-12-06 Cook Incorporated Vascular stent
JP2703510B2 (en) * 1993-12-28 1998-01-26 アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド Expandable stent and method of manufacturing the same
US5843120A (en) * 1994-03-17 1998-12-01 Medinol Ltd. Flexible-expandable stent
US5636641A (en) * 1994-07-25 1997-06-10 Advanced Cardiovascular Systems, Inc. High strength member for intracorporeal use
US5800521A (en) * 1994-11-09 1998-09-01 Endotex Interventional Systems, Inc. Prosthetic graft and method for aneurysm repair
US5591197A (en) * 1995-03-14 1997-01-07 Advanced Cardiovascular Systems, Inc. Expandable stent forming projecting barbs and method for deploying
CA2171896C (en) * 1995-03-17 2007-05-15 Scott C. Anderson Multi-anchor stent
ATE314022T1 (en) * 1995-06-01 2006-01-15 Meadox Medicals Inc IMPLANTABLE INTRALUMINAL PROSTHESIS
US5776161A (en) * 1995-10-16 1998-07-07 Instent, Inc. Medical stents, apparatus and method for making same
WO1997021399A1 (en) * 1995-12-11 1997-06-19 Ali Hassan Device for stabilising angioplastically treated partial regions of a vessel wall (stent)
US5695516A (en) * 1996-02-21 1997-12-09 Iso Stent, Inc. Longitudinally elongating balloon expandable stent
US5776183A (en) * 1996-08-23 1998-07-07 Kanesaka; Nozomu Expandable stent
US5755776A (en) * 1996-10-04 1998-05-26 Al-Saadon; Khalid Permanent expandable intraluminal tubular stent
US5843175A (en) * 1997-06-13 1998-12-01 Global Therapeutics, Inc. Enhanced flexibility surgical stent
US5855600A (en) * 1997-08-01 1999-01-05 Inflow Dynamics Inc. Flexible implantable stent with composite design

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0686379A2 (en) * 1994-06-08 1995-12-13 Cardiovascular Concepts, Inc. Apparatus for endoluminal graft placement
WO1996026689A1 (en) * 1995-03-01 1996-09-06 Scimed Life Systems, Inc. Improved longitudinally flexible expandable stent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8784467B2 (en) 2009-05-15 2014-07-22 Lemaitre Vascular, Inc. Non-occlusive dilation devices

Also Published As

Publication number Publication date
WO1999047076A3 (en) 1999-11-04
EP0989831A2 (en) 2000-04-05
ATE275889T1 (en) 2004-10-15
EP0989831B1 (en) 2004-09-15
US5935162A (en) 1999-08-10
DE69920127T2 (en) 2005-09-22
DE69920127D1 (en) 2004-10-21

Similar Documents

Publication Publication Date Title
EP0989831B1 (en) Wire-tubular hybrid stent
US6533807B2 (en) Radially-expandable stent and delivery system
EP1208814B1 (en) Low profile stent
US5843168A (en) Double wave stent with strut
US5810872A (en) Flexible stent
US6312459B1 (en) Stent design for use in small vessels
EP1158934B1 (en) Stent with varying strut geometry
EP1155664B1 (en) A helical stent having flat ends
US6331189B1 (en) Flexible medical stent
US6997946B2 (en) Expandable stents
US6136023A (en) Welded sinusoidal wave stent
US6981986B1 (en) Longitudinally flexible expandable stent
US6962603B1 (en) Longitudinally flexible expandable stent
US6818014B2 (en) Longitudinally flexible expandable stent
USRE44763E1 (en) Expandable unit cell and intraluminal stent
US5899934A (en) Dual stent
US6027526A (en) Stent having varied amounts of structural strength along its length
US6540774B1 (en) Stent design with end rings having enhanced strength and radiopacity
EP1208815A2 (en) Low profile catheter
WO1998058600A1 (en) Expandable stent with variable thickness
EP0799607A2 (en) Intravascular stent having flattened profile

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: A3

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999937811

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999937811

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999937811

Country of ref document: EP