WO1999066203A1 - Variable displacement swash plate type clutchless compressor - Google Patents

Variable displacement swash plate type clutchless compressor Download PDF

Info

Publication number
WO1999066203A1
WO1999066203A1 PCT/JP1999/003203 JP9903203W WO9966203A1 WO 1999066203 A1 WO1999066203 A1 WO 1999066203A1 JP 9903203 W JP9903203 W JP 9903203W WO 9966203 A1 WO9966203 A1 WO 9966203A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
discharge
chamber
swash plate
pressure
Prior art date
Application number
PCT/JP1999/003203
Other languages
French (fr)
Japanese (ja)
Inventor
Yukio Kazahaya
Shoichi Kido
Original Assignee
Bosch Automotive Systems Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Automotive Systems Corporation filed Critical Bosch Automotive Systems Corporation
Priority to EP99925334A priority Critical patent/EP1088991A1/en
Publication of WO1999066203A1 publication Critical patent/WO1999066203A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • F04B49/225Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves with throttling valves or valves varying the pump inlet opening or the outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1813Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1827Valve-controlled fluid connection between crankcase and discharge chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1831Valve-controlled fluid connection between crankcase and suction chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/185Discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1854External parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1859Suction pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1863Controlled by crankcase pressure with an auxiliary valve, controlled by
    • F04B2027/1872Discharge pressure

Definitions

  • the present invention relates to a variable-capacity swash plate type clutchless compressor to which, for example, the driving force of an engine is constantly transmitted, and in particular, to prevent a high-pressure refrigerant from flowing out to a condenser at an extremely low load, thereby allowing the refrigerant to flow inside the compressor.
  • the present invention relates to a variable capacity swash plate type clutchless compressor that circulates and reduces the refrigeration capacity to zero.
  • variable-capacity swash plate type clutchless compressor as a conventional clutchless compressor.
  • the inclination angle of the swash plate changes according to the suction pressure, the stroke of the stone changes, and the discharge rate increases or decreases.
  • variable displacement swash plate type clutchless compressor that does not have a minimum discharge capacity of zero is used as the clutchless compressor
  • the heat load decreases (the compressor with a clutch).
  • the cooling of the evaporator is caused by the refrigerant, the frost forms on the surface of the evaporator, and the evaporator freezes, making it difficult to ventilate. May be impaired.
  • the heat load is reduced Note that the inclination angle of the swash plate decreases, and the swash plate pushes the transmission cylinder toward the rear side, and the transmission cylinder pushes the blocking body toward the rear side.
  • the shut-off body closes the suction passage, preventing the inflow of low-pressure refrigerant gas from the evaporator.
  • the control valve communicates the discharge chamber with the crank chamber, and the high-pressure refrigerant gas in the discharge chamber flows to the crank chamber, and the refrigerant gas hardly flows to the capacitor side.
  • the discharge chamber must be located outside the suction chamber in the cylinder head. No stricter seal management with outside air. For example, higher processing accuracy and an appropriate tightening amount of the port (bolt for connecting the cylinder block and the head) are required.
  • An object of the present invention is to provide a variable-capacity swash plate type clutchless compressor that facilitates management of seals against outside air, suppresses noise, and further improves reliability. And Disclosure of the invention
  • a variable-capacity swash plate type clutchless compressor is mounted on a rotating shaft so as to be slidable and tiltable, and rotates integrally with the rotating shaft.
  • a crank chamber for accommodating the swash plate, a suction chamber for accommodating a refrigerant gas to be sent to the compression chamber, and a refrigerant gas in the crank chamber guided to the suction chamber, and the inclination angle of the swash plate A first passage whose passage cross-sectional area is reduced by the swash plate when the pressure is minimum, a discharge chamber for accommodating the refrigerant gas discharged from the compression chamber, and a condenser for discharging the refrigerant gas from the discharge chamber.
  • the discharge control valve is a check valve.
  • a first orifice is formed in the middle of the third passage, and a passage area of the first orifice is increased by a second orifice formed in the middle of the first passage. It is preferred that it be smaller than the passage area of the access.
  • the function of introducing the refrigerant gas from the crank chamber to the suction chamber through the third passage only when the passage cross-sectional area of the first passage is reduced by the swash plate is simplified. It can be realized with a configuration.
  • Variable capacity type swash plate type clutchle according to a second aspect of the present invention
  • the compressor is slidably and tiltably mounted on the rotating shaft, and is configured to rotate integrally with the rotating shaft, a crank chamber accommodating the swash plate, and a suction chamber accommodating refrigerant gas to be sent to the compression chamber.
  • a discharge chamber for containing the refrigerant gas discharged from the compression chamber, a discharge port for sending the refrigerant gas from the discharge chamber to the capacitor side, and a discharge gas for guiding the refrigerant gas of the discharge chamber to the discharge port A passage, a second passage for guiding the refrigerant gas from the discharge chamber to the crank chamber, and a passage provided in the middle of the second passage, wherein the second passage is shut off when the heat load increases.
  • a pressure control valve on the second passage is
  • a pressure reducing means provided in the flow to reduce the flow of the refrigerant gas guided to the crank chamber; and a pressure of the refrigerant gas downstream of the pressure control valve and upstream of the pressure reducing means, and an urging force of an urging member. Acts in the valve closing direction, and the pressure in the discharge chamber acts in the valve opening direction, so that the pressure of the refrigerant gas downstream of the pressure control valve and upstream of the pressure reducing means and the discharge pressure
  • a discharge control valve that shuts off the discharge passage when the pressure difference in the room becomes equal to or less than a predetermined value; and a refrigerant gas in the crank chamber only when the discharge control valve shuts off the discharge passage.
  • the response of the discharge control valve is improved, and the discharge control valve can be quickly operated.
  • the amount of refrigerant discharged (the capacity of the compressor) can be changed, and cooling filling is improved.
  • the discharge control valve operates reliably and the refrigeration capacity can be reduced to zero. Therefore, in order to ensure the operation of the discharge control valve, it is not necessary to set the passage cross-sectional area of the first passage small and set the pressure in the crank chamber high. Therefore, the damage to the components in the crank chamber is reduced, and the durability and reliability of the compressor are improved.
  • the pressure reducing means is a third orifice located downstream of the pressure control valve.
  • the flow rate of the refrigerant gas is reduced by the third orifice, the pressure of the refrigerant gas supplied to the crank chamber is reduced, and Link chamber pressure is not too high.
  • a fourth orifice is provided in the middle of a fourth passage for guiding refrigerant gas downstream of the pressure control valve and upstream of the pressure reducing means to the discharge control valve, and the third orifice is provided. It is preferable that the cross-sectional area of the passage of the wheel is smaller than the cross-sectional area of the passage of the fourth orifice.
  • the flow rate of the refrigerant gas in the fourth passage is reduced by the fourth orifice, and the refrigerant gas in the discharge chamber flows into the discharge control valve. Since the shock applied to the discharge control valve at that time is reduced, the damage received by the discharge control valve is reduced, and the durability and reliability are improved.
  • a part of the first passage is constituted by a hole formed in an annular body fixed to the rotating shaft.
  • the swash plate comes into contact with the annular body when the inclination angle of the swash plate is minimized, but the annular body rotates integrally with the swash plate, so that the swash plate is fixed to the housing or the housing.
  • the swash plate wear is suppressed as compared with the case where a structure that makes contact with the annular body is adopted.
  • the third passage includes a front-side bearing accommodating space for accommodating a shaft seal and a front-side bearing on the front side of the rotating shaft, and the crank chamber.
  • each bearing and the shaft seal are lubricated and cooled by the lubricating oil in the refrigerant gas passing through the third passage, and seizure occurs. Can be prevented.
  • FIG. 1 is a vertical sectional view showing a state in which a discharge passage of a variable displacement type swash plate type clutchless compressor according to an embodiment of the present invention is open.
  • FIG. 2 is a partially enlarged view showing a state where the discharge passage is opened.
  • FIG. 3 is a longitudinal sectional view showing a state in which a discharge passage of a variable displacement type swash plate type clutchless compressor according to an embodiment of the present invention is closed.
  • FIG. 4 is a partially enlarged view showing a state where the discharge passage is closed.
  • FIG. 5 is a longitudinal sectional view showing a state in which a discharge passage of a variable displacement type swash plate type clutchless compressor according to another embodiment of the present invention is closed.
  • FIG. 6 is a partially enlarged view of a rear head of the variable displacement type swash plate type clutchless compressor shown in FIG. 5, showing a state in which a discharge passage is closed.
  • FIG. 7 is a partially enlarged view of a rear head of the variable displacement type swash plate type clutchless compressor of FIG. 5, showing a state in which a discharge passage is opened.
  • FIG. 8 is an enlarged cross-sectional view showing different cross-sections of a rear head of the variable-capacity swash plate type clutchless compressor of FIG. 5, and is a view showing a fourth passage.
  • FIG. 1 is a longitudinal sectional view showing a state in which a discharge passage of a variable displacement type swash plate type clutchless compressor according to an embodiment of the present invention is open
  • FIG. 2 is a partially enlarged view thereof
  • FIG. I is a longitudinal sectional view showing a closed state
  • FIG. 4 is a partially enlarged view of FIG.
  • One end of the cylinder block 1 of this variable capacity swash plate type clutchless compressor has a lid head 3 via a valve plate 2 and the other end has a front head 4 Are fixed respectively.
  • the cylinder block 1 has a plurality of cylinder bores 6 at predetermined intervals in the circumferential direction around a shaft (rotation axis) 5. It is arranged.
  • a piston 7 is slidably accommodated in each of the cylinder pores 6.
  • a crank chamber 8 is formed in the front head 4, and a swash plate 10 is accommodated in the crank chamber 8.
  • the sliding surface 10a of the swash plate 10 holds the spherical end 11a of the connecting groove 11a on the sliding surface 10a.
  • the retainer 53 is mounted on the boss 10b of the swash plate 10 via a radial bearing 55, and the retainer 53 is rotatable relative to the swash plate 10.
  • the radial bearing 55 is prevented from coming off by a flange 54 fixed to the boss 10b with a screw 45.
  • the other end 1 lb of the connecting groove 11 is fixed to the piston 7.
  • the shroud 50 is composed of a housing body 51 that supports the tip end surface of the connecting groove 11a so as to be relatively rotatable, and the one end 11a of the connecting groove 11a. It consists of a washer 52 that supports the rear end face so that it can roll relatively.
  • a discharge chamber 12 and a suction chamber 13 are formed in the lid 3.
  • the suction chamber 13 is arranged so as to surround the discharge chamber 12.
  • Riahead 3 is provided with an inlet (not shown) that leads to the outlet of the evaporator (not shown).
  • FIG. 2 is an enlarged longitudinal sectional view showing a state where the discharge passage 39 is open
  • FIG. 4 is an enlarged longitudinal sectional view showing a state where the discharge passage 39 is closed.
  • a check valve (discharge control valve) 31 is provided in the middle of the discharge passage 39 that connects the discharge chamber 12 and the discharge port 1a.
  • the discharge passage 39 has a passage 39 a formed in the lid 3 and a discharge passage 39 a. And a passage 39b formed in the lube plate 2.
  • the passage 39 b leads to a discharge port 1 a formed in the cylinder block 1.
  • a spring (biasing member) 32 is housed in the bottomed cylindrical check valve 31, and a stopper 56 fixed to the lid 3 with a cap 59 is provided in a stopper 56.
  • One end of the spring 32 is in contact, and the other end of the spring 32 is in contact with the bottom of the check valve 31.
  • the internal space 33 of the check valve 31 communicates with the crank chamber 8 via a passage 34.
  • the urging force of the spring 32 and the pressure of the crank chamber 8 act in the valve closing direction (the direction in which the valve opening decreases).
  • the check valve 31 When the check valve 31 is opened, the discharge port la and the discharge chamber 12 communicate with each other through the discharge passage 39 (see FIG. 2). Therefore, on the other side (lower side) of the check valve 31, the pressure of the discharge port 1 a and the pressure of the discharge chamber 12 act in the valve opening direction (the direction in which the valve opening increases).
  • the check valve 31 moves in the closing direction, the discharge passage 39 is shut off, and the check valve 3 is closed.
  • a control valve (pressure control valve) 81 is provided in the middle of the passage 57.
  • the valve body 81b is seated by energizing the solenoid (not shown) of the control port 81, and the second passage 57 is shut off.
  • the valve body 81b is closed by stopping power supply to the solenoid.
  • the second passageway 57 is opened away from it.
  • the operation of the control valve 81 is controlled by a computer (not shown).
  • the suction chamber 13 and the crank chamber 8 communicate with each other via a first passage 58.
  • the first passage 58 has an orifice (second orifice) 58 a formed in the valve plate 2 and a passage 58 b formed in the cylinder opening 1. And a hole 58 c formed in a ring (annular body) 59 fixed to the shaft 5.
  • the suction chamber 13 and the crank chamber 8 communicate with each other via a third passage 60.
  • the third passage 60 includes a passage 60 a formed in the front head 4, a front bearing housing space 60 b formed in the front head 4, A passage 60 c formed in the shaft 5, a rear-side bearing accommodating space 60 d formed in the cylinder block 1, a passage 58 b of the cylinder block 1, and a valve plate 2 orifice 58a.
  • the passage 58b of the cylinder block 1 and the orifice 58a of the valve plate 2 form a part of the first passage 58 and the passage 58b of the third passage 60.
  • An internal thread 61 is formed on the inner peripheral surface of the rear end of the passage 60c, and a screw -62 is screwed into the internal thread 61.
  • An orifice (first orifice) 62 a is formed in the screw 62, and the passage area of the orifice 62 a forms a part of the first passage 58. Smaller than the passage area of the orifice 58a of the valve plate 2. Therefore, the third passage is provided only when the boss portion 10b of the swash plate 10 almost blocks the hole 58c of the ring 59 and the passage cross-sectional area of the first passage 58 is greatly reduced. The refrigerant gas in the crank chamber 8 is led to the suction chamber 13 through 60. W
  • the valve plate 2 has a discharge port 16 for communicating the compression chamber 82 with the discharge chamber 12 and a suction port 15 for communicating the compression chamber with the suction chamber 13 in the circumferential direction. Are provided at predetermined intervals.
  • the discharge port 16 is opened and closed by a discharge valve 17, and the discharge valve 17 is connected to a bolt 19 and a nut 20 together with a valve retainer 18 on the rear end face of the valve plate 2. More fixed.
  • the suction port 15 is opened and closed by a suction valve 21, and the suction valve 21 is disposed between the valve plate 2 and the cylinder block 1.
  • Shaft 5 is provided by radial bearings (Rear bearings) 24 and thrust bearings (Lear bearings) 25 housed in the rear bearing housing space 60 d of cylinder block 1.
  • the radial end (front side bearing) of the front head 4 is rotatably supported, and the radial bearing (front side bearing) 26 accommodated in the front side bearing housing space 60 b of the front head 4.
  • the front end of the shaft 5 is rotatably supported.
  • a shaft seal 46 is housed in the bearing housing space 60 b on the front side.
  • a female screw 1 b is provided at the center of the cylinder block 1, and an Asian nut 83 is screwed to the female screw 1 b.
  • a preload is applied to the shaft 5 via the thrust bearing 25.
  • a pulley (not shown) is fixed to the front end of the shaft 5.
  • a thrust flange 40 for transmitting the rotation of the shaft 5 to the swash plate 10 is fixed to the shaft 5, and the thrust flange 40 is a thrust bearing 33.
  • the thrust flange 40 and the swash plate 10 are connected via a hinge mechanism 41, and the swash plate 10 can be inclined with respect to an imaginary plane perpendicular to the shaft 5.
  • the swash plate 10 is slidably and tiltably mounted on the shaft 5.
  • the hinge mechanism 41 includes a bracket 1 Oe provided on the front surface 10 c of the swash plate 10 and a linear guide groove 10 provided on the bracket 10 e. f, and a rod 43 screwed to the swash plate side end face 40a of the thrust flange 40.
  • the longitudinal axis of the guide groove 10 f is inclined by a predetermined angle with respect to the front surface 10 c of the swash plate 10.
  • the spherical portion 43a of the rod 43 is fitted into the guide groove 10f so as to be relatively slidable.
  • variable capacity type swash plate type clutchless compressor Next, the operation of the variable capacity type swash plate type clutchless compressor will be described.
  • the rotational power of the vehicle-mounted engine is constantly transmitted to a pulley (not shown) and a shaft 5 via a belt (not shown), and the rotating power of the shaft 5 is a thrust flange 40 and a hinge mechanism 41. Is transmitted to the swash plate 10 through the rotation of the swash plate 10.
  • the rotation of the swash plate 10 causes the shower 50 to relatively rotate on the rear surface 10a of the swash plate 10, so that the rotation force from the swash plate 10 causes the linear reciprocating motion of the piston 7 Is converted to
  • the piston 7 reciprocates in the cylinder bore 6, and as a result, the volume of the compression chamber 82 in the cylinder bore 6 changes.
  • This change in volume causes the suction, compression and discharge of the refrigerant gas to be performed sequentially.
  • the refrigerant gas having a capacity corresponding to the inclination angle of the swash plate 10 is discharged.
  • the suction valve 21 opens, and low-pressure refrigerant flows from the suction chamber 13 to the compression chamber 82 in the cylinder bore 6.
  • the discharge valve 17 is opened, and high-pressure refrigerant gas is discharged from the compression chamber 82 to the discharge chamber 12.
  • the refrigerant gas in the crank chamber 8 flows from the passage 60 a of the front head 4 to the front-side bearing housing space 60 b, the passage 60 c of the shaft 5, The air flows into the suction chamber 13 through the bearing housing space 60 d, the passage 58 b of the cylinder block 1, and the orifice 60 f of the valve plate 2.
  • the refrigerant gas is throttled by the orifice 62 a of the screw 62 in the middle of the passage 60 c of the shaft 5, and then is re-cooled by the orifice 58 a of the knob plate 2. And the pressure decreases.
  • the pressure of the crank chamber 8 is applied to one of the check valves 31 as a discharge control valve, and the pressure of the discharge chamber 12 is applied to the other of the check valves 31.
  • a relatively small spring force is used as the spring 32 that urges the check valve 31 in the valve closing direction, so that the heat load is reduced and discharge is performed.
  • variable-capacity swash plate type clutchless compressor of this embodiment has the following effects.
  • the suction chamber 13 Since there is no need to install a mechanism that opens and closes the suction port in the shaft 5 (conventional transmission cylinder, blocking body, etc.), the suction chamber 13 is located outside the discharge chamber 12 inside the rear head 3. They can be placed, making it easier to manage seals with the outside air. Furthermore, since the spring for giving the pre-opening to the shaft 5 does not cut off as the shaft 5 rotates and the inlet 3a cannot be opened and closed, the reliability of the compressor is improved. improves.
  • the adjust nut 8 3 can be tightened to provide a sufficient pre-opening to the shaft 5, so that the shaft 5 and the thrust flange 40 are stabilized in the axial direction and the vibration Control noise I can do it.
  • check valve 31 is employed as the discharge control valve, the configuration can be simplified.
  • the pressure difference between the crank chamber 8 and the discharge chamber 12 is smaller than the pressure difference between the suction chamber 13 and the discharge chamber 12 and the pressure in the crank chamber 8 is Focusing on the fact that the pressure does not change significantly due to load fluctuations compared to the pressure of the valve, the pressure of the crank chamber 8 acts on one of the spool valves 31 as a discharge control valve, and the other of the check valves 31 Since the structure for applying the pressure of the discharge chamber 12 was adopted, a relatively small spring force could be used as the spring 32 for biasing the check valve 31 in the valve closing direction. As a result, when the pressure in the discharge chamber 12 gradually decreases as the heat load decreases, the check valve 31 is kept open until the minimum piston stroke (extremely low load) is achieved. Can be kept.
  • a variable displacement swash plate type clutchless compressor having a structure in which the pressure of the suction chamber acts on one of the check valves as the discharge control valve and the pressure of the discharge chamber acts on the other of the check valves. Since the pressure difference between the suction chamber and the discharge chamber is large in A spring with a relatively large spring force must be used as a spring that biases in the valve closing direction. In addition, the pressure in the suction chamber changes greatly due to load fluctuations. As a result, when the pressure in the discharge chamber gradually decreases as the heat load decreases, the check valve operates before the minimum piston stroke occurs, the discharge passage is shut off, and refrigerant gas is released. It may not flow out from the discharge port to the capacitor side. According to this embodiment, such a problem is solved.
  • the fourth passage 60 Since a part of the fourth passage 60 is constituted by the front-side bearing housing space 60 and the rear-side bearing housing space 60d, the lubricating oil of the refrigerant gas passing through the third passage 60 is used.
  • the bearings 26, 24, 25 and the shaft seal 46 are lubricated and cooled.
  • the check valve 31 is used as the discharge control valve.
  • a valve other than the check valve such as the spool valve or the one-way valve may be used. Good.
  • FIG. 5 is a longitudinal sectional view showing a state in which a discharge passage of a variable capacity type swash plate type clutchless compressor according to another embodiment of the present invention is closed
  • FIG. 6 is a variable capacity type shown in FIG.
  • FIG. 7 is a partially enlarged view of a swash plate type clutchless compressor, showing a state in which a discharge passage is closed.
  • FIG. 7 is a rear head of the variable displacement type swash plate type clutchless compressor shown in FIG.
  • Fig. 8 is an enlarged cross-sectional view showing a different cross section of the rear head of the variable capacity swash plate type clutchless compressor shown in Fig. 5;
  • FIG. 14 is a diagram showing a fourth passage.
  • the refrigerant gas in the crank chamber 8 is guided to one of the check valves 31 as a pressure control valve, and the pressure control valve is closed. Then, as described later, Refrigerant gas in the discharge chamber 112 was directly introduced to one of the check valves 133 as a control valve, and the pressure control valve was closed.
  • a check valve 13 1 is provided in the middle of the discharge passage 13 9 that connects the discharge chamber 1 12 and the discharge port la.
  • the discharge passage 139 is constituted by a passage 139 a formed in the head 103 and a passage 39 formed in the knob plate 2.
  • the passage 139 b leads to a discharge port 1 a formed in the cylinder block 1.
  • a spring (biasing member) 13 2 is housed in the bottomed check valve 13 1, and one end of the spring 13 2 abuts the annular holder 56, and the other end of the spring 3 2
  • Check valve 31 is in contact with the bottom surface.
  • a cap 15 9 is fixed to the lid 10 3, and the annular holder 56 is pressed against the cap 15 9 by the biasing force of the spring 13 2.
  • the internal space 133 of the check valve 13 1 communicates with the crank chamber 8 via the passage 13 4.
  • One side (upper side) of the check valve 13 1 has the urging force of the spring (biasing member) 13 2 and the pressure of the refrigerant gas guided through the fourth passage 71 1 in the valve closing direction (valve opening direction). In the direction of decreasing degree).
  • the discharge port 1 a communicates with the discharge chamber 1 12 via the discharge passage 1 39. Therefore, on the other side (lower side) of the check valve 131, the pressure of the discharge port la and the pressure of the discharge chamber 112 act in the valve opening direction (the direction in which the valve opening increases).
  • the pressure difference between one of the check valves 13 1 and the other is When the pressure falls below the predetermined value, the check valve 13 1 moves in the valve closing direction to block the discharge passage 13 9, and the discharge chamber 1 12 is located below the check valve 13 1. Only pressure acts in the valve opening direction. In other words, the pressure of the discharge port 1 a does not work below the check valve 13 1.
  • a control valve (pressure control valve) 81 is provided in the middle of passage 157.
  • An orifice (third orifice) 70 is provided on the second passageway 15 7 and downstream of the control valve 81 as pressure reducing means. The pressure of the refrigerant gas guided from the discharge chamber 112 to the crank chamber 8 is reduced by the heat 70.
  • the valve body 81 is seated by energizing the solenoid (not shown) of the control valve 81, and the second passage 157 is shut off.
  • the valve body 8 lb is separated from the valve seat and the second passage 157 is opened by stopping the power supply to the solenoid.
  • the operation of the control valve 81 is controlled by a computer (not shown).
  • the section 157a on the second passageway 157 and between the downstream of the control valve 81 and the upstream of the orifice 70 and the interior of the check valve 131 The space 13 3 communicates with the space 13 via a fourth passage 71 formed in the head 103.
  • an orifice (fourth orifice) 72 is mounted in the middle of the fourth passage 71.
  • the flow rate of the refrigerant gas guided from the fourth passage 71 to the internal space 13 3 of the check valve 13 1 is reduced by the orifice 72.
  • the passage cross-sectional area of the first orifice 70 is smaller than the passage cross-sectional area of the orifice 72.
  • the first passage 158 includes a passage 158 a formed in the valve plate 2, a passage 58 b formed in the cylinder block 1, and a ring fixed to the shaft 5. And a hole 58c formed in 59.
  • This embodiment differs from the embodiment shown in FIG. 1 in that the passage 158a formed in the valve plate 2 is not an orifice.
  • the third passage 60 includes a passage 60 a formed in the front head 4, a front bearing housing space 60 b formed in the front head 4, The passage 60 c formed in the foot 5, the rear bearing housing space 60 d formed in the cylinder block 1, the passage 58 b of the cylinder block 1, and the valve plate 2 It is composed of 158 a.
  • the passage 58b of the cylinder block 1 and the passage 158a of the valve plate 2 constitute a part of the first passage 58 and a part of the third passage 60. Make up the part.
  • Sent to The discharge acting on the lower side of the check valve 13 1 is the sum of the pressure acting on the upper side of the check valve 13 1 (the pressure in the internal space 13 3) and the biasing force of the spring 13 2.
  • the check valve 13 1 moves in the valve closing direction and the discharge passage 13 9 is shut off (see FIG. 6).
  • the outflow of the refrigerant gas from the discharge port 1a to the capacitor 84 is prevented.
  • the boss portion 10b of the swash plate 10 almost closes the hole 58c of the ring 59 and the passage cross-sectional area of the first passage 58 is greatly reduced.
  • the refrigerant gas in the crank chamber 8 flows into the suction chamber 13 through the passage 60. This suppresses an excessive rise in the pressure of the crank chamber 8 and allows the refrigerant gas to circulate in the compressor.
  • the refrigerant gas enters the suction chamber 113, the compression chamber 82, the discharge chamber 112, the second passage 157, and the crank chamber 8. And the third passage 60 sequentially returns to the suction chamber 113 again.
  • variable-capacity swash plate type clutchless compressor according to this embodiment has the same effects as the above-described embodiment, and also has the following effects.
  • the check valve 13 1 was driven by directly introducing the refrigerant gas from the discharge chamber 1 12 into one of the check valves 13 1 (internal space 13 3). 13 1 responsiveness is improved. As a result, the amount of refrigerant discharged (the capacity of the compressor) can be changed quickly, and cooling filling is improved.
  • the check valve 13 1 operates reliably even under operating conditions such as high load and high rotation, for example, when the pressure in the crank chamber 8 cannot increase quickly as the pressure in the discharge chamber 112 increases. Since the refrigerating capacity can be reduced to zero, in order to ensure the operation of the check valve 131, the passage cross-sectional area of the first communication passage 58 is reduced and the crank chamber is reduced. There is no need to set the pressure of 8 higher. Therefore, damage to parts such as the retainer 53 pulling the piston 7 in the crank chamber 8 and the shaft seal 46 that shuts off the crank chamber 8 from the atmosphere is not affected. It becomes smaller, and the durability and reliability of the compressor are improved.
  • one passage 71 is provided as the fourth passage, but a plurality of passages may be provided.
  • one orifice (orifice 70) is installed as a depressurizing means, a plurality of orifices may be installed or an orifice may be used as another depressurizing means. Instead of mounting the face 70, the passage cross-sectional area in the middle of the second passage 157 may be reduced.
  • the check valve 13 1 is used as the discharge control valve.
  • a spool valve or a port valve (not shown) or the like is used instead of the check valve 13 1, a spool valve or a port valve (not shown) or the like is used. May be used. Industrial applicability
  • variable-capacity swash plate type clutchless compressor according to the present invention is suitable as a refrigerant compressor of a vehicle air conditioner.

Abstract

A variable displacement wash plate type clutchless compressor, wherein, a path (58) is opened by a control valve (81) and a pressure in a crank chamber (8) rises to reduce the inclination of a swash plate (10) when a heat load is reduced, the cross sectional area of a second path (57) is reduced remarkably by the swash plate (10) to suppress a pressure in the crank chamber (8) from lowering when the inclination of the swash plate (10) is reduced to a minimum, whereas a delivery path (39a) is shut off by a check valve (31) when a pressure in the crank chamber (8) rises, and a pressure in the crank chamber (8) is applied to one side of the check valve (31) and a pressure in a delivery chamber (12) is applied to the other side of it because a pressure difference between the crank chamber (8) and the delivery chamber (12) is smaller and stabler than that between a suction chamber (13) and the delivery chamber (12), whereby, when a pressure in the delivery chamber is lowered gradually as a heat load is reduced, a piston stroke becomes minimum and the check valve (31) can be kept open until the swash plate (10) reduces the path area of a first path.

Description

明細書 可変容量型斜板式ク ラ ッチレスコ ンプレッサ 技術分野  Description Variable-capacity swash plate type clutchless compressor Technical field
この発明は、 例えばエンジンの駆動力が常時伝達される可 変容量型斜板式ク ラ ッチレスコ ンプレッサに関し、 特に極低 負荷時にコ ンデンザへの高圧の冷媒の流出を阻止して冷媒を コ ンプレッサ内部で循環させ、 冷凍能力を零にする可変容量 型斜板式ク ラ ッチレスコ ンプレ ッサに関する。 背景技術  The present invention relates to a variable-capacity swash plate type clutchless compressor to which, for example, the driving force of an engine is constantly transmitted, and in particular, to prevent a high-pressure refrigerant from flowing out to a condenser at an extremely low load, thereby allowing the refrigerant to flow inside the compressor. The present invention relates to a variable capacity swash plate type clutchless compressor that circulates and reduces the refrigeration capacity to zero. Background art
従来のク ラ ッチレスコ ンプレッサと して可変容量型斜板式 ク ラ ッチレスコ ンプレッサがある。 このク ラ ッチレスコ ンプ レ ッサでは、 吸入圧に応じて斜板の傾斜角度が変化してビス ト ンのス ト ロークが変わ り 、 吐出量が増減する。  There is a variable-capacity swash plate type clutchless compressor as a conventional clutchless compressor. In this clutchless compressor, the inclination angle of the swash plate changes according to the suction pressure, the stroke of the stone changes, and the discharge rate increases or decreases.
ク ラ ッ チ レス コ ンプ レ ッ サ と して最小吐出容量がゼロ に な らない可変容量型斜板式ク ラ ッチレスコ ンプレッサを採用 した場合、 熱負荷が低下したとき (ク ラ ッチ付きコ ンプレ ツ ザのク ラ ッチオフ相当時)、冷媒によ り エバポ レー夕が冷却さ れ、 エバポ レー夕の表面に着霜が起こ り 、 エバポレー夕が凍 結して通風が困難にな り 、冷却機能が損なわれる こ とがある。  When a variable displacement swash plate type clutchless compressor that does not have a minimum discharge capacity of zero is used as the clutchless compressor, the heat load decreases (the compressor with a clutch). The cooling of the evaporator is caused by the refrigerant, the frost forms on the surface of the evaporator, and the evaporator freezes, making it difficult to ventilate. May be impaired.
これを防止する技術と しては、 熱負荷が低下したとき、 冷 媒をコ ンプレ ッサ内部で循環させ、 吐出量をゼロにする もの がある (特開平 7 — 2 5 3 0 8 0 号公報)。  As a technology to prevent this, there is a technology that circulates the coolant inside the compressor when the heat load is reduced to make the discharge amount zero (Japanese Patent Application Laid-Open No. Hei 7-23080). Gazette).
このク ラ ッチレスコ ンプレッサでは、 熱負荷の低下にと も なぃ斜板の傾斜角度が減少し、斜板が伝達筒を リ ャ側へ押し、 伝達筒が遮断体を リ ャ側へ押す。 斜板が最も傾いたとき遮断 体によって吸入通路が閉鎖され、 エバポレー夕からの低圧の 冷媒ガスの流入が阻止される。 一方、 コ ン ト ロールバルブに よって吐出室とク ラ ンク室とが連通し、 吐出室の高圧の冷媒 ガスがク ラ ンク室へ流れ、 冷媒ガスはコ ンデンサ側へほとん ど流れない。このよ う にして斜板の傾斜角度が最小のとき(最 小ビス ト ンス ト ローク時)、大部分の冷媒ガスがコ ンプレッサ 内部を循環し、 冷凍能力をゼロ にする こ とができる。 また、 冷媒ガスが内部循環するため、 摺動部が十分に潤滑、 冷却さ れる。 With this clutchless compressor, the heat load is reduced Note that the inclination angle of the swash plate decreases, and the swash plate pushes the transmission cylinder toward the rear side, and the transmission cylinder pushes the blocking body toward the rear side. When the swash plate is most inclined, the shut-off body closes the suction passage, preventing the inflow of low-pressure refrigerant gas from the evaporator. On the other hand, the control valve communicates the discharge chamber with the crank chamber, and the high-pressure refrigerant gas in the discharge chamber flows to the crank chamber, and the refrigerant gas hardly flows to the capacitor side. In this way, when the inclination angle of the swash plate is at the minimum (at the time of the minimum bistro stroke), most of the refrigerant gas circulates inside the compressor, and the refrigeration capacity can be reduced to zero. Also, since the refrigerant gas circulates internally, the sliding parts are sufficiently lubricated and cooled.
と こ ろが、 吸入通路を閉鎖するための伝達筒や遮断体を回 転軸に装着する構造が採用 されているので、 シ リ ンダヘッ ド 内において吐出室を吸入室の外側に配置しなければな らず、 外気とのシール管理が厳し く なる。 例えばよ り 高い加工精度 やポル ト (シ リ ンダブロ ッ ク とへッ ド とを結合するためのボ ル ト) の適正な締込み量などが要求される こ とになる。  However, since a structure is adopted in which a transmission cylinder and a blocker for closing the suction passage are mounted on the rotating shaft, the discharge chamber must be located outside the suction chamber in the cylinder head. No stricter seal management with outside air. For example, higher processing accuracy and an appropriate tightening amount of the port (bolt for connecting the cylinder block and the head) are required.
また、 伝達筒、 軸受及び遮断体を介してばねで回転軸にプ リ ロ一 ド を与える構造が採用されているので、 その構造上回 転軸に十分なプリ ロー ドを与え られない。 その結果、 回転軸 並びに回転支持体が軸方向に安定せず、 振動による騒音が大 き く なる。 特に高負荷時で容量の大きいとき、 遮断体を付勢 するばねが伸びて しまい、 騒音がよ り大き く なる。  In addition, since a structure is used in which a preload is applied to the rotating shaft by a spring via a transmission cylinder, a bearing, and a blocking body, a sufficient preload cannot be applied to the rotating shaft due to its structure. As a result, the rotating shaft and the rotating support are not stabilized in the axial direction, and noise due to vibration increases. In particular, when the load is large under a high load, the spring that urges the breaker is extended, and the noise is further increased.
更に、 遮断体は回転軸の回転につれてつれ回りするため、 遮断体を付勢する ばねが遮断体と と もに回転してねじ切れ、 吸入通路を開閉できなく なるおそれがあっ た。 この発明は、 外気に対する シール管理を容易にする と と も に騒音を抑制し、 更には信頼性の向上を図る こ とができる可 変容量型斜板式ク ラ ッチレスコ ンプレッサを提供する こ とを 目的とする。 発明の開示 Furthermore, since the blocking body rotates with the rotation of the rotating shaft, the spring for urging the blocking body rotates together with the blocking body to cut off the thread, so that the suction passage may not be opened or closed. An object of the present invention is to provide a variable-capacity swash plate type clutchless compressor that facilitates management of seals against outside air, suppresses noise, and further improves reliability. And Disclosure of the invention
前述の目的を解決するため この発明の第 1 の態様に係る可 変容量型斜板式ク ラ ッチレスコ ンプレッサは、 回転軸に摺動 かつ傾斜可能に装着され、 前記回転軸と一体に回転する斜板 と、 この斜板を収容する ク ラ ンク室と、 圧縮室に送る冷媒ガ スを収容する吸入室と、 前記ク ラ ンク室の冷媒ガスを前記吸 入室に導き、 しかも前記斜板の傾斜角度が最小のときに前記 斜板によっ て通路断面積が減少する第 1 の通路と、 前記圧縮 室から吐出された冷媒ガスを収容する吐出室と、 この吐出室 か らの冷媒ガスをコ ンデンサ側へ送り 出す吐出口 と、 この吐 出口に前記吐出室の冷媒ガスを導く 吐出通路と、 前記吐出室 の冷媒ガスを前記ク ラ ンク室に導く 第 2 の通路と、 この第 2 の通路の途中に設けられ、 熱負荷が大き く なつ たときに前記 第 2 の通路を遮断する圧力制御弁と、 前記吐出通路の途中に 設けられ、 閉弁方向へ前記ク ラ ンク室の圧力及び付勢部材の 付勢力が作用 し、 開弁方向へ前記吐出室の圧力が作用 し、 前 記ク ラ ンク室と前記吐出室との圧力差が所定値以下になった ときに前記吐出通路を遮断する吐出制御弁と、 この吐出制御 弁が前記吐出通路を遮断したときだけ前記ク ラ ンク室の冷媒 ガスを前記吸入室に導く 第 3 の通路とを備えている こ とを特 徴とする。 この発明の第 1 の態様によれば、 吸入口 を開閉する機構を 回転軸に装着する必要がないので、 ハウジング内において吸 入室を吐出室の外側に配置する こ とができ、 外気とのシール 管理が容易になる。 また、 回転軸にプリ ロー ド を与えるため のばねが回転軸の回転につれ回 り してねじ切れ、 吸入口の開 閉ができな く なる こ と もないので、 圧縮機の信頼性が向上す る。 更に、 十分なプリ ロー ドを回転軸に与える こ とができる ので、 回転軸が軸方向に安定し、 振動による騒音を抑制する こ とができる。 A variable-capacity swash plate type clutchless compressor according to a first aspect of the present invention is mounted on a rotating shaft so as to be slidable and tiltable, and rotates integrally with the rotating shaft. A crank chamber for accommodating the swash plate, a suction chamber for accommodating a refrigerant gas to be sent to the compression chamber, and a refrigerant gas in the crank chamber guided to the suction chamber, and the inclination angle of the swash plate A first passage whose passage cross-sectional area is reduced by the swash plate when the pressure is minimum, a discharge chamber for accommodating the refrigerant gas discharged from the compression chamber, and a condenser for discharging the refrigerant gas from the discharge chamber. A discharge port for sending refrigerant gas from the discharge chamber to the discharge port; a second path for guiding refrigerant gas from the discharge chamber to the crank chamber; It is installed on the way, and when the heat load increases A pressure control valve that shuts off the second passage at the time of opening, and a pressure control valve that is provided in the middle of the discharge passage, and the pressure of the crank chamber and the urging force of the urging member act in the valve closing direction to move in the valve opening direction. A discharge control valve for shutting off the discharge passage when a pressure difference between the crank chamber and the discharge chamber becomes equal to or less than a predetermined value due to a pressure of the discharge chamber acting on the discharge chamber; A third passage for guiding the refrigerant gas in the crank chamber to the suction chamber only when the passage is shut off. According to the first aspect of the present invention, since there is no need to mount a mechanism for opening and closing the suction port on the rotating shaft, the suction chamber can be arranged outside the discharge chamber in the housing, and a seal with the outside air can be provided. Management becomes easier. In addition, the spring for applying preload to the rotating shaft does not break with the rotation of the rotating shaft and loses its thread, making it impossible to open and close the suction port, improving the reliability of the compressor. You. Furthermore, since sufficient preload can be given to the rotating shaft, the rotating shaft is stabilized in the axial direction, and noise due to vibration can be suppressed.
また、 ク ラ ンク室と吐出室との圧力差は吸入室と吐出室と の圧力差よ り も小さ く かつ安定しているので、 チェ ッ ク弁体 を閉弁方向へ付勢するばねと して、 比較的小さなばね力のも のを用いる こ とができる。 その結果、 熱負荷が小さ く なるに 伴い吐出室の圧力が次第に低下した とき、 最小ピス ト ンス ト ローク (極低負荷) になる まで、 チェ ッ ク弁 (吐出制御弁) を開いた状態に保たせる こ とができる。  Further, since the pressure difference between the crank chamber and the discharge chamber is smaller than the pressure difference between the suction chamber and the discharge chamber and is stable, a spring for biasing the check valve body in the valve closing direction is provided. As a result, a spring having a relatively small spring force can be used. As a result, when the pressure in the discharge chamber gradually decreases as the heat load decreases, the check valve (discharge control valve) remains open until the minimum piston stroke (extremely low load) is reached. Can be kept.
前記吐出制御弁がチェ ッ ク弁である こ とが好ま しい。  Preferably, the discharge control valve is a check valve.
また、 前記第 3 の通路の途中に第 1 のオリ フィ スが形成さ れ、 この第 1 のオ リ フ ィ スの通路面積が、 前記第 1 の通路の 途中に形成された第 2 のオ リ フ ィ スの通路面積よ り も小さい こ とが好ま しい。  In addition, a first orifice is formed in the middle of the third passage, and a passage area of the first orifice is increased by a second orifice formed in the middle of the first passage. It is preferred that it be smaller than the passage area of the access.
この好ま しい態様によれば、 第 1 の通路の通路断面積が斜 板によっ て減少したときだけ第 3 の通路を通じてク ラ ンク室 か ら吸入室へ冷媒ガスが導入する機能を、 簡単な構成で実現 する こ とができる。  According to this preferred aspect, the function of introducing the refrigerant gas from the crank chamber to the suction chamber through the third passage only when the passage cross-sectional area of the first passage is reduced by the swash plate is simplified. It can be realized with a configuration.
この発明の第 2 の態様に係る可変容量型斜板式ク ラ ッチレ スコ ンプレッサは、 回転軸に摺動かつ傾斜可能に装着され、 前記回転軸と一体に回転する斜板と、 この斜板を収容する ク ラ ンク室と、 圧縮室に送る冷媒ガスを収容する吸入室と、 前 記ク ラ ンク室の冷媒ガスを前記吸入室に導き、 しかも前記斜 板の傾斜角度が最小のときに前記斜板によっ て通路断面積が 減少する第 1 の通路と、 前記圧縮室から吐出された冷媒ガス を収容する吐出室と、 この吐出室か らの冷媒ガスをコ ンデン サ側へ送 り 出す吐出口 と、 この吐出口 に前記吐出室の冷媒ガ スを導く 吐出通路と、 前記吐出室の冷媒ガスを前記ク ラ ンク 室に導く 第 2 の通路と、 この第 2 の通路の途中に設けられ、 熱負荷が大き く なつ たときに前記第 2 の通路を遮断する圧力 制御弁と、 前記第 2 の通路上の前記圧力制御弁の下流に設け られ、 前記ク ラ ンク室に導かれる冷媒ガスの流れを絞る減圧 手段と、 前記圧力制御弁の下流であって前記減圧手段の上流 の冷媒ガスの圧力 と付勢部材の付勢力 とが閉弁方向へ作用す る と と も に、 前記吐出室の圧力が開弁方向へ作用 し、 前記圧 力制御弁の下流であって前記減圧手段の上流の冷媒ガスの圧 力 と前記吐出室内の圧力の差が所定値以下になったときに前 記吐出通路を遮断する吐出制御弁と、 この吐出制御弁が前記 吐出通路を遮断したときだけ前記ク ラ ンク室の冷媒ガスを前 記吸入室に導く 第 3 の通路とを備えている こ とを特徴とする。 Variable capacity type swash plate type clutchle according to a second aspect of the present invention The compressor is slidably and tiltably mounted on the rotating shaft, and is configured to rotate integrally with the rotating shaft, a crank chamber accommodating the swash plate, and a suction chamber accommodating refrigerant gas to be sent to the compression chamber. A first passage in which the refrigerant gas in the crank chamber is guided to the suction chamber, and a cross-sectional area of the passage is reduced by the swash plate when the inclination angle of the swash plate is minimum; A discharge chamber for containing the refrigerant gas discharged from the compression chamber, a discharge port for sending the refrigerant gas from the discharge chamber to the capacitor side, and a discharge gas for guiding the refrigerant gas of the discharge chamber to the discharge port A passage, a second passage for guiding the refrigerant gas from the discharge chamber to the crank chamber, and a passage provided in the middle of the second passage, wherein the second passage is shut off when the heat load increases. And a pressure control valve on the second passage. A pressure reducing means provided in the flow to reduce the flow of the refrigerant gas guided to the crank chamber; and a pressure of the refrigerant gas downstream of the pressure control valve and upstream of the pressure reducing means, and an urging force of an urging member. Acts in the valve closing direction, and the pressure in the discharge chamber acts in the valve opening direction, so that the pressure of the refrigerant gas downstream of the pressure control valve and upstream of the pressure reducing means and the discharge pressure A discharge control valve that shuts off the discharge passage when the pressure difference in the room becomes equal to or less than a predetermined value; and a refrigerant gas in the crank chamber only when the discharge control valve shuts off the discharge passage. A third passage leading to the suction chamber.
この発明の第 2 の態様によれば、 吐出制御弁に吐出室の冷 媒ガス を直接導入して吐出制御弁を駆動するよ う に したので、 吐出制御弁の応答性が向上し、 迅速に冷媒の吐出量 (圧縮機 の能力) を変化させる こ とができ、 冷房フ ィ ー リ ングが向上 する。 また、 例えば吐出室の圧力上昇につれてク ラ ンク室の圧力 が迅速に上昇できない高負荷、 高回転時などの運転条件下で も、 吐出制御弁が確実に作動し、 冷凍能力をゼロ にする こ と ができるので、 吐出制御弁の作動を確実にするために、 第 1 の通路の通路断面積を小さ く してク ラ ンク室の圧力を高めに 設定する必要がない。 したがって、 ク ラ ンク室内の部品が受 けるダメージが小さ く な り 、 圧縮機の耐久性、 信頼性が向上 する。 According to the second aspect of the present invention, since the refrigerant gas in the discharge chamber is directly introduced into the discharge control valve to drive the discharge control valve, the response of the discharge control valve is improved, and the discharge control valve can be quickly operated. The amount of refrigerant discharged (the capacity of the compressor) can be changed, and cooling filling is improved. Also, for example, even under high load, high rotation, and other operating conditions where the pressure in the crank chamber cannot rise quickly as the pressure in the discharge chamber rises, the discharge control valve operates reliably and the refrigeration capacity can be reduced to zero. Therefore, in order to ensure the operation of the discharge control valve, it is not necessary to set the passage cross-sectional area of the first passage small and set the pressure in the crank chamber high. Therefore, the damage to the components in the crank chamber is reduced, and the durability and reliability of the compressor are improved.
前記減圧手段が前記圧力制御弁の下流に配置された第 3 の オ リ フ ィ スである こ とが好ま しい。  Preferably, the pressure reducing means is a third orifice located downstream of the pressure control valve.
この好ま しい態様によれば、 第 2 の通路が開いたとき、 第 3 のオリ フィ スで冷媒ガスの流量が絞られ、 ク ラ ンク室へ供 給される冷媒ガスの圧力が下がり 、 ク ラ ンク室の圧力が過度 に高く な らない。  According to this preferred aspect, when the second passage is opened, the flow rate of the refrigerant gas is reduced by the third orifice, the pressure of the refrigerant gas supplied to the crank chamber is reduced, and Link chamber pressure is not too high.
また、 前記圧力制御弁の下流であって前記減圧手段の上流 の冷媒ガス を前記吐出制御弁に導く 第 4 の通路の途中に第 4 のオ リ フィ スが設けられ、 前記第 3 のオリ フ ィ スの通路断面 積は前記第 4 のオ リ フ ィ スの通路断面積よ り も小さ い こ とが 好ま しい。  Further, a fourth orifice is provided in the middle of a fourth passage for guiding refrigerant gas downstream of the pressure control valve and upstream of the pressure reducing means to the discharge control valve, and the third orifice is provided. It is preferable that the cross-sectional area of the passage of the wheel is smaller than the cross-sectional area of the passage of the fourth orifice.
この好ま しい態様によれば、 第 2 の通路が開いたとき、 第 4 のオリ フ ィ スで第 4 の通路の冷媒ガスの流量が絞られ、 吐 出室の冷媒ガスが吐出制御弁に流れ込んだときの吐出制御弁 に加わる衝撃が緩和されるので、 吐出制御弁が受けるダメ一 ジが小さ く な り 、 その耐久性、 信頼性が向上する。  According to this preferred aspect, when the second passage is opened, the flow rate of the refrigerant gas in the fourth passage is reduced by the fourth orifice, and the refrigerant gas in the discharge chamber flows into the discharge control valve. Since the shock applied to the discharge control valve at that time is reduced, the damage received by the discharge control valve is reduced, and the durability and reliability are improved.
更に、 前記第 1 の通路の一部が、 前記回転軸に固定された 環状体に形成された孔によって構成されている こ とが好ま し い。 Further, it is preferable that a part of the first passage is constituted by a hole formed in an annular body fixed to the rotating shaft. No.
この好ま しい態様によれば、 斜板の傾斜角度が最小になつ たときに斜板は環状体に接触するが、 環状体は斜板と一体に 回転するので、 斜板をハウジング又はハウジングに固定した 環状体に接触させる構造を採用 した場合に較べ、 斜板の摩耗 が抑制される。  According to this preferred aspect, the swash plate comes into contact with the annular body when the inclination angle of the swash plate is minimized, but the annular body rotates integrally with the swash plate, so that the swash plate is fixed to the housing or the housing. The swash plate wear is suppressed as compared with the case where a structure that makes contact with the annular body is adopted.
また、 前記第 3 の通路が、 前記回転軸のフ ロ ン ト側にシャ フ ト シール及びフ ロ ン ト側軸受を収容するためのフ ロ ン ト側 軸受収容空間と、 前記ク ラ ンク室とを連通させる フ ロ ン ト側 通路と、 前記回転軸に設けられ、 前記回転軸の リ ャ側に リ ャ 側軸受を収容するための リ ャ側軸受収容空間と、 前記フ ロ ン ト側軸受収容空間と を連通させる回転軸側通路と、 前記リ ャ 側軸受収容空間と前記吸入室とを連通させる リ ャ側通路とで 構成されている こ とが好ま しい。  Further, the third passage includes a front-side bearing accommodating space for accommodating a shaft seal and a front-side bearing on the front side of the rotating shaft, and the crank chamber. A front-side passage communicating with the front shaft, a rear-side bearing accommodating space provided in the rotary shaft for housing a rear-side bearing on the rear side of the rotary shaft, and a front-side passage. It is preferable that it is constituted by a rotary shaft side passage for communicating with the bearing housing space and a rear side passage for communicating the above-mentioned bearing housing space with the above-mentioned suction chamber.
この好ま しい態様によれば、 斜板の傾斜角度が最小になつ たときにも、 第 3 の通路を通る冷媒ガス中の潤滑油によって 各軸受及びシャ フ ト シールが潤滑 · 冷却され、 焼付きを防ぐ こ とができる。 図面の簡単な説明  According to this preferable aspect, even when the inclination angle of the swash plate is minimized, each bearing and the shaft seal are lubricated and cooled by the lubricating oil in the refrigerant gas passing through the third passage, and seizure occurs. Can be prevented. BRIEF DESCRIPTION OF THE FIGURES
第 1 図はこの発明の一実施形態に係る可変容量型斜板式ク ラ ッチレスコ ンプレッサの吐出通路が開いた状態を示す縦断 面図である。  FIG. 1 is a vertical sectional view showing a state in which a discharge passage of a variable displacement type swash plate type clutchless compressor according to an embodiment of the present invention is open.
第 2 図は吐出通路が開いた状態を示す部分拡大図である。 第 3 図はこの発明の一実施形態に係る可変容量型斜板式ク ラ ッチレス コ ンプレッサの吐出通路が閉 じた状態を示す縦断 面図である。 FIG. 2 is a partially enlarged view showing a state where the discharge passage is opened. FIG. 3 is a longitudinal sectional view showing a state in which a discharge passage of a variable displacement type swash plate type clutchless compressor according to an embodiment of the present invention is closed. FIG.
第 4 図は吐出通路が閉 じた状態を示す部分拡大図である。 第 5 図はこの発明の他の実施形態に係る可変容量型斜板式 ク ラ ッチレスコ ンプレッサの吐出通路が閉 じた状態を示す縦 断面図である。  FIG. 4 is a partially enlarged view showing a state where the discharge passage is closed. FIG. 5 is a longitudinal sectional view showing a state in which a discharge passage of a variable displacement type swash plate type clutchless compressor according to another embodiment of the present invention is closed.
第 6 図は第 5 図の可変容量型斜板式ク ラ ッチレスコ ンプレ ッサの リ ャヘッ ドの部分拡大図であって、 吐出通路が閉じた 状態を示す図である。  FIG. 6 is a partially enlarged view of a rear head of the variable displacement type swash plate type clutchless compressor shown in FIG. 5, showing a state in which a discharge passage is closed.
第 7 図は第 5 図の可変容量型斜板式ク ラ ッチレス コ ンプレ ッサの リ ャヘッ ドの部分拡大図であって、 吐出通路が開いた 状態を示す図である。  FIG. 7 is a partially enlarged view of a rear head of the variable displacement type swash plate type clutchless compressor of FIG. 5, showing a state in which a discharge passage is opened.
第 8 図は第 5 図の可変容量型斜板式ク ラ ッチレスコ ンプレ ッサの リ ャヘッ ドの異なる切断面を示す拡大断面図であって、 第 4 の通路を示す図である。 発明を実施するための最良の形態  FIG. 8 is an enlarged cross-sectional view showing different cross-sections of a rear head of the variable-capacity swash plate type clutchless compressor of FIG. 5, and is a view showing a fourth passage. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の実施の形態を図面に基づいて説明する。 第 1 図はこの発明の一実施形態に係る可変容量型斜板式ク ラ ッチレス コ ンプレッサの吐出通路が開いた状態を示す縦断 面図、 第 2 図はその部分拡大図、 第 3 図は吐出通路が閉じた 状態を示す縦断面図、 第 4 図はその部分拡大図である。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view showing a state in which a discharge passage of a variable displacement type swash plate type clutchless compressor according to an embodiment of the present invention is open, FIG. 2 is a partially enlarged view thereof, and FIG. Is a longitudinal sectional view showing a closed state, and FIG. 4 is a partially enlarged view of FIG.
この可変容量型斜板式ク ラ ッチレスコ ンプレッサのシ リ ン ダブロ ッ ク 1 の一端面にはバルブプレー ト 2 を介してリ ャへ ッ ド 3 が、 他端面にはフ ロ ン トへッ ド 4がそれぞれ固定され ている。 シ リ ンダブロ ッ ク 1 には、 シャ フ ト (回転軸) 5 を 中心に して周方向に所定間隔おきに複数のシ リ ンダボア 6 が 配設されている。 これらのシ リ ンダポア 6 内にはそれぞれピ ス ト ン 7 が摺動可能に収容されている。 One end of the cylinder block 1 of this variable capacity swash plate type clutchless compressor has a lid head 3 via a valve plate 2 and the other end has a front head 4 Are fixed respectively. The cylinder block 1 has a plurality of cylinder bores 6 at predetermined intervals in the circumferential direction around a shaft (rotation axis) 5. It is arranged. A piston 7 is slidably accommodated in each of the cylinder pores 6.
前記フ ロ ン トへッ ド 4 内にはク ラ ンク室 8 が形成され、 こ のク ラ ンク室 8 内には斜板 1 0 が収容されている。 斜板 1 0 の摺動面 1 0 a には、 コネクティ ングロ ッ ド 1 1 の球体状の 一端部 1 1 a を相対転動可能に支持する シユ ー 5 0 力 リ テ —ナ 5 3 で保持されている。 リ テーナ 5 3 はラジアル軸受 5 5 を介して斜板 1 0 のボス部 1 0 b に装着され、 リ テ一ナ 5 3 は斜板 1 0 に対して相対回転可能である。 ラジアル軸受 5 5 は、 ボス部 1 0 b にねじ 4 5 で固定されたス ト ツバ 5 4 に よって抜け止めされている。 コネクティ ングロ ッ ド 1 1 の他 端部 1 l b はピス ト ン 7 に固定されている。  A crank chamber 8 is formed in the front head 4, and a swash plate 10 is accommodated in the crank chamber 8. The sliding surface 10a of the swash plate 10 holds the spherical end 11a of the connecting groove 11a on the sliding surface 10a. Have been. The retainer 53 is mounted on the boss 10b of the swash plate 10 via a radial bearing 55, and the retainer 53 is rotatable relative to the swash plate 10. The radial bearing 55 is prevented from coming off by a flange 54 fixed to the boss 10b with a screw 45. The other end 1 lb of the connecting groove 11 is fixed to the piston 7.
シュ一 5 0 は、 コネクティ ングロ ッ ド 1 1 の一端部 1 1 a の先端面を相対転動可能に支持する シユ ー本体 5 1 と、 コネ クティ ングロ ッ ド 1 1 の一端部 1 1 a の後端面を相対転動可 能に支持する ヮ ッ シャ 5 2 とで構成されている。  The shroud 50 is composed of a housing body 51 that supports the tip end surface of the connecting groove 11a so as to be relatively rotatable, and the one end 11a of the connecting groove 11a. It consists of a washer 52 that supports the rear end face so that it can roll relatively.
前記リ ャヘッ ド 3 には、 吐出室 1 2 と吸入室 1 3 とが形成 されている。 吸入室 1 3 は吐出室 1 2 を包囲するよ う に配置 されている。 リ ャヘッ ド 3 にはエバポレー夕 (図示せず) の 出口へ通じる吸入口 (図示せず) が設けられている。  A discharge chamber 12 and a suction chamber 13 are formed in the lid 3. The suction chamber 13 is arranged so as to surround the discharge chamber 12. Riahead 3 is provided with an inlet (not shown) that leads to the outlet of the evaporator (not shown).
第 2 図は吐出通路 3 9 が開いた状態を示す拡大縦断面図、 第 4 図は吐出通路 3 9 が閉 じた状態を示す拡大縦断面図であ る。  FIG. 2 is an enlarged longitudinal sectional view showing a state where the discharge passage 39 is open, and FIG. 4 is an enlarged longitudinal sectional view showing a state where the discharge passage 39 is closed.
吐出室 1 2 と吐出口 1 a とを連通させる吐出通路 3 9 の途 中にはチェ ッ ク弁 (吐出制御弁) 3 1 が設けられている。 吐 出通路 3 9 は、 リ ャヘッ ド 3 に形成された通路 3 9 a と、 パ ルブプレー ト 2 に形成された通路 3 9 b とで構成されている。 通路 3 9 b は、 シ リ ンダブロ ッ ク 1 に形成された吐出口 1 a へ通じる。 A check valve (discharge control valve) 31 is provided in the middle of the discharge passage 39 that connects the discharge chamber 12 and the discharge port 1a. The discharge passage 39 has a passage 39 a formed in the lid 3 and a discharge passage 39 a. And a passage 39b formed in the lube plate 2. The passage 39 b leads to a discharge port 1 a formed in the cylinder block 1.
有底筒状のチェ ッ ク弁 3 1 内にはばね (付勢部材) 3 2 が 収容され、 リ ャへッ ド 3 にキャ ッ プ 5 9 で固定されたス ト ツ パ 5 6 にはばね 3 2 の一端が当接し、 ばね 3 2 の他端はチェ ッ ク弁 3 1 の底面に当接している。 チェ ッ ク弁 3 1 の内部空 間 3 3 は通路 3 4 を介してク ラ ンク室 8 に連通している。  A spring (biasing member) 32 is housed in the bottomed cylindrical check valve 31, and a stopper 56 fixed to the lid 3 with a cap 59 is provided in a stopper 56. One end of the spring 32 is in contact, and the other end of the spring 32 is in contact with the bottom of the check valve 31. The internal space 33 of the check valve 31 communicates with the crank chamber 8 via a passage 34.
チェ ッ ク弁 3 1 の一方 (上側) には、 ばね 3 2 の付勢力 と ク ラ ンク室 8 の圧力 とが閉弁方向(弁開度が小さ く なる方向) へ作用する。 チェ ッ ク弁 3 1 の開弁時、 吐出口 l a と吐出室 1 2 とは吐出通路 3 9 を介して連通している(第 2 図参照)。 したがっ て、 チェ ッ ク弁 3 1 の他方 (下側) には、 吐出口 1 a の圧力及び吐出室 1 2 の圧力が開弁方向 (弁開度が大き く なる方向) へ作用する。 伹し、 ク ラ ンク室 8 と吐出口 l a の 圧力差が所定値以下になっ たときにはチェ ッ ク弁 3 1 が閉弁 方向へ移動して吐出通路 3 9 が遮断され、 チェ ッ ク弁 3 1 の 下側には吐出室 1 2 の圧力だけが開弁方向へ作用する。 すな わち、 チェ ッ ク弁 3 1 の下側には吐出口 1 a の圧力が作用 し なく なる。  On one side (upper side) of the check valve 31, the urging force of the spring 32 and the pressure of the crank chamber 8 act in the valve closing direction (the direction in which the valve opening decreases). When the check valve 31 is opened, the discharge port la and the discharge chamber 12 communicate with each other through the discharge passage 39 (see FIG. 2). Therefore, on the other side (lower side) of the check valve 31, the pressure of the discharge port 1 a and the pressure of the discharge chamber 12 act in the valve opening direction (the direction in which the valve opening increases). However, when the pressure difference between the crank chamber 8 and the discharge port la becomes less than a predetermined value, the check valve 31 moves in the closing direction, the discharge passage 39 is shut off, and the check valve 3 is closed. On the lower side of 1, only the pressure of the discharge chamber 12 acts in the valve opening direction. That is, the pressure of the discharge port 1 a does not act on the lower side of the check valve 31.
吐出室 1 2 とク ラ ンク室 8 とは第 2 の通路 5 7 を介して連 通する。 通路 5 7 の途中にはコ ン ト ロールバルブ (圧力制御 弁) 8 1 が設け られている。 熱負荷が大きい とき、 コ ン ト 口 —ルバルブ 8 1 のソ レノ イ ド (図示せず) への通電によ り弁 体 8 1 b が着座して第 2 の通路 5 7 が遮断され、 熱負荷が小 さい とき、 ソ レノ ィ ドへの通電停止によ り弁体 8 1 bが弁座 か ら離れて第 2 の通路 5 7 が開放される。 コ ン ト ロールバル ブ 8 1 の作動は図示しないコ ン ピュータ によって制御される。 The discharge chamber 12 and the crank chamber 8 communicate with each other via a second passage 57. A control valve (pressure control valve) 81 is provided in the middle of the passage 57. When the thermal load is large, the valve body 81b is seated by energizing the solenoid (not shown) of the control port 81, and the second passage 57 is shut off. When the load is small, the valve body 81b is closed by stopping power supply to the solenoid. The second passageway 57 is opened away from it. The operation of the control valve 81 is controlled by a computer (not shown).
吸入室 1 3 と ク ラ ン ク室 8 と は第 1 の通路 5 8 を介して 連通する。 第 1 の通路 5 8 は、 バルブプレー ト 2 に形成され たオ リ フ ィ ス (第 2 のオリ フ ィ ス) 5 8 a と、 シ リ ンダブ口 ッ ク 1 に形成された通路 5 8 b と、 シャ フ ト 5 に固定された リ ング (環状体) 5 9 に形成された孔 5 8 c とで構成されて いる。 吸入室 1 3 とク ラ ンク室 8 とは第 3 の通路 6 0 を介し て連通している。 第 3 の通路 6 0 は、 フ ロ ン トヘッ ド 4 に形 成された通路 6 0 a と、 フ ロ ン トへッ ド 4 に形成されたフ ロ ン 卜側軸受収容空間 6 0 b と、 シャ フ ト 5 に形成された通路 6 0 c と、 シリ ンダブロ ッ ク 1 に形成された リ ャ側軸受収容 空間 6 0 d と、 シ リ ンダブロ ッ ク 1 の通路 5 8 b と、 バルブ プレー ト 2 のオリ フ ィ ス 5 8 a とで構成されている。 シリ ン ダブロ ッ ク 1 の通路 5 8 b とバルブプレー ト 2 のオリ フィ ス 5 8 a とは、 第 1 の通路 5 8 の一部を構成する と と もに、 第 3 の通路 6 0 の一部を構成する。 通路 6 0 c の リ ャ側端部の 内周面にはめねじ 6 1 が形成され、 めねじ 6 1 にはスク リ ュ - 6 2 がねじ込まれている。 ス ク リ ユー 6 2 にはオリ フ ィ ス (第 1 のオリ フィ ス) 6 2 a が形成され、 このオリ フィ ス 6 2 a の通路面積は、 第 1 の通路 5 8 の一部を構成するバルブ プレー ト 2 のオリ フ ィ ス 5 8 a の通路面積よ り も小さ い。 し たがっ て、 斜板 1 0 のボス部 1 0 b がリ ング 5 9 の孔 5 8 c をほぼ塞ぎ、 第 1 の通路 5 8 の通路断面積が大幅に減少した ときだけ、 第 3 の通路 6 0 を通じてク ラ ンク室 8 の冷媒ガス が吸入室 1 3 に導かれる。 W The suction chamber 13 and the crank chamber 8 communicate with each other via a first passage 58. The first passage 58 has an orifice (second orifice) 58 a formed in the valve plate 2 and a passage 58 b formed in the cylinder opening 1. And a hole 58 c formed in a ring (annular body) 59 fixed to the shaft 5. The suction chamber 13 and the crank chamber 8 communicate with each other via a third passage 60. The third passage 60 includes a passage 60 a formed in the front head 4, a front bearing housing space 60 b formed in the front head 4, A passage 60 c formed in the shaft 5, a rear-side bearing accommodating space 60 d formed in the cylinder block 1, a passage 58 b of the cylinder block 1, and a valve plate 2 orifice 58a. The passage 58b of the cylinder block 1 and the orifice 58a of the valve plate 2 form a part of the first passage 58 and the passage 58b of the third passage 60. Make up part. An internal thread 61 is formed on the inner peripheral surface of the rear end of the passage 60c, and a screw -62 is screwed into the internal thread 61. An orifice (first orifice) 62 a is formed in the screw 62, and the passage area of the orifice 62 a forms a part of the first passage 58. Smaller than the passage area of the orifice 58a of the valve plate 2. Therefore, the third passage is provided only when the boss portion 10b of the swash plate 10 almost blocks the hole 58c of the ring 59 and the passage cross-sectional area of the first passage 58 is greatly reduced. The refrigerant gas in the crank chamber 8 is led to the suction chamber 13 through 60. W
前記バルブプレー ト 2 には、 圧縮室 8 2 と吐出室 1 2 とを 連通させる吐出ポー ト 1 6 と、 圧縮室と吸入室 1 3 とを連通 させる吸入ポー 卜 1 5 とが、 それぞれ周方向に所定間隔おき に設け られている。 吐出ポー ト 1 6 は吐出弁 1 7 によ り 開閉 され、 吐出弁 1 7 はバルブプレー ト 2 の リ ャヘッ ド側端面に 弁押さえ 1 8 と と もにボル ト 1 9 , ナツ ト 2 0 によ り 固定さ れている。 また、 吸入ポー ト 1 5 は吸入弁 2 1 によ り 開閉さ れ、 吸入弁 2 1 はバルブプレー ト 2 とシ リ ンダブロ ッ ク 1 と の間に配設されている。 The valve plate 2 has a discharge port 16 for communicating the compression chamber 82 with the discharge chamber 12 and a suction port 15 for communicating the compression chamber with the suction chamber 13 in the circumferential direction. Are provided at predetermined intervals. The discharge port 16 is opened and closed by a discharge valve 17, and the discharge valve 17 is connected to a bolt 19 and a nut 20 together with a valve retainer 18 on the rear end face of the valve plate 2. More fixed. The suction port 15 is opened and closed by a suction valve 21, and the suction valve 21 is disposed between the valve plate 2 and the cylinder block 1.
シ リ ンダブロ ッ ク 1 の リ ャ側軸受収容空間 6 0 d に収容さ れたラ ジアル軸受 ( リ ャ側軸受) 2 4及びス ラス ト軸受 (リ ャ側軸受) 2 5 によってシャ フ ト 5 の リ ャ側端部が回転可能 に支持され、 フ ロ ン トへッ ド 4 のフ ロ ン ト側軸受収容空間 6 0 b に収容されたラジアル軸受 (フ ロ ン ト側軸受) 2 6 によ つ てシャ フ ト 5 のフ ロ ン ト側端部が回転可能に支持される。 フ ロ ン ト側の軸受収容空間 6 0 b には、 ラジアル軸受 2 6 の 他にシャ フ ト シ一ル 4 6 が収容されている。  Shaft 5 is provided by radial bearings (Rear bearings) 24 and thrust bearings (Lear bearings) 25 housed in the rear bearing housing space 60 d of cylinder block 1. The radial end (front side bearing) of the front head 4 is rotatably supported, and the radial bearing (front side bearing) 26 accommodated in the front side bearing housing space 60 b of the front head 4. Thus, the front end of the shaft 5 is rotatably supported. In addition to the radial bearing 26, a shaft seal 46 is housed in the bearing housing space 60 b on the front side.
シ リ ンダブロ ッ ク 1 の中央部にはめねじ 1 b が設けられ、 このめねじ 1 b にはアジヤス トナツ ト 8 3 が螺合されている。 このアジャ ス トナツ ト 8 3 を締め込むこ とによ り 、 ス ラス ト 軸受 2 5 を介してシャ フ ト 5 にプレロー ドを与える。 また、 シャ フ ト 5 のフ ロ ン ト側端部にはプー リ (図示せず) が固定 される。  A female screw 1 b is provided at the center of the cylinder block 1, and an Asian nut 83 is screwed to the female screw 1 b. By tightening the adjust nut 83, a preload is applied to the shaft 5 via the thrust bearing 25. A pulley (not shown) is fixed to the front end of the shaft 5.
シャ フ ト 5 にはシャ フ ト 5 の回転を斜板 1 0 に伝達するた めのスラス ト フ ラ ンジ 4 0 が固定され、 このスラス ト フ ラ ン ジ 4 0 はス ラス ト軸受 3 3 を介してフ ロ ン トヘッ ド 4 の内壁 W A thrust flange 40 for transmitting the rotation of the shaft 5 to the swash plate 10 is fixed to the shaft 5, and the thrust flange 40 is a thrust bearing 33. Through the inner wall of the front head 4 W
面に支持されている。 ス ラス ト フ ラ ンジ 4 0 と斜板 1 0 とは ヒ ンジ機構 4 1 を介して連結され、 斜板 1 0 はシャ フ ト 5 と 直角な仮想面に対して傾斜可能である。 Supported on the surface. The thrust flange 40 and the swash plate 10 are connected via a hinge mechanism 41, and the swash plate 10 can be inclined with respect to an imaginary plane perpendicular to the shaft 5.
斜板 1 0 はシ ャ フ ト 5 に摺動かつ傾斜可能に装着されて いる。  The swash plate 10 is slidably and tiltably mounted on the shaft 5.
ヒ ンジ機構 4 1 は、 斜板 1 0 のフ ロ ン ト面 1 0 c に設け ら れたブラケッ ト 1 O e と、 ブラケッ ト 1 0 e に設けられた直 線的なガイ ド溝 1 0 f と、 ス ラス ト フ ラ ンジ 4 0 の斜板側端 面 4 0 a に螺着されたロ ッ ド 4 3 とで構成されている。 ガイ ド溝 1 0 f の長手軸は斜板 1 0 のフ ロ ン ト面 1 0 c に対して 所定角度傾いている。 ロ ッ ド 4 3 の球状部 4 3 a はガイ ド溝 1 0 f に相対摺動可能に嵌合されている。  The hinge mechanism 41 includes a bracket 1 Oe provided on the front surface 10 c of the swash plate 10 and a linear guide groove 10 provided on the bracket 10 e. f, and a rod 43 screwed to the swash plate side end face 40a of the thrust flange 40. The longitudinal axis of the guide groove 10 f is inclined by a predetermined angle with respect to the front surface 10 c of the swash plate 10. The spherical portion 43a of the rod 43 is fitted into the guide groove 10f so as to be relatively slidable.
次に、 この可変容量型斜板式ク ラ ッチレスコ ンプレッサの 作動を説明する。  Next, the operation of the variable capacity type swash plate type clutchless compressor will be described.
車載エンジンの回転動力は図示しないベル ト を介して図示 しないプー リ 、 シャ フ ト 5 に常時伝達され、 シャ フ ト 5 の回 転カはス ラス ト フ ラ ンジ 4 0 、 ヒ ンジ機構 4 1 を経て斜板 1 0 に伝達され、 斜板 1 0 が回転する。  The rotational power of the vehicle-mounted engine is constantly transmitted to a pulley (not shown) and a shaft 5 via a belt (not shown), and the rotating power of the shaft 5 is a thrust flange 40 and a hinge mechanism 41. Is transmitted to the swash plate 10 through the rotation of the swash plate 10.
斜板 1 0 の回転によ り シユ ー 5 0 が斜板 1 0 の リ ャ面 1 0 a 上を相対回転するので、 斜板 1 0 か らの回転力はピス ト ン 7 の直線往復運動に変換される。 ピス ト ン 7 はシ リ ンダボア 6 内を往復運動し、 その結果シ リ ンダポア 6 内の圧縮室 8 2 の容積が変化し、 この容積変化によって冷媒ガスの吸入、 圧 縮及び吐出が順次行なわれ、 斜板 1 0 の傾斜角度に応じた容 量の冷媒ガスが吐出される。 吸入時、 吸入弁 2 1 が開き、 吸 入室 1 3 か ら シ リ ンダボア 6 内の圧縮室 8 2 へ低圧の冷媒が W The rotation of the swash plate 10 causes the shower 50 to relatively rotate on the rear surface 10a of the swash plate 10, so that the rotation force from the swash plate 10 causes the linear reciprocating motion of the piston 7 Is converted to The piston 7 reciprocates in the cylinder bore 6, and as a result, the volume of the compression chamber 82 in the cylinder bore 6 changes. This change in volume causes the suction, compression and discharge of the refrigerant gas to be performed sequentially. The refrigerant gas having a capacity corresponding to the inclination angle of the swash plate 10 is discharged. During suction, the suction valve 21 opens, and low-pressure refrigerant flows from the suction chamber 13 to the compression chamber 82 in the cylinder bore 6. W
吸入され、 吐出時、 吐出弁 1 7 が開き、 圧縮室 8 2 か ら吐出 室 1 2 へ高圧の冷媒ガスが吐出される。 At the time of suction and discharge, the discharge valve 17 is opened, and high-pressure refrigerant gas is discharged from the compression chamber 82 to the discharge chamber 12.
熱負荷が小さ く なる と (ク ラ ッチ付きコ ンプレッサのク ラ ツチオフ相当時)、コ ン ト ロールバルブ 8 1 のソ レノ ィ ドへの 通電が停止されてプラ ンジャ 8 I d が開弁方向へ移動し、 弁 体 8 1 bがばね 8 1 c の付勢力に抗して開弁方向へ移動し、 第 2 の通路 5 7 が開 く 。 その結果、 第 2 の通路 5 7 を介して 吐出室 1 2 か ら ク ラ ンク室 8 へ高圧の冷媒ガスが流出し、 ク ラ ンク室 8 の圧力は高く な り 、 斜板 1 0 の傾斜角度が小さ く なる。 斜板 1 0 の傾斜角度が最小になっ たとき、 斜板 1 0 の ボス部 1 0 bがリ ング 5 9 の孔 5 8 c をほぼ塞ぎ、 第 1 の通 路 5 8 の通路断面積が大幅に減少するので、 ク ラ ンク室 8 の 圧力低下が抑制される。  When the heat load decreases (when the clutch compressor has a clutch-off equivalent), the power supply to the solenoid of the control valve 81 is stopped and the plunger 8Id opens. , The valve element 81b moves in the valve opening direction against the urging force of the spring 81c, and the second passage 57 opens. As a result, high-pressure refrigerant gas flows out of the discharge chamber 12 to the crank chamber 8 through the second passage 57, and the pressure in the crank chamber 8 increases, and the swash plate 10 tilts. The angle becomes smaller. When the inclination angle of the swash plate 10 is minimized, the boss 10 b of the swash plate 10 almost closes the hole 58 c of the ring 59, and the cross-sectional area of the first passage 58 is reduced. Since the pressure is largely reduced, the pressure drop in the crank chamber 8 is suppressed.
吐出室 1 2 とク ラ ンク室 8 との圧力差が所定値 P以下にな り 、 チェ ッ ク弁 3 1 の上側に作用する ク ラ ンク室 8 の圧力 と ばね 3 2 の付勢力 との合力 とがチェ ッ ク弁 3 1 の下側に作用 する吐出室 1 2 の冷媒ガスの圧力に打ち勝つと、 チェ ッ ク弁 3 1 が閉弁方向へ移動して吐出通路 3 9 を遮断する (第 4 図 参照)。 その結果、 吐出口 1 aか ら コ ンデンサ 8 4への冷媒ガ スの流出が阻止される。 このとき前述のよ う に斜板 1 0 のポ ス部 1 0 b がリ ング 5 9 の孔 5 8 c をほぼ塞いで第 1 の通路 5 8 の通路断面積が大幅に減少するが、 第 3 の通路 6 0 を通 じてク ラ ンク室 8 内の冷媒ガスが吸入室 1 3 に流れる。 これ によ り ク ラ ンク室 8 の過度の圧力上昇が抑制される と ともに、 冷媒ガスの圧縮機内循環が可能になる。  When the pressure difference between the discharge chamber 12 and the crank chamber 8 falls below the predetermined value P, the pressure between the pressure of the crank chamber 8 acting on the upper side of the check valve 31 and the urging force of the spring 32 is increased. When the resultant force overcomes the pressure of the refrigerant gas in the discharge chamber 12 acting on the lower side of the check valve 31, the check valve 31 moves in the valve closing direction to shut off the discharge passage 39 ( (See Fig. 4). As a result, the outflow of the refrigerant gas from the discharge port 1a to the capacitor 84 is prevented. At this time, as described above, the post section 10b of the swash plate 10 substantially closes the hole 58c of the ring 59, and the cross-sectional area of the first passage 58 is greatly reduced. The refrigerant gas in the crank chamber 8 flows to the suction chamber 13 through the passage 60 of 3. This suppresses an excessive rise in the pressure of the crank chamber 8 and enables the refrigerant gas to circulate in the compressor.
最小ビス ト ンス ト ロ一ク時 (第 3 図の状態)、 冷媒ガスが吸 入室 1 3 、 圧縮室 8 2 、 吐出室 1 2 、 第 2 の通路 5 7 、 ク ラ ンク室 8 及び第 3 の通路 6 0 を順次経て再び吸入室 1 3 に戻 る。 At the time of minimum bistro stroke (as shown in Fig. 3), refrigerant gas is absorbed. It returns to the suction chamber 13 through the entrance chamber 13, the compression chamber 82, the discharge chamber 12, the second passage 57, the crank chamber 8, and the third passage 60 in this order.
また、 ク ラ ンク室 8 の冷媒ガスは、 フ ロ ン トヘッ ド 4 の通 路 6 0 a カゝ ら フ ロ ン ト側軸受収容空間 6 0 b 、 シャ フ ト 5 の 通路 6 0 c 、 リ ャ側軸受収容空間 6 0 d 、 シ リ ンダブロ ッ ク 1 の通路 5 8 b及びバルブプレー ト 2 のオリ フィ ス 6 0 f を 通って吸入室 1 3 へ流れる。 このとき冷媒ガスはシャ フ ト 5 の通路 6 0 c の途中にあるスク リ ュー 6 2 のオリ フィ ス 6 2 a で絞られた後、 ノ ルブプレー ト 2 のオリ フ ィ ス 5 8 a で再 び絞られ、 圧力が減少する。  In addition, the refrigerant gas in the crank chamber 8 flows from the passage 60 a of the front head 4 to the front-side bearing housing space 60 b, the passage 60 c of the shaft 5, The air flows into the suction chamber 13 through the bearing housing space 60 d, the passage 58 b of the cylinder block 1, and the orifice 60 f of the valve plate 2. At this time, the refrigerant gas is throttled by the orifice 62 a of the screw 62 in the middle of the passage 60 c of the shaft 5, and then is re-cooled by the orifice 58 a of the knob plate 2. And the pressure decreases.
なお、 この実施形態では吐出制御弁と してのチェ ッ ク弁 3 1 の一方にク ラ ンク室 8 の圧力を作用させ、 チェ ッ ク弁 3 1 の他方に吐出室 1 2 の圧力を作用させる構造を採用 し、 チェ ッ ク弁 3 1 を閉弁方向へ付勢するばね 3 2 と して比較的小さ なばね力のものを用いるよ う に したので、 熱負荷が小さ く な つて吐出室 1 2 の圧力が次第に低下したとき、 最小ピス ト ン ス ト ローク (極低負荷) にな り 、 斜板 1 0 が第 1 の通路 5 8 の通路面積を減少させる までチェ ッ ク弁 3 0 は開いた状態に 保たれる。  In this embodiment, the pressure of the crank chamber 8 is applied to one of the check valves 31 as a discharge control valve, and the pressure of the discharge chamber 12 is applied to the other of the check valves 31. A relatively small spring force is used as the spring 32 that urges the check valve 31 in the valve closing direction, so that the heat load is reduced and discharge is performed. When the pressure in the chamber 12 gradually decreases, the minimum piston stroke (extremely low load) is reached, and the check valve 3 is used until the swash plate 10 reduces the passage area of the first passage 58. 0 is kept open.
これに対し、 熱負荷が大きく なる と、 コ ン ト ロールバルブ 8 1 のソ レノ ィ ドへの通電によ り プラ ンジャ 8 1 dが閉弁方 向へ移動し、 弁体 8 1 b がばね 8 1 c の付勢力によっ て閉弁 方向へ移動 し、 第 2 の通路 5 7 が閉 じる。 その結果、 吐出室 1 2 か ら ク ラ ンク室 8 への高圧の冷媒ガスの流入が阻止され、 ク ラ ンク室 8 の圧力は低く な り 、 斜板 1 0 の傾斜角度が大き く なる。 斜板 1 0 の傾斜角度が最小か ら最大になる とき、 斜 板 1 0 のボス部 1 O bがリ ング 5 9 の孔 5 8 c から離れ、 第 1 の通路 5 8 が全開にな り 、 ク ラ ンク室 8 の冷媒ガスが第 1 の通路 5 8 を介して吸入室 1 3 へ流れるので、 ク ラ ンク室 8 の圧力の低下が促進される。 第 1 の通路 5 8 の通路面積が最 大になる と、 第 3 の通路 6 0 か ら吸入室 1 3 へは冷媒ガスが ほとんど流れなく なる。 On the other hand, when the heat load increases, the plunger 81 d moves in the valve closing direction due to the energization of the solenoid of the control valve 81, and the valve element 81b moves the spring. 8 1c moves in the valve closing direction by the biasing force, and the second passage 57 is closed. As a result, the flow of high-pressure refrigerant gas from the discharge chamber 12 to the crank chamber 8 is prevented, the pressure in the crank chamber 8 decreases, and the inclination angle of the swash plate 10 increases. It becomes bad. When the inclination angle of the swash plate 10 is changed from the minimum to the maximum, the boss 1 Ob of the swash plate 10 is separated from the hole 58 c of the ring 59 and the first passage 58 is fully opened. Since the refrigerant gas in the crank chamber 8 flows to the suction chamber 13 through the first passage 58, the pressure in the crank chamber 8 is reduced. When the passage area of the first passage 58 is maximized, the refrigerant gas hardly flows from the third passage 60 to the suction chamber 13.
また、 吐出室 1 2 の圧力が高く なつて、 吐出室 1 2 とク ラ ンク室 8 との圧力差が所定値 P以上になる と、 チェ ッ ク弁 3 1 に作用する吐出室 1 2 の冷媒ガスの圧力がク ラ ンク室 8 の 冷媒ガスの圧力 とばね 3 2 の付勢力 との合力に打ち勝ち、 ス プール弁 3 1 が開弁方向へ移動して吐出通路 3 9 が開 く (第 2 図参照)。 その結果、 吐出室 1 2 の冷媒ガスが吐出口 1 a 力、 ら コ ンデンサ 8 4 へ流出する。  When the pressure in the discharge chamber 12 increases and the pressure difference between the discharge chamber 12 and the crank chamber 8 exceeds a predetermined value P, the pressure in the discharge chamber 12 acting on the check valve 31 increases. The pressure of the refrigerant gas overcomes the resultant force of the pressure of the refrigerant gas in the crank chamber 8 and the urging force of the spring 32, the spool valve 31 moves in the valve opening direction, and the discharge passage 39 opens. See Figure 2). As a result, the refrigerant gas in the discharge chamber 12 flows out from the discharge port 1a to the capacitor 84.
この実施形態の可変容量型斜板式ク ラ ッチレスコ ンプレツ サは次のよ う な効果を奏する。  The variable-capacity swash plate type clutchless compressor of this embodiment has the following effects.
シャ フ ト 5 に吸入口 を開閉する機構 (従来例の伝達筒や遮 断体等) を装着する必要がないので、 リ ャヘッ ド 3 内におい て吸入室 1 3 を吐出室 1 2 の外側に配置する こ とができ、 外 気とのシール管理が容易になる。 更に、 シャ フ ト 5 にプリ 口 ― ドを与えるためのばねがシャ フ ト 5 の回転につれ回 り して ねじ切れ、 吸入口 3 a を開閉できなく なる こ ともないので、 圧縮機の信頼性が向上する。  Since there is no need to install a mechanism that opens and closes the suction port in the shaft 5 (conventional transmission cylinder, blocking body, etc.), the suction chamber 13 is located outside the discharge chamber 12 inside the rear head 3. They can be placed, making it easier to manage seals with the outside air. Furthermore, since the spring for giving the pre-opening to the shaft 5 does not cut off as the shaft 5 rotates and the inlet 3a cannot be opened and closed, the reliability of the compressor is improved. improves.
アジャ ス トナツ ト 8 3 を締め込んで十分なプリ 口一 ドをシ ャ フ ト 5 に与える こ とができるので、 シャ フ ト 5 及びス ラス ト フラ ンジ 4 0 が軸方向に安定し、 振動による騒音を抑制す る こ とができる。 The adjust nut 8 3 can be tightened to provide a sufficient pre-opening to the shaft 5, so that the shaft 5 and the thrust flange 40 are stabilized in the axial direction and the vibration Control noise I can do it.
シリ ンダブロ ッ ク 1 等の構造が複雑ではないのでク ラ ッチ 付可変容量型斜板式コ ンプレッサとの部品の共通化が可能で ある。  Since the structure of the cylinder block 1 etc. is not complicated, parts can be shared with the variable capacity swash plate type compressor with a clutch.
吐出制御弁と してチェ ッ ク弁 3 1 を採用 したので、 構成の 簡素化を図る こ とができる。  Since the check valve 31 is employed as the discharge control valve, the configuration can be simplified.
斜板 1 0 の傾斜角度が最小になっ たときに斜板 1 0 と接触 する リ ング 5 9 が斜板 1 0 と一体に回転するので、 斜板 1 0 をシリ ンダブロ ッ ク 1 に直接又はシ リ ンダブロ ッ ク 1 に固定 した リ ングに接触させる場合に較べ、 斜板 1 0 の摩耗が抑制 される。  When the inclination angle of the swash plate 10 becomes minimum, the ring 59 that comes into contact with the swash plate 10 rotates together with the swash plate 10, so that the swash plate 10 is directly or in contact with the cylinder block 1. Compared to contact with the ring fixed to the cylinder block 1, wear of the swash plate 10 is suppressed.
この実施形態ではク ラ ンク室 8 と吐出室 1 2 との圧力差が 吸入室 1 3 と吐出室 1 2 との圧力差よ り も小さ い点、 並びに ク ラ ンク室 8 の圧力は吸入室の圧力に較べ負荷変動によって 大き く 変化しない点に着目 し、 吐出制御弁と してのスプール 弁 3 1 の一方にク ラ ンク室 8 の圧力を作用させ、 チェ ッ ク弁 3 1 の他方に吐出室 1 2 の圧力を作用させる構造を採用 した ので、 チェ ッ ク弁 3 1 を閉弁方向へ付勢するばね 3 2 と して 比較的小さなばね力のものを用いる こ とができた。その結果、 熱負荷が小さ く なるに伴い吐出室 1 2 の圧力が次第に低下し たとき、 最小ピス ト ンス ト ローク (極低負荷) になるまで、 チェ ッ ク弁 3 1 を開いた状態に保たせる こ とができる。  In this embodiment, the pressure difference between the crank chamber 8 and the discharge chamber 12 is smaller than the pressure difference between the suction chamber 13 and the discharge chamber 12 and the pressure in the crank chamber 8 is Focusing on the fact that the pressure does not change significantly due to load fluctuations compared to the pressure of the valve, the pressure of the crank chamber 8 acts on one of the spool valves 31 as a discharge control valve, and the other of the check valves 31 Since the structure for applying the pressure of the discharge chamber 12 was adopted, a relatively small spring force could be used as the spring 32 for biasing the check valve 31 in the valve closing direction. As a result, when the pressure in the discharge chamber 12 gradually decreases as the heat load decreases, the check valve 31 is kept open until the minimum piston stroke (extremely low load) is achieved. Can be kept.
ちなみに、 吐出制御弁と してのチェ ッ ク弁の一方に吸入室 の圧力を作用 させ、 チェ ッ ク弁の他方に吐出室の圧力を作用 させる構造の可変容量型斜板式ク ラ ッチレスコ ンプレ ッサで は、 吸入室と吐出室との圧力差が大きいので、 チェ ッ ク弁を 閉弁方向へ付勢するばねと して比較的大きなばね力のばねを 用いなければな らない。 また、 吸入室の圧力は負荷変動によ つ て大き く 変化する。 その結果、 熱負荷が小さ く なるに伴い 吐出室の圧力が次第に低下したとき、 最小ピス ト ンス ト ロー ク になる前にチェ ッ ク弁体が作動し、 吐出通路が遮断され、 冷媒ガスが吐出口か ら コ ンデンサ側へ流出しなく なる こ とが ある。 こ の実施形態によればこのよ うな問題は解消される。 Incidentally, a variable displacement swash plate type clutchless compressor having a structure in which the pressure of the suction chamber acts on one of the check valves as the discharge control valve and the pressure of the discharge chamber acts on the other of the check valves. Since the pressure difference between the suction chamber and the discharge chamber is large in A spring with a relatively large spring force must be used as a spring that biases in the valve closing direction. In addition, the pressure in the suction chamber changes greatly due to load fluctuations. As a result, when the pressure in the discharge chamber gradually decreases as the heat load decreases, the check valve operates before the minimum piston stroke occurs, the discharge passage is shut off, and refrigerant gas is released. It may not flow out from the discharge port to the capacitor side. According to this embodiment, such a problem is solved.
第 4 の通路 6 0 の一部をフ ロ ン ト側軸受収容空間 6 0 と リ ャ側軸受収容空間 6 0 d とが構成するので、 第 3 の通路 6 0 を通る冷媒ガスの潤滑油によって各軸受 2 6 , 2 4 , 2 5 及びシャ フ 卜 シール 4 6 が潤滑 · 冷却される。  Since a part of the fourth passage 60 is constituted by the front-side bearing housing space 60 and the rear-side bearing housing space 60d, the lubricating oil of the refrigerant gas passing through the third passage 60 is used. The bearings 26, 24, 25 and the shaft seal 46 are lubricated and cooled.
なお、 前述の実施形態では、 吐出制御弁と してチェ ッ ク弁 3 1 を用いた場合について述べたが、 スプール弁や口一タ リ 弁等のチェ ッ ク弁以外の弁を用いてもよい。  In the above-described embodiment, the case where the check valve 31 is used as the discharge control valve is described. However, a valve other than the check valve such as the spool valve or the one-way valve may be used. Good.
第 5 図はこの発明の他の実施形態に係る可変容量型斜板式 ク ラ ッチ レス コ ンプレッサの吐出通路が閉 じた状態を示す縦 断面図、 第 6 図は第 5 図の可変容量型斜板式ク ラ ッチレスコ ンプレッサの部分拡大図であって、 吐出通路が閉 じた状態を 示す図、 第 7 図は第 5 図の可変容量型斜板式ク ラ ッチレスコ ンプレ ッサの リ ャへッ ドの部分拡大図であって、 吐出通路が 開いた状態を示す図、 第 8 図は第 5 図の可変容量型斜板式ク ラ ッチレス コ ンプレッサの リ ャヘッ ドの異なる切断面を示す 拡大断面図であって、 第 4 の通路を示す図である。  FIG. 5 is a longitudinal sectional view showing a state in which a discharge passage of a variable capacity type swash plate type clutchless compressor according to another embodiment of the present invention is closed, and FIG. 6 is a variable capacity type shown in FIG. FIG. 7 is a partially enlarged view of a swash plate type clutchless compressor, showing a state in which a discharge passage is closed. FIG. 7 is a rear head of the variable displacement type swash plate type clutchless compressor shown in FIG. Fig. 8 is an enlarged cross-sectional view showing a different cross section of the rear head of the variable capacity swash plate type clutchless compressor shown in Fig. 5; FIG. 14 is a diagram showing a fourth passage.
前述の実施形態では、 圧力制御弁と してのチェ ッ ク弁 3 1 の一方にク ラ ンク室 8 の冷媒ガスを導いて、 圧力制御弁を閉 じるよ う に したが、 この実施形態では、 後述のよ う に、 吐出 制御弁と してのチェ ッ ク弁 1 3 1 の一方に吐出室 1 1 2 の冷 媒ガス を直接導いて、 圧力制御弁を閉 じるよ う にした。 In the above-described embodiment, the refrigerant gas in the crank chamber 8 is guided to one of the check valves 31 as a pressure control valve, and the pressure control valve is closed. Then, as described later, Refrigerant gas in the discharge chamber 112 was directly introduced to one of the check valves 133 as a control valve, and the pressure control valve was closed.
以下この実施形態を第 5 図〜第 8 図に基いて説明する。 伹 し、 上述の実施形態と共通する部分には図面中に同一の符号 を付してその説明を省略する。  This embodiment will be described below with reference to FIGS. However, portions common to the above-described embodiments are denoted by the same reference numerals in the drawings, and description thereof will be omitted.
吐出室 1 1 2 と吐出口 l a とを連通させる吐出通路 1 3 9 の途中にはチェ ッ ク弁 1 3 1 が設けられている。 吐出通路 1 3 9 は、 リ ャヘッ ド 1 0 3 に形成された通路 1 3 9 a と、 ノ ルブプレー ト 2 に形成された通路 3 9 とで構成されている。 通路 1 3 9 b は、 シ リ ンダブロ ッ ク 1 に形成された吐出口 1 a へ通じる。  A check valve 13 1 is provided in the middle of the discharge passage 13 9 that connects the discharge chamber 1 12 and the discharge port la. The discharge passage 139 is constituted by a passage 139 a formed in the head 103 and a passage 39 formed in the knob plate 2. The passage 139 b leads to a discharge port 1 a formed in the cylinder block 1.
有底筒状のチェ ッ ク弁 1 3 1 内にはばね (付勢部材) 1 3 2 が収容され、ばね 1 3 2 の一端は環状ホルダ 5 6 に当接し、 ばね 3 2 の他端はチェ ッ ク弁 3 1 の底面に当接している。 リ ャへッ ド 1 0 3 にはキャ ッ プ 1 5 9 が固定され、 環状ホルダ 5 6 はばね 1 3 2 の付勢力によってキャ ッ プ 1 5 9 に押し付 けられている。 チェ ッ ク弁 1 3 1 の内部空間 1 3 3 は通路 1 3 4 を介してク ラ ンク室 8 に連通している。  A spring (biasing member) 13 2 is housed in the bottomed check valve 13 1, and one end of the spring 13 2 abuts the annular holder 56, and the other end of the spring 3 2 Check valve 31 is in contact with the bottom surface. A cap 15 9 is fixed to the lid 10 3, and the annular holder 56 is pressed against the cap 15 9 by the biasing force of the spring 13 2. The internal space 133 of the check valve 13 1 communicates with the crank chamber 8 via the passage 13 4.
チェ ッ ク弁 1 3 1 の一方 (上側) には、 ばね (付勢部材) 1 3 2 の付勢力と第 4 の通路 7 1 を通じて導かれた冷媒ガス の圧力 とが閉弁方向 (弁開度が小さ く なる方向) へ作用する。 チェ ッ ク弁 1 3 1 の開弁時、 吐出口 1 a と吐出室 1 1 2 とは 吐出通路 1 3 9 を介して連通している。 したがって、 チエツ ク弁 1 3 1 の他方 (下側) には、 吐出口 l a の圧力 と吐出室 1 1 2 の圧力 とが開弁方向 (弁開度が大き く なる方向) へ作 用する。 但し、 チェ ッ ク弁 1 3 1 の一方と他方との圧力差が 所定値以下になっ たときには、 チェ ッ ク弁 1 3 1 が閉弁方向 へ移動して吐出通路 1 3 9 が遮断され、 チェ ッ ク弁 1 3 1 の 下側には吐出室 1 1 2 の圧力だけが開弁方向へ作用する。 す なわち、 チェ ッ ク弁 1 3 1 の下側には吐出口 1 a の圧力が作 用 しな く なる。 One side (upper side) of the check valve 13 1 has the urging force of the spring (biasing member) 13 2 and the pressure of the refrigerant gas guided through the fourth passage 71 1 in the valve closing direction (valve opening direction). In the direction of decreasing degree). When the check valve 13 1 is opened, the discharge port 1 a communicates with the discharge chamber 1 12 via the discharge passage 1 39. Therefore, on the other side (lower side) of the check valve 131, the pressure of the discharge port la and the pressure of the discharge chamber 112 act in the valve opening direction (the direction in which the valve opening increases). However, the pressure difference between one of the check valves 13 1 and the other is When the pressure falls below the predetermined value, the check valve 13 1 moves in the valve closing direction to block the discharge passage 13 9, and the discharge chamber 1 12 is located below the check valve 13 1. Only pressure acts in the valve opening direction. In other words, the pressure of the discharge port 1 a does not work below the check valve 13 1.
吐出室 1 1 2 と ク ラ ンク室 8 とは第 2 の通路 1 5 7 を介し て連通する。 通路 1 5 7 の途中にはコ ン ト ロールバルブ (圧 力制御弁) 8 1 が設けられている。 第 2 の通路 1 5 7 上であ つてコ ン ト ロールバルブ 8 1 の下流に減圧手段と してオリ フ イ ス (第 3 のオ リ フ ィ ス) 7 0 が設けられ、 このオリ フ ィ ス 7 0 によっ て吐出室 1 1 2 か ら ク ラ ンク室 8 に導かれる冷媒 ガスが減圧される。 熱負荷が大きい とき、 コ ン ト ロールバル ブ 8 1 のソ レノ ィ ド (図示せず) への通電によ り弁体 8 1 が着座して第 2 の通路 1 5 7 が遮断され、 熱負荷が小さ いと き、 ソ レノ イ ドへの通電停止によ り弁体 8 l bが弁座か ら離 れて第 2 の通路 1 5 7 が開放される。 コ ン ト ロールバルブ 8 1 の作動は図示しないコ ン ピュー夕 によって制御される。 第 2 の通路 1 5 7 上であってコ ン ト ロールバルブ 8 1 の下 流とオ リ フ ィ ス 7 0 の上流との間の部分 1 5 7 a とチェ ッ ク 弁 1 3 1 の内部空間 1 3 3 とは、 リ ャヘッ ド 1 0 3 に形成さ れた第 4 の通路 7 1 を介して連通している。 第 4 の通路 7 1 の途中にはオ リ フ ィ ス (第 4 のオリ フィ ス) 7 2 が装着され ている。 第 4 の通路 7 1 か らチェ ッ ク弁 1 3 1 の内部空間 1 3 3 に導かれる冷媒ガスの流量はオリ フ ィ ス 7 2 によって減 少する。 第 1 のオ リ フィ ス 7 0 の通路断面積はオリ フィ ス 7 2 の通路断面積よ り も小さ い。 第 1 の通路 1 5 8 は、 バルブプレー ト 2 に形成された通路 1 5 8 a と、シ リ ンダブロ ッ ク 1 に形成された通路 5 8 b と、 シャ フ ト 5 に固定された リ ング 5 9 に形成された孔 5 8 c と で構成されている。 バルブプレー ト 2 に形成された通路 1 5 8 aがオ リ フ ィ スでない点で第 1 図の実施形態と相違する。 第 3 の通路 6 0 は、 フ ロ ン トヘッ ド 4 に形成された通路 6 0 a と、 フ ロ ン トへッ ド 4 に形成されたフ ロ ン ト側軸受収容 空間 6 0 b と、 シャ フ ト 5 に形成された通路 6 0 c と、 シリ ンダブロ ッ ク 1 に形成された リ ャ側軸受収容空間 6 0 d と、 シリ ンダブロ ッ ク 1 の通路 5 8 b と、 バルブプレー ト 2 の通 路 1 5 8 a とで構成されている。 シ リ ンダブロ ッ ク 1 の通路 5 8 b とバルブプレー ト 2 の通路 1 5 8 a とは、 第 1 の通路 5 8 の一部を構成する と と もに、 第 3 の通路 6 0 の一部を構 成する。 The discharge chamber 112 and the crank chamber 8 communicate with each other via the second passage 157. A control valve (pressure control valve) 81 is provided in the middle of passage 157. An orifice (third orifice) 70 is provided on the second passageway 15 7 and downstream of the control valve 81 as pressure reducing means. The pressure of the refrigerant gas guided from the discharge chamber 112 to the crank chamber 8 is reduced by the heat 70. When the heat load is large, the valve body 81 is seated by energizing the solenoid (not shown) of the control valve 81, and the second passage 157 is shut off. When is smaller, the valve body 8 lb is separated from the valve seat and the second passage 157 is opened by stopping the power supply to the solenoid. The operation of the control valve 81 is controlled by a computer (not shown). The section 157a on the second passageway 157 and between the downstream of the control valve 81 and the upstream of the orifice 70 and the interior of the check valve 131 The space 13 3 communicates with the space 13 via a fourth passage 71 formed in the head 103. In the middle of the fourth passage 71, an orifice (fourth orifice) 72 is mounted. The flow rate of the refrigerant gas guided from the fourth passage 71 to the internal space 13 3 of the check valve 13 1 is reduced by the orifice 72. The passage cross-sectional area of the first orifice 70 is smaller than the passage cross-sectional area of the orifice 72. The first passage 158 includes a passage 158 a formed in the valve plate 2, a passage 58 b formed in the cylinder block 1, and a ring fixed to the shaft 5. And a hole 58c formed in 59. This embodiment differs from the embodiment shown in FIG. 1 in that the passage 158a formed in the valve plate 2 is not an orifice. The third passage 60 includes a passage 60 a formed in the front head 4, a front bearing housing space 60 b formed in the front head 4, The passage 60 c formed in the foot 5, the rear bearing housing space 60 d formed in the cylinder block 1, the passage 58 b of the cylinder block 1, and the valve plate 2 It is composed of 158 a. The passage 58b of the cylinder block 1 and the passage 158a of the valve plate 2 constitute a part of the first passage 58 and a part of the third passage 60. Make up the part.
熱負荷が小さ く なる と、 コ ン ト ロールバルブ 8 1 のソ レノ ィ ドへの通電が停止されてプラ ンジャ 8 1 d が開弁方向へ移 動し、 弁体 8 1 bがばね 8 1 c の付勢力に抗して開弁方向へ 移動し、 第 2 の通路 1 5 7 が開く 。 その結果、 第 2 の通路 1 5 7 を介して吐出室 1 1 2 か ら ク ラ ンク室 8 へ高圧の冷媒ガ スが流出する。 このときク ラ ンク室 8 に送られる冷媒ガスの 流量はオ リ フィ ス 7 0 で制限され、 その圧力 も低下する。 吐 出室 1 1 2 か らの高圧の冷媒ガスによってク ラ ンク室 8 の内 部圧力は次第に高く な り 、斜板 1 0 の傾斜角度が小さ く なる。 斜板 1 0 の傾斜角度が最小になったとき、 斜板 1 0 のボス部 1 0 bがリ ング 5 9 の孔 5 8 c をほぼ塞ぎ、 第 1 の通路 5 8 の通路断面積が大幅に減少するので、 ク ラ ンク室 8 の圧力低 下が抑制される。 また、 コ ン ト ロールバルブ 8 1 の下流であ つてオリ フ ィ ス 7 0 の上流の高圧の冷媒ガスは第 4 の通路 7 1 を介してチェ ッ ク弁 1 3 1 の内部空間 1 3 3 へ送られる。 チェ ッ ク弁 1 3 1 の上側に作用する圧力 (内部空間 1 3 3 内の圧力) とばね 1 3 2 の付勢力 との合力 とがチェ ッ ク弁 1 3 1 の下側に作用する吐出室 1 1 2 内の圧力に打ち勝つと、 チェ ッ ク弁 1 3 1 が閉弁方向へ移動して吐出通路 1 3 9 が遮 断される (第 6 図参照)。 その結果、 吐出口 1 a か ら コ ンデン サ 8 4 への冷媒ガスの流出が阻止される。 このとき前述のよ う に斜板 1 0 のボス部 1 0 bがリ ング 5 9 の孔 5 8 c をほぼ 塞いで第 1 の通路 5 8 の通路断面積が大幅に減少するが、 第 3 の通路 6 0 を通じてク ラ ンク室 8 内の冷媒ガスが吸入室 1 3 に流れる。 これによ り ク ラ ンク室 8 の過度の圧力上昇が抑 制される と と もに、 冷媒ガスの圧縮機内循環が可能になる。 When the heat load is reduced, the power supply to the solenoid of the control valve 81 is stopped, the plunger 81 d moves in the valve opening direction, and the valve body 81b is moved to the spring 81. The valve moves in the valve opening direction against the urging force of c, and the second passage 157 opens. As a result, high-pressure refrigerant gas flows from the discharge chamber 112 to the crank chamber 8 via the second passage 157. At this time, the flow rate of the refrigerant gas sent to the crank chamber 8 is limited by the orifice 70, and the pressure thereof also decreases. Due to the high-pressure refrigerant gas from the discharge chambers 11 and 12, the internal pressure of the crank chamber 8 gradually increases, and the inclination angle of the swash plate 10 decreases. When the inclination angle of the swash plate 10 becomes minimum, the boss 10 b of the swash plate 10 almost closes the hole 58 c of the ring 59, and the cross-sectional area of the first passage 58 is large. Pressure in the crank chamber 8 The bottom is suppressed. The high-pressure refrigerant gas downstream of the control valve 81 and upstream of the orifice 70 passes through the fourth passage 71 to the internal space 13 3 of the check valve 13 1. Sent to The discharge acting on the lower side of the check valve 13 1 is the sum of the pressure acting on the upper side of the check valve 13 1 (the pressure in the internal space 13 3) and the biasing force of the spring 13 2. When the pressure in the chamber 1 12 is overcome, the check valve 13 1 moves in the valve closing direction and the discharge passage 13 9 is shut off (see FIG. 6). As a result, the outflow of the refrigerant gas from the discharge port 1a to the capacitor 84 is prevented. At this time, as described above, the boss portion 10b of the swash plate 10 almost closes the hole 58c of the ring 59 and the passage cross-sectional area of the first passage 58 is greatly reduced. The refrigerant gas in the crank chamber 8 flows into the suction chamber 13 through the passage 60. This suppresses an excessive rise in the pressure of the crank chamber 8 and allows the refrigerant gas to circulate in the compressor.
最小ピス ト ンス ト ロ一ク時 (第 5 図の状態)、 冷媒ガスが吸 入室 1 1 3 、 圧縮室 8 2 、 吐出室 1 1 2 、 第 2 の通路 1 5 7 、 ク ラ ンク室 8 及び第 3 の通路 6 0 を順次経て再び吸入室 1 1 3 に戻る。  At the time of the minimum piston stroke (as shown in Fig. 5), the refrigerant gas enters the suction chamber 113, the compression chamber 82, the discharge chamber 112, the second passage 157, and the crank chamber 8. And the third passage 60 sequentially returns to the suction chamber 113 again.
これに対し、 熱負荷が大きく なる と、 コ ン ト ロールバルブ 8 1 が閉弁し、 第 2 の通路 1 5 7 が閉じる。 その結果、 吐出 室 1 1 2 か ら ク ラ ンク室 8 への高圧の冷媒ガスの流入が阻止 され、 ク ラ ンク室 8 の圧力は次第に低く な り 、 斜板 1 0 の傾 斜角度が大き く なる。 また、 第 4 の通路 7 1 を通じてチエ ツ ク弁 1 3 1 の内部空間 1 3 3 に導かれる冷媒ガスの圧力 も低 く なる。  On the other hand, when the heat load increases, the control valve 81 closes, and the second passage 157 closes. As a result, the inflow of high-pressure refrigerant gas from the discharge chamber 111 to the crank chamber 8 is prevented, the pressure in the crank chamber 8 gradually decreases, and the inclination angle of the swash plate 10 increases. It becomes bad. Further, the pressure of the refrigerant gas guided to the internal space 133 of the check valve 13 1 through the fourth passage 71 also decreases.
吐出室 1 1 2 の圧力が高く なつて、 吐出室 1 1 2 内の圧力 とチェ ッ ク弁 1 3 1 の内部空間 1 3 3 の圧力 との差が所定値 以下になる と、 チェ ッ ク弁 1 3 1 に作用する吐出室 1 1 2 の 冷媒ガスの圧力がチェ ッ ク弁 1 3 1 の内部空間 1 3 3 の冷媒 ガスの圧力 とばね 1 3 2 の付勢力 との合力に打ち勝ち、 チェ ッ ク弁 1 3 1 が開弁方向へ移動 して吐出通路 1 3 9 が開 く (第 7 図参照)。 その結果、 吐出室 1 1 2 の冷媒ガスが吐出口 1 aか ら コ ンデンサ 8 4側へ流出する。 When the pressure in the discharge chamber 1 1 2 rises, the pressure in the discharge chamber 1 1 2 When the difference between the pressure and the pressure in the internal space 133 of the check valve 13 1 becomes equal to or less than a predetermined value, the pressure of the refrigerant gas in the discharge chamber 112 acting on the check valve 131 is checked. Check valve 13 1 1 overcomes the resultant force of the pressure of the refrigerant gas in the internal space 13 3 of the check valve 13 1 and the urging force of the spring 13 2, and the check valve 13 1 moves in the valve opening direction, and the discharge passage 13 9 Opens (see Fig. 7). As a result, the refrigerant gas in the discharge chamber 112 flows out of the discharge port 1a to the capacitor 84 side.
この実施形態の可変容量型斜板式ク ラ ッチレスコ ンプレツ サは前述の実施形態と同様の効果を奏する と ともに、 次のよ う な効果を奏する。  The variable-capacity swash plate type clutchless compressor according to this embodiment has the same effects as the above-described embodiment, and also has the following effects.
チェ ッ ク弁 1 3 1 の一方 (内部空間 1 3 3 ) に吐出室 1 1 2 の冷媒ガスを直接導入してチェ ッ ク弁 1 3 1 を駆動するよ う に したので、 チェ ッ ク弁 1 3 1 の応答性が向上する。 その 結果、 迅速に冷媒の吐出量 (圧縮機の能力) を変化させる こ とができ、 冷房フ ィ ー リ ングが向上する。  The check valve 13 1 was driven by directly introducing the refrigerant gas from the discharge chamber 1 12 into one of the check valves 13 1 (internal space 13 3). 13 1 responsiveness is improved. As a result, the amount of refrigerant discharged (the capacity of the compressor) can be changed quickly, and cooling filling is improved.
また、 例えば吐出室 1 1 2 の圧力上昇につれてク ラ ンク室 8 の圧力が迅速に上昇できない、 高負荷、 高回転時などの運 転条件下でも、 チェ ッ ク弁 1 3 1 が確実に作動し、 冷凍能力 をゼロ にする こ とができるので、 チェ ッ ク弁 1 3 1 の作動を 確実にするために、 第 1 の連通路 5 8 の通路断面積を小さ く してク ラ ンク室 8 の圧力 を高めに設定する必要がない。 した がって、 ク ラ ンク室 8 内の ピス ト ン 7 を引っ張る リ テ一ナ 5 3 や、 ク ラ ンク室 8 と大気とを遮断するシャ フ ト シール 4 6 などの部品が受けるダメージが小さ く な り 、圧縮機の耐久性、 信頼性が向上する。  In addition, the check valve 13 1 operates reliably even under operating conditions such as high load and high rotation, for example, when the pressure in the crank chamber 8 cannot increase quickly as the pressure in the discharge chamber 112 increases. Since the refrigerating capacity can be reduced to zero, in order to ensure the operation of the check valve 131, the passage cross-sectional area of the first communication passage 58 is reduced and the crank chamber is reduced. There is no need to set the pressure of 8 higher. Therefore, damage to parts such as the retainer 53 pulling the piston 7 in the crank chamber 8 and the shaft seal 46 that shuts off the crank chamber 8 from the atmosphere is not affected. It becomes smaller, and the durability and reliability of the compressor are improved.
更に、 第 4 の通路 7 1 の途中にオリ フ ィ ス 7 2 が設け られ W Further, an orifice 72 is provided in the middle of the fourth passage 71. W
ているので、 コ ン ト ロールバルブ 8 1 が開弁し、 高圧の冷媒 ガスがチェ ッ ク弁 1 3 1 の内部空間 1 3 3 へ送られる とき、 オリ フィ ス 7 2 で冷媒ガスの流量が絞られるので、 チェ ッ ク 弁 1 3 1 に作用する冷媒ガスの衝撃が緩和される。 Therefore, when the control valve 81 is opened and high-pressure refrigerant gas is sent to the internal space 13 3 of the check valve 13 1, the flow rate of the refrigerant gas at the orifice 72 is reduced. Since the throttle valve is throttled, the impact of the refrigerant gas acting on the check valve 13 1 is reduced.
また、 冷媒ガスの内部循環時、 通路 6 0 c 内の冷媒ガスの 一部がオ リ フ ィ ス 6 0 e を通じて軸受収容室 6 0 d へ流れる ので、冷媒ガス中の潤滑油によって各軸受 2 4 , 2 5 が潤滑 · 冷却される。  Also, during the internal circulation of the refrigerant gas, a part of the refrigerant gas in the passage 60c flows through the orifice 60e to the bearing accommodating chamber 60d. 4 and 25 are lubricated and cooled.
この実施形態では第 4 の通路と して 1 つ通路 7 1 を設けた が、 複数の通路を設けてもよい。 また、 減圧手段と して 1 つ のオ リ フ ィ ス (オ リ フィ ス 7 0 ) を装着したが、 複数のオリ フ ィ スを装着してもよいし、 別の減圧手段と してオリ フ ィ ス 7 0 を装着する代わ り に、 第 2 の通路 1 5 7 の途中の通路断 面積を小さ く するよ う に してもよい。  In this embodiment, one passage 71 is provided as the fourth passage, but a plurality of passages may be provided. In addition, although one orifice (orifice 70) is installed as a depressurizing means, a plurality of orifices may be installed or an orifice may be used as another depressurizing means. Instead of mounting the face 70, the passage cross-sectional area in the middle of the second passage 157 may be reduced.
また、 この実施形態では吐出制御弁と してチェ ッ ク弁 1 3 1 を用いたが、 チェ ッ ク弁 1 3 1 の代わ り にスプール弁や口 一夕 リ 弁 (図示せず) 等を用いてもよい。 産業上の利用可能性  In this embodiment, the check valve 13 1 is used as the discharge control valve. However, instead of the check valve 13 1, a spool valve or a port valve (not shown) or the like is used. May be used. Industrial applicability
この発明に係る可変容量型斜板式ク ラ ッチレスコ ンプレツ サは、 車両用空気調和装置の冷媒圧縮機と して好適である。  The variable-capacity swash plate type clutchless compressor according to the present invention is suitable as a refrigerant compressor of a vehicle air conditioner.

Claims

請求の範囲 The scope of the claims
1 . 回転軸に摺動かつ傾斜可能に装着され、 前記回転軸と 一体に回転する斜板と、 1. a swash plate that is slidably and tiltably mounted on the rotating shaft and that rotates integrally with the rotating shaft;
この斜板を収容するク ラ ンク室と、  A crank room to accommodate this swash plate,
圧縮室に送る冷媒ガスを収容する吸入室と、  A suction chamber containing a refrigerant gas to be sent to the compression chamber,
前記ク ラ ンク室の冷媒ガスを前記吸入室に導き、 しかも前 記斜板の傾斜角度が最小の ときに前記斜板によって通路断面 積が減少する第 1 の通路と、  A first passage that guides the refrigerant gas in the crank chamber to the suction chamber, and further reduces a passage cross-sectional area by the swash plate when the inclination angle of the swash plate is minimum;
前記圧縮室か ら吐出された冷媒ガスを収容する吐出室と、 この吐出室か らの冷媒ガスをコ ンデンサ側へ送 り 出す吐出 A discharge chamber for containing the refrigerant gas discharged from the compression chamber, and a discharge for sending the refrigerant gas from the discharge chamber to the capacitor side
P と、 P and
この吐出口 に前記吐出室の冷媒ガスを導く 吐出通路と、 前記吐出室の冷媒ガスを前記ク ラ ンク室に導く 第 2 の通路 と、  A discharge passage for guiding the refrigerant gas in the discharge chamber to the discharge port; and a second passage for guiding the refrigerant gas in the discharge chamber to the crank chamber.
この第 2 の通路の途中に設けられ、 熱負荷が大き く なつた ときに前記第 2 の通路を遮断する圧力制御弁と、  A pressure control valve that is provided in the middle of the second passage and that shuts off the second passage when a thermal load increases;
前記吐出通路の途中に設けられ、 閉弁方向へ前記ク ラ ンク 室の圧力及び付勢部材の付勢力が作用 し、 開弁方向へ前記吐 出室の圧力が作用 し、 前記ク ラ ンク室と、  It is provided in the middle of the discharge passage, and the pressure of the crank chamber and the urging force of the urging member act in the valve closing direction, and the pressure of the discharge chamber acts in the valve opening direction. When,
前記吐出室との圧力差が所定値以下になっ たときに前記吐 出通路を遮断する吐出制御弁と、  A discharge control valve that shuts off the discharge passage when a pressure difference between the discharge chamber and the discharge chamber becomes a predetermined value or less;
この吐出制御弁が前記吐出通路を遮断したときだけ前記ク ラ ンク室の冷媒ガスを前記吸入室に導く 第 3 の通路と  A third passage for guiding the refrigerant gas in the crank chamber to the suction chamber only when the discharge control valve shuts off the discharge passage;
を備えている こ と を特徴とする可変容量型斜板式ク ラ ッチ レスコ ンプレ ッサ。 A variable displacement type swash plate type clutch less press characterized by having:
2 . 前記吐出制御弁がチェ ッ ク弁である こ とを特徴とする 請求の範囲第 1 項記載の可容量型斜板式ク ラ ッチレスコ ンプ レッサ。 2. The capacity-type swash plate type clutchless compressor according to claim 1, wherein the discharge control valve is a check valve.
3 . 前記第 3 の通路の途中に第 1 のオリ フィ スが形成され、 この第 1 のオリ フ ィ スの通路面積が、 前記第 1 の通路の途中 に形成された第 2 のオリ フ ィ スの通路面積よ り も小さ い こ と を特徴とする請求の範囲第 1 又は 2 項記載の可変容量型斜板 式ク ラ ッチレスコ ンプレッサ。  3. A first orifice is formed in the middle of the third passage, and a passage area of the first orifice is increased by a second orifice formed in the middle of the first passage. 3. The variable-capacity swash plate type clutchless compressor according to claim 1 or 2, wherein the area is smaller than a passage area of the swash plate.
4 . 回転軸に摺動かつ傾斜可能に装着され、 前記回転軸と 一体に回転する斜板と、  4. a swash plate that is slidably and tiltably mounted on the rotating shaft and that rotates integrally with the rotating shaft;
この斜板を収容するク ラ ンク室と、  A crank room to accommodate this swash plate,
圧縮室に送る冷媒ガスを収容する吸入室と、  A suction chamber containing a refrigerant gas to be sent to the compression chamber,
前記ク ラ ンク室の冷媒ガスを前記吸入室に導き、 しかも前 記斜板の傾斜角度が最小のときに前記斜板によって通路断面 積が減少する第 1 の通路と、  A first passage that guides the refrigerant gas in the crank chamber to the suction chamber, and further reduces the cross-sectional area of the passage by the swash plate when the inclination angle of the swash plate is minimum;
前記圧縮室か ら吐出された冷媒ガスを収容する吐出室と、 この吐出室か らの冷媒ガスをコ ンデンサ側へ送 り 出す吐出 A discharge chamber for containing the refrigerant gas discharged from the compression chamber, and a discharge for sending the refrigerant gas from the discharge chamber to the capacitor side
□ と、 □ and
この吐出口 に前記吐出室の冷媒ガスを導く 吐出通路と、 前記吐出室の冷媒ガスを前記ク ラ ンク室に導く 第 2 の通路 と、  A discharge passage for guiding the refrigerant gas in the discharge chamber to the discharge port; and a second passage for guiding the refrigerant gas in the discharge chamber to the crank chamber.
この第 2 の通路の途中に設けられ、 熱負荷が大き く なつ た ときに前記第 2 の通路を遮断する圧力制御弁と、  A pressure control valve that is provided in the middle of the second passage and that shuts off the second passage when the heat load increases;
前記第 2 の通路上の前記圧力制御弁の下流に設けられ、 前 記ク ラ ンク室に導かれる冷媒ガスの流れを絞る減圧手段と、 前記圧力制御弁の下流であって前記減圧手段の上流の冷媒 ガスの圧力 と付勢部材の付勢力 とが閉弁方向へ作用する と と もに、 前記吐出室の圧力が開弁方向へ作用 し、 前記圧力制御 弁の下流であって前記減圧手段の上流の冷媒ガスの圧力 と前 記吐出室内の圧力の差が所定値以下になっ たときに前記吐出 通路を遮断する吐出制御弁と、 A pressure reducing means provided on the second passage downstream of the pressure control valve and for restricting a flow of the refrigerant gas led to the crank chamber; downstream of the pressure control valve and upstream of the pressure reducing means Refrigerant While the gas pressure and the urging force of the urging member act in the valve closing direction, the pressure in the discharge chamber acts in the valve opening direction, and is downstream of the pressure control valve and upstream of the pressure reducing means. A discharge control valve that shuts off the discharge passage when a difference between the pressure of the refrigerant gas and the pressure in the discharge chamber becomes equal to or less than a predetermined value;
この吐出制御弁が前記吐出通路を遮断したときだけ前記ク ラ ンク室の冷媒ガス を前記吸入室に導く 第 3 の通路と  A third passage for guiding the refrigerant gas in the crank chamber to the suction chamber only when the discharge control valve shuts off the discharge passage;
を備えている こ とを特徴とする可変容量型斜板式ク ラ ッチ レスコ ンプレッサ。  A variable displacement swash plate type clutch repressor characterized by having:
5 . 前記減圧手段が前記圧力制御弁の下流に配置された第 1 のオ リ フ ィ スである こ と を特徴とする請求の範囲第 4項記 載の可変容量型斜板式ク ラ ッチレスコ ンプレ ッサ。  5. The variable displacement swash plate type clutchless compressor according to claim 4, wherein the pressure reducing means is a first orifice arranged downstream of the pressure control valve. Ssa.
6 . 前記圧力制御弁の下流であって前記減圧手段の上流の 冷媒ガスを前記吐出制御弁に導く 第 4 の通路の途中に第 4 の オリ フ ィ スが設けられ、 前記第 3 のオリ フ ィ スの通路断面積 は前記第 4 のオリ フ ィ スの通路断面積よ り も小さ い こ とを特 徴とする請求の範囲第 5 項記載の可変容量型斜板式ク ラ ッチ レスコ ンプレ ッサ。  6. A fourth orifice is provided downstream of the pressure control valve and upstream of the decompression means to guide the refrigerant gas to the discharge control valve, and a fourth orifice is provided in the middle of the fourth orifice. 6. The variable displacement swash plate type clutch press according to claim 5, wherein a cross-sectional area of the passage is smaller than a cross-sectional area of the passage of the fourth orifice. Ssa.
7 . 前記第 1 の通路の一部が、 前記回転軸に固定された環 状体に形成された孔によって構成されている こ とを特徴とす る請求の範囲第 1 〜 6 のいずれか 1 項記載の可変容量型斜板 式ク ラ ッチレスコ ンプレッサ。  7. A method according to any one of claims 1 to 6, wherein a part of the first passage is constituted by a hole formed in an annular body fixed to the rotating shaft. The variable-capacity swash plate type clutchless compressor described in the section.
8 . 前記第 3 の通路が、 前記回転軸のフ ロ ン ト側にシャ フ 卜 シール及びフ ロ ン ト側軸受を収容するためのフ ロ ン ト側軸 受収容空間と、 前記ク ラ ンク室とを連通させる フ ロ ン ト側通 路と、 前記回転軸に設けられ、 前記回転軸のリ ャ側に リ ャ側 軸受を収容するためのリ ャ側軸受収容空間と、 前記フロ ン ト 側軸受収容空間とを連通させる回転軸側通路と、 前記リャ側 軸受収容空間と前記吸入室とを連通させる リャ側通路とで構 成されている ことを特徴とする請求の範囲第 1 〜 7 のいずれ か 1 項記載の可変容量型斜板式ク ラッチレスコンプレッサ。 8. The third passage includes a front-side bearing receiving space for housing a shaft seal and a front-side bearing on the front side of the rotary shaft; A front-side passage for communicating with the chamber; and A rotary shaft-side passage communicating the rear-side bearing accommodation space for accommodating the bearing, the front-side bearing accommodation space, and a lear-side passage communicating the Lear-side bearing accommodation space with the suction chamber; The variable displacement swash plate type clutchless compressor according to any one of claims 1 to 7, characterized in that:
PCT/JP1999/003203 1998-06-16 1999-06-16 Variable displacement swash plate type clutchless compressor WO1999066203A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP99925334A EP1088991A1 (en) 1998-06-16 1999-06-16 Variable displacement swash plate type clutchless compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18558298 1998-06-16
JP10/185582 1998-06-16

Publications (1)

Publication Number Publication Date
WO1999066203A1 true WO1999066203A1 (en) 1999-12-23

Family

ID=16173338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003203 WO1999066203A1 (en) 1998-06-16 1999-06-16 Variable displacement swash plate type clutchless compressor

Country Status (2)

Country Link
EP (1) EP1088991A1 (en)
WO (1) WO1999066203A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1365150A1 (en) * 2001-01-29 2003-11-26 Zexel Valeo Climate Control Corporation Variable displacement type swash plate clutch-less compressor
US7014428B2 (en) 2002-12-23 2006-03-21 Visteon Global Technologies, Inc. Controls for variable displacement compressor
WO2011005367A3 (en) * 2009-07-06 2011-03-10 Carrier Corporation Bypass unloader valve for compressor capacity control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005018673A1 (en) * 2005-04-21 2006-10-26 Behr Gmbh & Co. Kg Air conditioning, in particular for a motor vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07127566A (en) * 1993-11-05 1995-05-16 Toyota Autom Loom Works Ltd Clutchless one side piston type variable displacement compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07127566A (en) * 1993-11-05 1995-05-16 Toyota Autom Loom Works Ltd Clutchless one side piston type variable displacement compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1365150A1 (en) * 2001-01-29 2003-11-26 Zexel Valeo Climate Control Corporation Variable displacement type swash plate clutch-less compressor
EP1365150A4 (en) * 2001-01-29 2006-06-07 Zexel Valeo Climate Contr Corp Variable displacement type swash plate clutch-less compressor
US7014428B2 (en) 2002-12-23 2006-03-21 Visteon Global Technologies, Inc. Controls for variable displacement compressor
WO2011005367A3 (en) * 2009-07-06 2011-03-10 Carrier Corporation Bypass unloader valve for compressor capacity control
US10337507B2 (en) 2009-07-06 2019-07-02 Carrier Corporation Bypass unloader valve for compressor capacity control

Also Published As

Publication number Publication date
EP1088991A1 (en) 2001-04-04

Similar Documents

Publication Publication Date Title
US5871337A (en) Swash-plate compressor with leakage passages through the discharge valves of the cylinders
US5823294A (en) Lubrication mechanism in compressor
US6149398A (en) Variable capacity piston- operated refrigerant compressor with an oil separating means
KR100291521B1 (en) Control Valves for Variable Capacity Compressors
JPH10325393A (en) Variable displacement swash plate type clutchless compressor
US20090223244A1 (en) Swash plate type compressor
US6217293B1 (en) Variable displacement compressor
JP4734623B2 (en) Variable capacity clutchless compressor
JP2007198349A (en) Variable displacement compressor of swash plate type and rocking swash plate type
JP2000297746A (en) Variable capacity type swash plate type clutchless compressor
WO1999066203A1 (en) Variable displacement swash plate type clutchless compressor
US5026316A (en) Variable capacity wobble plate compressor
JP4082802B2 (en) Control valve for variable displacement compressor
US6350106B1 (en) Variable displacement compressor with capacity control mechanism
JP5240535B2 (en) Variable capacity clutchless compressor
JPH11148457A (en) Variable displacement swash plate clutchless compressor
JP2000314377A (en) Variable displacement swash plate clutchless compressor
JPH11173274A (en) Variable displacement type swash plate compressor without clutch
JPH11351142A (en) Variable displacement swash plate type clutchless compressor
WO2019151191A1 (en) Variable capacity compressor
KR100235510B1 (en) Variable displacement compressor
JP2001003861A (en) Variable displacement swash plate clutchless compressor
JPH06147111A (en) Variable capacity compressor
WO2016098822A1 (en) Variable capacity compressor
JP4662820B2 (en) Variable capacity compressor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999925334

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09582954

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999925334

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999925334

Country of ref document: EP