WO2000002291A1 - Egaliseur de gain optique et amplificateur optique et emetteur multiplex en longueur d'onde comportant tous deux ledit egaliseur de gain optique - Google Patents

Egaliseur de gain optique et amplificateur optique et emetteur multiplex en longueur d'onde comportant tous deux ledit egaliseur de gain optique Download PDF

Info

Publication number
WO2000002291A1
WO2000002291A1 PCT/JP1999/003592 JP9903592W WO0002291A1 WO 2000002291 A1 WO2000002291 A1 WO 2000002291A1 JP 9903592 W JP9903592 W JP 9903592W WO 0002291 A1 WO0002291 A1 WO 0002291A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
filter
etalon
fiber grating
dielectric multilayer
Prior art date
Application number
PCT/JP1999/003592
Other languages
English (en)
French (fr)
Other versions
WO2000002291A8 (fr
Inventor
Kazuyo Mizuno
Shyoichi Ozawa
Osamu Aso
Shu Namiki
Ikuo Ohta
Yuichiro Irie
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Priority to US09/486,562 priority Critical patent/US6377390B1/en
Priority to EP99926911A priority patent/EP1033794A4/en
Priority to CA002303219A priority patent/CA2303219A1/en
Publication of WO2000002291A1 publication Critical patent/WO2000002291A1/ja
Publication of WO2000002291A8 publication Critical patent/WO2000002291A8/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • H04B10/2941Signal power control in a multiwavelength system, e.g. gain equalisation using an equalising unit, e.g. a filter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10023Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/04Gain spectral shaping, flattening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant

Definitions

  • the present invention relates to an optical gain equalizer for eliminating a level deviation of wavelength-division multiplexed light due to the gain wavelength dependence of an erbium-doped optical fiber amplifier and the wavelength dependence of a transmission system, and an optical gain equalizer.
  • the present invention relates to an optical amplifying device and a wavelength division multiplex transmission device.
  • optical fiber amplifiers using erbium-doped optical fibers have been developed, and are used in various fields as well as in transmission systems.
  • this optical fiber amplifier has wavelength dependence on gain. Therefore, when an optical fiber amplifier is used in a WDM transmission system, the wavelength dependence of the gain becomes a problem, especially when many optical fiber amplifiers are cascaded. If the gain has wavelength dependency, a level deviation occurs in the amplified wavelength-division multiplexed light, which causes problems such as crosstalk degradation between wavelengths and setting of a light receiving level of a receiver.
  • Optical fiber amplifiers are being developed to reduce their gain wavelength dependence.However, in a WDM transmission system where multiple amplifiers are connected in multiple stages, the gain dependence of the optical fiber amplifier must be reduced. To eliminate this, an optical gain equalizer is used.
  • the optical gain equalizer is one that uses an etalon filter, one that uses an optical fiber force bra, one that uses an interference film filter made of a dielectric multilayer film, a grating (fiber-type graying, or provided on a glass substrate.
  • An etalon filter one that uses an optical fiber force bra, one that uses an interference film filter made of a dielectric multilayer film, a grating (fiber-type graying, or provided on a glass substrate.
  • Greaty A filter using a Mach-Zehnder type optical filter has been developed. However, for several reasons (Japanese Patent Application No. 9-289349 describes the types of optical gain equalizers and their problems).
  • a device using an etalon filter is expected.
  • the etalon filter has a sinusoidal loss characteristic, and a plurality of etalon filters having different characteristics can be combined to create a loss characteristic having a desired wavelength dependency. Therefore, in the optical gain equalizer, as shown in Fig. 9, a plurality of filters A having a sinusoidal loss characteristic having the same amplitude and period as the Fourier expansion term of the gain curve for flattening are considered. By arranging them in tandem and passing the light (wavelength multiplexed light) between the optical fibers D and E through the collimator lenses 8 and C in this filter group, the long-dependence of the gain is completely achieved. It is aimed at eliminating it.
  • the optical gain equalizer combining etalon filter A in Fig. 9 should in principle be able to almost completely eliminate the wavelength dependence of gain by increasing the number of combinations, but from a manufacturing perspective, Considering the accumulation of transmission loss, the number of etalon filters that can be combined is limited to about four. Therefore, it is difficult to completely eliminate the wavelength dependence of the gain, and the actual flatness is about 1 dB.
  • An object of the present invention is to use the etalon filter to compensate for the gain wavelength dependence of an optical fiber amplifier to an error of about O.1 dB, and has a small polarization dependence of transmittance, and is easy to manufacture.
  • An optical gain equalizer is provided. It is also intended to provide an optical fiber amplifier having a small wavelength dependence of gain using the optical gain equalizer, and to provide a wavelength division multiplexing transmission apparatus in which the optical fiber amplifier is connected in multiple stages. is there
  • the optical gain equalizer according to claim 1 of the present invention is characterized in that a plurality of etalon filters and at least one fiber bag grating or a dielectric multilayer filter are arranged in tandem, and external light is Tandem etalon fill and fiber gle
  • the etalon filters have different free spectrum ranges from each other and are transmitted to the outside through a single or dielectric multilayer film filter.
  • the optical gain equalizer according to claim 2 of the present invention is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer film filter are arranged in cascade, and external light is cascaded.
  • each of the plurality of etalon filters has a different free spectral range from each other, and has a gain carrier.
  • This is a combination of an etalon filter with a sinusoidal loss characteristic having the same amplitude and cycle as the term obtained by expanding the loss wavelength characteristic for Fourier series.
  • the optical gain equalizer according to claim 3 of the present invention is arranged such that a plurality of aperture filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is
  • the etalon filters and the etalon filters are arranged such that they pass through a fiber grating or a dielectric multilayer filter and output to the outside.
  • the etalon filters have different free spectrum ranges from each other, and at least one filter is provided.
  • the bag rating or the dielectric multilayer filter compensates for a ripple component remaining as a difference between a loss wavelength characteristic for gain flattening and a loss wavelength characteristic of an etalon filter.
  • the optical gain equalizer according to claim 4 of the present invention is configured such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is These etalon filters and the fiber grating or the dielectric multilayer filter are arranged in a cascade and output to the outside, and each of the plurality of etalon filters has a different free spectrum range.
  • the optical amplifying device is arranged such that a plurality of aperture filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is cascaded.
  • the etalon filters each have an optical gain equalizer having a different free spectrum range, and a wavelength multiplexed light. And a first optical amplifier for amplifying the signal.
  • the optical amplifier according to claim 6 of the present invention is arranged such that a plurality of aperture filters and at least one fiber grating or dielectric multilayer filter are arranged in tandem, and external light is cascaded.
  • the etalon filter and the fiber grading or the dielectric multilayer film filter are transmitted to the outside and output to the outside.
  • Each of the plurality of etalon filters has a free spectrum range different from each other, and gain flattening is performed.
  • Gain equalizer that combines an etalon filter with sinusoidal loss characteristics of the same amplitude and period as the term obtained by Fourier series expansion of the loss wavelength characteristics for, and a first optical amplifier that amplifies wavelength-multiplexed light And with.
  • the optical amplifier according to claim 7 of the present invention is arranged such that a plurality of aperture filters and at least one fiber grating or dielectric multilayer filter are arranged in tandem, and external light is cascaded.
  • Talon filters have different natural spectrums from each other, and at least one fiber grating or dielectric multilayer filter has a difference between the loss wavelength characteristic for gain flattening and the loss wavelength characteristic for an etalon filter.
  • An optical gain equalizer for compensating for remaining ripple components and a first optical amplifier for amplifying wavelength-division multiplexed light were provided.
  • the optical amplifying device according to claim 8 of the present invention is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is emitted from these etalon filters.
  • a filter and a fiber grating or a dielectric multi-layer film filter are transmitted to the outside, and each of the plurality of etalon filters has a different free spectral range from each other.
  • the optical amplifier according to claim 9 of the present invention is arranged such that a plurality of etalon filters and at least one G-fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is tandemly arranged.
  • the etalon filter is configured to transmit through a fiber grating or dielectric multilayer filter and output to the outside.
  • the etalon filters each have an optical gain equalizer having a different free spectral range, and amplify wavelength-multiplexed light.
  • an optical gain equalizer is disposed before or after the first optical amplifier.
  • the optical amplifying device according to claim 10 of the present invention wherein a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is A configuration is such that the etalon filters and the etalon filters are arranged in a cascade and output through a multilayer filter or a fiber multilayer filter and output to the outside.
  • Each of the plurality of etalon filters has a different free spectrum range, and a gain.
  • An optical gain equalizer combining an etalon filter with a sinusoidal loss characteristic having the same amplitude and period as the term obtained by expanding the loss wavelength characteristic for the Fourier series, and the first amplifying wavelength-multiplexed light.
  • the optical gain equalizer is arranged before or after the first optical amplifier.
  • the optical amplifying device according to claim 11 of the present invention is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in cascade, and external light is cascaded.
  • the etalon filter and the fiber grading filter or the dielectric multi-layered film filter are transmitted to the outside, and the etalon filters have different free spectrum ranges from each other.
  • the dielectric multilayer filter compensates for the ripple component remaining as the difference between the loss wavelength characteristic for gain flattening and the loss wavelength characteristic of the etalon filter, and amplifies the wavelength-multiplexed light. No.
  • An optical gain equalizer is provided before or after the first optical amplifier.
  • the optical amplifier according to claim 12 of the present invention is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer film filter are arranged in cascade, and external light is cascaded.
  • the etalon filter and a fiber grating or a dielectric multilayer film filter are transmitted to the outside, and each of the plurality of etalon filters has a different free spectrum range.
  • the dielectric multilayer filter is composed of an optical gain equalizer that compensates for the ripple component remaining as the difference between the loss wavelength characteristic for gain flattening and the loss wavelength characteristic of the etalon filter, and a wavelength-multiplexed light.
  • the optical amplifier according to claim 13 of the present invention is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in cascade, and external light is cascaded.
  • the etalon filter has a light gain equalizer having a different free spectral range from each other.
  • a first optical amplifier and a second optical amplifier for amplifying the wavelength multiplexed light.
  • the optical amplifying device is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is cascaded.
  • Each of the plurality of etalon filters has a free spectrum range different from each other, and has a flattened gain.
  • An optical gain equalizer that combines an etalon filter with a sinusoidal loss characteristic having the same amplitude and period as the term obtained by expanding the loss wavelength characteristic of Fourier series, and a first amplifying wavelength-multiplexed light
  • An optical amplifier and a second optical amplifier is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is cascaded.
  • the optical amplifying device is arranged such that a plurality of etalon filters and at least one fiber grating or dielectric multilayer filter are arranged in tandem, and external light is cascaded.
  • the etalon filters have different free spectrum ranges from each other, and at least one fiber grating or dielectric
  • the multilayer filter includes an optical gain equalizer for compensating for a ripple component remaining as a difference between a loss wavelength characteristic for gain flattening and a loss wavelength characteristic for the etalon filter, and a first amplifying wavelength-multiplexed light. And a second optical amplifier.
  • the optical amplifying device is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is cascaded.
  • the etalon filter and a fiber grating or a dielectric multi-layer film filter are transmitted to the outside, and each of the plurality of etalon filters has a free spectral range power 5 ′ different from each other, and has a flat gain.
  • It is a combination of an etalon filter with a sinusoidal loss characteristic having the same amplitude and period as the term obtained by expanding the loss wavelength characteristic for the Fourier series, and at least one fiber grating or dielectric multilayer filter.
  • An optical gain equalizer is to compensate for the ripple component remaining Te, and a first optical amplifier and a second optical amplifier for amplifying a wavelength multi Shigemitsu.
  • the optical amplifier according to claim 17 of the present invention is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is cascaded. The etalon filter and the fiber grating or the dielectric multi-layer film filter and output to the outside.
  • the etalon filter includes an optical gain equalizer having a free spectrum range different from each other, a first optical amplifier and a second optical amplifier for amplifying wavelength-division multiplexed light.
  • the second optical amplifier was placed between the two.
  • the optical amplifying device according to claim 18 of the present invention is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is cascaded.
  • each of the plurality of etalon filters has a free spectrum range different from each other, and has a gain of 2 Gain equalizer, which combines a loss filter with sinusoidal loss characteristics of the same amplitude and period as the term obtained by expanding the loss wavelength characteristic for Fourier series, and amplifying wavelength-multiplexed light
  • a first optical amplifier and a second optical amplifier, and an optical gain equalizer is disposed between the first and second optical amplifiers.
  • the optical amplifying device is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in cascade, and external light is cascaded.
  • the etalon filters have different free spectrum ranges from each other, and have at least one fiber grating or dielectric.
  • the multi-layer film filter consists of an optical gain equalizer that compensates for the ripple component remaining as the difference between the loss wavelength characteristic for gain flattening and the loss wavelength characteristic of the etalon filter, and a second amplifier that amplifies wavelength-multiplexed light.
  • An optical gain equalizer is provided between the first and second optical amplifiers, comprising the first optical amplifier and the second optical amplifier.
  • the optical amplifying device according to claim 20 of the present invention comprises a plurality of etalon filters. Evening and at least one fiber grating or dielectric multilayer filter are arranged in cascade, and external light is transmitted through these etalon filters and fiber grating or dielectric multilayer filter and output to the outside.
  • Each of the plurality of etalon filters has a different free spectral range from each other, and has a sine wave shape having the same amplitude and period as a term obtained by expanding a loss wavelength characteristic for gain flattening by Fourier series expansion.
  • Optical gain equalizer that compensates for ripple components and wavelength-multiplexed light First a light amplifier and a second optical amplifier for a first optical gain equalizer, and disposed between the second two optical amplifiers.
  • the optical amplifying device is characterized in that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem and external light is A configuration in which the etalon filters and the fiber grating or the dielectric multilayer filter are cascaded and output to the outside, and the etalon filters; light gain equalizers each having a different free spectrum range; A first optical amplifier for amplifying the wavelength multiplexed light, wherein the first optical amplifier is an optical fiber amplifier.
  • the optical amplifier according to claim 22 of the present invention is arranged such that a plurality of etalon filters and at least one fiber bag or dielectric multilayer filter are arranged in tandem, and external light is cascaded.
  • Each of the plurality of etalon filters has a different free spectral range power, and has a flattened gain. Obtained by expanding the loss wavelength characteristics for the Fourier series
  • An optical gain equalizer combining an etalon filter with a sinusoidal loss characteristic having the same amplitude and period as the term, and a first optical amplifier for amplifying the wavelength-division multiplexed light, wherein the first optical amplifier is an optical amplifier. It is a fiber amplifier.
  • the optical amplifying device is characterized in that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is The etalon filter and the etalon filter are arranged such that they pass through the etalon filter and the fiber grating or the dielectric multilayer filter and output to the outside.
  • a dielectric multilayer filter compensates for a ripple component remaining as a difference between a loss wavelength characteristic for gain flattening and a loss wavelength characteristic of an etalon filter, and amplifies wavelength-multiplexed light.
  • a first optical amplifier wherein the first optical amplifier is an optical fiber amplifier.
  • the optical amplifier according to claim 24 of the present invention is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is cascaded.
  • Each of the plurality of etalon filters has a different free spectral range from each other, and has a flat gain.
  • the difference between the loss wavelength characteristic for gain flattening and the loss wavelength characteristic of the etalon filter is Comprising an optical gain equalizer compensates for the remaining ripple, a first optical amplifier for amplifying a wavelength multi Shigemitsu, the first optical amplifier is an optical Faiba amplifier.
  • the optical amplifier according to claim 25 of the present invention is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is cascaded.
  • the etalon filters each have an optical gain equalizer having a different free spectrum range, and a wavelength multiplexed light.
  • An optical gain equalizer is disposed before or after the first optical amplifier, and the first optical amplifier is an optical fiber amplifier.
  • the optical amplifier according to claim 26 of the present invention is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer film filter are arranged in tandem, and external light is cascaded.
  • Each of the plurality of etalon filters has a different free spectral range from each other, and has a flattened gain.
  • Gain equalizer that combines an etalon filter with a sinusoidal loss characteristic having the same amplitude and period as the term obtained by expanding the loss wavelength characteristic for Fourier series, and a first optical amplifier that amplifies wavelength-multiplexed light
  • an optical gain equalizer is disposed before or after the first optical amplifier, and the first optical amplifier is an optical fiber amplifier.
  • the optical amplifying device is characterized in that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is
  • the etalon filters and the etalon filters are different in free spectrum range from each other and pass through a fiber grating or a dielectric multilayer filter, and are output to the outside.
  • At least one filter is provided.
  • My bag rating or dielectric multilayer filter has flat gain Gain equalizer for compensating for a ripple component remaining as a difference between a loss wavelength characteristic due to multiplexing and a loss wavelength characteristic by an etalon filter, and a first optical amplifier that amplifies wavelength-multiplexed light.
  • the optical gain equalizer is arranged before or after the first optical amplifier, and the first optical amplifier is an optical fiber amplifier.
  • the optical amplifier according to claim 28 of the present invention is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer film filter are arranged in cascade, and external light is cascaded.
  • Each of the plurality of etalon filters has a different free spectral range from each other, and has a gain carrier.
  • the difference between the loss wavelength characteristic for gain flattening and the loss wavelength characteristic of the etalon filter is An optical gain equalizer for compensating for the remaining ripple component, and a first optical amplifier for amplifying the wavelength-multiplexed light, wherein the optical gain equalizer is arranged before or after the first optical amplifier,
  • the first optical amplifier is an optical fiber amplifier.
  • the optical amplifier according to claim 29 of the present invention is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer film filter are arranged in tandem, and external light is cascaded.
  • the etalon filters each have a free spectrum range power different from each other.
  • the first optical amplifier is an optical fiber amplifier.
  • the optical amplifier according to claim 30 of the present invention is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer film filter are arranged in tandem, and external light is cascaded.
  • the etalon filter and the fiber grating or the dielectric multilayer film filter are transmitted to the outside and output to the outside.
  • An optical gain equalizer that combines an etalon filter with a sinusoidal loss characteristic having the same amplitude and period as the term obtained by expanding the loss wavelength characteristic of Fourier series, and a first amplifier that amplifies wavelength-multiplexed light.
  • a second optical amplifier, and the first optical amplifier is an optical fiber amplifier.
  • the optical amplifying device is characterized in that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is
  • the etalon filter and the etalon filter are configured such that they pass through a fiber grating or a dielectric multilayer filter and output to the outside.
  • the etalon filters each have a different free spectrum range from each other, and at least one An optical gain equalizer, which compensates for the riffle component remaining as the difference between the loss wavelength characteristic for gain flattening and the loss wavelength characteristic due to the etalon filter, and a wavelength multiplexed light.
  • the optical amplifier according to claim 32 of the present invention is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is cascaded.
  • the etalon filter and the fiber grating or the dielectric multilayer film filter are transmitted to the outside, and each of the plurality of etalon filters has a different free spectrum range.
  • a combination of an etalon filter with a sinusoidal loss characteristic with the same amplitude and period as the term obtained by Fourier series expansion of the loss wavelength characteristic for gain flattening, and at least one fiber bug is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is cascaded.
  • the rating or dielectric multilayer filter is composed of an optical gain equalizer that compensates for the ripple component remaining as the difference between the loss wavelength characteristic for gain flattening and the loss wavelength characteristic of the etalon filter.
  • a first optical amplifier and a second optical amplifier for amplifying heavy light are provided, and the first optical amplifier is an optical fiber amplifier.
  • the optical amplifier according to claim 33 of the present invention is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer film filter are arranged in tandem, and external light is cascaded. The etalon filter and a fiber grating or a dielectric multi-layer film filter and output to the outside.
  • the etalon filters each have an optical gain equalizer having a different free spectrum range, and a wavelength multiplexed light.
  • the optical amplifying device according to claim 34 of the present invention is arranged such that a plurality of aperture filters and at least one fiber grating or a dielectric multilayer filter are arranged in a cascade, and external light is cascaded.
  • each of the plurality of etalon filters has a different free spectral range power s, and gain flattening.
  • Gain equalizer that combines an etalon filter with a sinusoidal loss characteristic with the same amplitude and period as the term obtained by expanding the loss wavelength characteristic for Fourier series, and a method for amplifying wavelength-multiplexed light.
  • a first optical amplifier and a second optical amplifier, and an optical gain equalizer is disposed between the first and second optical amplifiers; Are optical fiber amplifiers.
  • the optical amplifying device is characterized in that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is
  • the etalon filter and the etalon filter are arranged such that they pass through the etalon filter and the fiber grating or the dielectric multilayer film filter and output to the outside.
  • the dielectric multilayer filter compensates for the ripple component remaining as the difference between the loss wavelength characteristic for gain flattening and the loss wavelength characteristic of the etalon filter, and amplifies the wavelength-multiplexed light.
  • a first optical amplifier and a second optical amplifier, and an optical gain equalizer disposed between the first and second optical amplifiers.
  • first optical amplifier is an optical Faiba amplifier.
  • the optical amplifying device according to claim 36 of the present invention is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is cascaded.
  • Each of the plurality of etalon filters has a different free spectral range from each other, and is used for flattening the gain.
  • an etalon filter with a sinusoidal loss characteristic with the same amplitude and period as the term obtained by Fourier series expansion of the loss wavelength characteristic of, and at least one fiber grating or dielectric multilayer
  • the difference between the loss wavelength characteristic for gain flattening and the loss wavelength characteristic of the etalon filter is An optical gain equalizer for compensating for remaining ripple components, and a first optical amplifier and a second optical amplifier for amplifying wavelength-multiplexed light, wherein the optical gain equalizer includes first and second optical amplifiers.
  • the first optical amplifier is an optical fiber amplifier
  • the optical amplifier according to claim 37 of the present invention is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is cascaded.
  • a first optical amplifier for amplification is an optical semiconductor amplifier.
  • the optical amplifier according to claim 38 of the present invention is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is cascaded.
  • Each of the plurality of etalon filters has a different free spectral range from each other, and has a flat gain.
  • Gain equalizer combining an etalon filter with a sinusoidal loss characteristic with the same amplitude and a long term as the term obtained by Fourier series expansion of the loss wavelength characteristic for multiplexing, and a first amplifying wavelength-multiplexed light.
  • the optical amplifying device is characterized in that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and light from the outside is tandemly arranged.
  • the etalon filter and the etalon filter are transmitted through a fiber grating or a dielectric multilayer filter and output to the outside.
  • the etalon filters have different free spectrum ranges from each other, and at least one The rating or dielectric multilayer filter is composed of an optical gain equalizer that compensates for the remaining riffle component as the difference between the loss S-length characteristic for gain flattening and the loss wavelength characteristic of the etalon filter, and wavelength-division multiplexed light.
  • the first optical amplifier is an optical semiconductor amplifier.
  • the optical amplifier according to claim 40 of the present invention is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer film filter are arranged in cascade, and external light is cascaded. The etalon filter and the fiber grating or the dielectric multilayer film filter and output to the outside.
  • Each of the plurality of etalon filters has a different free spectral range from each other, and has a gain flattening.
  • the etalon filter has a sinusoidal loss characteristic in the period] and at least one fiber grating or dielectric multilayer filter has a loss wavelength characteristic for gain flattening and a loss wavelength characteristic for the etalon filter.
  • An optical gain equalizer for compensating for a ripple component remaining as a difference from the characteristic, and a first optical amplifier for amplifying wavelength-multiplexed light are provided, and the first optical amplifier is an optical semiconductor amplifier.
  • the optical amplifying device is arranged such that a plurality of etalon filters and at least one fiber bag or dielectric multilayer filter are arranged in tandem, and light from outside
  • the etalon filter and the fiber grating or the dielectric multilayer filter are arranged so as to pass through the etalon filter and output to the outside, and the etalon filter is a light gain equalizer having a free spectrum range different from each other.
  • a first optical amplifier for amplifying the wavelength-division multiplexed light is disposed at or after the first optical amplifier, and the first optical amplifier is an optical semiconductor amplifier.
  • the optical amplifying device wherein a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are cascaded.
  • the etalon filters are arranged such that the light from the outside is transmitted through these etalon filters and the fiber grating or the dielectric multilayer filter that are arranged in cascade and output to the outside, and each of the plurality of etalon filters has a free spectral range.
  • Ru optical gain name the loss wavelength characteristics in combination ethanone opening down filter sinusoidal loss characteristics of the same amplitude and cycle as terms obtained by Fourier series expansion for the gain flattening
  • An equalizer and a first optical amplifier for amplifying wavelength-division multiplexed light are provided.
  • An optical gain equalizer is arranged before or after the first optical amplifier, and the first optical amplifier is an optical semiconductor amplifier. .
  • the optical amplifier according to claim 43 of the present invention is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is cascaded.
  • the etalon filter and the fiber grating or the dielectric multi-layer film filter are transmitted to the outside, and the etalon filters have different free spectrum ranges from each other. At least one fiber grating or dielectric filter is used.
  • the multi-layer film filter consists of an optical gain equalizer that compensates for the ripple component remaining as the difference between the loss wavelength characteristic for gain flattening and the loss wavelength characteristic of the etalon filter, and a second amplifier that amplifies wavelength-multiplexed light.
  • a first optical amplifier, and an optical gain equalizer is disposed before or after the first optical amplifier, and the first optical amplifier is provided. It is an optical semiconductor amplifier.
  • the optical amplifying device is characterized in that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer film filter are arranged in a cascade, and external light is cascaded.
  • the etalon filter and the fiber grading filter or the dielectric multi-layer film filter and output the same to the outside.
  • Each of the plurality of etalon filters has a different free spectral range from each other, and gain flattening.
  • the loss wavelength characteristics for This is a combination of a etalon filter with sinusoidal loss characteristics having the same amplitude and period as the term, and at least one fiber grating or dielectric multilayer filter has a loss wavelength characteristic for gain flattening and an eta port.
  • Gain equalizer for compensating for the ripple component remaining as the difference from the loss wavelength characteristic due to the optical filter, and a first optical amplifier for amplifying the wavelength-multiplexed light.
  • the first optical amplifier is disposed before or after the first optical amplifier, and the first optical amplifier is an optical semiconductor amplifier.
  • the optical amplifying device is configured such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is
  • the etalon filters are arranged in parallel with each other and transmitted to the outside through a fiber grating or a dielectric multilayer filter.
  • the etalon filters each have a light gain equalizer having a free spectrum range different from each other.
  • the optical amplifying device is characterized in that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is The etalon filter and the etalon filter are arranged so as to pass through a fiber grating or a dielectric multilayer filter and output to the outside.
  • Each of the plurality of etalon filters has a different free spectral range from each other, and has a flat gain.
  • Gain equalizer that combines an etalon filter with a sinusoidal loss characteristic with the same amplitude and period as the term obtained by expanding the loss wavelength characteristic for Fourier series, and a method for amplifying wavelength-multiplexed light.
  • the first optical amplifier includes an optical amplifier and a second optical amplifier, and the first optical amplifier is an optical semiconductor amplifier.
  • the optical amplifying device according to claim 47 of the present invention comprises a plurality of filters.
  • the etalon filter and at least one fiber grating or dielectric multilayer filter are arranged in tandem, and external light is transmitted through these etalon filters and fiber grating or dielectric multilayer filter cascaded and output to the outside.
  • the etalon filters have different free spectrum ranges from each other, and at least one humidi bag grating or dielectric multilayer filter has a loss wavelength characteristic for gain flattening and a loss wavelength due to the etalon filter.
  • An optical gain equalizer for compensating for a ripple component remaining as a difference from the characteristic, and a first optical amplifier and a second optical amplifier for amplifying the wavelength-division multiplexed light, wherein the first optical amplifier is an optical amplifier. It is a semiconductor amplifier.
  • the optical amplifying device according to claim 48 of the present invention is characterized in that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is cascaded.
  • the difference between the loss wavelength characteristic for gain flattening and the loss wavelength characteristic of the etalon filter is Comprising an optical gain equalizer compensates for the remaining ripple, a first optical amplifier and a second optical amplifier for amplifying a wavelength multi Shigemitsu, the first optical amplifier is an optical semiconductor amplifier.
  • the optical amplifying device is arranged such that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer film filter are arranged in tandem, and external light is cascaded.
  • Etalon Fill Evening and Fiberglass The etalon filter is configured to output light to the outside after passing through a single-layer or dielectric multilayer film filter.
  • the etalon filter has a free spectrum range different from each other, and a first amplifying wavelength-multiplexed light.
  • An optical gain equalizer is provided between the first and second optical amplifiers, and the first optical amplifier is an optical semiconductor amplifier.
  • the optical amplifier according to claim 50 of the present invention is arranged such that a plurality of etalon filters and at least one fiber grating or dielectric multilayer film filter are arranged in tandem, and external light is cascaded.
  • Each of the plurality of etalon filters has a different spectral range, and has different gains.
  • An optical gain equalizer that combines an etalon filter with a sinusoidal loss characteristic with the same amplitude and period as the term obtained by expanding the loss wavelength characteristic for flattening using the Fourier series, and amplifying wavelength-multiplexed light
  • the optical amplifying device according to claim 51 of the present invention is arranged such that a plurality of etalon filters and at least one fiber grating or dielectric multilayer film are arranged in tandem, and external light is cascaded. The etalon filter and the fiber grading filter or the dielectric multi-layer film filter and output to the outside.
  • the etalon filter has a free spectrum range different from each other, and has at least one figure.
  • the rating or the dielectric multilayer filter is composed of an optical gain equalizer that compensates for the riffle component remaining as the difference between the loss wavelength characteristic for gain flattening and the loss wavelength characteristic of the etalon filter, and a wavelength multiplexed light.
  • a first optical amplifier and a second optical amplifier for amplification are provided, and an optical gain equalizer is used for both the first and second optical amplifiers.
  • the first optical amplifier is an optical semiconductor amplifier, which is disposed between the band amplifiers.
  • the optical amplifier according to claim 52 of the present invention is characterized in that a plurality of etalon filters and at least one fiber grating or a dielectric multilayer filter are arranged in tandem, and external light is
  • the etalon filters are arranged in parallel with each other and are transmitted through a fiber grating or a dielectric multilayer filter and output to the outside. It is a combination of an etalon filter with a sinusoidal loss characteristic with the same amplitude and period as the term obtained by expanding the loss wavelength characteristic for flattening using the Fourier series, and at least one fiber grating or dielectric multilayer film filter. Is the difference between the loss wavelength characteristic for gain flattening and the loss wavelength characteristic of the etalon filter.
  • An optical gain equalizer for compensating for remaining ripple components, and a first optical amplifier and a second optical amplifier for amplifying wavelength-multiplexed light.
  • the optical gain equalizer includes first and second optical amplifiers.
  • the first optical amplifier is disposed between both optical amplifiers, and the first optical amplifier is an optical semiconductor amplifier.
  • the wavelength division multiplexing transmission device comprises: an optical transmission unit 7 for transmitting signal lights of a plurality of different wavelengths; and a wavelength unit formed by multiplexing the plurality of signal lights.
  • An optical transmission device 10 including an optical multiplexer 9 that outputs multiplexed light to one end of an optical transmission line 8; and a wavelength division multiplexed light output from the other end of the optical transmission line 8 into a signal light for each wavelength.
  • FIG. 1 is a schematic diagram showing an embodiment of the optical gain equalizer of the present invention, in which fiber grating is used.
  • FIG. 1 is a schematic diagram showing an embodiment of the optical gain equalizer of the present invention, in which fiber grating is used.
  • FIG. 2 is a schematic diagram showing an embodiment of the optical gain equalizer of the present invention, and shows an example using a dielectric multilayer filter.
  • 3A to 3C are schematic diagrams showing different examples of the embodiment of the optical amplification device of the present invention.
  • FIG. 4 is a schematic diagram showing an embodiment of the wavelength division multiplex transmission device of the present invention.
  • 5A to 5 () are explanatory diagrams illustrating the elimination of gain wavelength dependence by an etalon filter.
  • FIG. 6 is an explanatory diagram illustrating transmission characteristics for flattening a ripple component.
  • FIG. 7A is a schematic diagram of a fiber grating
  • Figures 7B to 7F are explanatory diagrams showing the principle for realizing the loss characteristics of Fig. 6 with a fiber grating
  • Fig. 9 is a schematic diagram showing an example of a conventional optical gain equalizer using a combination of an etalon filter and an etalon filter.
  • Fig. 5A shows the gain characteristics of a general elpium-doped optical fiber amplifier (hereinafter, referred to as an optical amplifier).
  • the gain characteristics shown in Fig. 5A are used for wavelength division multiplexing (WDM) communication and the like.
  • WDM wavelength division multiplexing
  • the curve representing the loss wavelength characteristic in FIG. 5B can be mathematically represented by a Fourier series, and therefore has a sinusoidal loss characteristic having the same amplitude and period as the Fourier expansion term, as described in the description of the prior art.
  • Combining an ETA filter can produce the same loss wavelength characteristics as in Fig. 5B.
  • the combined etalons have different free spectral ranges (FSR).
  • FSR free spectral ranges
  • the free spectrum range means a wavelength interval between the minimum values of the transmission loss.
  • the free spectral range depends on the thickness and refractive index of the etalon.
  • the thickness of the etalon is d [m]
  • the speed of light is c [m / s]
  • the ripple component also, details as shown in FIG. 6, N wavelength, I 2, I, those aperiodic having the maximum value of the loss, i.e., the transmittance N wavelength, I to 2, 3, I If the optical element having such a loss characteristic is added to the optical gain equalizer including the etalon filter, the ripple component can be eliminated.
  • a fiber grating or a dielectric multilayer filter is used as an optical element for eliminating the ripple component, and the ripple component represented by the dotted line in FIG. 5C is eliminated.
  • the loss wavelength characteristic shown in The components will be eliminated.
  • a fiber grating has a loss characteristic with a steep peak at a specific wavelength, and it is difficult to eliminate the gain wavelength dependence of an optical amplifier instead of an etalon filter. It is relatively easy to create a peak-shaped loss characteristic. Therefore, the loss wavelength characteristics shown in Fig. 6 are decomposed into the four loss wavelength characteristics shown in Figs. 7B to 7E, and each fiber fiber grating (FBGl, FBG2 , FBG3, FBG4) and connect them in series as shown in Fig. 7A. These fiber gratings (FBGl, FBG2, FBG3, FBG4) have the loss wavelength characteristics shown in Fig. 7F as a whole, that is, the loss wavelength characteristics shown in Fig. 6.
  • Figure 8 shows the gain-wavelength characteristics of the gain-equalizer using only the EDFA gain wavelength characteristic c and four etalon filters combined, and the gain equalizer gain obtained by combining four etalon filters with a fiber grating. It shows the wavelength characteristic b, and shows the difference in O performance between a gain transmitter that only combines an etalon filter and a gain equalizer that combines a fiber grating with an etalon filter.
  • the light gain equalizer of the present invention can adjust the loss wavelength characteristic by adjusting the incident angle of light to the eta-con filter in the same manner as the optical gain equalizer combining the conventional etalon filter.
  • the characteristic of that is, the residual “Marille component” that cannot be completely compensated by the etalon filter can be eliminated by the fiber grating or the dielectric multilayer film that can perform the same function.
  • the polarization dependence of loss can be reduced by designing the substrate to have an appropriate thickness so that the incident angle of light to the etalon filter approaches 0 at the time of design.
  • the polarization can be eliminated by forming the grating perpendicular to the light propagation direction.
  • the same principle as an etalon filter is used. The polarization dependence can be reduced.
  • the optical gain equalizer of the present invention can exhibit stable performance even when the environmental temperature fluctuates.
  • optical fibers 20 and 23 serve as optical input / output ports of the optical gain equalizer 4 or are connected to the input / output ports, and the two optical fibers 20 and 23 are The lenses 21 and 22 provided at the respective ends are optically coupled by a collimated beam.
  • each etalon filter 1 designed based on the above principle are inserted.
  • the maximum and minimum loss, free spectral range, and finesse of each etalon filter 1 are determined by Fourier series expansion of the gain wavelength characteristics of the transmission system to which the present optical gain equalizer is applied.
  • a fiber grating 2 (FBG1, FBG2, FBG3, FBG4) designed based on the above principle is inserted. That is, the fiber grating 2 (FBG1, FBG2, FBG3, FBG4) designed to eliminate the ripple component remaining without being compensated for only by the combination of the four etalon filters 1 is inserted.
  • This fiber grating 2 (FBG1, FBG2, FBG3, FBG4)
  • the fiber grating 2 (FBG1, FBG2, FBG3, FBG4) may be provided in the optical fiber 20.
  • the optical gain equalizer of the present invention can be configured using a dielectric multilayer filter 3 as shown in FIG. 2 instead of the fiber grating 2 (FBG1, FBG2, FBG3, FBG4) described above.
  • the dielectric multilayer filter 3 can be arranged at a desired position between the lenses 21 and 22.
  • the arrangement and permutation of the etalon filter 1 and the dielectric multilayer filter 3 are arbitrary. Even when the dielectric multilayer film filter 3 is used, a function that can eliminate the remaining ripple component that cannot be compensated for by the combination of the etalon filter 1 alone is used.
  • FIG. 3A shows a configuration in which the optical gain equalizer 4 shown in FIG. 1 or FIG. 2 is connected to the output terminal of an optical amplifier 5 having an optical fiber amplifier or an optical semiconductor amplifier to constitute an optical amplifier.
  • the wavelength dependence of the gain of the optical amplifier 5 is evaluated, and the optical gain equalizer 4 is designed so as to eliminate the gain wavelength dependence, so that the wavelength dependence of the gain can be eliminated as a whole.
  • FIG. 3B shows a configuration in which the optical gain equalizer 4 shown in FIG. 1 or FIG. 2 is connected to the input terminal of an optical amplifier 5 having an optical fiber amplifier or an optical semiconductor amplifier to constitute an optical amplifier. Also in this case, the wavelength dependence of the gain of the optical amplifier 5 is evaluated, and the optical gain equalizer 4 is designed so as to eliminate the gain wavelength dependence, and the wavelength dependence of the gain can be eliminated as a whole. it can.
  • FIG. 3C is an example of an amplification device including first and second two optical amplifiers 5.
  • the optical gain equalizer 4 is preferably disposed between the amplifiers 5 and 6.
  • the overall gain characteristics of the two amplifiers 5 and 6 are evaluated, and the optical gain equalizer 4 is designed so as to eliminate the gain wavelength dependence, thus eliminating the gain wavelength dependence as a whole. can do.
  • the optical amplifiers shown in Figs. If the transmission paths other than the gain wavelength dependence of the optical amplifiers 5 and 6 have wavelength dependence, it is possible to evaluate those characteristics and eliminate them with the optical gain equalizer of the present invention. .
  • One optical transmitter 10 is composed of the plurality of optical transmitters 7 and the optical multiplexer 9.
  • the optical transmitter 7 outputs an optical signal modulated by an external electric signal, and each of the optical transmitters 7 transmits signal light having a different wavelength.
  • the optical power coupler (optical multiplexer) 9 multiplexes the signal lights output from the plurality of optical transmitters 7 into wavelength-division multiplexed light, and outputs this to one end of the optical transmission line 8.
  • a plurality of optical receivers 12 and an optical demultiplexer 11 constitute one optical receiver 13.
  • the optical power blur (optical demultiplexer) 11 demultiplexes the wavelength division multiplexed light output from the other end of the optical transmission line 8 into signal light for each wavelength, and outputs the signal light to the optical receiver 12.
  • Each optical receiver 12 demodulates an electric signal from the received signal light.
  • the optical transmission line 8 between the optical transmitting device 10 and the optical receiving device 13 is provided with one or more optical amplifying devices 14 capable of amplifying wavelength-multiplexed light.
  • Each optical amplifying device 14 is an optical amplifying device 14 including the optical gain equalizer 4 shown in FIGS. 3A, 3B, and 3C. If the system is equipped with two or more optical amplifiers 14, all the optical amplifiers 14 are required to incorporate the optical gain equalizer 4. The gain-wavelength dependence of the optical amplifier 14 without the optical amplifier 4 can be eliminated by the optical gain equalizer 4 of another optical amplifier 14 together.
  • the optical gain equalizer of the present invention combines a fiber grating or a dielectric multilayer filter with a plurality of etalon filters, and removes a ripple component that cannot be eliminated only with an eta filter having a limited number of combinations.
  • the gain wavelength dependence of the device can be almost completely flattened, and the flatness can be reduced to less than 0.1 dB.
  • the gain wavelength dependency can be reduced to O.ldB or less by combining the optical gain equalizers, and more optical amplifying devices can be connected in multiple stages than before.
  • the wavelength multiplexing transmission apparatus of the present invention uses an optical amplifier having little gain wavelength dependence for relaying wavelength multiplexed light, so that the transmission distance can be increased and the communication quality can be improved.

Description

明細書 光利得等化器及びこれを用いた光増幅装置と波長分割多重伝送装置 技術分野
本発明はエルビゥム添加型光ファィバ増幅器の利得波長依存性や伝送系の波長 依存性等による波長多重光のレベル偏差を解消するための光利得等化器と、 この 光利得等化器を用'、 ''た光増幅装置と波長分割多重伝送装置に関するものである。 背景技術
近年、 進歩が目覚ましい光ファイバによる長距離大容量の通信技術は、 希土類 添加光ファイバを冃いた光ファイバ増幅器と、 波長分割多重 (TOM : Wavelength Division Multiplexing) 伝送とが技術的な基盤になっている。
光ファイバ増幅器は、 現在、 エルビウム添加光ファイバを用いたもの力数多く 開発されており、 云送システムのみならず様々な分野で活用されている。 その一 方、 この光フアイ ' ;増幅器は利得に波長依存性を持っている。 従って、 光フアイ バ増幅器を WDM伝送システムに用いる場合、 特に多数の光ファイバ増幅器をカス ケード接続する場 、 利得の波長依存性が問題となる。 利得に波長依存性がある と、 増幅された波長多重光にレベル偏差が生じて、 波長間のクロストーク劣化や 、 受信機の受光レベル設定等に問題を生じる。
光フアイバ増幅器はそれ自体の利得波長依存性を少なくする方向で開発が進め られているが、 増「 器が多段接続される WDM伝送システムにおいては、 光フアイ バ増幅器の利得の. 長依存性を解消するため、 光利得等化器が使用される。
前記光利得等化器は、 エタロンフィルタを用いるもの、 光ファイバ力ブラを用 いるもの、 誘電体多層膜による干渉膜フィルタを用いるもの、 グレーティング ( ファイバ型グレー イング、 或いはガラス基板上に設けられたグレーティ を用いるもの、 マッハツエンダ型光フィルタを用いるもの等が開発されているが 、 いくつかの理由から (特願平 9-289349号公報に光利得等化器の種類とその問題 点が記載されている) エタロンフィルタを用いるものが期待されている。
エタロンフィ儿タは正弦波状の損失特性を持ち、 特性の異なるエタロンフィル タを複数個組み合わせて所望の波長依存性を有する損失特性を作り出すことがで きる。 そこで光利得等化器においては、 図 9に示す様に、 平坦化をめざす利得曲 線のフーリェ展開項と同じ振幅及び周期の正弦波状損失特性を有するエタ口ンフ ィルタ Aを複数個甲意して、 これらを縦列に配置し、 このフィルタ群にコリメ一 タレンズ8、 Cを' って光ファイバ D、 E間の光 (波長多重光) を透過させるこ とにより、 利得の 長依存性を完全に解消することを狙っている。
図 9のエタロンフィルタ Aを組み合わせてなる光利得等化器は、 原理的にはそ の組み合わせ枚数を多くすれば利得の波長依存性をほぼ完全に解消できるはずで あるが、 製造上の観点、 透過損失の累積を考慮すると組み合わせ可能なエタロン フィルタの数は 4枚程度に制限される。 従って、 利得の波長依存性を完全に解消 するのは難しく、 実質的な平坦性は ldB程度となる。
本発明の目的は前記エタロンフィル夕を利用して、 光ファイバ増幅器の利得波 長依存性を O. ldB程度の誤差に補償することができ、 また透過率の偏光依存性が 小さく、 製造も容易である光利得等化器を提供することにある。 また、 この光利 得等化器を用いて利得の波長依存性が小さい光ファイバ増幅装置を提供し、 更に 、 この光フアイ .' 曾幅器を多段接続した波長多重伝送装置を提供することにある
発明の開示
本発明のうち請求の範囲第 1項記載の光利得等化器は、 複数のエタロンフィル 夕と少なくとも 1つのフアイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外¾ らの光をこれら縦列されたエタロンフィル夕とファイバグレ 一ティング又は誘電体多層膜フィル夕に透過して外部へ出力する構成とし、 前記 エタロンフィルタは夫々フリースぺクトルレンジが互いに異なるものである。 本発明のうち請求の範囲第 2項記載の光利得等化器は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィル夕とファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 複数のエタロンフノル夕の夫々はフリースペクトルレンジが互いに異なるもので あり、 且つ、 利得 坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び周期の正弦波状損失特性のエタロンフィルタを組み合わせてな るものである。 本発明のうち請求の範囲第 3項記載の光利得等化器は、 複数のエタ口ンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィル夕とファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 エタロンフィルタは夫々フリースぺクトルレンジが互いに異なるものであり、 少 なくとも 1つのフ ィバグレーティング又は誘電体多層膜フィルタは、 利得平坦 化のための損失波長特性とエタロンフィルタによる損失波長特性との差として残 るリップル成分を補償するものである。 本発明のうち請求の範囲第 4項記載の光利得等化器は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーテノング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 複数のエタロンフ ノル夕の夫々はフリースぺクトルレンジが互いに異なるもので あり、 且つ、 利得平坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び周期の正弦波状損失特性のエタロンフィルタを組み合わせてな るものであり、 少なくとも 1つのファイバグレーティング又は誘電体多層膜フィ ルタは、 利得平坦化のための損失波長特性とエタロンフィルタによる損失波長特 性との差として残るリップル成分を補償するものである。 本発明のうち請求の範囲第 5項記載の光増幅装置は、 複数のエタ口ンフィルタ と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列に 配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレー ティング又は誘電体多層膜フィル夕に透過して外部へ出力する構成とし、 前記ェ タロンフィルタは夫々フリースぺクトルレンジが互いに異なるものである光利得 等化器と、 波長多重光を増幅する第 1の光増幅器とを備えた。 本発明のうち請求の範囲第 6項記載の光増幅装置は、 複数のエタ口ンフィル夕 と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列に 配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレー ティング又は誘電体多層膜フィル夕に透過して外部へ出力する構成とし、 前記複 数のエタロンフィルタの夫々はフリースぺクトルレンジが互いに異なるものであ り、 且つ、 利得平坦化のための損失波長特性をフーリエ級数展開して得られる項 と同じ振幅及び周期の正弦波状損失特性のエタロンフィルタを組み合わせてなる 光利得等化器と、 波長多重光を増幅する第 1の光増幅器とを備えた。 本発明のうち請求の範囲第 7項記載の光増幅装置は、 複数のエタ口ンフィル夕 と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列に 配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレー ティング又は誘電体多層膜フィル夕に透過して外部へ出力する構成とし、 前記ェ タロンフィルタは天々フリースぺクトルレンジが互いに異なるものであり、 少な くとも 1つのファイバグレーティング又は誘電体多層膜フィルタは、 利得平坦化 のための損失波長特性とエタロンフィルタによる損失波長特性との差として残る リップル成分を補償するものである光利得等化器と、 波長多重光を増幅する第 1 の光増幅器とを備えた。 本発明のうち請求の範囲第 8項記載の光増幅装置は、 複数のエタロンフィルタ と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列に 配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレー ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記複 数のエタロンフィルタの夫々はフリースペクトルレンジが互いに異なるものであ り、 且つ、 利得平坦化のための損失波長特性をフーリエ級数展開して得られる項 と同じ振幅及び周期の正弦波状損失特性のエタ口ンフィルタを組み合わせてなる ものであり、 少なくとも 1つのファイバグレーティング又は誘電体多層膜フィル 夕は、 利得平坦化のための損失波長特性とエタロンフィル夕による損失波長特性 との差として残るリップル成分を補償するものである光利得等化器と、 波長多重 光を増幅する第 1の光増幅器とを備えた。 本発明のうち請求の範囲第 9項記載の光増幅装置は、 複数のエタロンフィルタ と少なくとも 1つ Gファイバグレーティング又は誘電体多層膜フィルタを縦列に 配置して、 外部からの光をこれら縦列されたエタロンフィル夕とフアイバグレー ティング又は誘電 多層膜フィルタに透過して外部へ出力する構成とし、 前記ェ タロンフィルタは夫々フリースペクトルレンジが互いに異なるものである光利得 等化器と、 波長多重光を増幅する第 1の光増幅器とを備え、 光利得等化器を第 1 の光増幅器の前段又は後段に配置した。 本発明のうち請; *の範囲第 1 0項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタ口ンフィルタとフアイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 複数のエタロンフィル夕の夫々はフリースぺクトルレンジが互いに異なるもので あり、 且つ、 利得 坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び周期の正弦波状損失特性のエタロンフィルタを組み合わせてな る光利得等化器と、 波長多重光を増幅する第 1の光増幅器とを備え、 光利得等化 器を第 1の光増幅器の前段又は後段に配置した。 本発明のうち請求の範囲第 1 1項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 エタロンフィルタは夫々フリースぺクトルレンジが互いに異なるものであり、 少 なくとも 1つのフ ィバグレーティング又は誘電体多層膜フィルタは、 利得平坦 化のための損失波長特性とエタロンフィルタによる損失波長特性との差として残 るリップル成分を補償するものである光利得等化器と、 波長多重光を増幅する第
1の光増幅器とを備え、 光利得等化器を第 1の光増幅器の前段又は後段に配置し た。 本発明のうち請求の範囲第 1 2項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィル夕とファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 複数のエタロンフノル夕の夫々はフリースぺクトルレンジが互いに異なるもので あり、 且つ、 利得平坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び周期の正弦波状損失特性のエタロンフィルタを組み合わせてな るものであり、 少なくとも 1つのファイバグレーティング又は誘電体多層膜フィ ル夕は、 利得平坦化のための損失波長特性とエタロンフィルタによる損失波長特 性との差として残るリップル成分を補償するものである光利得等化器と、 波長多 重光を増幅する第 1の光増幅器とを備え、 光利得等化器を第 1の光増幅器の前段 又は後段に配置した。 本発明のうち請求の範囲第 1 3項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 エタロンフィルタは夫々フリ一スぺク卜ルレンジが互いに異なるものである光利 得等化器と、 波長多重光を増幅する第 1の光増幅器及び第 2の光増幅器とを備え た。 本発明のうち請求の範囲第 1 4項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 複数のエタロンフィルタの夫々はフリースぺクトルレンジが互いに異なるもので あり、 且つ、 利得平坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び周期の正弦波状損失特性のエタロンフィルタを組み合わせてな るものである光利得等化器と、 波長多重光を増幅する第 1の光増幅器及び第 2の 光増幅器とを備えた。 本発明のうち請求の範囲第 1 5項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 エタロンフィルタは夫々フリースぺクトルレンジが互いに異なるものであり、 少 なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタは、 利得平坦 化のための損失波長特性とエタロンフィルタによる損失波長特性との差として残 るリップル成分を補償するものである光利得等化器と、 波長多重光を増幅する第 1の光増幅器及び第 2の光増幅器とを備えた。 本発明のうち請求の範囲第 1 6項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィル夕とファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 複数のエタロンフィルタの夫々はフリースペクトルレンジ力5'互いに異なるもので あり、 且つ、 利得平坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び周期の正弦波状損失特性のエタロンフィルタを組み合わせてな るものであり、 少なくとも 1つのファイバグレーティング又は誘電体多層膜フィ ルタは、 利得平坦化のための損失波長特性とエタ口ンフィルタによる損失波長特 性との差として残るリップル成分を補償するものである光利得等化器と、 波長多 重光を増幅する第 1の光増幅器及び第 2の光増幅器とを備えた。 本発明のうち請求の範囲第 1 7項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 エタロンフィルタは夫々フリースぺクトルレンジが互いに異なるものである光利 得等化器と、 波長多重光を増幅する第 1の光増幅器及び第 2の光増幅器とを備え 、 光利得等化器を第 1、 第 2の両光増幅器の間に配置した。 本発明のうち請求の範囲第 1 8項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 複数のエタロンフノ ル夕の夫々はフリースぺクトルレンジが互いに異なるもので あり、 且つ、 利得 2坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び周期の正弦波状損失特性のエタ口ンフィルタを組み合わせてな るものである光利得等化器と、 波長多重光を増幅する第 1の光増幅器及び第 2の 光増幅器とを備え、 、 光利得等化器を第 1、 第 2の両光増幅器の間に配置した。 本発明のうち請^の範囲第 1 9項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 エタロンフィルタ 夫々フリースぺクトルレンジが互いに異なるものであり、 少 なくとも 1つのフ イバグレーティング又は誘電体多層膜フィルタは、 利得平坦 化のための損失波長特性とエタロンフィルタによる損失波長特性との差として残 るリップル成分を補償するものである光利得等化器と、 波長多重光を増幅する第 1の光増幅器及び第 2の光増幅器とを備え、 光利得等化器を第 1、 第 2の両光增 幅器の間に配置した。 本発明のうち請求の範囲第 2 0項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのフアイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ —ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 複数のェタロンフィルタの夫々はフリースペクトルレンジが互いに異なるもので あり、 且つ、 利得平坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び周期の正弦波状損失特性のエタロンフィルタを組み合わせてな るものであり、 少なくとも 1つのファイバグレーティング又は誘電体多層膜フィ ルタは、 利得平坦化のための損失波長特性とエタロンフィルタによる損失波長特 性との差として残るリップル成分を補償するものである光利得等化器と、 波長多 重光を増幅する第 1の光増幅器及び第 2の光増幅器とを備え、 光利得等化器を第 1、 第 2の両光増幅器の間に配置した。 本発明のうち請求の範囲第 2 1項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に酉己置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 エタロンフィルタ;ま夫々フリースぺクトルレンジが互いに異なるものである光利 得等化器と、 波長多重光を増幅する第 1の光増幅器とを備え、 第 1の光増幅器は 光ファイバ増幅器である。 本発明のうち請求の範囲第 2 2項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのフアイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 複数のェタロンフィルタの夫々はフリースペクトルレンジ力互いに異なるもので あり、 且つ、 利得平坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び周期の正弦波状損失特性のエタロンフィルタを組み合わせてな る光利得等化器と、 波長多重光を増幅する第 1の光増幅器とを備え、 第 1の光増 幅器は光ファイバ増幅器である。 本発明のうち請求の範囲第 2 3項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に酉己置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 エタロンフィル夕は夫々フリースぺクトルレンジが互いに異なるものであり、 少 なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタは、 利得平坦 化のための損失波長特性とエタロンフィルタによる損失波長特性との差として残 るリップル成分を補償するものである光利得等化器と、 波長多重光を増幅する第 1の光増幅器とを備え、 第 1の光増幅器は光ファイバ増幅器である。 本発明のうち請求の範囲第 2 4項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィル夕とファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 複数のェタロンフィルタの夫々はフリースペクトルレンジが互いに異なるもので あり、 且つ、 利得平坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び周期の正弦波状損失特性のエタロンフィルタを組み合わせてな るものであり、 少なくとも 1つのファイバグレーティング又は誘電体多層膜フィ ルタは、 利得平坦化のための損失波長特性とエタロンフィルタによる損失波長特 性との差として残るリップル成分を補償するものである光利得等化器と、 波長多 重光を増幅する第 1の光増幅器とを備え、 第 1の光増幅器は光ファィバ増幅器で ある。 本発明のうち請求の範囲第 2 5項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 エタロンフィルタは夫々フリースぺクトルレンジが互いに異なるものである光利 得等化器と、 波長多重光を増幅する第 1の光増幅器とを備え、 光利得等化器を第 1の光増幅器の前段又は後段に配置し、 第 1の光増幅器は光ファィバ増幅器であ る。 本発明のうち請求の範囲第 2 6項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 複数のェタロンフィルタの夫々はフリースペクトルレンジが互いに異なるもので あり、 且つ、 利得平坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び周期の正弦波状損失特性のエタロンフィルタを組み合わせてな る光利得等化器と、 波長多重光を増幅する第 1の光増幅器とを備え、 光利得等化 器を第 1の光増幅器の前段又は後段に配置し、 第 1の光増幅器は光ファイバ増幅 器である。 本発明のうち請求の範囲第 2 7項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に酉己置して、 外部からの光をこれら縦列されたエタ口ンフィルタとファイバグレ —ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 エタロンフィルタは夫々フリースぺクトルレンジが互いに異なるものであり、 少 なくとも 1つのフマイバグレーティング又は誘電体多層膜フィルタは、 利得平坦 化のための損失波長特性とエタロンフィルタによる損失波長特性との差として残 るリップル成分を補償するものである光利得等化器と、 波長多重光を増幅する第 1の光増幅器とを備え、 光利得等化器を第 1の光増幅器の前段又は後段に配置し 、 第 1の光増幅器は光ファイバ増幅器である。 本発明のうち請求の範囲第 2 8項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィル夕に透過して外部へ出力する構成とし、 前記 複数のエタロンフノ ル夕の夫々はフリースペクトルレンジが互いに異なるもので あり、 且つ、 利得 坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び周期の正弦波状損失特性のエタロンフィルタを組み合わせてな るものであり、 少なくとも 1つのファイバグレーティング又は誘電体多層膜フィ ルタは、 利得平坦化のための損失波長特性とエタロンフィルタによる損失波長特 性との差として残るリップル成分を補償するものである光利得等化器と、 波長多 重光を増幅する第 1の光増幅器とを備え、 光利得等化器を第 1の光増幅器の前段 又は後段に配置し、 第 1の光増幅器は光ファィバ増幅器である。 本発明のうち請求の範囲第 2 9項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 エタロンフィルタは夫々フリースペクトルレンジ力互いに異なるものである光利 得等化器と、 波長多重光を増幅する第 1の光増幅器及び第 2の光増幅器とを備え 、 第 1の光増幅器は光ファイバ増幅器である。 本発明のうち請求の範囲第 3 0項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 複数のェタロンフノル夕の夫々はフリースペクトルレンジが互いに異なるもので あり、 且つ、 利得 坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び周期の正弦波状損失特性のエタロンフィル夕を組み合わせてな るものである光利得等化器と、 波長多重光を増幅する第 1の光増幅器及び第 2の 光増幅器とを備え、 第 1の光増幅器は光ファイバ増幅器である。 本発明のうち請求の範囲第 3 1項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に酉己置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 エタロンフィルタ:ま夫々フリースぺクトルレンジが互いに異なるものであり、 少 なくとも 1つのフマイバグレ一ティング又は誘電体多層膜フィルタは、 利得平坦 化のための損失波長特性とエタロンフィル夕による損失波長特性との差として残 るリッフル成分を補償するものである光利得等化器と、 波長多重光を増幅する第 1の光増幅器及ひ'第 2の光増幅器とを備え、 第 1の光増幅器は光ファィバ増幅器 である。 本発明のうち請求の範囲第 3 2項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外 らの光をこれら縦列されたエタロンフィル夕とファイバグレ 一ティング又は誘電体多層膜フィル夕に透過して外部へ出力する構成とし、 前記 複数のエタロンフィルタの夫々はフリースぺクトルレンジが互いに異なるもので あり、 且つ、 利得平坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び周期の正弦波状損失特性のエタロンフィルタを組み合わせてな るものであり、 少なくとも 1つのファィバグレーティング又は誘電体多層膜フィ ル夕は、 利得平坦化のための損失波長特性とエタロンフィルタによる損失波長特 性との差として残るリップル成分を補償するものである光利得等化器と、 波長多 重光を増幅する第 1の光増幅器及び第 2の光増幅器とを備え、 第 1の光増幅器は 光ファイバ増幅器である。 本発明のうち請求の範囲第 3 3項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 エタロンフィルタは夫々フリースぺクトルレンジが互いに異なるものである光利 得等化器と、 波長多重光を増幅する第 1の光増幅器及び第 2の光増幅器とを備え 、 光利得等化器を第 1、 第 2の両光増幅器の間に配置し、 第 1の光増幅器は光フ アイバ増幅器である。 本発明のうち請求の範囲第 3 4項記載の光増幅装置は、 複数のエタ口ンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ —ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 複数のエタロンフィルタの夫々はフリースペクトルレンジ力 s互いに異なるもので あり、 且つ、 利得平坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び周期の正弦波状損失特性のエタロンフィルタを組み合わせてな るものである光利得等化器と、 波長多重光を増幅する第 1の光増幅器及び第 2の 光増幅器とを備え、 光利得等化器を第 1、 第 2の両光増幅器の間に配置し、 第 1 の光増幅器は光ファイバ増幅器である。 本発明のうち請求の範囲第 3 5項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に酉己置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ —ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 エタロンフィルタは夫々フリースぺクトルレンジが互いに異なるものであり、 少 なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタは、 利得平坦 化のための損失波長特性とエタロンフィルタによる損失波長特性との差として残 るリップル成分を補償するものである光利得等化器と、 波長多重光を増幅する第 1の光増幅器及び第 2の光増幅器とを備え、 光利得等化器を第 1、 第 2の両光増 幅器の間に配置し、 第 1の光増幅器は光ファィバ増幅器である。 本発明のうち請求の範囲第 3 6項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 複数のエタロンフィルタの夫々はフリースペクトルレンジが互いに異なるもので あり、 且つ、 利得平坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び周期の正弦波状損失特性のエタロンフィルタを組み合わせてな るものであり、 少なくとも 1つのファィバグレーティング又は誘電体多層膜フィ ルタは、 利得平坦化のための損失波長特性とエタロンフィルタによる損失波長特 性との差として残るリップル成分を補償するものである光利得等化器と、 波長多 重光を増幅する第 1の光増幅器及び第 2の光増幅器とを備え、 光利得等化器を第 1、 第 2の両光増幅器の間に配置し、 第 1の光増幅器は光ファイバ増幅器である 本発明のうち請求の範囲第 3 7項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 エタロンフィルタ 夫々フリースぺクトルレンジが互いに異なるものである光利 得等化器と、 波長多重光を増幅する第 1の光増幅器とを備え、 第 1の光増幅器は 光半導体増幅器である。 本発明のうち請求の範囲第 3 8項記載の光増幅装置は、 複数のエタロンフィル タと少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィル夕とファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 複数のェタロンフィルタの夫々はフリースペクトルレンジが互いに異なるもので あり、 且つ、 利得平坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び ¾期の正弦波状損失特性のエタロンフィルタを組み合わせてな る光利得等化器と、 波長多重光を増幅する第 1の光増幅器とを備え、 第 1の光増 幅器は光半導体増幅器である。 本発明のうち請求の範囲第 3 9項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外¾からの光をこれら縦列されたエタロンフィル夕とファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 エタロンフィルタは夫々フリースぺクトルレンジが互いに異なるものであり、 少 なくとも 1つのフマイバグレーティング又は誘電体多層膜フィルタは、 利得平坦 化のための損失 S長特性とエタロンフィルタによる損失波長特性との差として残 るリッブル成分を補償するものである光利得等化器と、 波長多重光を増幅する第 1の光増幅器とを鐘え、 第 1の光増幅器は光半導体増幅器である。 本発明のうち請求の範囲第 4 0項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 複数のエタ口ンフノル夕の夫々はフリースペクトルレンジが互いに異なるもので あり、 且つ、 利得 坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び!]期の正弦波状損失特性のエタロンフィルタを組み合わせてな るものであり、 ^ くとも 1つのファイバグレーティング又は誘電体多層膜フィ ルタは、 利得平坦 のための損失波長特性とエタロンフィルタによる損失波長特 性との差として残るリップル成分を補償するものである光利得等化器と、 波長多 重光を増幅する第 1の光増幅器とを備え、 第 1の光増幅器は光半導体増幅器であ る。 本発明のうち請求の範囲第 4 1項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファィバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外 ffi らの光をこれら縦列されたエタロンフィル夕とファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 エタロンフィルタ:ま夫々フリースぺクトルレンジが互いに異なるものである光利 得等化器と、 波長多重光を増幅する第 1の光増幅器とを備え、 光利得等化器を第 1の光増幅器の ¾又は後段に配置し、 第 1の光増幅器は光半導体増幅器である
本発明のうち請求の範囲第 4 2項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィル夕とファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 複数のエタロンフィルタの夫々はフリースペクトルレンジ力 s互いに異なるもので あり、 且つ、 利得平坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び周期の正弦波状損失特性のエタ口ンフィルタを組み合わせてな る光利得等化器と、 波長多重光を増幅する第 1の光増幅器とを備え、 光利得等化 器を第 1の光増幅器の前段又は後段に配置し、 第 1の光増幅器は光半導体増幅器 である。 本発明のうち請求の範囲第 4 3項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 エタロンフィル夕は夫々フリースぺクトルレンジが互いに異なるものであり、 少 なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタは、 利得平坦 化のための損失波長特性とエタロンフィルタによる損失波長特性との差として残 るリップル成分を補償するものである光利得等化器と、 波長多重光を増幅する第 1の光増幅器とを備え、 光利得等化器を第 1の光増幅器の前段又は後段に配置し 、 第 1の光増幅器は光半導体増幅器である。 本発明のうち請求の範囲第 4 4項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィル夕を縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 複数のエタロンフィル夕の夫々はフリースペクトルレンジが互いに異なるもので あり、 且つ、 利得平坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び周期の正弦波状損失特性のェタロンフィルタを組み合わせてな るものであり、 少なくとも 1つのファイバグレーティング又は誘電体多層膜フィ ルタは、 利得平坦化のための損失波長特性とエタ口ンフィルタによる損失波長特 性との差として残るリップル成分を補償するものである光利得等化器と、 波長多 重光を増幅する第 1の光増幅器とを備え、 光利得等化器を第 1の光増幅器の前段 又は後段に配置し、 第 1の光増幅器は光半導体増幅器である。 本発明のうち請求の範囲第 4 5項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に酉己置して、 外部からの光をこれら縦列されたエタ口ンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 エタロンフィルタは夫々フリースぺクトルレンジが互いに異なるものである光利 得等化器と、 波長多重光を増幅する第 1の光増幅器及び第 2の光増幅器とを備え 、 第 1の光増幅器は光半導体増幅器である。 本発明のうち請求の範囲第 4 6項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に酉己置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 複数のエタロンフィルタの夫々はフリースペクトルレンジが互いに異なるもので あり、 且つ、 利得平坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び周期の正弦波状損失特性のエタロンフィルタを組み合わせてな るものである光利得等化器と、 波長多重光を増幅する第 1の光増幅器及び第 2の 光増幅器とを備え、 第 1の光増幅器は光半導体増幅器である。 本発明のうち請求の範囲第 4 7項記載の光増幅装置は、 複数のエタ口ンフィル タと少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 エタロンフィルタは夫々フリースぺクトルレンジが互いに異なるものであり、 少 なくとも 1つのフマイバグレーティング又は誘電体多層膜フィルタは、 利得平坦 化のための損失波長特性とエタロンフィルタによる損失波長特性との差として残 るリップル成分を補償するものである光利得等化器と、 波長多重光を増幅する第 1の光増幅器及び第 2の光増幅器とを備え、 第 1の光増幅器は光半導体増幅器で ある。 本発明のうち請求の範囲第 4 8項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 複数のエタロンフィルタの夫々はフリースペクトルレンジが互いに異なるもので あり、 且つ、 利得正坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び周期の正弦波状損失特性のエタロンフィルタを組み合わせてな るものであり、 少なくとも 1つのフアイバグレーティング又は誘電体多層膜フィ ル夕は、 利得平坦化のための損失波長特性とエタロンフィルタによる損失波長特 性との差として残るリップル成分を補償するものである光利得等化器と、 波長多 重光を増幅する第 1の光増幅器及び第 2の光増幅器とを備え、 第 1の光増幅器は 光半導体増幅器である。 本発明のうち請求の範囲第 4 9項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィル夕とファイバグレ 一ティング又は誘電体多層膜フィル夕に透過して外部へ出力する構成とし、 前記 エタロンフィルタは夫々フリースぺクトルレンジが互いに異なるものである光利 得等化器と、 波長多重光を増幅する第 1の光増幅器及び第 2の光増幅器とを備え 、 光利得等化器を第 1、 第 2の両光増幅器の間に配置し、 第 1の光増幅器は光半 導体増幅器である。 本発明のうち請求の範囲第 5 0項記載の光増幅装置は、 複数のエタロンフィル タと少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィル夕に透過して外部へ出力する構成とし、 前記 複数のェタロンフィルタの夫々はフリ一スペクトルレンジ力 '互いに異なるもので あり、 且つ、 利得平坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び周期の正弦波状損失特性のエタロンフィルタを組み合わせてな るものである光利得等化器と、 波長多重光を増幅する第 1の光増幅器及び第 2の 光増幅器とを備え、 光利得等化器を第 1、 第 2の両光増幅器の間に配置し、 第 1 の光増幅器は光半導体増幅器である。 本発明のうち請求の範囲第 5 1項記載の光増幅装置は、 複数のエタロンフィル タと少なくとも 1つのファイバグレーティング又は誘電体多層膜フィル夕を縦列 に配置して、 外部からの光をこれら縦列されたエタロンフィルタとファイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 エタロンフィルタ;ま夫々フリースぺクトルレンジが互いに異なるものであり、 少 なくとも 1つのフ ィバグレーティング又は誘電体多層膜フィルタは、 利得平坦 化のための損失波長特性とエタロンフィルタによる損失波長特性との差として残 るリッフル成分を補償するものである光利得等化器と、 波長多重光を増幅する第 1の光増幅器及び第 2の光増幅器とを備え、 光利得等化器を第 1、 第 2の両光増 幅器の間に配置し、 第 1の光増幅器は光半導体増幅器である。 本発明のうち請求の範囲第 5 2項記載の光増幅装置は、 複数のエタロンフィル 夕と少なくとも 1つのファイバグレーティング又は誘電体多層膜フィルタを縦列 に酉己置して、 外部からの光をこれら縦列されたエタ口ンフィルタとフアイバグレ 一ティング又は誘電体多層膜フィルタに透過して外部へ出力する構成とし、 前記 複数のェタロンフィルタの夫々はフリースペクトルレンジが互いに異なるもので あり、 且つ、 利得平坦化のための損失波長特性をフーリエ級数展開して得られる 項と同じ振幅及び周期の正弦波状損失特性のエタロンフィルタを組み合わせてな るものであり、 少なくとも 1つのファイバグレーティング又は誘電体多層膜フィ ルタは、 利得平坦化のための損失波長特性とエタロンフィルタによる損失波長特 性との差として残るリップル成分を補償するものである光利得等化器と、 波長多 重光を増幅する第 1の光増幅器及び第 2の光増幅器とを備え、 光利得等化器を第 1、 第 2の両光増幅器の間に配置し、 第 1の光増幅器は光半導体増幅器である。 本発明のうち請求の範囲第 5 3項記載の波長分割多重伝送装置は、 互いに異な る複数の波長の信号光を送出する光送信部 7と、 複数の信号光を合波してなる波 長多重光を光伝送路 8の一端に出力する光合波器 9とを含む光送信装置 1 0と、 前記光伝送路 8の他端から出力される波長多重光を波長毎の信号光に分波する光 分波器 1 1と、 分波された各信号光を夫々電気信号に変換する光受信部 1 2とを 含む光受信装置 1 3と、 前記光送信装置 1 0と光受信装置 1 3との間に配置され て、 前記光伝送路 8を伝播する波長多重光を増幅する少なくとも 1以上の光増幅 装置 1 4とを備え、 当該光増幅装置 1 4は請求の範囲第 5項〜第 5 2項のいずれ かに記載の光増幅装置である。 図面の簡単な説明 図 1は本発明の光利得等化器の実施形態を示した概略図であり、 ファイバグレ —ティングを用いた例。 図 2は本発明の光利得等化器の実施形態を示した概略図 であり、 誘電体多層膜フィルタを用いた例。 図 3 A〜図 3 Cは本発明の光増幅装 置の実施形態の異なる例を示した概略図。 図 4は本発明の波長分割多重伝送装置 の実施形態を示した概略図。 図 5 A〜( はエタロンフィルタによる利得波長依存 性の解消を説明する説明図。 図 6はリップル成分を平坦化するための透過特性を 示した説明図。 図 7 Aはファイバグレーティングの概略図、 図 7 B〜Fは図 6の 損失特性をファイバグレーティングで実現するための原理を示した説明図。 図 8 はエタロンフィルタの組み合わせによる波長依存性の解消とエタロンフィルタと ファイバグレーティングの組み合わせによる波長依存性の解消の効果の違いを示 した説明図。 図 9は従来のエタロンフィル夕の組み合わせによる光利得等化器の 一例を示した概略図。 発明を実施するための最良の形態
(光利得等化器の原理)
始めに本件発明の光利得等化器の原理を説明する。 図 5 Aは一般的なエルピウ ムドープ光ファイバ増幅器 (以下、 光増幅器と記載する) の利得特性を示したも のであり、 この図 5 Aに示す利得特性を波長分割多重 (WDM ) 通信等で使われる 波長 1530〜1560nmの帯域で平坦化する場合を例として原理の説明をする。
図 5 Aにおいて使用波長帯域の利得波長依存性を平坦にするためには、 図中に 線 (a ) で示したレベルよりも大きい利得部分を相殺する損失を作れば良く、 具 体的には同図 Bに示す損失波長特性を作れば良い。
図 5 Bの損失波長特性を表す曲線は数学的にフーリェ級数で表すことができ、 従って、 従来技術の説明にもある様に、 このフーリエ展開項と同じ振幅及び周期 の正弦波状損失特性を有するエタ口ンフィルタを組み合わせれば、 図 5 Bと同じ 損失波長特性を作り出すことが可能である。 この場合、 組み合わされるエタロン フィルタは互いに異なるフリースペクトルレンジ (FSR ) を有する。 なお、 ここ でのフリースぺクトルレンジは透過損失の極小値間の波長間隔を意味する。 フリ —スペクトルレンジは、 エタロンの厚みおよび屈折率に依存し、 エタロン厚みを d [m ] 、 エタロン:こ使用する基板の屈折率を n [ m] 、 光速を c [ m/ s ] と し、 入射角 Θ [ d e g ] で光が入射した場合を想定すると
c l n N\ - sm 2 θ / η2 ) と表現することができる。
そこで前記理論に基づいたエタロンフィルタの組み合わせにより利得平坦化を 行うことを考える。 製造上の観点、 等化損失の累積を考慮して、 4つのエタロン フィルタの組み合わせからなる光利得等化器を作成する (図 9の光利得等化器を 参照) 。 図 5 Cに点線で示す曲線はこの光利得等化器を通したときの光ファイバ 増幅器の光利得特性である。 図示された様に 4つのエタロンフィル夕の組み合わ せでは利得特性にリップル成分力 s残り、 完全な補償はできないことカ纷かる。 こ のリップル成分を補償するためには、 前記理論に基づけば、 さらに多くのエタ口 ンフィルタを必要とする力 現実的に 4つ以上のエタロンフィルタを組み合わせ ることは製造上及び透過損失の点から困難である。
前記リップル成分:ま、 詳しくは図 6に示す様に、 波長ん 、 ん 2 、 ん 、 に損失の極大値を持つ非周期的なもの、 すなわち、 波長ん 、 ん 23 、 ん に透過率の極小値を持つ非周期的なものであり、 このような損失特性を持つ光学 素子を前記エタロンフィルタからなる光利得等化器に付加すれば、 リップル成分 を解消することができるはずである。
そこで本件発明ではリップル成分を解消するための光学素子としてファイバグ レーティングや誘電体多層膜フィルタを用い、 図 5 Cに点線で表されるリップル 成分を解消することとする。 即ち図 6に示す損失波長特性を作り出してリップル 成分を解消することとする。
例えば、 フアイベグレーティングは特定波長で急峻なピークを有する損失特性 を有し、 エタロンフィルタに代わって光増幅器の利得波長依存性を解消すること は難しいが、 図 6 :こ示される様なピーク的な山型の損失特性を作ることは比較的 容易である。 そこで、 図 6に示す損失波長特性を図 7 B〜Eに示す 4つの損失波 長特性に分解して、 一つ一つが図 7 B〜 Eの損失波長特性を持つファイバグレー ティング (FBGl, FBG2, FBG3, FBG4) を作成し、 これらを図 7 Aに示す様に直列 に接続する。 これらファイバグレーティング (FBGl, FBG2, FBG3, FBG4) は全体 では図 7 Fに示す損失波長特性、 即ち図 6の損失波長特性を有し、 これと先の 4 つのエタロンフィ タとを組み合わせることにより図 5 Cに示したリップル成分 を解消することができ、 本件発明の光利得等化器となる。 図 8は EDFAによる利得 波長特性 cと 4枚のエタロンフィルタを組み合わせただけの利得透過器の利得波 長特性 aと 4枚のエタ口ンフィルタにファイバグレーティングを組み合わせた利 得等化器の利得波長特性 bとを表したものであり、 エタロンフィルタを組み合わ せただけの利得透過器とエタロンフィルタにファイバグレーティングを組み合わ せた利得等化器と O性能の違いを示したものである。
誘電体多層膜フノルタを持ちいる場合も、 エタロンフィルタに代わって光増幅 器の利得波長依存 を解消することは難しいが、 図 6に示される様なピーク的な 山型の損失特性を ることは比較的容易であり、 エタロンフィルタと組み合わせ て光利得等化器を構成することにより図 5 Cに示したリップル成分を解消するこ と力 sでき、 本件発ョ月の光利得等化器となる。
本件発明の光 得等化器は、 従来のエタロンフィルタを組み合わせた光利得等 化器と同様にェタコンフィルタへの光の入射角度を調整することにより損失波長 特性を調整できる 、 更に、 本件発明の特徴である、 エタロンフィルタで補償し きれずに残るリ '"マリレ成分をファイバグレーティング、 或いは同様の機能を持つ ことができる誘電 ' 多層膜フィル夕により解消することができる。 更に、 この光利得等化器は、 設計時にエタロンフィルタへの光の入射角度を 0 に近付ける様に基板を適切な厚みに設計すれば、 損失の偏光依存性を低減するこ ともできる。 そしてファイバグレーティングを使う場合は、 グレーティングの形 成を光の伝搬方向に垂直に形成することで偏光依存性をなくすことができ、 誘電 体多層膜フィル夕を使う場合は、 エタロンフィルタと同じ原理により偏光依存性 を低減することができる。
また更に、 温度変化に伴う損失特性の変動についても、 エタロンフィルタ及び 誘電体多層膜フィルタに関しては 0. 004nm/K 、 ファイバグレーティングに関して は、 温度補償パッケージにより損失特性の変動をほぼなくすことができる。 これ らの理由により、 環境温度の変動に対しても本件発明の光利得等化器は安定した 性能を発揮することができる。
(光利得等化器の実施形態)
次に本件発明の光利得等化器の実施の形態を図 1に基づいて説明する。 光ファ ィバ 2 0及び 2 3は光利得等化器 4の光入出力ポートとなる、 或いは入出力ポー 卜と接続されるものであり、 この 2本の光ファイバ 2 0及び 2 3は、 夫々の端部 に設けられたレンズ 2 1及びレンズ 2 2によるコリメートビームで光学的に結合 されている。
前記レンズ 2 1と 2 2の間には、 先の原理に基づいて設計されたエタロンフィ ルタ 1が 4つ挿入されている。 個々のエタロンフィルタ 1の損失最大値及び損失 最小値、 フリースペク トルレンジ、 フイネスは、 本光利得等化器を適用する伝送 系の利得波長特性をフーリェ級数展開して決定される。
前記光ファイバ 2 3の途中には、 先の原理に基づいて設計されたファイバグレ 一ティング 2 (FBG1 , FBG2 , FBG3, FBG4 ) が挿入されている。 即ち、 4つのエタ ロンフィルタ 1の組み合わせだけでは補償しきれずに残るリップル成分を解消す るように設計したファイバグレーティング 2 (FBG1 , FBG2, FBG3 , FBG4) が挿入 されている。 このファイバグレーティ ング 2 (FBG1 , FBG2 , FBG3 , FBG4) は温度 補償パッケージ 2 4を用いて温度変動による特性値変動を補償できる様にしてあ る。 なお、 ファイバグレーティング 2 (FBG1, FBG2, FBG3, FBG4) は光ファイバ 2 0の途中に設けても良い。
本件発明の光利得等化器は前記説明のファイバグレーティング 2 (FBG1, FBG2 , FBG3, FBG4) に代えて、 図 2に示す様に誘電体多層膜フィルタ 3を用いて構成 することもできる。 誘電体多層膜フィルタ 3はレンズ 2 1と 2 2との間の所望箇 所に配置することができ、 エタロンフィル夕 1と誘電体多層膜フィルタ 3の配置 や順列は任意である。 誘電体多層膜フィル夕 3を用いる場合も、 エタロンフィル 夕 1の組み合わせだけでは補償しきれずに残るリップル成分を解消できるような 機能のものを用いる。
(光増幅装置の実施形態)
本発明の光増幅装置の実施形態を図 3に基づいて説明する。 図 3 Aは光ファィ バ増幅器或いは光半導体増幅器を備えた光増幅器 5の出力端に図 1又は図 2の光 利得等化器 4を接続し、 光増幅装置を構成したものである。 この場合、 光増幅器 5の利得の波長依存性を評価し、 その利得波長依存性を解消する様に光利得等化 器 4を設計し、 全体で利得の波長依存性を解消することができる。
図 3 Bは光フアイバ増幅器或いは光半導体増幅器を備えた光増幅器 5の入力端 に図 1又は図 2の光利得等化器 4を接続し、 光増幅装置を構成したものである。 この場合も、 光増幅器 5の利得の波長依存性を評価し、 その利得波長依存性を解 消する様に光利得等化器 4を設計し、 全体で利得の波長依存性を解消することが できる。
図 3 Cは第 1、 第 2の 2つの光増幅器 5を備える増幅装置の例である。 この場 合、 光利得等化器 4は両増幅器 5、 6の間に配置すると良い。 この場合は、 2つ の増幅器 5、 6の総合的な利得特性を評価し、 その利得波長依存性を解消する様 に光利得等化器 4を設計し、 全体で利得の波長依存性を解消することができる。 図 3 A〜(の光増幅装置において、 それらが接続される伝送系や、 増幅装置内 部の光増幅器 5、 6の利得波長依存性以外の伝送経路で、 波長依存性がある場合 、 それらの特性を評価して本件発明の光利得等化器で解消する様なことも可能で ある。
(波長分割多重伝送装置の実施形態)
本発明の波長分割多重伝送装置の実施形態を図 4に基づいて説明する。 複数の 光送信部 7と光合波器 9で 1つの光送信装置 1 0が構成されている。 光送信部 7 は外部からの電気信号で変調された光信号を出力するものであり、 夫々が互いに 異なる波長の信号光を送出する。 光力ブラ (光合波器) 9は、 複数の光送信部 7 から出力される信号光を合波して波長多重光とし、 これを光伝送路 8の一端に出 力する。 一方、 複数の光受信部 1 2と光分波器 1 1とで 1つの光受信装置 1 3が 構成されている。 光力ブラ (光分波器) 1 1は、 前記光伝送路 8の他端から出力 される波長多重光を波長毎の信号光に分波し、 光受信部 1 2へと出力する。 各光 受信部 1 2は受信した信号光から電気信号を復調する。 前記光送信装置 1 0と光 受信装置 1 3との間の光伝送路 8には波長多重光を増幅可能とする光増幅装置 1 4を 1以上設けてある。 各光増幅装置 1 4は図 3 A、 B、 Cに示した光利得等化 器 4を内蔵する光増幅装置 1 4である。 システムが 2以上の光増幅装置 1 4を備 える場合、 全ての光増幅装置 1 4力光利得等化器 4を内蔵するの力 s望ましいが、 特定のものにだけ内蔵し、 光利得等化器 4を内蔵しない光増幅装置 1 4の利得波 長依存性は他の光増幅装置 1 4の光利得等化器 4で一緒に解消する様なことも可 能である。 産業上の利用可能性
本発明の光利得等化器は、 複数のエタロンフィル夕にファイバグレーティング 又は誘電体多層膜フィルタを組み合わせ、 組み合わせ数に限度のあるエタ口ンフ ィルタだけでは解消しきれないリップル成分をファイバグレーティング又は誘電 体多層膜フィルタで解消する様にしたため、 現実的な構造でありながら、 光増幅 器の利得波長依存性をほぼ完全に平坦化することができ、 平坦性を O. ldB以下に することができる。
本発明の光増幅装置は、 前記光利得等化器を組み合わせることにより利得波長 依存性が O. ldB以下にすることができ、 従来よりも多くの光増幅装置を多段接続 することができる- 本発明の波長多重伝送装置は、 波長多重光の中継に利得波長依存性の少ない光 増幅装置を用いるため、 伝送距離の拡大や通信の品質を向上することができる。

Claims

請求の範囲
1 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記エタ口ンフィルタ 1は夫々フリースぺ クトルレンジが互いに異なるものである光利得等ィヒ器。
2 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記複数のエタロンフィルタ 1の夫々はフ リースペクトルレンジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフーリェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタロンフィルタ 1を組み合わせてなるものである光利得等化器。
3 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィル夕 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記エタロンフィルタ 1は夫々フリースべ クトルレンジが互いに異なるものであり、 少なくとも 1つのファイバグレーティ ング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための損失波長特性とエタ ロンフィルタ 1による損失波長特性との差として残るリップル成分を補償するも のである光利得等化器。
4 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記複数のエタロンフィルタ 1の夫々はフ リースペクトルレンジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフーリェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタロンフィルタ 1を組み合わせてなるものであり、 少なくとも 1つの ファイバグレーティング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための 損失波長特性とエタロンフィルタ 1による損失波長特性との差として残るリップ ル成分を補償するものである光利得等ィヒ器。
5 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィル夕 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記エタロンフィルタ 1は夫々フリースべ クトルレンジが互いに異なるものである光利得等化器 4と、 波長多重光を増幅す る第 1の光増幅器 5とを備えた光増幅装置。
6 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記複数のエタロンフィルタ 1の夫々はフ リースペクトルレンジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフーリエ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタロンフィルタ 1を組み合わせてなる光利得等化器 4と、 波長多重光 を増幅する第 1の光増幅器 5とを備えた光増幅装置。
7 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ岀カする構成とし、 前記エタロンフィルタ 1は夫々フリースべ クトルレンジが互 I、に異なるものであり、 少なくとも 1つのファイバグレーティ ング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための損失波長特性とエタ ロ ンフィルタ 1による損失波長特性との差として残るリップル成分を補償するも のである光利得等化器 4と、 波長多重光を増幅する第 1の光増幅器 5とを備えた 光増幅装置。
8 . 複数のエタ匚ンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記複数のエタロンフィルタ 1の夫々はフ リースペクトルレンジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフー: ェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタ口ンフィル夕 1を組み合わせてなるものであり、 少なくとも 1つの ファイバグレーテノング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための 損失波長特性とエタロンフィルタ 1による損失波長特性との差として残るリップ ル成分を補償するものである光利得等化器 4と、 波長多重光を増幅する第 1の光 増幅器 5とを備えた光増幅装置。
9 . 複数のエタ匸ンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィル夕 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ H力する構成とし、 前記エタロンフィルタ 1は夫々フリースべ クトルレンジが互いに異なるものである光利得等化器 4と、 波長多重光を増幅す る第 1の光増幅器 5とを備え、 光利得等化器 4を第 1の光増幅器 5の前段又は後 段に配置した光増幅装置。
1 0 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ d力する構成とし、 前記複数のエタロンフィルタ 1の夫々はフ リースペクトルレンジ力 s互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフー ェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタロンフィル夕 1を組み合わせてなる光利得等化器 4と、 波長多重光 を増幅する第 1の光増幅器 5とを備え、 光利得等化器 4を第 1の光増幅器 5の前 段又は後段に配置した光増幅装置。
1 1 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィル夕 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ.: ¾力する構成とし、 前記エタロンフィルタ 1は夫々フリースべ クトルレンジが互 に異なるものであり、 少なくとも 1つのファイバグレ一ティ ング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための損失波長特性とエタ ロンフィルタ 1に る損失波長特性との差として残るリップル成分を補償するも のである光利得等 器 4と、 波長多重光を増幅する第 1の光増幅器 5とを備え、 光利得等化器 4を第 1の光増幅器 5の前段又は後段に配置した光増幅装置。
1 2 . 複数のェタコンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィル夕 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記複数のエタロンフィルタ 1の夫々はフ リースペクトルレンジ力 s互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフーリェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタロンフィルタ 1を組み合わせてなるものであり、 少なくとも 1つの ファイバグレーティング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための 損失波長特性とエタロンフィルタ 1による損失波長特性との差として残るリップ ル成分を補償するものである光利得等化器 4と、 波長多重光を増幅する第 1の光 増幅器 5とを備え、 光利得等化器 4を第 1の光増幅器 5の前段又は後段に配置し た光増幅装置。
1 3 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記エタロンフィルタ 1は夫々フリースべ ク卜ルレンジ力 いに異なるものである光利得等化器 4と、 波長多重光を増幅す る第 1の光増幅器 5及び第 2の光増幅器 6とを備えた光増幅装置。
1 4 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記複数のエタロンフィルタ 1の夫々はフ リ一スぺクトルレンジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフ一リェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタロンフィルタ 1を組み合わせてなるものである光利得等化器 4と、 波長多重光を増幅する第 1の光増幅器 5及び第 2の光増幅器 6とを備えた光増幅
1 5 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ岀カする構成とし、 前記エタロンフィルタ 1は夫々フリースべ クトルレンジが互いに異なるものであり、 少なくとも 1つのファイバグレーティ ング 2又は誘電体多層膜フィル夕 3は、 利得平坦化のための損失波長特性とエタ ロンフィルタ 1による損失波長特性との差として残るリップル成分を補償するも のである光利得等化器 4と、 波長多重光を増幅する第 1の光増幅器 5及び第 2の 光増幅器 6とを備えた光増幅装置。
1 6 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記複数のエタロンフィルタ 1の夫々はフ リースペクトルレンジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフ一リェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタロンフィルタ 1を組み合わせてなるものであり、 少なくとも 1つの ファイバグレーティング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための 損失波長特性とエタロンフィルタ 1による損失波長特性との差として残るリップ ル成分を補償するものである光利得等化器 4と、 波長多重光を増幅する第 1の光 増幅器 5及び第 2の光増幅器 6とを備えた光増幅装置。
1 7 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィル夕 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記エタ口ンフィルタ 1は夫々フリースべ クトルレンジが互いに異なるものである光利得等化器 4と、 波長多重光を増幅す る第 1の光増幅器 5及び第 2の光増幅器 6とを備え、 光利得等化器 4を第 1、 第 2の両光増幅器 5、 6の間に配置した光増幅装置。
1 8 . 複数のエタ ンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記複数のエタロンフィルタ 1の夫々はフ リースペクトルレンジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフ一リェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタロンフィルタ 1を組み合わせてなるものである光利得等化器 4と、 波長多重光を増幅する第 1の光増幅器 5及び第 2の光増幅器 6とを備え、 光利得 等化器 4を第 1、 第 2の両光増幅器 5、 6の間に配置した光増幅装置。
1 9 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記エタロンフィルタ 1は夫々フリースべ クトルレンジが互いに異なるものであり、 少なくとも 1つのファイバグレ一ティ ング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための損失波長特性とエタ ロンフィルタ 1による損失波長特性との差として残るリップル成分を補償するも のである光利得等化器 4と、 波長多重光を増幅する第 1の光増幅器 5及び第 2の 光増幅器 6とを備え、 光利得等化器 4を第 1、 第 2の両光増幅器 5、 6の間に配 置した光増幅装置。
2 0 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィル夕 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記複数のエタロンフィルタ 1の夫々はフ リ一スペクトルレンジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフ一 ェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタ口ンフィルタ 1を組み合わせてなるものであり、 少なくとも 1つの ファイバグレーティング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための 損失波長特性とエタロンフィルタ 1による損失波長特性との差として残るリップ ル成分を補償する ¾のである光利得等化器 4と、 波長多重光を増幅する第 1の光 増幅器 5及び第 2の光増幅器 6とを備え、 光利得等化器 4を第 1、 第 2の両光増 幅器 5、 6の間に配置した光増幅装置。
2 1 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ ώ力する構成とし、 前記エタロンフィルタ 1は夫々フリースべ クトルレンジが互:, 'に異なるものである光利得等化器 4と、 波長多重光を増幅す る第 1の光増幅器 5とを備え、 第 1の光増幅器 5は光ファイバ増幅器である光増
2 2 . 複数のエタ ΰンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィ儿タ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ s力する構成とし、 前記複数のエタロンフィルタ 1の夫々はフ リースペクトルレ ジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフ一リェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタロンフィルタ 1を組み合わせてなる光利得等化器 4と、 波長多重光 を増幅する第 1の光増幅器 5とを備え、 第 1の光増幅器 5は光ファィバ増幅器で ある光増幅装置。
2 3 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ 力する構成とし、 前記エタロンフィルタ 1は夫々フリースべ クトルレンジが互いに異なるものであり、 少なくとも 1つのファイバグレーティ ング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための損失波長特性とエタ ロンフィルタ 1による損失波長特性との差として残るリップル成分を補償するも のである光利得等化器 4と、 波長多重光を増幅する第 1の光増幅器 5とを備え、 第 1の光増幅器 5は光フアイバ増幅器である光増幅装置。
2 4 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記複数のエタロンフィルタ 1の夫々はフ リースペクトルレンジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフーリェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタロンフィルタ 1を組み合わせてなるものであり、 少なくとも 1つの ファイバグレーティング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための 損失波長特性とエタロンフィルタ 1による損失波長特性との差として残るリップ ル成分を補償する のである光利得等化器 4と、 波長多重光を増幅する第 1の光 増幅器 5とを備え、 第 1の光増幅器 5は光ファィバ増幅器である光増幅装置。
2 5 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記エタロンフィルタ 1は夫々フリースべ クトルレンジ力5'互いに異なるものである光利得等化器 4と、 波長多重光を増幅す る第 1の光増幅器 5とを備え、 光利得等化器 4は第 1の光増幅器 5の前段又は後 段に配置され、 第 1の光増幅器 5は光ファィバ増幅器である光増幅装置。
2 6 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記複数のエタロンフィルタ 1の夫々はフ リースペクトルレンジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフ一リェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタロンフィルタ 1を組み合わせてなる光利得等化器 4と、 波長多重光 を増幅する第 1の光増幅器 5とを備え、 光利得等化器 4は第 1の光増幅器 5の前 段又は後段に配置され、 第 1の光増幅器 5は光ファイバ増幅器である光増幅装置
2 7 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記エタ口ンフィルタ 1は夫々フリースぺ クトルレンジが互いに異なるものであり、 少なくとも 1つのファイバグレーティ ング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための損失波長特性とエタ ロンフィルタ 1による損失波長特性との差として残るリップル成分を補償するも のである光利得等化器 4と、 波長多重光を増幅する第 1の光増幅器 5とを備え、 光利得等化器 4は第 1の光増幅器 5の前段又は後段に配置され、 第 1の光増幅器 5は光フアイバ増幅器である光増幅装置。
2 8 . 複数のエタ Πンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ 3力する構成とし、 前記複数のエタロンフィルタ 1の夫々はフ リースペクトルレンジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフー' :ェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタロンフィルタ 1を組み合わせてなるものであり、 少なくとも 1つの ファイバグレーティング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための 損失波長特性とエタロンフィルタ 1による損失波長特性との差として残るリップ ル成分を補償するものである光利得等ィヒ器 4と、 波長多重光を増幅する第 1の光 増幅器 5とを備え、 光利得等化器 4は第 1の光増幅器 5の前段又は後段に配置さ れ、 第 1の光増幅器 5は光フアイバ増幅器である光増幅装置。
2 9 . 複数のェタコンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ:^力する構成とし、 前記エタ口ンフィルタ 1は夫々フリースぺ クトルレンジが互:'、に異なるものである光利得等化器 4と、 波長多重光を増幅す る第 1の光増幅器 5及び第 2の光増幅器 6とを備え、 第 1の光増幅器 5は光ファ ィバ増幅器である光増幅装置。
3 0 . 複数のェタコンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜つィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィル夕 3 に透過して外部へ カする構成とし、 前記複数のエタロンフィルタ 1の夫々はフ リースペクトルレンジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をつ一 '、ェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタロンフィルタ 1を組み合わせてなるものである光利得等化器 4と、 波長多重光を増幅する第 1の光増幅器 5及び第 2の光増幅器 6とを備え、 第 1の 光増幅器 5は光フやィバ増幅器である光増幅装置。
3 1 . 複数のェタコンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィル夕 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィ儿タ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記エタロンフィルタ 1は夫々フリースぺ クトルレンジが互 に異なるものであり、 少なくとも 1つのファイバグレ一ティ ング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための損失波長特性とエタ 口ンフィルタ 1による損失波長特性との差として残るリップル成分を補償するも のである光利得等''ヒ器 4と、 波長多重光を増幅する第 1の光増幅器 5及び第 2の 光増幅器 6とを備え、 第 1の光増幅器 5は光フアイバ増幅器である光増幅装置。
3 2 . 複数のェタコンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィ A夕 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ =i力する構成とし、 前記複数のエタロンフィルタ 1の夫々はフ リースペクトルレンジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフ一 :;ェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタ口ンフィルタ 1を組み合わせてなるものであり、 少なくとも 1つの ファイバグレー千ノング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための 損失波長特性とエタロンフィルタ 1による損失波長特性との差として残るリップ ル成分を補償するものである光利得等化器 4と、 波長多重光を増幅する第 1の光 増幅器 5及び第 2の光増幅器 6とを備え、 第 1の光増幅器 5は光ファィバ増幅器 である光増幅装置。
3 3 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記エタロンフィルタ 1は夫々フリースぺ クトルレンジが互いに異なるものである光利得等ィ匕器 4と、 波長多重光を増幅す る第 1の光増幅器 5及び第 2の光増幅器 6とを備え、 光利得等化器 4は第 1、 第 2の両光増幅器 5、 6の間に配置され、 第 1の光増幅器 5は光ファイバ増幅器で ある光増幅装置。
3 4 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記複数のエタ口ンフィルタ 1の夫々はフ リースペクトルレンジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフ一リェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタロンフィルタ 1を組み合わせてなるものである光利得等化器 4と、 波長多重光を増幅する第 1の光増幅器 5及び第 2の光増幅器 6とを備え、 光利得 等化器 4は第 1、 第 2の両光増幅器 5、 6の間に配置され、 第 1の光増幅器 5は 光フアイバ増幅器である光増幅装置。
3 5 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記ェタロンフィルタ 1は夫々フリースべ クトルレンジが互いに異なるものであり、 少なくとも 1つのファイバグレーティ ング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための損失波長特性とエタ ロンフィルタ 1による損失波長特性との差として残るリップル成分を補償するも のである光利得等化器 4と、 波長多重光を増幅する第 1の光増幅器 5及び第 2の 光増幅器 6とを備え、 光利得等化器 4は第 1、 第 2の両光増幅器 5、 6の間に配 置され、 第 1の光増幅器 5は光ファイバ増幅器である光増幅装置。
3 6 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記複数のエタロンフィルタ 1の夫々はフ リースペクトルレンジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフーリェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタロンフィルタ 1を組み合わせてなるものであり、 少なくとも 1つの ファイバグレーティング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための 損失波長特性とエタロンフィルタ 1による損失波長特性との差として残るリップ ル成分を補償するものである光利得等化器 4と、 波長多重光を増幅する第 1の光 増幅器 5及び第 2の光増幅器 6とを備え、 光利得等化器 4は第 1、 第 2の両光増 幅器 5、 6の間に配置され、 第 1の光増幅器 5は光ファイバ増幅器である光増幅
3 7 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記エタロンフィルタ 1は夫々フリ一スぺ クトルレンジが互いに異なるものである光利得等化器 4と、 波長多重光を増幅す る第 1の光増幅器 5とを備え、 第 1の光増幅器 5は光半導体増幅器である光増幅
3 8 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記複数のエタロンフィルタ 1の夫々はフ リ一スペクトルレンジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフーリェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタロンフィルタ 1を組み合わせてなる光利得等化器 4と、 波長多重光 を増幅する第 1の光増幅器 5とを備え、 第 1の光増幅器 5は光半導体増幅器であ る光増幅装置。
3 9 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ K力する構成とし、 前記エタロンフィルタ 1は夫々フリースべ クトルレンジが互いに異なるものであり、 少なくとも 1つのファイバグレーティ ング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための損失波長特性とエタ ロンフィルタ 1による損失波長特性との差として残るリップル成分を補償するも のである光利得等化器 4と、 波長多重光を増幅する第 1の光増幅器 5とを備え、 第 1の光増幅器 5は光半導体増幅器である光増幅装置。
4 0 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記複数のエタロンフィルタ 1の夫々はフ リースペクトルレンジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフ一リェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタロンフィルタ 1を組み合わせてなるものであり、 少なくとも 1つの ファイバグレーティング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための 損失波長特性とエタロンフィルタ 1による損失波長特性との差として残るリップ ル成分を補償するものである光利得等化器 4と、 波長多重光を増幅する第 1の光 増幅器 5とを備え、 第 1の光増幅器 5は光半導体増幅器である光増幅装置。
4 1 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ 力する構成とし、 前記エタ口ンフィル夕 1は夫々フリ一スぺ クトルレンジ力互 に異なるものである光利得等化器 4と、 波長多重光を増幅す る第 1の光増幅器 5とを備え、 光利得等化器 4は第 1の光増幅器 5の前段又は後 段に配置され、 第 1の光増幅器 5は光半導体増幅器である光増幅装置。
4 2 . 複数のェタコンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ 3力する構成とし、 前記複数のエタロンフィルタ 1の夫々はフ ハジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフーリェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性の二タロンフィルタ 1を組み合わせてなる光利得等化器 4と、 波長多重光 を増幅する第 1の光増幅器 5とを備え、 光利得等化器 4は第 1の光増幅器 5の前 段又は後段に配置され、 第 1の光増幅器 5は光半導体増幅器である光増幅装置。
4 3 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電汰多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記エタロンフィルタ 1は夫々フリースべ クトルレンジが互いに異なるものであり、 少なくとも 1つのファイバグレーティ ング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための損失波長特性とエタ ロンフィルタ 1による損失波長特性との差として残るリップル成分を補償するも のである光利得等化器 4と、 波長多重光を増幅する第 1の光増幅器 5とを備え、 光利得等化器 4は第 1の光増幅器 5の前段又は後段に配置され、 第 1の光増幅器 5は光半導体増幅器である光増幅装置。
4 4 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電休多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタ ΰンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ 力する構成とし、 前記複数のエタロンフィルタ 1の夫々はフ リースへクトルレンジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特¾をフー :.'ェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のニタロンフィルタ 1を組み合わせてなるものであり、 少なくとも 1つの ファイバグレーテノング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための 損失波長特性とエタロンフィルタ 1による損失波長特性との差として残るリップ ル成分を補償するものである光利得等化器 4と、 波長多重光を増幅する第 1の光 増幅器 5とを備え、 光利得等化器 4を第 1の光増幅器 5の前段又は後段に配置し 、 第 1の光増幅器 5は光半導体増幅器である光増幅装置。
4 5 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記エタ口ンフィルタ 1は夫々フリ一スぺ クトルレンジが互いに異なるものである光利得等化器 4と、 波長多重光を増幅す る第 1の光増幅器 5及び第 2の光増幅器 6とを備え、 第 1の光増幅器 5は光半導 体増幅器である光増幅装置。
4 6 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記複数のエタロンフィルタ 1の夫々はフ り一スペクトルレンジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフーリェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタロンフィルタ 1を組み合わせてなるものである光利得等化器 4と、 波長多重光を増幅する第 1の光増幅器 5及び第 2の光増幅器 6とを備え、 第 1の 光増幅器 5は光半導体増幅器である光増幅装置。
4 7 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレー子ィング 2又は誘電体多層膜フィ儿タ 3 に透過して外部へ出力する構成とし、 前記エタロンフィルタ 1は夫々フリースべ クトルレンジが互いに異なるものであり、 少なくとも 1つのファイバグレーティ ング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための損失波長特性とエタ ロンフィルタ 1による損失波長特性との差として残るリップル成分を補償するも のである光利得等化器 4と、 波長多重光を増幅する第 1の光増幅器 5及び第 2の 光増幅器 6とを備え、 第 1の光増幅器 5は光半導体増幅器である光増幅装置。
4 8 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記複数のエタロンフィルタ 1の夫々はフ リースペクトルレンジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフ一 : Jェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタ口ンフィルタ 1を組み合わせてなるものであり、 少なくとも 1つの ファイバグレーティング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための 損失波長特性とエタロンフィルタ 1による損失波長特性との差として残るリップ ル成分を補償するものである光利得等化器 4と、 波長多重光を増幅する第 1の光 増幅器 5及び第 2の光増幅器 6とを備え、 第 1の光増幅器 5は光半導体増幅器で ある光増幅装置。
4 9 . 複数のエタロンフィルタ 1と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィ儿夕 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記エタロンフィルタ 1は夫々フリースべ クトルレンジが互 に異なるものである光利得等化器 4と、 波長多重光を増幅す る第 1の光増幅器 5及び第 2の光増幅器 6とを備え、 光利得等化器 4は第 1、 第 2の両光増幅器 5、 6の間に配置され、 第 1の光増幅器 5は光半導体増幅器であ る光増幅装置。
5 0 . 複数のェタコンフィルタ 1 と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1 とファイバグレーティ ング 2又は誘電体多層膜フィルタ 3 に透過して外部へ 力する構成とし、 前記複数のエタロンフィルタ 1の夫々はフ リースペクトルレンジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフー: 'ェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタロ フィルタ 1を組み合わせてなるものである光利得等化器 4と、 波長多重光を増幅する第 1の光増幅器 5及び第 2の光増幅器 6とを備え、 光利得 等化器 4は第 1、 第 2の両光増幅器 5、 6の間に配置され、 第 1の光増幅器 5は 光半導体増幅器である光増幅装置。
5 1 . 複数のェタコンフィルタ 1 と少なくとも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィ几タ 1 とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ 力する構成とし、 前記エタロンフィルタ 1は夫々フリースべ クトルレンジが互'. '、に異なるものであり、 少なくとも 1つのファイバグレーティ ング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための損失波長特性とエタ ロンフィルタ 1:こよる損失波長特性との差として残るリッブル成分を補償するも のである光利得等'七器 4と、 波長多重光を増幅する第 1の光増幅器 5及び第 2の 光増幅器 6とを備え、 光利得等化器 4は第 1、 第 2の両光増幅器 5、 6の間に配 置され、 第 1の光増幅器 5は光半導体増幅器である光増幅装置。
5 2 . 複数のェタコンフィルタ 1 と少なく とも 1つのファイバグレーティング 2 又は誘電体多層膜フィルタ 3を縦列に配置して、 外部からの光をこれら縦列され たエタロンフィルタ 1とファイバグレーティング 2又は誘電体多層膜フィルタ 3 に透過して外部へ出力する構成とし、 前記複数のエタロンフィル夕 1の夫々はフ リースペクトルレンジが互いに異なるものであり、 且つ、 利得平坦化のための損 失波長特性をフーリェ級数展開して得られる項と同じ振幅及び周期の正弦波状損 失特性のエタロンフィルタ 1を組み合わせてなるものであり、 少なくとも 1つの ファイバグレーティング 2又は誘電体多層膜フィルタ 3は、 利得平坦化のための 損失波長特性とエタロンフィルタ 1による損失波長特性との差として残るリップ ル成分を補償するものである光利得等化器 4と、 波長多重光を増幅する第 1の光 増幅器 5及び第 2の光増幅器 6とを備え、 光利得等化器 4は第 1、 第 2の両光増 幅器 5、 6の間に配置され、 第 1の光増幅器 5は光半導体増幅器である光増幅装
5 3 . 互いに異なる複数の波長の信号光を送出する光送信部 7と、 複数の信号光 を合波してなる波長多重光を光伝送路 8の一端に出力する光合波器 9とを含む光 送信装置 1 0と、 前記光伝送路 8の他端から出力される波長多重光を波長毎の信 号光に分波する光分波器 1 1と、 分波された各信号光を夫々電気信号に変換する 光受信部 1 2とを含む光受信装置 1 3と、 前記光送信装置 1 0と光受信装置 1 3 との間に配置されて、 前記光伝送路 8を伝播する波長多重光を増幅する少なくと も 1以上の光増幅装置 1 4とを備え、 当該光増幅装置 1 4は請求の範囲第 5項〜 第 5 2項のいずれかに記載の光増幅装置である波長分割多重伝送装置。
PCT/JP1999/003592 1998-07-07 1999-07-02 Egaliseur de gain optique et amplificateur optique et emetteur multiplex en longueur d'onde comportant tous deux ledit egaliseur de gain optique WO2000002291A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/486,562 US6377390B1 (en) 1998-07-07 1999-07-02 Optical gain equalizer, and optical amplifier and wavelength-division multiplex transmitter both comprising the optical gain equalizer
EP99926911A EP1033794A4 (en) 1998-07-07 1999-07-02 OPTICAL GAIN EQUALIZER AND OPTICAL AMPLIFIER AND WAVELENGTH MULTIPLEX TRANSMITTER HAVING TWO SAID OPTICAL GAIN EQUALIZER
CA002303219A CA2303219A1 (en) 1998-07-07 1999-07-02 Optical gain equalizer, and optical amplifier and wavelength-division multiplex transmitter both comprising the optical gain equalizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/191923 1998-07-07
JP19192398 1998-07-07

Publications (2)

Publication Number Publication Date
WO2000002291A1 true WO2000002291A1 (fr) 2000-01-13
WO2000002291A8 WO2000002291A8 (fr) 2000-03-23

Family

ID=16282699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003592 WO2000002291A1 (fr) 1998-07-07 1999-07-02 Egaliseur de gain optique et amplificateur optique et emetteur multiplex en longueur d'onde comportant tous deux ledit egaliseur de gain optique

Country Status (4)

Country Link
US (1) US6377390B1 (ja)
EP (1) EP1033794A4 (ja)
CA (1) CA2303219A1 (ja)
WO (1) WO2000002291A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001033265A1 (fr) * 1999-10-29 2001-05-10 The Furukawa Electric Co., Ltd. Element optique a reseau de diffraction

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171016A (ja) * 2000-11-30 2002-06-14 Sumitomo Electric Ind Ltd 光フィルタ、光増幅システムおよび光通信システム
US6900932B2 (en) * 2001-09-20 2005-05-31 Bayspec, Inc. Optical gain flattening filter using VPG-based optical elements
TW584742B (en) * 2002-01-25 2004-04-21 Alps Electric Co Ltd Multilayer film optical filter, method of producing the same, and optical component using the same
JP4234549B2 (ja) * 2002-09-24 2009-03-04 古河電気工業株式会社 光モジュール
GB0410233D0 (en) * 2004-05-10 2004-06-09 Bookham Technology Plc Gain-flattening apparatus and methods and optical amplifiers employing same
US7602545B2 (en) 2004-05-10 2009-10-13 Bookham Technology, Plc Gain-flattening apparatus and methods and optical amplifiers employing same
US7769295B2 (en) 2006-08-25 2010-08-03 Bookham Technology Plc Dual beam splitter optical micro-components and systems and methods employing same
JP5626083B2 (ja) * 2011-04-11 2014-11-19 富士通株式会社 光増幅装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09244079A (ja) * 1996-03-07 1997-09-19 Fujitsu Ltd 利得等化器及び光伝送システム
JPH09289349A (ja) * 1996-04-23 1997-11-04 Nec Corp 光イコライザおよびこれを用いた光増幅装置と波長多重光伝送装置
JPH10227910A (ja) * 1997-02-13 1998-08-25 Kokusai Denshin Denwa Co Ltd <Kdd> 光フィルタ装置
JPH1168703A (ja) * 1997-08-11 1999-03-09 Fujitsu Ltd 波長多重光増幅伝送システム及び光増幅器
JPH1187812A (ja) * 1997-09-12 1999-03-30 Fujitsu Ltd 利得等化器及び該利得等化器を備えた光伝送システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2728975A1 (fr) * 1994-12-28 1996-07-05 Alcatel Submarcom Filtre pour lumiere guidee et liaison optique incluant ce filtre
US5864424A (en) * 1997-05-19 1999-01-26 Hitachi, Ltd. Optical signal amplifying circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09244079A (ja) * 1996-03-07 1997-09-19 Fujitsu Ltd 利得等化器及び光伝送システム
JPH09289349A (ja) * 1996-04-23 1997-11-04 Nec Corp 光イコライザおよびこれを用いた光増幅装置と波長多重光伝送装置
JPH10227910A (ja) * 1997-02-13 1998-08-25 Kokusai Denshin Denwa Co Ltd <Kdd> 光フィルタ装置
JPH1168703A (ja) * 1997-08-11 1999-03-09 Fujitsu Ltd 波長多重光増幅伝送システム及び光増幅器
JPH1187812A (ja) * 1997-09-12 1999-03-30 Fujitsu Ltd 利得等化器及び該利得等化器を備えた光伝送システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1033794A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001033265A1 (fr) * 1999-10-29 2001-05-10 The Furukawa Electric Co., Ltd. Element optique a reseau de diffraction

Also Published As

Publication number Publication date
EP1033794A1 (en) 2000-09-06
CA2303219A1 (en) 2000-01-13
US6377390B1 (en) 2002-04-23
EP1033794A4 (en) 2002-10-02
WO2000002291A8 (fr) 2000-03-23

Similar Documents

Publication Publication Date Title
US5933270A (en) Optical equalizer
US5410624A (en) Filter for a wavelength division multiplex system
JPH09289349A (ja) 光イコライザおよびこれを用いた光増幅装置と波長多重光伝送装置
JPH09121203A (ja) 波長多重光伝送装置および波長多重光伝送システム
US6141130A (en) Spectral equalizer for multiplexed channels
KR20010041551A (ko) 분산 보상용 광 소자
US6400498B1 (en) Optical signal repeating and amplifying device and optical level adjusting device
US6160932A (en) Expandable wavelength division multiplexer based on interferometric devices
US6907167B2 (en) Optical interleaving with enhanced spectral response and reduced polarization sensitivity
WO1999000919A1 (en) Loop status monitor for determining the amplitude of component signals of a multi-wavelength optical beam
EP0914624A1 (en) Fiber optic sensor using wdm tap coupler
US6904240B1 (en) Optical multiplexing apparatus and optical multiplexing method
EP1009078B1 (en) Optical gain equalizer
JP2002518696A (ja) 光学伝播システムにおいて光学チャンネルをドロップするための方法及び装置
WO2000002291A1 (fr) Egaliseur de gain optique et amplificateur optique et emetteur multiplex en longueur d&#39;onde comportant tous deux ledit egaliseur de gain optique
US6954590B2 (en) Optical transmission systems and optical receivers and receiving methods for use therein
JPH11275020A (ja) 波長多重光伝送システム及び波長多重光伝送システムに使用される光デバイス用損失差補償器の設計方法並びに波長多重光伝送システムの構築方法
US6263128B1 (en) Fiber unbalanced Mach-Zehnder interferometers with flat-top spectral response for application in wavelength division multiplexers
US7130542B2 (en) Modular multiplexing/demultiplexing units in optical transmission systems
JPH0993200A (ja) 光増幅中継伝送装置
JP4590944B2 (ja) 波長多重伝送システム及び光送信装置並びに波長多重伝送方法
JP2000082858A (ja) 光利得等化器及びこれを用いた光増幅装置と波長分割多重伝送装置
WO1997034379A1 (fr) Systeme de communication optique
US6552845B2 (en) Optical gain equalizer and optical fiber transmission line
JP4062024B2 (ja) 光部品、光増幅器モジュールおよび光伝送システム。

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 09486562

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2303219

Country of ref document: CA

Ref country code: CA

Ref document number: 2303219

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1999926911

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: C1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: C1

Designated state(s): DE FR GB

CFP Corrected version of a pamphlet front page

Free format text: UNDER (72, 75) REPLACE THE EXISTING TEXT BY "(MIZUNO, KAZUYO)(JP/JP); THE FURUKAWA ELECTRIC CO., LTD., 6-1, MARUNOUCHI 2-CHOME, CHIYODAKU, TOKYO 100-8322 (JP). (OZAWA, SHYOICHI)(JP/JP); THE FURUKAWA ELECTRIC CO., LTD., 6-1, MARUNOUCHI 2-CHOME, CHIYODA-KU, TOKYO 100-8322 (JP). (ASO, OSAMU)(JP/JP); THE FURUKAWA ELECTRIC CO., LTD., 6-1, MARUNOUCHI 2-CHOME, CHIYODA-KU, TOKYO 100-8322 (JP). (NAMIKI, SHU)(JP/JP); THE FURUKAWA ELECTRIC CO., LTD., 6-1, MARUNOUCHI 2-CHOME, CHIYODA-KU, TOKYO 100-8322 (JP). (OHTA, IKUO)(JP/JP); THE FURUKAWA ELECTRIC CO., LTD., 6-1, MARUNOUCHI 2-CHOME, CHIYODA-KU, TOKYO 100-8322 (JP). (IRIE, YUICHIRO)(JP/JP); THE FURUKAWA ELECTRIC CO., LTD., 6-1, MARUNOUCHI 2-CHOME, CHI

WWP Wipo information: published in national office

Ref document number: 1999926911

Country of ref document: EP

REF Corresponds to

Ref document number: 10081843

Country of ref document: DE

Date of ref document: 20020814

Format of ref document f/p: P

WWW Wipo information: withdrawn in national office

Ref document number: 1999926911

Country of ref document: EP