WO2000003273A1 - Ecran filtrant et afficheur ainsi equipe - Google Patents

Ecran filtrant et afficheur ainsi equipe Download PDF

Info

Publication number
WO2000003273A1
WO2000003273A1 PCT/JP1999/003593 JP9903593W WO0003273A1 WO 2000003273 A1 WO2000003273 A1 WO 2000003273A1 JP 9903593 W JP9903593 W JP 9903593W WO 0003273 A1 WO0003273 A1 WO 0003273A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transparent
liquid crystal
distribution control
display device
Prior art date
Application number
PCT/JP1999/003593
Other languages
English (en)
French (fr)
Inventor
Masaya Adachi
Makoto Tsumura
Ikuo Hiyama
Tetsuro Minemura
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to EP99926912A priority Critical patent/EP1098209A1/en
Priority to US09/743,495 priority patent/US6650472B1/en
Priority to KR10-2004-7007883A priority patent/KR100452662B1/ko
Publication of WO2000003273A1 publication Critical patent/WO2000003273A1/ja
Priority to US10/669,052 priority patent/US6943947B2/en
Priority to US11/222,777 priority patent/US7173760B2/en
Priority to US11/702,537 priority patent/US7391568B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/10Projectors with built-in or built-on screen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • G02B3/0068Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between arranged in a single integral body or plate, e.g. laminates or hybrid structures with other optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/025Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/027Mountings, adjusting means, or light-tight connections, for optical elements for lenses the lens being in the form of a sphere or ball
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/604Polarised screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3167Modulator illumination systems for polarizing the light beam
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13318Circuits comprising a photodetector
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133626Illuminating devices providing two modes of illumination, e.g. day-night
    • G02F1/133627Projection-direct viewing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n

Definitions

  • the present invention relates to a light distribution control element and a display device having the same.
  • the present invention relates to a light distribution control element that can be used as a transmission screen member of a rear projection display device or a viewing angle widening member such as a liquid crystal display device, and a display device using the same.
  • a rear projection type display device having a projection device using a liquid crystal display device such as TN (twisted nematic) liquid crystal as a two-dimensional optical switch device is a rear projection type device using a CRT projection tube.
  • the dot matrix display enables high-definition display without blurring to the periphery of the screen, and is expected to be the favorite of high-resolution digital television.
  • FIG. 11 is a schematic sectional view of a rear projection display device. Projection light 704 emitted from the projection device 701 is applied to the transmission screen 703 via the mirror 702, and an image is displayed on the front thereof.
  • the transmission type screen 703 usually comprises a Fresnel lens sheet 1442 and a lenticular lens sheet 1441, and the Fresnel lens sheet 14 Numeral 02 is an optical component having the same function as the convex lens, and has a function to bend the direction of the principal ray from the projection device 701 toward the observer to widen the suitable viewing range.
  • Lenticular lens 1 4 0 1 is limited projection light from projection device 7 0 1 The purpose is to obtain a bright image by effectively distributing the light in the observation range of the observer.
  • FIG. 36 is a schematic sectional view showing an example of a lenticular lens
  • FIG. 37 is a schematic perspective view of the lenticular lens.
  • the lenticular lens 1401 has a configuration in which a plurality of cylindrical lens-shaped lenses 1501 are arranged in one direction, and a black stripe 1502 is provided in a portion other than the light converging portion.
  • a lenticular lens is arranged so that its generating line is perpendicular to the display surface, so that a wide viewing angle can be obtained in the horizontal direction. Therefore, since the light distribution in the vertical direction is only diffused by the diffusion material mixed in the base material of the lenticular lens or the surface, the vertical viewing angle is much narrower than in the horizontal direction. In addition, since the lenticular lens has linear lenses arranged regularly, moiré interference fringes are likely to occur in the image.
  • Japanese Patent Application Laid-Open No. 2-77736 discloses a configuration in which a spherical lens 1602 is spread over a transparent substrate 1601 as shown in FIG. 39 and fixed with a transparent resin. A transmission screen is disclosed.
  • a mold since a mold is not used, there is no limitation on the size in manufacturing, and a transparent screen having a large screen without a seam can be realized.
  • light entering from the spherical lens side converges due to the lens effect of the spherical lens and diverges isotropically, so that a wide viewing angle can be obtained in both the horizontal and vertical directions.
  • the optical screen has a structure in which optical beads are fixed on a transparent substrate via a light-absorbing adhesive layer, and the surface of the optical beads opposite to the transparent substrate is transparent-coated. Lean has been announced.
  • Japanese Patent Application Laid-Open No. Hei 9-318801 discloses a flat type structure in which microsphere-shaped transparent beads are fixed on a transparent substrate by a colored hot-melt adhesive layer and a transparent hot-melt adhesive layer. A lens is disclosed. According to these structures, an isotropic viewing angle can be obtained in both the horizontal and vertical directions due to the lens effect of the beads, as in Japanese Patent Application Laid-Open No. 2-77736. In addition, unnecessary light entering from the outside is absorbed by the light absorbing adhesive layer (or colored hot melt adhesive layer), so that a high contrast ratio can be obtained even in a bright environment. You. Also, high resolution can be achieved relatively easily by reducing the diameter of the peas.
  • the above-mentioned conventional flat lens (hereinafter referred to as a light distribution control element) was manufactured as follows.
  • a transparent adhesive layer consisting of a polyester hot-melt adhesive on the surface of a transparent polyethylene terephthalate (PET) resin film with a thickness of 12 ⁇ as the transparent substrate 5 ⁇ m, and 4.5 ⁇ of a colored adhesive layer formed by mixing 10 parts by weight of carbon black with the same polyester hot-melt adhesive and solidifying once. .
  • spherical glass transparent beads with a refractive index of 1.935 (wavelength 589.3 nm) and a diameter of 50 ⁇ are densely dispersed and placed, and the transparent adhesive layer and While heating and softening the colored adhesive layer, the transparent beads were pressed against the transparent substrate by a pressure plate to be embedded in and fixed to the colored adhesive layer and the transparent adhesive layer.
  • the thickness of the adhesive layer after fixation is about 21 ⁇ m including the transparent adhesive layer and the colored adhesive layer, and about 58% of the diameter of the transparent beads is exposed from the adhesive layer.
  • the fabricated light distribution control element is used as a two-dimensional optical switch element (light valve) as a transmission screen of a rear projection display device equipped with a projection device using a TN type liquid crystal display element.
  • a wide viewing angle of ⁇ 50 ° or more in both the horizontal and vertical directions (in this case, an angle at which the luminance becomes 1 to 2 with respect to the front luminance) was obtained.
  • Unnecessary light entering the light distribution control element from the side) was absorbed by the colored adhesive layer, and low-luminance black display was realized even in a bright environment.
  • An object of the present invention is to provide a light distribution control element which does not deteriorate the image quality due to the occurrence of the above-mentioned stripe pattern, and a display device using this light distribution control element, which has a high luminance, a high contrast ratio, and a wide viewing angle. It is here. Other purposes will become apparent from the following description. Disclosure of the invention
  • the present inventors conducted a more detailed study of the above-mentioned conventional light distribution control element in order to investigate the cause of the occurrence of a stripe pattern and the change in chromaticity.
  • the stripe pattern is generated when polarized light is incident on the light distribution control element, and a different phase difference is generated in light traveling at different angles in the transparent substrate due to the optical anisotropy of the transparent substrate.
  • the difference between the energy transmittances of the P-polarized light component and the s-polarized light component of the light emitted from the transparent substrate was generated in combination.
  • the light distribution characteristics of the light distribution control element change depending on the polarization state of the incident light. Therefore, they found that this was the cause of the chromaticity change.
  • the gist of the present invention reached on the basis of the above is as follows.
  • a transparent base material a plurality of minute lenses densely arranged on one surface of the transparent base material, and a light absorbing layer having a minute opening at a substantially focal position of the minute lens.
  • the transparent substrate is made of a substantially optically isotropic transparent body or a uniaxial optically anisotropic transparent body. .
  • a rear projection display device including a projection device that projects an optical image, and projection light from the projection device that enters from the back surface and a transmission screen that displays the projection light on the front surface
  • the projection device Comprises a light source, a two-dimensional optical switch element for modulating light from the light source into an optical image in accordance with image information, and a single-tube projection device having a projection lens for enlarging and projecting the modulated optical image,
  • the modulated optical image emitted from the projection device is incident on the transmission screen, the polarization state of the optical image light formed by the two-dimensional optical switch element is substantially matched over the entire visible wavelength range.
  • the transmission type screen has a polarization state aligning means, and the transmission type screen comprises: a transparent substrate; a large number of minute lenses densely arranged on one surface of the transparent substrate; and a substantially focal position of the minute lens.
  • a light-distribution control element comprising a light-absorbing layer, wherein the transparent substrate is made of an optically isotropic transparent body, or a uniaxial optically-anisotropic transparent body;
  • a rear-projection display device comprising: a light beam collimating means provided on an incident light incident side of an element.
  • the polarization state of the projection light (optical image light) incident on the light distribution control element is the same in the entire visible wavelength range. Therefore, the light distribution characteristics of the light distribution control element Coloring does not occur due to the polarization dependence of light, and high-quality display with no change in chromaticity even when viewed from an oblique direction can be realized.
  • the image light incident on the light distribution control element is substantially parallel and substantially incident at an incident angle of 0 °, a decrease in transmittance at the light distribution control element is suppressed and a bright display is performed. An image is obtained.
  • the two-dimensional optical switch element is a two-dimensional optical switch element that performs display using polarized light, and the polarization state of optical image light formed by the two-dimensional optical switch element is electrically monitored.
  • a polarization state conversion means for converting the vibration direction of the vector into any one of linearly polarized light in a horizontal direction, linearly polarized light in a vertical direction, circularly polarized light, and elliptically polarized light with respect to the transmission type screen display surface.
  • the polarization state of the optical image light incident on the light distribution control element can be controlled, the polarization dependence of the light distribution characteristics of the light distribution control element can be maintained without changing the configuration of the transmission screen.
  • a rear-projection display device that can easily change the viewing angle characteristics can be realized.
  • an observer sensing unit that senses the presence or absence of an observer, and an observer position that determines a horizontal and vertical observer position based on a sensing signal of the observer sensing unit.
  • the above rear projection display device comprising: a determination unit; and a control signal output unit that outputs a control signal to the polarization conversion element based on the information of the observer position determination unit.
  • a single tube including a light source, a two-dimensional optical switch element for modulating light from the light source into an optical image according to image information, and a projection lens for enlarging and projecting the modulated optical image.
  • a transmission type screen wherein the transmission type screen comprises: a transparent substrate; a plurality of minute lenses densely arranged on one surface of the transparent substrate; and a substantially focal position of the minute lens.
  • a light distribution control element having a light absorption layer having a minute opening; and a light beam collimating means disposed on a light incident side of the light distribution control element.
  • a rear-projection display device characterized by having a depolarizing means for making the projected light incident on the screen unpolarized.
  • the optical image light incident on the light distribution control element constituting the transmission screen is non-polarized, the chromaticity due to the polarization dependence of the light distribution characteristic of the light distribution control element is obtained. No change occurs.
  • the optical anisotropy of the transparent base material of the light distribution control element due to the optical anisotropy of the transparent base material of the light distribution control element, a stripe pattern generated upon incidence of polarized light does not occur, so that a beautiful image without deterioration in image quality can be obtained.
  • an optically anisotropic transparent material is used as the transparent substrate, the image quality is not degraded, so that the range of materials to be used is widened, and a more inexpensive and high-intensity light distribution control element is used.
  • a transmission screen consisting of
  • a backlight device that emits substantially parallel light is arranged on the back surface of the pair of transparent substrates, and on a light emitting surface side of the pair of transparent substrates, a transparent base material, and on one surface of the transparent base material, A large number of minute lenses closely arranged;
  • a light absorbing layer having a fine opening at a substantially focal position of the lens, and the transparent substrate is made of an optically substantially isotropic transparent body, or a uniaxial optically anisotropic transparent body.
  • a liquid crystal display device comprising a light distribution control element.
  • a polarizer is arranged on the light incident surface of the pair of transparent substrates, an analyzer and a light distribution control element are arranged on the light emitting surface in order from the transparent substrate side, and a linearly polarized light of the analyzer is further arranged.
  • the liquid crystal display device wherein the transmission axis is arranged in a horizontal direction with respect to the display surface.
  • the viewing angle in the horizontal direction is wider than that in the vertical direction with respect to the display surface, and limited light is effective for the observer. Can be allocated to
  • a polarizer is arranged on the light incident surface of the pair of transparent substrates, and an analyzer and a light distribution control element are arranged on the light emitting surface in order from the transparent substrate side. Further, the analyzer and the light distribution are arranged.
  • the polarization state of the light incident on the light distribution control element can be arbitrarily changed by the phase plate disposed between the analyzer and the light distribution control element, so that it is only necessary to change the phase difference plate.
  • the phase plate disposed between the analyzer and the light distribution control element By utilizing the polarization dependence of the light distribution characteristics of the light distribution control element, a light with a desired viewing angle can be obtained.
  • FIG. 1 is a schematic sectional view of a light distribution control element of the present invention.
  • FIG. 2 is a schematic perspective view of the light distribution control element of the present invention.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of a method for manufacturing a light distribution control element of the present invention.
  • FIG. 4 is an isoluminance diagram showing light emission (light distribution) characteristics of a conventional light distribution control element when polarized light is incident.
  • FIG. 5 is an explanatory diagram of a coordinate system of an isoluminance diagram.
  • FIG. 6 is an explanatory diagram of a circular tangent cross section of an index ellipsoid.
  • FIG. 7 is an explanatory diagram of an optical axis of a polyethylene terephthalate film.
  • FIG. 8 is a graph showing the relationship between the light incident angle and the energy transmittance of a polyethylene terephthalate film.
  • FIG. 9 is an isoluminance diagram showing light emission characteristics of the light distribution control element of the present invention when linearly polarized light is incident.
  • FIG. 10 is a graph showing light emission (light distribution) characteristics of the light distribution control element of the present invention when linearly polarized light is incident.
  • FIG. 11 is a schematic sectional view of a rear projection display device of the present invention.
  • FIG. 12 is a schematic sectional view of a projection device according to a rear projection display device of the present invention.
  • FIG. 13 is a schematic sectional view of a two-dimensional optical switch of the projection device according to the rear projection display device of the present invention.
  • FIG. 14 is a schematic sectional view of a transmission screen according to the rear projection display device of the present invention.
  • FIG. 15 is a schematic diagram for explaining the light incident angle dependence of the transmittance of the light distribution control element of the present invention.
  • FIG. 16 is a graph showing an example of the relationship between the transmittance of the light distribution control element of the present invention and the light incident angle.
  • FIG. 17 is a schematic cross-sectional view of a polarization state aligning means used in the projection device according to the rear projection display device of the present invention.
  • FIG. 18 is a schematic diagram for explaining the operation of the polarization state aligning means used in the projection device according to the rear projection display device of the present invention.
  • FIG. 19 is a schematic sectional view of a projection device according to the rear projection display device of the present invention.
  • FIG. 20 is a schematic cross-sectional view of a polarization conversion element used in the projection device according to the rear projection display device of the present invention.
  • FIG. 21 is a schematic diagram for explaining the operation of the polarization conversion element used in the projection device according to the rear projection display device of the present invention.
  • FIG. 22 is a schematic diagram for explaining the operation of the polarization conversion element used in the projection device according to the rear projection display device of the present invention.
  • FIG. 23 is a schematic diagram for explaining the operation of the polarization conversion element used in the projection device according to the rear projection display device of the present invention.
  • FIG. 24 is a schematic diagram for explaining the operation of the polarization conversion element used in the projection device according to the rear projection display device of the present invention.
  • FIG. 25 is a schematic sectional view of a polymer dispersed liquid crystal display element of the projection device according to the rear projection display device of the present invention.
  • FIG. 26 is a schematic diagram for explaining the operation of the polymer dispersion type liquid crystal display element.
  • FIG. 27 is a schematic diagram for explaining an optical system for performing display by a polymer dispersion type liquid crystal display element.
  • FIG. 28 is a schematic diagram for explaining an optical system for performing display by a polymer dispersion type liquid crystal display element.
  • FIG. 29 is a schematic cross-sectional view of a projection device according to the rear projection type display device of the present invention.
  • FIG. 30 is a schematic sectional view of a projection device according to the rear projection display device of the present invention.
  • FIG. 31 is a schematic sectional view of the liquid crystal display device of the present invention.
  • FIG. 32 is a schematic diagram for explaining the linearly polarized light transmission axes of the polarizer and the analyzer of the liquid crystal display device of the present invention.
  • FIG. 33 is a schematic sectional view of the liquid crystal display device of the present invention.
  • FIG. 34 is a schematic perspective view of the light distribution control element of the present invention.
  • FIG. 35 is a schematic perspective view of the light distribution control element of the present invention.
  • FIG. 36 is a schematic sectional view showing an example of a lenticular lens sheet.
  • FIG. 37 is a schematic perspective view showing an example of a lenticular lens sheet.
  • FIG. 38 is a schematic cross-sectional view showing an example of a conventional transmission screen.
  • FIG. 39 is a perspective view of a conventional transmission screen.
  • FIG. 40 is a schematic perspective view of a rear projection display device of the present invention.
  • FIG. 41 is an explanatory view exemplifying a divided area sensed by an observer sensing unit of the rear projection display device of the present invention.
  • FIG. 42 is an explanatory view exemplifying a divided area sensed by the observer sensing unit of the rear projection display device of the present invention.
  • FIG. 43 is a view for explaining effects of the rear projection display device of the present invention.
  • FIG. 44 is a view for explaining effects of the rear projection display device of the present invention.
  • FIG. 1 is a schematic sectional view showing an example of the light distribution control element of the present invention
  • FIG. 2 is a schematic perspective view thereof.
  • This light distribution control element includes a transparent base material 101, a hot melt adhesive layer 104 formed on the surface thereof, and a plurality of micro-spherical transparent beads fixed to the adhesive layer 104. It consists of 105.
  • the transparent base material 101 may be a plate-shaped base material having rigidity itself, or a film-shaped base material, but may be optically substantially isotropic. It is important to use a uniaxially anisotropic transparent body having an optical axis in a direction parallel to the plate surface or the film surface.
  • a film is formed by a glass plate, an optically isotropic transparent plate such as an injection-molded acrylic resin plate, or a casting method or an extrusion method.
  • Optically isotropic such as polycarbonate resin, polyvinyl chloride resin, polyester resin, cellulose resin, polyvinyl alcohol resin, polyolefin resin, etc., which is uniaxially stretched, or the film surface A uniaxially anisotropic transparent film having an optical axis parallel to is used.
  • the hot melt adhesive layer 104 has a configuration in which a transparent layer 102 and a colored layer 103 are laminated in this order.
  • the adhesive layer has sufficient adhesive strength to the transparent substrate 101 and the transparent beads 105.
  • a hot melt adhesive made of an acrylic resin, a polyester resin, a polyamide resin, a polyurethane resin, or the like can be used.
  • the coloring layer 103 is formed by dispersing a pigment such as carbon black on the basis of these adhesives, or by coloring with a dye. .
  • Transparent beads 105 are made of glass or optically isotropic transparent resin
  • the spherical beads are used, and the higher the refractive index, the larger the angle of refraction of the light incident on the transparent beads, so that the light emission angle (viewing angle) of the light distribution control element becomes wider.
  • the brightness at the front is reduced by that much, and the reflection on the surface and the reflection at the interface between the transparent substrate 101 and air are increased, so that the total light transmittance is reduced.
  • the light is incident on the transparent beads. It is advantageous to reduce the convergent area of the light on the light exit surface side. In this case, if the medium on the light incident side of the transparent beads is air, the convergence area on the light exit surface can be made sufficiently small by setting the refractive index to about 1,6 to 2.1. Further, by setting the refractive index to 1.9 to 2.1, it is possible to condense light with smaller aberration.
  • the refractive index of the transparent piece 105 is selected based on these conditions so as to conform to the characteristics required for the light distribution control element, that is, the specifications of the viewing angle and the brightness (gain). Also, if necessary, transparent beads having different refractive indices can be mixed and used.
  • the diameter of the transparent beads 105 directly affects the resolution of the displayed image. That is, the image displayed on the light distribution control element cannot be resolved to a diameter of the transparent piece 105 or smaller. Therefore, the diameter of the transparent beads needs to be smaller than the pixel of the image to be displayed on the light distribution control element.
  • the diameter of the transparent beads 105 is 12 or less of the pixel pitch of the display image, and practically, it is preferably about 20 to 100 m.
  • the dispersion of the particle diameter is as small as possible. In practice, if the variation in particle size is kept within 10%, the function as a light distribution control element is satisfied.
  • the transparent beads 105 are desirably free of air bubbles, since any air bubbles inside will cause a decrease in transmittance.
  • the colored adhesive layer 103 is formed by melting the transparent adhesive layer 102 at a high temperature. In this case, the temperature is reduced by forced cooling or natural cooling.
  • the solvent is preferably evaporated or solidified by drying in a dryer. .
  • a heating means such as a thermostat, an infrared heater, etc.
  • the burying depth of the transparent beads 105 in the hot-melt adhesive layer 104 is preferably set so that 50 to 80% of the diameter of the beads is exposed. If the amount is too small, the amount of light incident on the transparent beads 105 decreases due to absorption by the colored adhesive layer, and the transmittance decreases. In addition, if the amount of exposure is too large, the adhesion of the beads becomes insufficient.
  • the light distribution control element of the present invention only one layer of the transparent beads 105 is dispersed and arranged at almost the maximum packing density, and at least half of the diameter of the hot-melt adhesive layer 104 is formed. From this, it is possible to obtain one that is exposed and fixed to the light incident side.
  • the light distribution control element 100 has one layer of transparent beads 105 dispersed on the light incident surface at almost the maximum packing density, and a hot-melt adhesive having at least half the diameter of the beads. It is exposed to the light incident side from layer 104 and fixed.
  • the parallel incident light 106 which is perpendicularly incident on the light distribution control element 100 is partially absorbed by the colored adhesive layer 103 in the gap between the transparent beads 105, Most is incident on the transparent beads 105.
  • the incident light converges with the transparent beads 105 while being converged by the refraction of the transparent beads 105.
  • the light passes through the opening formed in the contact portion with the agent layer 102 and exits while transmitting and diverging through the transparent substrate 101.
  • the light incident on the transparent beads is converged by the lens effect of the transparent beads and diverges isotropically, so that a light distribution control element having an isotropic and wide viewing angle can be obtained.
  • Unnecessary light 107 coming from the outside is absorbed by the colored adhesive layer 102 so that the unnecessary light is not observed as stray light. Therefore, even in a bright environment, the effect of reducing stray light due to external unnecessary light is high, and a light distribution control element that is bright even when viewed from any angle by an observer and has isotropic viewing angle characteristics can be obtained.
  • FIG. 4 is an isoluminance diagram showing the light emission characteristics of a conventional light distribution control element (with no consideration given to the problem of the present invention) when polarized light is incident.
  • This isoluminance diagram shows the maximum luminance of 100% in the coordinate system composed of the emission angle and the azimuth angle shown in Fig. 5, and shows the points at which the luminance becomes equal at 10% intervals. It is.
  • the central part indicates the emission angle of 0 ° (front), and the dotted concentric circles indicate the emission angles (10 ° intervals). Also, the azimuth angle is set to 0 ° in the downward direction of the drawing, and is displayed so as to increase counterclockwise.
  • the conventional light distribution control element used for this measurement used a transparent polyethylene terephthalate (PET) film having a thickness of 12 ⁇ as the transparent substrate 101.
  • PET polyethylene terephthalate
  • On its surface a transparent adhesive layer made of a polyester hot-melt adhesive of 5 m, and on top of that, a colored adhesive obtained by blending 10 parts by weight of polyester hot-melt adhesive with bonbon black.
  • a layer 4.5 im is formed, on which spherical glass transparent beads having a refractive index of 1.935 (wavelength 588.9 nm) and a diameter of 50 ⁇ are densely dispersed and arranged. It is buried and fixed in the agent layer.
  • the thickness of the adhesive layer after fixing the transparent beads was about 21 m in total of the transparent layer and the colored layer, and about 58% of the diameter of the transparent beads was exposed from the adhesive layer.
  • a biaxially stretched PET film was used as the transparent substrate 101. This is because the biaxially stretched film has markedly improved physical properties, such as improved tensile strength and impact strength, improved transparency and operating temperature range, compared to the unstretched film.
  • PET film has good adhesion to glass-based transparent beads and has good adhesion to polyester-based hot-melt adhesive.
  • the above-mentioned hot-melt adhesive solvent: toluene
  • a biaxially stretched PET film was used for the transparent substrate, but in general, the biaxially stretched film has three main refractive indices (directions perpendicular to the film surface: Z-axis direction, parallel to the film surface). (Directions perpendicular to each other: X-axis and Y-axis directions) are different from each other.
  • a substance whose cross-sectional shape is circular and the direction in which refractive index anisotropy does not occur is determined in two directions. It is.
  • the direction of this light is called an optical axis. Since the optical axis has no refractive index anisotropy, there is no phase difference in polarized light traveling parallel to the optical axis.
  • the light that travels along the optical axis in the PET film is refracted at the interface with air and exits at an exit angle of 41.6 °, so the luminance fluctuation near the exit angle of 40 ° shown in Fig. 4
  • the approximate center position corresponds to this optical axis.
  • the state of polarization that is, the p-polarized light component parallel to the light incident surface at the PET film light emission side interface
  • the ratio of the vertical s-polarized light component changes. In other words, for light traveling in a direction different from the optical axis direction, light with a large amount of p-polarized component and light with a large amount of s-polarized component appear alternately according to the magnitude of the deviation from the optical axis. .
  • FIG. 8 is a graph illustrating the difference in energy transmittance between p-polarized light and s-polarized light, and is a graph showing the relationship between the light incident angle and the energy transmittance when light travels from the PET film into the air.
  • the light incident on the minute lens converges and travels at various angles inside the transparent substrate while diverging. Due to the difference in the phase difference based on the difference in the traveling angle of the light in the light, the uneven brightness (change) of the emitted light is very likely to occur.
  • the transparent substrate 101 be an optically substantially isotropic one or a uniaxially anisotropic one having an optical axis parallel to the film surface. It is a feature. Therefore, the polarized light incident on the light distribution control element converges due to the transparent beam and travels through the transparent substrate at various angles while diverging. However, since the transparent substrate is optically isotropic. However, there is no difference in the phase difference depending on the traveling angle, and the polarization state, that is, the ratio of the p-polarized component and the s-polarized component hardly changes depending on the output angle, so that no stripe pattern occurs.
  • the polarized light incident on the light distribution control element is linearly polarized light
  • the transparent substrate is a uniaxially anisotropic substance having an in-plane optical axis
  • the vibration direction of the incident linearly polarized electric vector By making the angle parallel or perpendicular to the slow axis of the transparent substrate, the difference in phase difference due to the angle of progress of polarized light passing through the transparent substrate can be reduced, and the occurrence of stripes can be suppressed. Can be.
  • the transparent substrate has optical anisotropy, if the difference in phase difference due to the traveling angle of light traveling in the transparent substrate is small and the change in polarization state is small, A change in the luminance is allowed without being visually recognized.
  • the maximum value of the difference in phase difference due to the difference in the traveling angle of light traveling inside the transparent substrate is 12 wavelengths or less, the change in the polarization state due to the angle of the light passing through the transparent substrate will be At most 100% of the P-polarized light component is s-polarized Since the light is only converted to 100% of the light, a change in the brightness is hardly visually recognized. More ideally, it is desirable to keep the maximum value of the difference in phase difference depending on the angle of light passing through the inside of the transparent base material to 14 wavelengths or less.
  • the optically substantially isotropic transparent substrate referred to here has a small change in the phase difference due to a difference in the traveling angle of light traveling in the transparent substrate, so that the change in the polarization state is also small. In other words, it indicates an isotropic degree to which no change in luminance is observed.
  • the optically substantially isotropic or uniaxially anisotropic transparent body having an in-plane optical axis is used as the transparent substrate, polarized light is incident.
  • the image quality does not deteriorate due to the occurrence of the stripe pattern, and a wide viewing angle can be obtained.
  • unnecessary light 107 incident on the light distribution control element 100 from the outside is absorbed by the colored adhesive layer 102, so that unnecessary light is not observed as stray light. Therefore, stray light due to external unnecessary light is reduced even in a bright environment.
  • the energy transmittance of the dielectric surface is different between p-polarized light and s-polarized light, the transmittance of the p-polarized component is high on the surface of the transparent beads 105 or the transparent substrate 101, The transmittance of the light of the s-polarized component decreases. As a result, anisotropic light distribution characteristics of outgoing light occur depending on the polarization state of the incident light.
  • the viewing angle in a direction parallel to the vibration direction of the electric vector of the linearly polarized light is wider than in a direction orthogonal thereto.
  • vertical polarization can be achieved by injecting linearly polarized light with the vibration direction of the electric vector being horizontal to the light distribution control element.
  • the horizontal viewing angle can be larger than the horizontal viewing angle.
  • the vibration direction of the electric vector of the incident linearly polarized light can be made larger than the horizontal viewing angle. Furthermore, if the light incident on the light distribution control element is circularly polarized, it is possible to obtain an isotropic viewing angle.
  • the light distribution control element of the present invention can control the viewing angle arbitrarily by controlling the polarization state of light incident thereon.
  • the shape of the micro focusing lens is not limited to a sphere such as a hemisphere, a spheroid, or a cylinder, or a semi-column or elliptic cylinder, as long as it is a micro body having a focusing action.
  • the light distribution control element of the present invention is composed of a microlens having a light condensing function and a transparent base material supporting the microlens, and the transparent base material arranged on the light emission side is optically substantially isotropic. By using a transparent material, it is possible to prevent the generation of different phase differences in light traveling at different angles in the transparent substrate, thereby eliminating the occurrence of stripes (uneven brightness).
  • the light distribution control element of the present invention will be described based on specific examples.
  • the light distribution control elements shown in FIGS. 1 and 2 were manufactured as follows. First, a transparent polyester hot-melt adhesive using toluene as a solvent was applied to one surface of a transparent substrate 101 made of a flat triacetyl cellulose (TAC) film with a thickness of 80 ym. (Manufactured by Toyobo Co., Ltd.) is applied with a knife coater so that the thickness after drying becomes 4 m, dried in a dryer, and cooled to form a transparent adhesive layer 102 and solidify. did.
  • TAC triacetyl cellulose
  • a colored adhesive obtained by mixing 10 parts by weight of the carbon black with the above-mentioned polyester-based hot melt adhesive and having a dry thickness of 5.5 ⁇ was obtained.
  • the colored adhesive layer 103 was formed and solidified in the same manner as the adhesive layer 102 described above.
  • a plurality of glass transparent beads 105 with a refractive index of 1.935 (wavelength: 589.3 nm) and a diameter of 50 ⁇ are placed on top of this so that the packing density will be approximately the maximum.
  • the substrate is kept at 120 ° C. for 20 minutes in a thermostat while being pressed toward the transparent substrate 101 at a pressure of 4.5 kgZcm 2 using a pressure plate.
  • the transparent adhesive layer 102 and the colored adhesive layer 103 are solidified by cooling to room temperature, and the transparent beads 105 are fixed.
  • the thickness of the hot melt adhesive layer 104 after fixing the transparent beads was about 21 m, and 58% of the diameter of the transparent beads 105 was exposed.
  • FIG. 9 is an isoluminance diagram showing light emission characteristics of the light distribution control element of the present embodiment when linearly polarized light is incident.
  • FIG. 10 is a graph showing the light distribution control element of this embodiment when linearly polarized light is incident. The light emission (light distribution) characteristics in the horizontal and vertical directions are shown.
  • the light distribution control element of the present embodiment has a polarization dependence in the emission (light distribution) characteristics, and is parallel to the vibration direction of the electric vector of the incident linearly polarized light.
  • the viewing angle ( ⁇ 75 °) in the It is wider than the viewing angle ( ⁇ 45 °) in the direction orthogonal to this. This is for the following reasons.
  • the transparent beads 105 In this light distribution control element, most of the polarized light incident on the transparent beads 105 is condensed while almost maintaining the polarization state, diffuses, and travels through the transparent substrate 101 at various angles. Emit. In this case, since the transparent beads 105 are spherical, the angle of refraction is isotropic regardless of polarization. However, on the light emitting surface of the transparent beads 105 and the transparent substrate 101, the energy transmittance differs between p-polarized light and s-polarized light, so the transparent beads 105 or the surface of the transparent substrate 101 On the other hand, the transmittance of the P-polarized light component is high, and the transmittance of the s-polarized light component is low. As a result, the light distribution characteristics have polarization dependence.
  • an isotropic viewing angle can be obtained in the same manner as when non-polarized light is incident.
  • a rotationally symmetrical microlens such as a spherical transparent bead is used as the microlens as in the present light distribution control element, the light distribution characteristics can be changed relatively easily depending on the polarization state of the incident light. It becomes possible.
  • a light distribution control element was manufactured in the same configuration as in the above example except that transparent beads having a refractive index of 1.7 were used, and the characteristics were examined by inputting non-polarized light.
  • the viewing angle was ⁇ 37 °. That is, in the present light distribution control element, the gain and the viewing angle can be changed by changing the refractive index of the transparent beads. That is, by appropriately selecting the refractive index of the transparent beads, it is possible to realize a light distribution control element having desired characteristics.
  • the light distribution control device shown in FIGS. 1 and 2 was manufactured as follows.
  • Transparent polyester hot-melt adhesive dispersed in an aqueous medium is applied with a knife coater so that the thickness after drying becomes 4 m, dried by heating, and then cooled to clear.
  • An adhesive layer 102 was formed and solidified.
  • a colored adhesive layer 103 obtained by mixing 10 parts by weight of polyester black with a polyester-based hot melt adhesive is adjusted to have a thickness of 5.5 ⁇ m after drying. It is formed and solidified in the same manner as above.
  • glass spherical transparent beads 105 having a refractive index of 1.935 (wavelength 589.3 nm) and a diameter of 50 m were placed on top of this in the same manner as in Example 1. It was embedded in the melt adhesive layer 104 and fixed. The thickness of the hot-melt adhesive layer 104 after fixing was about 21 ⁇ m, and 58% of the diameter of the transparent beads 105 was exposed.
  • the PC film used for the transparent substrate 101 is an optically isotropic transparent film of (ne-no) 0.001 or less.
  • the light distribution control element shown in FIGS. 1 and 2 was manufactured as follows.
  • a film is formed by an extrusion method (melt extrusion method), and is dispersed in an aqueous medium on one surface of a transparent base material 101 made of a flat PC film having a thickness of 100 m and uniaxially stretched. After drying the polyester-based hot melt transparent adhesive It was coated with a knife coater to a thickness of 4 ⁇ , dried, and then cooled to form a transparent adhesive layer 102 and solidified.
  • a colored adhesive layer 103 was formed and solidified in the same manner as in Examples 1 and 2.
  • Transparent beads 105 were dispersed and placed on this, and then pressed at 120 ° C. for 30 minutes. It was buried and fixed in hot melt adhesive layer 104.
  • the thickness of the hot-melt adhesive layer 104 after fixing was about 21 m, and 58% of the diameter of the transparent beads 105 was exposed.
  • the light distribution control element When the light distribution control element receives linearly polarized light whose electric vector vibrates in a direction parallel or perpendicular to the slow axis of the transparent substrate 101, the light distribution control element has no luminance unevenness that causes stripes.
  • the viewing angle in the direction parallel to the vibration direction of the linearly polarized electric vector obtained was wider than the viewing angle in the direction perpendicular to the direction.
  • a sheet-shaped light distribution control element with little curl or the like in which physical properties such as tensile strength and initial elastic modulus are improved by uniaxial stretching of the transparent substrate. was completed.
  • the light distribution control device shown in FIGS. 1 and 2 was manufactured as follows.
  • a flat transparent substrate 101 made of a 2 mm thick alicyclic acrylic resin (trade name: Obtretz: manufactured by Hitachi Chemical Co., Ltd.) formed by injection molding. Then, an acrylic hot-melt transparent adhesive is applied by a spin coater so that the thickness after drying becomes 4 ⁇ m, dried, and then cooled to form a transparent adhesive layer. Formed and solidified.
  • a colored adhesive layer 103 containing 10 parts by weight of carbon black mixed with an acrylic hot-melt adhesive is similarly adjusted to have a thickness of 5.5 im after drying. Then, it was formed and solidified in the same manner as the transparent adhesive layer 102.
  • spherical transparent beads 105 made of glass having a refractive index of 1.935 (wavelength 589.3 nm) and a diameter of 50 ⁇ are dispersed and arranged, and pressurized in the same manner as in the above embodiment. While maintaining the temperature at 120 ° C for 20 minutes, it was embedded and fixed in the hot melt adhesive layer 104. The thickness of the hot-melt adhesive layer 104 after fixing was about 21 m, and 58% of the diameter of the transparent beads 105 was exposed.
  • the light distribution control element of the present embodiment can be used as a screen of a rear projection display device without a reinforcing member or the like because the transparent substrate 101 itself has rigidity. it can.
  • FIG. 34 is a schematic perspective view showing an example using a minute lens having another shape. This is the same as that of the above-described embodiment except that a column-shaped fine transparent rod 3401 is used.
  • This light distribution control element has no convergence effect on the incident light in the long axis direction of the micro transparent rod 3401, but only in the direction orthogonal to the long axis direction.
  • the bundle effect acts, and a wide viewing angle can be obtained only in this direction. Also in this case, by using a transparent substrate having a small optical anisotropy, it is possible to avoid the occurrence of a stripe pattern at the time of entering polarized light.
  • the light distribution control element when the light incident on the light distribution control element is linearly polarized light, the polarized light is made incident parallel to the major axis direction of the minute transparent rod, and the polarized light is incident on the incident surface of the minute transparent aperture. Since the light becomes P-polarized light, the light distribution control element can be used with a high transmittance.
  • the microlens is formed of a preformed microbody such as a transparent bead or a rod, but the light distribution control element of the present invention is not limited to this. That is, a large number of microlenses may be directly formed on a transparent substrate in a two-dimensional array.
  • FIG. 35 is a schematic perspective view showing an example of such a light distribution control element.
  • This light distribution control element is made of, for example, a microlens 35 5 on an optically isotropic transparent base material 3501 such as glass, unstretched PC film, TAC film, or injection molded acrylic resin plate.
  • an optically isotropic transparent base material 3501 such as glass, unstretched PC film, TAC film, or injection molded acrylic resin plate.
  • a black light-absorbing layer (black matrix) 3503 with an opening at the light converging part of the minute lens 3502 was formed. Things.
  • the light absorbing layer 3503 can be formed by a known technique, for example, a printing method, a vapor deposition method, a photolithographic method, or the like.
  • the microlens 3502 is a well-known technology, for example, pattern exposure of a positive photo resist and development to obtain a columnar three-dimensional shape.
  • a transparent resin film that is cured by irradiation with light or an electron beam is formed on a transparent substrate 3501, which is selectively irradiated with a light beam or an electron beam and cured. It can be formed by removing uncured portions.
  • the transparent substrate 3501 is made of an optically isotropic transparent body or a transparent body having uniaxial optical anisotropy, so that stripes are generated when polarized light is incident. Problem can be solved.
  • FIG. 11 is a schematic sectional view of a rear projection type display device.
  • the projection type display device of the present invention irradiates the transmission type screen 703 through the projection light 704 from the projection device 701 and the power mirror 702.
  • the image is displayed.
  • the mirror 702 an optically isotropic transparent glass on which a reflective metal such as silver or aluminum was deposited was used.
  • liquid crystal projector As the projection device 701, a so-called liquid crystal projector can be used.
  • FIG. 12 is a schematic sectional view showing an example of a liquid crystal projector.
  • the light source 8001 is composed of a paraboloid of revolution or a spheroidal reflector, and a white light source such as a xenon lamp, a metal halide lamp, or a halogen lamp. By passing through a UV, IR cut filter (not shown), etc., it becomes white light from which ultraviolet and infrared rays have been removed, and travels to the color separation die-cloth mirror 8002.
  • the white light incident on the color separation dichroic mirror 8002 is separated into blue light (B) and other light, and the blue light (B) is reflected by the total reflection mirror 804 and The display element reaches 807.
  • the green light (G) and red light (R) reflected by the color separation die-cloth mirror 8002 are separated by the color separation die-cloth mirror 803, and the green light (G) is separated.
  • To liquid crystal display element 809, and red light (R) for total internal reflection mirror The light is reflected at 805 and 806 to reach the liquid crystal display element 808.
  • As the liquid crystal display elements 807, 808, 809, TX liquid crystal display elements can be used.
  • FIG. 13 is a schematic sectional view showing an example of a TN liquid crystal display element.
  • This liquid crystal display element includes a transparent electrode 903 made of ITO (Indium Tin Oxide), a first transparent glass substrate 901 having an alignment film 905 made of a polyimide-based polymer, A film 906, a transparent electrode 904 forming a pixel, a second transparent glass substrate 902 having a switching element such as a wiring and a thin film transistor (not shown) connected thereto, and a sealant 908.
  • a liquid crystal layer 907 made of a nematic liquid crystal having a positive dielectric anisotropy is provided between the two transparent glass substrates 90 1 and 90 2 bonded and bonded together.
  • the direction of the long axis of the liquid crystal molecules of the liquid crystal layer 907 is directed to two transparent glass substrates 910,
  • the orientation direction is defined by rubbing the orientation films 905 and 906 formed on the 902, and the orientation films are continuously twisted 90 ° between the transparent glass substrates.
  • a polarizer 909 and an analyzer 7-910 are arranged on the light incident surface and the light emitting surface of the liquid crystal display element, respectively, so as to transmit ⁇ line light orthogonal to S, and a transparent glass substrate 90 0.
  • the alignment directions of the long axes of the liquid crystal molecules of the liquid crystal layer 907 at 1, 902 are parallel or orthogonal to the transmission axes of the linearly polarized light of the polarizer 909 and the analyzer 910, respectively. It is configured to be.
  • the polarizer 909 and the analyzer 910 are made of stretched polyvinyl alcohol (PVA) with iodine absorbed and a polarizing function provided with tri-cetyl cellulose (TAC) protective layers on both sides. They are bonded to a transparent glass substrate 901 and a transparent glass substrate 902, respectively, with an acrylic adhesive so as to be optically bonded.
  • PVA stretched polyvinyl alcohol
  • TAC tri-cetyl cellulose
  • the polarization state of the light transmitted through the liquid crystal layer 907 changes according to the electric field applied to the liquid crystal layer 907
  • the voltage corresponding to the image information is applied to the transparent electrode 905 and the transparent electrode 905.
  • each color light that has entered the liquid crystal display elements 807, 808, and 809 of FIG. 12 is spatially modulated according to the respective image information and emitted.
  • Each color light modulated by each liquid crystal display element passes through polarization state aligning means 812, 813, 814, which will be described in detail later, and enters a color combining cross dichroic prism 811, where it is combined. After that, the light is projected on a transmissive screen 703 through a projection lens 810.
  • FIG. 14 is a schematic sectional view of a transmission screen 703 of the rear projection display device of the present invention.
  • the transmission screen 703 includes a Fresnel lens sheet 80If and the light distribution control element 100 of the present invention.
  • the Fresnel lens 801 f is an optical component that performs the same function as the convex lens, and makes the diffuse projection light emitted from the projection device 701 parallel to reduce the incident angle of the light entering the light distribution control element 100. It works to convert to 0 degree or its vicinity.
  • FIG. 15 is a schematic diagram illustrating a decrease in transmittance due to an increase in the incident angle.
  • the incident light 106 When the incident angle ⁇ of the light increases, the incident light 106 converges by the transparent beads 105 and exits from the transparent substrate 101 while diverging. Since the angle of incidence on the interface between the bright substrate 101 and air is increased, the reflection increases and the transmittance is significantly reduced. Further, when the angle of incidence ⁇ ⁇ ⁇ increases, the light that has entered the transparent beads 105 and converged is transmitted to the opening of the light distribution control element 100, that is, between the transparent beads 105 and the transparent adhesive layer 102. It cannot pass through the contact portion, is absorbed by the colored adhesive layer 103, and its transmittance decreases.
  • FIG. 16 is a graph showing an example of the relationship between the light incident angle of the light distribution control element 100 and the transmittance.
  • the transmittance drops sharply. Therefore, the smaller the spread of the light incident on the light distribution control element 100, the better, and practically, it is desirable that the half angle angle is within 10 ° of the earth.
  • this light distribution control element uses a conventional three-tube projection device that uses three CRT projection tubes corresponding to the three primary colors of R, G, and B, and a transmission screen of a rear projection display device.
  • the angle of incidence of each color light incident on the light distribution control element is different, resulting in a problem that the transmittance of each color light is different, the white balance is deteriorated, and a strong color shift appears.
  • the rear projection type display device of the present invention is characterized in that a single tube projection device is used as the projection device to be used.
  • a single tube projection device is used as the projection device to be used.
  • the single tube type since the incident angles of the respective color lights on the transmission type screen are the same, there is no possibility that the white balance is reduced or the color shift is generated.
  • a Fresnel lens 81 f is arranged on the light incident side of the light distribution control element 100 composing the transmission screen 703, and the divergent projection light from the projection device 701 is provided. Is parallelized, and the angle of incidence of the incident light on the light distribution control element 100 is converted to substantially 0 degrees, whereby a decrease in transmittance at the light distribution control element 100 is suppressed, and the luminance of the display image is reduced. Can be improved.
  • the TN liquid crystal display element used as the two-dimensional optical switch element of the projection device 701 generally has a polarizer 9 to maintain the horizontal symmetry of the contrast ratio.
  • the transmission axis of the linearly polarized light of 09 and the analyzer 910 is arranged so as to form an angle of 45 ° or 135 ° with the horizontal direction of the display surface of the liquid crystal display element.
  • the image light transmitted through the liquid crystal display element will be a color combining cross-dice In 11, the vibration direction of the linearly polarized electric vector (hereinafter, the vibration direction of the linearly polarized light) differs between the image light that has been reflected once and the image light that has never been reflected.
  • the red light (R) and the blue light (B) that have passed through the liquid crystal display elements 807 and 808 are reflected once by the color synthesis cross-dice and the cross prism 811, respectively.
  • the green light (G) that has passed through the liquid crystal display element 809 has never been reflected by the color synthesis cross-dice croup prism 811. Is orthogonal to the vibration direction of the linearly polarized light of the color light.
  • the emission characteristic of the light distribution control element 100 of the present invention changes depending on the polarization state of the incident light. For this reason, when the light distribution control element of the present invention is used as a transmission screen of a conventional rear projection display device, when viewed from a certain direction, the image shows green, and When viewed from the opposite oblique direction, the image has a magenta color.
  • the polarization state alignment means 8 1 2, 8 1 3 The feature is that 8 1 and 4 are arranged.
  • the polarization state aligning means 812, 813, and 814 adjust the polarization of each color light before each color light emitted from the liquid crystal display element is projected on the transmission screen 703. It has a function of matching light conditions.
  • FIG. 17 is a schematic sectional view showing an example of the polarization state aligning means.
  • This polarization state alignment means has a transparent substrate 1001 on which a polyimide-based alignment film 1003 is formed, and a polyimide-based alignment film 1004 similarly formed. It is composed of a transparent substrate 1002 and a liquid crystal layer 106 made of nematic liquid crystal sealed between these two transparent substrates. A gap is secured between the two transparent substrates 1001 and 1002 by a spacer (not shown), and the periphery is sealed with a sealing agent 1005 so that two substrates are provided. The liquid crystal is sealed by bonding a transparent substrate.
  • Fig. 18 explains the operation of the polarization state alignment means. To facilitate the explanation, the orientation of the long axis of the liquid crystal molecules near the transparent substrate of the liquid crystal display element and the polarization state alignment means is explained. The directions are indicated by arrows 911, 912, 1007, and 1008, respectively.
  • the liquid crystal layer 1006 of the polarization state aligning means has a long axis of liquid crystal molecules formed by an alignment film on two transparent substrates 1001 and 1002.
  • the two transparent substrates are twisted by 45 °, and the liquid crystal orientation direction 1008 on the transparent substrate 1001 side is horizontal to the display surface of the liquid crystal display element.
  • the liquid crystal alignment direction 1007 of the transparent substrate 1002 on the liquid crystal display element side is parallel to the liquid crystal alignment direction 912 of the transparent substrate 910 on the light emission side of the liquid crystal display element. That is, the liquid crystal display device is inclined by 45 ° with respect to the horizontal direction of the display surface.
  • This polarization state aligning means is configured to satisfy the condition of the wave guide with respect to the main wavelength region of the incident light.
  • the conditions of the wave guide are, for example, J.Phys.D: Appl.Phys.Vo1.8 (19775) ⁇ 1584 in a paper by CH Gooch and HA Tarry.
  • the birefringence ⁇ n in the thickness d of the liquid crystal layer 106 of the polarization state aligning means and the wavelength is calculated by the following equation (1). It may be set so as to satisfy.
  • d and ⁇ n of the polarization state aligning means 8 12, 8 13, 8 14 may be set so as to satisfy the formula (1) with respect to the main wavelength of the light incident thereon.
  • the alignment directions of the liquid crystal of the polarization alignment means are illustrated in Fig. 18 for both the transparent substrates.
  • a material rotated 90 ° with respect to the determined orientation direction may be used.
  • the linearly polarized light that has passed through the liquid crystal display elements 807, 808, and 809 can pass through the polarization state alignment means 8 12, 8 13, and 8 14, respectively.
  • the vibration direction of the electric vector is rotated by 45 °, the polarization state of each color light becomes linearly polarized light having a vibration direction in the horizontal direction with respect to the display surface of the liquid crystal display element, and all of them match. It will be.
  • a cross dichroic prism or dichroic mirror is used to synthesize the optical image light formed by each two-dimensional optical switch cord.
  • the reflecting surface of the dichroic prism or dichroic mirror is formed by a dielectric multilayer film, and the linearly polarized light obliquely incident on this surface is converted into ⁇ -polarized light parallel to the incident surface or incident on the incident surface.
  • the polarization state changes upon reflection, and generally becomes elliptically polarized light, and the polarization state differs for each color light.
  • the direction of oscillation of the linearly polarized light of each color light is horizontal to the display surface, that is, ⁇ -polarized light is incident on the reflection surface of the color combining dichroic prism, the polarization state of each color light changes. Instead, the optical image light can be projected onto the transmission screen while the polarization states of all the color lights match.
  • the rear display device of the present invention since the polarization states of the respective color lights projected from the projection device 700 match, the light distribution characteristics of the light distribution control element 100 used as the transmissive screen 70 3 There is an effect that the coloring due to the polarization dependence of the image is eliminated and a high-quality image can be obtained.
  • the projection light incident on the transmission screen 700 is linearly polarized light having a vibration direction in the horizontal direction with respect to the display surface
  • the polarization dependence of the light distribution characteristics of the light distribution control element 100 causes The viewing angle in the horizontal direction can be wider than in the vertical direction. This is generally very effective in efficiently distributing limited light to the observer because a display device generally requires a wider viewing angle in the horizontal direction than in the vertical direction.
  • the rear projection type display device having the above configuration is used as the light distribution control element 100 of the transmission screen 703, and the transparent substrate of the light distribution control element 100 exemplified in [Example 1 of the light distribution control element].
  • a wide viewing angle was obtained in both directions, a horizontal viewing angle of ⁇ 75 ° and a vertical viewing angle of ⁇ 45 °. .
  • the polarization state alignment means of the rear projection display device of the present invention only needs to have a function of matching the polarization state of each color light emitted from the liquid crystal display element.
  • a polymer laminated film having a twisted structure or a 12-wavelength plate can be used.
  • the slow axis of the wavelength plate functioning as a 1Z2 wavelength plate with respect to the wavelength of light passing through each liquid crystal display element is defined as:
  • a one- and two-wavelength plate is arranged only on the light-emission side of the liquid crystal display device, where the oscillation direction of the emitted linearly polarized light is different from the others, as a polarization state alignment means. Then, by simply matching the polarization state of other liquid crystal display elements, it is possible to prevent coloring to some extent when obliquely observed.
  • the transmission axis of the linearly polarized light of the analyzer of the liquid crystal display device is inclined by 45 ° with respect to the horizontal direction of the display surface
  • the transmission axis of the analyzer may be displayed in advance.
  • the rear projection display device of the present invention includes a transmission screen 703 including the light distribution control element 100 and a Fresnel lens 800 f arranged on the light incident side thereof. did. Therefore, when the divergent projection light 704 from the projection device 701 is incident on the light distribution control element 100, it is collimated by the Fresnel lens 801f, and the angle of incidence is substantially zero. Therefore, a decrease in transmittance in the light distribution control element 100 is suppressed, and a bright display image is obtained.
  • the oblique direction caused by the polarization dependence of the light distribution characteristics of the light distribution control element 100 can be obtained. This has the effect that the coloring that occurs when the image is observed from above can be eliminated.
  • the light distribution control element 100 of the present invention used as the transmission screen 703 has a wide viewing angle characteristic that is bright from any angle, and prevents stray light due to external unnecessary light. Since the reduction effect is high, there is an effect that a rear-projection display device that can obtain a high contrast ratio by realizing a black display with a wide viewing angle and low luminance even in a bright environment can be realized.
  • the case where a plurality of two-dimensional optical switch elements are used as the projection device has been described.However, a so-called single-panel type projection device using only one two-dimensional optical switch element is described. May be used.
  • the light distribution of the light distribution control element 100 of the present invention can be uniquely determined even if the polarization state of the optical image light is not uniform. There is no coloring due to the polarization dependence of the characteristics.
  • the rear projection display device described here has a projection device 701, a mirror 702, and a transmission type screen 703, as in the embodiment described with reference to FIG. Then, the projection light 704 emitted from the projection device 701 is irradiated on the transmission screen 703 via the mirror 702, and an image is displayed.
  • the configuration of 01 is partially different.
  • FIG. 19 is a schematic sectional view of a projection device according to the rear projection type display device of this embodiment.
  • This projection device is basically the same as the projection device illustrated in FIG. 12, but the projection device 701 described here is composed of a projection lens 801 and a cross-dye croix prism 801. The feature is that a polarization state conversion element 815 is arranged between them.
  • the white light emitted from the light source 81 is blue light (B), green light (G), and red light (G) by color separation dichroic mirrors 8002 and 803, as in the above embodiment. R), and enters the liquid crystal display elements 807, 809, and 808 via mirrors 804, 805, and 806, respectively.
  • the light incident on the liquid crystal display device is spatially modulated according to the image information of each color and emitted, and the vibration directions of the color lights are matched by the polarization state aligning means 812, 813, and 814.
  • the light becomes linearly polarized light and enters the color synthesis cross-dike mouth rhythm 8 11 1.
  • each color light incident on the color combining cross dichroic prism 811 be p-polarized light or s-polarized light with respect to one surface of the mirror of the prism 811. This is because the entire surface of the mirror of the color combining prism 8 1 1 is composed of a dielectric multilayer film. Unless specially designed and formed, linearly polarized light obliquely incident on the entire surface of the mirror is parallel to the incident surface. If the light is not p-polarized light or s-polarized light perpendicular to the plane of incidence, the polarization state changes upon reflection, and generally becomes elliptically polarized light, and the polarization state of each color light will be different. .
  • the image light that enters the color combining dichroic prism 811 and undergoes color combining is projected on the transmission screen 703 via the polarization state conversion element 815 and the projection lens 810.
  • the polarization state conversion element 815 changes the polarization state of the image light after the color synthesis, and for example, a liquid crystal element shown in FIG. 20 can be used.
  • the polarization state conversion element 8 15 shown in FIG. 20 is a transparent electrode 1 1 0 3 made of IT0.
  • a spacer By sandwiching a spacer (not shown) between the second transparent glass substrate 1102 on which the film 1106 is entirely laminated and the two transparent glass substrates 1101, 1102
  • a space formed by forming a gap and sealing the periphery with a sealant 1108 is composed of a liquid crystal layer 1107 made of a nematic liquid crystal with positive dielectric anisotropy enclosed. Is done.
  • the long axis of the liquid crystal molecules of the liquid crystal layer 1107 is aligned with the alignment films 1104 and 1106 formed on the two transparent glass substrates 1101 and 1102, respectively, by a rubbing treatment or the like.
  • a so-called TN liquid crystal element in which both substrates are continuously twisted by 90 °.
  • FIG. 21 and FIG. 22 are schematic diagrams for explaining the operation of the polarization state conversion element 8 15, and the arrows denoted by reference numerals 11 10 and 11 1 1 indicate the transparent glass substrate 11 1, respectively.
  • the orientation directions of the liquid crystal at 0 1 and 1 102 are shown.
  • the orientation direction of the liquid crystal on the transparent glass substrate 1102 on the light incident side is parallel to (or perpendicular to) the vibration direction of the electric vector of the incident linearly polarized light. 107 satisfies the wave guide condition in the visible wavelength range.
  • the optical image light incident on the polarization state conversion element 81 is illustrated in FIG. Becomes a linearly polarized light having a vibration direction of the electric vector rotated by 90 °, that is, a linearly polarized light having a vibration direction perpendicular to the display surface, and is transmitted through the projection lens 810. Projected on screen 703.
  • the transmission screen 703 used in this rear projection display device is composed of a light distribution control element using spherical transparent beads as a micro lens and a Fresnel lens, as in the above embodiment.
  • the projection light incident on the transmission screen 703 is linearly polarized light having a vibration direction perpendicular to the display surface
  • the distribution of the light distribution control element 100 is assumed. Due to the polarization dependence of the optical characteristics, the viewing angle in the vertical direction becomes wider than in the horizontal direction.
  • a voltage is applied to the transparent electrode 1103 and the transparent electrode 1105 formed on the two transparent glass substrates, and the liquid crystal layer 1107 is applied.
  • the optical image light incident on the polarization state conversion element 815 has almost the polarization state. Pass through unchanged. That is, the linearly polarized light having the horizontal vibration direction with respect to the display surface is projected onto the transmission screen 703 via the projection lens 810. In this case, the viewing angle in the horizontal direction is wider than in the vertical direction due to the polarization dependence of the light distribution characteristics of the light distribution control element 100 constituting the transmission screen 703.
  • the viewing angle characteristics could not be changed without replacing the transmission screen.
  • the polarization state conversion element 8 was not used. There is an epoch-making effect that the viewing angle characteristics can be easily changed by a simple operation of controlling the electric field applied to the liquid crystal layer of FIG.
  • a liquid crystal element can be used.
  • the difference from the TN liquid crystal element is related to the liquid crystal layer such as the thickness of the liquid crystal layer and the alignment direction of liquid crystal molecules. Therefore, description will be made with reference to a schematic cross-sectional view of the TN liquid crystal element illustrated in FIG.
  • the polarization state conversion element 815 composed of an ECB liquid crystal element is, like the polarization state conversion element 815 composed of a TN liquid crystal element, a transparent electrode 1103 composed of ITO and a polyimide series.
  • the transparent electrode 1105 and the alignment film 1106 are formed on the entire surface.
  • a gap is formed by sandwiching a spacer (not shown) between the laminated second transparent glass substrate 1102 and the two transparent glass substrates, and the periphery is connected with a sealant 1108.
  • the dielectric anisotropy of the nematic liquid crystal may be either positive or negative, but the orientation of the liquid crystal is assumed to be homogenous when the nematic liquid crystal has a positive dielectric anisotropy, and the dielectric anisotropy is assumed to be negative. In the case of the nematic liquid crystal, the homeotropic orientation is adopted.
  • a pretilt angle of about 1 to 4 ° is applied in both cases, and the direction of the molecular long axis of the liquid crystal is set.
  • the alignment process is performed so that the direction is 45 ° to the display surface.
  • the thickness of the liquid crystal layer 1107 is ⁇ and the refractive index anisotropy of the liquid crystal is ⁇
  • the thickness should be at least d ⁇ ⁇ and Z 2 (where ⁇ is the center wavelength of the optical image light).
  • a voltage is applied to the transparent electrodes 1103 and 1105 formed on the two transparent glass substrates, and a voltage is applied to the liquid crystal layer 1107.
  • the liquid crystal It is possible to control the apparent d ⁇ ⁇ of the layer 1107 in the range of 0 to Z2.
  • the optical image light that has entered the polarization state conversion element 815 passes through with almost no change in the polarization state.
  • the linearly polarized light having a horizontal vibration direction with respect to the display surface is incident on the transmission screen 703 as it is.
  • the viewing angle in the horizontal direction is wider than in the vertical direction due to the polarization dependence of the light distribution characteristics of the light distribution control element 100 constituting the transmission screen 703.
  • the image light incident on the polarization state conversion element 815 rotates the vibration direction of the electric vector by 90 °.
  • the linearly polarized light ie, linearly polarized light having a vibration direction perpendicular to the display surface, is incident on the transmission screen 703.
  • the viewing angle in the vertical direction is wider than in the horizontal direction due to the polarization dependence of the light distribution characteristics of the light distribution control element 100.
  • the image light incident on the polarization state conversion element 815 becomes substantially circularly polarized light and is incident on the transmission screen 703.
  • the same isotropic viewing angle is obtained in both the vertical and horizontal directions.
  • FIG. 23 the operation of the polarization state conversion element 815 composed of the ECB liquid crystal element will be specifically described with reference to FIGS. 23 and 24.
  • FIG. 23 the operation of the polarization state conversion element 815 composed of the ECB liquid crystal element will be specifically described with reference to FIGS. 23 and 24.
  • the orientation films 1104 and 1105 are made of polyimide-based orientation films exhibiting vertical orientation, and are rubbed in a direction at an angle of 45 ° to the horizontal direction of the display surface. A pre-tilt of about 2 ° was applied to the liquid crystal molecules.
  • the apparent d ⁇ n of the liquid crystal layer 1107 of the polarization state conversion element 815 when no electric field is applied is almost 0, and as shown in Fig. 23,
  • the incident optical image light passes through with almost no change in the polarization state, and is transmitted through the projection lens 810 in a state of linearly polarized light having a vibration direction in the horizontal direction with respect to the display surface. Projected onto the 703.
  • the viewing angle in the horizontal direction is wider than in the vertical direction due to the polarization dependence of the light distribution characteristics of the light distribution control element 100 constituting the transmission screen 703.
  • the polarization state conversion element 8 1 5 The image light incident on the screen rotates the electric vector by approximately 90 °, and is linearly polarized light having a vibration direction perpendicular to the display surface or in a direction substantially perpendicular to the display surface. The light is converted into elliptically polarized light having a long axis and is incident on the transmission screen 703. In this case, the viewing angle in the vertical direction becomes wider than in the horizontal direction due to the polarization dependence of the light distribution characteristics of the light distribution control element 100 constituting the transmission screen 703.
  • a voltage is applied to the transparent electrodes formed on the two transparent glass substrates of the polarization state conversion element 8 15, and an electric field is applied to the liquid crystal layer 110 7. Is tilted from the vertical direction to the horizontal direction with respect to the transparent glass substrate so that the apparent dAn of the liquid crystal layer becomes 137.5 nm, the optics incident on the polarization state conversion element 815 The image light becomes substantially circularly polarized light and enters the transmission screen 703. In this case, due to the characteristics of the light distribution control element 100 composing the transmission type screen 703, the horizontal and vertical directions are the same. A degree of isotropic viewing angle is obtained.
  • the viewing angle characteristics could not be changed without replacing the transmission screen, but in the present rear projection display device, the TN liquid crystal element or the ECB was used.
  • the horizontal viewing angle can be widened, the vertical viewing angle can be widened, and the horizontal viewing angle can be increased.
  • the viewing angle characteristics can be easily changed so that the same isotropic viewing angle can be obtained in both the vertical and vertical directions.
  • the viewing angle characteristic is made variable by using a liquid crystal element as the polarization state conversion element 8 15 .
  • a desired viewing angle characteristic may be obtained by disposing a retardation plate.
  • a 14-wavelength plate is disposed as the polarization state conversion element 815, and the optical image light incident on the transmission screen 703 is circularly polarized to obtain an isotropic viewing angle.
  • Various deformations are conceivable.
  • FIG. 40 is a schematic structural perspective view of the rear projection type display device of this embodiment.
  • the rear-projection display device of the present embodiment is configured such that the rear-projection display device of the second embodiment includes an observer sensing unit 4002 for sensing the presence or absence of an observer, and a sensing signal from the observer sensing unit.
  • Observer position determining means (not shown) for receiving and determining the horizontal and vertical positions of the observer, and control for outputting a control signal to a polarization state conversion element arranged in the projection device 701 based on the information.
  • Signal output means (not shown) is added.
  • the observer sensing unit 4002 comprises a plurality of observer sensing sensors, These observer sensing sensors respectively sense observers present in a plurality of divided areas.
  • An infrared sensor is used as the observer detection sensor.
  • FIG. 41 and FIG. 42 show examples of the divided areas detected by the observer sensor.
  • Fig. 41 shows the case where the vertical direction is divided into three regions I, ⁇ and ⁇
  • Fig. 42 shows the case where the horizontal direction is divided into three regions A, B and C.
  • nine observer sensing sensors for sensing the observer 4100 are required.
  • the nine observer sensing sensors provided in the observer sensing unit 4002 sense the observer 4100 observed in front of the rear projection display device 4001, respectively.
  • the observer position judging means judges in which area (position) the observer 410 exists in the vertical and horizontal directions based on the above.
  • the control signal output means outputs a control signal to the polarization conversion element of the projection device 701 based on the information of the observer position determination means.
  • the rear-projection display device of the present embodiment changes the polarization state of the projection light 704 by the polarization state conversion element in the projection device 701.
  • the viewing angle characteristics of the transmission screen 703 can be changed.
  • a bright image can be provided to the observer by sensing and judging the position of the observer, controlling the polarization state conversion element, and converting the polarization state of the projection light 704 to an appropriate state. .
  • FIG. 43 Generally, in a rear-projection display device, in order to effectively distribute a limited amount of light toward a viewer, a vertical viewing angle is set to be narrower than a horizontal viewing angle. As shown in the figure, the effective range over which the image of uniform brightness can be obtained over the entire screen 703 is narrow in the vertical direction. Has become. For this reason, the observer 4100 cannot obtain good image quality unless it observes at an appropriate height, such as sitting on a chair, or observing at a certain distance. Can not.
  • the observer 4102 that has risen is sensed by the observer sensing unit 4002, and based on the sensed signal, the observer's sense is detected.
  • the position is determined by the human body position determining means.
  • the control signal output means controls the polarization state conversion element based on the observer's position information, and converts the polarization state of the projected light to an appropriate state, as shown in FIG. 44.
  • a good image can be provided to the observer 4102 who stands up by enlarging the vertical viewing angle.
  • the projection light projected on the screen 703 is directed in the horizontal vibration direction with respect to the display surface of the screen 703.
  • the viewing angle in the horizontal direction is wider than that in the vertical direction.
  • the polarization state conversion element is controlled based on the sensing signal of the observer sensing unit 4002 so that the projected light is perpendicular to the display surface of the screen 703.
  • the polarization state conversion element is controlled based on the sensing signal of the observer sensing unit 4002 so that the projected light is perpendicular to the display surface of the screen 703.
  • the viewing angle characteristic automatically changes according to the position of the observer, and the limited image light is effectively distributed to the observer. Therefore, the observer can obtain a good image at any position.
  • the rear projection display device of the present embodiment is the same as the embodiment described with reference to FIG. 11, but the configuration of the two-dimensional optical switch element used in the projection device 700 is different. .
  • the feature of this rear projection display device is that the two-dimensional optical switch element used in the projection device 701 performs display in a non-polarized state without using polarized light for display.
  • the light distribution control element that composes the transmission screen 703 is more striped due to the optical anisotropy of the transparent substrate of the light distribution control element 1003, and the polarization of the light distribution characteristic of the light distribution control element. It is characterized by fundamentally avoiding issues such as chromaticity change due to dependence.
  • the polymer-dispersed liquid crystal is a liquid crystal in which a nematic liquid crystal having a positive dielectric anisotropy in a microcapsule is dispersed in a polymer, and a liquid crystal droplet is dispersed in a polymer matrix.
  • a network polymer is formed in a liquid crystal continuous layer.
  • FIG. 25 is a schematic sectional view showing an example of a polymer dispersion type liquid crystal element.
  • This polymer-dispersed liquid crystal element 250 is composed of a first transparent glass substrate 2501 on which a transparent electrode 2503 made of IT0 is formed on the entire surface, a transparent electrode 2504 forming pixels, and A second transparent glass substrate 2502 having a switching element such as a wiring and a thin film transistor (not shown) connected thereto, and two transparent glass substrates connected via a sealant 2508 2 5 0 1, And a polymer dispersed liquid crystal layer 2505 formed between the layers 2502.
  • the polymer-dispersed liquid crystal layer 2505 is a liquid crystal droplet 2506 having a positive dielectric anisotropy dispersed in a polymer 2507 such as polyvinyl alcohol.
  • a polymer 2507 such as polyvinyl alcohol.
  • the refractive index and the refractive index of the polymer are almost the same.
  • Figure 26 shows the operation of the polymer dispersed liquid crystal device.
  • the liquid crystal in the polymer dispersed liquid crystal layer 255 cannot be anchored by the polymer side wall, the shape of the wall surface, or the surface energy. Due to the influences, etc., they are arranged irregularly.
  • the polymer-dispersed liquid crystal layer 2505 is composed of fine particles having a refractive index distribution from the refractive index ne in the major axis direction of the liquid crystal molecules to the refractive index no in the minor axis direction of the liquid crystal.
  • the light floats in the matrix, and the incident light is refracted and scattered at interfaces with different refractive indices.
  • the liquid crystal when an electric field is applied to the liquid crystal by applying a voltage to the transparent electrodes on the transparent glass substrates 2501 and 2502, the liquid crystal is aligned with the long axis of the molecules in the direction perpendicular to the transparent glass substrate.
  • the refractive index of the liquid crystal viewed from the light traveling direction is constant at no, which is equal to the refractive index of the polymer matrix. Therefore, the incident light is transmitted without scattering at the interface between the liquid crystal and the polymer.
  • the degree of light scattering can be changed by applying / non-applying an electric field to the polymer dispersed liquid crystal layer 255.
  • an optical system that converts the degree of light scattering into light and dark of light is required to use this for display. As is well known, such a system uses a symmetrical optical system.
  • FIGS. 27 and 28 are schematic diagrams illustrating the display operation of a polymer dispersion type liquid crystal element using a shear-lens optical system. From the light source 2 8 0 1 The substantially parallel light is converged on the opening of the entrance-side stop 2803 by the action of the converging lens 2802, and the light passing through the opening of the entrance-side stop 2803 is converted to the lens 270 As a result, the light becomes substantially parallel light again and is incident on the polymer dispersed liquid crystal element 250. As shown in the figure, when a sufficient electric field is applied to the polymer dispersed liquid crystal element 2500 of the polymer dispersed liquid crystal element 250, the light incident on the polymer dispersed liquid crystal element 2500 becomes almost parallel light. The light passes through, is converged by the converging lens 2720, and passes through the opening of the exit-side aperture 2817.
  • FIG. 29 is a schematic sectional view showing an example of a projection device using a polymer dispersed liquid crystal element.
  • the light source 2801 is composed of a paraboloidal reflector and a metal halide lamp with a light-emitting part arranged at the focal point of the reflector. Most of the light emitted from the light-emitting part Is reflected by the reflector, becomes almost parallel light, and exits. The light emitted from the light source 2801 passes through a UV / IR cut filter (not shown), and becomes white light from which ultraviolet rays and infrared rays have been removed. By the action of 802, the light is converged on the opening of the entrance-side stop 2803.
  • the white light that has passed through the entrance side aperture 280 3 is reflected by the red light reflecting dichroic mirror 284 4 as a red light component, and the reflected red light is a total reflection mirror.
  • the light enters the incident lens 281 through the lens 280 7, and becomes parallel light by the action of the incident lens to enter the polymer dispersed liquid crystal element 288 15 .
  • the green light component is reflected by the green light reflecting dichroic mirror 280 5
  • the light is incident on the lens 2811, and is converted into parallel light by the action to be incident on the polymer dispersed liquid crystal element 2814.
  • the blue light transmitted through the green light reflecting dichroic mirror 280 is incident on the incident side lens 280, and is converted into a parallel light by the action thereof to disperse the polymer.
  • the light enters the liquid crystal element 2 8 1 3.
  • Each color light incident on the polymer dispersed liquid crystal element 2813, 2814, 2815 is emitted from the polymer dispersed liquid crystal element with its scattering state controlled according to the image information.
  • the red light that has passed through the polymer dispersed liquid crystal element 2815 passes through the green light reflecting die mirror 2808 and the blue light reflecting die mirror 2809 and is projected.
  • the light enters the lens 2 8 1 9.
  • the green light that has passed through the polymer dispersed liquid crystal element 284 is reflected by the green light reflection die mirror 280, combined with the red light, and is reflected by the blue light reflection die.
  • the light is transmitted through the Roots mirror 280 9 and enters the projection lens 28 19.
  • the blue light passing through the polymer dispersed liquid crystal element 281 13 is reflected by the total reflection mirror 280 06 and the blue-green light reflection die mirror 280 9 to obtain red light and green light.
  • the light is combined with the light and enters the projection lens 28 19.
  • the projection lens 2819 includes a rear group lens 2816 and a front group lens 2818, and an emission side stop 2817 arranged between them.
  • the rear lens group 2816 of the projection lens 2819 and the entrance lenses 2810, 2811 and 2812 are provided with an exit aperture 2817 of the projection lens and
  • the entrance-side stop 2803 has a conjugate relationship with each other. For this reason, of the light incident on the projection lens 28 19, the light of the pixel that has not been scattered by the polymer dispersed liquid crystal elements 28 13, 2814, 28 15 passes through the exit side stop 2817. After passing, the display becomes bright.
  • the optical image light projected from the present projector is in a substantially non-polarized state because no polarized light is used for display. That is, since the optical image light incident on the transmission screen 703 is non-polarized light, even if the transparent substrate of the light distribution control element 100 constituting the optical screen has birefringence, the transparent substrate is not transparent. Problems such as the occurrence of stripes due to the optical anisotropy of the material and the change in chromaticity due to the polarization dependence of the light distribution characteristics of the light distribution control element are avoided. In other words, a transparent material having optical anisotropy may be used as the transparent substrate of the light distribution control element, so that the material selection range is wide, and therefore, a less expensive and high strength material can be used. Becomes
  • a low-cost film such as a biaxially stretched PET film is used instead of a film having a small birefringence, such as a TAC film, which is expensive and weak.
  • a high-strength film can be used as a member of the light distribution control element, and a transmission screen of a rear projection display device can be realized at low cost.
  • the light distribution control element 100 used in the present embodiment will be described.
  • the light distribution control element 100 has the same configuration as that illustrated in FIGS. 1 and 2.
  • As the transparent substrate 101 a flat biaxially stretched film with a thickness of 12 ⁇ m was used. Biaxially stretched films have increased tensile strength and impact strength compared to non-stretched films, and have properties such as transparency and operating temperature range. Significantly improved.
  • This light distribution control element 100 was manufactured by the method described below. A transparent adhesive layer made of a polyester hot-melt adhesive was applied to the surface of the transparent substrate 101 at 5 ⁇ m, and a force pump rack was applied to the polyester hot-melt adhesive again. 4.5 parts of the colored adhesive layer mixed with 0 parts by weight is formed and temporarily solidified.
  • Spherical glass beads with a refractive index of 1.935 (wavelength 589.3 nm) and a diameter of are densely dispersed and placed on top of it, and the transparent adhesive layer and colored adhesive are placed in a thermostat. While softening ⁇ , the transparent beads are pressed against the transparent substrate side by a pressure plate, and the beads are embedded and fixed in the adhesive layer.
  • the thickness of the adhesive layer after fixing the transparent beads is about 21 m including the transparent adhesive layer and the colored adhesive layer, and about 58% of the diameter of the transparent beads is exposed from the adhesive layer.
  • a flat, transparent, optically isotropic acrylic plate having a thickness of 2 mm is attached to the transparent substrate 101 side surface of the light distribution control element 100, and the transparent beads 10 5
  • a transmission screen 703 with a Fresnel lens arranged on the side is used as a two-dimensional optical switch element.
  • a rear projection display device as shown in Fig. 11 was realized.
  • Examples of two-dimensional optical switch elements that do not use polarized light for display include Japanese Patent Nos. 5061049 and 5083857, or US Patent Application 08/161832 and US Patent Application 08 A digital mirror device (DMD) described in 1713003 can be used.
  • DMD digital mirror device
  • the DMD has an array of micromirrors corresponding to pixels supported by a twisted hinge on a semiconductor substrate, and an address electrode, and when a voltage is applied to the address electrode.
  • the micromirrors are deflected or rotated by electrostatic attraction.
  • the transparent base material of the light distribution control element used as a transmission screen is similar to a rear projection display apparatus using a polymer dispersion type liquid crystal element. Even if it is optically anisotropic, it is possible to obtain high-quality images without coloring or stripes due to the polarization dependence of the light distribution characteristics.
  • the rear projection display device described here has a projection device 701, a mirror 702, and a transmission type screen 703, similarly to the above-described embodiment described with reference to FIG. Then, the projection light 704 emitted from the projection device 701 is irradiated to the transmission screen 703 via the mirror 702, and an image is displayed.
  • the configuration of 0 1 is different.
  • One of the points of the present invention is that the image light incident on the light distribution control element 100 constituting the transmission screen 703 is made substantially non-polarized light. Therefore, in this embodiment, in addition to using a display element capable of displaying non-polarized light as the two-dimensional optical switch element, a depolarizing means for depolarizing between the light distribution control element and the two-dimensional optical switch element. This was realized by arranging.
  • depolarizing an element that produces various polarizations artificially within the integration range of the wavelength width, time, etc., and mixes and averages them to produce almost non-polarization in terms of phase.
  • Deborizers can be used.
  • a polymer liquid crystal film or retardation film with d ⁇ ⁇ sufficiently large for visible wavelengths is laminated.
  • a pseudo-deborizer may be configured.
  • FIG. 30 shows a projection device using the liquid crystal display element described in the above embodiment, in which a pseudo-deborizer 1000 is newly arranged.
  • the optical image light whose polarization has been substantially eliminated can be projected onto the transmission screen 703.
  • the transparent base material 101 of the light distribution control element 100 has optical anisotropy. Since a transparent body may be used, the material selection range of the transparent base material 101 is widened, and a more inexpensive and high-strength material can be used.
  • a transmission type liquid crystal display device is used as the two-dimensional optical switch element of the projection device.
  • the present invention is not limited to this. It may be a display element.
  • the display mode is not limited to the TN mode.
  • Liquid crystal display elements such as VA (Vertical Aligned) mode, ECB mode, OCB mode, STN (Super Twisted Nematic) mode, ferroelectric liquid crystal, A liquid crystal display element using a ferroelectric liquid crystal may be used.
  • FIG. 31 is a schematic sectional view of a direct-view type liquid crystal display device using the light distribution control element according to the present invention.
  • the liquid crystal display device of the present invention includes a liquid crystal display element 1322, a pack light device 1301 provided on the rear surface thereof, and a rear surface, a front surface, and a front surface of the liquid crystal display element 132, respectively. And a light distribution control element 100 of the present invention provided on the front surface of the analyzer 122.
  • the knock light device 1301 can efficiently emit substantially parallel light, and is described in, for example, Japanese Patent Publication No. Hei 9-505412 and International Publication No.W095Z1255. "Electronic optical display backlight assembly" can be used.
  • a back light device composed of a light source 122 formed of a cold-cathode tube, a light guide 122 formed of a transparent acrylic resin, and a light collimating means 123 is provided.
  • a light source 122 formed of a cold-cathode tube
  • a light guide 122 formed of a transparent acrylic resin
  • a light collimating means 123 was used.
  • the light collimating means 1203 As the light collimating means 1203, a known element, for example, as shown in FIG. It is possible to use a quadrangular pyramid-shaped microtaper rod array optically coupled to the light guide 122 thus formed. In this case, the light guided from the light guide 122 is totally reflected one or more times on the wall surface of the micro taper rod, is substantially parallelized, and is emitted.
  • a microclip sheet or a micro lens arrangement can be used in addition to the above.
  • a backlight device having such a light collimating element 1203 substantially collimated illumination light having a half value angle of ⁇ 10 ° or less can be obtained.
  • the liquid crystal display element 1322 includes a first transparent substrate 1210 having a transparent electrode 1122 made of IT0 and an alignment film 1221 made of a polyimide polymer, and an alignment film 1 207, a transparent electrode 122 to form a pixel, a second transparent substrate 1205 having a switching element such as a wiring or a thin film transistor (not shown) connected thereto, and a seal.
  • a liquid crystal layer 1209 composed of a nematic liquid crystal having a positive dielectric anisotropy sealed between two transparent substrates 1122 and 1210 connected via an agent 1208 Having.
  • the liquid crystal display element 1302 is formed by rubbing the alignment films 122 and 121 applied to the two transparent substrates and the liquid crystal layer.
  • a so-called TN liquid crystal display element in which the long axis of 209 liquid crystal molecules is continuously twisted 90 ° between two transparent substrates is formed.
  • a polarizer 12 4 and an analyzer 12 14 are disposed so as to transmit linearly polarized light orthogonal to each other.
  • the polarizer 122 and the analyzer 124 are made of a stretched PVA that has a polarizing function by absorbing iodine and having a TAC protective layer on both sides. Acrylic adhesive is applied to substrate 125 and transparent substrate 122 so that they can be optically bonded. Is done.
  • a light distribution control element 100 is arranged on the front surface of the analyzer 12 14.
  • the element described in Example 1 of the light distribution control element was used.
  • Adhesion to the analyzer 12 14 was performed here using an adhesive 12 13 patterned so as to surround the display section of the liquid crystal display element.
  • the gap between the transparent bead and the analyzer 124 may be adhered so as to be filled over the entire surface with a transparent adhesive having a low refractive index, or a combination of these may be used.
  • the analyzer 1 2 1 4 since the polarization state of light transmitted through the liquid crystal panel 1302 changes depending on the electric field applied to the liquid crystal layer 1209, an electric field corresponding to the image information should be applied to the liquid crystal layer 1209.
  • an image can be formed by controlling the amount of light transmitted through the analyzers 12 14.
  • the image light transmitted through the analyzers 12 14 enters the light distribution control element 100.
  • Most of the light incident on the light distribution control element 100 is incident on the transparent beads of the light distribution control element 100, and is converged and diverged by the refraction.
  • a general TN liquid crystal display device has a viewing angle dependence, and when viewed from an oblique direction, the contrast ratio decreases, the gradation inverts, and the color tone changes. Therefore, good image quality can be obtained only in the area near the front.
  • the light distribution control element 100 has a lower transmittance due to absorption in the colored adhesive layer when the incident angle of the incident light increases. For this reason, of the light emitted from the liquid crystal display element 1322, the light having a large incident angle at which the contrast ratio is reduced, the gradation is inverted, and the color tone is changed is largely absorbed by the colored adhesive layer. Part is absorbed.
  • the liquid crystal display element since the light emitted from the knock-out device 1301 to the liquid crystal display element 1302 is substantially parallel light, the liquid crystal display element Increasing the light quantity ratio in the angle range where good image quality can be obtained, at the same time reducing the light loss in the light distribution control element 100 and increasing the light use efficiency, results in high brightness and high contrast. The best image is obtained. Also, since the light distribution control element 100 has a high effect of reducing stray light due to external unnecessary light, low-luminance black display is realized even in a bright environment, and an image with a high contrast ratio is obtained. Can be
  • the transmission axis of the linearly polarized light of the polarizer and the analyzer is set at 45 ° with respect to the horizontal direction of the display surface in order to secure the symmetry of the contrast ratio in the horizontal direction. In general, they are arranged at an angle of °.
  • the liquid crystal display device of the present invention a wide viewing angle is obtained by isotropically diffusing image light near a viewing angle of 0 ° at which good image quality is obtained.
  • the symmetry of the contrast ratio is maintained even when the transmission axis of the linearly polarized light of the analyzer 4 and the analyzer 124 is not set to 45 ° or 135 ° with respect to the horizontal direction of the display surface. Rather, due to the polarization dependence of the light distribution characteristics of the light distribution control element that constitutes the present liquid crystal display device, the linearly polarized light transmission axis of the analyzer 124 is oriented in the horizontal direction of the display surface of the liquid crystal display element 1302. Should be placed so that they approximately match It is.
  • the linearly polarized light transmission axis of the polarizer 124 is arranged in the direction perpendicular to the display surface of the liquid crystal display device, and the The linearly polarized light transmission axis is arranged in the horizontal direction with respect to the display surface of the liquid crystal display device. Therefore, the orientation of the liquid crystal is learned from this, and the orientation of the liquid crystal on the transparent substrate 1255 side is perpendicular to the display surface of the liquid crystal display device.
  • the orientation is horizontal to the display surface of the liquid crystal display device, or the orientation direction of the liquid crystal on the transparent substrate 1255 side is horizontal to the display surface of the liquid crystal display device.
  • the orientation direction of the liquid crystal on the 210 side is perpendicular to the display surface of the liquid crystal display device.
  • the light incident on the light distribution control element 100 becomes linearly polarized light having a horizontal vibration direction with respect to the display surface.
  • the liquid crystal display has a wider viewing angle in the horizontal direction than in the direction perpendicular to the display surface, and has symmetric brightness. An element can be obtained. This is very effective in distributing a limited amount of light to the observer efficiently, because display devices generally require a wider viewing angle in the horizontal direction than in the vertical direction. .
  • FIG. 33 is a schematic sectional view of another direct-view type liquid crystal display device of the present invention.
  • This liquid crystal display device is the same as the liquid crystal display device shown in FIG. 31, except that a retardation plate 3100 is arranged between the analyzer 122 and the light distribution control element 100.
  • the light distribution control element 100 constituting the present liquid crystal display device can change its light distribution characteristics, that is, the viewing angle, depending on the polarization state of the incident light.
  • the retardation plate 3100 utilizes this property to detect the direct light transmitted through the analyzer 1 2 4. It has a function of converting linearly polarized light into polarized light that can obtain a desired viewing angle.
  • phase difference plate 3100 when a 1/4 wavelength plate is used as the phase difference plate 3100, linearly polarized light transmitted through the analyzer 124 is substantially circularly polarized by the action of the phase difference plate 3100. As a result, the light is incident on the light distribution control element 100, and the same isotropic and wide viewing angle is obtained in both the horizontal and vertical directions.
  • the transmission axis of the linearly polarized light of the analyzer 122 and the polarizer 122 is set with respect to the horizontal direction. It is placed at 45 ° or 13.5 °, and as a retardation plate 3100, for example, a 1Z two-wave plate is tilted by 22.5 ° with respect to the transmission axis of the analyzer.
  • the light incident on the light distribution control element 100 may be converted so that the oscillation direction of the linearly polarized light is horizontal to the display surface.
  • a retardation plate 3100 and a light distribution control element 100 simply adding a retardation plate 3100 and a light distribution control element 100 to the existing liquid crystal display element provides a wider viewing angle in the horizontal direction than in the vertical direction on the display surface, and is symmetrical.
  • a liquid crystal display device having a high brightness can be obtained.
  • a display device is required to have a wider viewing angle in a horizontal direction than in a vertical direction, which is very effective in efficiently distributing limited light to an observer. Note that the same effect can be obtained by disposing a polymer laminated film having a twisted structure instead of the retardation plate 3100.
  • the slow axis of the film should be 5.6 °, 16.9 °, 28.1 °, 39.4 ° with respect to the transmission axis of the analyzer from the side closer to the liquid crystal display element.
  • the liquid crystal display device Although an example of a TN liquid crystal panel for a monochromatic display has been described, it goes without saying that a full-color liquid crystal display element in which a microscopic filter is applied to a transparent substrate may be used.
  • the display mode is not limited to the TN mode, and a liquid crystal panel such as a VA mode, an ECB mode, an OCB mode, or an STN mode may be used.
  • the driving method may be a direct matrix drive in addition to the active matrix drive provided with a switching element such as a thin film transistor.
  • the light distribution control element of the present invention uses an optically substantially isotropic or uniaxially anisotropic transparent body having an in-plane optical axis as a transparent base material, thereby changing polarized light. Even when the light enters, there is an effect that the image quality is not degraded due to the occurrence of a stripe pattern and a wide viewing angle is obtained. Therefore, the light distribution control element of the present invention can be used as a viewing angle enlarging means of a display device using polarized light, such as a liquid crystal display device.
  • the rear projection display device of the present invention comprises the transmission type screen including the light distribution control element of the present invention and a Fresnel lens disposed on the light incident side thereof, and the light distribution control element
  • the incident angle of the incident light By setting the incident angle of the incident light to be substantially 0 degrees, a decrease in transmittance at the light distribution control element is suppressed, and a bright display image is obtained.
  • a single-tube projection device as the projection device, high-quality images can be obtained because there is no color shift due to the dependence of the light distribution control element on the light incident angle and no coloring.
  • the polarization state of the projection light emitted from the projection device is matched with each of the color lights so that the color distribution caused by the polarization dependence of the light distribution characteristics of the light distribution control element is obtained. And high-quality images can be obtained.
  • the light distribution control element is bright and wide viewing angle characteristics from any angle Since it has a high effect of reducing stray light due to external unnecessary light, low contrast black display can be realized even in a bright environment, so that a display with a high contrast ratio can be realized.
  • a substantially concentric minute lens is used as the minute lens of the light distribution control element, and the polarization state of the light projected on the transmission screen can be changed.
  • the provision of the state conversion element has an effect that the viewing angle characteristics of the display device can be easily changed without changing the configuration of the screen.
  • an observer sensing unit that senses the presence or absence of an observer in the rear projection display device, and an observer position determination that determines a horizontal and vertical position of the observer based on a sensing signal of the sensing unit.
  • Means and a control signal output means for outputting a control signal to the polarization state conversion element based on the information of the position determination means, thereby automatically determining the position of the observer and changing the polarization state of the projection light.
  • the rear-projection display device of the present invention by making the projection light from the projection device incident on the transmission screen non-polarized, the polarization dependence of the light distribution characteristics of the light distribution control element is improved. This makes it possible to obtain high-quality images without coloring or stripes.
  • the light distribution control element according to the present invention is arranged on the front surface side, and the device emits illumination light substantially parallel to the backlight device.
  • the light distribution control element When used, only light in the range near the front can be isotropically diffused by the light distribution control element, so that there is no color tone change or gradation inversion over a wide viewing angle range.
  • a liquid crystal display device having an image with a high ratio can be obtained.
  • the light incident on the light distribution control element is converted into linearly polarized light having a vibration direction in the horizontal direction with respect to the display surface, so that the light in the horizontal direction is more vertical than the vertical direction.
  • the viewing angle By widening the viewing angle, limited light can be effectively distributed to the observer.
  • the polarization state of light incident on the light distribution control element can be arbitrarily changed by a phase difference plate disposed between the analyzer and the light distribution control element.
  • a predetermined viewing angle can be obtained by utilizing the polarization dependence of the light distribution characteristics of the light distribution control element.
  • the light distribution control element that does not deteriorate the image quality due to the occurrence of the stripe pattern, and the high luminance and high contrast ratio using the light distribution control element , Obtain a display device with a wide viewing angle.

Description

明 細 書
配光制御素子およびこれを備えた表示装置 技術分野
本発明は、 背面投射型表示装置の透過型スク リ ーン部材、 あるいは、 液晶表示装置などの視野角拡大部材と して用いることができる配光制御 素子およびこれを用いた表示装置に関する。 背景技術
背面投射型表示装置は、 直視型 C R Tに比べ比較的容易に小型かつ低 コス トに大画面表示が実現できるため、 北米市場を中心に需要が増大し ている。 特に、 2次元光学スィ ッチ素子と して T N ( T w i s te d N emat i c) 液晶等の液晶表示素子を用いた投射装置を有する背面投射型表示装置は、 C R T投射管を用いた背面投射型表示装置と異なり 、 ドッ トマ ト リ クス 表示によ り画面の周辺部までボケのない高精細な表示が可能であるため、 高解像度ディ ジタルテレビの本命と して期待されている。
第 1 1 図は、 背面投射型表示装置の模式断面図である。 投射装置 70 1 から出射した投射光 7 0 4がミ ラー 7 0 2 を介して透過型スク リ ーン 7 0 3 に照射され、 その前面に画像が表示される。
透過型スク リ ーン 7 0 3 は通常、 第 3 8 図に示す通り 、 フ レネルレン ズシー ト 1 4 0 2 と レンチキユラ レ ンズシー ト 1 4 0 1 とから構成され、 フ レネルレンズシー ト 1 4 0 2 は、 凸レンズと同じ作用をする光学部品 で、 投射装置 7 0 1 からの主光線の方向を観察者側に曲げて適視範囲を 広げる働きをする。
レンチキユラ レンズ 1 4 0 1 は投射装置 7 0 1 からの限られた投射光 束を、 観察者の観察範囲に有効に配光し、 明るい画像を得ること を目的 と している。
第 3 6図はレンチキユラ レンズの一例を示す模式断面図であ り 、 第 3 7図は該レンチキユラ レンズの模式斜視図である。
レンチキユラ レンズ 1 4 0 1 は、 シ リ ン ドリ カルレンズ状のレンズ 1 5 0 1 を一方向に複数配列し、 光の集光部以外の部分にブラ ックス 卜 ライ プ 1 5 0 2 を設けた構成となっており 、 レ ンズ 1 5 0 1 の焦点位置 をスク リ ーンの観察面とする こ とで、 理想的には投射光の損失がなく 、 外光に対するコ ン トラス ト比の低下を抑制する ことができる構成となつ ている。
一般に、 レンチキユラ レンズは、 その母線を表示面に対して垂直方向 になるよう に配列する ことで、 水平方向に広い視野角が得られるよう に している。 従って、 垂直方向への配光はレンチキユラ レンズの母材中も し く は、 表面部に配合した拡散材による拡散のみのため、 垂直方向の視 野角は水平方向に比べてかな り狭く なる。 ま た、 レンチキユラ レンズは 直線的な形状のレンズを、 規則的に配置しているため画像にモアレ干渉 縞が発生し易い。
これに対し、 特開平 2— 77736号公報には、 第 3 9図に示す様な透明基 材 1 6 0 1上に球状レンズ 1 6 0 2 を敷き詰め、 透明樹脂によ って固定 した構成の透過型スク リ ーンが開示されている。 この構成では、 金型を 使用 しないので製造上大きさ の制限がな く 、 継ぎ目のない大画面の透過 型スク リーンが実現できる。 さ らに、 球状レンズ側から入射する光は球 状レンズのレンズ効果によ り収束し、 等方的に発散するため、 水平, 垂 直両方向共に広視野角が得られる。
さ らに、 S I D 9 4 D I G E S T p p 7 4 1 〜 7 4 4 (A Novel H igh— Resolution Ambient— L ight— Rejecting R ear—
P rojection S creen) には、 オプティ カルピーズを透明基材上に光吸 収接着剤層を介 して固着し、 透明基材とは反対側のオプティ カルビーズ 表面を透明バッ ク コー ト した構造のスク リ ーンが発表されている。
ま た、 特開平 9一 318801 号公報では微小球体状透明ビーズを、 着色ホ ッ トメル ト接着剤層と透明ホッ トメル ト接着剤層とによ り 、 透明基材上 に固定した構造の平面型レンズが開示されている。 これらの構造によれ ば、 上記特開平 2— 77736号公報と同様に、 ビーズのレンズ効果によ り水 平, 垂直両方向共に広く 、 等方的な視野角が得られる。 さ らに、 外部か ら入射する不要光は、 光吸収接着剤層 ( ま たは、 着色ホッ トメル ト接着 剤層) で吸収されるため、 明るい環境下でも高コ ン トラス ト比が得られ る。 また、 ピーズの直径を小さ く する こ とで比較的容易に高解像度を実 現できる。
上記従来の平面型レンズ (以下、 配光制御素子と呼ぶ) を以下のとお り作製した。 透明基材と して厚さ 1 2 Ο μ πιの平坦なポ リ エチレンテレ フタ レー ト ( P E T ) 樹脂フ ィルムを用い、 その表面にポ リ エステル系 ホッ トメル ト接着剤からなる透明接着剤層を 5 μ m、 その上に同 じ く ポ リ エステル系ホ ッ トメル ト接着剤にカーボンブラ ック を 1 0重量部配合 した着色接着剤層を 4. 5 μ πιを形成し、 一旦固化する。
その上に屈折率 1 . 9 3 5 (波長 5 8 9. 3 n m ) 、 直径 5 0 μ ιηの球 状のガラス製透明ビーズを密に分散配置し、 恒温槽内で透明接着剤層お よび着色接着剤層を加熱して軟化させつつ、 加圧板によ り透明ビーズを 透明基材側へ加圧 して着色接着剤層および透明接着剤層に埋没し、 固着 した。 固着後の接着層の厚さは透明接着剤層と着色接着剤層と を合わせ 約 2 1 ^ mで、 透明ビーズはその直径の約 5 8 %が接着剤層から露出 し ていた。
作製した配光制御素子を、 2 次元光学スィ ッチ素子 (ライ トバルブ) と して T N型液晶表示素子を用いる投射装置を備えた背面投射型表示装 置の透過型スク リ ーンと して評価したと ころ、 水平方向, 垂直方向共に ± 5 0 ° 以上の広い視野角 ( こ こでは正面輝度に対して 1 ノ 2 の輝度に なる角度) が得られ、 さ らに、 外部 (観察者側) から配光制御素子へ入 射する不要光は、 着色接着剤層で吸収されて、 明るい環境下でも低輝度 な黒表示が実現できた。
と ころが、 配光制御素子に映し出された画像を斜め方向から観察した と ころ、 略同心円状の縞模様が現れて、 画質が著し く 劣化している こ と が分かった。 さ らに、 斜め方向から観察した際、 画像に好ま し く ない色 度変化が生じる ことも分かっ た。
本発明の目的は上記縞模様の発生による画質の劣化がない配光制御素 子、 およびこの配光制御素子を用いた高輝度, 高コ ン トラス ト比, 広視 野角の表示装置を提供する こ と にある。 上記以外の目的については以下 の記述から 自ずと明らかになるであろ う 。 発明の開示
本発明者らは、 縞模様の発生と色度変化の原因を探るため、 上記従来 の配光制御素子についてよ り 詳細な検討を行った。 その結果、 縞模様は 配光制御素子に偏光が入射した際に生じるもので、 透明基材の光学的異 方性によ り該基材内を異なる角度で進行する光に異なる位相差が生じる こと、 および、 透明基材から出射する光の P偏光成分と s 偏光成分のェ ネルギー透過率の差が組み合わされて生じる こと を見出 した。 ま た、 本 配光制御素子の配光特性は、 入射する光の偏光状態に依存して変化する ため、 これが色度変化の原因になっている こと を見出 した。 上記に基づ き到達した本発明の要旨は次のとお り である。
〔 1 〕 透明基材と、 この透明基材の一方の面上に密に配置された多 数の微小レンズと、 前記微小レ ンズの略焦点位置に微小開口部を有する 光吸収層を備えた配光制御素子において、 前記透明基材が光学的に略等 方な透明体、 も し く は、 一軸性光学異方性の透明体で構成されている こ とを特徴とする配光制御素子。
これを用いる こと によ リ 、 画質に影響を与えるよ う な位相差の発生を 抑制する ことで偏光入射時の縞模様の発生を解消したものである。
〔 2 〕 光学画像を投射する投射装置と、 前記投射装置からの投射光 が背面から入射し、 これを前面に表示する透過型スク リ ーンを備える背 面投射型表示装置において、 前記投射装置が光源と、 該光源からの光を 画像情報に応じて光学画像に変調する 2次元光学スィ ツチ素子と、 変調 後の光学画像を拡大投射する投射レンズを有する単管式投射装置を備え、 前記投射装置から出射された前記変調後の光学画像が前記透過型スク リ ーンへ入射する際、 前記 2 次元光学スィ ツチ素子で形成された光学画像 光の偏光状態を可視波長全域で略一致させる偏光状態揃え手段を有し、 前記透過型スク リ ーンが、 透明基材と、 この透明基材の一方の面上に密 に配置された多数の微小レンズと、 前記微小レンズの略焦点位置に微小 開口部を有する光吸収層を備え、 前記透明基材が光学的に略等方な透明 体、 も し く は、 一軸性光学異方性の透明体で構成された配光制御素子と、 この配光制御素子の投射光入射側に設けた光束平行化手段によ り構成さ れていること を特徴とする背面投射型表示装置。
上記によ り 、 配光制御素子へ入射する投射光 (光学画像光) の偏光状 態は可視波長域全域で一致している。 このため、 配光制御素子の配光特 性の偏光依存性によ る色付きは起こ らず、 斜め方向から観察しても色度 変化のない高画質な表示を実現する ことができる。
さ らに、 上記配光制御素子へ入射する画像光は、 略平行状態で、 かつ、 実質的に入射角度 0 ° で入射するため、 配光制御素子での透過率低下が 抑制されて明るい表示画像が得られる。
〔 3 〕 前記 2 次元光学スィ ッチ素子が偏光を利用 して表示を行う 2 次元光学スィ ツチ素子であ り 、 前記 2次元光学スィ ツチ素子で形成され た光学画像光の偏光状態を電気べク トルの振動方向が前記透過型スク リ —ン表示面に対して水平方向の直線偏光, 垂直方向の直線偏光, 円偏光, 楕円偏光のいずれかに変換する偏光状態変換手段を備えている前記の背 面投射型表示装置。
上記によ り 、 配光制御素子に入射する光学画像光の偏光状態を制御で きるため、 透過型スク リ ーンの構成を変えな く ても、 配光制御素子の配 光特性の偏光依存性によ り 、 視野角特性を容易に変え られる背面投射型 表示装置が実現できる。
〔 4 〕 前記背面投射型表示装置において、 観察者の有無を感知する 観察者感知部と、 該観察者感知部の感知信号によ り水平および垂直方向 の観察者の位置を判断する観察者位置判断手段と、 該観察者位置判断手 段の情報に基づき偏光状態変換素子に制御信号を出力する制御信号出力 手段を備えている前記の背面投射型表示装置。
上記によ り 、 観察者の位置を自動的に判断し、 この位置情報をも とに 投射光の偏光状態を変える ことで観察者の位置に応じた視野角特性を得 る ことが可能となる。 つま り 、 観察者の位置に応じて視野角特性を 自動 的に変え、 限られた映像光を観察者の方向へ有効に配光して、 観察者に 良好な映像を提供するものである。 〔 5 〕 前記投射装置が光源と、 該光源からの光を画像情報に応じて 光学画像に変調する 2次元光学スィ ツチ素子と、 変調後の光学画像を拡 大投射する投射レンズを有する単管式投射装置を備え、 前記透過型スク リ ーンが、 透明基材と、 該透明基材の一方の面上に密に配置された多数 の微小レ ンズと、 前記微小レンズの略焦点位置に微小開口部を有する光 吸収層を有する配光制御素子と、 該配光制御素子の投射光入射側に配置 された光束平行化手段を有しており 、 前記投射装置から出射し、 前記透 過型スク リ ーンに入射する投射光を略無偏光とする無偏光化手段を有す る こ と を特徴とする背面投射型表示装置。
上記によ リ 、 透過型スク リ ーンを構成する配光制御素子に入射する光 学画像光は無偏光となっているため、 配光制御素子の配光特性の偏光依 存性による色度変化は起こ らない。 ま た、 配光制御素子の透明基材の光 学異方性によ って、 偏光入射時に生じる縞模様も発生しないため、 画質 劣化のない美しい画像を得る こ とができる。 ま た、 透明基材と して光学 異方性のある透明体を用いても画質の劣化がないので、 その材料の選択 範囲が広く な り 、 よ り 安価で、 高強度の配光制御素子からなる透過型ス ク リ ーンが実現できる。
〔 6 〕 透明電極と配向膜が積層形成され、 かつ、 前記配向膜形成面 を対向させて一定の間隙をも って接合された一対の透明基板と、 前記間 隙に封入された液晶層と、 前記透明電極に画像信号に対応した電圧を印 加する電圧印加手段と、 前記一対の透明基板の光入射面側と光出射面側 に偏光子および検光子を配置した液晶表示装置において、
前記一対の透明基板の背面に略平行な光を出射するバック ライ ト装置 を配置し、 前記一対の透明基板の光出射面側に、 透明基材と、 この透明 基材の一方の面上に密に配置された多数の微小レンズと、 前記微小レン ズの略焦点位置に微小開口部を有する光吸収層を備え、 前記透明基材が 光学的に略等方な透明体、 も し く は、 一軸性光学異方性の透明体で構成 された配光制御素子を配置したこ と を特徴とする液晶表示装置。
これによ リ 、 良好な画質が得られる正面近傍の限定された範囲の光の みを配光制御素子によ リ等方的に拡散することができるので、 広い視野 角範囲で色調変化や階調反転がな く 、 コ ン トラス ト比の高い画像が得ら れる液晶表示装置が実現できる。
〔 7 〕 前記一対の透明基板の光入射面に偏光子を配置し、 光出射面 に透明基板側から順に検光子, 配光制御素子を配置し、 さ らに、 前記検 光子の直線偏光の透過軸を表示面に対して水平方向に配置した前記液晶 表示装置。
これによ り 、 配光制御素子の配光特性の偏光依存性によ り 、 表示面に 対して垂直方向よ り も水平方向の視野角が広く な り 、 限られた光を観察 者に有効に配分する こ とができる。
〔 8 〕 前記一対の透明基板の光入射面に偏光子を配置し、 光出射面 に透明基板側から順に検光子, 配光制御素子を配置し、 さ らに、 前記検 光子と前記配光制御素子の間に位相差板を配置した前記液晶表示装置。
これによ り 、 配光制御素子に入射する光の偏光状態を、 検光子と配光 制御素子の間に配置した位相板によ って任意に変え得るので、 位相差板 を変更するだけで、 配光制御素子の配光特性の偏光依存性を利用 して、 所望の視野角のものを得る こ とができる。 図面の簡単な説明
第 1 図は、 本発明の配光制御素子の模式断面図である。
第 2 図は、 本発明の配光制御素子の模式斜視図である。 第 3 図は、 本発明の配光制御素子の製法の一例を説明する模式断面図 である。
第 4図は、 従来の配光制御素子の偏光入射時の光出射 (配光) 特性を 示す等輝度線図である。
第 5図は、 等輝度線図の座標系の説明図である。
第 6図は、 屈折率楕円体の円形接断面の説明図である。
第 7図は、 ポ リ エチレンテレフタ レ一 トフ イルムの光学軸の説明図で ある。
第 8 図は、 ポ リ エチレンテレフタ レ一 トフ イ ルムの光入射角度とエネ ルギ一透過率の関係を示すグラフである。
第 9図は、 本発明の配光制御素子の直線偏光入射時の光出射特性を示 す等輝度線図である。
第 1 0図は、 本発明の配光制御素子の直線偏光入射時の光出射(配光) 特性を示すグラフである。
第 1 1 図は、 本発明の背面投射型表示装置の模式断面図である。
第 1 2 図は、 本発明の背面投射型表示装置に係る投射装置の模式断面 図である。
第 1 3図は、 本発明の背面投射型表示装置に係る投射装置の 2次元光 学スィ ツチの模式断面図である。
第 1 4図は、 本発明の背面投射型表示装置に係る透過型スク リ ーンの 模式断面図である。
第 1 5図は、 本発明の配光制御素子の透過率の光入射角依存性説明の ための模式図である。
第 1 6図は、 本発明の配光制御素子の透過率と光入射角度の関係の一 例を示すグラフである。 第 1 7 図は、 本発明の背面投射型表示装置に係る投射装置に用いる偏 光状態揃え手段の模式断面図である。
第 1 8 図は、 本発明の背面投射型表示装置に係る投射装置に用いる偏 光状態揃え手段の動作説明のための模式図である。
第 1 9 図は、 本発明の背面投射型表示装置に係る投射装置の模式断面 図である。
第 2 0 図は、 本発明の背面投射型表示装置に係る投射装置に用いる偏 光状態変換素子の模式断面図である。
第 2 1 図は、 本発明の背面投射型表示装置に係る投射装置に用いる偏 光状態変換素子の動作説明のための模式図である。
第 2 2 図は、 本発明の背面投射型表示装置に係る投射装置に用いる偏 光状態変換素子の動作説明のための模式図である。
第 2 3 図は、 本発明の背面投射型表示装置に係る投射装置に用いる偏 光状態変換素子の動作説明のための模式図である。
第 2 4図は、 本発明の背面投射型表示装置に係る投射装置に用いる偏 光状態変換素子の動作説明のための模式図である。
第 2 5 図は、 本発明の背面投射型表示装置に係る投射装置のポリ マ分 散型液晶表示素子の模式断面図である。
第 2 6 図は、 ポリ マ分散型液晶表示素子の動作説明のための模式図で ある。
第 2 7 図は、 ポリ マ分散型液晶表示素子によ り表示を行う光学系説明 のための模式図である。
第 2 8 図は、 ポリ マ分散型液晶表示素子によ り表示を行う光学系説明 のための模式図である。
第 2 9 図は、 本発明の背面投射型表示装置に係る投射装置の模式断面 図である。
第 3 0 図は、 本発明の背面投射型表示装置に係る投射装置の模式断面 図である。
第 3 1 図は、 本発明の液晶表示装置の模式断面図である。
第 3 2 図は、 本発明の液晶表示装置の偏光子と検光子の直線偏光透過 軸の説明のための模式図である。
第 3 3 図は、 本発明の液晶表示装置の模式断面図である。
第 3 4図は 本発明の配光制御素子の模式斜視図である。
第 3 5 図は 本発明の配光制御素子の模式斜視図である。
第 3 6 図は レンチキユラ一レンズシ一 トの一例を示す模式断面図で ある。
第 3 7図は レンチキユラ一レンズシー トの一例を示す模式斜視図で ある。
第 3 8図は 従来の透過型スク リ ーンの一例を示す模式断面図である。 第 3 9 図は 従来の透過型スク リ ーンの斜視図である。
第 4 0図は 本発明の背面投射型表示装置の模式斜視図である。
第 4 1 図は 本発明の背面投射型表示装置の観察者感知部が感知する 区分された領域を例示する説明図である。
第 4 2 図は、 本発明の背面投射型表示装置の観察者感知部が感知する 区分された領域を例示する説明図である。
第 4 3 図は、 本発明の背面投射型表示装置の効果説明のための図であ る。
第 4 4図は、 本発明の背面投射型表示装置の効果説明のための図であ る。
発明を実施するための最良の形態 本発明の実施の形態について図面に基づき説明する。 第 1 図は本発明 の配光制御素子の一例を示す模式断面図で、 第 2 図はその模式斜視図で ある。
この配光制御素子は、 透明基材 1 0 1 と、 その表面に形成されたホッ トメル ト接着剤層 1 0 4 と、 該接着剤層 1 0 4 に固着された複数の微小 球状の透明ビーズ 1 0 5 で構成される。
透明基材 1 0 1 は、 それ自体が剛性を有する板状の基材であってもよ い し、 フ ィルム状の基材であっても よいが、 光学的に略等方、 も し く は、 板面ま たは膜面に平行な方向に光学軸を有する 1 軸異方性の透明体を用 いる こ とが重要である。
具体的にはガラス板, 射出成形によるァク リ ル樹脂板等の光学的に略 等方な透明板、 あるいは、 キャスティ ング法やエキス トル一ジョ ン法等 によ り製膜し、 必要に応じて一軸延伸 したポリ カーボネー ト樹脂, 塩化 ビニル樹脂, ポリ エステル系樹脂, セルロース系樹脂, ポ リ ビニルアル コール樹脂, ポリ オレフ イ ン系樹脂等の光学的に略等方、 ま たは、 膜面 に平行な光学軸を有する 1 軸異方性の透明フ ィ ルムが用い られる。
ホッ トメル ト接着剤層 1 0 4 は、 透明層 1 0 2 と着色層 1 0 3 の順に 積層 した構成となっている。 該接着剤層は透明基材 1 0 1 と透明ビーズ 1 0 5 に対して十分な接着力を有するものを用いる。 これにはァク リ ル 系樹脂, ポリエステル系樹脂, ポリ ア ミ ド系樹脂, ポリ ウ レタ ン系樹脂 等からなるホッ トメル ト接着剤を用いる こ とができる。 ま た、 着色層 1 0 3 は、 これらの接着剤をベースに してカーボンブラ ッ ク等の顔料を 分散させる ことで着色したもの、 あるいは、 染料による染色によ り 着色 したものなどが用いられる。
透明ビーズ 1 0 5 は、 ガラス製も し く は光学的に等方で透明な樹脂製 の球状ビーズが用いられ、 その屈折率が高いものほど透明ビーズに入射 した光の屈折角が大き く なるため、 配光制御素子の光出射角度(視野角) は広く なる。 しか し、 その分正面の輝度が低下すると共に表面での反射 や、 透明基材 1 0 1 と空気との界面での反射が多く な り全光線透過率は 低下する。
ま た、 透明ビーズ 1 0 5 の光出射面側の開口部、 即ち、 透明ビーズ 1 0 5 と透明接着剤層 1 0 2 との接触部分に効率良く 光を通すためには、 透明ビーズに入射した光の光出射面側での収束面積を小さ く する方が有 利である。 この場合、 透明ビーズの光入射側の媒質が空気であれば、 屈 折率 1 , 6 〜 2 . 1 程度とする ことで、 光出射面での収束面積は十分小さ く できる。 さ らに、 上記屈折率を 1 . 9 〜 2 . 1 とする ことで、 よ り小さ な収差で集光する こ とが可能である。
透明ピーズ 1 0 5 の屈折率は、 これらの条件を踏まえた上で配光制御 素子に要求される特性、 即ち、 視野角や明るさ (ゲイ ン) の仕様に適合 する よ う選択する。 ま た、 必要に応 じて異なる屈折率の透明ビーズを混 合して用いることもできる。
配光制御素子 1 0 0 を表示装置のスク リ ーンあるいは視野角拡大手段 と して用いる場合は、 透明ビーズ 1 0 5 の直径は表示される画像の解像 度に直接影響する。 即ち、 配光制御素子に表示される画像は、 透明ピー ズ 1 0 5の直径以下には解像できない。 よ って、 透明ビーズの直径は配 光制御素子に表示すべき画像の画素よ リ も小さ く する必要がある。
高い解像度を得るには透明ビーズ 1 0 5 の直径は小さいほどよいが、 透明ビーズ 1 0 5 の直径が光の波長領域に近づく と、 透過光の散乱要因 が大き く なり正面での輝度や透過率が低下するため、 自 とその下限は規 定される。 上記透明ビーズ 1 0 5 の直径は、 表示画像の画素ピッチの 1 2以下 で、 実用的には 2 0 〜 1 0 0 m程度が望ま しい。 ま た、 透明ビーズ 1 0 5 は、 透明基材 1 0 1 の面上に均一、 かつ、 最大密度に配置するた め、 できるだけ粒径のばらつきが小さいこ とが望ま しい。 実際には粒径 のばらつきを 1 0 %以内に収めれば配光制御素子と しての機能は満足さ れる。
ま た、 透明ビーズ 1 0 5 は、 内部に気泡があると透過率の低下要因と なるため、 気泡のないものが望ま しい。
次に、 本発明の配光制御素子 1 0 0 の製法の一例を第 3 図を用いて説 明する。
工程 ( a ) : 透明基材 1 0 1 上に加熱溶融状態、 あるいは、 溶剤によ リ溶解、 または、 溶液にコ ロイ ド状に分散したホッ トメル ト透明接着剤 を、 例えば、 スピンコー ト, ナイ フコー ト, 口一ルコ一 ト, スプレーコ — ト, ブレー ドコー トによ り塗布し、 透明接着剤層 1 0 2 を形成する。 工程 ( b ) : その上に着色接着剤層 1 0 3 を透明接着剤層 1 0 2 と同 様の方法で積層 し、 ホッ トメル ト接着剤層 1 0 4 を形成する。 この際、 着色接着剤層 1 0 3 と透明接着剤層 1 0 2 が混合しないよ う にするため、 着色接着剤層 1 0 3 の形成は、 透明接着剤層 1 0 2 が高温の溶融状態の 場合は強制冷却も し く は自然冷却によ って温度を下げる。 ま た、 透明接 着剤層 1 0 2 が溶剤中に溶融状態、 ま たは、 溶液中にコ ロイ ド状に分散 した状態であれば乾燥器で溶媒を蒸発させて固化あるいは半固化すると よい。
工程 ( c ) : 複数の透明ビーズ 1 0 5 を着色接着剤層 1 0 3 上に少な く とも一層、 最大充填密度となるよう分散配置する。 この際、 着色接着 剤層 1 0 3 は固化ま たは半固化状態では接着性がないので、 透明ビーズ 1 δ
1 0 5は比較的容易に最大充填密度に分散配置できる。
工程 ( d ) : 次いで上記を恒温槽, 赤外線ヒータ等の加熱手段により 加熱し、 ホッ トメル卜接着剤層 1 0 4 を軟化, 溶融し、 透明ビーズ 105 を透明基材 1 0 1 に向かって自重あるいは加圧手段により、 ホッ 卜メル 卜接着剤層 1 0 4内に所定の量だけ埋没させる。
工程 ( e ) : 透明ビーズ 1 0 5が埋没した状態で、 ホッ 卜メル卜接着 剤層 1 0 4の温度を常温まで下げて固化し、 透明ビーズを固着する。 なお、 ホッ 卜メル卜接着剤層 1 0 4への透明ビーズ 1 0 5の埋没深さ は、 該ビーズ直径の 5 0〜 8 0 %が露出するようにすることが望ましい: 露出量がこれよ り少ない場合は、 着色接着剤層による吸収で透明ビーズ 1 0 5への入射光量が低下して透過率が低下する。 また、 露出量がこれ よリ大きい場合にはビーズの固着性が不十分となる。
上記により、 本発明の配光制御素子は、 透明ビーズ 1 0 5が 1層分だ け、 ほぼ最大充填密度で分散配置され、 かつ、 その直径の半分以上をホ ッ トメルト接着剤層 1 0 4から光入射側に露出固定させたものを得るこ とができる。
次に、 本発明の配光制御 ¾ の光学的な作用について第 1 図により説 明する。 配光制御素子 1 0 0は、 前記のとおり光入射面側に透明ビーズ 1 0 5が 1層分だけ、 ほぼ最大充填密度で分散配置され、 かつ、 ビーズ 直径の半分以上がホッ 卜メルト接着剤層 1 0 4から光入射側に露出, 固 定されている。
従って、 配光制御素子 1 0 0に対して垂直入射した平行な入射光 1 06 は、 その一部が透明ビーズ 1 0 5同士の隙間の着色接着剤層 1 0 3に吸 収される力、 大部分は透明ビ一ズ 1 0 5に入射する。 該入射光は透明ビ —ズ 1 0 5の屈折作用により収束しつつ、 透明ビーズ 1 0 5 と透明接着 剤層 1 0 2 との接触部に形成された開口部を通過し、 透明基材 1 0 1 を 透過, 発散しながら出射する。 つま り 、 透明ビーズへの入射光は、 透明 ビーズのレンズ効果で収束され、 等方的に発散するため、 等方で広い視 野角の配光制御素子が得られる。
ま た、 外部から入射する不要光 1 0 7 は、 着色接着剤層 1 0 2 で吸収 されて、 不要光が迷光とな り観察される ことがない。 従って、 明るい環 境下でも外部不要光による迷光の低減効果が高く 、 観察者がどの角度か ら見ても明る く 、 等方的な視野角特性の配光制御素子を得る ことができ る。
〔偏光入射時の縞模様の解消〕
次に本発明の配光制御素子特有の効果を明らかにするため、 従来の課 題であった偏光入射時に斜め方向からの観察した際に現れる縞模様の発 生について説明する。
第 4図は、 従来 (本発明に係る課題について配慮がなされていない) の配光制御素子の偏光入射時の光出射特性を等輝度線図で表したもので ある。
この等輝度線図は、 第 5 図に示す出射角度と方位角度で構成する座標 系内に最大輝度を 1 0 0 %と し、 1 0 %間隔で等輝度となる点を結び表 示したものである。
第 4図中、 中央部が出射角度 0 ° (正面) を示し、 点線の同心円が出 射角度 ( 1 0 ° 間隔) を示す。 ま た、 方位角度は図面下方向を 0 ° と し、 反時計回り に増加するよう に表示する。
第 4図に示すとお り 、 従来の配光制御素子では偏光を入射すると出射 角度 4 0 ° 近傍の 2点を中心と した略同心円状の輝度変動が現れる。 こ れは、 実際には斜め方向から観察した際に縞模様と して視認する こ とが できる。
本測定に用いた従来の配光制御素子は、 透明基材 1 0 1 と して厚さ 1 2 Ο μ πιの平坦なポ リ エチレンテレフタ レ一 ト ( P E T ) フ ィ ルムを 用いた。 その表面にポリ エステル系ホ ッ トメル ト接着剤からなる透明接 着剤層 5 m、 その上にポリ エステル系ホッ トメル ト接着剤に力一ボン ブラ ック を 1 0重量部配合した着色接着剤層 4. 5 ii m を形成し、 この 上に屈折率 1. 9 3 5 (波長 5 8 9. 3 n m ) , 直径 5 0 μ ιηの球状ガラ ス透明ビーズを密に分散配置し、 上記着剤層に埋没, 固着したものであ る。
透明ビーズ固着後の接着層の厚さは、 透明層と着色層合わせて約 2 1 mで、 透明ビーズはその直径の約 5 8 %が接着剤層から露出 していた。 こ こで、 上記配光制御素子では透明基材 1 0 1 と して、 2軸延伸 した P E Tフ ィルムを用いた。 これは、 2軸延伸フ ィルムは無延伸フ ィルム に比べて引張強さや衝撃強さが増大し、 透明性, 使用温度範囲も改良さ れるなど物性が著し く 向上するためである。 ま た、 P E Tフ ィルムは、 ガラス製透明ビーズとの接着性が良いポ リ エステル系ホッ トメル ト接着 剤との密着性がよ く 、 さ らに上記ホ ッ トメル ト接着剤(溶剤 : トルエン) に対する耐溶剤性が良好であるためである。
上記理由から透明基材に 2軸延伸 P E Tフ ィルムを用いたが、 一般に、 2軸延伸フ ィルムは 3つの主屈折率 (フ ィ ルム膜面に垂直な方向 : Z軸 方向, 膜面に平行で互いに直交する方向 : X軸および Y軸方向) が互い に異なる 2軸異方性の物質となる。
2軸異方性とは第 6図に示すよ う に屈折率楕円体を考えたと き、 その 切断面形状が円形とな り 、 屈折率異方性が生じない方向が 2方向定ま る 物質のこ とである。 この光の方向を光学軸と云い、 光学軸には屈折率異方性がないため、 これと平行に進む偏光には位相差が生じない。 例えば、 上記従来例に用 いた P E Tフィルムの場合、 3つの主屈折率は n X = 1 . 6 7 8 , n y = 1 . 6 4 5 , n z = 1 . 4 9 7であり、 第 7図に示すとおり光学軸は Z 軸と 2 3 . 3 ° の角度を成す Z X平面内に 2本存在する。
P E Tフィルム内を光学軸に沿って進んだ光は空気との界面で屈折し、 出射角度 4 1 . 6 ° で出射するため、 第 4図に示した出射角度 4 0 ° 近 傍の輝度変動の略中心位置はこの光学軸に相当している。
ここで、 特定の偏光状態 (直線偏光あるいは楕円偏光) の光が配光制 御素子に入射する場合を考える。 この場合、 配光制御素子に入射した光 の大部分は透明ビーズによって収束され、 その後、 発散して様々な角度 で P E Tフィルム内を進む。 この際、 P E Tフィルム内を光学軸に沿つ て進む光には位相差が生じないので偏光状態は変化しない。
ところが、 光学軸とずれた角度で進む光には、 その角度のずれに対応 した位相差が生じるため、 偏光の状態、 即ち、 P E Tフィルム光出射側 界面において光入射面に平行な p偏光成分と、 垂直な s偏光成分の割合 が変化する。 つま り、 光学軸方向と異なる方向に進む光には、 光学軸と のずれの大きさに対応して、 p偏光成分が多い光と、 s偏光成分が多い 光とが交互に現れることになる。
ここで、 一般に誘電体表面の屈折で、 P偏光と s偏光とではエネルギ 一透過率に差が生じる。 第 8図は、 p偏光と s偏光のエネルギー透過率 の違いを例示したもので、 P E Tフィルムから空気中へ光が進行する際 の光入射角度とエネルギー透過率の関係を示すグラフである。
第 8図のように、 p偏光と s偏光とでは最大 3 0 %以上の透過率の差 が生じる。 このため、 P偏光成分が多い光と、 s偏光成分が多い光とでは、 透過 光量に差が生じ、 輝度の明暗が形成され、 これが縞模様と して視認され る ことになる。
特に透明ビーズに代表される微小レ ンズを用いた配光制御素子では、 微小レンズに入射した光が収束し、 発散しながら透明基材内を様々な角 度で進行するため、 透明基材内での光の進行角度の違いに基づく位相差 の違いによ り 、 出射光の輝度むら (変化) が非常に発生し易い。
本発明の配光制御素子では、 透明基材 1 0 1 と して光学的に略等方、 も し く は、 膜面に平行な光学軸を有する 1 軸異方性のものを用いる こと を特徴と している。 従って、 本配光制御素子に入射する偏光は、 透明ビ —ズによ リ収束し、 発散しながら透明基材内を様々 な角度で進行するが、 透明基材が光学的に等方なため、 進行角度による位相差の違いは生じず、 偏光状態、 即ち、 p偏光成分と s偏光成分の割合は出射角度によっても 殆ど変化しないので縞模様は発生しない。
ま た、 配光制御素子に入射する偏光が直線偏光の場合は、 透明基材が 面内に光学軸を有する一軸異方性の物質であれば、 入射直線偏光の電気 ぺク トルの振動方向を透明基材の遅相軸と平行も し く は垂直とする こと で、 透明基材内を通過する偏光の進行角度による位相差の違いを小さ く でき、 縞模様の発生を抑制する こ とができる。
さ らに、 透明基材が光学的に異方性を有していても、 透明基材内を進 む光の進行角度による位相差の違いが小さ く て、 偏光状態の変化が小さ ければ輝度の変化は視認されず許容される。
例えば、 透明基材内部を進む光の進行角度の違いによ る位相差の違い の最大値が 1 2波長以下であれば、 透明基材内部を通過する光の角度 による偏光状態の変化は、 最大でも P偏光成分 1 0 0 %の光が s偏光成 分 1 0 0 %の光に変換されるに留ま るので、 輝度の変化は視認され難い。 よ り理想的には透明基材内部を通過する光の角度による位相差の違い の最大値を、 1 4波長以下に留める ことが望ま しい。 この場合は最大 でも、 例えば、 p偏光成分 1 0 0 %の光は p偏光成分 5 0 %、 s 偏光成 分 5 0 %の光への変換に留ま るので、 輝度変化はよ り認め難く なる。 従って、 こ こで云う光学的に略等方な透明基材とは、 透明基材内を進 む光の進行角度の違いによる位相差の違いが小さいために、 偏光状態の 変化も小さ く な り 、 輝度の変化が認め られない程度の等方性を示すもの 云う 。
上記のとおり 、 本発明の配光制御素子では、 透明基材と して光学的に 略等方、 あるいは、 面内に光学軸を有する一軸異方性の透明体を用いた ので、 偏光を入射しても、 縞模様の発生による画質劣化が起こ らず、 広 視野角が得られる。
ま た、 外部から配光制御素子 1 0 0 に入射する不要光 1 0 7 は着色接 着剤層 1 0 2で吸収されるため、 不要光が迷光となって観察される こと がない。 従って、 明るい環境下でも外部不要光による迷光が低減される。 なお、 上記のとおり誘電体表面のエネルギー透過率は、 p偏光と s偏 光で異なるため、 透明ビーズ 1 0 5 、 あるいは、 透明基材 1 0 1 の表面 において p偏光成分の透過率は高く 、 s偏光成分の光は透過率が低く な る。 その結果と して、 入射光の偏光状態によ って出射光の配光特性に異 方性が生じる。
例えば、 本配光制御素子に直線偏光を入射する場合、 直線偏光の電気 ぺク トルの振動方向に平行な方向の視野角は、 これと直交する方向よ り も広く なる。 この特性を利用すれば、 電気ベク トルの振動方向が水平方 向である直線偏光を本配光制御素子に入射する よ う にする こ とで、 垂直 方向の視野角よ リ も水平方向の視野角を大き く できる。
ま た、 上記とは逆に、 入射する直線偏光の電気ベク トルの振動方向を 垂直にする ことで、 垂直方向の視野角を水平方向の視野角よ り も大き く する ことができる。 さ らに、 配光制御素子に入射する光を円偏光とすれ ば、 等方的な視野角を得る ことも可能である。
即ち、 本発明の配光制御素子は、 これに入射する光の偏光状態を制御 する ことで、 視野角を任意に制御する こ とが可能となる。
なお、 これま での説明では、 微小レンズと して微小球状の透明ビーズ を用いた場合について説明 した。 しかし、 微小集光レンズの形状は集光 作用を有する微小体であれば半球体, 回転楕円体, 円柱、 あるいは半円 柱, 楕円柱等、 球体に限るものではない。 つま り 、 本発明の配光制御素 子は、 集光作用を有する微小レンズと、 これを支持する透明基材から構 成され、 光出射側に配置した透明基材を光学的に略等方な透明体で構成 する ことで、 透明基材内を異なる角度で進む光に、 異なる位相差が発生 するのを防止して、 縞模様 (輝度むら) の発生を解消したものである。 次に本発明の配光制御素子を具体的な実施例に基づき説明する。
〔配光制御素子の実施例 1 〕
本実施例では、 第 1 図, 第 2 図に示す配光制御素子を以下のとおり作 製した。 まず、 厚さ 8 0 y mの平坦な ト リ ァセチルセルロース(T A C ) フ ィ ルムからなる透明基材 1 0 1 の一表面に、 溶剤に トルエンを用いた ポ リ エステル系ホッ トメル ト透明接着剤 (東洋紡績製) を、 乾燥後の厚 さが 4 mとなる よ う ナイ フコ一タで塗布し、 乾燥器で乾燥後、 冷却す る こ とで透明接着剤層 1 0 2 を形成, 固化した。
次に、 上記ポ リ エステル系ホ ッ トメル ト接着剤にカーボンブラ ッ ク を 1 0重量部配合した着色接着剤を、 乾燥後の厚さが 5 . 5 μ ιη となるよ う に上記接着剤層 1 0 2と同様の方法で形成, 固化して着色接着剤層 1 0 3 を形成した。
次に、 この上に屈折率 1. 9 3 5 (波長 5 8 9. 3 n m), 直径 5 0 μ ιη のガラス製の球状透明ビーズ 1 0 5 を複数個、 略最大充填密度となるよ う に分散配置し、 加圧板を用いて圧力 4. 5 kgZcm2で透明基材 1 0 1側 へ加圧しながら、 恒温槽中で 1 2 0 °C , 2 0分間保持する。 その後、 常 温まで冷却する こ とで透明接着剤層 1 0 2 および着色接着剤層 1 0 3 を 固化し、 透明ビーズ 1 0 5 を固定する。 透明ビーズ固定後のホッ トメル ト接着剤層 1 0 4の厚さは約 2 1 mであ り 、 透明ビーズ 1 0 5はその 直径の 5 8 %が露出 していた。
なお、 透明基材 1 0 1 に用いた T A Cフ ィ ルムは ( n e— n o ) = 0. 0 0 0 1 , ( n z— n o ) = 0. 0 0 0 7 と光学的に略等方な透明フ イ ノレムであっ た。
上記の配光制御素子に、 無偏光を入射して評価したと ころ、 水平方向, 垂直方向共に約 ± 6 0 ° の等方的で広い視野角 ( こ こ では正面輝度に対 し 1ノ 2の輝度に成る角度) が得られた。
ま た、 直線偏光を入射したと ころ、 縞模様の原因となる輝度むらは認 められず、 観察者がどの角度から見ても明る く 、 広い視野角特性が得ら れた。
第 9図は、 本実施例の配光制御素子の直線偏光入射時の光出射特性を 示す等輝度線図であ り 、 第 1 0図は本実施例の配光制御素子の直線偏光 入射時の水平方向および垂直方向の光出射 (配光) 特性を示す。
第 9図, 第 1 0図に示すとおり 、 本実施例の配光制御素子は、 出射 (配光) 特性に偏光依存性があ り 、 入射した直線偏光の電気ベク トルの 振動方向と平行な方向 (図中、 水平方向) の視野角 ( ± 7 5 ° ) が、 こ れと直交する方向の視野角 ( ± 4 5 ° ) よ り も広く なる。 これは以下の 理由による。
本配光制御素子では、 透明ビーズ 1 0 5 に入射した偏光は、 大部分が 偏光状態を略維持したま ま集光され、 拡散し透明基材 1 0 1 内を様々な 角度で進行して出射する。 この際、 透明ビーズ 1 0 5 は球体なので屈折 の角度は偏光によ らず、 等方的となる。 しかし、 透明ビーズ 1 0 5表面 や透明基材 1 0 1 の光出射側表面では、 p偏光と s偏光とでエネルギー 透過率が異なるため、 透明ビーズ 1 0 5 あるいは透明基材 1 0 1 の表面 に対して P偏光成分の透過率は高く 、 s 偏光成分の透過率が低く なり 、 結果と して配光特性に偏光依存性が生じたのである。
従って、 本配光制御素子に円偏光を入射すれば無偏光を入射した場合 と同様に等方的な視野角が得られる。 つま り本配光制御素子の様に、 微 小レンズと して球状透明ビーズのよ う な回転対称な微小レンズを用いれ ば、 入射光の偏光状態によ リ配光特性を比較的容易に変える ことが可能 となる。
ま た、 屈折率 1 . 7 の透明ビーズを使用 したこと以外は、 上記実施例 と同様の構成で配光制御素子を作製し、 無偏光を入射して特性を調べた と ころ、 正面の輝度は上記実施例の 1 . 8倍 、 視野角は ± 3 7 ° となつ た。 即ち、 本配光制御素子では、 透明ビーズの屈折率を変える こ とでゲ イ ンおよび視野角を変える こ とができ る。 つま り 、 透明ビーズの屈折率 を適切に選ぶことで、 所望の特性の配光制御素子を実現する こ とが可能 である。
[配光制御素子の実施例 2 〕
本実施例では、 第 1 図および第 2 図に示す配光制御素子を以下のとお リ作製した。 キャスティ ング法 (溶液流延法) によ り成膜した厚さ 1 Ο Ο μ ιηの平 坦なポリ 力一ポネー ト ( P C ) フ ィルムからなる透明基材 1 0 1 の一表 面に、 水系媒質に分散させたポリ エステル系ホッ トメル ト透明接着剤を 乾燥後の厚さが 4 mとなる よ う にナイ フ コ一タ によ リ塗布, 加熱乾燥 し、 その後冷却する こ とで透明接着剂層 1 0 2 を形成, 固化した。
次に、 これにポリ エステル系ホッ トメル ト接着剤に力一ボンブラ ック を 1 0重量部配合した着色接着剤層 1 0 3 を、 乾燥後の厚さが 5. 5 ^ mとなるよ う に上記と同様に して形成, 固化する。
次に、 この上に屈折率 1. 9 3 5 (波長 5 8 9. 3 n m), 直径 5 0 m のガラス製の球体状の透明ビーズ 1 0 5 を実施例 1 と同様に してホッ 卜 メル ト接着剤層 1 0 4内に埋没, 固定した。 固定後のホッ トメル ト接着 剤層 1 0 4の厚さ は約 2 1 μ mであ り 、 透明ビーズ 1 0 5はその直径の 5 8 %が露出 していた。 なお、 透明基材 1 0 1 に用いた P Cフ ィルムは ( n e - n o) 0. 0 0 0 1 以下の光学的に略等方な透明フ ィルムであ る。 この配光制御素子に円偏光を入射して評価したと ころ、 縞模様の原 因となる輝度むらは無く 、 約 ± 6 0 ° の等方的で広い視野角が得られた。 ま た、 直線偏光を入射したと ころ、 縞模様の原因となる輝度むらは無く 、 入射直線偏光の電気べク トルの振動方向と平行な方向の視野角が、 これ と直交する方向の視野角よ り も広い出射特性が得られた。
〔配光制御素子の実施例 3 〕
本実施例では、 第 1 図および第 2図に示す配光制御素子を以下のとお リ作製した。
エキス トルージョ ン法 (溶融押出法) によ り成膜し、 一軸延伸 した厚 さ 1 0 0 mの平坦な P Cフ ィ ルムからなる透明基材 1 0 1 の一表面に、 水系媒質に分散させたポリ エステル系ホ ッ トメル ト透明接着剤を乾燥後 の厚さが 4 μ ιηとなるよ う にナイ フ コ一タ によ リ塗布, 乾燥した後、 冷 却する こ とで透明接着剤層 1 0 2 を形成, 固化した。
次に、 実施例 1 , 2 と同様に着色接着剤層 1 0 3 を形成, 固化し、 こ の上に透明ビーズ 1 0 5 を分散配置後、 加圧しながら 1 2 0 °Cで 3 0分 間保持し、 ホッ トメル ト接着剤層 1 0 4 に埋没, 固定した。 固定後のホ ッ トメル ト接着剤層 1 0 4の厚さは約 2 1 mであ り 、 透明ビーズ 105 はその直径の 5 8 %が露出 していた。
なお、 透明基材 1 0 1 に用いた P Cフ ィルムは ( n e — n 0 ) = 0 . 0 0 1 の膜面に平行な方向に光学軸を有する一軸異方性の透明フ イ リレムであった。
この配光制御素子に、 電気べク トルの振動方向が透明基材 1 0 1 の遅 相軸に平行あるいは垂直な直線偏光を入射したと ころ、 縞模様の原因と なる輝度むらは無く 、 入射した直線偏光の電気べク トルの振動方向と平 行な方向の視野角が、 これと直交する方向の視野角よ リ も広い出射特性 が得られた。
ま た、 本配光制御素子では、 透明基材がー軸延伸によ り 、 引張り 強さ , 初期弾性率等の物性が改良され、 カール等の少ないシー ト状の配光制御 素子を得る ことができた。
〔配光制御素子の実施例 4 〕
本実施例では、 第 1 図および第 2 図に示す配光制御素子を以下のとお リ作製した。
射出成形によ リ形成された厚さ 2 mmの脂環式ァク リ ル樹脂 (商品名ォ ブ ト レ ッツ : 日立化成工業製) からなる平坦な透明基材 1 0 1 の一表面 に、 アク リ ル系のホッ トメル ト透明接着剤を乾燥後の厚さが 4 μ mとな るよ う にスピンコータ によ り塗布, 乾燥後、 冷却 して透明接着剤層 102 を形成, 固化した。
次に、 同じ く アク リ ル系ホ ッ トメル ト接着剤にカーボンブラ ック を 1 0重量部配合した着色接着剤層 1 0 3 を、 乾燥後の厚さが 5 . 5 i m となる よ う に透明接着剤層 1 0 2 と同様の方法で形成, 固化した。
この上に屈折率が 1 . 9 3 5 (波長 5 8 9 . 3 n m ) , 直径が 5 0 μ πιの ガラス製の球状透明ビーズ 1 0 5 を分散配置し、 前記実施例と同様に加 圧しながら、 1 2 0 °Cで 2 0 分間保持し、 ホッ トメル ト接着剤層 1 0 4 に埋没, 固定した。 固定後のホ ッ トメル ト接着剤層 1 0 4の厚さは約 2 1 mであ り 、 透明ビーズ 1 0 5 はその直径の 5 8 %が露出 していた。 なお、 透明基材 1 0 1 に用いた脂環式アク リ ル樹脂は ( n e — n o ) = 0 . 0 0 0 7 と光学的に略等方であっ た。
この配光制御素子に、 円偏光を入射して評価したと ころ、 縞模様の原 因となる輝度むらは無く 、 土約 5 0 ° の等方的で広い視野角が得られた。 ま た、 直線偏光を入射したと ころ、 縞模様の原因となる輝度むらは無く 、 入射した直線偏光の電気ベク トルの振動方向と平行な方向の視野角が、 これと直交する方向の視野角よ り も広い出射特性が得られた。
なお、 本実施例の配光制御素子は透明基材 1 0 1 自体に剛性があるた め、 補強部材等がなく ても背面投射型表示装置のスク リ ーンと して使用 するこ とができる。
以上の実施例では、 微小レンズと して球状透明ビーズを用いたが、 他 の形状の微小レンズを用いてもよい。 第 3 4図は、 他の形状の微小レン ズを用いた一例を示す模式斜視図である。 これは円柱状の微小透明ロ ッ ド 3 4 0 1 を用いたもので、 これ以外は前記実施例と同様である。
この配光制御素子は、 入射した光に対して、 微小透明ロ ッ ド 3 4 0 1 の長軸方向には収束効果が作用せず、 長軸方向に直交する方向だけに収 束効果が作用 し、 この方向のみに広い視野角が得られると云うものであ る。 この場合も、 光学異方性の小さ い透明基材を用いる こ とで、 偏光入 射時の縞模様の発生を回避できる。
ま た、 配光制御素子に入射する光が直線偏光の場合は、 該偏光の振動 方向を微小透明ロ ッ ドの長軸方向と平行にすれば、 該偏光は微小透明口 ッ ドの入射面に対して P偏光となるため、 配光制御素子を高い透過率で 使用する ことができる。
と ころで、 前記各実施例では、 微小レンズを透明ビーズやロ ッ ドなど 前もって成形された微小体で構成 したが、 本発明の配光制御素子はこれ に限るものではない。 即ち、 透明基材上に直接、 多数の微小レンズを 2 次元アレイ状に成形したものでも よい。 第 3 5図はこのよ う な配光制御 素子の一例を示す模式斜視図である。
この配光制御素子は、 例えば、 ガラス, 無延伸 P Cフ ィ ルム, T A C フ イルム, 射出成形ァク リ ル樹脂板等の光学的に略等方な透明基材 3501 上に、 微小レンズ 3 5 0 2 を 2次元アレイ状に成形し、 さ らに、 微小レ ンズ 3 5 0 2 の光収束部に開口部を有する黒色の光吸収層 (ブラ ックマ ト リ クス) 3 5 0 3 を形成したものである。
光吸収層 3 5 0 3 は公知の技術、 例えば印刷法, 蒸着法, フ ォ ト リ ソ グラフ ィ 一法等によ り形成する こ とができる。 ま た、 微小レンズ 3502は 公知の技術、 例えばポジ型フ ォ ト レジス トをパターン露光し、 現像して 円柱状の立体形状を得た後、 加熱溶融時の表面張力によ り ドーム状微小 レンズを形成する方法や、 光線ま たは電子線の照射によ リ硬化する透明 な樹脂膜を透明基材 3 5 0 1 上に形成し、 これに光線あるいは電子線を 選択照射して硬化させ、 未硬化部分を除去する方法で形成する こ とがで さる。 いずれの場合も透明基材 3 5 0 1 には、 光学的に略等方な透明体、 ま たは、 一軸光学異方性を有する透明体を用いる ことで、 偏光入射時の縞 模様の発生と云う 問題を解決する こ とができる。
〔背面投射型表示装置の実施例 1 〕
次に本発明の配光制御素子を用いた背面投射型表示装置について説明 する。 第 1 1 図は背面投射型表示装置の模式断面図である。
本発明の投射型表示装置は、 第 1 1 図に示すとおり 、 投射装置 7 0 1 からの投射光 7 0 4力 ミ ラー 7 0 2 を介して透過型スク リ ーン 7 0 3 に照射され、 画像が表示される。 ミ ラー 7 0 2 と しては、 光学的に等方 な透明ガラスに銀, アルミ ニウム等の反射性金属を蒸着したものを用い た。
投射装置 7 0 1 と しては、 いわゆる液晶プロジェク タ を用いる ことが できる。
第 1 2図は液晶プロジェク タの一例を示す模式断面図である。
光源 8 0 1 は回転放物面、 ま たは、 回転楕円面のリ フ レク タ と、 キセ ノ ンラ ンプ, メタルハライ ドラ ンプ, ハロゲンラ ンプ等の白色光源から 構成されており 、 これから出射した光は U V, I Rカ ッ トフ ィ ルタ (図 示省略) 等を通過する ことで、 紫外線や赤外線が取り 除かれた白色光と なって、 色分離ダイ ク ロイ ツ ク ミ ラー 8 0 2 に向かう 。
色分離ダイク ロイ ツク ミ ラー 8 0 2 に入射した白色光は、 青色光(B ) とそれ以外の光に分離され、 青色光 ( B ) は全反射ミ ラー 8 0 4で反射 して、 液晶表示素子 8 0 7 に至る。
—方、 色分離ダイ ク ロイ ツ ク ミ ラー 8 0 2で反射した緑色光 ( G ) と 赤色光 ( R ) は色分離ダイ ク ロイ ツ ク ミ ラー 8 0 3で分離され、 緑色光 ( G ) は液晶表示素子 8 0 9へ、 ま た、 赤色光 ( R ) は全反射ミ ラー 8 0 5 , 8 0 6で反射されて、 液晶表示素子 8 0 8に至る。 液晶表示素 子 8 0 7, 8 0 8, 8 0 9としては、 T X液晶表示素子を用いることが できる。
第 1 3図は T N液晶表示素子の一例を示す模式断面図である。 この液 晶表示素子は、 I T O( I ndium Tin Oxide) から成る透明電極 9 0 3, ポリイ ミ ド系高分子からなる配向膜 9 0 5を有する第 1の透明ガラス基 板 9 0 1 と、 配向膜 9 0 6, 画素を形成する透明電極 9 04、 これと接 続される図示しない配線や薄膜トランジスタ等のスイッチング素子を有 する第 2の透明ガラス基板 9 0 2と、 シール剤 9 0 8を介して接着され た 2枚の透明ガラス基板 9 0 1 と 9 0 2との間に、 封入された誘電異方 性が正のネマチック液晶からなる液晶層 9 0 7とを有する。
液晶層 9 0 7の液晶分子長軸の方向は 2枚の透明ガラス基板 9 0 1 ,
9 0 2に形成された配向膜 9 0 5, 9 0 6にラビング処理することで配 向方向が規定され、 透明ガラス基板間で連続的に 9 0° 捻じれた状態と なっている。
液晶表示素子の光入射面と光出射面には、 それぞれ偏光子 9 0 9, 検 光 7-9 1 0が Sいに直交する ιΠ線 光を透過するように配置され、 透明 ガラス基板 9 0 1, 9 0 2での液晶層 9 0 7の液晶分子長軸の配向方向 は、 それぞれ偏光子 9 09および検光子 9 1 0の直線偏光の透過軸に対 して共に平行、 もしくは、 共に直交するよう構成されている。
偏光子 9 0 9 と検光子 9 1 0は、 延伸したポリビニルアルコール (P VA) にヨウ素を吸収させて偏光機能を付与した膜の両面に 卜リア セチルセルロース (TAC) 保護層を施したものを用い、 それぞれ透明 ガラス基板 9 0 1および透明ガラス基板 9 0 2にアク リル系の接着剤に より光学的に結合されるよう接着されている。 ここで液晶表示素子の動作を説明する。 液晶表示素子に入射し偏光子 9 0 9 を透過した直線偏光は、 液晶層 9 0 7 を透過して検光子 9 1 0に 入射する。 この際、 液晶層 9 0 7 を透過する光の偏光状態は、 液晶層 9 0 7に印加される電界によって変化するため、 画像情報に対応した電 圧を透明電極 9 0 5および透明電極 9 0 4に印加し、 液晶層 9 0 7に電 界を印加することで、 検光子 9 1 0を透過する光量を制御して光学画像 を形成することができる。
従って、 第 1 2図の液晶表示素子 8 0 7, 8 0 8 , 8 0 9にそれぞれ 入射した各色光は、 それぞれの画像情報に応じて、 空間変調されて出射 する。 各液晶表示素子で変調された各色光は、 後に詳述する偏光状態揃 え手段 8 1 2, 8 1 3, 8 1 4 を通過して、 色合成クロスダイクロイヅ クプリズム 8 1 1 に入射, 合成された後、 投射レンズ 8 1 0を介して透 過型スクリーン 7 0 3に投射される。
第 1 4図は、 本発明の背面投射型表示装置の透過型スクリーン 7 0 3 の模式断面図である。
透過型スクリーン 7 0 3は、 フレネルレンズシー ト 8 0 I f と、 本発 明の配光制御素子 1 0 0とから構成される。 フレネルレンズ 8 0 1 f は 凸レンズと同様な作用をする光学部品であり、 投射装置 7 0 1から出射 する拡散投射光を平行化し、 配光制御素子 1 0 0へ入射する光の入射角 度を 0度またはその近傍に変換する働きをする。
ここで、 本発明の配光制御素子 1 0 0はその構成上、 入射角度が大き くなると透過率が下がると云う性質を有する。 第 1 5図は入射角度増大 に基づく透過率の低下を説明する模式図である。
光の入射角度 Θが大きくなると、 入射光 1 0 6が透明ビーズ 1 0 5に より収束し、 発散しながら透明基材 1 0 1から出射するが、 その際に透 明基材 1 0 1 と空気との界面への入射角度が大きくなるため反射が増大 して、 透過率が著しく低下する。 さらに、 入射角度 Θが大きくなると、 透明ビーズ 1 0 5に入射し、 収束した光は、 配光制御素子 1 0 0の開口 部、 即ち、 透明ビーズ 1 0 5 と透明接着剤層 1 0 2の接触部分を通過で きず、 着色接着剤層 1 0 3で吸収されてその透過率は低下する。
第 1 6図は配光制御素子 1 0 0の光の入射角度と透過率の関係の一例 のグラフである。 横軸が光の入射角度 0, 縦軸が入射角度 θ = 0 ° にお ける透過率を 1 とした相対透過率である。
入射角度 Θが 1 0 ° を超えると透過率は急激に低下する。 従って、 配 光制御素子 1 0 0に入射する光の広がリは、 小さければ小さいほど良く、 実用的には半値角で土 1 0 ° 以内にすることが望ましい。
従って、 本配光制御素子を従来の例えば R, G, Bの 3原色に対応す る C R T投射管を 3本使用する 3管式投射装置を用いた、 背面投射型表 示装置の透過型スクリーンに用いると、 配光制御素子へ入射する各色光 の入射角度が異なるため、 各色光の透過率が異なり、 ホワイ トバランス が悪くなつたり、 強いカラ一シフ トが現れると云う問題を生じる。
このため、 本発明の背面投射型表示装置では、 使用する投射装置とし ては単管式の投射装置を用いることを特徴としている。 単管式では、 各 色光の透過型スク リーンへの入射角度は一致しているため、 上記のホヮ ィ 卜バランスの低下や、 カラーシフ 卜が生じると云うようなことはない。 さらに透過型スク リーン 7 0 3 を構成する配光制御素子 1 0 0の光入 射側にはフレネルレンズ 8 0 1 f を配置して、 投射装置 7 0 1からの発 散投射光 7 0 4 を平行化し、 配光制御素子 1 0 0への入射光の入射角度 を実質的に 0度に変換することで、 配光制御素子 1 0 0での透過率低下 が抑制され、 表示画像の輝度を向上することができる。 こ こで、 投射装置 7 0 1 の 2 次元光学スィ ッチ素子と して用いた T N 液晶表示素子は、 一般に、 コ ン トラス ト比の水平方向の対称性を確保す るため、 偏光子 9 0 9 および検光子 9 1 0 の直線偏光の透過軸が、 液晶 表示素子の表示面水平方向に対して 4 5 ° あるいは 1 3 5 ° の角度を成 すよ う に配置する。 この場合、 液晶表示素子 8 0 7, 8 0 8, 8 0 9 と して同じ構成の液晶表示素子を用いると、 液晶表示素子を透過した画像 光は、 色合成ク ロスダイ ク ロイ ツク プリ ズム 8 1 1 において、 1 回反射 した画像光と 1 回も反射しない画像光とで、 直線偏光の電気べク トルの 振動方向 (以下、 直線偏光の振動方向) が異なる ことになる。
つま り 、 液晶表示素子 8 0 7 と 8 0 8 を通過した赤色光 ( R ) および 青色光 ( B ) は、 色合成ク ロスダイ ク ロイ ツク プリ ズム 8 1 1 において 各々一回反射するため直線偏光の振動方向は同じだが、 液晶表示素子 8 0 9 を通過した緑色光 ( G ) は色合成ク ロスダイ ク ロイ ツクプリ ズム 8 1 1 において一度も反射していないために、 直線偏光の振動方向が他 の色光の直線偏光の振動方向と直交する ことになる。
上記のとおり 、 本発明の配光制御素子 1 0 0 の出射特性は、 入射光の 偏光状態に依存して変化する。 このため、 従来の背面投射型表示装置の 透過型スク リ ーンと して、 本発明の配光制御素子を用いた場合、 ある方 向から観察すると画像は緑色を呈し、 ま た、 これとは逆の斜め方向から 観察すると画像はマゼンタ色を呈する こ とになる。
これを是正するため、 本発明の背面投射型表示装置 7 0 1 では、 液晶 表示素子 8 0 7, 8 0 8 , 8 0 9 の光出射側に偏光状態揃え手段 8 1 2, 8 1 3, 8 1 4 を配置したこ と を特徴とする。
偏光状態揃え手段 8 1 2, 8 1 3, 8 1 4 は、 液晶表示素子から出射 した各色光が、 透過型スク リ ーン 7 0 3 に投射される前に、 各色光の偏 光状態を一致させる機能を有するものである。
第 1 7 図は偏光状態揃え手段の一例を示す模式断面図である。 この偏 光状態揃え手段はポリ イ ミ ド系の配向膜 1 0 0 3 が形成された透明基板 1 0 0 1 と、 同 じ く ポリ イ ミ ド系の配向膜 1 0 0 4が形成された透明基 板 1 0 0 2 と、 これら 2枚の透明基板の間に封入したネマチック液晶か らなる液晶層 1 0 0 6 とから構成される。 2枚の透明基板 1 0 0 1 , 1 0 0 2 の間には図示しないスぺ一サ一によ って間隙が確保され、 周囲 をシール剤 1 0 0 5 でシールする こ とで 2枚の透明基板を接着し、 液晶 の密閉を行っている。
第 1 8 図は、 偏光状態揃え手段の動作を説明するもので、 説明を分か リ 易 く するために、 液晶表示素子および偏光状態揃え手段の透明基板近 傍での液晶分子長軸の配向方向をそれぞれ矢印 9 1 1, 9 1 2 , 1 0 0 7, 1 0 0 8 で示している。
第 1 8 図に例示するとおリ 、 偏光状態揃え手段の液晶層 1 0 0 6 は、 2枚の透明基板 1 0 0 1 と 1 0 0 2 上の配向膜によ り 、 液晶分子長軸が 2枚の透明基板間で 4 5 ° 捩じれてお り 、 透明基板 1 0 0 1 側の液晶配 向方向 1 0 0 8 は、 液晶表示素子の表示面に対して水平方向となってい る。
—方、 液晶表示素子側の透明基板 1 0 0 2側の液晶配向方向 1 0 0 7 は、 液晶表示素子の光出射側の透明基板 9 1 0 の液晶配向方向 9 1 2 と 平行となってお り 、 液晶表示素子の表示面水平方向に対して 4 5 ° 傾い ている。
この偏光状態揃え手段は、 入射する光の主波長領域に対してウエーブ ガイ ドの条件を満足するよ う に構成される。 ウェーブガイ ドの条件は、 例えば、 J . P hys . D : A p p l . P hys . V o 1 . 8 ( 1 9 7 5 )の 1 5 7 5 ~ 1 5 8 4頁の C. H. Goochと H. A. Tarryによ る論文に記載されてい る。
即ち、 波長 λの光をウェーブガイ ドによ り 4 5 ° だけ旋光するには、 偏光状態揃え手段の液晶層 1 0 0 6の層厚 d, 波長え における複屈折 △ nを式 ( 1 ) を満足するよ う に設定すればよい。
4 (1 · Α η/λ =ν(4 πι2— 1 ) - ( 1 ) こ こで、 mは任意の整数である。
従って、 偏光状態揃え手段 8 1 2, 8 1 3, 8 1 4の dと Δ nは、 こ れらに入射する光の主波長に対して式( 1 )を満足する様に設定すればよ く 、 こ こでは偏光状態揃え手段 8 1 2, 8 1 3 , 8 1 4に入射する光の 主波長をそれぞれ 4 5 0 n m, 6 5 0 n n, 5 5 0 n mと し、 さ らに m = 4と して、 (1 · Δ ηがそれぞれ 6 2 6 n m, 9 0 3 n m , 7 6 5 n m となる様に した。
なお、 ウェーブガイ ドの条件は、 異常光モー ドと常光モー ドでは変わ らないので、 偏光状態揃え手段の液晶の配向方向は、 両透明基板での配 向方向を共に第 1 8図に例示した配向方向に対して 9 0 ° 回転したもの を用いてもよい。
このよ う に構成する ことで、 液晶表示素子 8 0 7 , 8 0 8, 8 0 9 を 通過した直線偏光はそれぞれ偏光状態揃え手段 8 1 2, 8 1 3, 8 1 4 を通過する際、 その電気ベク トルの振動方向が 4 5 ° 回転する こ とで、 各色光の偏光の状態が、 液晶表示素子の表示面に対して水平方向の振動 方向を有する直線偏光とな り 、 全て一致する こ と になる。
ま た、 本実施例の様に、 各色光の直線偏光の振動方向を表示面に対し て水平方向とする ことで以下の効果が得られる。
一般に複数の 2次元光学スィ ッチ素子を用いた単管式の投射装置では、 3 δ 各 2次元光学スィ ツチ索子で形成された光学画像光を合成するためにク ロスダイクロイ ツクプリズム、 あるいは、 ダイクロイツクミラーを用い る。
ダイクロイツクプリズム、 あるいは、 ダイクロイツクミラーの反射面 は誘電体多層膜によリ形成されており、 これに斜めに入射する直線偏光 は、 入射面に対して平行な Ρ偏光、 あるいは、 入射面に対して垂直な s 偏光以外の場合には、 反射の際に偏光状態が変わり、 一般に楕円偏光と なって、 各色光で偏光状態が異なってしまう。 しかし、 上記のとおり各 色光の直線偏光の振動方向を表示面に対して水平方向、 即ち、 色合成ダ イクロイックプリズムの反射面に対して ρ偏光として入射すれば、 各色 光の偏光状態は変化せず、 全ての各色光の偏光状態が一致したまま、 光 学画像光を透過型スク リーンへ投射することができる。
つまり、 本発明の背面表示装置では、 投射装置 7 0 1 から投射される 各色光の偏光状態が一致しているため、 透過型スクリーン 7 0 3 として 用いる配光制御素子 1 0 0の配光特性の偏光依存性による色付きが解消 されて、 高品位な画像を得ることができると云う効果がある。
また、 透過型スクリーン 7 0 1 に入射する投射光が、 表示面に対して 水平方向の振動方向を有する直線偏光であるので、 配光制御素子 1 0 0 の配光特性の偏光依存性により、 垂直方向よリも水平方向の視野角を広 くすることができる。 このことは一般に、 表示装置では垂直方向よりも 水平方向に、 より広い視野角が求められているので限られた光を観察者 へ効率よく配分する上で非常に有効である。
上記構成の背面投射型表示装置を透過型スクリーン 7 0 3の配光制御 素子 1 0 0として、 〔配光制御素子の実施例 1〕 に例示した配光制御素 子 1 0 0の透明基材 1 0 1側表面に、 厚さ 2匪の平坦で透明な光学的に 略等方なァク リ ル板を張り合わせたものを用いて評価したと ころ、 水平 方向の視野角 ± 7 5 ° 、 垂直方向の視野角 ± 4 5 ° と、 両方向共に広い 視野角が得られた。 さ らに、 斜め方向から観察した際、 縞模様や色付き の発生はなかっ た。
ま た、 外部から透過型スク リ ーンへ入射する不要光は、 配光制御素子 1 0 0の着色接着剤層 1 0 3で吸収されるため、 明るい環境下 (垂直照 度 3 0 0 1 X ) において、 0. 5 c d Zm2と低輝度な黒表示が実現され た。
なお、 本発明の背面投射型表示装置の偏光状態揃え手段は、 液晶表示 素子から出射した各色光の偏光状態を一致させる機能を有するものであ ればよ く 、 上記実施例の他に、 例えば、 捩じれ構造を有する高分子積層 フ ィルムや 1 2波長板を用いる こ とができる。
偏光状態揃え手段と して用いる捩じれ構造を有する高分子積層フ ィ ル ムは、 例えば位相差 d · A n = 2 7 5 n mの P Cフ ィ ルム製の位相差フ イルムを 4枚積層する こ とで実現される。 4枚の位相差フ ィルムは、 液 晶表示素子に近い方からそれぞれの遅相軸が、 液晶表示素子の光出射側 の透明基板の液晶配向方向に対して 5. 6 ° , 1 6. 9 ° , 2 8. 1 ° , 3 9.4 ° となるよう に配置する。 この場合も上記実施例と同様な効果 が得られる。
ま た、 偏光状態揃え手段と して 1 Z 2波長板を用いる場合は、 各液晶 表示素子を通過した光の波長に対し 1 Z 2波長板と して機能する波長板 の遅相軸を、 液晶表示素子の検光子の透過軸に対して 2 2. 5 ° 傾けた 状態で配置する ことで上記実施例と同様な効果が得られる。
さ らに、 出射する直線偏光の振動方向が、 他のものとは異なる液晶表 示素子の光出射側にのみ、 偏光状態揃え手段と して 1 ノ 2波長板を配置 して、 他の液晶表示素子の偏光状態と一致させるだけでも、 斜め方向か ら観察した際の色付きを、 ある程度防止する ことができる。
なお、 上記実施例では、 液晶表示装置の検光子の直線偏光の透過軸が、 表示面水平方向に対して 4 5 ° 傾いた場合について説明 したが、 例えば、 検光子の透過軸が、 予め表示面に対して水平方向、 あるいは、 垂直方向 となるよ う に構成した液晶表示素子を用いる ことで、 偏光状態揃え手段 の機能を液晶表示素子に兼ね備える ことが可能である。 この場合は、 液 晶表示素子から出射した各色光の偏光状態は色合成後も一致しているた め、 液晶表示素子の光出射側に別の光学素子を配置 しなく ても上記実施 例と同様の効果を得る ことが可能である。
しかし、 この場合はコ ン トラス ト比の水平方向の対称性が崩れるので、 F値の高い投射光学系を用いて、 コ ン トラス ト比の左おの非対称性が認 識されない様にするのがよい。
上記のとおり 、 本発明の背面投射型表示装置は、 透過型スク リ ーン 7 0 3 を配光制御素子 1 0 0 と、 その光入射側に配置したフ レネルレン ズ 8 0 1 f とで構成した。 このため投射装置 7 0 1 からの発散投射光 7 0 4は、 配光制御素子 1 0 0へ入射する際、 フ レネルレンズ 8 0 1 f によ り平行化され、 その入射角度が実質的に 0度に変換されるため、 配 光制御素子 1 0 0 での透過率低下が抑制されて、 明るい表示画像が得ら れる。
ま た、 本発明では、 投射装置と して単管式投射装置を用いる ことで、 配光制御素子 1 0 0 の光学特性によ り生じるカラーシフ トゃ色付きを抑 制して、 高品位な画像を得る ことができる。
さ らに投射装置からの出射光の偏光状態を各色光共に一致させる こ と で、 配光制御素子 1 0 0 の配光特性の偏光依存性によ り生じる斜め方向 から観察した際に生じる色付きを解消できると云う効果がある。 また、 透過型スク リ ーン 7 0 3 と して用いた本発明の配光制御素子 1 0 0は、 どの角度から見ても明るい広い視野角特性を有し、 外部不要光による迷 光の低減効果が高いため、 広視野角、 かつ、 明るい環境下でも低輝度な 黒表示の実現によ り高いコ ン トラス ト比が得られる背面投射型表示装置 が実現できると云う効果がある。
なお、 以上述べた背面投射型表示装置では、 投射装置に複数の 2次元 光学スィ ツチ素子を用いる場合を説明 したが、 2次元光学スィ ツチ素子 を一つだけ用いる、 いわゆる単板式の投射装置を用いてもよい。 この場 合は、 もともと 2次元光学スィ ッチ素子はひとつ しかないので、 光学画 像光の偏光状態は揃えなく とも一義的に決るため、 本発明の配光制御素 子 1 0 0 の配光特性の偏光依存性によ リ色付きが生じる ことはない。
〔背面投射型表示装置の実施例 2 〕
次に、 本発明の他の背面投射型表示装置について説明する。 こ こで述 ベる背面投型表示装置は第 1 1 図を用いて説明 した前記実施例と同様、 投射装置 7 0 1 , ミ ラー 7 0 2 , 透過型スク リ ーン 7 0 3 を有し、 投射 装置 7 0 1 から出射した投射光 7 0 4がミ ラ一 7 0 2 を介して透過型ス ク リーン 7 0 3 に照射され、 画像が表示されるものであるが、 投射装置 7 0 1 の構成が一部異なる。
第 1 9図は本実施例の背面投射型表示装置に係る投射装置の模式断面 図である。
この投射装置は、 基本的には第 1 2 図に例示した投射装置と同様であ るが、 こ こで述べる投射装置 7 0 1 は、 投射レンズ 8 0 1 とク ロスダイ クロイ ツクプリ ズム 8 1 1 の間に偏光状態変換素子 8 1 5 を配置した点 が特徴である。 本投射装置では、 前記実施例と同様、 光源 8 0 1 から出射した白色光 は色分離ダイクロイ ツク ミラ一 8 0 2および 8 0 3で青色光 (B ) と緑 色光 (G ) と赤色光 (R ) に色分離され、 ミラ一 8 0 4, 8 0 5および 8 0 6 を介して、 それぞれ液晶表示素子 8 0 7, 8 0 9, 8 0 8に入射 する。 液晶表示素子に入射した光はそれぞれ、 各色の画像情報に応じて 空間変調されて出射し、 偏光状態揃え手段 8 1 2, 8 1 3, 8 1 4によ り各色光は振動方向が一致した直線偏光となって色合成クロスダイク口 イ ツクブリズム 8 1 1 に入射する。
この際、 色合成クロスダイクロイ ツクプリズム 8 1 1 に入射する各色 光は、 該プリズム 8 1 1 のミラ一面に対して p偏光、 あるいは、 s偏光 とすることが望ましい。 なぜなら、 色合成プリズム 8 1 1 のミラ一面は、 誘電体多層膜で構成されており、 特別な設計, 成膜をしない限り、 ミラ 一面に斜めに入射する直線偏光は、 入射面に対して平行な p偏光、 ある いは、 入射面に对して垂直な s偏光でなければ、 反射の際に偏光状態が 変わり、 一般に楕円偏光となって、 各色光の偏光状態が異なってしまう からである。
ここでは以下画像光が色合成クロスダイクロイツクプリズム 8 1 1の ミラー面に対して p偏光、 即ち、 表示面に対して水平方向に振動方向を 有する直線偏光としてプリズム 8 1 1 に入射する場合の例を説明する。 色合成ダイクロイツクプリズム 8 1 1 に入射し色合成された画像光は、 偏光状態変換素子 8 1 5および投射レンズ 8 1 0を介して透過型スク リ ーン 7 0 3に投射される。
偏光状態変換素子 8 1 5は、 色合成後の画像光の偏光の状態を変える もので、 例えば第 2 0図に示す液晶素子を用いることができる。 第 2 0 図に示した偏光状態変換素子 8 1 5は I T 0から成る透明電極 1 1 0 3 およびポ リ イ ミ ド系高分子からなる配向膜 1 1 0 4が全面的に積層形成 された第 1 の透明ガラス基板 1 1 0 1 と、 同 じ く 透明電極 1 1 0 5 およ び配向膜 1 1 0 6 が全面的に積層形成された第 2 の透明ガラス基板 1 102 と、 2枚の透明ガラス基板 1 1 0 1 , 1 1 0 2間に図示しないスぺーサ —を挟むことで間隙を形成し、 その周囲をシール剤 1 1 0 8 でシールす る こ とで形成された空間に、 封入した誘電異方性が正のネマチック液晶 からなる液晶層 1 1 0 7 によ り構成される。
液晶層 1 1 0 7 の液晶分子長軸は、 2枚の透明ガラス基板 1 1 0 1 , 1 1 0 2 にそれぞれ形成された配向膜 1 1 0 4 および 1 1 0 6 にラ ビン グ処理等の配向処理を行う こ とで、 両基板間で連続的に 9 0 ° ねじれた、 いわゆる T N液晶素子となっている。
次に、 偏光状態変換素子 8 1 5 の動作を図面を用いて説明する。 第 2 1 図および第 2 2 図は偏光状態変換素子 8 1 5 の動作を説明する模式 図であ り 、 符号 1 1 1 0 および 1 1 1 1 で示す矢印は、 それぞれ透明ガ ラス基板 1 1 0 1 および 1 1 0 2 での液晶の配向方向を示す。
光入射側の透明ガラス基板 1 1 0 2 での液晶の配向方向 1 1 1 1 は、 入射する直線偏光の電気ベク トルの振動方向に平行 (も し く は垂直) で あ り 、 液晶層 1 1 0 7 は可視波長域においてウエーブガイ ドの条件を満 たすものである。
従って、 偏光状態変換素子 8 1 5 の液晶層 1 1 0 7 に電界を印加して いないと きは第 2 1 図に例示すると おリ 、 偏光状態変換素子 8 1 5 に入 射した光学画像光は、 その電気ベク トルの振動方向が 9 0 ° 回転した直 線偏光、 即ち、 表示面に対して垂直方向の振動方向を有する直線偏光と な り 、 投射レンズ 8 1 0 を介して、 透過型スク リ ーン 7 0 3 に投射され る。 本背面投射型表示装置に用いる透過型スク リ ーン 7 0 3は前記実施例 と同様、 微小レンズと して球状の透明ビーズを用いた配光制御素子と、 フ レネルレンズから構成される。
この場合、 上記のとおり 、 透過型スク リ ーン 7 0 3 に入射する投射光 が、 表示面に対して垂直方向の振動方向を有する直線偏光であれば、 配 光制御素子 1 0 0の配光特性の偏光依存性にょ リ 、 水平方向よ り も垂直 方向の視野角が広く なる。
ま た、 第 2 2図に例示するとお り 、 2枚の透明ガラス基板上に形成さ れた透明電極 1 1 0 3および透明電極 1 1 0 5 に電圧を印加し、 液晶層 1 1 0 7 に電界を印加することで、 液晶分子をその分子長軸が透明ガラ ス基板に対してほぼ垂直となるよ う にすると、 偏光状態変換素子 8 1 5 に入射した光学画像光は偏光状態が殆ど変わる ことな く 通過する。 即ち、 表示面に対して水平方向の振動方向を有する直線偏光のま ま、 投射レ ン ズ 8 1 0 を介して、 透過型スク リーン 7 0 3 に投射される。 この場合は 透過型スク リ ーン 7 0 3 を構成する配光制御素子 1 0 0の配光特性の偏 光依存性によ り 、 垂直方向よ り も水平方向の視野角が広く なる。
即ち、 従来の背面投射型表示装置では透過型スク リ ーンを取り替えな ければその視野角特性を変える ことができなかったが、 本発明の背面投 射型表示装置では、 偏光状態変換素子 8 1 5の液晶層に印加する電界を 制御すると云う簡単な操作で、 視野角特性を容易に変え得ると云う画期 的な効果がある。
なお、 本発明の背面投射型表示装置の偏光状態変換素子 8 1 5は、 上 記 T N液晶素子の他に E C B ( E lectrically Controlled
B irefringence ) 液晶素子を用いる こ とができる。 この場合、 T N液晶 素子と異なるのは、 液晶層の厚さや液晶分子の配向方向等の液晶層に関 する部分だけなので、 第 2 0 図に例示した T N液晶素子の模式断面図を 用いて説明する。
E C B液晶素子から構成される偏光状態変換素子 8 1 5 は、 上記 T N 液晶素子から構成される偏光状態変換素子 8 1 5 と同様、 I T Oから成 る透明電極 1 1 0 3 およびポリ イ ミ ド系高分子からなる配向膜 1 1 0 4 が全面的に積層形成された第 1 の透明ガラス基板 1 1 0 1 と、 同じ く 透 明電極 1 1 0 5 および配向膜 1 1 0 6 が全面的に積層形成された第 2 の 透明ガラス基板 1 1 0 2 と、 2枚の透明ガラス基板間に図示しないスぺ —サーを挟むことで間隙を形成し、 その周囲をシール剤 1 1 0 8 で接続 することで形成された空間に封入されたネマチック液晶からなる液晶層 1 1 0 7 とから構成される。
ネマチック液晶の誘電異方性は正であっても負であっても構わないが、 液晶の配向は誘電異方性が正のネマチック液晶の場合はホモジニァス配 向と し、 誘電異方性が負のネマチック液晶の場合はホメォ トロ ピック配 向とする。
この際、 液晶層 1 1 0 7 に電界を印加したときの液晶の配向方向を揃 えるため、 どち らの場合も 1 〜 4 ° 程度のプレチル ト角を付け、 液晶の 分子長軸の方向が表示面に対して 4 5 ° の方向となる よ う に配向処理を 行う。
液晶層 1 1 0 7 の厚さ を , 液晶の屈折率異方性を Δ η と した場合、 d · Δ ηはえ Z 2 ( λ は光学画像光の中心波長) 以上と なるよ う にする このよ う に構成した偏光状態変換素子 8 1 5 では、 2枚の透明ガラス 基板上に形成された透明電極 1 1 0 3 と 1 1 0 5 に電圧を印加し、 液晶 層 1 1 0 7 に電界を印加する こ とで、 入射する光学画像光に対して液晶 層 1 1 0 7 の見掛けの d · Δ η を 0 〜え Z 2 の範囲で制御する ことがで さる。
従って、 液晶層 1 1 0 7 の見掛けの d · Δ nが 0 のと きは、 偏光状態 変換素子 8 1 5 に入射した光学画像光は、 偏光状態が殆ど変えられる こ とがなく 通過すため、 表示面に対して水平方向の振動方向を有する直線 偏光のま ま透過型スク リ ーン 7 0 3 に入射する。 この場合は、 透過型ス ク リ ーン 7 0 3 を構成する配光制御素子 1 0 0の配光特性の偏光依存性 によ リ 、 垂直方向よ リ も水平方向の視野角が広く なる。
ま た、 液晶層の見掛けの d · 厶 nがえノ 2 のと きは、 偏光状態変換素 子 8 1 5 に入射した画像光は、 その電気べク トルの振動方向が 9 0 ° 回 転した直線偏光、 即ち、 表示面に対して垂直方向の振動方向を有する直 線偏光となって透過型スク リ ーン 7 0 3 に入射する。 この場合は配光制 御素子 1 0 0の配光特性の偏光依存性によ り 、 水平方向よ り も垂直方向 の視野角が広く なる。
さ らに、 液晶層の見掛けの d · △ nが; I 4のと きは、 偏光状態変換 素子 8 1 5 に入射した画像光は略円偏光となって透過型スク リーン 703 に入射する。 この場合は、 垂直方向, 水平方向共に同程度の等方的な視 野角が得られる。
こ こで E C B液晶素子から構成される偏光状態変換素子 8 1 5 の動作 を、 第 2 3 図および第 2 4図を用いて具体的に説明する。
偏光状態変換素子 8 1 5 の液晶と して誘電異方性 Δ ε =— 4 . 2 , 屈 折率異方性 Δ η = 0 . 0 8 3 のネマチック液晶を用い、 液晶層の厚さ を 3 . 5 μ mと した。
配向膜 1 1 0 4 および 1 1 0 5 は垂直配向性を示すポ リ イ ミ ド系配向 膜を用い、 表示面水平方向に対して 4 5 ° の角度を成す方向にラ ビング 処理を行い、 液晶分子に約 2 ° のプレチル ト を付与した。
この偏光状態変換素子 8 1 5 の液晶層 1 1 0 7 は、 電界無印加の場合 は、 液晶層 1 1 0 7 の見掛けの d △ n はほぼ 0 なので、 第 2 3 図に示す る様に、 入射した光学画像光は偏光状態が殆ど変え られる ことなく 通過 し、 投射レンズ 8 1 0 を介して、 表示面に対し水平方向の振動方向を有 する直線偏光の状態で、 透過型スク リ ーン 7 0 3 に投射される。 この場 合は透過型スク リ ーン 7 0 3 を構成する配光制御素子 1 0 0 の配光特性 の偏光依存性によ り 、 垂直方向よ り も水平方向の視野角が広く なる。 一方、 第 2 4図に示す様に、 2枚の透明ガラス基板上に形成された透 明電極に電圧を印加し、 液晶層 1 1 0 7 に電界を印加する こ とで液晶分 子の分子長軸を透明ガラス基板に対して垂直方向から水平方向に傾けて、 液晶層 1 1 0 7 の見掛けの d Δ nカ 2 2 5 n mとなる ょ ぅ にすると、 偏 光状態変換素子 8 1 5 に入射した画像光はその電気べク トルの振動方向 がほぼ 9 0 ° 回転し、 表示面に対して垂直方向の振動方向を有する直線 偏光、 も し く は、 表示面に対してほぼ垂直方向に長軸を有する楕円偏光 となって透過型スク リ ーン 7 0 3 に入射する。 この場合、 透過型スク リ —ン 7 0 3 を構成する配光制御素子 1 0 0 の配光特性の偏光依存性によ り 、 水平方向よ り も垂直方向の視野角が広く なる。
ま た、 偏光状態変換素子 8 1 5 の 2枚の透明ガラス基板上に形成され た透明電極に電圧を印加し、 液晶層 1 1 0 7 に電界を印加する ことで液 晶分子の分子長軸を透明ガラス基板に対して垂直方向から水平方向へ傾 けて、 液晶層の見掛けの d A n を 1 3 7 . 5 n m となるよ う にすると、 偏光状態変換素子 8 1 5 に入射した光学画像光は略円偏光となって透過 型スク リ ーン 7 0 3 に入射する。 この場合は透過型スク リ ーン 7 0 3 を 構成する配光制御素子 1 0 0 の特性によ り 、 水平方向, 垂直方向共に同 程度の等方的な視野角が得られる。
即ち、 従来の背面投射型表示装置では透過型スク リ ーンを取り替えな ければ、 その視野角特性を変える ことができなかっ たが、 本背面投射型 表示装置では、 T N液晶素子、 あるいは、 E C B液晶素子によ り構成し た偏光状態変換素子 8 1 5 の液晶層に印加する電界を制御する ことで、 水平方向の視野角を広く した り 、 垂直方向の視野角を広く した り 、 水平 方向, 垂直方向共に同程度の等方的な視野角が得られるといった様に、 容易に視野角特性を変える こ とができる。
なお、 上記実施例では偏光状態変換素子 8 1 5 と して、 液晶素子を用 いるこ とで視野角特性を可変とする場合について述べたが、 この他に、 例えば偏光状態変換素子 8 1 5 と して位相差板を配置する ことで、 所望 の視野角特性を得るよ う に してもよい。 例えば、 偏光状態変換素子 815 と して 1 4波長板を配置し、 透過型スク リ ーン 7 0 3 に入射する光学 画像光を、 円偏光とすることで等方的な視野角を得るよ う にするなど種 々の変形が考え られる。
〔背面投射型表示装置の実施例 3 〕
次に、 本発明の他の背面投射型表示装置について説明する。 第 4 0図 は本実施例の背面投射型表示装置の模式構成斜視図である。
本実施例の背面投射型表示装置は、 前記実施例 2 の背面投射型表示装 置に、 観察者の有無を感知する観察者感知部 4 0 0 2 と、 観察者感知部 からの感知信号を受信して観察者の水平および垂直方向の位置を判断す る観察者位置判断手段(図示省略)と、 その情報に基づき投射装置 7 0 1 に配置した偏光状態変換素子に制御信号を出力する制御信号出力手段 (図示省略) を付加したものである。
観察者感知部 4 0 0 2 は、 複数の観察者感知センサ一から構成され、 これら観察者感知センサーは、 区分された複数の領域に存在する観察者 をそれぞれ感知する。 該観察者感知センサーには赤外線センサーが用い られる。
第 4 1 図および第 4 2 図は、 観察者感知センサーが感知する区分され た領域を例示したものである。 第 4 1 図には垂直方向を I , Π, ΠΙの 3 領域に、 ま た、 第 4 2 図には水平方向を A, B, Cの 3領域に区分した 場合を示す。 この例では、 観察者 4 1 0 0 を感知するための観察者感知 センサ一は 9つ必要である。
上記の観察者感知部 4 0 0 2 に設けた 9 つの観察者感知センサーが、 それぞれ背面投射型表示装置 4 0 0 1 の前方で観察する観察者 4 1 0 0 を感知し、 それぞれの感知信号に基づき観察者位置判断手段が垂直およ び水平のどの領域 (位置) に観察者 4 1 0 0が存在するかを判断する。 この観察者位置判断手段の情報に基づき制御信号出力手段が、 投射装置 7 0 1 の偏光状態変換素子に制御信号を出力する。
こ こで、 前記実施例 2 と同様に、 本実施例の背面投射型表示装置は、 投射光 7 0 4の偏光状態を投射装置 7 0 1 内の偏光状態変換素子によ り 変える こ とで、 透過型スク リ ーン 7 0 3 の視野角特性を変える ことがで きる。 即ち、 観察者の位置を感知, 判断して、 偏光状態変換素子を制御 し、 投射光 7 0 4の偏光状態を適切な状態に変換する ことで、 観察者に 明るい映像を提供する ことができる。
次に、 第 4 3 図および第 4 4図によ リ本背面投射型表示装置の効果を 説明する。 一般に、 背面投射型表示装置では限られた光を観察者方向に 有効に配光するため、 垂直方向の視野角は、 水平方向の視野角よ り も狭 く 設定されてお り 、 第 4 3 図に例示する様にスク リ ーン 7 0 3 の全面に わたって、 均一な明るさの映像が得られる有効範囲は垂直方向では狭く なっている。 このため、 観察者 4 1 0 0 は椅子に座るなどして適切な高 さで観察するか、 ま たは、 一定の距離を保って観察するなどしなければ、 良好な画質を得る こ とができない。
従って、 第 4 3 図に例示するとお り 、 観察者 4 1 0 0 が椅子に座つて いると きには良好な映像を観る こ とができても、 立ち上がるとスク リ 一 ン 7 0 3下部の画像は暗く な リ 良好な映像を観るこ とができな く なると 云っ た問題があっ た。
しかし、 本背面投射型表示装置では観察者が立ち上がった場合、 立ち 上がった観察者 4 1 0 2 は観察者感知部 4 0 0 2 によ り感知され、 この 感知信号をもとに観察者の位置は人体位置判断手段によ り判断される。 さ らにこの観察者の位置情報をもと に制御信号出力手段が偏光状態変換 素子を制御し、 投射光の偏光状態を適切な状態に変換する ことで、 第 4 4図に例示する様に、 垂直方向の視野角を拡大して立ち上がった観察 者 4 1 0 2 に良好な映像を提供できる。
よ り 具体的には第 4 3図に例示する状態では、 スク リ ーン 7 0 3 に投 射される投射光をスク リ ーン 7 0 3 の表示面に対し、 水平方向の振動方 向を有する直線偏光とする こ とで、 垂直方向よ リ も水平方向の視野角が 広い視野角特性と している。
しかし、 観察者が立ち上がっ た場合には、 観察者感知部 4 0 0 2 の感 知信号をもとに偏光状態変換素子を制御して、 投射光をスク リ ーン 703 の表示面に対し垂直方向の振動方向を有する直線偏光へ変換する こ とで 第 4 4図に例示する通り 、 垂直方向の視野角を広げて観察者 4 1 0 2 に 良好な映像を提供できる。
上記の通り 、 本背面投射型表示装置は、 観察者の位置に応じて視野角 特性が自動的に変わり 、 限られた映像光を観察者の方向へ有効に配光で きるため、 観察者は任意の位置で良好な映像が得られる。
〔背面投射型表示装置の実施例 4 〕
次に本発明の他の背面投射型表示装置について説明する。 本実施例の 背面投型表示装置は、 第 1 1 図を用いて説明 した前記実施例と同様であ るが、 投射装置 7 0 1 に使用される 2次元光学スィ ツチ素子の構成が異 なる。
本背面投射型表示装置の特徴は、 投射装置 7 0 1 に使用される 2次元 光学スィ ツチ素子が、 表示に偏光を用いず無偏光の状態で表示を行う こ と を特徴と し、 これによ り透過型スク リ ーン 7 0 3 を構成する配光制御 素子 1 0 0 の透明基材の光学的な異方性による縞模様の発生や、 配光制 御素子の配光特性の偏光依存性による色度変化といった課題を根本から 回避する こと を特徴とする。
表示に偏光を用いない 2次元光学スィ ツチ素子と しては種々考えられ るが、 こ こでは、 まず、 ポリ マ分散型液晶素子を散乱型表示素子と して 用いる場合について説明する。
ポリ マ分散型液晶と しては、 マイ ク ロ カプセルに入っ た正の誘電異方 性を有するネマチック液晶をポリ マ中に分散したもの、 ポリ ママ ト リ ク ス中に液晶滴を分散したもの、 あるいは、 液晶連続層中に網目状ポリ マ を形成したもの等がある。
第 2 5 図は、 ポ リ マ分散型液晶素子の一例を示す模式断面図である。 このポリ マ分散型液晶素子 2 5 0 0 は、 I T 0から成る透明電極 2503が 全面に形成された第 1 の透明ガラス基板 2 5 0 1 と、 画素を形成する透 明電極 2 5 0 4 およびこれと接続される図示しない配線や薄膜 トラ ンジ スタ等のスイ ッチング素子を有する第 2 の透明ガラス基板 2 5 0 2 と、 シール剤 2 5 0 8 を介して接続された 2枚の透明ガラス基板 2 5 0 1 , 2 5 0 2 の間に形成されたポリ マ分散液晶層 2 5 0 5 とから構成される。 ポリ マ分散液晶層 2 5 0 5 は、 ポ リ ビニルアルコール等のポリ マ 2507 中に正の誘電異方性を有する液晶滴 2 5 0 6 を分散したもので、 液晶の 分子短軸方向の屈折率とポリ マの屈折率は略一致している。
第 2 6 図にポ リ マ分散型液晶素子の動作を示す。 ポリ マ分散液晶層 2 5 0 5 の液晶は、 ポリ マ分散液晶層 2 5 0 5 に電界が印加されていな い場合、 液晶がポリ マ側壁によるアンカ リ ング, 壁面の形状, 表面エネ ルギ一などの影響を受け、 不規則に配列している。 このため、 ポリ マ分 散液晶層 2 5 0 5 は、 液晶分子長軸方向の屈折率 n e から液晶短軸方向 の屈折率 n o ま での屈折率分布を有する微粒子が、 屈折率 n 0のポリ マ マ ト リ クス中に浮かんでいる こと にな り 、 入射した光は屈折率の異なる 界面で屈折し、 散乱する。
—方、 透明ガラス基板 2 5 0 1 , 2 5 0 2 上の透明電極に電圧を印加 して液晶に電界を印加すると、 液晶はその分子長軸が透明ガラス基板に 対して垂直方向に配列され、 光の進行方向からみる液晶の屈折率は n o で一定となり 、 ポリ ママ ト リ クスの屈折率と一致する。 このため、 入射 光は液晶とポリ マの界面で散乱する ことな く 透過する。
このよう にポ リ マ分散型液晶素子では、 ポリ マ分散液晶層 2 5 0 5へ の電界の印加/非印加によ って光の散乱度合いを変化させる ことができ る。 しかし、 光の透過量が変化するわけではないので、 これを表示に用 いるためには光の散乱度合いを光の明暗に変換する光学系が必要となる。 よ く 知られているよ う にこのよ う な目的にはシユ リ一レン光学系が用い られる。
第 2 7 図および第 2 8図はシユ リ 一レ ン光学系を用いたポ リ マ分散型 液晶素子の表示動作を説明する模式図である。 光源 2 8 0 1 から出射し た略平行光は収束レンズ 2 8 0 2 の作用によ り入射側絞り 2 8 0 3 の開 口部に収束され、 入射側絞り 2 8 0 3 の開口部を通過した光はレンズ 2 7 0 1 によ り 、 再び略平行光とな り ポリ マ分散型液晶素子 2 5 0 0 に 入射する。 図示した様に、 ポ リ マ分散型液晶素子 2 5 0 0 のポ リ マ分散 液晶層に、 十分な電界が印加されているとポリ マ分散型液晶素子 2500に 入射した光はほぼ平行光のま ま透過し、 収束レンズ 2 7 0 2 で収束され、 出射側絞り 2 8 1 7 の開口部を通過する。
—方、 第 2 8 図に示すとお り 、 ポ リ マ分散型液晶素子 2 5 0 0 のポ リ マ分散液晶層に電界が印加されていないと きは、 ポリ マ分散型液晶素子 2 5 0 0 に入射した光は散乱し、 出射側絞り 2 8 1 7 の開口部をほとん ど通過できない。 従って、 出射側絞り 2 8 1 7 を通過する光を表示に用 いる こ とで明暗の表示が可能になる。
次にポリ マ分散型液晶素子を 2次元光学スィ ツチ素子と して用いた投 射装置について説明する。
第 2 9 図は、 ポリ マ分散型液晶素子を用いた投射装置の一例を示す模 式断面図である。
光源 2 8 0 1 は回転放物面形状の リ フ レクタ と、 リ フ レク タ の焦点位 置に発光部を配置したメタルハライ ドラ ンプから構成されてお り 、 発光 部から出射した光の大部分はリ フ レクタで反射し、 略平行光とな り 出射 する。 光源 2 8 0 1 から出射した光は、 U V, I Rカ ッ トフ ィ ルタ (図 示省略) を通過する こ とで、 紫外線や赤外線が取り 除かれた白色光とな リ 、 入射側収束レンズ 2 8 0 2 の作用によ り入射側絞り 2 8 0 3 の開口 部に収束される。
上記入射側絞り 2 8 0 3 を通過した白色光は、 赤色光反射ダイ ク ロイ ック ミ ラー 2 8 0 4で赤色光成分が反射し、 反射した赤色光は全反射ミ ラ一 2 8 0 7 を介して、 入射側レンズ 2 8 1 2 に入射し、 該入射側レン ズの作用によ り平行光となってポリ マ分散型液晶素子 2 8 1 5 に入射す る。
一方、 赤色光反射ダイ ク ロイ ック ミ ラー 2 8 0 4 を透過した光の内、 緑色光成分は緑色光反射ダイ ク ロイ ック ミ ラ一 2 8 0 5 で反射して、 入 射側レンズ 2 8 1 1 に入射し、 その作用によ り平行光となってポリ マ分 散型液晶素子 2 8 1 4 に入射する。
ま た、 緑色光反射ダイ ク ロイ ック ミ ラ一 2 8 0 5 を透過した青色光は、 入射側レンズ 2 8 1 0 に入射し、 その作用によ り平行光となってポリ マ 分散型液晶素子 2 8 1 3 に入射する。
ポリ マ分散型液晶素子 2 8 1 3, 2 8 1 4 , 2 8 1 5 に入射した各色 光は、 それぞれの画像情報に応じて散乱状態が制御されてポリ マ分散型 液晶素子から出射する。 ポリ マ分散型液晶素子 2 8 1 5 を通過した赤色 光は、 緑色光反射ダイ ク ロイ ッ ク ミ ラー 2 8 0 8 および青色光反射ダイ ク ロイ ツク ミ ラー 2 8 0 9 を透過して投射レンズ 2 8 1 9 に入射する。 ま た、 ポリ マ分散型液晶素子 2 8 1 4 を通過した緑色光は、 緑色光反 射ダイ ク ロイ ツク ミ ラー 2 8 0 8 で反射して、 赤色光と合成され、 青色 光反射ダイ ク ロイ ツク ミ ラ一 2 8 0 9 を透過して投射レンズ 2 8 1 9 に 入射する。 ポリ マ分散型液晶素子 2 8 1 3 を通過した青色光は全反射ミ ラ一 2 8 0 6 および青緑色光反射ダイ ク ロイ ッ ク ミ ラー 2 8 0 9 で反射 して、 赤色光および緑色光と合成されて投射レンズ 2 8 1 9 に入射する。 投射レンズ 2 8 1 9 は、 後群レンズ 2 8 1 6 および前群レンズ 2818と これらの間に配置された出射側絞り 2 8 1 7 から構成される。
投射レンズ 2 8 1 9 の後群レンズ 2 8 1 6 と、 前記入射側レンズ 2810, 2 8 1 1 および 2 8 1 2 は、 投射レ ンズの出射側絞り 2 8 1 7 と、 前記 入射側絞り 2 8 0 3 を互いに共役な関係と している。 このため投射レン ズ 2 8 1 9 に入射した光の内、 ポリ マ分散型液晶素子 2 8 1 3, 2814 , 2 8 1 5 において散乱作用を受けなかっ た画素の光は、 出射側絞り 2817 を通過して明表示となる。
—方、 ポリ マ分散型液晶素子 2 8 1 3 , 2 8 1 4, 2 8 1 5 において 散乱作用を受けた画素の光は、 その一部、 ま たは、 ほとんどが出射側絞 リ 2 8 1 7 を通過できないため暗表示となる。
このよ う に本投射装置から投射される光学画像光は、 表示に偏光を利 用 しないため略無偏光の状態である。 つま り 、 透過型スク リーン 7 0 3 に入射する光学画像光は無偏光であるため、 それを構成する配光制御素 子 1 0 0 の透明基材に複屈折性があっても、 透明基材の光学的な異方性 による縞模様の発生や、 配光制御素子の配光特性の偏光依存性による色 度変化と云った問題は回避される。 つま り 、 配光制御素子の透明基材と して、 光学異方性のある透明体を用いてもよいので材料選択範囲が広く 、 従ってよ り 安価で高強度の材料を用いる こ とが可能となる。
上記によ り 、 複屈折性の小さいフ ィ ルム、 例えば、 T A Cフ ィ ルムの よ う に高価で、 強度の弱いフ ィルムの代わり に、 2軸延伸 した P E Tフ イルムのよ う に安価で高強度のフ イルムを配光制御素子の部材と して用 いることができ、 背面投射型表示装置の透過型スク リ ーンを低コス トで 実現できる。
こ こで、 本実施例に用いる配光制御素子 1 0 0 について説明する。 本 配光制御素子 1 0 0 は第 1 図および第 2 図に例示 したものと同様な構成 となっている。 透明基材 1 0 1 には厚さ 1 2 Ο μ ιηの平坦な 2軸延伸 し た Ρ Ε Τフ ィルムを用いた。 2軸延伸フ ィ ルムは、 無延伸フ ィ ルムに比 ベて引張り強さや衝撃強さが増大し、 透明性, 使用温度範囲等の物性も 著し く 向上している。
本配光制御素子 1 0 0 は以下に述べる方法で作製した。 透明基材 10 1 の表面にポリ エステル系ホッ トメル ト接着剤からなる透明接着剤層を 5 β m , その上に同 じ く ポリ エステル系ホッ トメル ト接着剤に力一ポンプ ラ ック を 1 0重量部配合した着色接着剤層を 4 . 5 を形成し、 一旦、 固化する。
その上に屈折率が 1 . 9 3 5 (波長 5 8 9 . 3 n m ), 直径が の 球体状のガラス製透明ビーズを密に分散配置し、 恒温槽中で透明接着剤 層および着色接着剤曆を軟化させつつ、 加圧板によ り透明ビーズを透明 基材側へ加圧して該ビーズを接着剤層に埋没, 固着する。 透明ゼ一ズ固 着後の接着層の厚さは透明接着剤層と着色接着剤層合わせて約 2 1 m であ り 、 透明ビーズはその直径の約 5 8 %が接着剤層から露出 していた。 この配光制御素子 1 0 0 の透明基材 1 0 1 側表面に、 厚さ 2 mmの平坦 で透明な光学的に等方なァク リ ル板を貼り合わせ、 さ らに透明ビーズ 1 0 5側にフ レネルレンズを配置して透過型スク リ ーン 7 0 3 と したも のを 2次元光学スィ ツチ素子と して、 ポリ マ分散型液晶素子を用いた投 射装置 7 0 1 およびミ ラー 7 0 2 と組み合わせ第 1 1 図に示す様な背面 投射型表示装置を実現した。
この背面投射型表示装置を評価したと ころ、 投射装置 7 0 1 から投射 される各色光の偏光状態は無偏光で一致しており 、 透過型スク リ ーン 7 0 3 を構成する配光制御素子 1 0 0 の配光特性の偏光依存性による色 付きや、 縞模様のない高品位な画像を得る こ とができた。 ま た、 水平方 向, 垂直方向共に ± 6 0 ° と広く 、 等方的な視野角が得られた。
さ らに、 外部から透過型スク リ ーンへ入射する不要光は、 配光制御素 子の着色接着剤層で吸収されるため、 明るい環境下 (垂直照度 3 0 0 1 x ) において、 0. 5 c d Zm2 と低輝度な黒表示が実現され、 明るい環 境下でも高いコ ン トラス ト比が得られた。
なお、 表示に偏光を用いない 2次元光学スィ ッチ素子と しては、 来国 特許第 5061049号, 同第 5083857号、 ま たは、 米国特許出願 08 / 161832お よび米国特許出願 0 8ノ 1 7 1 3 0 3等に記載されているディ ジタルミ ラーデバイス ( DMD ) を用いる こ とができる。
上記 DMDは、 半導体基板上に捻じれヒンジによ リ支持された画素に 相当する微小ミ ラーのアレーと、 ア ドレス電極と を有してお り 、 ァ ドレ ス電極に電圧が印加されると微小ミ ラーが静電吸引力によ リ偏向、 ま た は、 回転するものである。
従って、 入射光を投射レンズに向けて反射すると明表示, 入射光を光 吸収手段に向けて反射すると暗表示となる。 即ち、 無偏光で表示を行う ことができるので、 ポリ マ分散型液晶素子を用いた背面投射型表示装置 と同様、 透過型スク リ ーンと して用いる配光制御素子の透明基材が、 光 学的に異方性であっても配光特性の偏光依存性による色付きや、 縞模様 のない高品位な画像を得る こ とができる。
〔背面投射型表示装置の実施例 5 〕
次に本発明の他の背面投射型表示装置について説明する。 こ こで述べ る背面投型表示装置は第 1 1 図を用いて説明 した上記実施例と同様、 投 射装置 7 0 1 , ミ ラー 7 0 2 , 透過型スク リ ーン 7 0 3 を有し、 投射装 置 7 0 1 から出射した投射光 7 0 4がミ ラ一 7 0 2 を介して透過型スク リーン 7 0 3に照射され、 画像が表示されるものであるが、 投射装置 7 0 1 の構成が異なる。
本発明の要点の一つは、 透過型スク リ ーン 7 0 3 を構成する配光制御 素子 1 0 0に入射する画像光を、 概ね無偏光とする こ と にある。 従って、 本実施例では 2 次元光学スィ ツチ素子と して、 無偏光で表示可能な表示 素子を用いる他に、 配光制御素子と 2次元光学スィ ツチ素子との間に、 偏光を解消する偏光解消手段を配置する こ とでこれを実現した。
偏光解消手段と しては波長幅, 時間などの積分範囲内でいろいろな偏 光を人為的に作り 、 これら を混合平均化する ことで位相の面で概ね無偏 光を作る素子、 いわゆる、 擬似デボラライザ一を用いる こ とができる。 該デボラライザ一と しては、 例えば、 光学軸に平行に切出 し研磨した、 屈折率異方性 Δ η = 0 . 0 0 9 で、 厚さ 2 mmと厚さ 1 mmの水晶板を、 遅 相軸が互いに 4 5 ° を成すよ う に組み合わせた L yo t のデボラライザ一 を用いる ことができる。 このデボラライザ一を用いれば、 白色光に対し てほぼ完全なデボラライザ一となる。 ま た、 膜厚を d 、 屈折率異方性を Δ η と したと き d · Δ η を可視波長に対して十分大き く した高分子液晶 フ ィルムや位相差フ ィルムを積層 したもので、 同様に擬似デボラライザ 一を構成しても よい。
このよ う な擬似デボラライザ一は、 例えば、 第 3 0 図に示す投射装置 のよ う に、 2次元光学スィ ッチ素子 8 0 7, 8 0 8, 8 0 9 を通過した 光が色合成された後の光路中に配置すると よい。 第 3 0 図は上記実施例 で説明 した Τ Ν液晶表示素子を用いた投射装置に、 擬似デボラライザ一 3 0 0 0 を新たに配置したものである。
これによつて、 偏光がほぼ解消された光学画像光を透過型スク リ ーン 7 0 3 に投射する ことができる。
つま り 、 投射装置 7 0 1 から投射される各色光の偏光状態は、 概ね無 偏光とな り 一致しているため、 配光制御素子 1 0 0 の配光特性の偏光依 存性による色付きや、 縞模様のない高品位な画像を得る こ とができる。 さ らに、 配光制御素子 1 0 0 の透明基材 1 0 1 と して光学異方性のある 透明体を用いてもよいため、 透明基材 1 0 1 の材料選択範囲が広く な り 、 よ り 安価で強度の高い材料を用いる ことが可能となる。
なお、 以上述べた背面投射型表示装置ではその投射装置の 2次元光学 スィ ツチ素子と して、 透過型の液晶表示素子を用いたものについて説明 してきたが、 これに限定されず、 反射型の表示素子であってもよい。
ま た、 表示モー ドも T Nモー ドに限らず、 V A (Vertical Aligned) モー ドや、 E C Bモー ド, O C Bモー ド, S T N ( Super Twisted Nematic) モー ド等の液晶表示素子, 強誘電液晶や反強誘電液晶を用い た液晶表示素子であっても よい。
〔液晶表示装置の実施例 1 〕
第 3 1 図は、 本発明に係る配光制御素子を用いた直視型の液晶表示装 置の模式断面図である。
本発明の液晶表示装置は、 液晶表示素子 1 3 0 2 と、 その背面に設け られたパックライ ト装置 1 3 0 1 と、 液晶表示素子 1 3 0 2 の背面と前 , 面とにそれぞれ配置された偏光子 1 2 0 4 および検光子 1 2 1 4 と、 検 光子 1 2 1 4の前面に設けられた本発明の配光制御素子 1 0 0 とから構 成される。
ノ ックライ ト装置 1 3 0 1 は、 略平行な光を効率よ く 出射できるもの であ り 、 例えば、 特表平 9一 505412 号公報や、 国際公開番号 W0 9 5 Z 1 2 5 5 に記載の 「電子光学ディ スプレイ用のバッ クライ ト組み立て 体」 を用いる こ とができる。
こ こでは冷陰極管からなる光源 1 2 0 1 と、 透明なアク リ ル樹脂から 構成される導光体 1 2 0 2 と、 光平行化手段 1 2 0 3 から構成されるバ ックライ ト装置を用いた。
光平行化手段 1 2 0 3 と しては、 公知の素子、 例えば、 第 3 1 図に示 した導光体 1 2 0 2 に光学的に結合された 4角錐状のマイ ク ロテーパー ロ ッ ド配列を用いる こ とができる。 この場合、 導光体 1 2 0 2から導か れた光は、 マイ ク ロテーパーロ ッ ドの壁面で一回以上全反射し、 略平行 化されて出射する。
光平行化手段 1 2 0 3 と しては、 この他にマイ ク ロプリ ズムシー トや、 マイ ク ロ レンズ配列を用いる こ とができる。 このよう な光平行化素子 1 2 0 3 を有するバックライ 卜装置を用いる ことで半値角で ± 1 0 ° 以 内の略平行化された照明光が得られる。
液晶表示素子 1 3 0 2 は、 I T 0から成る透明電極 1 2 1 2 およびポ リ イ ミ ド系高分子からなる配向膜 1 2 1 1 を有する第 1 の透明基板 12 10 と、 配向膜 1 2 0 7 と、 画素を形成する透明電極 1 2 0 6 、 および、 こ れと接続される図示しない配線や薄膜 トランジスタ等のスイ ッチング素 子を有する第 2 の透明基板 1 2 0 5 と、 シール剤 1 2 0 8 を介して接続 された 2枚の透明基板 1 2 1 2, 1 2 1 0 の間に封入された誘電異方性 が正のネマチッ ク液晶からなる液晶層 1 2 0 9 と を有する。
液晶表示素子 1 3 0 2 は、 2枚の透明基板 1 2 0 5 および 1 2 1 0 に 施された配向膜 1 2 0 7 および 1 2 1 1 に、 ラ ビング処理を行う ことで 液晶層 1 2 0 9 の液晶分子長軸が 2枚の透明基板間で連続的に 9 0 ° 捻 じれた、 いわゆる T N液晶表示素子を構成している。
上記液晶表示素子 1 3 0 2 の光入射面と光出射面には、 それぞれ偏光 子 1 2 0 4 および検光子 1 2 1 4が、 互いに直交する直線偏光を透過す るよ う に配置される。 偏光子 1 2 0 4 および検光子 1 2 1 4 と しては、 延伸 した P V Aにヨ ウ素を吸収させて偏光機能を付与した膜の両面に T A C保護層を施したものを用い、 それぞれ透明基板 1 2 0 5 および透 明基板 1 2 1 0 にアク リ ル系の接着剤で、 光学的に結合されるよ う接着 される。
検光子 1 2 1 4の前面には、 配光制御素子 1 0 0 が配置される。 配光 制御素子 1 0 0 と しては、 配光制御素子の実施例 1 で説明 した素子を用 いた。 検光子 1 2 1 4 との接着は、 こ こでは液晶表示素子の表示部を取 リ 囲むよ う にパターニングされた接着剤 1 2 1 3 によ り行っ たが、 配光 制御素子 1 0 0 の透明ビーズと検光子 1 2 1 4 との隙間を、 その全面に わたって屈折率の低い透明な接着剤で埋めるよう に接着するか、 これら の併用であっても よい。
次に、 上記直視型液晶表示装置の動作について説明する。 バックライ ト装置 1 3 0 1 からの出射光 1 2 1 5の内、 偏光子 1 2 0 4 を透過した 直線偏光は、 液晶パネル 1 3 0 2 を透過して検光子 1 2 1 4 に入射する。 この際、 液晶パネル 1 3 0 2 を透過する光の偏光状態は、 液晶層 1209に 印加される電界によって変化するため、 液晶層 1 2 0 9 に画像情報に対 応した電界を印加するこ とで、 検光子 1 2 1 4 を透過する光量を制御し て画像を形成する ことができる。 検光子 1 2 1 4 を透過した画像光は配 光制御素子 1 0 0 に入射する。
配光制御素子 1 0 0 に入射した光はその大部分が配光制御素子 1 0 0 の透明ビーズに入射し、 その屈折作用によ り収束し、 発散する。
こ こで、 一般の T N液晶表示装置には視野角依存性があ り 、 斜め方向 から観察するとコ ン トラス ト比の低下, 階調反転, 色調変化が起こる。 従って、 良好な画質が得られるのは正面近傍の範囲に限られる。
ま た、 配光制御素子 1 0 0 は上記のとお り 、 入射光の入射角度が大き く なると着色接着剤層での吸収によ リ透過率が低く なる。 このため液晶 表示素子 1 3 0 2から出射する光の内、 コ ン トラス ト比の低下や階調反 転, 色調変化が起こるよ う な入射角度の大きな光は、 着色接着剤層で大 部分が吸収される。
一方、 良好な画質が得られる実質的に入射角度 0 ° の正面近傍の光は 透過し、 等方的に拡散されるため、 広い視野角範囲で色調変化や階調反 転がなく 、 コ ン トラス ト比の高い画像が得られる。
さ らに、 本液晶表示装置では、 ノ ッ クライ ト装置 1 3 0 1 から液晶表 示素子 1 3 0 2 へ照射される光が略平行な光であるため、 液晶表示素子 1 3 0 2 において良好な画質が得られる角度範囲の光量割合が増すと、 同時に配光制御素子 1 0 0での光損失が低減して光の利用効率が高く な るので、 高輝度、 かつ、 高コ ン トラス トな画像が得られる。 ま た、 配光 制御素子 1 0 0 は外部不要光による迷光の低減効果が高いので、 明るい 環境下であつても低輝度な黒表示が実現され、 コ ン トラス ト比の高い画 像が得られる。
上記構成の液晶表示装置を評価したと ころ、 視野角 ± 8 0 ° の範囲で 色調変化や階調反転がなく 、 コ ン トラス ト比が 1 0 0 : 1 以上の等方的 で広い視野角が得られた。
なお、 通常、 T N液晶表示装置では、 コ ン トラス ト比の水平方向の対 称性を確保するため偏光子おょぴ検光子の直線偏光の透過軸は、 表示面 水平方向に対して 4 5 ° の角度を成すよ う に配置するのが一般的である。
しかし、 本発明の液晶表示装置では、 良好な画質が得られる視野角 0 ° 近傍の画像光を等方的に拡散する こ とで、 広い視野角を得ているた め、 偏光子 1 2 0 4 および検光子 1 2 1 4の直線偏光透過軸を、 表示面 水平方向に対して 4 5 ° あるいは 1 3 5 ° に しな く てもコ ン トラス ト比 の対称性は保たれる。 むしろ、 本液晶表示装置を構成する配光制御素子 の配光特性の偏光依存性から、 検光子 1 2 1 4の直線偏光透過軸は、 液 晶表示素子 1 3 0 2 の表示面の水平方向と略一致するよ う に配置するべ きである。
つま り 、 第 3 2 図の模式図で示すとお り 、 偏光子 1 2 0 4の直線偏光 透過軸は、 液晶表示装置の表示面に対して垂直方向に配置し、 検光子 1 2 1 4 の直線偏光透過軸は、 液晶表示装置の表示面に対して水平方向 に配置する。 従って、 液晶の配向方向も これに習い、 透明基板 1 2 0 5 側の液晶の配向方向は、 液晶表示装置表示面に対して垂直方向と し、 透 明基板 1 2 1 0側の液晶の配向方向は、 液晶表示装置表示面に対して水 平方向、 も し く は、 透明基板 1 2 0 5側の液晶の配向方向は液晶表示装 置表示面に対して水平方向と し、 透明基板 1 2 1 0側の液晶の配向方向 は液晶表示装置表示面に対して垂直方向とする。
上記の様に構成する ことで、 配光制御素子 1 0 0 に入射する光は表示 面に対して、 水平方向の振動方向を有する直線偏光となる。 この場合、 上記のとお り配光制御素子 1 0 0 の配光特性の偏光依存性によ り 、 表示 面垂直方向よ り も、 水平方向の視野角が広く 、 左右対称な明るさの液晶 表示素子を得る こ とができる。 このこと は、 一般に表示装置では垂直方 向よ り も水平方向に、 よ り広い視野角が求め られているので、 限られた 光を観察者へ効率よ く 配分する上で非常に有効である。
〔液晶表示装置の実施例 2 〕
第 3 3 図は、 本発明の他の直視型液晶表示装置の模式断面図である。 この液晶表示装置は、 第 3 1 図に示した液晶表示装置において、 検光子 1 2 1 4 と配光制御素子 1 0 ◦ との間に位相差板 3 1 0 0 を配置したも のである。
上記のとおり 、 本液晶表示装置を構成する配光制御素子 1 0 0 は、 入 射光の偏光状態によ って、 その配光特性、 つま り視野角が変え られる。 位相差板 3 1 0 0 はこの性質を利用 して、 検光子 1 2 1 4 を透過した直 線偏光を、 所望の視野角を得られる偏光に変換する機能を有するもので ある。
例えば位相差板 3 1 0 0と して 1 ノ 4波長板を用いた場合、 検光子 1 2 1 4を透過した直線偏光は、 位相差板 3 1 0 0の作用によ り略円偏 光となって配光制御素子 1 0 0 に入射し、 水平方向、 垂直方向共に、 同 程度の等方的で広い視野角が得られる。
ま た、 一般の T N液晶表示装置の様にコ ン トラス 卜比の左右対称性を 得るため、 検光子 1 2 1 4と偏光子 1 2 0 4の直線偏光の透過軸を水平 方向に対して 4 5 ° あるいは 1 3 5 ° に配置し、 位相差板 3 1 0 0と し て、 例えば、 1 Z 2波長板をその遅相軸が検光子の透過軸に対して 2 2. 5 ° 傾いた状態で配置して、 配光制御素子 1 0 0への入射光を、 直線偏光の振動方向が表示面に対して水平方向となるよ う に変換するよ う に してもよい。
この場合は、 既存の液晶表示素子に位相差板 3 1 0 0と配光制御素子 1 0 0 を付加するだけで、 表示面垂直方向よ り も、 水平方向の視野角が 広く 、 左右対称な明るさの液晶表示素子を得る こ とができる。 一般に、 表示装置では垂直方向よ り も水平方向によ リ広い視野角が求め られてお リ 、 限られた光を観察者へ効率よ く 配分する上で非常に有効である。 なお、 位相差板 3 1 0 0の代わ り に、 捩じれ構造を有する高分子積層 フ イルムを配置しても同じ効果が得られる。 このよ う な高分子積層フ ィ ルムは例えば位相差 d · Δ n = 2 7 5 n mの P Cフ ィルムの位相差フ ィ ルムを 4枚積層する こ とで実現され、 4枚の位相差フ イルムは液晶表示 素子に近い方から、 遅相軸が検光子の透過軸に対して 5. 6 ° , 16.9° , 2 8. 1 ° , 3 9. 4° と配置すればよい。
なお、 上記実施例では、 図面を見易く するため、 液晶表示素子と して モノ ク ロ表示の T N液晶パネルの例を示したが、 透明基板にマイ ク ロ力 ラーフ ィルタ を施したフルカラー表示の液晶表示素子であってもよいこ とは云う までもない。
ま た、 表示モー ドも T Nモー ドに限らず、 V Aモー ドや、 E C Bモー ド, O C Bモー ド, S T Nモー ド等の液晶パネルを用いても よい。 さ ら に駆動方法も薄膜 トラ ンジスタ などのスイ ッチング素子を付けたァクテ イ ブマ ト リ クス駆動以外に、 ダイ レク トマ ト リ クス駆動であってもよい。 上記のとおり 、 本発明の配光制御素子は、 透明基材と して光学的に略 等方、 あるいは、 面内に光学軸を有する一軸異方性の透明体を用いる こ とで、 偏光を入射しても、 縞模様の発生による画質劣化がな く 、 広い視 野角が得られるという効果がある。 従って、 本発明の配光制御素子は液 晶表示装置のよ う に偏光を利用する表示装置の視野角拡大手段と して用 いる ことができる。
ま た、 本発明の背面投射型表示装置は、 その透過型スク リ ーンを本発 明の配光制御素子と、 その光入射側に配置したフ レネルレンズとで構成 し、 配光制御素子に入射する投射光の入射角度を実質的に 0度と したこ とで、 配光制御素子での透過率低下が抑制され、 明るい表示画像が得ら れる。 さ らに、 投射装置と して単管式の投射装置を用いる こ とで、 配光 制御素子の光入射角度依存性によ リ 生じるカラーシフ トゃ色付きが生じ ないので、 高品位な画像が得られる。
ま た、 本発明の背面投射型表示装置では、 投射装置から出射する投射 光の偏光状態を、 各色光共に一致させるこ とで配光制御素子の配光特性 の偏光依存性によ リ生じる色付きを解消して、 高品位な画像を得る こと ができる。
さ らに、 配光制御素子が、 どの角度から見ても明る く 広い視野角特性 を有し、 外部不要光による迷光の低減効果が高いので、 明るい環境下で も低輝度な黒表示の実現によ り 、 高コ ン トラス ト比の表示が実現できる。 また、 本発明の背面投射型表示装置では、 配光制御素子の微小レンズ と して、 略同心円状の微小レンズを用い、 透過型スク リ ーンに投射され る光の偏光状態を変え得る偏光状態変換素子を設けたこ とで、 スク リ ー ンの構成を変える ことなく 、 表示装置の視野角特性を容易に変え得ると 云う効果がある。
さ らに、 この背面投射型表示装置に観察者の有無を感知する観察者感 知部と、 該感知部の感知信号によ リ観察者の水平および垂直方向の位置 を判断する観察者位置判断手段と、 該位置判断手段の情報に基づき偏光 状態変換素子に制御信号を出力する制御信号出力手段を付加したことで 観察者の位置を 自動的に判断して投射光の偏光状態を変えることで、 観 察者の位置に応じた視野角特性を得る ことが可能となる。 つま り 、 観察 者の位置に応じて視野角特性が自動的に変わ り 、 限られた映像光が観察 者の方向へ有効に配光できるので、 観察者は任意の位置で良好な映像が 得られると云う効果がある。
また、 本発明の背面投射型表示装置では、 透過型スク リ ーンへ入射す る投射装置からの投射光を無偏光とする こ とで、 配光制御素子の配光特 性の偏光依存性による色付きや、 縞模様のない高品位な画像を得ること ができる。
この場合、 配光制御素子の透明基材と しては、 光学異方性のある材料 を用いてもよいため、 該材料の選択範囲が広く な リ 、 よ り 安価で強度の 高い材料を用いた透過型スク リ ーンを低コス トで実現できる。
また、 本発明の液晶表示装置では、 その表面側に本発明に係る配光制 御素子を配置し、 バックライ ト装置に略平行な照明光を出射するものを 用いる こ と よ り 、 正面近傍の範囲の光のみを配光制御素子によ り等方的 に拡散する こ とができるため、 広い視野角範囲で色調変化や階調反転が なく 、 コ ン トラス ト比の高い画像の液晶表示装置が得られる。
さ らに、 本発明の液晶表示装置では配光制御素子に入射する光を表示 面に対して水平方向の振動方向を有する直線偏光とする こ とで、 表示面 垂直方向よ り も水平方向の視野角を広く して、 限られた光を観察者に有 効に配分できる。
ま た、 本発明の液晶表示装置では配光制御素子に入射する光の偏光状 態を、 検光子と配光制御素子の間に配置する位相差板によ って任意に変 え られるため、 位相差板を変更するだけで、 配光制御素子の配光特性の 偏光依存性を利用 し、 所定の視野角を得る こ ともできる。 産業上の利用可能性
以上のよ う に、 本発明にかかる液晶表示装置によれば、 縞模様の発生 による画質の劣化が無い配光制御素子、 およびこの配光制御素子を用い た高輝度, 高コ ン トラス ト比, 広視野角の表示装置を得る。

Claims

請 求 の 範 囲
1 . 透明基材と、 この透明基材の一方の面上に密に配置された多数の微 小レンズと、 前記微小レンズの略焦点位置に微小開口部を有する光吸収 層を備えた配光制御素子において、 前記透明基材が光学的に略等方な透 明体、 も し く は、 一軸性光学異方性の透明体で構成されている こと を特 徴とする配光制御素子。
2 . 透明基材と、 この透明基材の一方の面上に形成された接着剤層と、 前記接着剤層に多数の微小球状透明ビーズが埋設, 固定された配光制御 素子であって、 前記接着剤層が前記透明基材上に透明層、 その上に着色 層の順に積層 したホッ トメル ト接着剤で構成され、 前記透明基材が光学 的に略等方な透明体、 も し く は、 一軸性光学異方性の透明体で構成され ている ことを特徴とする配光制御素子。
3 . 前記透明基材がガラス板, ト リ ァセチルセル口一スフ イ ルム, 無延 伸ポ リ カーボネー トフ ィルム、 ま たは、 射出成形されたアク リ ル樹脂で ある請求の範囲 1 ま たは 2 に記載の配光制御素子。
4 . 光学画像を投射する投射装置と、 前記投射装置からの投射光が背面 から入射し、 これを前面に表示する透過型スク リ ーンを備える背面投射 型表示装置において、
前記投射装置が光源と、 該光源からの光を画像情報に応じて光学画像 に変調する 2次元光学スィ ツチ素子と、 変調後の光学画像を拡大投射す る投射レンズを有する単管式投射装置を備え、
前記投射装置から出射された前記変調後の光学画像が前記透過型スク リ ーンへ入射する際、 前記 2 次元光学スィ ツチ素子で形成された光学画 像光の偏光状態を可視波長全域で略一致させる偏光状態揃え手段を有し、 前記透過型スク リ ーンが、 透明基材と、 この透明基材の一方の面上に 密に配置された多数の微小レンズと、 前記微小レンズの略焦点位置に微 小開口部を有する光吸収層を備え、 前記透明基材が光学的に略等方な透 明体、 も し く は、 一軸性光学異方性の透明体で構成された配光制御素子 と、 この配光制御素子の投射光入射側に設けた光束平行化手段によ り構 成されている こ と を特徴とする背面投射型表示装置。
5 . 前記透過型スク リ ーンが、 透明基材と、 この透明基材の一方の面上 に形成された接着剤層と、 前記接着剤層に多数の微小球状透明ビーズが 埋設, 固定された配光制御素子であって、 前記接着剤層が前記透明基材 上に透明層、 その上に着色層の順に積層 したホッ トメル ト接着剤で構成 され、 前記透明基材が光学的に略等方な透明体、 も し く は、 一軸性光学 異方性の透明体で構成した配光制御素子と、 この配光制御素子の投射光 入射側に設けた光束平行化手段によ り構成されている請求の範囲 4 に記 載の背面投射型表示装置。
6 . 前記 2次元光学スィ ッチ素子が偏光を利用 して表示を行う 2次元光 学スィ ッチ素子であ り 、 前記偏光状態揃え手段が、 前記 2 次元光学スィ ツチ素子の光出射側に配置されたウェーブガイ ドの条件を満たす液晶層 を有する光学素子である請求の範囲 4 ま たは 5 に記載の背面投射型表示 装置。
7 . 前記 2次元光学スィ ッチ素子が偏光を利用 して表示を行う 2 次元光 学スィ ツチ素子であ り 、 前記偏光状態揃え手段が前記 2 次元光学スィ ッ チ素子の光出射側に配置された 1 / 2波長板、 または、 高分子フ ィ ルム の積層体である請求の範囲 4 ま たは 5 に記載の背面投射型表示装置。
8 . 前記 2次元光学スィ ッチ素子が偏光を利用 して表示を行う 2次元光 学スィ ッチ素子であ り 、 前記偏光状態揃え手段を、 前記 2 次元光学スィ ツチ素子の光出射側に配置された検光子の直線偏光の透過軸を表示面に 対して垂直方向、 ま たは、 水平方向と した請求の範囲 4ま たは 5に記載 の背面投射型表示装置。
9. 前記 2次元光学スィ ッチ素子が偏光を利用 して表示を行う 2次元光 学スィ ツチ素子であ り 、 前記 2次元光学スィ ツチ素子で形成された光学 画像光の偏光状態を電気べク トルの振動方向が前記透過型スク リ ーン表 示面に対して水平方向の直線偏光, 垂直方向の直線偏光, 円偏光, 楕円 偏光のいずれかに変換する偏光状態変換手段を備えている請求の範囲 4 ま たは 5 に記載の背面投射型表示装置。
1 0. 前記偏光状態変換手段が T N ( Twisted Nematic) 液晶素子、 ま たは、 E C B ( E lectrically Controlled B irefringence) 液晶素子 で構成されている請求の範囲 9に記載の背面投射型表示装置。
1 1 . 前記背面投射型表示装置において、 観察者の有無を感知する観察 者感知部と、 該観察者感知部の感知信号によ リ水平および垂直方向の観 察者の位置を判断する観察者位置判断手段と、 該観察者位置判断手段の 情報に基づき偏光状態変換素子に制御信号を出力する制御信号出力手段 を備えている請求の範囲 9 ま たは 1 0に記載の背面投射型表示装置。
1 2. 前記背面投射型表示装置において、 前記偏光状態変換手段が位相 差板、 ま たは、 高分子積層フ ィ ルムで構成されている請求の範囲 9 ま た は 1 0に記載の背面投射型表示装置。
1 3. 光学画像を投射する投射装置と、 前記投射装置からの投射光が背 面から入射し、 これを前面に表示する透過型スク リ ーンを備える背面投 射型表示装置において、
前記投射装置が光源と、 該光源からの光を画像情報に応じて光学画像 に変調する 2次元光学スィ ツチ素子と、 変調後の光学画像を拡大投射す る投射レンズを有する単管式投射装置を備え、 前記透過型スク リ ーンが、 透明基材と、 該透明基材の一方の面上に密 に配置された多数の微小レンズと、 前記微小レンズの略焦点位置に微小 開口部を有する光吸収層を有する配光制御素子と、 該配光制御素子の投 射光入射側に配置された光束平行化手段を有しており 、
前記投射装置から出射し、 前記透過型スク リ ーンに入射する投射光を 略無偏光とする無偏光化手段を有する こと を特徴とする背面投射型表示 装置。
1 4 . 前記透明基材がポリ エチレンテレフタ レー トフ ィ ルムである請求 の範囲 1 3 に記載の背面投射型表示装置。
1 5 . 前記無偏光化手段が位相の面で概ね無偏光を生成する擬似デボラ ライザ一である請求の範囲 1 3 ま たは 1 4 に記載の背面投射型表示装置。
1 6 . 前記無偏光化手段と して、 ポリ マ分散型液晶素子と云った表示に 偏光を必要と しない 2 次元光学スィ ツチ素子を用いた請求の範囲 1 3 ま たは 1 4 に記載の背面投射型表示装置。
1 7 . 透明電極と配向膜が積層形成され、 かつ、 前記配向膜形成面を対 向させて一定の間隙をもって接合された一対の透明基板と、 前記間隙に 封入された液晶層と、 前記透明電極に画像信号に対応した電圧を印加す る電圧印加手段と、 前記一対の透明基板の光入射面側と光出射面側に偏 光子および検光子を配置した液晶表示装置において、
前記一対の透明基板の背面に略平行な光を出射するバックライ ト装置 を配置し、 前記一対の透明基板の光出射面側に、 透明基材と、 この透明 基材の一方の面上に密に配置された多数の微小レンズと、 前記微小レン ズの略焦点位置に微小開口部を有する光吸収層を備えた配光制御素子で あって、 前記透明基材が光学的に略等方な透明体、 も し く は、 一軸性光 学異方性の透明体で構成された配光制御素子を配置したこ と を特徴とす る液晶表示装置。
1 8 . 前記一対の透明基板の光出射面側に、 透明基材と、 この透明基材 の一方の面上に形成された接着剤層と、 前記接着剤層に多数の微小球状 透明ビーズが埋設, 固定された配光制御素子であって、 前記接着剤層が 前記透明基材上に透明層、 その上に着色層の順に積層 したホッ 卜メル ト 接着剂で構成され、
前記透明基材が光学的に略等方な透明体、 も し く は、 一軸性光学異方 性の透明体で構成された配光制御素子を配置した請求項 1 7 に記載の液 晶表示装置。
1 9 . 前記一対の透明基板の光入射面側に、 偏光子を配置し、 光出射面 側には透明基板側から検光子, 配光制御素子の順に配置し、
前記検光子の直線偏光の透過軸を表示面に対して水平方向となるよう に配置した請求の範囲 1 7 ま たは 1 8 に記載の液晶表示装置。
2 0 . 前記一対の透明基板の光入射面側に偏光子を配置し、 光出射面側 には透明基板側から検光子, 配光制御素子の順に配置し、 さ らに、 前記 検光子と前記配光制御素子の間に位相差板を配置した請求の範囲 1 7 ま たは 1 8 に記載の液晶表示装置。
PCT/JP1999/003593 1998-07-10 1999-07-02 Ecran filtrant et afficheur ainsi equipe WO2000003273A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP99926912A EP1098209A1 (en) 1998-07-10 1999-07-02 Luminous intensity distribution control device and display having the same
US09/743,495 US6650472B1 (en) 1998-07-10 1999-07-02 Luminous intensity distribution control device and display having the same
KR10-2004-7007883A KR100452662B1 (ko) 1998-07-10 1999-07-02 배광 투사형 표시 장치
US10/669,052 US6943947B2 (en) 1998-07-10 2003-09-24 Luminous intensity distribution control device and display having the same
US11/222,777 US7173760B2 (en) 1998-07-10 2005-09-12 Luminous intensity distribution control device and display having the same
US11/702,537 US7391568B2 (en) 1998-07-10 2007-02-06 Luminous intensity distribution control device and display having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19573698A JP3822361B2 (ja) 1998-07-10 1998-07-10 配光制御素子およびこれを備えた表示装置
JP10/195736 1998-07-10

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US09/743,495 A-371-Of-International US6650472B1 (en) 1998-07-10 1999-07-02 Luminous intensity distribution control device and display having the same
US09743495 A-371-Of-International 1999-07-02
US10/642,225 Division US6844968B2 (en) 1998-07-10 2003-08-18 Luminous intensity distribution control device and display having the same
US10/669,052 Continuation US6943947B2 (en) 1998-07-10 2003-09-24 Luminous intensity distribution control device and display having the same

Publications (1)

Publication Number Publication Date
WO2000003273A1 true WO2000003273A1 (fr) 2000-01-20

Family

ID=16346118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003593 WO2000003273A1 (fr) 1998-07-10 1999-07-02 Ecran filtrant et afficheur ainsi equipe

Country Status (5)

Country Link
US (5) US6650472B1 (ja)
EP (1) EP1098209A1 (ja)
JP (1) JP3822361B2 (ja)
KR (2) KR100452662B1 (ja)
WO (1) WO2000003273A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1213600A2 (en) * 2000-12-06 2002-06-12 Fuji Photo Film Co., Ltd. Optical diffusion film and process of producing optical diffusion film

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3822361B2 (ja) * 1998-07-10 2006-09-20 株式会社日立製作所 配光制御素子およびこれを備えた表示装置
AU2001227959A1 (en) * 2000-01-19 2001-07-31 Omlidon Technologies Llc Polarizing device
JP2002081275A (ja) * 2000-09-11 2002-03-22 Sti Japan:Kk 配光制御装置、ブラインド、パーティション、カーテン、テント及び照明器
JP4721561B2 (ja) * 2001-06-01 2011-07-13 三菱電機株式会社 保護板を具備するプロジェクションテレビジョン
KR100880875B1 (ko) * 2001-07-20 2009-01-30 마이클 사약 이미지 캡처 장치에 광학적으로 연결된 렌즈 시스템
CN1592857A (zh) * 2001-11-09 2005-03-09 3M创新有限公司 高反差光学薄膜
US20030128175A1 (en) * 2002-01-09 2003-07-10 International Business Machines Corporation Stereoscopic display system and method
JP4168664B2 (ja) * 2002-05-22 2008-10-22 凸版印刷株式会社 マイクロレンズアレイシ−トとその製造方法およびそれを用いた背面投写型スクリ−ン
US20040056995A1 (en) * 2002-09-24 2004-03-25 Delphi Technologies, Inc. Apparatus and method for maximizing LCD contrast
JP2004287202A (ja) * 2003-03-24 2004-10-14 Seiko Epson Corp プロジェクタ
JP2004325694A (ja) * 2003-04-24 2004-11-18 Hitachi Ltd 背面反射鏡およびそれを用いた背面投写型映像表示装置
US6988663B2 (en) * 2003-06-05 2006-01-24 Symbol Technologies, Inc. Movable scanning array in electro-optical readers
JP2005057621A (ja) * 2003-08-07 2005-03-03 Sanyo Electric Co Ltd 映像信号処理回路
EP1709623B1 (en) * 2004-01-20 2012-07-11 Ecrans Polaires Inc. Stereoscopic display system
JP2005326434A (ja) * 2004-05-12 2005-11-24 Hitachi Ltd 反射ミラー及びそれを用いた背面投射型映像表示装置
JP4020397B2 (ja) * 2004-06-14 2007-12-12 惠次 飯村 点光源を用いた面光源
US7248406B2 (en) 2004-10-15 2007-07-24 Hewlett-Packard Development Company, L.P. Projection screen
CN100523941C (zh) * 2004-10-22 2009-08-05 皇家飞利浦电子股份有限公司 投影仪系统
US7220026B2 (en) 2004-12-30 2007-05-22 3M Innovative Properties Company Optical film having a structured surface with offset prismatic structures
US7320538B2 (en) 2004-12-30 2008-01-22 3M Innovative Properties Company Optical film having a structured surface with concave pyramid-shaped structures
US7416309B2 (en) * 2004-12-30 2008-08-26 3M Innovative Properties Company Optical film having a surface with rounded structures
JP5090900B2 (ja) * 2005-02-25 2012-12-05 パナソニック株式会社 2次元画像形成装置
WO2006098337A1 (ja) 2005-03-15 2006-09-21 Kuraray Co., Ltd. レンチキュラーレンズシートおよびその製造方法並びに転写材用樹脂組成物
US7327334B2 (en) * 2005-05-24 2008-02-05 Chunghwa Picture Tubes, Ltd. Plasma display panel driver circuit having two-direction energy recovery through one switch
JP2007033597A (ja) * 2005-07-25 2007-02-08 Seiko Epson Corp 光学シート、バックライトユニット、電気光学装置及び電子機器、並びに光学シートの製造方法及び光学シートの切断方法
JP2007078810A (ja) * 2005-09-12 2007-03-29 Fujifilm Corp 液晶表示装置及び発光素子
US7453632B2 (en) * 2005-11-19 2008-11-18 Peter Beaty Projection screen coating
US7641350B2 (en) * 2005-11-28 2010-01-05 Jds Uniphase Corporation Front surface mirror for providing white color uniformity for polarized systems with a large range of incidence angles
US20070133226A1 (en) * 2005-12-13 2007-06-14 Eastman Kodak Company Polarizing turning film with multiple operating orientations
US20070206155A1 (en) * 2006-03-03 2007-09-06 Real D Steady state surface mode device for stereoscopic projection
JP5278720B2 (ja) * 2006-03-27 2013-09-04 Nltテクノロジー株式会社 液晶パネル、液晶表示装置及び端末装置
KR101474890B1 (ko) * 2006-06-23 2014-12-19 도레이 카부시키가이샤 백색 반사 필름
JP4957162B2 (ja) * 2006-10-06 2012-06-20 セイコーエプソン株式会社 投写表示装置および投写表示方法
US20100039819A1 (en) * 2006-12-29 2010-02-18 Koninklijke Philips Electronics N.V. Floodlight with tiltable beam
TW200844543A (en) * 2007-05-04 2008-11-16 Ind Tech Res Inst Passive optical device and light module
JP2008287180A (ja) * 2007-05-21 2008-11-27 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
KR101372849B1 (ko) 2007-07-27 2014-03-10 삼성디스플레이 주식회사 콜리메이팅 도광판, 확산 유닛 및 이를 채용한 디스플레이장치
US8004622B2 (en) * 2007-10-04 2011-08-23 3M Innovative Properties Company Embedded stereoscopic 3D display and 2D display film stack
US7768602B2 (en) * 2007-10-16 2010-08-03 Rohm And Haas Company Light diffusing article with GRIN lenses
US7923272B2 (en) * 2007-12-28 2011-04-12 Hwang-Pao Lee Method of forming a resin cover lens of LED assembly
TWI348070B (en) * 2007-12-31 2011-09-01 Ind Tech Res Inst Bistable projection screen
JP5038968B2 (ja) * 2008-05-01 2012-10-03 日東電工株式会社 集光素子、それを用いた面光源および液晶表示装置
EP2146138A1 (de) * 2008-07-16 2010-01-20 Odelo GmbH Leuchte
EP2452214A4 (en) * 2009-07-07 2012-12-12 Hewlett Packard Development Co LIGHT SCREENS AND INDICATORS THEREWITH
JP5477693B2 (ja) * 2009-08-06 2014-04-23 大日本印刷株式会社 光学シート、透過型スクリーンおよび背面投射型表示装置
KR101687016B1 (ko) * 2010-01-06 2016-12-16 삼성전자주식회사 면광원 장치 제조방법
US8072442B2 (en) * 2010-02-09 2011-12-06 Sharp Kabushiki Kaisha Electrically switchable field of view for embedded light sensor
EP2546696A4 (en) * 2010-03-08 2017-06-14 Dai Nippon Printing Co., Ltd. Small-form-factor display device with touch-panel functionality, and screen used as the display therein
JP2011204731A (ja) * 2010-03-24 2011-10-13 Yamatake Corp 光学パッケージとレンズの接合方法、及び光学パッケージ
JP2012208211A (ja) * 2011-03-29 2012-10-25 Hitachi Consumer Electronics Co Ltd 裸眼立体視ディスプレイ
CN102141707B (zh) * 2011-03-30 2013-01-23 昆山龙腾光电有限公司 透光模式切换装置及二维/三维可切换显示设备
TWI465805B (zh) * 2012-04-24 2014-12-21 Au Optronics Corp 顯示裝置
US8804067B2 (en) * 2011-05-02 2014-08-12 Au Optronics Corporation Display device
US8599483B1 (en) * 2012-06-05 2013-12-03 3M Innovative Properties Company High angle rear projection system
US9256115B1 (en) * 2014-12-29 2016-02-09 Google Inc. Dual sided lens array using clear beads
CN104809272A (zh) * 2015-03-27 2015-07-29 华南理工大学 一种led芯片光提取率的预测方法
US10713984B2 (en) * 2016-03-02 2020-07-14 Sony Corporation Image display control device and image display control method
CN105889840B (zh) * 2016-06-08 2018-03-02 广东雷腾智能光电有限公司 一种自适应远近光一体led多模组前照灯
IT201600121552A1 (it) * 2016-11-30 2018-05-30 Automotive Lighting Italia Spa Fanale automobilistico comprendente una porzione di emissione luminosa ad effetto opalescente
KR20180077733A (ko) * 2016-12-29 2018-07-09 엘에스산전 주식회사 태양전지 모듈용 보호 유리 및 그 제조방법
JP6972609B2 (ja) * 2017-03-28 2021-11-24 セイコーエプソン株式会社 光射出装置および画像表示システム
KR102512202B1 (ko) * 2017-10-17 2023-03-21 삼성전자주식회사 디스플레이 패널 및 이를 포함하는 디스플레이 장치
US11592735B2 (en) 2018-03-29 2023-02-28 Sony Corporation Image display apparatus and image display unit
TWM576667U (zh) * 2018-10-22 2019-04-11 隆達電子股份有限公司 顯示裝置
JP7340687B2 (ja) 2020-03-13 2023-09-07 富士フイルム株式会社 反射スクリーン、投映像表示システム
CN112987480A (zh) * 2021-03-17 2021-06-18 成都比特王光学材料有限责任公司 一种高亮度微曲面投影屏

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151112A (ja) * 1983-02-17 1984-08-29 Nitto Electric Ind Co Ltd 偏光板
JPH09304759A (ja) * 1996-05-15 1997-11-28 Sharp Corp 液晶表示素子及び投影型カラー液晶表示装置
JPH09318801A (ja) * 1996-05-30 1997-12-12 Sony Corp 平面型レンズとその製造方法
JPH1048754A (ja) * 1996-05-30 1998-02-20 Sony Corp 背面投射型映像表示装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102509A (ja) * 1992-06-17 1994-04-15 Xerox Corp 光カップリング・レンズアレイ付きフルカラー表示装置
TW594115B (en) * 1992-10-09 2004-06-21 Asahi Glass Co Ltd A liquid crystal display device and an illumination device for a direct viewing type display element
JP2624116B2 (ja) * 1993-04-22 1997-06-25 松下電器産業株式会社 液晶表示装置およびそれを用いた投写型表示装置
JP3534804B2 (ja) 1994-01-12 2004-06-07 藤森工業株式会社 光学用シートの製造法
JPH086023A (ja) 1994-04-22 1996-01-12 Matsushita Electric Ind Co Ltd 液晶表示装置および液晶投写型装置
JP3219943B2 (ja) * 1994-09-16 2001-10-15 株式会社東芝 平面直視型表示装置
US5629785A (en) * 1995-05-04 1997-05-13 Motorola, Inc. Polymer dispersed liquid crystal display device with asymmetric optical diffuser
JP3447145B2 (ja) * 1995-06-09 2003-09-16 富士通株式会社 プロジェクター
US6104454A (en) * 1995-11-22 2000-08-15 Hitachi, Ltd Liquid crystal display
JP3473266B2 (ja) 1996-04-18 2003-12-02 住友化学工業株式会社 積層シートおよびこれを用いた捩じれネマチック型液晶表示装置
US6262840B1 (en) * 1996-05-30 2001-07-17 Sony Corporation Plano lens, rear-projection type projector screen employing the same, and rear-projection type video display apparatus
JP4217925B2 (ja) * 1997-10-24 2009-02-04 ソニー株式会社 平面型レンズの製造方法
JP3822361B2 (ja) * 1998-07-10 2006-09-20 株式会社日立製作所 配光制御素子およびこれを備えた表示装置
KR100450542B1 (ko) * 1998-10-29 2004-10-01 가부시키가이샤 히타치세이사쿠쇼 조명 장치 및 이를 이용한 액정 표시 장치
US6239907B1 (en) * 1999-09-03 2001-05-29 3M Innovative Properties Company Rear projection screen using birefringent optical film for asymmetric light scattering
US6374155B1 (en) * 1999-11-24 2002-04-16 Personal Robotics, Inc. Autonomous multi-platform robot system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151112A (ja) * 1983-02-17 1984-08-29 Nitto Electric Ind Co Ltd 偏光板
JPH09304759A (ja) * 1996-05-15 1997-11-28 Sharp Corp 液晶表示素子及び投影型カラー液晶表示装置
JPH09318801A (ja) * 1996-05-30 1997-12-12 Sony Corp 平面型レンズとその製造方法
JPH1048754A (ja) * 1996-05-30 1998-02-20 Sony Corp 背面投射型映像表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1213600A2 (en) * 2000-12-06 2002-06-12 Fuji Photo Film Co., Ltd. Optical diffusion film and process of producing optical diffusion film
EP1213600A3 (en) * 2000-12-06 2002-08-28 Fuji Photo Film Co., Ltd. Optical diffusion film and process of producing optical diffusion film

Also Published As

Publication number Publication date
KR20010053475A (ko) 2001-06-25
US6650472B1 (en) 2003-11-18
JP3822361B2 (ja) 2006-09-20
KR100452662B1 (ko) 2004-10-15
US7173760B2 (en) 2007-02-06
US6943947B2 (en) 2005-09-13
KR100450543B1 (ko) 2004-10-01
US7391568B2 (en) 2008-06-24
US20040057110A1 (en) 2004-03-25
US20040051945A1 (en) 2004-03-18
US20070133090A1 (en) 2007-06-14
US20060017860A1 (en) 2006-01-26
KR20040070183A (ko) 2004-08-06
EP1098209A1 (en) 2001-05-09
US6844968B2 (en) 2005-01-18
JP2000028807A (ja) 2000-01-28

Similar Documents

Publication Publication Date Title
WO2000003273A1 (fr) Ecran filtrant et afficheur ainsi equipe
KR100854223B1 (ko) 광학 시트, 배면투사형 표시 장치 및 액정 표시 장치
US7518662B2 (en) Contrast enhancement for liquid crystal based projection systems
US7408707B2 (en) Multi-region light scattering element
US7030951B2 (en) Apparatus and method for displaying image
US7593079B2 (en) Optical device, light-condensing backlight system, and liquid crystal display
TWI278846B (en) Liquid crystal display element and image display device
JP3447145B2 (ja) プロジェクター
US20200333598A1 (en) Method for producing screen image-displaying laminated glass, screen image-displaying laminated glass, and image display system
JP4249584B2 (ja) 投射型表示装置
US7446848B2 (en) Optical element, condensing backlight system and liquid crystal display
US5526147A (en) Polymer dispersed liquid crystal projector with diffraction gratings along liquid crystal electrodes, a variable diaphragm, and an anamorphic lens
JP2004198650A (ja) 光学補償素子およびその製造方法、液晶表示素子、ならびに液晶表示装置
JP3447132B2 (ja) プロジェクター
JP2884755B2 (ja) 投射型表示装置
JPH05232497A (ja) 液晶パネルおよび液晶表示装置
TW200400378A (en) Projection device using reflective type liquid crystal device
JPH05313147A (ja) 液晶パネルおよびそれを用いた液晶投写型テレビ
JPH11337899A (ja) 液晶プロジェクタ
JP2002131544A (ja) 光学偏光素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999926912

Country of ref document: EP

Ref document number: 09743495

Country of ref document: US

Ref document number: 1020017000410

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999926912

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017000410

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999926912

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017000410

Country of ref document: KR