WO2000011474A1 - Electrochemical affinity assay - Google Patents

Electrochemical affinity assay Download PDF

Info

Publication number
WO2000011474A1
WO2000011474A1 PCT/US1999/019120 US9919120W WO0011474A1 WO 2000011474 A1 WO2000011474 A1 WO 2000011474A1 US 9919120 W US9919120 W US 9919120W WO 0011474 A1 WO0011474 A1 WO 0011474A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
redox
ligand
assay
redox polymer
Prior art date
Application number
PCT/US1999/019120
Other languages
French (fr)
Inventor
Adam Heller
Charles N. Campbell
Original Assignee
Therasense, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Therasense, Inc. filed Critical Therasense, Inc.
Priority to DE69901714T priority Critical patent/DE69901714T2/en
Priority to AU55790/99A priority patent/AU5579099A/en
Priority to EP99942403A priority patent/EP1105736B1/en
Priority to AT99942403T priority patent/ATE218708T1/en
Priority to JP2000566679A priority patent/JP2002523747A/en
Publication of WO2000011474A1 publication Critical patent/WO2000011474A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/002Electrode membranes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/817Enzyme or microbe electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/806Electrical property or magnetic property

Definitions

  • the invention relates to affinity assays for the detection of a biological ligand such as a protein, particularly an antibody, or a nucleic acid.
  • a biological ligand such as a protein, particularly an antibody, or a nucleic acid.
  • the invention includes the efficient detection of bifunctional biological ligands, such an antibody in whole blood and in fluids of animals, plants and other organisms, or of DNA labeled with two or more biological ligands.
  • the invention relates to an affinity assay in which the binding of such a ligand to a ligand receptor results in an electrochemical signal, such as a current or a potential.
  • Affinity assay systems are commonly used in clinical and non-clinical situations to detect, monitor, or confirm the identity, amount, or presence of a particular ligand.
  • Examples include immunoassays for the detection of an antibody or antigen, such as enzyme linked immunoassay (ELIS A) or radioimmunoassay (RIA).
  • enzyme linked immunoassay ELIS A
  • RIA radioimmunoassay
  • affinity assays confer specificity and sensitivity to the analysis of a particular ligand in a complex sample, such as blood or other body fluid.
  • affinity assays employing conventional labeling and detection techniques typically require washing and/or separation steps.
  • many affinity assay systems require detection in a machine such as a spectrophotometer or fluorimeter. These are not practical when detection of the ligand in whole blood and other strongly light absorbing or scattering biological fluids is desired.
  • Some conventional affinity assays, not requiring such equipment, rely on visible color changes for detection of ligand, which is also not practical in an opaque or colored fluid such as blood.
  • the commonly used detection compounds, of conventional assays, such as hydrogen peroxide are rapidly eliminated by protective enzymes found in blood and other tissues, such as catalase.
  • An affinity assay providing sensitive, efficient, and rapid detection of a ligand in a complex sample medium, and particularly for detection in whole blood is needed.
  • a preferred assay would not require washing or separation steps, sample removal to machinery for analysis, and most preferably, would utilize only materials contained or generated in its probe, materials available in the biological fluids analyzed or, if added, not rapidly decomposed by enzymes in biological fluids.
  • An affinity assay satisfying these criteria would permit the production of affinity assay systems to detect ligands in whole blood. Such an affinity assay system is described in the instant invention.
  • the affinity assay system of the present invention is based on the electrical connection of the third member, upon its binding to the second member, when the second member is located on or in the redox polymer film on the detecting electrode.
  • the connection of the detection marker to the electrode is via the conducting redox polymer.
  • the affinity assay system of the invention is capable of detecting and/or quantitating a variety of specific ligands, including proteins and nucleic acids, without washing or separation steps.
  • the affinity assay system of the invention operates in whole blood and in other unseparated biological fluids, such as those of tissues and living cell cultures, without added toxic or unstable agents.
  • the affinity assay system of the invention includes an electrode coated with a conducting redox polymer, preferably a redox hydrogel.
  • the redox polymer has multiple fast redox centers.
  • the system has at least three members.
  • the first and second members and also the second and third members are capable of conjugating with each other, and therefore capable of binding with each other.
  • the first member of the ligand- ligand receptor pair is immobilized within the redox polymer either through an affinity reaction or by covalent bonding.
  • the second member of the ligand-ligand receptor pair binds to the first.
  • the third member is labeled with an amplifying detection marker, such as a peroxidase.
  • the enzyme that catalyzes the generation of a detection compound is immobilized in the redox polymer, but its reaction centers are preferably not oxidized by oxidized redox centers of the polymer and are not reduced by reduced redox centers of the polymer when the electrode is poised at its operating potential.
  • the affinity assay system includes an electrode coated with an electron conducting redox polymer in which a strongly binding member of a bioconjugating couple, such as ss-DNA or ss-peptide DNA, avidin, or streptoavidin and a substrate generating enzyme, such as hydrogen peroxide- generating choline oxidase, are immobilized, ("ss" means single-stranded.)
  • a strongly binding member of a bioconjugating couple such as ss-DNA or ss-peptide DNA, avidin, or streptoavidin
  • a substrate generating enzyme such as hydrogen peroxide- generating choline oxidase
  • the third member is labeled with the detection marker horseradish peroxidase or soybean peroxidase. Binding of the labeled third member to the electrode via the second member results in electrical contact between the peroxidase and the redox polymer, causing the electrical connection of the reaction centers of the peroxidase label to the electrode through the conducting redox polymer. Such connection converts the film to a catalyst for the electroreduction of the hydrogen peroxide produced within the film by the immobilized substrate-generating enzyme.
  • Figures 1A and IB are schematic diagrams showing the transduction of the concentration of a second member of a ligand-ligand receptor pair, IgG, to a cathodic current.
  • Figure 2 is a schematic diagram showing electron transport on binding of the enzyme labeled third member in an immunoassay of the invention.
  • Figure 3 is a diagram showing the structure of the redox polymer PAH which forms an electron-conducting hydrogel upon crosslinking.
  • Figure 4 is a graph showing the dependence of the current density on the concentration of the second member of the ligand-ligand receptor binding pair, IgG.
  • Figure 5 is a graph showing the dependence of the current density on the ratio of the third member, HRP-labeled anti-IgG to the second member, IgG at a fixed concentration of IgG (86 ng/ml).
  • Figure 6 is a graph showing the dependence of the current density on the loading of the first member, biotin-labeled anti-rabbit IgG on the redox-polymer film on the electrode at a fixed concentration of IgG (86 ng/ml).
  • Figure 7 is a graph showing the dependence of the current density on the concentration of choline, the non-toxic and stable precursor of the detection compound, H 2 O 2 .
  • Redox Hydrogel The hydrated form of a crosslinked redox polymer.
  • Substrate generating enzyme An enzyme generating or producing the substrate of a detection marker, generally immobilized in the redox hydrogel.
  • the detection marker is usually an enzyme and is covalently bound to the third member.
  • An example of substrate generated by the enzyme is H 2 O 2 .
  • H 2 O 2 is generated, for example, by the substrate generating enzyme choline oxidase, which catalyzes the reaction of O 2 and choline.
  • Substrate generating enzymes that do not exchange electrons with the redox polymer at the potential where the electrode is poised are preferred. Electron exchange means transfer of electrons from the enzyme to the redox hydrogel or from the redox hydrogel to the enzyme.
  • Binding Agent A macromolecular binding agent of a biomolecule.
  • binding agents include avidin; streptavidin; single stranded (ss) oligonucleotides; single stranded DNA; and peptide oligonucleotides or peptide DNA.
  • the binding agent is immobilized in or on the redox hydrogel.
  • First member of the ligand-ligand receptor pair A molecule binding to the binding agent and to the second member of the pair; or a molecule bound to the redox hydrogel and binding to the second member.
  • the first and third members are not identical.
  • An example of a first member is a biotinylated antigen.
  • Second member of the ligand-ligand receptor pair Binds to the first and third members.
  • An example of a second member is an antibody or an F(ab'), fragment of an antibody against both the antigen of the first member and the antigen of the third member.
  • the electrochemical affinity assay of this invention is usually
  • Third member labeled with the Detection Marker Binds to the second member and is labeled with a detection marker, which is preferably a catalyst, such as an enzyme, and most preferably an oxidoreductase.
  • a detection marker which is preferably a catalyst, such as an enzyme, and most preferably an oxidoreductase.
  • An example of a third member is a peroxidase-labeled antigen.
  • a catalyst usually an enzyme and preferably an oxidoreductase, labeling the third member.
  • the detection marker can transfer electrons to or accept electrons from the redox hydrogel on the electrode. In these processes the detection marker is electrooxidized or electroreduced. When electrooxidized, the detection marker can oxidize a detection compound. When electroreduced, it can reduce a detection compound.
  • Detection Compound A molecule or ion, or a precursor of a molecule or ion, the electrooxidation or the electroreduction of which produces the detected electrochemical signal, usually a current or potential.
  • the detection compound is electrooxidized or electroreduced in the redox polymer film.
  • An example of an electroreduced detection compound is hydrogen peroxide.
  • an affinity assay of the invention includes an electrode 10 coated with a redox polymer 12, preferably a redox hydrogel, in which the first member 14 is immobilized via a binding agent 11 such as avidin.
  • the binding agent 11 is preferably covalently bound to the redox polymer 12.
  • a second member 16 of the ligand-ligand receptor pair is conjugated with and thereby bound to the first member 14; then the second member 16 is conjugated with and bound to the third member 20.
  • the third member 20 is labeled with a detection marker 18.
  • the second member is an antibody. It can, however, also be an antigen, if the first and third members are non-identical antibodies to the different regions of the second member antigen.
  • the redox hydrogel 12 further includes at least one substrate-generating enzyme 22, meaning an enzyme generating the detection compound.
  • reaction centers of the substrate generating enzyme 22 not be reduced by the reduced redox centers of the redox polymer, nor oxidized by the oxidized redox centers of the redox polymer, when the redox polymer film 12 is in contact with the electrode 10 and the electrode is poised at its operating potential.
  • the detection compound is, preferably, the substrate of the detection marker 18, which is preferably an oxidoreductase.
  • the increase in current is caused by the catalysis of the electrochemical reduction or oxidation reaction of the detection compound in the combined presence of the detection marker 18 and the redox hydrogel 12 on the electrode.
  • the increase in current correlates with the binding of the second member 16 of the ligand pair, and thereby with the amount of the second member 16 in a sample.
  • This preferred assay system does not require separation or washing steps, permitting use of the assay system in situ in biological fluids.
  • the assay can be carried out in colored and light-scattering media like blood and in media where externally added detection compounds, like hydrogen peroxide, rapidly decompose.
  • FIG. 2 shows schematically the flow of electrons in an affinity assay system of the invention.
  • Choline oxidase a substrate generating enzyme 22, present in the redox polymer 12, generates hydrogen peroxide in the redox hydrogel 12.
  • Binding of a peroxidase-labeled third member 20 to the immobilized second member 16 of a ligand-ligand receptor pair enables peroxidase-catalyzed electroreduction of hydrogen peroxide, a reaction where electrons flow from the electrode 10 to the redox hydrogel 12; from the redox hydrogel 12 to the peroxidase; and from the peroxidase to hydrogen peroxide, the hydrogen peroxide being electroreduced to water.
  • the working electrode 10 is typically a thin film of conductive material disposed on an insulating substrate.
  • Suitable materials for the substrate include, for example, insulating silicon, fused silicon dioxide, silicate glass, alumina, aluminosilicate ceramic, an epoxy, an epoxy composite such as glass fiber reinforced epoxy, polyester, polyimide, polyamide, or polycarbonate.
  • a variety of conductive materials can be used to form the working electrode
  • Suitable materials include, for example, carbon, conductive polymers, and metals.
  • useful metals include gold, platinum, palladium, tantalum, tungsten, and their alloys, as well as metallic compounds like titanium nitride, and ruthenium dioxide.
  • the preferred conductors do not corrode rapidly in aerated aqueous 0.1 M NaCl near neutral pH when a potential of 0.2 volts positive of the potential of the saturated calomel electrode (SCE) is applied.
  • the corrosion current density is preferably less than 10 "4 A cm “2 , and more preferably less than 10 "7 A cm “2 .
  • Thin films of these materials can be formed by a variety of methods including, for example, sputtering, reactive sputtering, physical vapor deposition, plasma deposition, chemical vapor deposition, printing, and other coating methods.
  • Discrete conductive elements may be deposited to form each of the working electrodes, for example, using a patterned mask.
  • a continuous conductive film may be applied to the substrate and then the working electrodes can be patterned from the film.
  • Patterning techniques for thin films of metal and other materials are well known in the semiconductor art and include photolithographic techniques.
  • An exemplary technique includes depositing the thin film of conductive material and then depositing a layer of a photoresist over the thin film.
  • Typical photoresists are chemicals, often organic compounds, that are altered by exposure to light of a particular wavelength or range of wavelengths. Exposure to light makes the photoresist either more or less susceptible to removal by chemical agents. After the layer of photoresist is applied, the photoresist is exposed to light, or other electromagnetic radiation, through a mask. Alternatively, the photoresist is patterned under a beam of charged particles, such as electrons. The mask may be a positive or negative mask depending on the nature of the photoresist.
  • the mask includes the desired pattern of working electrodes, which are the electrodes on which the electrocatalytic reactions take place when the detection marker and the redox hydrogel are both present and immobilized on the electrode.
  • working electrodes are the electrodes on which the electrocatalytic reactions take place when the detection marker and the redox hydrogel are both present and immobilized on the electrode.
  • the working electrode 10 can have a variety of shapes, including, for example, square, rectangular, circular, ovoid, and the like.
  • the working electrode may have dimension (e.g., length, width, or diameter) which can be 50 ⁇ m or less.
  • the working electrodes are three dimensional structures, and can have a surface area of 1 x 10 "4 cm 2 or less. Multiple electrodes may be used in an array.
  • Counter and reference electrodes may be present in the electrolytic solution off the surface of the substrate containing the working electrode.
  • the counter and reference electrodes may be formed on the substrate containing the working electrode, for example, located on the same or a different surface as the working electrode. It is not necessary for each working electrode to have a dedicated counter electrode or reference electrode.
  • the same counter or reference electrode can serve multiple, or even all, electrodes of an array.
  • a single electrode, such as an Ag/AgCl electrode can serve as both counter and reference electrode.
  • the reference electrode is one that does not leach ions and maintains a constant potential.
  • the reference electrode can be, for example, a silver wire or structure, in contact with the electrolytic solution. The surface of the silver wire or structure can be partially oxidized to produce AgCl chemically, or electrochemically.
  • the electrode is coated with a thin film of a redox polymer 12.
  • the redox polymer 12 is deposited on the electrode 10. When multiple working electrodes are used, redox polymer 12 is not deposited on the substrate between the electrodes 10, thus maintaining the electrical isolation of the working electrodes of each other.
  • Redox hydrogels are formed of the crosslinked redox polymers upon their immersion in aqueous solutions. The redox hydrogels provide for transport of electrons between the electrode and the detection marker.
  • One type of redox polymer is a redox hydrogel which typically contains at least 10% of water. Water soluble molecules usually permeate through the redox hydrogel rapidly. Electron conduction in the redox hydrogel is believed to occur through electron exchange between polymer segments that, being tethered, do not leach out but are nevertheless mobile within a limited, small radius.
  • the redox polymer includes electroreducible and electrooxidizable functions, termed redox centers. These have redox potentials that are a few hundred mV above or below the redox potential of the standard calomel electrode (SCE).
  • SCE standard calomel electrode
  • the redox centers of the potentials of the polymers are not more reducing than about -400 mV and not more oxidizing than about 800 mV versus SCE, and most preferably are not more reducing than about -150 mV and not more oxidizing than about +400 mV versus SCE at neutral pH.
  • the most preferred redox polymers have osmium, ruthenium, or cobalt redox centers and a redox potential ranging from about -150 mV to about +400 mV versus SCE.
  • redox polymers suitable for use in the invention have bonds or charges that prevent, or substantially reduce, the diffusional outflux or loss of the redox species during the period of time in which the sample is being analyzed.
  • the bond between the redox species and the polymer may be covalent, coordinative, or ionic.
  • Useful redox polymers and methods for producing them are described in U.S. Patent Nos. 5,264,104; 5,356,786; 5,262,035; 5,320,725; and 5,665,222, incorporated herein by reference.
  • the preferred redox species are transition metal complexes.
  • the more preferred transition metal complexes are osmium, ruthenium, iron, and cobalt compounds or complexes. The most preferred are osmium and ruthenium complexes.
  • One type redox polymer contains a redox species covalently bound to a polymer.
  • An example of such a polymer is poly(vinylferrocene).
  • Another type of redox polymer contains an electrostatically bound redox species.
  • this type of redox polymer comprises a charged polymer coupled to an oppositely charged redox species.
  • Examples of this type of redox polymer include a negatively charged polymer such as Nafion ® (DuPont) in which a positively charged redox species, containing one or more of osmium or ruthenium polypyridyl cations is distributed.
  • a polymer comprising positively charged functions, such as quaternized poly(4-vinyl pyridine) or poly(l -vinyl imidazole), and negatively charged redox species such as ferricyanide and ferrocyanide.
  • the redox polymer may consist of a highly charged redox species, that itself may be polymeric and have multiple redox centers and an oppositely charged polymer, the redox polymer being bound electrostatically within.
  • suitable redox polymers include a redox species coordinatively bound to a polymer.
  • the redox species may be formed by complexing of osmium, ruthenium or cobalt ions with 2, 2'- bipyridyl and also with poly(l -vinyl imidazole) or poly(4-vinyl pyridine) or with a copolymer of either of these.
  • the preferred redox species are complexes of transition metals, most preferably complexes of osmium, ruthenium, or cobalt.
  • the complexes comprise one or more heterocyclic ligands, each ligand having two or more rings, each ring with one or more nitrogen atoms, such as 2,2'-bipyridine, 1,10-phenanthroline, 2,2',2"-terpyridine, or derivatives thereof.
  • More preferred complexes include osmium cations complexed with two ligands, each ligand containing 2,2'-bipyridine, 1,10-phenanthroline, or derivatives thereof, the two ligands not necessarily being the same.
  • the coordination sites of the metal ion are nitrogen-occupied, and the number of ligands ranges from 1 to 3. In the most preferred complexes, five of the coordination sites are nitrogen-occupied, and the number of ligands ranges from 2 to 3.
  • the preferred redox species exchange electrons rapidly with each other, in a process known as self-exchange and also with the working electrode, so that the complexes can be rapidly electrooxidized and electroreduced. While they can be electrostatically held in the redox polymer, the preferred redox species are coordinatively or covalently bound to the polymer.
  • Those of the preferred polymers that bind the ions of the metal ion complex coordinatively have nitrogen-containing heterocyclic rings, such as pyridine, imidazole, or derivatives thereof. These bind, as ligands, to the cations of the redox species.
  • Preferred polymers for complexation with redox species include polymers and copolymers of poly(l -vinyl imidazole) (referred to as "PVI”), poly(4-vinyl pyridine) (referred to as “PVP”), and pyridinium-modified poly(acrylic acid).
  • PVI poly(l -vinyl imidazole)
  • PVP poly(4-vinyl pyridine)
  • pyridinium-modified poly(acrylic acid) pyridinium-modified poly(acrylic acid).
  • Suitable copolymer substituents of poly(l- vinyl imidazole) include acrylonitrile, acrylamide, acrylhydrazide, and substituted or quaternized N- vinyl imidazole.
  • the osmium complexes coordinatively bind with the imidazole and pyridine groups of the polymer.
  • the ratio of osmium complexes to imidazole and/or pyridine groups ranges from 1 :10 to 1 : 1 , preferably from 1 :2 to 1:1, and more preferably from 3 :4 to 1:1. Also, the preferred ratio of the number of complexed transition metal atoms and polymerized vinyl functions ranges from about 1:2 to about 1:30, and more preferably from about 1:5 to about 1:20.
  • redox species examples include quinones and species that in their oxidized state have quinoid structures, such as Nile blue and indophenol.
  • the preferred quinones and quinoids do not have hydrogen atoms in their six-membered rings.
  • the redox polymer 12 also preferably includes a binding agent 11 for binding the first member 14 of the ligand-ligand receptor pair.
  • the binding agent 11 is avidin or streptavidin. It binds to the biotinylated first member 14 thereby immobilizing the first member 14 on the electrode.
  • the binding agent 11 is preferably covalently bound to the polymer, for example by carbodiimide coupling of carboxylate functions of avidin or streptavidin, to hydrazide functions on the polymer.
  • binding agent 11 is an oligonucleotide or DNA
  • carbodiimide and similar coupling agents activate preferably a terminal phosphate function of these molecules enabling their covalent binding to hydrazide functions of the polymers like PAH of Figure 3.
  • the first member 14 can be bound directly, preferably covalently, to the redox polymer by a method such as carbodiimide coupling.
  • the polymer is a copolymer of PVI or PVP with polyacrylamide (it is referred to as "PAA") in which Os(bpy) 2 Cl +/2+ is coupled to the imidazole or pyridine functions respectively.
  • PAA polyacrylamide
  • a portion of the amide functions is converted to hydrazide functions by reaction with hydrazine, according to known processes.
  • at least 5% of the amide groups are converted, preferably, at least 10% of the groups are converted, and more preferably, at least 20% of the groups are converted.
  • the ratio of hydrazide-modified amide groups to unmodified amide groups of the resulting polymer is typically 1 :1 to 1 :20, and preferably 1 :2 to 1:10.
  • the ratio of PVI or PVP to PAA is typically 5:1 to 1 :15, preferably, 2:1 to 1 :12, and, more preferably, 1:1 to 1 :10.
  • PAH The PAA copolymer in which part of the amides is converted to hydrazides.
  • the polymer is a modified poly(acrylic acid).
  • a portion of the carboxylic acid functions of the poly(acrylic acid) are converted to pyridine or imidazole carrying functions.
  • These can be amides, such as those formed with 4-(aminoalkyl)-pyridine, particularly 4-(2-aminoethyl)-pyridine, that can be covalently attached through carbodiimide coupling.
  • the pyridine and imidazole groups can then be used for coordinative binding with the osmium complexes.
  • at least 2%, preferably, at least 5%, and, more preferably, at least 10%) are converted to functions with pyridine or imidazole rings.
  • At least a portion of the remaining carboxylic acid groups are converted to hydrazide groups for crosslinking redox polymer and for covalent attachment of the binding agent or of the first member.
  • at least 2%, preferably, at least 5%, and, more preferably, at least 10%, of the residual carboxylic acid groups are converted to hydrazide groups.
  • a variety of methods may be used to immobilize a redox polymer on an electrode surface.
  • One method is adsorptive immobilization. This method is particularly useful for redox polymers with relatively high molecular weights, for example, greater than about 10 4 daltons, preferably greater than 10 5 daltons, and most preferably greater than 10 6 daltons.
  • the molecular weight of a polymer may be increased, for example, by cross-linking with a di- or polyfunctional cross-linking agent, such as those listed in the Pierce catalog, 1994, pages T155-T167.
  • Examples of functions of cross-linking agents useful in the invention include epoxy, aldehyde, N-hydroxysuccinimide, halogen, imidate, thiol, and quinone functions.
  • crosslinkers examples include poly(ethylene glycol) diglycidyl ether and cyanuric chloride, poly(ethylene glycol) diglycidyl ether (PEGDGE) of 400 or 600 daltons being most preferred. Other cross-linking agents may also be used.
  • the redox polymer is immobilized by covalent bonding to a functionalized electrode surface.
  • Carbon surfaces can be modified for covalent attachment of a redox polymer, for example, by electroreduction of a diazonium salt or by oxidation with hydrogen peroxide in the presence of divalent iron ions at a pH of less than 6.
  • reduction of a diazonium salt formed upon diazotization of p-aminobenzoic acid modifies a carbon surface with phenylcarboxylic acid groups.
  • These groups can then be activated by a carbodiimide, such as l-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride.
  • the activated groups are then bound with a hydrazide or amine- functionalized redox couple, such as, for example, PAH, the polymer of Figure 3.
  • the preferred redox hydrogel 12 contains also additional compounds that are useful in the affinity assay of the invention.
  • it contains the substrate generating enzyme 22.
  • This enzyme catalyzes the generation of the detection compound, which is the substrate of the detection marker 18.
  • the enzyme generates the detection compound by reacting stable and preferably non-toxic reagents.
  • the need for adding unstable or toxic agents to the analyzed fluid is obviated. This enables the affinity assay of whole blood, for example, where the detection compound, meaning the or substrate of the detection marker of the third member, like hydrogen peroxide, would rapidly decompose.
  • a substrate generating enzyme that may be immobilized in the redox polymer is choline oxidase, which generates hydrogen peroxide in situ within the redox polymer film on the electrode. Hydrogen peroxide is catalytically electroreduced when the peroxidase detection marker of the third member is in contact with the redox hydrogel. While in absence of either the peroxidase detection marker or the redox polymer, the film is not electrocatalytic for H 2 O 2 reduction in the applied potential range between 0.1 V (SCE) and + 0.4 V (SCE), the film is electrocatalytic through this range when both the peroxidase and the redox polymer are co-immobilized.
  • SCE 0.1 V
  • SCE + 0.4 V
  • choline oxidase do not rapidly exchange electrons with those of the redox hydrogel, so the presence of the enzyme in the hydrogel and the presence of choline do not change the signal, usually the current or potential.
  • Choline oxidase catalyzes the reaction of molecular oxygen with choline, whereby hydrogen peroxide and betaine aldehyde are formed.
  • a ligand-ligand receptor pair consisting of the first member and the second member, includes any such pair known to bind with specificity.
  • Such ligand-ligand receptor pairs are well known and include the following: antigen-antibody; peptide, e.g. growth factor-receptor; nucleic acid-nucleic acid binding protein; complementary pairs of nucleic acids; and of peptide nucleic acids and nucleic acids.
  • antigen-antibody peptide.g. growth factor-receptor
  • nucleic acid-nucleic acid binding protein complementary pairs of nucleic acids
  • complementary pairs of nucleic acids and of peptide nucleic acids and nucleic acids.
  • an antibody it is possible to use a fragment, such as an F(ab') 2 fragment.
  • an oligonucleotide of less than about 200 nucleotides is preferred.
  • the first member 14 of the ligand-ligand receptor pair is immobilized on the electrode 10, by either covalent attachment to the redox polymer 12, and more preferably , through non-covalent affinity binding with binding agent 11.
  • the second member 16 of the ligand-ligand receptor pair binds the first member 14. Suitable reaction conditions for such binding are known in the art and vary with the nature of the particular pair used.
  • the third member 20 and the second member 16 are also a ligand receptor- ligand pair. Again, any such pair known to bind with specificity can constitute the pair.
  • Useful detection markers are known, and include catalysts which accelerate the oxidation or reduction, preferably the electrooxidation or electroreduction by the electrooxidized or electroreduced redox polymer, of the detection compound.
  • the acceleration of the electrochemical reaction results in an increase in the current at the electrode, the charge flowing usually via the redox polymer and the catalyst.
  • the preferred affinity assays of the invention are rapid, specific, efficient, and operate with a high signal to noise ratio, preferably greater than 10.
  • the scheme of an exemplary "sandwich" type immunoassay is shown in Figures 1 A and IB and is demonstrated below in Example 1. It operates with a signal to noise ratio of about 15.
  • the preferred affinity assay of the invention can be performed either with no additive to the biological fluid analyzed or with adding only a non-toxic biochemical such as choline.
  • the assay can also be performed in an opaque, colored or light- scattering medium, such as blood; and in the preferred mode it requires no separation or washing steps.
  • the electrode 10 is coated with the crosslinked redox polymer 12 containing the binding agent 11 and the substrate generating enzyme 22, both covalently bound within the redox hydrogel 12.
  • the first member 14 is then bound to the redox polymer 12. This completes the preparation of the electrode for the assay.
  • the electrode is then immersed in the fluid to be assayed for the presence and/or amount and/or concentration of the second member. It is preferred that during this immersion the fluid be moving relative to the electrode, meaning that either the electrode be moving, for example rotating, in the fluid, or that the fluid be flowing when the electrode is stationary.
  • the electrode After, or simultaneously with, binding of the second member 16 to the electrode via the affinity reaction with the first member 14, the electrode is exposed to the third member 20.
  • the electrode is poised at a potential where the electrocatalytic reduction or oxidation of the detection compound proceeds, this electrode reaction being catalyzed when the detection marker contacts the redox polymer 12, such contact being made upon the binding of the third member 20 to the second member
  • the detection marker of the third member A variety of catalysts can be used as the detection marker 18.
  • Exemplary catalysts are enzymes that catalyze an electrochemical reaction of a detection compound.
  • a variety of enzymes are useful including, for example, peroxidases for use with hydrogen peroxide, glucose oxidase and glucose dehydrogenase for use with glucose, and lactate oxidase and lactate dehydrogenase for use with lactate. While in the case of hydrogen peroxide the detection compound is catalytically electroreduced and is internally generated in the film, in the case of glucose or lactate, which are abundant in biological fluids like blood, the detection marker is externally supplied.
  • these detection compounds are catalytically electrooxidized when both the glucose oxidase detection marker or the lactate oxidase detection marker is immobilized in or on the redox polymer film and the electrode is poised at a potential between -0.3 V (SCE) and +0.7 V (SCE), preferably - 0.2 V (SCE) and + 0.5 V (SCE) and most preferably - 0.1 V (SCE) and + 0.3 V (SCE).
  • thermostable enzymes enzyme capable of operation for at least 1 hour at 37° C
  • Soybean peroxidase is one example of a thermostable enzyme.
  • the detection compound is a substrate for the detection marker or a precursor of the substrate of the detection member.
  • hydrogen peroxide is a detection compound which is a substrate for the detection marker, peroxidose.
  • a non-competitive, sandwich type ELISA was started by immobilizing the redox polymer PAH onto a glassy carbon electrode.
  • PAH was made as described in de Lumley-Woodyear et al, 1995, Anal. Chem. 67:1332-1338.
  • the structure of the polymer is shown in Figure 3.
  • Standard coatings were formed by mixing 2.5 parts of polymer (5 mg/ml in water); 1.5 parts polyethylene glycol 400 diglycidyl ether (PEGDGE) (0.5 mg/ml in water)(technical grade, Polysciences, #08210); 1.0 parts choline oxidase (20 mg/ml in 0.1M NaHCO 3 ) (Sigma #C-5896); and 4 parts avidin (5 mg/ml in 0.1 M NaHCO 3 ) (Sigma #A-9390). A volume of 3 microliters of this solution was applied to the 3 mm diameter glassy carbon electrode. The films were permitted to cure and crosslink for 48 hours in a humid atmosphere and then allowed to dry overnight in air prior to testing.
  • PEGDGE polyethylene glycol 400 diglycidyl ether
  • the electrodes containing avidin (binding agent) and choline oxidase (substrate generating enzyme) immobilized within their redox polymer coating, were washed in Dulbecco's PBS for 15 minutes to rehydrate the polymer hydrogel and to remove any non-covalently bound avidin or choline oxidase.
  • PBS the pH 7.4 phosphate buffer solution, was made with the sodium (0.008 M) and potassium (0.002 M) phosphate and with sodium (0.14 M) and potassium (0.01 M) chlorides.
  • the rehydrated electrodes were then soaked in 5 ml PBS containing 9 micrograms of biotin-labeled anti-rabbit IgG (first member of the ligand-ligand receptor pair) for 30 minutes, followed by washing 10 minutes in PBS to remove any unbound biotin- anti-IgG. This completed the preparation of the electrode for the assay of rabbit
  • the completed electrodes were then placed in a test cell containing 17.5 ml of 20 mM choline in PBS and a potential of -70 mV vs SCE was applied.
  • the electrodes were rotated at 1000 rpm.
  • a sample amount of IgG (second member of the ligand-ligand receptor pair) was added, and the mixture permitted to incubate for
  • Figure 4 shows the dependence of the hydrogen peroxide electroreduction current on the concentration of the ligand, rabbit IgG.
  • the current increased linearly, with the rabbit IgG concentration over the 1-1000 ng/ml range.
  • a linear regression analysis of the data yielded an R2 value of 0.89 and a negative current at the intercept where the rabbit IgG concentration was nil, suggesting that some rabbit IgG was lost from the solution through adsorption on the untreated wall of the Pyrex glass test cell.
  • the residual current density following deletion of any of the essential components, was equal to or smaller than the current density when the analyte itself (rabbit IgG) was absent.
  • the current density was only 0.03 ⁇ A/cm 2 , showing, as expected, that choline oxidase was so poorly "wired", if at all, that electroreduction of choline did not interfere with the assay.
  • the avidin-containing redox hydrogel was not activated with biotin-labeled anti-rabbit IgG, the current density was 0.17 ⁇ A/cm2, about one fifth of that observed in a typical assay.
  • Varying the ionic strength of the test buffer influenced the level of both the signal and the noise. Both signal and noise decreased rapidly as salt content increased, with the noise level dropping to essentially zero for salt concentrations of 0.2 M and above.
  • the current plateau was reached in 15 minutes, and shortening of the incubation period to 10 minutes resulted in only a 10% reduction in current.
  • the current did not level off in 30 minutes, but increased linearly with time, becoming easily measurable in about 5 minutes.
  • the platform of the assay is a redox hydrogel that conducts electrons, in which avidin and choline oxidase are co-immobilized. This hydrogel is permeable to large biological molecules, including antibodies and enzyme labeled antibodies.
  • the choline oxidase in the gel catalyzes the reaction of choline and oxygen, whereby betaine aldehyde and hydrogen peroxide are produced within the sensing layer.
  • Hydrogen peroxide is electroreduced in this layer to water at potentials negative of 400 mV (SCE) preferably between -70 mV (SCE) +150 mV (SCE), after components of the electrocatalyst are assembled in the sandwich of the immunoassay.
  • SCE 400 mV
  • SCE -70 mV
  • SCE +150 mV
  • the probe is activated with the desired biotinylated immunoreagent. If the assayed fluid contains the complementary immunoreagent and if a peroxidase-tagged probe of the immunoreagent is added, a cathodic current flows as a result of the catalyzed electroreduction of the H 2 O 2 .
  • the detection limit of the assay is about 4 ng/ml for the IgG/anti-IgG system, and the assay of a sample is completed within about 20 minutes or less.

Abstract

An electrochemical affinity assay system for detection of ligand-ligand receptor binding. The first member of a ligand-ligand receptor pair is immobilized in a redox polymer. The second member is bound then to the first. The third member is labeled with the detection marker horseradish peroxidase or soybean peroxidase. Binding of the labeled third member to the electrode via the second member results in electrical contact between the peroxidase and the redox polymer, causing the electrical connection of the reaction centers of the peroxidase label to the electrode through the conducting redox polymer. Such connection converts the film to a catalyst for the electroreduction of the hydrogen peroxide produced within the film by the immobilized substrate-generating enzyme.

Description

ELECTROCHEMICAL AFFINITY ASSAY
Field of the Invention
The invention relates to affinity assays for the detection of a biological ligand such as a protein, particularly an antibody, or a nucleic acid. In particular, the invention includes the efficient detection of bifunctional biological ligands, such an antibody in whole blood and in fluids of animals, plants and other organisms, or of DNA labeled with two or more biological ligands. More particularly, the invention relates to an affinity assay in which the binding of such a ligand to a ligand receptor results in an electrochemical signal, such as a current or a potential.
Background of the Invention Affinity assay systems are commonly used in clinical and non-clinical situations to detect, monitor, or confirm the identity, amount, or presence of a particular ligand. Examples include immunoassays for the detection of an antibody or antigen, such as enzyme linked immunoassay (ELIS A) or radioimmunoassay (RIA). Such affinity assays confer specificity and sensitivity to the analysis of a particular ligand in a complex sample, such as blood or other body fluid.
Conventional affinity assays employing conventional labeling and detection techniques typically require washing and/or separation steps. In addition, many affinity assay systems require detection in a machine such as a spectrophotometer or fluorimeter. These are not practical when detection of the ligand in whole blood and other strongly light absorbing or scattering biological fluids is desired. Some conventional affinity assays, not requiring such equipment, rely on visible color changes for detection of ligand, which is also not practical in an opaque or colored fluid such as blood. Furthermore, the commonly used detection compounds, of conventional assays, such as hydrogen peroxide, are rapidly eliminated by protective enzymes found in blood and other tissues, such as catalase.
An affinity assay providing sensitive, efficient, and rapid detection of a ligand in a complex sample medium, and particularly for detection in whole blood is needed. A preferred assay would not require washing or separation steps, sample removal to machinery for analysis, and most preferably, would utilize only materials contained or generated in its probe, materials available in the biological fluids analyzed or, if added, not rapidly decomposed by enzymes in biological fluids. An affinity assay satisfying these criteria would permit the production of affinity assay systems to detect ligands in whole blood. Such an affinity assay system is described in the instant invention.
Summary of the Invention
The affinity assay system of the present invention is based on the electrical connection of the third member, upon its binding to the second member, when the second member is located on or in the redox polymer film on the detecting electrode. The connection of the detection marker to the electrode is via the conducting redox polymer. The affinity assay system of the invention is capable of detecting and/or quantitating a variety of specific ligands, including proteins and nucleic acids, without washing or separation steps. The affinity assay system of the invention operates in whole blood and in other unseparated biological fluids, such as those of tissues and living cell cultures, without added toxic or unstable agents.
The affinity assay system of the invention includes an electrode coated with a conducting redox polymer, preferably a redox hydrogel. The redox polymer has multiple fast redox centers. The system has at least three members. The first and second members and also the second and third members are capable of conjugating with each other, and therefore capable of binding with each other. The first member of the ligand- ligand receptor pair is immobilized within the redox polymer either through an affinity reaction or by covalent bonding. The second member of the ligand-ligand receptor pair binds to the first. The third member is labeled with an amplifying detection marker, such as a peroxidase. Generation of the detection compound, the substrate of the detection maker, is catalyzed by another enzyme, such as choline oxidase. The enzyme that catalyzes the generation of a detection compound is immobilized in the redox polymer, but its reaction centers are preferably not oxidized by oxidized redox centers of the polymer and are not reduced by reduced redox centers of the polymer when the electrode is poised at its operating potential. In a preferred embodiment, the affinity assay system includes an electrode coated with an electron conducting redox polymer in which a strongly binding member of a bioconjugating couple, such as ss-DNA or ss-peptide DNA, avidin, or streptoavidin and a substrate generating enzyme, such as hydrogen peroxide- generating choline oxidase, are immobilized, ("ss" means single-stranded.) The first member of a ligand-ligand receptor pair is biotinylated or labeled with DNA or peptide DNA, and bound to the redox polymer via DNA hybridization or avidin- biotin coupling. The second member is bound then to the first. The third member is labeled with the detection marker horseradish peroxidase or soybean peroxidase. Binding of the labeled third member to the electrode via the second member results in electrical contact between the peroxidase and the redox polymer, causing the electrical connection of the reaction centers of the peroxidase label to the electrode through the conducting redox polymer. Such connection converts the film to a catalyst for the electroreduction of the hydrogen peroxide produced within the film by the immobilized substrate-generating enzyme.
Brief Description of the Figures
Figures 1A and IB are schematic diagrams showing the transduction of the concentration of a second member of a ligand-ligand receptor pair, IgG, to a cathodic current.
Figure 2 is a schematic diagram showing electron transport on binding of the enzyme labeled third member in an immunoassay of the invention.
Figure 3 is a diagram showing the structure of the redox polymer PAH which forms an electron-conducting hydrogel upon crosslinking. Figure 4 is a graph showing the dependence of the current density on the concentration of the second member of the ligand-ligand receptor binding pair, IgG.
Figure 5 is a graph showing the dependence of the current density on the ratio of the third member, HRP-labeled anti-IgG to the second member, IgG at a fixed concentration of IgG (86 ng/ml). Figure 6 is a graph showing the dependence of the current density on the loading of the first member, biotin-labeled anti-rabbit IgG on the redox-polymer film on the electrode at a fixed concentration of IgG (86 ng/ml).
Figure 7 is a graph showing the dependence of the current density on the concentration of choline, the non-toxic and stable precursor of the detection compound, H2O2.
Detailed Description of the Invention
Definitions
As used herein, the following terms and phrases have the definitions indicated:
Redox Hydrogel: The hydrated form of a crosslinked redox polymer. Substrate generating enzyme: An enzyme generating or producing the substrate of a detection marker, generally immobilized in the redox hydrogel. The detection marker is usually an enzyme and is covalently bound to the third member. An example of substrate generated by the enzyme is H2O2. H2O2 is generated, for example, by the substrate generating enzyme choline oxidase, which catalyzes the reaction of O2 and choline. Substrate generating enzymes that do not exchange electrons with the redox polymer at the potential where the electrode is poised are preferred. Electron exchange means transfer of electrons from the enzyme to the redox hydrogel or from the redox hydrogel to the enzyme.
Binding Agent: A macromolecular binding agent of a biomolecule. Examples of binding agents include avidin; streptavidin; single stranded (ss) oligonucleotides; single stranded DNA; and peptide oligonucleotides or peptide DNA. The binding agent is immobilized in or on the redox hydrogel. First member of the ligand-ligand receptor pair: A molecule binding to the binding agent and to the second member of the pair; or a molecule bound to the redox hydrogel and binding to the second member. The first and third members are not identical. An example of a first member is a biotinylated antigen. Second member of the ligand-ligand receptor pair: Binds to the first and third members. An example of a second member is an antibody or an F(ab'), fragment of an antibody against both the antigen of the first member and the antigen of the third member. The electrochemical affinity assay of this invention is usually of the second member.
Third member labeled with the Detection Marker: Binds to the second member and is labeled with a detection marker, which is preferably a catalyst, such as an enzyme, and most preferably an oxidoreductase. An example of a third member is a peroxidase-labeled antigen.
Detection Marker: A catalyst, usually an enzyme and preferably an oxidoreductase, labeling the third member. The detection marker can transfer electrons to or accept electrons from the redox hydrogel on the electrode. In these processes the detection marker is electrooxidized or electroreduced. When electrooxidized, the detection marker can oxidize a detection compound. When electroreduced, it can reduce a detection compound.
Detection Compound: A molecule or ion, or a precursor of a molecule or ion, the electrooxidation or the electroreduction of which produces the detected electrochemical signal, usually a current or potential. The detection compound is electrooxidized or electroreduced in the redox polymer film. An example of an electroreduced detection compound is hydrogen peroxide.
As shown schematically in Figures 1A and IB, an affinity assay of the invention includes an electrode 10 coated with a redox polymer 12, preferably a redox hydrogel, in which the first member 14 is immobilized via a binding agent 11 such as avidin. The binding agent 11 is preferably covalently bound to the redox polymer 12.
In the assay of the invention, a second member 16 of the ligand-ligand receptor pair is conjugated with and thereby bound to the first member 14; then the second member 16 is conjugated with and bound to the third member 20. The third member 20 is labeled with a detection marker 18. In a "sandwich" type immunoassay, the second member is an antibody. It can, however, also be an antigen, if the first and third members are non-identical antibodies to the different regions of the second member antigen. The redox hydrogel 12 further includes at least one substrate-generating enzyme 22, meaning an enzyme generating the detection compound. It is preferred, though not required, that the reaction centers of the substrate generating enzyme 22 not be reduced by the reduced redox centers of the redox polymer, nor oxidized by the oxidized redox centers of the redox polymer, when the redox polymer film 12 is in contact with the electrode 10 and the electrode is poised at its operating potential. The detection compound is, preferably, the substrate of the detection marker 18, which is preferably an oxidoreductase.
Binding of the first member 14 to the second member 16, and of the second member
16 to the third member 18, results in an increase in the current passing through the electrode. The increase in current is caused by the catalysis of the electrochemical reduction or oxidation reaction of the detection compound in the combined presence of the detection marker 18 and the redox hydrogel 12 on the electrode. The increase in current correlates with the binding of the second member 16 of the ligand pair, and thereby with the amount of the second member 16 in a sample. This preferred assay system does not require separation or washing steps, permitting use of the assay system in situ in biological fluids. The assay can be carried out in colored and light-scattering media like blood and in media where externally added detection compounds, like hydrogen peroxide, rapidly decompose. In the instant assay hydrogen peroxide is generated in the film on the electrode and is available, at least in part, for electroreduction when the film becomes electrocatalytic through the immobilization of the detection marker, which is bound to the third member. Figure 2 shows schematically the flow of electrons in an affinity assay system of the invention. Choline oxidase, a substrate generating enzyme 22, present in the redox polymer 12, generates hydrogen peroxide in the redox hydrogel 12. Binding of a peroxidase-labeled third member 20 to the immobilized second member 16 of a ligand-ligand receptor pair enables peroxidase-catalyzed electroreduction of hydrogen peroxide, a reaction where electrons flow from the electrode 10 to the redox hydrogel 12; from the redox hydrogel 12 to the peroxidase; and from the peroxidase to hydrogen peroxide, the hydrogen peroxide being electroreduced to water. The working electrode
The working electrode 10 is typically a thin film of conductive material disposed on an insulating substrate. Suitable materials for the substrate include, for example, insulating silicon, fused silicon dioxide, silicate glass, alumina, aluminosilicate ceramic, an epoxy, an epoxy composite such as glass fiber reinforced epoxy, polyester, polyimide, polyamide, or polycarbonate.
A variety of conductive materials can be used to form the working electrode
10. Suitable materials include, for example, carbon, conductive polymers, and metals. Examples of useful metals include gold, platinum, palladium, tantalum, tungsten, and their alloys, as well as metallic compounds like titanium nitride, and ruthenium dioxide. The preferred conductors do not corrode rapidly in aerated aqueous 0.1 M NaCl near neutral pH when a potential of 0.2 volts positive of the potential of the saturated calomel electrode (SCE) is applied. The corrosion current density is preferably less than 10"4A cm"2, and more preferably less than 10"7A cm"2. Thin films of these materials can be formed by a variety of methods including, for example, sputtering, reactive sputtering, physical vapor deposition, plasma deposition, chemical vapor deposition, printing, and other coating methods. Discrete conductive elements may be deposited to form each of the working electrodes, for example, using a patterned mask. Alternatively, a continuous conductive film may be applied to the substrate and then the working electrodes can be patterned from the film.
Patterning techniques for thin films of metal and other materials are well known in the semiconductor art and include photolithographic techniques. An exemplary technique includes depositing the thin film of conductive material and then depositing a layer of a photoresist over the thin film. Typical photoresists are chemicals, often organic compounds, that are altered by exposure to light of a particular wavelength or range of wavelengths. Exposure to light makes the photoresist either more or less susceptible to removal by chemical agents. After the layer of photoresist is applied, the photoresist is exposed to light, or other electromagnetic radiation, through a mask. Alternatively, the photoresist is patterned under a beam of charged particles, such as electrons. The mask may be a positive or negative mask depending on the nature of the photoresist. The mask includes the desired pattern of working electrodes, which are the electrodes on which the electrocatalytic reactions take place when the detection marker and the redox hydrogel are both present and immobilized on the electrode. Once exposed, the portions of the photoresist and the thin film between the working electrodes is selectively removed using, for example, standard etching techniques (dry or wet), to leave the isolated working electrodes of the array.
The working electrode 10 can have a variety of shapes, including, for example, square, rectangular, circular, ovoid, and the like. The working electrode may have dimension (e.g., length, width, or diameter) which can be 50 μm or less. In some embodiments, the working electrodes are three dimensional structures, and can have a surface area of 1 x 10"4 cm2 or less. Multiple electrodes may be used in an array.
Counter and reference electrodes may be present in the electrolytic solution off the surface of the substrate containing the working electrode. Alternatively, the counter and reference electrodes may be formed on the substrate containing the working electrode, for example, located on the same or a different surface as the working electrode. It is not necessary for each working electrode to have a dedicated counter electrode or reference electrode. The same counter or reference electrode can serve multiple, or even all, electrodes of an array. A single electrode, such as an Ag/AgCl electrode, can serve as both counter and reference electrode. Preferably the reference electrode is one that does not leach ions and maintains a constant potential. The reference electrode can be, for example, a silver wire or structure, in contact with the electrolytic solution. The surface of the silver wire or structure can be partially oxidized to produce AgCl chemically, or electrochemically.
The Redox Polymer
The electrode is coated with a thin film of a redox polymer 12. The redox polymer 12 is deposited on the electrode 10. When multiple working electrodes are used, redox polymer 12 is not deposited on the substrate between the electrodes 10, thus maintaining the electrical isolation of the working electrodes of each other.
Another specific method whereby a redox polymer can be deposited, exclusively on the electrode, is electrophoresis. This is a preferred method for coating electrodes of an array when their diameter is small, usually smaller than 50 μm. Redox hydrogels are formed of the crosslinked redox polymers upon their immersion in aqueous solutions. The redox hydrogels provide for transport of electrons between the electrode and the detection marker. One type of redox polymer is a redox hydrogel which typically contains at least 10% of water. Water soluble molecules usually permeate through the redox hydrogel rapidly. Electron conduction in the redox hydrogel is believed to occur through electron exchange between polymer segments that, being tethered, do not leach out but are nevertheless mobile within a limited, small radius.
In general, the redox polymer includes electroreducible and electrooxidizable functions, termed redox centers. These have redox potentials that are a few hundred mV above or below the redox potential of the standard calomel electrode (SCE).
Preferably, the redox centers of the potentials of the polymers are not more reducing than about -400 mV and not more oxidizing than about 800 mV versus SCE, and most preferably are not more reducing than about -150 mV and not more oxidizing than about +400 mV versus SCE at neutral pH. The most preferred redox polymers have osmium, ruthenium, or cobalt redox centers and a redox potential ranging from about -150 mV to about +400 mV versus SCE.
In general, redox polymers suitable for use in the invention have bonds or charges that prevent, or substantially reduce, the diffusional outflux or loss of the redox species during the period of time in which the sample is being analyzed. The bond between the redox species and the polymer may be covalent, coordinative, or ionic. Useful redox polymers and methods for producing them are described in U.S. Patent Nos. 5,264,104; 5,356,786; 5,262,035; 5,320,725; and 5,665,222, incorporated herein by reference. Although many organic or organometallic redox centers can be incorporated in or bound to a polymer and used in the system of the present invention, the preferred redox species are transition metal complexes. The more preferred transition metal complexes are osmium, ruthenium, iron, and cobalt compounds or complexes. The most preferred are osmium and ruthenium complexes.
One type redox polymer contains a redox species covalently bound to a polymer. An example of such a polymer is poly(vinylferrocene). Another type of redox polymer contains an electrostatically bound redox species. Typically, this type of redox polymer comprises a charged polymer coupled to an oppositely charged redox species. Examples of this type of redox polymer include a negatively charged polymer such as Nafion® (DuPont) in which a positively charged redox species, containing one or more of osmium or ruthenium polypyridyl cations is distributed. Another example of such a polymer is a polymer comprising positively charged functions, such as quaternized poly(4-vinyl pyridine) or poly(l -vinyl imidazole), and negatively charged redox species such as ferricyanide and ferrocyanide. The redox polymer may consist of a highly charged redox species, that itself may be polymeric and have multiple redox centers and an oppositely charged polymer, the redox polymer being bound electrostatically within.
In another embodiment of the invention, suitable redox polymers include a redox species coordinatively bound to a polymer. For example, the redox species may be formed by complexing of osmium, ruthenium or cobalt ions with 2, 2'- bipyridyl and also with poly(l -vinyl imidazole) or poly(4-vinyl pyridine) or with a copolymer of either of these.
The preferred redox species are complexes of transition metals, most preferably complexes of osmium, ruthenium, or cobalt. The complexes comprise one or more heterocyclic ligands, each ligand having two or more rings, each ring with one or more nitrogen atoms, such as 2,2'-bipyridine, 1,10-phenanthroline, 2,2',2"-terpyridine, or derivatives thereof. More preferred complexes include osmium cations complexed with two ligands, each ligand containing 2,2'-bipyridine, 1,10-phenanthroline, or derivatives thereof, the two ligands not necessarily being the same. In the preferred complexes of osmium, ruthenium, or cobalt, three or more of the coordination sites of the metal ion are nitrogen-occupied, and the number of ligands ranges from 1 to 3. In the most preferred complexes, five of the coordination sites are nitrogen-occupied, and the number of ligands ranges from 2 to 3. The preferred redox species exchange electrons rapidly with each other, in a process known as self-exchange and also with the working electrode, so that the complexes can be rapidly electrooxidized and electroreduced. While they can be electrostatically held in the redox polymer, the preferred redox species are coordinatively or covalently bound to the polymer. Those of the preferred polymers that bind the ions of the metal ion complex coordinatively have nitrogen-containing heterocyclic rings, such as pyridine, imidazole, or derivatives thereof. These bind, as ligands, to the cations of the redox species.
Preferred polymers for complexation with redox species, such as the osmium complexes, described above, include polymers and copolymers of poly(l -vinyl imidazole) (referred to as "PVI"), poly(4-vinyl pyridine) (referred to as "PVP"), and pyridinium-modified poly(acrylic acid). Suitable copolymer substituents of poly(l- vinyl imidazole) include acrylonitrile, acrylamide, acrylhydrazide, and substituted or quaternized N- vinyl imidazole. The osmium complexes coordinatively bind with the imidazole and pyridine groups of the polymer. In copolymers comprising non- coordinating mers, or weakly coordinating ones, such as acrylamide or acrylonitrile, and also strongly coordinating mers such as N-vinyl-imidazole or 4-vinylpyridine, the ratio of osmium complexes to imidazole and/or pyridine groups ranges from 1 :10 to 1 : 1 , preferably from 1 :2 to 1:1, and more preferably from 3 :4 to 1:1. Also, the preferred ratio of the number of complexed transition metal atoms and polymerized vinyl functions ranges from about 1:2 to about 1:30, and more preferably from about 1:5 to about 1:20.
Examples of other redox species include quinones and species that in their oxidized state have quinoid structures, such as Nile blue and indophenol. The preferred quinones and quinoids do not have hydrogen atoms in their six-membered rings.
The redox polymer 12 also preferably includes a binding agent 11 for binding the first member 14 of the ligand-ligand receptor pair. In a preferred embodiment the binding agent 11 is avidin or streptavidin. It binds to the biotinylated first member 14 thereby immobilizing the first member 14 on the electrode. The binding agent 11 is preferably covalently bound to the polymer, for example by carbodiimide coupling of carboxylate functions of avidin or streptavidin, to hydrazide functions on the polymer. When the binding agent 11 is an oligonucleotide or DNA, carbodiimide and similar coupling agents activate preferably a terminal phosphate function of these molecules enabling their covalent binding to hydrazide functions of the polymers like PAH of Figure 3.
Alternatively, the first member 14 can be bound directly, preferably covalently, to the redox polymer by a method such as carbodiimide coupling.
In one embodiment, the polymer is a copolymer of PVI or PVP with polyacrylamide (it is referred to as "PAA") in which Os(bpy)2 Cl+/2+ is coupled to the imidazole or pyridine functions respectively. To form hydrazides in this redox polymer, for subsequent covalent attachment of the binding agent 11 or for attachment of first member 14, a portion of the amide functions is converted to hydrazide functions by reaction with hydrazine, according to known processes. Typically, at least 5% of the amide groups are converted, preferably, at least 10% of the groups are converted, and more preferably, at least 20% of the groups are converted. The ratio of hydrazide-modified amide groups to unmodified amide groups of the resulting polymer is typically 1 :1 to 1 :20, and preferably 1 :2 to 1:10. The ratio of PVI or PVP to PAA is typically 5:1 to 1 :15, preferably, 2:1 to 1 :12, and, more preferably, 1:1 to 1 :10. The PAA copolymer in which part of the amides is converted to hydrazides is termed PAH.
In another embodiment, the polymer is a modified poly(acrylic acid). A portion of the carboxylic acid functions of the poly(acrylic acid) are converted to pyridine or imidazole carrying functions. These can be amides, such as those formed with 4-(aminoalkyl)-pyridine, particularly 4-(2-aminoethyl)-pyridine, that can be covalently attached through carbodiimide coupling. The pyridine and imidazole groups can then be used for coordinative binding with the osmium complexes. Typically, at least 2%, preferably, at least 5%, and, more preferably, at least 10%), of the carboxylic acid functions are converted to functions with pyridine or imidazole rings. At least a portion of the remaining carboxylic acid groups are converted to hydrazide groups for crosslinking redox polymer and for covalent attachment of the binding agent or of the first member. Typically, at least 2%, preferably, at least 5%, and, more preferably, at least 10%, of the residual carboxylic acid groups are converted to hydrazide groups.
A variety of methods may be used to immobilize a redox polymer on an electrode surface. One method is adsorptive immobilization. This method is particularly useful for redox polymers with relatively high molecular weights, for example, greater than about 104 daltons, preferably greater than 105 daltons, and most preferably greater than 106 daltons. The molecular weight of a polymer may be increased, for example, by cross-linking with a di- or polyfunctional cross-linking agent, such as those listed in the Pierce catalog, 1994, pages T155-T167. Examples of functions of cross-linking agents useful in the invention include epoxy, aldehyde, N-hydroxysuccinimide, halogen, imidate, thiol, and quinone functions. Examples of crosslinkers include poly(ethylene glycol) diglycidyl ether and cyanuric chloride, poly(ethylene glycol) diglycidyl ether (PEGDGE) of 400 or 600 daltons being most preferred. Other cross-linking agents may also be used.
In another embodiment, the redox polymer is immobilized by covalent bonding to a functionalized electrode surface. Carbon surfaces can be modified for covalent attachment of a redox polymer, for example, by electroreduction of a diazonium salt or by oxidation with hydrogen peroxide in the presence of divalent iron ions at a pH of less than 6. As an illustration, reduction of a diazonium salt formed upon diazotization of p-aminobenzoic acid modifies a carbon surface with phenylcarboxylic acid groups. These groups can then be activated by a carbodiimide, such as l-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride. The activated groups are then bound with a hydrazide or amine- functionalized redox couple, such as, for example, PAH, the polymer of Figure 3.
The preferred redox hydrogel 12 contains also additional compounds that are useful in the affinity assay of the invention. In particular, it contains the substrate generating enzyme 22. This enzyme catalyzes the generation of the detection compound, which is the substrate of the detection marker 18. The enzyme generates the detection compound by reacting stable and preferably non-toxic reagents. As a result of the internal generation of the detection compound, within the film on the electrode, the need for adding unstable or toxic agents to the analyzed fluid is obviated. This enables the affinity assay of whole blood, for example, where the detection compound, meaning the or substrate of the detection marker of the third member, like hydrogen peroxide, would rapidly decompose. An example of a substrate generating enzyme that may be immobilized in the redox polymer is choline oxidase, which generates hydrogen peroxide in situ within the redox polymer film on the electrode. Hydrogen peroxide is catalytically electroreduced when the peroxidase detection marker of the third member is in contact with the redox hydrogel. While in absence of either the peroxidase detection marker or the redox polymer, the film is not electrocatalytic for H2O2 reduction in the applied potential range between 0.1 V (SCE) and + 0.4 V (SCE), the film is electrocatalytic through this range when both the peroxidase and the redox polymer are co-immobilized. The redox or reaction centers of choline oxidase do not rapidly exchange electrons with those of the redox hydrogel, so the presence of the enzyme in the hydrogel and the presence of choline do not change the signal, usually the current or potential. Choline oxidase catalyzes the reaction of molecular oxygen with choline, whereby hydrogen peroxide and betaine aldehyde are formed. Ligand-Ligand Receptor Pair
A ligand-ligand receptor pair, consisting of the first member and the second member, includes any such pair known to bind with specificity. Such ligand-ligand receptor pairs are well known and include the following: antigen-antibody; peptide, e.g. growth factor-receptor; nucleic acid-nucleic acid binding protein; complementary pairs of nucleic acids; and of peptide nucleic acids and nucleic acids. When an antibody is used, it is possible to use a fragment, such as an F(ab')2 fragment. When a nucleic acid sequence is used, an oligonucleotide of less than about 200 nucleotides is preferred.
The first member 14 of the ligand-ligand receptor pair is immobilized on the electrode 10, by either covalent attachment to the redox polymer 12, and more preferably , through non-covalent affinity binding with binding agent 11. The second member 16 of the ligand-ligand receptor pair binds the first member 14. Suitable reaction conditions for such binding are known in the art and vary with the nature of the particular pair used.
The third member and its detection markers
The third member 20 and the second member 16 are also a ligand receptor- ligand pair. Again, any such pair known to bind with specificity can constitute the pair.
Useful detection markers are known, and include catalysts which accelerate the oxidation or reduction, preferably the electrooxidation or electroreduction by the electrooxidized or electroreduced redox polymer, of the detection compound. The acceleration of the electrochemical reaction results in an increase in the current at the electrode, the charge flowing usually via the redox polymer and the catalyst.
When a third member 20 is labeled with the detection marker 18 and when it binds to the immobilized second member 16, the current generated at the electrode is increased through electrocatalysis of a reaction of the detection compound.
The preferred affinity assays of the invention are rapid, specific, efficient, and operate with a high signal to noise ratio, preferably greater than 10. The scheme of an exemplary "sandwich" type immunoassay is shown in Figures 1 A and IB and is demonstrated below in Example 1. It operates with a signal to noise ratio of about 15.
The preferred affinity assay of the invention can be performed either with no additive to the biological fluid analyzed or with adding only a non-toxic biochemical such as choline. The assay can also be performed in an opaque, colored or light- scattering medium, such as blood; and in the preferred mode it requires no separation or washing steps.
Preferred Operation and Practice of the Assay
In the preferred mode of operation, the electrode 10 is coated with the crosslinked redox polymer 12 containing the binding agent 11 and the substrate generating enzyme 22, both covalently bound within the redox hydrogel 12. The first member 14 is then bound to the redox polymer 12. This completes the preparation of the electrode for the assay. The electrode is then immersed in the fluid to be assayed for the presence and/or amount and/or concentration of the second member. It is preferred that during this immersion the fluid be moving relative to the electrode, meaning that either the electrode be moving, for example rotating, in the fluid, or that the fluid be flowing when the electrode is stationary.
After, or simultaneously with, binding of the second member 16 to the electrode via the affinity reaction with the first member 14, the electrode is exposed to the third member 20. The electrode is poised at a potential where the electrocatalytic reduction or oxidation of the detection compound proceeds, this electrode reaction being catalyzed when the detection marker contacts the redox polymer 12, such contact being made upon the binding of the third member 20 to the second member
16.
The detection marker of the third member A variety of catalysts can be used as the detection marker 18. Exemplary catalysts are enzymes that catalyze an electrochemical reaction of a detection compound. A variety of enzymes are useful including, for example, peroxidases for use with hydrogen peroxide, glucose oxidase and glucose dehydrogenase for use with glucose, and lactate oxidase and lactate dehydrogenase for use with lactate. While in the case of hydrogen peroxide the detection compound is catalytically electroreduced and is internally generated in the film, in the case of glucose or lactate, which are abundant in biological fluids like blood, the detection marker is externally supplied. Also, these detection compounds are catalytically electrooxidized when both the glucose oxidase detection marker or the lactate oxidase detection marker is immobilized in or on the redox polymer film and the electrode is poised at a potential between -0.3 V (SCE) and +0.7 V (SCE), preferably - 0.2 V (SCE) and + 0.5 V (SCE) and most preferably - 0.1 V (SCE) and + 0.3 V (SCE). Preferably, thermostable enzymes (enzymes capable of operation for at least 1 hour at 37° C) are used. Soybean peroxidase is one example of a thermostable enzyme. The Detection Compound
The detection compound is a substrate for the detection marker or a precursor of the substrate of the detection member. For example, hydrogen peroxide is a detection compound which is a substrate for the detection marker, peroxidose.
Examples
The invention may be better understood by reference to the following examples, which are not intended to limit the scope of the invention.
Example 1
Electrochemical ELISA
A non-competitive, sandwich type ELISA was started by immobilizing the redox polymer PAH onto a glassy carbon electrode. PAH was made as described in de Lumley-Woodyear et al, 1995, Anal. Chem. 67:1332-1338. The structure of the polymer is shown in Figure 3.
Standard coatings were formed by mixing 2.5 parts of polymer (5 mg/ml in water); 1.5 parts polyethylene glycol 400 diglycidyl ether (PEGDGE) (0.5 mg/ml in water)(technical grade, Polysciences, #08210); 1.0 parts choline oxidase (20 mg/ml in 0.1M NaHCO3) (Sigma #C-5896); and 4 parts avidin (5 mg/ml in 0.1 M NaHCO3) (Sigma #A-9390). A volume of 3 microliters of this solution was applied to the 3 mm diameter glassy carbon electrode. The films were permitted to cure and crosslink for 48 hours in a humid atmosphere and then allowed to dry overnight in air prior to testing.
The electrodes, containing avidin (binding agent) and choline oxidase (substrate generating enzyme) immobilized within their redox polymer coating, were washed in Dulbecco's PBS for 15 minutes to rehydrate the polymer hydrogel and to remove any non-covalently bound avidin or choline oxidase. PBS, the pH 7.4 phosphate buffer solution, was made with the sodium (0.008 M) and potassium (0.002 M) phosphate and with sodium (0.14 M) and potassium (0.01 M) chlorides. The rehydrated electrodes were then soaked in 5 ml PBS containing 9 micrograms of biotin-labeled anti-rabbit IgG (first member of the ligand-ligand receptor pair) for 30 minutes, followed by washing 10 minutes in PBS to remove any unbound biotin- anti-IgG. This completed the preparation of the electrode for the assay of rabbit
IgG.
The completed electrodes were then placed in a test cell containing 17.5 ml of 20 mM choline in PBS and a potential of -70 mV vs SCE was applied. The electrodes were rotated at 1000 rpm. A sample amount of IgG (second member of the ligand-ligand receptor pair) was added, and the mixture permitted to incubate for
30 minutes. At the end of the incubation period, 6.0 micrograms of HRP-labeled anti-rabbit IgG (third member, labeled with detection marker) was added and the resulting increase in reduction current was monitored. The currents were recorded 30 minutes after the addition of the HRP-labeled probe.
Figure 4 shows the dependence of the hydrogen peroxide electroreduction current on the concentration of the ligand, rabbit IgG. The current increased linearly, with the rabbit IgG concentration over the 1-1000 ng/ml range. A linear regression analysis of the data yielded an R2 value of 0.89 and a negative current at the intercept where the rabbit IgG concentration was nil, suggesting that some rabbit IgG was lost from the solution through adsorption on the untreated wall of the Pyrex glass test cell.
To assess the dependence of the signal-to-noise ratio on the concentration of the HRP-labeled anti-rabbit IgG probe, the dependence on the current density on the molar ratio of HRP labeled anti-rabbit IgG probe to the ligand IgG was determined. As shown in Figure 5, in the absence of ligand IgG there was very little noise associated with non-specific binding of the HRP-labeled anti-rabbit IgG probe. At a 4:1 ratio, the signal (specific binding) to noise (non-specific binding) ratio was 15. The results of the ensemble of control experiments, in which individual components of the test system were deleted, are shown below in Table 1. Table 1
Figure imgf000021_0001
The residual current density, following deletion of any of the essential components, was equal to or smaller than the current density when the analyte itself (rabbit IgG) was absent. In the presence of choline, but without any immunoreagent, the current density was only 0.03 μA/cm2, showing, as expected, that choline oxidase was so poorly "wired", if at all, that electroreduction of choline did not interfere with the assay. When the avidin-containing redox hydrogel was not activated with biotin-labeled anti-rabbit IgG, the current density was 0.17 μA/cm2, about one fifth of that observed in a typical assay.
The dependence of the current density on the biotin-labeled anti -rabbit IgG loading of the electrodes is shown in Figure 6.
In a separationless assay when the concentration of the rabbit IgG, F(ab')2 fragments was 86 mg/mL and the concentration of the HRP-labeled anti -rabbit IgG was 344 mg/mL. (HRP is horseradish peroxidase), and with only choline added to the test solution, a current density of 1.5 μA cm"2 was observed.
Varying the ionic strength of the test buffer influenced the level of both the signal and the noise. Both signal and noise decreased rapidly as salt content increased, with the noise level dropping to essentially zero for salt concentrations of 0.2 M and above.
When the F(ab')2 antibody fragments were replaced with whole antibodies, the signal to noise ratio was about 4:1 under identical conditions. Study of the effect of the duration of the steps of (a) the activation with biotin-labeled anti-rabbit IgG, (b) the binding of IgG and (c) the binding of HRP- labeled anti-rabbit IgG were examined when the concentrations of the three reagents were, respectively, 1800 ng/ml, 86 ng/ml, and 344 ng/ml. The signal current reached its plateau after 15 minutes of incubation in the activation step. When the incubation time was halved to 7.5 minutes, 75 % of the current was retained. In the rabbit IgG exposure step, the current plateau was reached in 15 minutes, and shortening of the incubation period to 10 minutes resulted in only a 10% reduction in current. For the final step of binding HRP labeled anti-IgG, the current did not level off in 30 minutes, but increased linearly with time, becoming easily measurable in about 5 minutes.
These data demonstrated a separationless electrochemical immunoassay system, requiring no washing steps, nor toxic or unstable additives to the analyzed fluid. The platform of the assay is a redox hydrogel that conducts electrons, in which avidin and choline oxidase are co-immobilized. This hydrogel is permeable to large biological molecules, including antibodies and enzyme labeled antibodies. The choline oxidase in the gel catalyzes the reaction of choline and oxygen, whereby betaine aldehyde and hydrogen peroxide are produced within the sensing layer. Hydrogen peroxide is electroreduced in this layer to water at potentials negative of 400 mV (SCE) preferably between -70 mV (SCE) +150 mV (SCE), after components of the electrocatalyst are assembled in the sandwich of the immunoassay. Once the platform of co-immobilized avidin and choline oxidase in the electron conducting hydrogel is in place, the probe is activated with the desired biotinylated immunoreagent. If the assayed fluid contains the complementary immunoreagent and if a peroxidase-tagged probe of the immunoreagent is added, a cathodic current flows as a result of the catalyzed electroreduction of the H2O2. The detection limit of the assay is about 4 ng/ml for the IgG/anti-IgG system, and the assay of a sample is completed within about 20 minutes or less.
The magnitude of the observed current densities, 2 μA/cm2, was high enough to provide for miniaturization to 10 micrometer diameter electrodes, sufficient to assure that mass transport and electron transport both be radial. Because in microelectrodes, where electron transport between the "wired" enzyme and the electrode is radial, the current density is higher by a factor of 4π than in the semi- infinite planar electrodes of the Example, it is estimated that the current will be of about 20 picoamperes in the 10 micrometer diameter electrodes. The present invention should not be considered limited to the particular examples described above, but rather should be understood to cover all aspects of the invention as fairly set out in the attached claims. Various modifications, equivalent processes, as well as numerous structures to which the present invention may be applicable will be readily apparent to those of skill in the art to which the present invention is directed upon review of the instant specification.

Claims

WE CLAIM:
1. An affinity assay system comprising: an electrode coated with a film comprising a redox polymer; a first member of a ligand-ligand receptor pair immobilized in the redox polymer; a second member of the ligand-ligand receptor pair capable of binding the first member; and a third member capable of binding the second member and labeled with a detection marker; wherein binding of said second member to said first member and of said third member to said second member results in increased rate of an electrode reaction when a potential is applied to the electrode.
2. The assay of claim 1, wherein the electrode reaction is the electrooxidation of a molecule or ion generated within the redox polymer.
3. The assay of claim 1 wherein the potential applied to the electrode is not more reducing than about -0.1 V (SCE) and not more oxidizing than about + 0.3 V (SCE).
4. The assay of claim 1 wherein a substrate-generating enzyme is immobilized in the redox polymer film.
5. The assay of claim 4 wherein the redox polymer comprising film coating the electrode also comprises a binding agent.
6. The assay of claim 5, wherein the electrode reaction is the electroreduction of a molecule or ion generated within the redox polymer.
7. The affinity assay system of claim 1, wherein said potential is not more reducing than -0.0 V versus the saturated calomel electrode and not more oxidizing than + 0.4 V versus the saturated calomel electrode.
8. The affinity assay system of claim 5, wherein the binding agent is avidin or streptavidin.
9. The affinity assay system of claim 5, wherein said first member comprises a biotin function.
10. The assay of claim 4, wherein the reaction center or centers of the substrate generating enzyme are not electroreduced or electrooxidized at the potential applied to the electrode.
11. The assay of claim 4 wherein the substrate-generating enzyme is choline oxidase.
12. The affinity assay system of claim 1, wherein said detection marker is a peroxidase.
13. The affinity assay of claim 6, wherein said peroxidase is horseradish peroxidase or soybean peroxidase.
14. The affinity assay system of claim 1, wherein the signal to noise ratio is at least 10.
15. A method for the assay of the second member of the ligand-ligand receptor pair comprising contacting a sample with the coated electrode of the affinity assay system of claim 1 ; and correlating a current or a potential at the electrode with the amount of said second member in the sample.
16. The method of claim 15, wherein said second member is an antibody.
17. The method of claim 15, wherein the contacting sample is blood.
PCT/US1999/019120 1998-08-24 1999-08-24 Electrochemical affinity assay WO2000011474A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69901714T DE69901714T2 (en) 1998-08-24 1999-08-24 ELECTROCHEMICAL AFFINITY ASSAY
AU55790/99A AU5579099A (en) 1998-08-24 1999-08-24 Electrochemical affinity assay
EP99942403A EP1105736B1 (en) 1998-08-24 1999-08-24 Electrochemical affinity assay
AT99942403T ATE218708T1 (en) 1998-08-24 1999-08-24 ELECTROCHEMICAL AFFINITY ASSAY
JP2000566679A JP2002523747A (en) 1998-08-24 1999-08-24 Electrochemical affinity assay

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/138,888 US6281006B1 (en) 1998-08-24 1998-08-24 Electrochemical affinity assay
US09/138,888 1998-08-24

Publications (1)

Publication Number Publication Date
WO2000011474A1 true WO2000011474A1 (en) 2000-03-02

Family

ID=22484110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/019120 WO2000011474A1 (en) 1998-08-24 1999-08-24 Electrochemical affinity assay

Country Status (7)

Country Link
US (2) US6281006B1 (en)
EP (1) EP1105736B1 (en)
JP (1) JP2002523747A (en)
AT (1) ATE218708T1 (en)
AU (1) AU5579099A (en)
DE (1) DE69901714T2 (en)
WO (1) WO2000011474A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007106936A1 (en) 2006-03-17 2007-09-27 Newsouth Innovations Pty Limited Electrochemical sensor
WO2011034668A1 (en) * 2009-08-07 2011-03-24 Ohmx Corporation Enzyme triggered redox altering chemical elimination (e-trace) immunoassay
US8197650B2 (en) 2007-06-07 2012-06-12 Sensor Innovations, Inc. Silicon electrochemical sensors
WO2013106434A1 (en) * 2012-01-09 2013-07-18 Ohmx Corporation Enzyme cascade methods for e-trace assay signal amplification
US8758584B2 (en) 2010-12-16 2014-06-24 Sensor Innovations, Inc. Electrochemical sensors
US9250234B2 (en) 2011-01-19 2016-02-02 Ohmx Corporation Enzyme triggered redox altering chemical elimination (E-TRACE) immunoassay
US9340567B2 (en) 2011-11-04 2016-05-17 Ohmx Corporation Chemistry used in biosensors
US9404883B2 (en) 2012-07-27 2016-08-02 Ohmx Corporation Electronic measurements of monolayers following homogeneous reactions of their components
US9416390B2 (en) 2012-07-27 2016-08-16 Ohmx Corporation Electric measurement of monolayers following pro-cleave detection of presence and activity of enzymes and other target analytes
US9624522B2 (en) 2009-08-07 2017-04-18 Ohmx Corporation Single, direct detection of hemoglobin A1c percentage using enzyme triggered redox altering chemical elimination (e-trace) immunoassay

Families Citing this family (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7899511B2 (en) 2004-07-13 2011-03-01 Dexcom, Inc. Low oxygen in vivo analyte sensor
US9155496B2 (en) 1997-03-04 2015-10-13 Dexcom, Inc. Low oxygen in vivo analyte sensor
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US8071384B2 (en) 1997-12-22 2011-12-06 Roche Diagnostics Operations, Inc. Control and calibration solutions and methods for their use
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6281006B1 (en) * 1998-08-24 2001-08-28 Therasense, Inc. Electrochemical affinity assay
US7640083B2 (en) 2002-11-22 2009-12-29 Monroe David A Record and playback system for aircraft
DE19860547C1 (en) * 1998-12-23 2000-10-12 Genetrix B V I O Affinity sensor for the detection of specific molecular binding events and its use
US20030087277A1 (en) * 1998-12-23 2003-05-08 Wolfgang Fritzsche Means and methods for detection of binding of members of specific binding pairs
US20050103624A1 (en) 1999-10-04 2005-05-19 Bhullar Raghbir S. Biosensor and method of making
FR2805545B1 (en) * 2000-02-24 2002-05-17 Argene Sa ELECTROCHEMICAL METHOD FOR DETECTION OF NUCLEIC ACIDS
KR20020097206A (en) 2000-03-31 2002-12-31 라이프스캔, 인코포레이티드 Electrically-conductive patterns for monitoring the filling of medical devices
US7182853B2 (en) * 2000-09-22 2007-02-27 University Of Dayton Redox control/monitoring platform for high throughput screening/drug discovery applications
US20020155476A1 (en) * 2000-10-20 2002-10-24 Nader Pourmand Transient electrical signal based methods and devices for characterizing molecular interaction and/or motion in a sample
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
EP1397068A2 (en) 2001-04-02 2004-03-17 Therasense, Inc. Blood glucose tracking apparatus and methods
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
ES2352998T3 (en) 2001-06-12 2011-02-24 Pelikan Technologies Inc. LANCETA ELECTRIC ACTUATOR.
AU2002344825A1 (en) 2001-06-12 2002-12-23 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
CA2448902C (en) 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
CA2448905C (en) 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Blood sampling apparatus and method
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
WO2002100254A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
WO2003062783A2 (en) * 2001-07-20 2003-07-31 North Carolina State University Light addressable electrochemical detection of duplex structures
US10539561B1 (en) * 2001-08-30 2020-01-21 Customarray, Inc. Enzyme-amplified redox microarray detection process
US7052591B2 (en) * 2001-09-21 2006-05-30 Therasense, Inc. Electrodeposition of redox polymers and co-electrodeposition of enzymes by coordinative crosslinking
US6927029B2 (en) * 2001-12-03 2005-08-09 Agilent Technologies, Inc. Surface with tethered polymeric species for binding biomolecules
KR100407822B1 (en) * 2001-12-04 2003-12-01 한국전자통신연구원 Electrochemical immune-sensor, and kit and method for detecting biochemical analyte using the same
US7244393B2 (en) 2001-12-21 2007-07-17 Kimberly-Clark Worldwide, Inc. Diagnostic device and system
US8367013B2 (en) 2001-12-24 2013-02-05 Kimberly-Clark Worldwide, Inc. Reading device, method, and system for conducting lateral flow assays
US20030119203A1 (en) 2001-12-24 2003-06-26 Kimberly-Clark Worldwide, Inc. Lateral flow assay devices and methods for conducting assays
FR2835058B1 (en) * 2002-01-21 2004-03-12 Centre Nat Rech Scient METHOD FOR DETECTING AT LEAST ONE CHARACTERISTIC PARAMETER OF PROBE MOLECULES FIXED ON AT LEAST ONE ACTIVE ZONE OF A SENSOR
EP1331482A1 (en) * 2002-01-25 2003-07-30 BMS Sensor Technology SA Conjugate for the detection of antigens with biosensors
US8364229B2 (en) 2003-07-25 2013-01-29 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US7613491B2 (en) 2002-05-22 2009-11-03 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7713214B2 (en) 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7175642B2 (en) 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7285424B2 (en) 2002-08-27 2007-10-23 Kimberly-Clark Worldwide, Inc. Membrane-based assay devices
AU2003260662A1 (en) * 2002-12-11 2004-07-14 Centre National De La Recherche Scientifique Method for electronically detecting at least one specific interaction between probe molecules and target biomolecules
US7247500B2 (en) 2002-12-19 2007-07-24 Kimberly-Clark Worldwide, Inc. Reduction of the hook effect in membrane-based assay devices
DE10261528B4 (en) * 2002-12-23 2006-10-05 Friz Biochem Gesellschaft Für Bioanalytik Mbh Electrical substrate for use as carrier of biomolecules
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US8771183B2 (en) 2004-02-17 2014-07-08 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
AU2003303597A1 (en) 2002-12-31 2004-07-29 Therasense, Inc. Continuous glucose monitoring system and methods of use
US20040180369A1 (en) * 2003-01-16 2004-09-16 North Carolina State University Photothermal detection of nucleic acid hybridization
US7851209B2 (en) 2003-04-03 2010-12-14 Kimberly-Clark Worldwide, Inc. Reduction of the hook effect in assay devices
US20040197819A1 (en) 2003-04-03 2004-10-07 Kimberly-Clark Worldwide, Inc. Assay devices that utilize hollow particles
US7587287B2 (en) 2003-04-04 2009-09-08 Abbott Diabetes Care Inc. Method and system for transferring analyte test data
EP2238892A3 (en) 2003-05-30 2011-02-09 Pelikan Technologies Inc. Apparatus for body fluid sampling
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US8206565B2 (en) 2003-06-20 2012-06-26 Roche Diagnostics Operation, Inc. System and method for coding information on a biosensor test strip
CN1846131B (en) 2003-06-20 2012-01-18 霍夫曼-拉罗奇有限公司 Method and reagent for producing narrow, homogenous reagent strips
US7488601B2 (en) 2003-06-20 2009-02-10 Roche Diagnostic Operations, Inc. System and method for determining an abused sensor during analyte measurement
US8148164B2 (en) 2003-06-20 2012-04-03 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8071030B2 (en) 2003-06-20 2011-12-06 Roche Diagnostics Operations, Inc. Test strip with flared sample receiving chamber
US8679853B2 (en) 2003-06-20 2014-03-25 Roche Diagnostics Operations, Inc. Biosensor with laser-sealed capillary space and method of making
US8058077B2 (en) 2003-06-20 2011-11-15 Roche Diagnostics Operations, Inc. Method for coding information on a biosensor test strip
US7645421B2 (en) 2003-06-20 2010-01-12 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7645373B2 (en) 2003-06-20 2010-01-12 Roche Diagnostic Operations, Inc. System and method for coding information on a biosensor test strip
US7718439B2 (en) 2003-06-20 2010-05-18 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7452457B2 (en) 2003-06-20 2008-11-18 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
US9763609B2 (en) 2003-07-25 2017-09-19 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
WO2005033659A2 (en) 2003-09-29 2005-04-14 Pelikan Technologies, Inc. Method and apparatus for an improved sample capture device
WO2005037095A1 (en) 2003-10-14 2005-04-28 Pelikan Technologies, Inc. Method and apparatus for a variable user interface
US20100000881A1 (en) * 2003-10-30 2010-01-07 North Carolina State University Electrochemical detection of nucleic acid hybridization
US7943395B2 (en) 2003-11-21 2011-05-17 Kimberly-Clark Worldwide, Inc. Extension of the dynamic detection range of assay devices
US20050112703A1 (en) 2003-11-21 2005-05-26 Kimberly-Clark Worldwide, Inc. Membrane-based lateral flow assay devices that utilize phosphorescent detection
US7713748B2 (en) 2003-11-21 2010-05-11 Kimberly-Clark Worldwide, Inc. Method of reducing the sensitivity of assay devices
US7943089B2 (en) 2003-12-19 2011-05-17 Kimberly-Clark Worldwide, Inc. Laminated assay devices
US7863053B2 (en) * 2003-12-23 2011-01-04 Kimberly-Clark Worldwide, Inc. Swab-based diagnostic systems
US7098040B2 (en) * 2003-12-23 2006-08-29 Kimberly-Clark Worldwide, Inc. Self-contained swab-based diagnostic systems
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
WO2006075966A1 (en) * 2005-01-17 2006-07-20 Gyros Patent Ab A versatile flow path
JP2007523326A (en) 2004-02-06 2007-08-16 バイエル・ヘルスケア・エルエルシー Oxidizable species as internal standards for biosensors and methods of use
US8101431B2 (en) 2004-02-27 2012-01-24 Board Of Regents, The University Of Texas System Integration of fluids and reagents into self-contained cartridges containing sensor elements and reagent delivery systems
US8105849B2 (en) 2004-02-27 2012-01-31 Board Of Regents, The University Of Texas System Integration of fluids and reagents into self-contained cartridges containing sensor elements
US7815854B2 (en) 2004-04-30 2010-10-19 Kimberly-Clark Worldwide, Inc. Electroluminescent illumination source for optical detection systems
US7796266B2 (en) 2004-04-30 2010-09-14 Kimberly-Clark Worldwide, Inc. Optical detection system using electromagnetic radiation to detect presence or quantity of analyte
EP1751546A2 (en) 2004-05-20 2007-02-14 Albatros Technologies GmbH & Co. KG Printable hydrogel for biosensors
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
WO2005120365A1 (en) 2004-06-03 2005-12-22 Pelikan Technologies, Inc. Method and apparatus for a fluid sampling device
US7569126B2 (en) 2004-06-18 2009-08-04 Roche Diagnostics Operations, Inc. System and method for quality assurance of a biosensor test strip
JP2006133137A (en) * 2004-11-08 2006-05-25 Eiichi Tamiya Method for detecting material to be inspected
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
WO2007053186A2 (en) 2005-05-31 2007-05-10 Labnow, Inc. Methods and compositions related to determination and use of white blood cell counts
WO2007002480A2 (en) * 2005-06-24 2007-01-04 Board Of Regents, The University Of Texas System Systems and methods including self-contained cartridges with detection systems and fluid delivery systems
ES2717135T3 (en) 2005-07-20 2019-06-19 Ascensia Diabetes Care Holdings Ag Method to signal the user to add an additional sample to a test strip, method to measure the temperature of a sample and methods to determine the concentration of an analyte based on controlled amperometry
CN101273266B (en) 2005-09-30 2012-08-22 拜尔健康护理有限责任公司 Gated voltammetry
US7927828B2 (en) * 2005-10-17 2011-04-19 Spidertech, a division of Stoecker & associates, LLC Immunoassay for venom detection including noninvasive sample collection
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US7645583B2 (en) * 2005-12-14 2010-01-12 Kimberly-Clark Worldwide, Inc. Identification of compounds for inhibiting complexation of C-reactive protein with fibronectin
US7745158B2 (en) * 2005-12-14 2010-06-29 Kimberly-Clark Worldwide, Inc. Detection of secreted aspartyl proteases from Candida species
US9757061B2 (en) 2006-01-17 2017-09-12 Dexcom, Inc. Low oxygen in vivo analyte sensor
US20070202561A1 (en) * 2006-02-10 2007-08-30 Becton Dickinson And Company Electronic Detection Immunoassays that Utilize a Binder Support Medium
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US7920907B2 (en) 2006-06-07 2011-04-05 Abbott Diabetes Care Inc. Analyte monitoring system and method
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US8080385B2 (en) 2007-05-03 2011-12-20 Abbott Diabetes Care Inc. Crosslinked adduct of polyaniline and polymer acid containing redox enzyme for electrochemical sensor
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US20200037875A1 (en) 2007-05-18 2020-02-06 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US9212430B1 (en) 2007-10-31 2015-12-15 Sandia Corporation Method for the electro-addressable functionalization of electrode arrays
WO2009076302A1 (en) 2007-12-10 2009-06-18 Bayer Healthcare Llc Control markers for auto-detection of control solution and methods of use
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US8679772B2 (en) * 2008-06-06 2014-03-25 Agency For Science, Technology And Research Immunoassay
US7896703B2 (en) * 2008-07-17 2011-03-01 Abbott Diabetes Care Inc. Strip connectors for measurement devices
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
WO2010127050A1 (en) 2009-04-28 2010-11-04 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
US8758583B2 (en) 2009-04-28 2014-06-24 Abbott Diabetes Care Inc. Smart sensor ports and methods of using same
US9184490B2 (en) 2009-05-29 2015-11-10 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
US8437827B2 (en) * 2009-06-30 2013-05-07 Abbott Diabetes Care Inc. Extruded analyte sensors and methods of using same
US8000763B2 (en) * 2009-06-30 2011-08-16 Abbott Diabetes Care Inc. Integrated devices having extruded electrode structures and methods of using same
US8357276B2 (en) 2009-08-31 2013-01-22 Abbott Diabetes Care Inc. Small volume test strips with large sample fill ports, supported test strips, and methods of making and using same
EP2473099A4 (en) 2009-08-31 2015-01-14 Abbott Diabetes Care Inc Analyte monitoring system and methods for managing power and noise
WO2011026147A1 (en) 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Analyte signal processing device and methods
US9320461B2 (en) 2009-09-29 2016-04-26 Abbott Diabetes Care Inc. Method and apparatus for providing notification function in analyte monitoring systems
US9000769B2 (en) 2009-11-23 2015-04-07 Proxim Diagnostics Controlled electrochemical activation of carbon-based electrodes
US9910040B2 (en) 2012-07-09 2018-03-06 Sevident, Inc. Molecular nets comprising capture agents and linking agents
US8828330B2 (en) 2010-01-28 2014-09-09 Abbott Diabetes Care Inc. Universal test strip port
WO2013066362A1 (en) 2011-02-17 2013-05-10 Abbott Diabetes Care Inc. Analyte meter communication module
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8726266B2 (en) 2010-05-24 2014-05-13 Abbott Diabetes Care Inc. Method and system for updating a medical device
WO2012058237A1 (en) 2010-10-26 2012-05-03 Abbott Diabetes Care Inc. Analyte measurement devices and systems, and components and methods related thereto
US8702928B2 (en) 2010-11-22 2014-04-22 Abbott Diabetes Care Inc. Modular analyte measurement system with extendable strip port
US9713440B2 (en) 2010-12-08 2017-07-25 Abbott Diabetes Care Inc. Modular analyte measurement systems, modular components thereof and related methods
US9760679B2 (en) 2011-02-11 2017-09-12 Abbott Diabetes Care Inc. Data synchronization between two or more analyte detecting devices in a database
US20140088392A1 (en) 2011-02-11 2014-03-27 Abbott Diabetes Care Inc. Feedback from Cloud or HCP to Payer or Patient via Meter or Cell Phone
WO2012108938A1 (en) 2011-02-11 2012-08-16 Abbott Diabetes Care Inc. Software applications residing on handheld analyte determining devices
US10010273B2 (en) 2011-03-10 2018-07-03 Abbott Diabetes Care, Inc. Multi-function analyte monitor device and methods of use
US9638663B2 (en) 2011-07-25 2017-05-02 Proxim Diagnostics Corporation Cartridge for diagnostic testing
USD680454S1 (en) 2011-10-25 2013-04-23 Abbott Diabetes Care Inc. Analyte meter and strip port
AU2012335830B2 (en) 2011-11-07 2017-05-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods
ITVI20120166A1 (en) * 2012-07-10 2014-01-11 St Microelectronics Srl BIOSENSOR
US9535027B2 (en) 2012-07-25 2017-01-03 Abbott Diabetes Care Inc. Analyte sensors and methods of using same
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
US9987427B1 (en) 2014-06-24 2018-06-05 National Technology & Engineering Solutions Of Sandia, Llc Diagnostic/drug delivery “sense-respond” devices, systems, and uses thereof
JP6510276B2 (en) * 2015-03-04 2019-05-08 学校法人 芝浦工業大学 Sensor using molecularly imprinted polymer thin film
WO2017075263A1 (en) * 2015-10-27 2017-05-04 Massachusetts Institute Of Technology Electrochemical devices or systems comprising redox-functionalized electrodes and uses thereof
WO2018081653A1 (en) 2016-10-27 2018-05-03 Massachusetts Institute Of Technology Use of electrochemical devices or systems comprising redox-functionalized electrodes for bioseparation and/or biocatalysis
US11633129B2 (en) 2019-04-05 2023-04-25 Cambridge Medical Technologies LLC Non-invasive transdermal sampling and analysis device incorporating redox cofactors
US11375931B2 (en) * 2019-08-08 2022-07-05 Cambridge Medical Technologies LLC Non-invasive transdermal sampling and analysis device incorporating an electrochemical bioassay

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990005910A1 (en) * 1988-11-14 1990-05-31 I Stat Corp Wholly microfabricated biosensors and process for the manufacture and use thereof
US4945045A (en) * 1984-07-06 1990-07-31 Serono Diagnostics Ltd. Electrochemical methods of assay
WO1991016630A1 (en) * 1990-04-12 1991-10-31 Optical Systems Development Partners Device and method for electroimmunoassay
GB2276724A (en) * 1993-03-31 1994-10-05 Cambridge Life Sciences Electrochemical detection of specific binding species
US5534132A (en) * 1995-05-04 1996-07-09 Vreeke; Mark Electrode and method for the detection of an affinity reaction
WO1997027474A1 (en) * 1996-01-26 1997-07-31 Yissum Research Development Company Of The Hebrew University Of Jerusalem Determination of an analyte in a liquid medium
WO1998002743A1 (en) * 1996-07-15 1998-01-22 Sensors Technology Company B.V. Sensors
WO1998035232A2 (en) * 1997-02-06 1998-08-13 The University Of North Carolina At Chapel Hill Electrochemical detection of specific binding

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0149339B1 (en) 1983-12-16 1989-08-23 MediSense, Inc. Assay for nucleic acids
GB8402058D0 (en) 1984-01-26 1984-02-29 Serono Diagnostics Ltd Methods of assay
IL78034A (en) 1986-03-04 1991-08-16 Univ Ramot Biosensors comprising antibodies bonded to glassy carbon electrode for immunoassays
US5089112A (en) * 1989-03-20 1992-02-18 Associated Universities, Inc. Electrochemical biosensor based on immobilized enzymes and redox polymers
US5198367A (en) 1989-06-09 1993-03-30 Masuo Aizawa Homogeneous amperometric immunoassay
US5264104A (en) 1989-08-02 1993-11-23 Gregg Brian A Enzyme electrodes
US5262035A (en) * 1989-08-02 1993-11-16 E. Heller And Company Enzyme electrodes
US5320725A (en) * 1989-08-02 1994-06-14 E. Heller & Company Electrode and method for the detection of hydrogen peroxide
CA2050057A1 (en) * 1991-03-04 1992-09-05 Adam Heller Interferant eliminating biosensors
US6017696A (en) 1993-11-01 2000-01-25 Nanogen, Inc. Methods for electronic stringency control for molecular biological analysis and diagnostics
US6051380A (en) 1993-11-01 2000-04-18 Nanogen, Inc. Methods and procedures for molecular biological analysis and diagnostics
US5391272A (en) * 1992-03-06 1995-02-21 Andcare, Inc. Electrochemical immunoassay methods
US5403451A (en) 1993-03-05 1995-04-04 Riviello; John M. Method and apparatus for pulsed electrochemical detection using polymer electroactive electrodes
US6068818A (en) 1993-11-01 2000-05-30 Nanogen, Inc. Multicomponent devices for molecular biological analysis and diagnostics
IL108726A (en) * 1994-02-22 1999-12-31 Yissum Res Dev Co Electrobiochemical method and system for the determination of an analyte which is a member of a recognition pair in a liquid medium and electrodes therefor
DE4442253A1 (en) * 1994-11-28 1996-05-30 Bayer Corp N D Ges D Staates I Electrochemical enzyme biosensor
US5560811A (en) 1995-03-21 1996-10-01 Seurat Analytical Systems Incorporated Capillary electrophoresis apparatus and method
US5595878A (en) * 1995-06-02 1997-01-21 Boron Biologicals, Inc. Detection of biopolymers and biooligomers with boron hydride labels
US5589136A (en) 1995-06-20 1996-12-31 Regents Of The University Of California Silicon-based sleeve devices for chemical reactions
US5968745A (en) * 1995-06-27 1999-10-19 The University Of North Carolina At Chapel Hill Polymer-electrodes for detecting nucleic acid hybridization and method of use thereof
US5972199A (en) * 1995-10-11 1999-10-26 E. Heller & Company Electrochemical analyte sensors using thermostable peroxidase
US5665222A (en) * 1995-10-11 1997-09-09 E. Heller & Company Soybean peroxidase electrochemical sensor
US5679748A (en) * 1996-04-05 1997-10-21 Exxon Chemical Patents Inc. Process for oxidative functionalization of polymers containing alkylstyrene
US6063259A (en) 1996-06-11 2000-05-16 New Mexico State University Technology Transfer Corporation Microfabricated thick-film electrochemical sensor for nucleic acid determination
US5906723A (en) 1996-08-26 1999-05-25 The Regents Of The University Of California Electrochemical detector integrated on microfabricated capillary electrophoresis chips
US6045676A (en) 1996-08-26 2000-04-04 The Board Of Regents Of The University Of California Electrochemical detector integrated on microfabricated capilliary electrophoresis chips
US6060327A (en) 1997-05-14 2000-05-09 Keensense, Inc. Molecular wire injection sensors
US5922183A (en) * 1997-06-23 1999-07-13 Eic Laboratories, Inc. Metal oxide matrix biosensors
US6281006B1 (en) * 1998-08-24 2001-08-28 Therasense, Inc. Electrochemical affinity assay

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945045A (en) * 1984-07-06 1990-07-31 Serono Diagnostics Ltd. Electrochemical methods of assay
WO1990005910A1 (en) * 1988-11-14 1990-05-31 I Stat Corp Wholly microfabricated biosensors and process for the manufacture and use thereof
WO1991016630A1 (en) * 1990-04-12 1991-10-31 Optical Systems Development Partners Device and method for electroimmunoassay
GB2276724A (en) * 1993-03-31 1994-10-05 Cambridge Life Sciences Electrochemical detection of specific binding species
US5534132A (en) * 1995-05-04 1996-07-09 Vreeke; Mark Electrode and method for the detection of an affinity reaction
WO1997027474A1 (en) * 1996-01-26 1997-07-31 Yissum Research Development Company Of The Hebrew University Of Jerusalem Determination of an analyte in a liquid medium
WO1998002743A1 (en) * 1996-07-15 1998-01-22 Sensors Technology Company B.V. Sensors
WO1998035232A2 (en) * 1997-02-06 1998-08-13 The University Of North Carolina At Chapel Hill Electrochemical detection of specific binding

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007106936A1 (en) 2006-03-17 2007-09-27 Newsouth Innovations Pty Limited Electrochemical sensor
US8110079B2 (en) 2006-03-17 2012-02-07 Newsouth Innovations Pty Limited Electrochemical sensor
AU2007229320B2 (en) * 2006-03-17 2013-01-10 Newsouth Innovations Pty Limited Electrochemical sensor
US8506779B2 (en) 2007-06-07 2013-08-13 Sensor Innovations, Inc. Electrochemical sensors
US8197650B2 (en) 2007-06-07 2012-06-12 Sensor Innovations, Inc. Silicon electrochemical sensors
EP2642291A1 (en) * 2009-08-07 2013-09-25 Ohmx Corporation Enzyme triggered redox altering chemical elimination (E-trace) immunoassay
US8530170B2 (en) 2009-08-07 2013-09-10 Ohmx Corporation Enzyme triggered redox altering chemical elimination (E-trace) immunoassay
WO2011034668A1 (en) * 2009-08-07 2011-03-24 Ohmx Corporation Enzyme triggered redox altering chemical elimination (e-trace) immunoassay
US9194836B2 (en) 2009-08-07 2015-11-24 Ohmx Corporation Enzyme triggered redox altering chemical elimination (E-trace) immunoassay
US9624522B2 (en) 2009-08-07 2017-04-18 Ohmx Corporation Single, direct detection of hemoglobin A1c percentage using enzyme triggered redox altering chemical elimination (e-trace) immunoassay
US8758584B2 (en) 2010-12-16 2014-06-24 Sensor Innovations, Inc. Electrochemical sensors
US9250234B2 (en) 2011-01-19 2016-02-02 Ohmx Corporation Enzyme triggered redox altering chemical elimination (E-TRACE) immunoassay
US9340567B2 (en) 2011-11-04 2016-05-17 Ohmx Corporation Chemistry used in biosensors
WO2013106434A1 (en) * 2012-01-09 2013-07-18 Ohmx Corporation Enzyme cascade methods for e-trace assay signal amplification
US9250203B2 (en) 2012-01-09 2016-02-02 Ohmx Corporation Enzyme cascade methods for E-TRACE assay signal amplification
US9404883B2 (en) 2012-07-27 2016-08-02 Ohmx Corporation Electronic measurements of monolayers following homogeneous reactions of their components
US9416390B2 (en) 2012-07-27 2016-08-16 Ohmx Corporation Electric measurement of monolayers following pro-cleave detection of presence and activity of enzymes and other target analytes

Also Published As

Publication number Publication date
JP2002523747A (en) 2002-07-30
US6281006B1 (en) 2001-08-28
ATE218708T1 (en) 2002-06-15
EP1105736A1 (en) 2001-06-13
DE69901714T2 (en) 2003-02-06
US20020137193A1 (en) 2002-09-26
DE69901714D1 (en) 2002-07-11
AU5579099A (en) 2000-03-14
US6576461B2 (en) 2003-06-10
EP1105736B1 (en) 2002-06-05

Similar Documents

Publication Publication Date Title
US6576461B2 (en) Electrochemical affinity assay
US5534132A (en) Electrode and method for the detection of an affinity reaction
US6638716B2 (en) Rapid amperometric verification of PCR amplification of DNA
US20060160100A1 (en) Enzymatic electrochemical detection assay using protective monolayer and device therefor
Duan et al. Separation-free sandwich enzyme immunoassays using microporous gold electrodes and self-assembled monolayer/immobilized capture antibodies
US6214205B1 (en) Determination of an analyte in a liquid medium
Trojanowicz Application of conducting polymers in chemical analysis
Yoon et al. Affinity biosensor for avidin using a double functionalized dendrimer monolayer on a gold electrode
Wittstock Modification and characterization of artificially patterned enzymatically active surfaces by scanning electrochemical microscopy
US6221238B1 (en) Enzymatic-electrochemical one-shot affinity sensor for the quantitative determination of analytes for aqueous media and affinity assay
Limoges et al. Quantitative analysis of catalysis and inhibition at horseradish peroxidase monolayers immobilized on an electrode surface
US20020081588A1 (en) Multi-sensor array for electrochemical recognition of nucleotide sequences and methods
Lu et al. Development of an “electrically wired” amperometric immunosensor for the determination of biotin based on a non-diffusional redox osmium polymer film containing an antibody to the enzyme label horseradish peroxidase
Padeste et al. Amperometric immunosensing using microperoxidase MP-11 antibody conjugates
Campbell et al. Towards immunoassay in whole blood: separationless sandwich-type electrochemical immunoassay based on in-situ generation of the substrate of the labeling enzyme
López et al. Electrochemical immunosensor for the detection of atrazine
Lu et al. Development of an amperometric immunosensor for horseradish peroxidase (HRP) involving a non-diffusional osmium redox polymer co-immobilised with anti-HRP antibody
McNeil et al. Immunosensors for clinical diagnostics
Soldatkin et al. Biosensors based on conductometric detection
Saxena et al. Electrochemical biosensors
Campbell et al. Electrodes based on the electrical “wiring” of enzymes
Campbell Separationless immunoassay and DNA sensing using wired enzyme based amperometric affinity electrodes
Schmidtke Charles N. Campbell and Adam Heller University of Texas, Austin, Texas Daren J. Caruana University College London, London, England
Varfolomeyev et al. Electric “Contacts” between Conductors and Protein Active Sites
Gao et al. Electrodepositing redox polymer on sandwich complex for the improvement of sensitivity in sandwich enzyme-linked immunoassay

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ CZ DE DE DK DK DM EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999942403

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999942403

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1999942403

Country of ref document: EP