WO2000012015A1 - Implant delivery assembly - Google Patents

Implant delivery assembly Download PDF

Info

Publication number
WO2000012015A1
WO2000012015A1 PCT/US1999/019632 US9919632W WO0012015A1 WO 2000012015 A1 WO2000012015 A1 WO 2000012015A1 US 9919632 W US9919632 W US 9919632W WO 0012015 A1 WO0012015 A1 WO 0012015A1
Authority
WO
WIPO (PCT)
Prior art keywords
introducer
pusher
implant
clamp
delivery device
Prior art date
Application number
PCT/US1999/019632
Other languages
French (fr)
Inventor
Daniel R. Kurz
Original Assignee
Micrus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micrus Corporation filed Critical Micrus Corporation
Priority to AU55884/99A priority Critical patent/AU5588499A/en
Publication of WO2000012015A1 publication Critical patent/WO2000012015A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12109Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
    • A61B17/12113Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/1214Coils or wires
    • A61B17/12145Coils or wires having a pre-set deployed three-dimensional shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B2017/1205Introduction devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B2017/1205Introduction devices
    • A61B2017/12054Details concerning the detachment of the occluding device from the introduction device
    • A61B2017/12068Details concerning the detachment of the occluding device from the introduction device detachable by heat
    • A61B2017/12072Details concerning the detachment of the occluding device from the introduction device detachable by heat the heat created by laser light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B2017/1205Introduction devices
    • A61B2017/12054Details concerning the detachment of the occluding device from the introduction device
    • A61B2017/12068Details concerning the detachment of the occluding device from the introduction device detachable by heat
    • A61B2017/12077Joint changing shape upon application of heat, e.g. bi-metal or reversible thermal memory

Definitions

  • This invention relates generally to the field of interventional medical devices, and more particularly concerns an introducer, for securely holding and remotely releasing a vasoocclusive implant at precise locations within the vasculature of a patient.
  • Aneurysm which, especially when located in the brain cause a grave threat to life.
  • An aneurysm is a bulge or bubble which sometimes forms in a blood vessel. These aneurysms can leak or burst, often leading to instant death or paralysis.
  • a previous, extremely invasive procedure for treating aneurysms located in a patient's brain involved cutting open the patient's skull to gain access to the aneurysm and then clamping it off to eliminate blood flow to the aneurysm. It can be appreciated that such procedures are extremely risky and require long recovery times.
  • vasoocclusive implant By implanting a tiny foreign object, referred to herein as a vasoocclusive implant, into the aneurysm an occlusion naturally forms, blocking off blood flow to the aneurism and preventing rupture.
  • tiny helical coils defining narrow cylinders provide very effective vasoocclusive implants because of there ability to form random looped configurations within the aneurysm to effectively fill the aneurysm.
  • One problem which has surfaced in connection with this procedure is finding an effective way to release the vasoocclusive implant within the aneurism. The implant must be precisely positioned within the aneurism. An inadvertent release of such an implant into the patient's bloodstream could pose grave consequences.
  • One device which has been developed to release such a vasoocclusive implant involves affixing the implant to a connector using a heat releasable adhesive.
  • the connector of this invention is heated by light energy transmitted through a fiber optic cable.
  • the use of fiber optic cables has proven to be an effective and minimally invasive technique for deploying such implants.
  • This method provides an effective means of introducing such an implant.
  • such a method suffers a shortcoming in that some amount of adhesive is released into the blood stream. .
  • Another method which has been employed to release an vasoocclusive implant involves setting up an electrolytic reaction to corrode a sacrificial link. In this procedure, an electrical charge is conducted through the catheter to the implant. The base of the implant has a small cross section, which eventually corrodes to the point of breakage to release the implant. This procedure has also proven effective for releasing an implant. However, the process of releasing the implant can take quite a long time, e.g.4 minutes to 1 hour, and since a given operation can often require several implants the time required can be extensive, thus increasing the risk to the patient. In addition, it is not clear what effect such an electrical current, conducted to the patient's brain, might have on the patient. Furthermore, this procedure also emits byproducts of the electrolytic reaction directly into the patient's bloodstream.
  • One such device employs a connector in the form of a bent wire.
  • the connector disposed within the center of the implant, is bent to engage the inner walls of the implant to hold the implant in place.
  • transition temperature returns to an unbent shape.
  • the connector can be pulled out from the implant, leaving the implant behind. While such a device can effectively release engagement of the implant, it does not eject the implant.
  • the implant remains disposed about the wire. There is always the chance that upon removing the wire from the center of the implant, the surgeon may inadvertently move the implant, which must be precisely located.
  • a hollow catheter is inserted into the vascular system of the patient with a guide wire held within the lumen of the catheter.
  • the guide wire is removed from the catheter and the implant inserted, followed by a pusher wire.
  • the pusher wire has an end formed with screw threads which engages the inside of the implant to securely hold the implant onto the end of the pusher wire.
  • the pusher wire is then used to push the implant through the catheter to the desired site in the vein. Once the implant is in place in the vein, the pusher wire is twisted to unscrew it from the implant. While this procedure provides an effective means of placing the implant and can securely hold the implant until it is precisely located, it also has certain limitations.
  • the present invention provides a device for introducing a vasoocclusive implant at a precise location within a patients vasculature.
  • the device comprises an introducer in the form of a hollow tapered tube.
  • the introducer is formed of a shape memory material and is sized to contain a vasoocclusive implant, and a pusher which can slide within the introducer to eject the implant.
  • the introducer clamps the pusher in place until the implant is to be ejected.
  • the introducer is heated.
  • the introducer operates to release the pusher so that it can move within the introducer to eject the implant.
  • a shape memory polymer exhibits the property that, when raised above its glass transition temperature, deformed and then cooled, it maintains its pre-deformed shape until subsequently heated again to its glass transition temperature at which time it returns to its pre-deformed shape.
  • the introducer in which the implant and pusher are housed is constructed of such a shape memory polymer. Deforming the introducer radially inwardly while it is above its glass transition temperature, forms a clamp to hold the pusher in place within the introducer. Taking advantage of the shape memory property of the material, when the implant is to be released the introducer is heated to its glass transition temperature. This causes the introducer to return to its pre-deformed shape, thereby removing the clamp and allowing the pusher to move axially within the introducer to release the implant.
  • a fiber optic cable is used to guide the implantation device through the patient's vascular system as well as to supply light energy to heat the introducer to release the implant.
  • a fiber optic cable has the advantage of being very fine to fit withing the narrow venous pathways in the brain.
  • a fiber optic cable can transmit energy to the introducer without heating the tissue through which the fiber is routed.
  • the pusher is biased toward the distal extremity of the introducer so that when the clamp is released, the pusher automatically forces the implant out of the end of the introducer.
  • the fiber optic cable is housed within a sheath. With the cable attached to the pusher and the sheath attached to the introducer, manipulation of the cable relative to the introducer can cause movement of the pusher within the introducer to eject the implant from the introducer.
  • This embodiment has the advantage of providing the surgeon with greater control over the operation of pusher when releasing an implant.
  • the fiber optic cable can be provided with a jacket to provide added stiffness as needed to manipulate the pusher.
  • FIGURE 1 is a fragmentary cross-sectional view of the device of the present invention being inserted into an aneurysm;
  • FIG. 2 is a cross sectional view, taken along line 2 - 2 in FIG. 1 , shown in enlarged scale and rotated 75 degrees counterclockwise;
  • FIG. 3 is a cross sectional view, similar to FIG. 2, showing the introducer in an undamped configuration with the implant being ejected;
  • FIG. 4 is a fragmentary cross-sectional view of the device, similar to FIG. 1 , of the present invention being inserted into an aneurysm with an implant being ejected and filling the aneurysm;
  • FIG. 5 is a fragmentary view, in enlarged scale, taken from circle 6 in FIG. 2; and FIG.6 is a view similar to FIG.2 , showing an alternate embodiment of the invention.
  • FIGS. 1 & 2 the present invention, as illustrated in FIGS. 1 & 2, is embodied in a system, generally designated 20, capable of inserting an implant 22 within the vascular system of a patient.
  • the device employs an introducer, generally designated 24, and a pusher, generally designated 26, contained within the introducer, to eject the implant once it is precisely located within the vasculature of the patient.
  • the introducer 24 is guided into position by a cable, generally designated 28.
  • the introducer 24 of the present invention is in the form of a narrow, hollow, tapered tube having proximal and distal ends and having a smaller diameter at its distal end than at its proximal end.
  • the taper allows the introducer 24 to be more easily guided within the vascular system and provides greater flexibility at its distal end than at its proximal end to facilitating bending the introducer through the tortuous bends of the vascular system.
  • the introducer 24 includes a through extending bore 36, extending from its distal end to its proximal end. The bore contains both the implant 22 and the pusher 26.
  • the introducer 24 is constructed of a shape memory polymer having the advantage that when heated to its glass transition temperature and subsequently deformed and then cooled, it maintains its deformed shape until again heated to its glass transition temperature.
  • the introducer 24 includes a clamp 30 formed on the introducer while it is above its transition temperature.
  • the clamp 30 can be of various shapes, and by way of example can be formed as crimps as illustrated in FIG. 2 or as an annular ring.
  • the clamps 30 hold the pusher 26 in position within the introducer 24 until the implant 22 is to be released.
  • the pusher 26 is free to move axially within the bore 36.
  • the distal end of the introducer 24 has a reduced inner diameter forming a stop 31 having a sufficiently large diameter to allow passage of the implant 22 therethrough, but being small enough to prevent the pusher 26 from coming out of the introducer.
  • the cable 28 has at its core an optical fiber 32 which is surrounded by a jacket 33.
  • the optical fiber 32 provides a conduit for the transmission of light energy to heat the pusher 26 and introducer 24.
  • the jacket 33 provides the strength and flexibility to allow the cable 28 be fed through the vasculature.
  • the cable terminates at its proximal end at a light source (not shown) such as a laser, and connects at its distal end to the introducer 24 through the pusher 26.
  • the pusher 26 is generally in the form of a rod having proximal and distal ends.
  • the proximal end of the rod terminates near the distal termination of the fiber 32 of the cable 28 so that light energy transmitted through the cable can be imparted to the pusher 26 to heat the pusher.
  • the thermal energy from the pusher 26 then conducts to the introducer 24 to heat the introducer.
  • a coil spring 34 located at the proximal end of the pusher 26, biases the pusher in the distal direction. While it will be apparent to one skilled in the art that other biasing mechanisms could also be employed, a coil spring is preferred because of its simplicity and its ability to impart an axial force to the pusher 26.
  • the pusher 26 in this embodiment has a reduced cross section at its proximal end defining a pusher shoulder 38 against which the distal end of the spring 34 seats.
  • the proximal end of the bore 36 has a reduced diameter forming an introducer shoulder 40 against which the proximal end of the spring 34 seats.
  • the diameter of the through extending bore 36 at the proximal end of the introducer 24 is sufficiently small to contain the spring 34, yet is large enough to allow passage of the proximal end of the pusher 26 therethrough.
  • the exterior of the introducer 24 includes at its proximal end a reduced diameter portion forming an annular notch 42, extending through the proximal end of the introducer, over which the jacket 33 of the cable 28 fits. In this way the cable 28 can be securely attached to the introducer 24 while providing a flush surface at the juncture of the introducer and cable to promote the smooth passage of the device 20 through the patient's vascular system, avoiding tissue damage.
  • the introducer 24 contains the implant 22 within its bore 36 at its distal end opposite the spring 34.
  • the implant 22 abuts the pusher 26 so that axial movement of the pusher in the distal direction, forces the implant out of the distal end of the introducer.
  • the implant can be of many configurations as required by the particular application, but preferably forms a cylindrical helix. Experience has shown that a cylindrical helix provides both the strength and flexibility necessary to allow the implant to be forced into an aneurysm while allowing the implant to bend into various looped configuration to fill the aneurysm as illustrated in FIG. 4.
  • the introducer 24 is first molded of a shape memory polymer without a clamp 30.
  • the cable 28 is then attached to the proximal end of the introducer 24 with the jacket 33 fitting onto the notch 42 on the introducer.
  • the jacket 28 can be constructed by placing a layer of polymeric heat shrink tubing such as polyethylene terephthalate over the fiber 32 and over the annular notch 42. Each layer of heat shrink tubing is shrunk onto the fiber using a heat gun to heat the tubing to approximately 650° F, starting at one end and moving the heat gun at approximately three inches per second along the axis of the cable. The proximal end of the cable can then be connected to the light source.
  • the coil spring 34 is then inserted into the bore 36 from the distal end of the introducer 24. With the spring resting upon the introducer shoulder 40, the pusher 26 is inserted into the distal end of the introducer 24 so that the distal end of the spring rests upon the pusher shoulder 38.
  • the stop 31 (FIG. 5) is sufficiently elastic to allow passage of the pusher 26 when forced into the introducer 24, while preventing the pusher from coming out of the introducer upon deployment of the implant. The pusher 26 is forced further in the proximal direction within the introducer to compress the spring 34.
  • the clamp 30 is formed by heating the introducer 24 to its glass transition temperature and then radially deforming the introducer to form crimps or an annular ring to grip the pusher 26 and thereby hold it in place within the introducer.
  • the introducer 24 is then cooled.
  • the vasoocclusive implant 22 is placed into the distal end of the bore of the introducer 24 to be securely held therein. So long as the introducer 24 remains below its glass transition temperature, the clamp 30 holds the pusher 26 in its proximal position in the bore with the spring 34 compressed. However, once the introducer 24 is heated to its transition temperature, the introducer returns to its pre-deformed configuration. The clamp 30 releases, allowing the spring 34 to force the pusher 26 in the distal direction forcing the vasoocclusive implant 22 out of the distal end of the introducer 24.
  • the cable generally referred to as 28' is slidably encased within a sheath 46 which attaches at its distal end to the proximal end of the introducer 24".
  • the distal end of the cable 28 attaches to the proximal end of the pusher 26'.
  • the proximal end of the pusher 26 has a reduced diameter defining an annular pusher notch 48' on which the jacket 33' of the cable 28' tightly fits.
  • the proximal end of the introducer 24 forms an annular introducer notch 42' over which the sheath 46 tightly fits.
  • This embodiment does not employ a spring to bias the pusher. Instead, manipulation of the cable 28' within the sheath 46 causes movement of the pusher 26' relative to the introducer 24".
  • a cable 28' is first constructed similar to the previous preferred embodiment, however the jacket 33' is shrunk onto the annular pusher notch 48' with the distal end of the optical fiber 32' terminating at the proximal end of the pusher 26".
  • the introducer 24" is then slid over the cable 28', starting at the proximal end of the cable, until the pusher 26' is enclosed sufficiently deep within the bore to provide a space in the distal end of the bore to hold the implant 22.
  • the introducer 24" is then heated to its transition temperature as in the previous embodiment and a clamp 30 formed thereon to hold the pusher in place within the bore.
  • the sheath 46 is then slipped over the cable 28', starting at the proximal end of the cable, until the distal end of the sheath fits over and affixes to the introducer notch 42'.
  • the proximal end of the cable 28' is then connected to light source.
  • present invention provides an effective mechanism for releasing a vasoocclusive implant.
  • the device allows a surgeon to precisely control both the time and location of implantation, and does not introduce any other foreign matter, such as electrolytic byproducts or adhesive, into the patients vascular system. Ejecting the implant out of the end of the introducer precludes the possibility inadvertent movement of the implant when withdrawing the cable.
  • implant can be very quickly released once the introducer is properly placed, reducing the risk of incorrectly inserting the implant and also reducing the risk to the patient by reducing surgery time.

Abstract

An introducer for retaining an implant (22) placed within an implant delivery device (20) having a pusher (26) for displacing the implant (22) includes a tube (24) and a clamp (30). The interior of the tube (24) defines a passage (36) for guiding the movement of the pusher (26). The clamp (30) is made of a shape memory material disposed in the passage (36) about the pusher (26). The clamp (30) is normally operative to grip the pusher (26) to hold it in position relative to the tube (24) and further operative in response to an elevated temperature to release the pusher (26) for movement relative to the tube (24). The clamp (30) may be formed integrally with the tube (24) and may comprise at least one crimp or an annular ring surrounding the tube (24). The tube is tapered to be narrower at its distal end and may be formed of a shaped memory polymer material.

Description

IMPLANT DELIVERY ASSEMBLY
BACKGROUND OF THE INVENTION
Field of the Invention:
This invention relates generally to the field of interventional medical devices, and more particularly concerns an introducer, for securely holding and remotely releasing a vasoocclusive implant at precise locations within the vasculature of a patient.
Description of Related Art:
The medical community has long sought methods to treat aneurysms which, especially when located in the brain cause a grave threat to life. An aneurysm is a bulge or bubble which sometimes forms in a blood vessel. These aneurysms can leak or burst, often leading to instant death or paralysis. A previous, extremely invasive procedure for treating aneurysms located in a patient's brain involved cutting open the patient's skull to gain access to the aneurysm and then clamping it off to eliminate blood flow to the aneurysm. It can be appreciated that such procedures are extremely risky and require long recovery times.
More recently, the medical community discovered that by implanting a tiny foreign object, referred to herein as a vasoocclusive implant, into the aneurysm an occlusion naturally forms, blocking off blood flow to the aneurism and preventing rupture. The medical community also discovered that tiny helical coils defining narrow cylinders provide very effective vasoocclusive implants because of there ability to form random looped configurations within the aneurysm to effectively fill the aneurysm. One problem which has surfaced in connection with this procedure is finding an effective way to release the vasoocclusive implant within the aneurism. The implant must be precisely positioned within the aneurism. An inadvertent release of such an implant into the patient's bloodstream could pose grave consequences.
One device which has been developed to release such a vasoocclusive implant involves affixing the implant to a connector using a heat releasable adhesive. The connector of this invention is heated by light energy transmitted through a fiber optic cable. The use of fiber optic cables has proven to be an effective and minimally invasive technique for deploying such implants. This method provides an effective means of introducing such an implant. However, such a method suffers a shortcoming in that some amount of adhesive is released into the blood stream. .
Another method which has been employed to release an vasoocclusive implant involves setting up an electrolytic reaction to corrode a sacrificial link. In this procedure, an electrical charge is conducted through the catheter to the implant. The base of the implant has a small cross section, which eventually corrodes to the point of breakage to release the implant. This procedure has also proven effective for releasing an implant. However, the process of releasing the implant can take quite a long time, e.g.4 minutes to 1 hour, and since a given operation can often require several implants the time required can be extensive, thus increasing the risk to the patient. In addition, it is not clear what effect such an electrical current, conducted to the patient's brain, might have on the patient. Furthermore, this procedure also emits byproducts of the electrolytic reaction directly into the patient's bloodstream.
Still other procedures have been developed which take advantage of the property exhibited by certain materials to, upon being deformed and later raised to a given temperature, return to their pre-deformed shape. One such device employs a connector in the form of a bent wire. The connector, disposed within the center of the implant, is bent to engage the inner walls of the implant to hold the implant in place. When the implant is to be released, the connector is heated and, upon reaching is transition temperature, returns to an unbent shape. At this point the connector can be pulled out from the implant, leaving the implant behind. While such a device can effectively release engagement of the implant, it does not eject the implant. The implant remains disposed about the wire. There is always the chance that upon removing the wire from the center of the implant, the surgeon may inadvertently move the implant, which must be precisely located.
In still another method of inserting a vasoocclusive implant, a hollow catheter is inserted into the vascular system of the patient with a guide wire held within the lumen of the catheter. Once the catheter is properly in place, the guide wire is removed from the catheter and the implant inserted, followed by a pusher wire. The pusher wire has an end formed with screw threads which engages the inside of the implant to securely hold the implant onto the end of the pusher wire. The pusher wire is then used to push the implant through the catheter to the desired site in the vein. Once the implant is in place in the vein, the pusher wire is twisted to unscrew it from the implant. While this procedure provides an effective means of placing the implant and can securely hold the implant until it is precisely located, it also has certain limitations. Removal of the guide wire and insertion of the pusher wire through the entire length of the catheter is time consuming, and any fluid or air disposed within the catheter will be flushed into the patient's bloodstream while the implant and pusher wire are fed through the catheter. In addition, the process of unscrewing the pusher wire from the implant can move the implant, leading an improperly placed implant. Thus there remains a need for a device which can quickly eject an implant at a precise location within a patients vasculature. Such a device would preferably take advantage of the benefits provided by fiber optic technology for activation of a release mechanism. Also such a device would be capable of releasing the implant upon demand by the operator, without introducing extraneous matter or an electrical charge into the patient.
SUMMARY OF THE INVENTION
Briefly, and in general terms, the present invention provides a device for introducing a vasoocclusive implant at a precise location within a patients vasculature. The device comprises an introducer in the form of a hollow tapered tube. The introducer is formed of a shape memory material and is sized to contain a vasoocclusive implant, and a pusher which can slide within the introducer to eject the implant. The introducer clamps the pusher in place until the implant is to be ejected. When the implant is to be ejected the introducer is heated. Upon reaching the aforementioned predetermined temperature, the introducer operates to release the pusher so that it can move within the introducer to eject the implant.
A shape memory polymer exhibits the property that, when raised above its glass transition temperature, deformed and then cooled, it maintains its pre-deformed shape until subsequently heated again to its glass transition temperature at which time it returns to its pre-deformed shape. The introducer in which the implant and pusher are housed is constructed of such a shape memory polymer. Deforming the introducer radially inwardly while it is above its glass transition temperature, forms a clamp to hold the pusher in place within the introducer. Taking advantage of the shape memory property of the material, when the implant is to be released the introducer is heated to its glass transition temperature. This causes the introducer to return to its pre-deformed shape, thereby removing the clamp and allowing the pusher to move axially within the introducer to release the implant.
In a presently preferred embodiment a fiber optic cable is used to guide the implantation device through the patient's vascular system as well as to supply light energy to heat the introducer to release the implant. A fiber optic cable has the advantage of being very fine to fit withing the narrow venous pathways in the brain. In addition a fiber optic cable can transmit energy to the introducer without heating the tissue through which the fiber is routed.
In another preferred embodiment, the pusher is biased toward the distal extremity of the introducer so that when the clamp is released, the pusher automatically forces the implant out of the end of the introducer. This device has the advantage of simplicity and allows a very narrow cable to be used to guide the introducer into place within the patient's vascular system.
In another embodiment, the fiber optic cable is housed within a sheath. With the cable attached to the pusher and the sheath attached to the introducer, manipulation of the cable relative to the introducer can cause movement of the pusher within the introducer to eject the implant from the introducer. This embodiment has the advantage of providing the surgeon with greater control over the operation of pusher when releasing an implant. The fiber optic cable can be provided with a jacket to provide added stiffness as needed to manipulate the pusher.
These and other features and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawing, which illustrate by way of example the features of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGURE 1 is a fragmentary cross-sectional view of the device of the present invention being inserted into an aneurysm; FIG. 2 is a cross sectional view, taken along line 2 - 2 in FIG. 1 , shown in enlarged scale and rotated 75 degrees counterclockwise;
FIG. 3 is a cross sectional view, similar to FIG. 2, showing the introducer in an undamped configuration with the implant being ejected;
FIG. 4 is a fragmentary cross-sectional view of the device, similar to FIG. 1 , of the present invention being inserted into an aneurysm with an implant being ejected and filling the aneurysm;
FIG. 5 is a fragmentary view, in enlarged scale, taken from circle 6 in FIG. 2; and FIG.6 is a view similar to FIG.2 , showing an alternate embodiment of the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
As shown in the drawings, which are provided for purposes of illustration and not by way of limitation, the present invention, as illustrated in FIGS. 1 & 2, is embodied in a system, generally designated 20, capable of inserting an implant 22 within the vascular system of a patient. The device employs an introducer, generally designated 24, and a pusher, generally designated 26, contained within the introducer, to eject the implant once it is precisely located within the vasculature of the patient. The introducer 24 is guided into position by a cable, generally designated 28.
With reference to FIG. 1 , the introducer 24 of the present invention is in the form of a narrow, hollow, tapered tube having proximal and distal ends and having a smaller diameter at its distal end than at its proximal end. The taper allows the introducer 24 to be more easily guided within the vascular system and provides greater flexibility at its distal end than at its proximal end to facilitating bending the introducer through the tortuous bends of the vascular system. The introducer 24 includes a through extending bore 36, extending from its distal end to its proximal end. The bore contains both the implant 22 and the pusher 26.
The introducer 24 is constructed of a shape memory polymer having the advantage that when heated to its glass transition temperature and subsequently deformed and then cooled, it maintains its deformed shape until again heated to its glass transition temperature. The introducer 24 includes a clamp 30 formed on the introducer while it is above its transition temperature. The clamp 30 can be of various shapes, and by way of example can be formed as crimps as illustrated in FIG. 2 or as an annular ring. The clamps 30 hold the pusher 26 in position within the introducer 24 until the implant 22 is to be released. When the device 20 is properly positioned in the patient's vasculature and the implant 22 is ready to be released, heating the introducer 24 to its transition temperature causes the introducer to return to its original undamped configuration as illustrated in FIG. 3. With the introducer 24' shaped as it was previous to when the clamps 30 (FIG. 2) were formed, the pusher 26 is free to move axially within the bore 36. With reference to FIG. 5, the distal end of the introducer 24 has a reduced inner diameter forming a stop 31 having a sufficiently large diameter to allow passage of the implant 22 therethrough, but being small enough to prevent the pusher 26 from coming out of the introducer.
Referring to FIG.2, in a preferred embodiment of the invention, the cable 28 has at its core an optical fiber 32 which is surrounded by a jacket 33. The optical fiber 32 provides a conduit for the transmission of light energy to heat the pusher 26 and introducer 24. The jacket 33 provides the strength and flexibility to allow the cable 28 be fed through the vasculature. The cable terminates at its proximal end at a light source (not shown) such as a laser, and connects at its distal end to the introducer 24 through the pusher 26.
The pusher 26, is generally in the form of a rod having proximal and distal ends. The proximal end of the rod terminates near the distal termination of the fiber 32 of the cable 28 so that light energy transmitted through the cable can be imparted to the pusher 26 to heat the pusher. The thermal energy from the pusher 26 then conducts to the introducer 24 to heat the introducer.
In a preferred embodiment of the invention, a coil spring 34, located at the proximal end of the pusher 26, biases the pusher in the distal direction. While it will be apparent to one skilled in the art that other biasing mechanisms could also be employed, a coil spring is preferred because of its simplicity and its ability to impart an axial force to the pusher 26. The pusher 26 in this embodiment has a reduced cross section at its proximal end defining a pusher shoulder 38 against which the distal end of the spring 34 seats. Likewise, the proximal end of the bore 36 has a reduced diameter forming an introducer shoulder 40 against which the proximal end of the spring 34 seats. Although the spring 34 biases the pusher 26 in the distal direction, the pusher is held fixedly in the proximal position by the clamps 30 which bind against the pusher.
The diameter of the through extending bore 36 at the proximal end of the introducer 24 is sufficiently small to contain the spring 34, yet is large enough to allow passage of the proximal end of the pusher 26 therethrough. The exterior of the introducer 24 includes at its proximal end a reduced diameter portion forming an annular notch 42, extending through the proximal end of the introducer, over which the jacket 33 of the cable 28 fits. In this way the cable 28 can be securely attached to the introducer 24 while providing a flush surface at the juncture of the introducer and cable to promote the smooth passage of the device 20 through the patient's vascular system, avoiding tissue damage.
The introducer 24 contains the implant 22 within its bore 36 at its distal end opposite the spring 34. The implant 22 abuts the pusher 26 so that axial movement of the pusher in the distal direction, forces the implant out of the distal end of the introducer. The implant can be of many configurations as required by the particular application, but preferably forms a cylindrical helix. Experience has shown that a cylindrical helix provides both the strength and flexibility necessary to allow the implant to be forced into an aneurysm while allowing the implant to bend into various looped configuration to fill the aneurysm as illustrated in FIG. 4. To construct the device 20 of this embodiment of the invention the introducer 24 is first molded of a shape memory polymer without a clamp 30. The cable 28 is then attached to the proximal end of the introducer 24 with the jacket 33 fitting onto the notch 42 on the introducer. The jacket 28 can be constructed by placing a layer of polymeric heat shrink tubing such as polyethylene terephthalate over the fiber 32 and over the annular notch 42. Each layer of heat shrink tubing is shrunk onto the fiber using a heat gun to heat the tubing to approximately 650° F, starting at one end and moving the heat gun at approximately three inches per second along the axis of the cable. The proximal end of the cable can then be connected to the light source.
The coil spring 34 is then inserted into the bore 36 from the distal end of the introducer 24. With the spring resting upon the introducer shoulder 40, the pusher 26 is inserted into the distal end of the introducer 24 so that the distal end of the spring rests upon the pusher shoulder 38. The stop 31 (FIG. 5) is sufficiently elastic to allow passage of the pusher 26 when forced into the introducer 24, while preventing the pusher from coming out of the introducer upon deployment of the implant. The pusher 26 is forced further in the proximal direction within the introducer to compress the spring 34. With the pusher 26 held in this position, the clamp 30 is formed by heating the introducer 24 to its glass transition temperature and then radially deforming the introducer to form crimps or an annular ring to grip the pusher 26 and thereby hold it in place within the introducer. The introducer 24 is then cooled. The vasoocclusive implant 22 is placed into the distal end of the bore of the introducer 24 to be securely held therein. So long as the introducer 24 remains below its glass transition temperature, the clamp 30 holds the pusher 26 in its proximal position in the bore with the spring 34 compressed. However, once the introducer 24 is heated to its transition temperature, the introducer returns to its pre-deformed configuration. The clamp 30 releases, allowing the spring 34 to force the pusher 26 in the distal direction forcing the vasoocclusive implant 22 out of the distal end of the introducer 24.
With reference to FIG. 6, in an alternate embodiment of the invention, the cable generally referred to as 28' is slidably encased within a sheath 46 which attaches at its distal end to the proximal end of the introducer 24". The distal end of the cable 28 attaches to the proximal end of the pusher 26'. The proximal end of the pusher 26 has a reduced diameter defining an annular pusher notch 48' on which the jacket 33' of the cable 28' tightly fits. Similarly, the proximal end of the introducer 24 forms an annular introducer notch 42' over which the sheath 46 tightly fits. This embodiment does not employ a spring to bias the pusher. Instead, manipulation of the cable 28' within the sheath 46 causes movement of the pusher 26' relative to the introducer 24".
To construct this embodiment, a cable 28' is first constructed similar to the previous preferred embodiment, however the jacket 33' is shrunk onto the annular pusher notch 48' with the distal end of the optical fiber 32' terminating at the proximal end of the pusher 26". The introducer 24" is then slid over the cable 28', starting at the proximal end of the cable, until the pusher 26' is enclosed sufficiently deep within the bore to provide a space in the distal end of the bore to hold the implant 22. The introducer 24" is then heated to its transition temperature as in the previous embodiment and a clamp 30 formed thereon to hold the pusher in place within the bore. The sheath 46 is then slipped over the cable 28', starting at the proximal end of the cable, until the distal end of the sheath fits over and affixes to the introducer notch 42'. The proximal end of the cable 28' is then connected to light source.
From the forgoing it will be appreciated by those skilled in the art that present invention provides an effective mechanism for releasing a vasoocclusive implant. The device allows a surgeon to precisely control both the time and location of implantation, and does not introduce any other foreign matter, such as electrolytic byproducts or adhesive, into the patients vascular system. Ejecting the implant out of the end of the introducer precludes the possibility inadvertent movement of the implant when withdrawing the cable. In addition, implant can be very quickly released once the introducer is properly placed, reducing the risk of incorrectly inserting the implant and also reducing the risk to the patient by reducing surgery time.
While several particular forms of the invention have been illustrated and described, it will be apparent that various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited, except as by the appended claims.

Claims

WHAT IS CLAIMED IS:
1. An introducer for retaining an implant placed within an implant delivery device having a pusher for displacing said implant, said introducer comprising: a tube, the interior of said tube defining a passage for guiding the movement of said pusher; and a clamp of shape memory material disposed in said passage about said pusher and normally operative to grip said pusher to hold it in position relative to said tube and further operative in response to an elevated temperature to release said pusher for movement relative to said tube.
2. The introducer of claim 1 , wherein said clamp and tube are formed integrally.
3. The introducer of claim 2 , wherein said clamp comprises at least one crimp.
4. The introducer of claim 2, wherein said clamp comprises an annular ring surrounding said tube.
5. The introducer of claim 1, wherein said tube is tapered to be narrower at its distal end.
6. The introducer of claim 1 , wherein the shaped memory material is a polymer material.
7. A vasoocclusive implant delivery device, comprising: an introducer for insertion into a vascular system to dispose a distal end at an embolism site, said introducer formed with a wall defining a pusher passage; an implant disposed in said distal end; a pusher housed in said introducer, adjacent said implant; and a clamp of shape memory material disposed in said passage about said pusher and normally operative to grip said pusher to hold it in position relative to said introducer and further operative in response to an elevated temperature to release said pusher for movement relative to said introducer.
8. The implant delivery device of claim 7, wherein said clamp is formed integrally with said wall.
9. The implant delivery device of claim 7, wherein said introducer is tapered to be narrower at its distal end.
10. The implant delivery device of claim 7, further comprising a fiber optic cable having proximal and distal ends, connected at said proximal end to a source of light energy and connected at said distal end to said introducer.
11. The implant delivery device of claim 10, wherein said clamp is heated by light energy transmitted by said fiber optic cable.
12. The implant delivery device of claim 7, wherein said clamp is heated with electrical energy.
13. The implant delivery device of claim 7, wherein said pusher is biased in said distal direction to force said implant out of said distal extremity upon said release of said clamp.
14. The implant delivery device of claim 13, further comprising a spring, biasing said pusher in said distal direction.
15. The implant delivery device of claim 7, further comprising: a sheath having a distal end and attached at said distal end to said introducer; and a fiber optical cable within said sheath, having proximal and distal ends, attached at said distal end to said pusher and operable at said proximal end to manipulate said pusher within said introducer when said clamp is in said released configuration.
16. The implant delivery device of claim 15, wherein said cable is slidable within said sheath.
17. The implant delivery device of claim 15, wherein said cable comprises: an optical fiber; and a jacket, encasing said fiber and slidable within said sheath.
18. A method of manufacturing a vasoocclusive implant delivery device, comprising the steps of: selecting an introducer, having a wall defining a pusher passage, said introducer constructed of a shape memory material having the property that when heated to a predetermined temperature, deformed and cooled it returns to its original undeformed shape upon subsequently being heated to said predetermined temperature; inserting a pusher into said passage; heating said introducer to said predetermined temperature; deforming said wall to create a clamp to grip said pusher to hold it in position; and cooling said introducer.
19. The method of claim 18, further comprising the steps of: attaching a distal end of a fiber optic cable to said pusher; fitting a sheath over said fiber optic cable; and attaching said sheath to said introducer.
20. The method of claim 18, further comprising the step of prior to inserting said pusher into said passage, inserting a spring into said introducer.
PCT/US1999/019632 1998-08-27 1999-08-27 Implant delivery assembly WO2000012015A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU55884/99A AU5588499A (en) 1998-08-27 1999-08-27 Implant delivery assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/141,166 1998-08-27
US09/141,166 US6149664A (en) 1998-08-27 1998-08-27 Shape memory pusher introducer for vasoocclusive devices

Publications (1)

Publication Number Publication Date
WO2000012015A1 true WO2000012015A1 (en) 2000-03-09

Family

ID=22494477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/019632 WO2000012015A1 (en) 1998-08-27 1999-08-27 Implant delivery assembly

Country Status (3)

Country Link
US (1) US6149664A (en)
AU (1) AU5588499A (en)
WO (1) WO2000012015A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013705A1 (en) * 2000-08-10 2002-02-21 Micrus Corporation Intravascular delivery system

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL128261A0 (en) 1999-01-27 1999-11-30 Disc O Tech Medical Tech Ltd Expandable element
EP1447057A1 (en) * 1998-09-30 2004-08-18 Bard Peripheral Vascular, Inc. Delivery mechanism for implantable stent
US7621950B1 (en) 1999-01-27 2009-11-24 Kyphon Sarl Expandable intervertebral spacer
US6939361B1 (en) 1999-09-22 2005-09-06 Nmt Medical, Inc. Guidewire for a free standing intervascular device having an integral stop mechanism
US6544225B1 (en) * 2000-02-29 2003-04-08 Cordis Neurovascular, Inc. Embolic coil hydraulic deployment system with purge mechanism
CA2419196A1 (en) 2000-08-11 2002-02-21 Sdgi Holdings, Inc. Surgical instrumentation and method for treatment of the spine
US6589265B1 (en) * 2000-10-31 2003-07-08 Endovascular Technologies, Inc. Intrasaccular embolic device
US6743251B1 (en) * 2000-11-15 2004-06-01 Scimed Life Systems, Inc. Implantable devices with polymeric detachment junction
WO2003022344A2 (en) 2001-09-06 2003-03-20 Nmt Medical, Inc. Flexible delivery system
US20060052821A1 (en) 2001-09-06 2006-03-09 Ovalis, Inc. Systems and methods for treating septal defects
US6776784B2 (en) 2001-09-06 2004-08-17 Core Medical, Inc. Clip apparatus for closing septal defects and methods of use
US6702835B2 (en) 2001-09-07 2004-03-09 Core Medical, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US20030050648A1 (en) 2001-09-11 2003-03-13 Spiration, Inc. Removable lung reduction devices, systems, and methods
US6592594B2 (en) 2001-10-25 2003-07-15 Spiration, Inc. Bronchial obstruction device deployment system and method
US20060292206A1 (en) 2001-11-26 2006-12-28 Kim Steven W Devices and methods for treatment of vascular aneurysms
US20030154988A1 (en) * 2002-02-21 2003-08-21 Spiration, Inc. Intra-bronchial device that provides a medicant intra-bronchially to the patient
US6929637B2 (en) 2002-02-21 2005-08-16 Spiration, Inc. Device and method for intra-bronchial provision of a therapeutic agent
US20030216769A1 (en) 2002-05-17 2003-11-20 Dillard David H. Removable anchored lung volume reduction devices and methods
US20030181922A1 (en) 2002-03-20 2003-09-25 Spiration, Inc. Removable anchored lung volume reduction devices and methods
AU2003286534A1 (en) * 2002-10-21 2004-05-13 The General Hospital Corporation D/B/A Massachusetts General Hospital Catheter and radiofrequency coil with annular b1 filed
US7481821B2 (en) 2002-11-12 2009-01-27 Thomas J. Fogarty Embolization device and a method of using the same
US20040260382A1 (en) 2003-02-12 2004-12-23 Fogarty Thomas J. Intravascular implants and methods of using the same
US20040176788A1 (en) * 2003-03-07 2004-09-09 Nmt Medical, Inc. Vacuum attachment system
US20040210248A1 (en) * 2003-03-12 2004-10-21 Spiration, Inc. Apparatus, method and assembly for delivery of intra-bronchial devices
US7658747B2 (en) 2003-03-12 2010-02-09 Nmt Medical, Inc. Medical device for manipulation of a medical implant
US7473266B2 (en) 2003-03-14 2009-01-06 Nmt Medical, Inc. Collet-based delivery system
EP1614403B2 (en) 2003-03-14 2014-06-18 Depuy Spine, Inc. Hydraulic device for the injection of bone cement in percutaneous vertebroplasty
US8066713B2 (en) 2003-03-31 2011-11-29 Depuy Spine, Inc. Remotely-activated vertebroplasty injection device
US7100616B2 (en) 2003-04-08 2006-09-05 Spiration, Inc. Bronchoscopic lung volume reduction method
BRPI0410324A (en) 2003-05-15 2006-05-23 Biomerix Corp implantable device, elastomeric matrix production lyophilization processes having a cross-linked structure, polymerization for cross-linked elastomeric matrix preparation and cross-linked composite elastomeric implant preparation, and method for treating an orthopedic disorder
WO2006011152A2 (en) 2004-06-17 2006-02-02 Disc-O-Tech Medical Technologies, Ltd. Methods for treating bone and other tissue
US8415407B2 (en) 2004-03-21 2013-04-09 Depuy Spine, Inc. Methods, materials, and apparatus for treating bone and other tissue
EP1648548B1 (en) * 2003-07-18 2008-06-11 Boston Scientific Limited Medical devices
US20050015110A1 (en) 2003-07-18 2005-01-20 Fogarty Thomas J. Embolization device and a method of using the same
US7533671B2 (en) 2003-08-08 2009-05-19 Spiration, Inc. Bronchoscopic repair of air leaks in a lung
WO2005034763A1 (en) 2003-09-11 2005-04-21 Nmt Medical, Inc. Devices, systems, and methods for suturing tissue
US7789891B2 (en) * 2003-09-23 2010-09-07 Boston Scientific Scimed, Inc. External activation of vaso-occlusive implants
US20050065501A1 (en) * 2003-09-23 2005-03-24 Scimed Life Systems, Inc. Energy activated vaso-occlusive devices
US8579908B2 (en) 2003-09-26 2013-11-12 DePuy Synthes Products, LLC. Device for delivering viscous material
JP4496223B2 (en) 2003-11-06 2010-07-07 エヌエムティー メディカル, インコーポレイティッド Septal penetration device
US8292910B2 (en) 2003-11-06 2012-10-23 Pressure Products Medical Supplies, Inc. Transseptal puncture apparatus
US20060241682A1 (en) * 2003-12-08 2006-10-26 Kurz Daniel R Intravascular device push wire delivery system
US7763077B2 (en) 2003-12-24 2010-07-27 Biomerix Corporation Repair of spinal annular defects and annulo-nucleoplasty regeneration
US20050165480A1 (en) * 2004-01-23 2005-07-28 Maybelle Jordan Endovascular treatment devices and methods
JP2007519498A (en) 2004-01-30 2007-07-19 エヌエムティー メディカル, インコーポレイティッド Devices, systems, and methods for closure of cardiac openings
US7641664B2 (en) 2004-02-12 2010-01-05 Warsaw Orthopedic, Inc. Surgical instrumentation and method for treatment of a spinal structure
US7736671B2 (en) 2004-03-02 2010-06-15 Boston Scientific Scimed, Inc. Embolization
US20060161119A1 (en) * 2004-05-28 2006-07-20 Cathlogic, Inc. Dysfunction resistant catheter systems and associated methods
US7879064B2 (en) 2004-09-22 2011-02-01 Micro Therapeutics, Inc. Medical implant
ATE448737T1 (en) 2004-09-22 2009-12-15 Dendron Gmbh DEVICE FOR IMPLANTING MICROWL COILS
US20060116713A1 (en) * 2004-11-26 2006-06-01 Ivan Sepetka Aneurysm treatment devices and methods
US8771294B2 (en) * 2004-11-26 2014-07-08 Biomerix Corporation Aneurysm treatment devices and methods
US8579936B2 (en) 2005-07-05 2013-11-12 ProMed, Inc. Centering of delivery devices with respect to a septal defect
US9381024B2 (en) 2005-07-31 2016-07-05 DePuy Synthes Products, Inc. Marked tools
US9918767B2 (en) 2005-08-01 2018-03-20 DePuy Synthes Products, Inc. Temperature control system
US7846179B2 (en) 2005-09-01 2010-12-07 Ovalis, Inc. Suture-based systems and methods for treating septal defects
US8360629B2 (en) 2005-11-22 2013-01-29 Depuy Spine, Inc. Mixing apparatus having central and planetary mixing elements
US7582101B2 (en) * 2006-02-28 2009-09-01 Cordis Development Corporation Heated mechanical detachment for delivery of therapeutic devices
US7691151B2 (en) 2006-03-31 2010-04-06 Spiration, Inc. Articulable Anchor
CA2649702C (en) 2006-04-17 2014-12-09 Microtherapeutics, Inc. System and method for mechanically positioning intravascular implants
CN101516412B (en) 2006-09-14 2014-02-12 德普伊斯派尔公司 Bone cement and use method thereof
AU2007311451A1 (en) 2006-10-19 2008-04-24 Depuy Spine, Inc. Fluid delivery system
WO2008106480A1 (en) * 2007-03-01 2008-09-04 Boston Scientific Scimed, Inc. Microcatheter introducer sheath
KR20100015521A (en) 2007-03-13 2010-02-12 마이크로 테라퓨틱스 인코포레이티드 An implant, a mandrel, and a method of forming an implant
KR20100015520A (en) 2007-03-13 2010-02-12 마이크로 테라퓨틱스 인코포레이티드 An implant including a coil and a stretch-resistant member
EP2194933B1 (en) 2007-10-12 2016-05-04 Spiration, Inc. Valve loader method, system, and apparatus
US8043301B2 (en) 2007-10-12 2011-10-25 Spiration, Inc. Valve loader method, system, and apparatus
US20090275971A1 (en) * 2007-10-30 2009-11-05 Boston Scientific Scimed, Inc. Energy activated preloaded detachment mechanisms for implantable devices
US8795241B2 (en) 2011-05-13 2014-08-05 Spiration, Inc. Deployment catheter
US9011480B2 (en) 2012-01-20 2015-04-21 Covidien Lp Aneurysm treatment coils
US9687245B2 (en) 2012-03-23 2017-06-27 Covidien Lp Occlusive devices and methods of use
US9821145B2 (en) 2012-03-23 2017-11-21 Pressure Products Medical Supplies Inc. Transseptal puncture apparatus and method for using the same
US9155540B2 (en) * 2012-03-30 2015-10-13 DePuy Synthes Products, Inc. Embolic coil detachment mechanism with heating element and kicker
US20140058435A1 (en) * 2012-08-21 2014-02-27 Donald K. Jones Implant delivery and release system
US9901471B2 (en) * 2013-01-30 2018-02-27 Cook Medical Technologies Llc Spring assisted medical device deployment assembly
US9498112B1 (en) 2013-03-15 2016-11-22 Brent Stewart Laryngoscope
CN106456182B (en) * 2013-12-20 2021-04-09 泰尔茂株式会社 Vascular occlusion device
US9713475B2 (en) 2014-04-18 2017-07-25 Covidien Lp Embolic medical devices
US10441777B2 (en) * 2014-09-09 2019-10-15 Pacesetter, Inc. Implantable medical device having restrained tether device
US10716931B2 (en) 2014-09-09 2020-07-21 Pacesetter, Inc. Systems and methods for implanting a medical device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5350397A (en) * 1992-11-13 1994-09-27 Target Therapeutics, Inc. Axially detachable embolic coil assembly
WO1996018343A1 (en) * 1994-12-13 1996-06-20 Micro Interventional Systems, Inc. Embolic elements and methods and apparatus for their delivery
EP0717961A1 (en) * 1994-12-22 1996-06-26 Target Therapeutics, Inc. Implant delivery method and assembly
WO1997001368A1 (en) * 1995-06-26 1997-01-16 Trimedyne, Inc. Therapeutic appliance releasing device
WO1998002100A1 (en) * 1996-07-16 1998-01-22 Anson Medical Limited Surgical implants and delivery systems therefor
US5722989A (en) * 1995-05-22 1998-03-03 The Regents Of The University Of California Microminiaturized minimally invasive intravascular micro-mechanical systems powered and controlled via fiber-optic cable

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US32348A (en) * 1861-05-21 Water-elevator
US1667730A (en) * 1928-05-01 of chicago
US1341052A (en) * 1916-06-15 1920-05-25 Francis G Gale Chain
FR592182A (en) 1924-03-24 1925-07-28 Urethral probe
US2078182A (en) * 1935-08-09 1937-04-20 Sirian Wire And Contact Compan Tungsten manufacture
US2549335A (en) * 1947-04-18 1951-04-17 Rahthus Max Ornamental chain
US3334629A (en) * 1964-11-09 1967-08-08 Bertram D Cohn Occlusive device for inferior vena cava
US3649224A (en) * 1968-04-18 1972-03-14 Sylvania Electric Prod Method of making nonsag filaments for electric lamps
US3868956A (en) * 1972-06-05 1975-03-04 Ralph J Alfidi Vessel implantable appliance and method of implanting it
USRE32348E (en) 1976-04-29 1987-02-10 Miniature balloon catheter method and apparatus
US4341218A (en) * 1978-05-30 1982-07-27 University Of California Detachable balloon catheter
US4327734A (en) * 1979-01-24 1982-05-04 White Jr Robert I Therapeutic method of use for miniature detachable balloon catheter
US4346712A (en) * 1979-04-06 1982-08-31 Kuraray Company, Ltd. Releasable balloon catheter
GB2066839B (en) 1979-12-29 1984-03-14 Vysoka Skola Chem Tech Method of manufacture of perfumed detergents
SE445884B (en) * 1982-04-30 1986-07-28 Medinvent Sa DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION
US4545367A (en) * 1982-07-16 1985-10-08 Cordis Corporation Detachable balloon catheter and method of use
US4441495A (en) * 1982-08-16 1984-04-10 Becton, Dickinson And Company Detachable balloon catheter device and method of use
US4638803A (en) * 1982-09-30 1987-01-27 Rand Robert W Medical apparatus for inducing scar tissue formation in a body
US4494531A (en) * 1982-12-06 1985-01-22 Cook, Incorporated Expandable blood clot filter
US4512338A (en) * 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
US5055101A (en) * 1983-10-31 1991-10-08 Catheter Research, Inc. Variable shape guide apparatus
US4718907A (en) * 1985-06-20 1988-01-12 Atrium Medical Corporation Vascular prosthesis having fluorinated coating with varying F/C ratio
US4748986A (en) * 1985-11-26 1988-06-07 Advanced Cardiovascular Systems, Inc. Floppy guide wire with opaque tip
EP0257091B1 (en) * 1986-02-24 1993-07-28 Robert E. Fischell An intravascular stent and percutaneous insertion system
EP0279316B1 (en) * 1987-02-09 1994-05-25 Sumitomo Electric Industries Limited Mechanism for bending elongated body
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
JPS63238872A (en) * 1987-03-25 1988-10-04 テルモ株式会社 Instrument for securing inner diameter of cavity of tubular organ and catheter equipped therewith
US4813925A (en) * 1987-04-21 1989-03-21 Medical Engineering Corporation Spiral ureteral stent
US4795458A (en) * 1987-07-02 1989-01-03 Regan Barrie F Stent for use following balloon angioplasty
US4850960A (en) * 1987-07-08 1989-07-25 Joseph Grayzel Diagonally tapered, bevelled tip introducing catheter and sheath and method for insertion
JPH088933B2 (en) * 1987-07-10 1996-01-31 日本ゼオン株式会社 Catheter
JPS6446477A (en) * 1987-08-13 1989-02-20 Terumo Corp Catheter
US5133732A (en) * 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US4820298A (en) * 1987-11-20 1989-04-11 Leveen Eric G Internal vascular prosthesis
FR2632864B2 (en) * 1987-12-31 1990-10-19 Biomat Sarl ANTI-EMBOLIC ELASTIC FILTERING SYSTEM FOR CELLAR VEIN AND ASSEMBLY OF MEANS FOR ITS PLACEMENT
JP2561853B2 (en) * 1988-01-28 1996-12-11 株式会社ジェイ・エム・エス Shaped memory molded article and method of using the same
US4884579A (en) * 1988-04-18 1989-12-05 Target Therapeutics Catheter guide wire
US4830003A (en) * 1988-06-17 1989-05-16 Wolff Rodney G Compressive stent and delivery system
DE3826429A1 (en) * 1988-08-03 1990-02-15 Rxs Schrumpftech Garnituren Process for producing heat-activatable articles with shape memory from thermoplastic material and heat-activatable articles produced by the process
US5176661A (en) * 1988-09-06 1993-01-05 Advanced Cardiovascular Systems, Inc. Composite vascular catheter
US4957479A (en) * 1988-10-17 1990-09-18 Vance Products Incorporated Indwelling ureteral stent placement apparatus
US4994069A (en) * 1988-11-02 1991-02-19 Target Therapeutics Vaso-occlusion coil and method
US5203772A (en) * 1989-01-09 1993-04-20 Pilot Cardiovascular Systems, Inc. Steerable medical device
US4856516A (en) * 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US4990155A (en) * 1989-05-19 1991-02-05 Wilkoff Howard M Surgical stent method and apparatus
DE9010130U1 (en) * 1989-07-13 1990-09-13 American Medical Systems, Inc., Minnetonka, Minn., Us
CA2026604A1 (en) * 1989-10-02 1991-04-03 Rodney G. Wolff Articulated stent
DK0441516T3 (en) * 1990-02-08 1995-06-12 Howmedica Inflatable catheter
US5186992A (en) * 1990-03-12 1993-02-16 The Bentley-Harris Manufacturing Company Braided product and method of making same
US5354295A (en) * 1990-03-13 1994-10-11 Target Therapeutics, Inc. In an endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5569245A (en) * 1990-03-13 1996-10-29 The Regents Of The University Of California Detachable endovascular occlusion device activated by alternating electric current
US5122136A (en) * 1990-03-13 1992-06-16 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip for the electroformation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5071407A (en) * 1990-04-12 1991-12-10 Schneider (U.S.A.) Inc. Radially expandable fixation member
US5108407A (en) * 1990-06-08 1992-04-28 Rush-Presbyterian St. Luke's Medical Center Method and apparatus for placement of an embolic coil
US5064435A (en) * 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5041084A (en) * 1990-08-09 1991-08-20 Dlp, Inc. Single stage venous catheter
US5170801A (en) * 1990-10-02 1992-12-15 Glaxo Inc. Medical capsule device actuated by radio-frequency (rf) signal
US5176625A (en) * 1990-10-25 1993-01-05 Brisson A Glen Stent for ureter
US5160341A (en) * 1990-11-08 1992-11-03 Advanced Surgical Intervention, Inc. Resorbable urethral stent and apparatus for its insertion
US5133731A (en) * 1990-11-09 1992-07-28 Catheter Research, Inc. Embolus supply system and method
US5341818A (en) 1992-12-22 1994-08-30 Advanced Cardiovascular Systems, Inc. Guidewire with superelastic distal portion
US5109867A (en) * 1991-04-19 1992-05-05 Target Therapeutics Extendable guidewire assembly
US5228453A (en) * 1991-05-07 1993-07-20 Target Therapeutics, Inc. Catheter guide wire
US5217484A (en) * 1991-06-07 1993-06-08 Marks Michael P Retractable-wire catheter device and method
US5147370A (en) * 1991-06-12 1992-09-15 Mcnamara Thomas O Nitinol stent for hollow body conduits
US5141502A (en) * 1991-08-28 1992-08-25 Macaluso Jr Joseph N Ureteral stent
US5183085A (en) * 1991-09-27 1993-02-02 Hans Timmermans Method and apparatus for compressing a stent prior to insertion
US5304194A (en) * 1991-10-02 1994-04-19 Target Therapeutics Vasoocclusion coil with attached fibrous element(s)
US5226911A (en) * 1991-10-02 1993-07-13 Target Therapeutics Vasoocclusion coil with attached fibrous element(s)
US5151105A (en) * 1991-10-07 1992-09-29 Kwan Gett Clifford Collapsible vessel sleeve implant
US5312152A (en) * 1991-10-23 1994-05-17 Martin Marietta Corporation Shape memory metal actuated separation device
US5304123A (en) * 1991-10-24 1994-04-19 Children's Medical Center Corporation Detachable balloon catheter for endoscopic treatment of vesicoureteral reflux
US5222969A (en) * 1992-03-16 1993-06-29 Rolando Gillis Intravascular stent for cardiovascular intervention
US5342387A (en) * 1992-06-18 1994-08-30 American Biomed, Inc. Artificial support for a blood vessel
US5443478A (en) * 1992-09-02 1995-08-22 Board Of Regents, The University Of Texas System Multi-element intravascular occlusion device
US5250071A (en) * 1992-09-22 1993-10-05 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking clasps and method of use
US5312415A (en) * 1992-09-22 1994-05-17 Target Therapeutics, Inc. Assembly for placement of embolic coils using frictional placement
US5382259A (en) * 1992-10-26 1995-01-17 Target Therapeutics, Inc. Vasoocclusion coil with attached tubular woven or braided fibrous covering
US5690666A (en) * 1992-11-18 1997-11-25 Target Therapeutics, Inc. Ultrasoft embolism coils and process for using them
US5336205A (en) * 1993-02-25 1994-08-09 Target Therapeutics, Inc. Flow directed catheter
US5409015A (en) * 1993-05-11 1995-04-25 Target Therapeutics, Inc. Deformable tip super elastic guidewire
US5749837A (en) 1993-05-11 1998-05-12 Target Therapeutics, Inc. Enhanced lubricity guidewire
IL105828A (en) * 1993-05-28 1999-06-20 Medinol Ltd Medical stent
US5304119A (en) * 1993-06-24 1994-04-19 Monsanto Company Instrument for injecting implants through animal hide
US5423829A (en) * 1993-11-03 1995-06-13 Target Therapeutics, Inc. Electrolytically severable joint for endovascular embolic devices
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
IL108832A (en) * 1994-03-03 1999-12-31 Medinol Ltd Urological stent and deployment device therefor
US5441516A (en) * 1994-03-03 1995-08-15 Scimed Lifesystems Inc. Temporary stent
EP0696902B1 (en) * 1994-03-03 2005-05-11 Boston Scientific Limited Apparatus for detecting separation of a vasoocclusion device
US5725546A (en) 1994-06-24 1998-03-10 Target Therapeutics, Inc. Detachable microcoil delivery catheter
US5549624A (en) * 1994-06-24 1996-08-27 Target Therapeutics, Inc. Fibered vasooclusion coils
US5522836A (en) * 1994-06-27 1996-06-04 Target Therapeutics, Inc. Electrolytically severable coil assembly with movable detachment point
US5637113A (en) * 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US5814062A (en) 1994-12-22 1998-09-29 Target Therapeutics, Inc. Implant delivery assembly with expandable coupling/decoupling mechanism
US5514176A (en) * 1995-01-20 1996-05-07 Vance Products Inc. Pull apart coil stent
US5666968A (en) * 1995-03-17 1997-09-16 Intelliwire, Inc. Flexible guide wire with extension capability and guide wire extension for use therewith
US5639277A (en) * 1995-04-28 1997-06-17 Target Therapeutics, Inc. Embolic coils with offset helical and twisted helical shapes
US5645564A (en) * 1995-05-22 1997-07-08 Regents Of The University Of California Microfabricated therapeutic actuator mechanisms
US5624461A (en) * 1995-06-06 1997-04-29 Target Therapeutics, Inc. Three dimensional in-filling vaso-occlusive coils
US5582619A (en) * 1995-06-30 1996-12-10 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils
US5601600A (en) 1995-09-08 1997-02-11 Conceptus, Inc. Endoluminal coil delivery system having a mechanical release mechanism
US5749894A (en) 1996-01-18 1998-05-12 Target Therapeutics, Inc. Aneurysm closure method
US5690643A (en) * 1996-02-20 1997-11-25 Leocor, Incorporated Stent delivery system
US5649949A (en) * 1996-03-14 1997-07-22 Target Therapeutics, Inc. Variable cross-section conical vasoocclusive coils
US5653691A (en) * 1996-04-25 1997-08-05 Rupp; Garry Eugene Thickened inner lumen for uniform stent expansion and method of making
US5676697A (en) * 1996-07-29 1997-10-14 Cardiovascular Dynamics, Inc. Two-piece, bifurcated intraluminal graft for repair of aneurysm
US5895391A (en) 1996-09-27 1999-04-20 Target Therapeutics, Inc. Ball lock joint and introducer for vaso-occlusive member
US5944733A (en) 1997-07-14 1999-08-31 Target Therapeutics, Inc. Controlled detachable vasoocclusive member using mechanical junction and friction-enhancing member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5350397A (en) * 1992-11-13 1994-09-27 Target Therapeutics, Inc. Axially detachable embolic coil assembly
WO1996018343A1 (en) * 1994-12-13 1996-06-20 Micro Interventional Systems, Inc. Embolic elements and methods and apparatus for their delivery
EP0717961A1 (en) * 1994-12-22 1996-06-26 Target Therapeutics, Inc. Implant delivery method and assembly
US5722989A (en) * 1995-05-22 1998-03-03 The Regents Of The University Of California Microminiaturized minimally invasive intravascular micro-mechanical systems powered and controlled via fiber-optic cable
WO1997001368A1 (en) * 1995-06-26 1997-01-16 Trimedyne, Inc. Therapeutic appliance releasing device
WO1998002100A1 (en) * 1996-07-16 1998-01-22 Anson Medical Limited Surgical implants and delivery systems therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013705A1 (en) * 2000-08-10 2002-02-21 Micrus Corporation Intravascular delivery system
EP1886632A1 (en) * 2000-08-10 2008-02-13 Micrus Endovascular Corporation Intravascular delivery system

Also Published As

Publication number Publication date
US6149664A (en) 2000-11-21
AU5588499A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
US6149664A (en) Shape memory pusher introducer for vasoocclusive devices
EP1792576B1 (en) Embolic device delivery system
EP1825823B1 (en) Heat-activated mechanical detachment system for delivery of a therapeutic device
US6159165A (en) Three dimensional spherical micro-coils manufactured from radiopaque nickel-titanium microstrand
EP1813213B1 (en) Embolic device delivery system
CA2216613C (en) Ball joint and introducer for vasoocclusive member
US8795316B2 (en) Implantable medical device delivery system with a frangible portion and methods of making and using the same
JP3188390B2 (en) Implant delivery assembly
US6551305B2 (en) Shape memory segmented detachable coil
US7344558B2 (en) Embolic device delivery system
US6475169B2 (en) Micro-strand cable with enhanced radiopacity
US6296622B1 (en) Endoluminal device delivery system using axially recovering shape memory material
EP1290988B1 (en) Implant delivery assembly with expandable coupling/decoupling mechanism
US5350397A (en) Axially detachable embolic coil assembly
US7708755B2 (en) Stretch resistant embolic coil delivery system with combined mechanical and pressure release mechanism
US5800455A (en) Detachable embolic coil assembly
EP1792575B1 (en) Embolic device delivery system
US20140058434A1 (en) Releasable device system
US20140058435A1 (en) Implant delivery and release system
EP1738693B1 (en) Laser-based vascular occlusion device detachment system
EP1076518A1 (en) Method and apparatus for occlusion and reinforcement of aneurysms
US20100262179A1 (en) Modified headpiece for hydraulic coil deployment system
JP2023046309A (en) Introducer sheath having intentional friction zone to hold in position delivery system suitable for implantable intravascular devices

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase