WO2000015308A1 - Bicycle trainer magnetic resistance device - Google Patents

Bicycle trainer magnetic resistance device Download PDF

Info

Publication number
WO2000015308A1
WO2000015308A1 PCT/US1999/020793 US9920793W WO0015308A1 WO 2000015308 A1 WO2000015308 A1 WO 2000015308A1 US 9920793 W US9920793 W US 9920793W WO 0015308 A1 WO0015308 A1 WO 0015308A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnets
resistive force
magnetic
magnet holding
holding member
Prior art date
Application number
PCT/US1999/020793
Other languages
French (fr)
Inventor
John A. Gunther
Mark S. Deroche
Original Assignee
Bell Sports, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bell Sports, Inc. filed Critical Bell Sports, Inc.
Publication of WO2000015308A1 publication Critical patent/WO2000015308A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/16Training appliances or apparatus for special sports for cycling, i.e. arrangements on or for real bicycles
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/005Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters
    • A63B21/0051Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters using eddy currents induced in moved elements, e.g. by permanent magnets
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/16Training appliances or apparatus for special sports for cycling, i.e. arrangements on or for real bicycles
    • A63B2069/168Force transfer through the rim of the wheel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S482/00Exercise devices
    • Y10S482/903Utilizing electromagnetic force resistance

Definitions

  • the present invention relates generally to resistance devices for bicycle trainers, and more particularly to resistance devices that utilize a magnetic force to provide resistive forces.
  • Bicycle trainers have been known and utilized for many years. For instance, as disclosed in U.S. Patent 4,768,782, entitled: Bicycle Exercising Apparatus, issued September 6, 1988 to James R. Blackburn, a trainer is utilized to support a user's bicycle, typically the rear wheel, to provide a stationary exercise device. The rear wheel of the bicycle rotates upon a roller, and the trainer includes a resistance device that applies a resistive force to the rotation of the roller, thereby impeding the rotation of the rear wheel of the bicycle and providing exercise to the user.
  • the trainer described in the '782 patent discloses a wind cage resistance device, however other types of resistance devices, specifically magnetic resistance devices are well known.
  • the magnetic forces are made adjustable by adjusting the location of the movable magnet set, relative to the fixed magnet set, such that the strength of the magnetic field between the magnets is altered. Alteration of the strength of the magnetic field creates an alteration in the magnetic resistance force.
  • the present invention includes a different orientation of magnets around a different rotating member; it includes a different way of applying the resistive force to the rotating member and a different way of adjusting the resistance force.
  • a magnetic resistive device that is suitable for use with a bicycle trainer, including a rotatable shaft having a magnetic resistive force member engaged to an end thereof.
  • the magnetic resistive force member includes a cylindrical outer surface.
  • a plurality of magnets are disposed on one side of said magnetic resistive force member, preferably in alternating polarity. Magnetic fields generated between adjacent magnets create eddy currents within the magnetic resistive force member to create a resistive force against the rotation of the magnetic resistive force member.
  • the magnets are disposed outside of the cylindrical magnetic resistive force member, and the magnets are movable away from the magnetic resistive force member to reduce the force induced therewithin.
  • Fig. 1 is a perspective view of the magnetic resistance device of the present invention.
  • Fig. 2 is an assembly drawing, in perspective view, of the magnetic resistance unit of the present invention;
  • Fig. 3 is a side cross-sectional view of the magnetic resistance unit of the present invention.
  • Fig. 4 is an assembly drawing, in perspective view, of the magnet retaining assembly portion of the present invention.
  • the magnetic resistance device 10 of the present invention is generally depicted in Fig.
  • the device 10 is designed to be installed on a bicycle trainer frame 12, such that the rear wheel of the bicycle (not shown) makes rotational contact with the roller 22 of the device.
  • the internal components of the device 10 are depicted in Figs. 2, 3 and 4, whereby a full description of the present invention is provided.
  • the magnetic resistance device 10 includes a yoke assembly 14 the orientation of which on a trainer 12 is controlled by an adjustment nut 18 in a well known manner.
  • the upper face of the yoke includes a bicycle wheel engagement roller 22 that is supported by two bearings 26 and 28 (not shown) disposed within bearing housing end portions 32 and 34 (not shown) of the yoke assembly 14.
  • a flywheel 36 is engaged by a threaded nut 40 to one extended end of the roller 22.
  • a magnetic resistance unit 50 is engaged to the end bearing housing 32 of the yoke 14, and a rotating end portion 78 of the roller 22 extends within the magnetic resistance unit 50, as is discussed in detail herebelow with the aid of Figs. 2 and 3.
  • Fig. 2 is an assembly drawing depicting internal components of the magnetic resistance unit 50
  • Fig. 3 is a side cross-sectional view of the magnetic resistance unit 50
  • the unit 50 includes an inboard housing 54 and an outboard housing 58 that are engagable to each other at edge portions 62 and 64 respectively utilizing threaded screws (not shown) that project outwardly through support posts 66 into threaded screw receiving sockets 68 formed in the inner surface 70 of the outboard housing 58.
  • the inner housing 54 is fixedly engaged to the non-rotating yoke bearing housing 32 utilizing screws 72.
  • a non-rotating, hollow support cylinder 74 projects outwardly from the fixed inner housing 54.
  • a cup-shaped rotor member 88 having parallel cylindrical sidewalls 92 and a generally cone-shaped base 96, is fixedly engaged to the outer end 102 of the extending shaft 78 utilizing a threaded nut 106 which is threadably engaged to an extending threaded end 108 of the shaft end 102 that passes through a bore 110 formed through the center of the rotor base 96.
  • the cup-shaped rotor 88 therefore rotates when the shaft 78 rotates.
  • a magnet retainer assembly 120 is engaged within the housing 54, and an assembly drawing of the magnet retainer assembly 120 is presented in Fig. 4.
  • the assembly 120 includes an outer, cylindrical magnet retaining ring 124 and an inner ring shaped magnet holding ring 126 having a plurality of fixed magnets 128 disposed therewithin.
  • the magnets 128 are disposed with alternate north and south polarities within magnet holding slots 130 formed in the magnet holding ring 126, and the outer magnet retaining ring 124 fits over the magnets 128 to hold them within the slots 130.
  • the magnet retaining ring 124 is preferably composed of a magnetic material such as steel, to shape and strengthen the magnetic field that exists between the adjacent magnets 128.
  • the inner diameter of the holding ring 126 is larger than the outer diameter of the cylindrical sidewalls 92 of the rotor 88, such that the sidewalls 92 of the rotor 88 may be disposed within the holding ring 126.
  • the assembly 120 includes an inner base portion 140 having a cam engaging section 144 and a cylindrical center portion 148 having a central bore 152 formed therethrough.
  • the bore 152 of the cylindrical center portion 148 is sized to slidably engage the outer surface of the central support cylinder 74. It is therefore to be understood that the ring assembly 120 is slidably engagable upon the support cylinder 74, whereas the rotor 88 is rotatably fixed to the end 102 of the rotatable shaft 78.
  • the cam engaging section 144 includes a cylindrical slot 154 having three radially projecting camming ribs 156 formed therein.
  • the ribs 156 project radially outwardly from the cylindrical center portion 148, and they interact with camming surfaces 182 of a camming device 170, as is described in detail herebelow.
  • a cylindrical spring holding slot 158 surrounds the cylindrical center portion 148 to provide a recess for housing a return spring 210, as is discussed more fully herebelow.
  • a rotation prevention arm 160 projects radially outwardly from the ring assembly 120.
  • the arm 160 includes two radially projecting fingers 162 having a rib engagement slot 164 formed therebetween.
  • the fingers 162 and slot 164 act to engage an inwardly projecting rib 166 formed in the inner surface of the inboard housing 54.
  • the arm 160 with its fingers 162 and slot 164 acts to engage the inwardly projecting rib 166 to prevent rotational motion of the ring assembly 120, while allowing inward and outward motion of the ring assembly 120.
  • a user rotatable camming device 170 is disposed within the inner housing 54.
  • the camming device 170 includes a base portion 174 and generally cylindrical sidewall portions 178 which have three spiraling outward camming surfaces 182 cut therein.
  • the base 174 has a central bore 186 formed therethrough for passage of the support cylinder 74 therethrough.
  • a lever member 192 projects radially from the camming assembly 170 and terminates with a user operable adjustment lever end 196 that is slidably disposed on the outer surface of the inner housing 54.
  • Adjustment notches 200 are formed in the edge 62 of the inner housing 54 for interaction with portions of the lever end 196 to act as detents in the slidable movement of the lever end 196.
  • a lever dust cover 198 is formed on the outer surface of the outboard housing 58 to substantially prevent dirt from entering into the device proximate the lever end 196. It is therefore to be understood that when the lever end 196 is slidably, rotatably moved about the edge 62 of the inner housing 54 into the various detents 200 that the lever member 192 is likewise rotated. When the lever member 192 is rotated it causes the camming assembly 170 to rotate, such that the camming ribs 156 interact with the spiral camming surfaces 182 of the camming assembly 170.
  • the ring assembly 120 is caused to move laterally outwardly on the support cylinder 74 by the action of the rotating camming surfaces 182 against the camming ribs 156 within the cam engaging section 144 of the ring assembly 120.
  • the magnet holding ring 126 encloses the cylindrical sidewalls 92 of the rotor 88 to a greater and greater degree.
  • the alternating north and south magnets 128 within the holding outer ring 126 become disposed about the outer surface of the cylindrical sidewalls 92 of the rotor 88.
  • the rotor 88 is composed of an electrically conductive, non-magnetic material, such as aluminum, copper or alloys thereof, and the magnetic field generated between the alternating north and south magnets 128 disposed outside of the external surface of the sidewall 92 causes a electromagnetic braking effect. That is, eddy currents are created within the rotating sidewalls 92, which eddy currents act to apply a force which inhibits the rotation of the rotor 88, as is well known to those skilled in the art. Thus, the greater extent to which the sidewalls 92 of the rotor 88 are disposed within the magnet retainer assembly 120, the greater will be the rotation resistance force created in the sidewalls 92 of the rotor 88.
  • a magnet assembly return spring 210 is disposed within the spring housing slot 158 to project outwardly of the magnet assembly 120, and a spring cap 214 is fixedly engaged within the outer end of the support cylinder 74 to provide an outer spring force resistance surface.
  • the inner end of the spring 210 within the housing 158 presses against the ring assembly 120 to urge it inwardly against the camming surfaces 182 of the device member 170.
  • the spring force pushes against the assembly 120 to urge the assembly 120 inwardly into the inboard housing 54.
  • the outer ends of the camming surface 182 project into the slot 154 within the assembly 120.

Abstract

A magnetic resistive device (10) that is suitable for use with a bicycle trainer (12) includes a rotatable shaft (78) having a magnetic resistive force member (88) engaged to an end thereof. In the preferred embodiment the magnetic resistive force member includes a cylindrical outer surface (54). A plurality of magnets (128) are disposed on one side of said magnetic resistive force member, preferably in alternating polarity. Magnetic fields generated between adjacent magnets create eddy currents within the magnetic resistive force member to create a resistive force against the rotation of the magnetic resistive force member. In the preferred embodiment, the magnets are disposed outside of the cylindrical magnetic resistive force member, and the magnets are movable away from the magnetic resistive force member to reduce the force induced there within.

Description

Specification
BICYCLE TRAINER MAGNETIC RESISTANCE DEVICE
BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates generally to resistance devices for bicycle trainers, and more particularly to resistance devices that utilize a magnetic force to provide resistive forces.
Description of the Prior Art
Bicycle trainers have been known and utilized for many years. For instance, as disclosed in U.S. Patent 4,768,782, entitled: Bicycle Exercising Apparatus, issued September 6, 1988 to James R. Blackburn, a trainer is utilized to support a user's bicycle, typically the rear wheel, to provide a stationary exercise device. The rear wheel of the bicycle rotates upon a roller, and the trainer includes a resistance device that applies a resistive force to the rotation of the roller, thereby impeding the rotation of the rear wheel of the bicycle and providing exercise to the user. The trainer described in the '782 patent discloses a wind cage resistance device, however other types of resistance devices, specifically magnetic resistance devices are well known.
U.S. Patent 4,826,150, reissued as reissue patent Re 34,479, entitled: Resistance Applying Means for Exercising Apparatus, reissued December 14, 1993 to Chihiro Minoura, describes such a magnetic resistance device. In the '479 magnetic resistance device, a rotating disk is surrounded by two sets of permanent magnets. A fixed set of permanent magnets is positioned on one side of the rotating disk, and a movable set of permanent magnets is disposed on the other side of the rotating disk. Magnetic fields between the magnets on each side of the disk cause eddy currents within the rotating disk which inhibit the rotation of the disk. The magnetic forces are made adjustable by adjusting the location of the movable magnet set, relative to the fixed magnet set, such that the strength of the magnetic field between the magnets is altered. Alteration of the strength of the magnetic field creates an alteration in the magnetic resistance force. The present invention includes a different orientation of magnets around a different rotating member; it includes a different way of applying the resistive force to the rotating member and a different way of adjusting the resistance force.
SUMMARY OF THE INVENTION
A magnetic resistive device that is suitable for use with a bicycle trainer, including a rotatable shaft having a magnetic resistive force member engaged to an end thereof. In the preferred embodiment the magnetic resistive force member includes a cylindrical outer surface. A plurality of magnets are disposed on one side of said magnetic resistive force member, preferably in alternating polarity. Magnetic fields generated between adjacent magnets create eddy currents within the magnetic resistive force member to create a resistive force against the rotation of the magnetic resistive force member. In the preferred embodiment, the magnets are disposed outside of the cylindrical magnetic resistive force member, and the magnets are movable away from the magnetic resistive force member to reduce the force induced therewithin.
It is an advantage of the present invention that provides a magnetic resistive device for a trainer that is easy to manufacture.
It is another advantage of the present invention that it is easy for the user to operate. It is a further advantage of the present invention that it provides an effective resistive force for the user of a trainer.
These and other features and advantages of the present invention will no doubt become apparent to those of ordinary skill in the art upon reviewing the following detailed description which makes reference to the several figures of the drawing.
IN THE DRAWINGS
Fig. 1 is a perspective view of the magnetic resistance device of the present invention. Fig. 2 is an assembly drawing, in perspective view, of the magnetic resistance unit of the present invention;
Fig. 3 is a side cross-sectional view of the magnetic resistance unit of the present invention; and
Fig. 4 is an assembly drawing, in perspective view, of the magnet retaining assembly portion of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The magnetic resistance device 10 of the present invention is generally depicted in Fig.
1, it being understood that the device 10 is designed to be installed on a bicycle trainer frame 12, such that the rear wheel of the bicycle (not shown) makes rotational contact with the roller 22 of the device. The internal components of the device 10 are depicted in Figs. 2, 3 and 4, whereby a full description of the present invention is provided.
As depicted in Fig. 1, the magnetic resistance device 10 includes a yoke assembly 14 the orientation of which on a trainer 12 is controlled by an adjustment nut 18 in a well known manner. The upper face of the yoke includes a bicycle wheel engagement roller 22 that is supported by two bearings 26 and 28 (not shown) disposed within bearing housing end portions 32 and 34 (not shown) of the yoke assembly 14. A flywheel 36 is engaged by a threaded nut 40 to one extended end of the roller 22. A magnetic resistance unit 50 is engaged to the end bearing housing 32 of the yoke 14, and a rotating end portion 78 of the roller 22 extends within the magnetic resistance unit 50, as is discussed in detail herebelow with the aid of Figs. 2 and 3.
Fig. 2 is an assembly drawing depicting internal components of the magnetic resistance unit 50, and Fig. 3 is a side cross-sectional view of the magnetic resistance unit 50. As depicted in Figs. 2 and 3, the unit 50 includes an inboard housing 54 and an outboard housing 58 that are engagable to each other at edge portions 62 and 64 respectively utilizing threaded screws (not shown) that project outwardly through support posts 66 into threaded screw receiving sockets 68 formed in the inner surface 70 of the outboard housing 58. The inner housing 54 is fixedly engaged to the non-rotating yoke bearing housing 32 utilizing screws 72. A non-rotating, hollow support cylinder 74 projects outwardly from the fixed inner housing 54. The rotating end portion 78 of the roller 22 projects into the bore 80 of the hollow support cylinder 74, as is best seen in Fig. 3. A cup-shaped rotor member 88, having parallel cylindrical sidewalls 92 and a generally cone-shaped base 96, is fixedly engaged to the outer end 102 of the extending shaft 78 utilizing a threaded nut 106 which is threadably engaged to an extending threaded end 108 of the shaft end 102 that passes through a bore 110 formed through the center of the rotor base 96. The cup-shaped rotor 88 therefore rotates when the shaft 78 rotates. A magnet retainer assembly 120 is engaged within the housing 54, and an assembly drawing of the magnet retainer assembly 120 is presented in Fig. 4. The assembly 120 includes an outer, cylindrical magnet retaining ring 124 and an inner ring shaped magnet holding ring 126 having a plurality of fixed magnets 128 disposed therewithin. The magnets 128 are disposed with alternate north and south polarities within magnet holding slots 130 formed in the magnet holding ring 126, and the outer magnet retaining ring 124 fits over the magnets 128 to hold them within the slots 130. The magnet retaining ring 124 is preferably composed of a magnetic material such as steel, to shape and strengthen the magnetic field that exists between the adjacent magnets 128. The inner diameter of the holding ring 126 is larger than the outer diameter of the cylindrical sidewalls 92 of the rotor 88, such that the sidewalls 92 of the rotor 88 may be disposed within the holding ring 126.
The assembly 120 includes an inner base portion 140 having a cam engaging section 144 and a cylindrical center portion 148 having a central bore 152 formed therethrough. The bore 152 of the cylindrical center portion 148 is sized to slidably engage the outer surface of the central support cylinder 74. It is therefore to be understood that the ring assembly 120 is slidably engagable upon the support cylinder 74, whereas the rotor 88 is rotatably fixed to the end 102 of the rotatable shaft 78. The cam engaging section 144 includes a cylindrical slot 154 having three radially projecting camming ribs 156 formed therein. The ribs 156 project radially outwardly from the cylindrical center portion 148, and they interact with camming surfaces 182 of a camming device 170, as is described in detail herebelow. A cylindrical spring holding slot 158 surrounds the cylindrical center portion 148 to provide a recess for housing a return spring 210, as is discussed more fully herebelow. As is best seen in Fig. 4, a rotation prevention arm 160 projects radially outwardly from the ring assembly 120. The arm 160 includes two radially projecting fingers 162 having a rib engagement slot 164 formed therebetween. The fingers 162 and slot 164 act to engage an inwardly projecting rib 166 formed in the inner surface of the inboard housing 54. Thus, the arm 160, with its fingers 162 and slot 164 acts to engage the inwardly projecting rib 166 to prevent rotational motion of the ring assembly 120, while allowing inward and outward motion of the ring assembly 120.
A user rotatable camming device 170 is disposed within the inner housing 54. The camming device 170 includes a base portion 174 and generally cylindrical sidewall portions 178 which have three spiraling outward camming surfaces 182 cut therein. The base 174 has a central bore 186 formed therethrough for passage of the support cylinder 74 therethrough. A lever member 192 projects radially from the camming assembly 170 and terminates with a user operable adjustment lever end 196 that is slidably disposed on the outer surface of the inner housing 54. Adjustment notches 200 are formed in the edge 62 of the inner housing 54 for interaction with portions of the lever end 196 to act as detents in the slidable movement of the lever end 196. A lever dust cover 198 is formed on the outer surface of the outboard housing 58 to substantially prevent dirt from entering into the device proximate the lever end 196. It is therefore to be understood that when the lever end 196 is slidably, rotatably moved about the edge 62 of the inner housing 54 into the various detents 200 that the lever member 192 is likewise rotated. When the lever member 192 is rotated it causes the camming assembly 170 to rotate, such that the camming ribs 156 interact with the spiral camming surfaces 182 of the camming assembly 170. Because the ring assembly 124 does not rotate, as described hereinabove, the ring assembly 120 is caused to move laterally outwardly on the support cylinder 74 by the action of the rotating camming surfaces 182 against the camming ribs 156 within the cam engaging section 144 of the ring assembly 120. As the ring assembly 120 moves outwardly, the magnet holding ring 126 encloses the cylindrical sidewalls 92 of the rotor 88 to a greater and greater degree. The alternating north and south magnets 128 within the holding outer ring 126 become disposed about the outer surface of the cylindrical sidewalls 92 of the rotor 88. The rotor 88 is composed of an electrically conductive, non-magnetic material, such as aluminum, copper or alloys thereof, and the magnetic field generated between the alternating north and south magnets 128 disposed outside of the external surface of the sidewall 92 causes a electromagnetic braking effect. That is, eddy currents are created within the rotating sidewalls 92, which eddy currents act to apply a force which inhibits the rotation of the rotor 88, as is well known to those skilled in the art. Thus, the greater extent to which the sidewalls 92 of the rotor 88 are disposed within the magnet retainer assembly 120, the greater will be the rotation resistance force created in the sidewalls 92 of the rotor 88.
A magnet assembly return spring 210 is disposed within the spring housing slot 158 to project outwardly of the magnet assembly 120, and a spring cap 214 is fixedly engaged within the outer end of the support cylinder 74 to provide an outer spring force resistance surface. The inner end of the spring 210 within the housing 158 presses against the ring assembly 120 to urge it inwardly against the camming surfaces 182 of the device member 170. Thus, when the user operated lever end 196 is moved to cause the magnet holding assembly 120 to move inwardly (thereby reducing the magnetic resistive force), the spring force pushes against the assembly 120 to urge the assembly 120 inwardly into the inboard housing 54. As the assembly 120 moves inwardly, the outer ends of the camming surface 182 project into the slot 154 within the assembly 120.
While the present invention has been shown and described with regard to certain preferred embodiments, it is to be understood that those skilled in the art will conceive of certain alterations and modifications therein. It is therefore to be understood that the inventors intend the following claims to cover all such alterations and modifications that nevertheless include the true spirit and scope of the invention.
What I claim is:

Claims

1. A magnetic resistance device comprising: a rotatable shaft; a fixed housing; a magnetic resistive force member being engaged to said rotatable shaft to rotate therewith; a plurality of magnets being engaged within said housing and disposed on one side of said magnetic resistive force member; said magnets being disposed in alternating polarity around said magnetic resistive force member, and wherein magnetic fields are formed between said magnets to create eddy currents within said magnetic resistive force member.
2. A device as described in claim 1 wherein said magnetic resistive force member includes a cylindrical surface, and wherein said magnets are disposed proximate said surface.
3. A device as described in claim 2 wherein said magnets are disposed radially outwardly of said surface.
4. A device as described in claim 1 wherein said magnets are disposed on a movable magnet holding member.
5. A device as described in claim 4 wherein said magnet holding member holds said magnets in a ring shaped orientation.
6. A device as described in claim 5 wherein said magnet holding member is generally cylindrically shaped and has a diameter, and wherein said magnetic resistive force member includes a cylindrical surface having a diameter, and wherein said diameter of said cylindrical surface is less than the diameter of said magnet holding member.
7. A device as described in claim 4 wherein said magnet holding member is movable in a lateral direction relative to said magnet resistive force member.
8. A device as described in claim 7 further including a cam member, and wherein said magnet holding member includes a cam engaging surface, and wherein movement of said cam member in contact with said cam engaging surface causes said lateral direction movement of said magnet holding member.
9. A magnetic resistance device comprising: a rotatable shaft; a fixed housing; a magnetic resistive force member having a cylindrical surface and being engaged to said rotatable shaft to rotate therewith; a plurality of magnets being engaged within a movable magnet holding member disposed within said housing, said magnets being disposed on an outer side of said cylindrical surface of said magnetic resistive force member; a cam member, and wherein said magnet holding member includes a cam engaging surface, and wherein movement of said cam member in contact with said cam engaging surface causes a lateral direction movement of said magnet holding member; said magnets being disposed in alternating polarity around said magnetic resistive force member, and wherein magnetic fields are formed between said magnets to create eddy currents within said magnetic resistive force member.
10. A device as described in claim 9 wherein said magnet holding member holds said magnet in a ring shaped orientation.
11. A device as described in claim 10 wherein said magnet holding member is generally cylindrically shaped and has a diameter, and wherein said magnetic resistive force member includes a cylindrical surface having a diameter, and wherein said diameter of said cylindrical surface is less than the diameter of said magnet holding member.
12. A bicycle trainer, comprising: a frame; a magnetic resistive device being engaged to said frame; said magnetic resistance device including a yoke device that rotatably supports a roller member for engagement with a bicycle wheel; said roller having a first outboard end supporting a flywheel and a second end that is engaged to a magnetic resistive device; said magnetic resistive device including: a rotatable shaft; a fixed housing; a magnetic resistive force member being engaged to said rotatable shaft to rotate therewith; a plurality of magnets being engaged within said housing and disposed on one side of said magnetic resistive force member; said magnets being disposed in alternating polarity around said magnetic resistive force member, and wherein magnetic fields are formed between said magnets to create eddy currents within said magnetic resistive force member.
13. A device as described in claim 12 wherein said magnetic resistive force member includes a cylindrical surface, and wherein said magnets are disposed proximate said surface.
14. A device as described in claim 13 wherein said magnets are disposed radially outwardly of said surface.
15. A device as described in claim 12 wherein said magnets are disposed on a movable magnet holding member.
16. A device as described in claim 15 wherein said magnet holding member holds said magnets in a ring shaped orientation.
17. A device as described in claim 16 wherein said magnet holding member is generally cylindrically shaped and has a diameter, and wherein said magnetic resistive force member includes a cylindrical surface having a diameter, and wherein said diameter of said cylindrical surface is less than the diameter of said magnet holding member.
18. A device as described in claim 15 wherein said magnet holding member is movable in a lateral direction relative to said magnet resistive force member.
19. A device as described in claim 18 further including a cam member, and wherein said magnet holding member includes a cam engaging surface, and wherein movement of said cam member in contact with said cam engaging surface causes said lateral direction movement of said magnet holding member.
PCT/US1999/020793 1998-09-10 1999-09-09 Bicycle trainer magnetic resistance device WO2000015308A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/151,393 1998-09-10
US09/151,393 US6042517A (en) 1998-09-10 1998-09-10 Bicycle trainer magnetic resistance device

Publications (1)

Publication Number Publication Date
WO2000015308A1 true WO2000015308A1 (en) 2000-03-23

Family

ID=22538561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/020793 WO2000015308A1 (en) 1998-09-10 1999-09-09 Bicycle trainer magnetic resistance device

Country Status (2)

Country Link
US (1) US6042517A (en)
WO (1) WO2000015308A1 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29820930U1 (en) * 1998-11-23 1999-02-18 Wu Chin Long Adjustable torsion damper
GB2363082B (en) * 2000-06-06 2004-06-02 Clive Graham Stevens Resistance adjusting device for an exercise device having a wheel driven by a belt
US6620081B2 (en) 2001-07-20 2003-09-16 Cal M. Phillips Exercise stand and centrifugal resistance unit for a bicycle
US6736761B2 (en) * 2001-11-06 2004-05-18 Wan-Fu Huang Stationary bicycle resistance generator
TW494777U (en) * 2001-11-23 2002-07-11 Yung-Yu Juang Structure of enclosure for device for training strength of wrist
US6780143B2 (en) 2001-12-31 2004-08-24 Victor Z. Copeland Eccentric cycling trainer
US7011607B2 (en) 2002-01-23 2006-03-14 Saris Cycling Group, Inc. Variable magnetic resistance unit for an exercise device
US6964633B2 (en) * 2003-02-20 2005-11-15 Saris Cycling Group, Inc. Exercise device with an adjustable magnetic resistance arrangement
US7530933B2 (en) * 2006-01-18 2009-05-12 Giant Manufacturing Co., Ltd. Resistance generating device for a training bicycle
US20100200136A1 (en) * 2008-09-08 2010-08-12 Hamilton Brian H Modular Tire with Variable Tread Surfaces
US7955228B2 (en) * 2008-09-08 2011-06-07 Hamilton Brian H Bicycle trainer with variable magnetic resistance to pedaling
US7766798B2 (en) * 2008-09-08 2010-08-03 Hamilton Brian H Bicycle trainer with variable resistance to pedaling
US8979715B2 (en) 2008-09-08 2015-03-17 Brian H. Hamilton Portable and attachable bicycle trainer
US8439808B2 (en) 2008-09-08 2013-05-14 Brian H Hamilton Bicycle trainer with variable resistance to pedaling
NZ575464A (en) 2009-03-10 2010-07-30 Holmes Solutions Ltd Improvements in and relating to braking mechanisms
NO335671B1 (en) * 2010-04-23 2015-01-19 Nmi Holding As Device for attenuating pendular movements and method of using the same
US9259633B2 (en) * 2011-08-11 2016-02-16 Kurt Manufacturing Company, Inc. Roller assembly having internal resistance components
US9050494B2 (en) * 2012-03-09 2015-06-09 Saris Cycling Group, Inc. Controlled pressure resistance unit engagement system
US9999818B2 (en) * 2012-08-27 2018-06-19 Wahoo Fitness Llc Bicycle trainer
US9393475B2 (en) 2012-09-24 2016-07-19 SportCrafters, Inc. Progressive resistance system for an exercise device
EP2859922B1 (en) 2013-10-09 2016-05-18 SportCrafters, Inc. Progressive resistance system for an exercise device
NZ619034A (en) 2013-12-16 2015-03-27 Eddy Current Ltd Partnership An assembly to control relative speed of movement between parts
US9757612B2 (en) * 2014-01-24 2017-09-12 Nustep, Inc. Locking device for recumbent stepper
US9381396B2 (en) 2014-02-04 2016-07-05 SportCrafters, Inc. Portable progressive resistance exercise device
AU2015304096B2 (en) 2014-08-18 2019-11-07 Eddy Current Limited Partnership Tuning of a kinematic relationship between members
MX364898B (en) 2014-08-18 2019-05-13 Eddy Current Lp Latching devices.
CN106852183B (en) 2014-08-18 2020-07-03 涡流有限合伙公司 Adjustment of kinematic relationships between components
CN107206977B (en) 2014-08-20 2020-06-02 特鲁布鲁有限公司 Eddy current braking device for linear systems
US9511271B2 (en) * 2014-09-18 2016-12-06 SportCrafters, Inc. Two stage progressive resistance trainer
SG11201704356SA (en) 2014-12-04 2017-06-29 Eddy Current Ltd Partnership Energy absorbing apparatus
KR102268419B1 (en) 2014-12-04 2021-06-23 에디 커런트 리미티드 파트너쉽 Latch activation between elements
CN107005140B (en) 2014-12-04 2020-03-27 涡流有限合伙公司 Transmission including eddy current braking
WO2016089228A1 (en) 2014-12-04 2016-06-09 Eddy Current Limited Partnership Eddy current brake configurations
EP3912685A1 (en) 2014-12-04 2021-11-24 Eddy Current Limited Partnership Methods of altering eddy current interactions
WO2016137305A1 (en) * 2015-02-27 2016-09-01 김근우 Bicycle exercise apparatus
BR112018012252B1 (en) 2015-12-18 2022-08-09 Eddy Current Limited Partnership VARIABLE OPERATION CONTROL MECHANISM FOR DRIVE SYSTEM
US10391348B2 (en) 2016-02-01 2019-08-27 Mad Dogg Athletics, Inc. Adjustable resistance and braking system for exercise equipment
US20230135743A1 (en) * 2021-11-03 2023-05-04 GoSlo, LLC System and method to resist motion of human powered vehicles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855256A (en) * 1995-09-08 1999-01-05 Isuzu Motors Limited Guide frame for eddy current type breaking system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855256A (en) * 1995-09-08 1999-01-05 Isuzu Motors Limited Guide frame for eddy current type breaking system

Also Published As

Publication number Publication date
US6042517A (en) 2000-03-28

Similar Documents

Publication Publication Date Title
US6042517A (en) Bicycle trainer magnetic resistance device
US5595531A (en) Random orbit sander having speed limiter
CN111683866B (en) Pedal for bicycle
US6234938B1 (en) Magnetic device for use in exercise bicycle or other exercise machines
US6326711B1 (en) DC brushless motor having eccentric rotor
US5325005A (en) Motor commutation
EP2443024B1 (en) Induction generator for a bi-cycle
CN1217140A (en) Adjustable brake device for reel rack for fishing with bait
US7530933B2 (en) Resistance generating device for a training bicycle
EP2178738A1 (en) A generator for a bicycle
CA2195285A1 (en) Electric Power Generator
US20210323634A1 (en) Magnetic Engagement Mechanism for a Recreational and/or Transportation Apparatus
SE9700255L (en) Electrodynamic magnetic bearing
US6719107B1 (en) Braking assembly with self-generating power energy
US8065693B2 (en) Clamping device with weighted stopper for spindle motor
JPH06191245A (en) Indicating device for showing pressure condition, etc. of tire
JP5179267B2 (en) Resistance device for exercise equipment
US4443776A (en) Rotary magnet device
CN113595278A (en) Rotor subassembly and have its motor
JP4276970B2 (en) Fishing reel
US20230223823A1 (en) Actuator, electric motor and associated method
CN215439589U (en) Torque control device based on magnet
JP3576385B2 (en) Double bearing reel for fishing
EP1445849A2 (en) Motor
JPH05103442A (en) Hysteresis brake and motor fitted with brake

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP NO

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase