WO2000015463A1 - Light activated back-up alarm - Google Patents

Light activated back-up alarm Download PDF

Info

Publication number
WO2000015463A1
WO2000015463A1 PCT/US1999/011063 US9911063W WO0015463A1 WO 2000015463 A1 WO2000015463 A1 WO 2000015463A1 US 9911063 W US9911063 W US 9911063W WO 0015463 A1 WO0015463 A1 WO 0015463A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
backup
alarm
optical sensing
vehicle
Prior art date
Application number
PCT/US1999/011063
Other languages
French (fr)
Inventor
Edwin R. Peterson
Edwin Lee Wheeler
James E. Stewart
Original Assignee
Preco New Products Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Preco New Products Corp. filed Critical Preco New Products Corp.
Priority to AU40043/99A priority Critical patent/AU4004399A/en
Publication of WO2000015463A1 publication Critical patent/WO2000015463A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q5/00Arrangement or adaptation of acoustic signal devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/18Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights being additional front lights
    • B60Q1/20Fog lights
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/22Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments for reverse drive

Definitions

  • CO-INVENTORS EDWIN R. PETERSON, 4420 HILLCREST,
  • ASSIGNEE PRECO NEW PRODUCTS CORP., 415 NORTH MAPLE GROVE,
  • This invention relates to vehicle back-up alarms, and more particularly to a vehicle back-up alarm that is activated by a photo sensor detecting when a vehicle back-up light turns on.
  • Vehicle back-up alarms have been known and used in the prior art for a number of years. They were originally installed on construction and industrial equipment used in noisy environments, such as construction sites or manufacturing facilities where there is a lot of activity and where workers may not hear the equipment being backed up until it is too late to prevent injury.
  • the original designs, still in use today, are back-up " ⁇ alarms which are mounted, in one fashion or another and are activated by movement of a vehicle axle. It was and continues to be a lot of work to install these devices, and it generally requires a skilled mechanic to do so.
  • Vehicle back-up alarms save lives and prevent injuries. It is desirable that their usage be further expanded to include installation on all sorts of vehicles, including passenger vehicles. For example, many fast food restaurants feature delivery services. Typically these delivery services are accomplished by part-time employees who use their own — personal vehicles for which their mileage is reimbursed by the restaurant. There are other situations where back-up alarms would be highly useful, particularly with passenger vans, recreational vehicles and automobiles where the drivers cannot easily see behind them as they are backing up along driveways, alleys or even in parking lots. It is tragic, and unfortunately common, for small children who are not paying attention to be run over and either injured or killed by a family member backing a vehicle out of a garage and down a driveway.
  • a vehicle back-up alarm system which optically senses when the back-up lights are illuminated to activate a loud speaker or transducer to provide a warning signal. It is another object of this invention to provide a vehicle back-up alarm that can be installed without interconnection to, or alteration of, the vehicle electrical or mechanical systems. It is another object of the present invention to provide for a vehicle back-up alarm that can be installed in minutes without the use of tools and likewise removed in minutes without the need for using hand tools. It is another object to provide a vehicle back-up alarm which can be installed by the vast majority of the general public without the aid of a mechanic.
  • a battery operated back-up alarm circuit connected to an optical sensing means, such as a photo transistor, solar cell, photo resistor or other device which is reactive to the presence of light.
  • the photo transistor is encased within an optical sensor case which is adapted to be adhesively attached to the exterior surface of the lens of a vehicle back-up light, using adhesive tape.
  • An alarm housing is provided which encases the back-up alarm circuit, a transducer or loud speaker, and the battery.
  • the alarm case is made of somewhat flexible material so that it can be bent to conform to the curved surface of a vehicle, such as a rear bumper. Itr ⁇ is attached to the vehicle by means of an adhesive, and interconnected to the optical sensor by wires.
  • the optical sensor, back-up alarm circuit, and battery are all held within a unitary alarm housing which is adapted to be at least adhesively attached to the exterior surface of the lens of a vehicle back-up light.
  • a photo transistor being used as an optical sensor, acts as a conductive switch between a 9- volt battery and a voltage regulator.
  • the voltage regulator powers a flasher, which cycles at the rate of 2 Hz from high to low, and when going high, turns on a second transistor which switches on the transducer.
  • the photo transistor serves as an optical sensor to switch on and supply power to a voltage regulator.
  • the voltage regulator powers a digital device, such as an EEPROM which in turn controls an output transistor and loud speaker, such that the loud speaker broadcasts either an audible message or some sort of melodic sound.
  • a second optical sensor is added to the circuit and configured to sense only reflected light and not the direct illumination light of the illuminated backup light.
  • the second optical sensor turns on to reduce the voltage applied to the voltage regulator to a level below that required to turn it on, thus precluding operation of the oscillator upon detection a large amount of reflected light without the presence of the direct light of the illuminated backup light.
  • Fig. 1 is a circuit schematic for a first embodiment of the back-up alarm.
  • Fig. 2 is a circuit schematic for a second embodiment of the back-up alarm.
  • Fig. 3 is a circuit schematic for a third embodiment of the back-up alarm.
  • Fig. 4 is a perspective representational view of a first embodiment of the back-up alarm case and photo detector assembly.
  • Fig. 5 is a side view of the photo detector assembly shown in Fig. 4.
  • Fig. 6 is a perspective representational view of the rear— of an automobile having the back-up alarm of Fig. 3 attached to it.
  • Fig. 7 is a perspective representational view of a second embodiment of a back-up alarm case.
  • Fig. 8 is a representational view of the rear of a vehicle having the back-up alarm of Fig. 6 attached to it.
  • Fig. 9 is a side view of the photo detector assembly shown in Fig. 4 showing a sectional side view of a optical sensor housing containing the two optical sensors of the circuit shown in Fig. 3.
  • Fig. 1 discloses a first circuit embodiment for back-up alarm 10. This is powered by 9-volt battery 30, which is interconnected to an optical sensing means, which in this first preferred embodiment is photo transistor 18, which in this embodiment is an Optek OP 506A, which is in series with resistor R220, and functions as an optical sensor and a photo conductive switch.
  • Photo transistor 18 is selected in the preferred embodiment because it is most sensitive to near infrared light in the frequency range of around 935 — nanometers, which is near the peak of the normalized output of both standard tungsten incandescent white light lamps and halogen white light lamps.
  • optical sensing means There are other types, optical sensing means, besides photo transistors, which will also work.
  • Photo transistor 18 is encased, as shown in Figs. 4 and 5 within optical sensor case 16, which is adapted to be adhesively attached to the exterior surface of a lens of a vehicle back-up light by means of adhesive tape 32, as shown in Figs. 5 and 6. While in the preferred embodiment optical sensor case 16 is attached to the exterior surface of a backup light lens, it is not necessary that it is so attached in order to practice the invention. It can also be located within the back-up light, or be attached at some spaced apart distance from the lens.
  • optical sensor case 16 within the back-up light, or securing it at some spaced apart distance from the lens, may defeat one of the primary objects and advantages of the present invention, namely having the installation of back-up alarm 10 be so easy to accomplish that virtually anyone can do it. —
  • voltage regulator 24 which in this first preferred embodiment is voltage regulator LM78L05, and has a regulated output of 5 volts .
  • voltage regulator 24 delivers a regulated 5-volt output to flasher 26, which in this first preferred embodiment is flasher HT2014M, which cycles high and low at a frequency of 2 Hz.
  • flasher When the flasher is active, it goes low, to ground, and when it goes high, it turns on transistor 28 which provides a path to ground for loudspeaker 20.
  • loudspeaker 20 is a piezo electric speaker, with or without a speaker cone. Power is supplied to loudspeaker 20 through high-low volume switch 22. In the high position loudspeaker 20 is powered at the full voltage from battery 30, and in the low position with the 5-volt regulated power from voltage regulator 24. In this first preferred embodiment, loudspeaker 20 will emit an audible beeping sound in the audible range, preferably in the 200Hz to 800 Hz range each time it beeps.
  • FIG. 2 A second embodiment for the circuit design is shown in Fig. 2.
  • photo transistor 18 functions a photo conductive switch connecting battery 30 to voltage regulator — 24 in the same manner as shown in the circuit of Fig. 1.
  • voice or melody generator 50 is used as the control signal for transistor 28 thus enabling loudspeaker 20 to broadcast a simulated voice message such as "backing up, backing up” or some sort of melodic signal, such as a bird chirping or whatever.
  • voice or melody generator 50 is a digital device such as an EPROM. It should be apparent to those skilled in the art that there are a host of other circuit designs which can be used in conjunction with an optical sensor to turn on an audible alarm.
  • Figs. 4 and 5 a first embodiment of the alarm housing design which can be used to enclose either of the circuits shown in Figs. 1 or 2, or any other similar circuit.
  • Alarm housing 14 is, in this preferred embodiment, — formed of three cavities which are interconnected by what can be described as resilient hinges, so as to provide some flexibility to the alarm housing so that it can bent in a curve to conform to a curved surface of the vehicle, such as the top of the rear bumper, as is shown in Figs. 4 and 6.
  • First cavity 34 encloses loudspeaker 20.
  • the circuit of either Figs. 1 or 2, or for that matter, any other suitable circuit is enclosed within second cavity 36, and battery 30 is encased within third cavity 38.
  • Photo transistor 18 is housed within optical sensor housing 16, and connected to the circuit contained within alarm housing 14 by means of standard wires .
  • an on/off switch could be incorporated within the control circuit. However, doing so presents the problem that the back-up alarm must be turned on for it to work. If a person were to turn it off, for whatever reason, then the next driver of the vehicle would have to remember to turn it back on. For this reason, an on/off switch has not been incorporated into the preferred embodiments. —
  • alarm housing 14 can be attached using adhesive tape 40 to the bumper and optical sensor housing 16 is attached, also by adhesive tape 32, to the lens of the back-up light of the vehicle.
  • adhesive tape 40 to the bumper and optical sensor housing 16 is attached, also by adhesive tape 32, to the lens of the back-up light of the vehicle.
  • the reason adhesive tape is used in the preferred embodiment is, as previously stated, ease and simplicity of installation.
  • the back-up alarm of the present invention is not a particularly large or bulky product. It can be designed and encased within a unitary housing wherein length, width and depth dimensions are measured in the range of a few centimeters. As a result, it can be made small enough so as to be provided with a unitary housing 44, such as that shown in Figs.
  • This type of design would be simpler to install, since the user simply exposes adhesive tape 42 and sticks the unitary housing directly on to the lens of the vehicle back-up light.
  • the optical sensor namely photo transistor 18, is thus shielded from outside sources of light, other than light from the illuminated back-up light and some light from an outside source reflected through the lens of the back-up light, and thus still functions as a optical switch to turn on the back-up alarm.
  • This second back-up alarm unitary housing embodiment will work well on vehicles which are provided with back-up lights having large enough lenses such that even with a portion of the lens covered by case 44 sufficient light still remains to provide adequate illumination for the driver to see when moving the vehicle backward.
  • first and second circuit embodiments as shown in Figs. 1 and 2 will not be suitable — designs for use.
  • photo resister 60 and resister 64 R x are placed in series with photo transistor 18.
  • photo resister 60 is also housed within optical sensor housing 62 alongside photo transistor 18, however it is angled off so as to sense reflected light as opposed to direct light from the actual light bulb of the backup light.
  • optical sensor housing 62 is positioned on the lens of the backup light so that photo transistor 18 is directly aligned with the bulb within the backup light and thus senses both reflected light and direct illumination light from the light bulb of the backup light. Since photo resistor 60 is angled off, it will not sense direct bulb light, but rather, reflected light.
  • photo resistor 60 When the backup light is activated photo transistor 18 turns fully on, as does photo resistor 60, however photo resistor 60 will have a residual resistance, and that residual resistance, together with the resistance of resistor 64, is sufficient to serve as a voltage divider to hold the output voltage from photo transistor 18 at a high enough level to turn on voltage regulator 24, thus turning on the backup alarm.
  • the actual value for resistor 64 is dependent upon the specifications and resistance values for the photo resistor 60 that is selected for use in the circuit of Fig. 3, and is a value that can easily be determined by one who is skilled in the art.
  • the residual resistance of the selected photo resistor 60 may, in itself, be sufficient to hold the output voltage from photo transistor 18 high enough when photo transistor 18 is fully turned on by illumination of the backup light to turn on voltage regulator 24 such that resistor 64 is not necessary to operation of the circuit.
  • the remainder of the circuit shown in Fig. 3 is the same as that as shown and described in Fig. 2. While the circuit of Fig. 3 is not as energy efficient it will reduce spurious and inadvertent activation of the backup alarm. While there is shown and described the present preferred— embodiment of the invention, it is to be distinctly understood that this invention is not limited thereto but may be variously embodied to practice within the scope of the following claims.

Abstract

A light activated back-up alarm is provided for use with a vehicle having at least one white back-up light. It includes an optical sensor for attachment to the outside lens of the vehicle back-up light and an alarm circuit and battery encased within an alarm housing. The optical sensor is adhesively attached to the light and the alarm housing adhesively attached to some other portion of the vehicle.

Description

WO 00/15463 PCT/US99/ϊlfl63
- 1 -
TITLE OF INVENTION: LIGHT ACTIVATED BACK-UP ALARM
CO-INVENTORS: EDWIN R. PETERSON, 4420 HILLCREST,
BOISE, IDAHO 83705;
EDWIN LEE WHEELER, 1865 NORTH SUMMERTREE
WAY, MERIDIAN, IDAHO 83642; and JAMES E. STEWART, 415 NORTH MAPLE GROVE, BOISE, IDAHO 83704-8241
ASSIGNEE : PRECO NEW PRODUCTS CORP., 415 NORTH MAPLE GROVE,
BOISE, IDAHO 83704-8241
D E S C R I P T I O N
BACKGROUND OF THE INVENTION
Field of the Invention. This invention relates to vehicle back-up alarms, and more particularly to a vehicle back-up alarm that is activated by a photo sensor detecting when a vehicle back-up light turns on.
Background Information. Vehicle back-up alarms have been known and used in the prior art for a number of years. They were originally installed on construction and industrial equipment used in noisy environments, such as construction sites or manufacturing facilities where there is a lot of activity and where workers may not hear the equipment being backed up until it is too late to prevent injury. The original designs, still in use today, are back-up "~~ alarms which are mounted, in one fashion or another and are activated by movement of a vehicle axle. It was and continues to be a lot of work to install these devices, and it generally requires a skilled mechanic to do so.
Eventually usage expanded to delivery vehicles, but again they are typically axle-mounted devices which require skilled mechanics to install them. More recently back-up alarm designs have been developed which utilize the vehicle electrical system, and in particular, the lines which power the back-up lights of the vehicle. These designs generally include replacing or modifying the light socket for one of the back-up lights of the vehicle, such that when the light is activated by the driver placing the vehicle in a reverse gear, the alarm begins to sound. Again, installation of these types of devices requires the services of a mechanic, or someone skilled in identifying the wiring systems and capable of changing a light socket on a vehicle.
Vehicle back-up alarms save lives and prevent injuries. It is desirable that their usage be further expanded to include installation on all sorts of vehicles, including passenger vehicles. For example, many fast food restaurants feature delivery services. Typically these delivery services are accomplished by part-time employees who use their own — personal vehicles for which their mileage is reimbursed by the restaurant. There are other situations where back-up alarms would be highly useful, particularly with passenger vans, recreational vehicles and automobiles where the drivers cannot easily see behind them as they are backing up along driveways, alleys or even in parking lots. It is tragic, and unfortunately common, for small children who are not paying attention to be run over and either injured or killed by a family member backing a vehicle out of a garage and down a driveway.
Unfortunately, the prior art designs for back-up alarms make them difficult for ordinary people to purchase and install. Since installation requires the services of a skilled mechanic, they are not readily available to the general public through department or discount stores. To purchase a prior art back-up alarm, and have it installed, one usually must first go to a specialty store, such as an auto parts store to purchase the back-up alarm, and then to a mechanic to have it installed. If one were to install a backup alarm in a personal vehicle, and then decide to sell the vehicle and purchase a new one, the seller of the vehicle must first go back to the mechanic to have the back-up alarm removed from the old car and again back to the mechanic to ~" have it re-installed in the new vehicle.
What is needed is a back-up alarm that can be installed on a vehicle without the aid of a mechanic, and without mechanically or electrically altering the vehicle configuration. What is needed is a back-up alarm whose installation is so simple that virtually anyone in the general public who qualifies to hold a driver's license can install and/or remove the back-up alarm from any vehicle that has back-up lights.
Accordingly, it is an object of the present invention to provide a vehicle back-up alarm system which optically senses when the back-up lights are illuminated to activate a loud speaker or transducer to provide a warning signal. It is another object of this invention to provide a vehicle back-up alarm that can be installed without interconnection to, or alteration of, the vehicle electrical or mechanical systems. It is another object of the present invention to provide for a vehicle back-up alarm that can be installed in minutes without the use of tools and likewise removed in minutes without the need for using hand tools. It is another object to provide a vehicle back-up alarm which can be installed by the vast majority of the general public without the aid of a mechanic.
Additional objects, advantages and novel features of the invention will be set forth in part in the description as follows, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
SUMMARY OF THE INVENTION
These objects are achieved in the use of a battery operated back-up alarm circuit connected to an optical sensing means, such as a photo transistor, solar cell, photo resistor or other device which is reactive to the presence of light.
The photo transistor is encased within an optical sensor case which is adapted to be adhesively attached to the exterior surface of the lens of a vehicle back-up light, using adhesive tape. An alarm housing is provided which encases the back-up alarm circuit, a transducer or loud speaker, and the battery. In one embodiment, the alarm case is made of somewhat flexible material so that it can be bent to conform to the curved surface of a vehicle, such as a rear bumper. Itr~ is attached to the vehicle by means of an adhesive, and interconnected to the optical sensor by wires.
In a second embodiment the optical sensor, back-up alarm circuit, and battery are all held within a unitary alarm housing which is adapted to be at least adhesively attached to the exterior surface of the lens of a vehicle back-up light.
In one circuit embodiment, a photo transistor, being used as an optical sensor, acts as a conductive switch between a 9- volt battery and a voltage regulator. The voltage regulator, in turn, powers a flasher, which cycles at the rate of 2 Hz from high to low, and when going high, turns on a second transistor which switches on the transducer.
In the second embodiment, similar arrangements are made for the photo transistor to serve as an optical sensor to switch on and supply power to a voltage regulator. However, in the second embodiment, the voltage regulator powers a digital device, such as an EEPROM which in turn controls an output transistor and loud speaker, such that the loud speaker broadcasts either an audible message or some sort of melodic sound.
In a third circuit embodiment a second optical sensor is added to the circuit and configured to sense only reflected light and not the direct illumination light of the illuminated backup light. In the situation where both optical sensors detect reflected light, but not direct illumination light of the illuminated backup light, the second optical sensor turns on to reduce the voltage applied to the voltage regulator to a level below that required to turn it on, thus precluding operation of the oscillator upon detection a large amount of reflected light without the presence of the direct light of the illuminated backup light.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a circuit schematic for a first embodiment of the back-up alarm. Fig. 2 is a circuit schematic for a second embodiment of the back-up alarm.
Fig. 3 is a circuit schematic for a third embodiment of the back-up alarm.
Fig. 4 is a perspective representational view of a first embodiment of the back-up alarm case and photo detector assembly.
Fig. 5 is a side view of the photo detector assembly shown in Fig. 4. Fig. 6 is a perspective representational view of the rear— of an automobile having the back-up alarm of Fig. 3 attached to it.
Fig. 7 is a perspective representational view of a second embodiment of a back-up alarm case.
Fig. 8 is a representational view of the rear of a vehicle having the back-up alarm of Fig. 6 attached to it.
Fig. 9 is a side view of the photo detector assembly shown in Fig. 4 showing a sectional side view of a optical sensor housing containing the two optical sensors of the circuit shown in Fig. 3.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Fig. 1 discloses a first circuit embodiment for back-up alarm 10. This is powered by 9-volt battery 30, which is interconnected to an optical sensing means, which in this first preferred embodiment is photo transistor 18, which in this embodiment is an Optek OP 506A, which is in series with resistor R220, and functions as an optical sensor and a photo conductive switch. Photo transistor 18 is selected in the preferred embodiment because it is most sensitive to near infrared light in the frequency range of around 935 — nanometers, which is near the peak of the normalized output of both standard tungsten incandescent white light lamps and halogen white light lamps. There are other types of optical sensing means, besides photo transistors, which will also work. These include photo resistors, solar cells, as well as a variety of other devices which are reactive to the presence of light and known to those skilled in the art. Photo transistor 18 is encased, as shown in Figs. 4 and 5 within optical sensor case 16, which is adapted to be adhesively attached to the exterior surface of a lens of a vehicle back-up light by means of adhesive tape 32, as shown in Figs. 5 and 6. While in the preferred embodiment optical sensor case 16 is attached to the exterior surface of a backup light lens, it is not necessary that it is so attached in order to practice the invention. It can also be located within the back-up light, or be attached at some spaced apart distance from the lens. However placing optical sensor case 16 within the back-up light, or securing it at some spaced apart distance from the lens, may defeat one of the primary objects and advantages of the present invention, namely having the installation of back-up alarm 10 be so easy to accomplish that virtually anyone can do it. —
Referring again to Fig. 1, once photo transistor 18 switches on, most of the voltage from battery 30 is applied to voltage regulator 24, which in this first preferred embodiment is voltage regulator LM78L05, and has a regulated output of 5 volts .
With photo transistor 18 switched on, voltage regulator 24 delivers a regulated 5-volt output to flasher 26, which in this first preferred embodiment is flasher HT2014M, which cycles high and low at a frequency of 2 Hz. When the flasher is active, it goes low, to ground, and when it goes high, it turns on transistor 28 which provides a path to ground for loudspeaker 20. In the preferred embodiment, loudspeaker 20 is a piezo electric speaker, with or without a speaker cone. Power is supplied to loudspeaker 20 through high-low volume switch 22. In the high position loudspeaker 20 is powered at the full voltage from battery 30, and in the low position with the 5-volt regulated power from voltage regulator 24. In this first preferred embodiment, loudspeaker 20 will emit an audible beeping sound in the audible range, preferably in the 200Hz to 800 Hz range each time it beeps.
A second embodiment for the circuit design is shown in Fig. 2. In Fig. 2, photo transistor 18 functions a photo conductive switch connecting battery 30 to voltage regulator — 24 in the same manner as shown in the circuit of Fig. 1. However in this circuit, voice or melody generator 50 is used as the control signal for transistor 28 thus enabling loudspeaker 20 to broadcast a simulated voice message such as "backing up, backing up" or some sort of melodic signal, such as a bird chirping or whatever. In the circuit of Fig. 2, voice or melody generator 50 is a digital device such as an EPROM. It should be apparent to those skilled in the art that there are a host of other circuit designs which can be used in conjunction with an optical sensor to turn on an audible alarm. Some of these include Schmidtt triggers and various other types of oscillators. Another feature that can easily be added to the circuit design is an ambient noise adjustment circuit module, wherein ambient noise is monitored, and the output to the loudspeaker is adjusted, either up or down, according to the amount of ambient noise. Such circuits are already well known to those skilled in the art.
There is shown in Figs. 4 and 5 a first embodiment of the alarm housing design which can be used to enclose either of the circuits shown in Figs. 1 or 2, or any other similar circuit. Alarm housing 14 is, in this preferred embodiment, — formed of three cavities which are interconnected by what can be described as resilient hinges, so as to provide some flexibility to the alarm housing so that it can bent in a curve to conform to a curved surface of the vehicle, such as the top of the rear bumper, as is shown in Figs. 4 and 6. First cavity 34 encloses loudspeaker 20. The circuit of either Figs. 1 or 2, or for that matter, any other suitable circuit, is enclosed within second cavity 36, and battery 30 is encased within third cavity 38. Fig. 3 is shown with the high-low loudspeaker switch 22 of the circuit described in Fig. 1. Third cavity 38, which encases battery 30 is provided with a latch, and is openable so as to provide for battery replacement. As shown in Figs. 4 and 5 Photo transistor 18 is housed within optical sensor housing 16, and connected to the circuit contained within alarm housing 14 by means of standard wires .
Optionally, an on/off switch could be incorporated within the control circuit. However, doing so presents the problem that the back-up alarm must be turned on for it to work. If a person were to turn it off, for whatever reason, then the next driver of the vehicle would have to remember to turn it back on. For this reason, an on/off switch has not been incorporated into the preferred embodiments. —
As shown in Figs. 4 and 5, alarm housing 14 can be attached using adhesive tape 40 to the bumper and optical sensor housing 16 is attached, also by adhesive tape 32, to the lens of the back-up light of the vehicle. However there are other means of attaching alarm housing 14 to a vehicle, which include the use of brackets and standard fasteners. The reason adhesive tape is used in the preferred embodiment is, as previously stated, ease and simplicity of installation. The back-up alarm of the present invention is not a particularly large or bulky product. It can be designed and encased within a unitary housing wherein length, width and depth dimensions are measured in the range of a few centimeters. As a result, it can be made small enough so as to be provided with a unitary housing 44, such as that shown in Figs. 7 and 8. This type of design would be simpler to install, since the user simply exposes adhesive tape 42 and sticks the unitary housing directly on to the lens of the vehicle back-up light. The optical sensor, namely photo transistor 18, is thus shielded from outside sources of light, other than light from the illuminated back-up light and some light from an outside source reflected through the lens of the back-up light, and thus still functions as a optical switch to turn on the back-up alarm. This second back-up alarm unitary housing embodiment will work well on vehicles which are provided with back-up lights having large enough lenses such that even with a portion of the lens covered by case 44 sufficient light still remains to provide adequate illumination for the driver to see when moving the vehicle backward.
In practice, it has been found that if photo transistor 18 is pointed directly at the sun, it will become photo conductive, however, in the vast majority of situations, reflected sunlight or light from vehicle headlights will not be of sufficient strength to switch photo transistor 18 on. This is particularly true for vehicles having back-up light lenses which are of the diffusing light type, which are found on the vast majority of passenger vehicles and light trucks manufactured today. If the vehicle back-up light is designed to feature an absolutely clear, non-diffusing lens, then it is possible, under certain circumstances, that sufficient reflected sunlight will partially switch on photo transistor 18 at least enough to provide sufficient voltage to voltage regulator 24 to turn it on and thus activate backup alarm 10.
Thus for vehicles having clear, non-diffusing lenses for back-up lights, it is possible that first and second circuit embodiments as shown in Figs. 1 and 2 will not be suitable — designs for use.
Accordingly there is shown in Figs. 3 and 9 a third circuit embodiment. In this embodiment photo resister 60 and resister 64 Rx are placed in series with photo transistor 18. As shown in Fig. 9, photo resister 60 is also housed within optical sensor housing 62 alongside photo transistor 18, however it is angled off so as to sense reflected light as opposed to direct light from the actual light bulb of the backup light. In this embodiment optical sensor housing 62 is positioned on the lens of the backup light so that photo transistor 18 is directly aligned with the bulb within the backup light and thus senses both reflected light and direct illumination light from the light bulb of the backup light. Since photo resistor 60 is angled off, it will not sense direct bulb light, but rather, reflected light. Therefore, if, in case there is sufficient reflected light, for example from sunlight, to partially turn on photo transistor 18, the same reflected light will also turn on photo resistor 60 which will provide a path to ground through resistor 64 for the output of photo transistor 18, which will reduce the voltage applied to voltage regulator 24 to below the five volts necessary to turn on voltage regulator 24, thus preventing reflected light from inadvertently turning on backup alarm 10-.
When the backup light is activated photo transistor 18 turns fully on, as does photo resistor 60, however photo resistor 60 will have a residual resistance, and that residual resistance, together with the resistance of resistor 64, is sufficient to serve as a voltage divider to hold the output voltage from photo transistor 18 at a high enough level to turn on voltage regulator 24, thus turning on the backup alarm. The actual value for resistor 64 is dependent upon the specifications and resistance values for the photo resistor 60 that is selected for use in the circuit of Fig. 3, and is a value that can easily be determined by one who is skilled in the art. And, it may be that the residual resistance of the selected photo resistor 60 may, in itself, be sufficient to hold the output voltage from photo transistor 18 high enough when photo transistor 18 is fully turned on by illumination of the backup light to turn on voltage regulator 24 such that resistor 64 is not necessary to operation of the circuit. The remainder of the circuit shown in Fig. 3 is the same as that as shown and described in Fig. 2. While the circuit of Fig. 3 is not as energy efficient it will reduce spurious and inadvertent activation of the backup alarm. While there is shown and described the present preferred— embodiment of the invention, it is to be distinctly understood that this invention is not limited thereto but may be variously embodied to practice within the scope of the following claims.
We claim:

Claims

1. A light activated backup alarm, for use with a vehicle having at least one backup light having an outer lens, which is characterized by: a first optical sensing means for sensing when said vehicle backup light is illuminated; an electrical power source; and means for emitting an audible signal when said first optical sensing means senses that said vehicle backup light is illuminated, electrically connected to both said power source and said first optical sensing means.
2. A light activated backup alarm, for use with a vehicle having at least one operable backup light having an outer lens: first optical sensing means for sensing both direct illumination from said operable backup light and reflected light; second optical sensing means for sensing only reflected light; an electrical power source; means for emitting an audible signal when said first optical sensing means senses direct illumination from said backup light and for precluding the emission of said audible signal when both said first and second optical sensing means sense the presence of reflected light, operatively connected to said first and second optical sensing means.
3. The light activated backup alarm of Claim 1 or 2 wherein said first optical sensing means is further characterized by a photo transistor, and said first optical sensing means is adapted for attachment to said backup light.
4. The light activated backup alarm of Claim 1 or 2 wherein said first optical sensing means is further characterized by a photo-resistor, and wherein said first optical sensing means is adapted for attachment to said outer lens of said backup light.
5. The light activated backup alarm of Claim 1 or 2 ΓÇö wherein said first optical sensing means is further characterized by a photocell, and wherein said first optical sensing means is adapted for attachment to said outer lens of said backup light, said alarm further characterized by an alarm housing for encasing said electrical power source and said means for emitting an audible signal, wherein said alarm housing is adapted for adhesive attachment to said vehicle.
6. The light activated backup alarm of Claim 1 or 2 which is further characterized by an alarm housing for housing said optical sensing means, electrical power source and said means for emitting an audible signal, wherein said alarm housing is adapted for adhesive attachment to said outer lens of said backup light.
7. The light activated backup alarm of Claim 1 or 2 ΓÇö wherein said means for emitting an audible signal is a voltage regulator operatively connected to an oscillator which is operatively connected to a transducer capable of emitting an audible signal responsive to the output of said oscillator, and said power source is a battery, and said optical sensing means electrically interconnects said battery and said voltage regulator and is operable to apply power from said battery to said voltage regulator when said optical sensor senses the illumination of said backup light.
8. The light activated backup alarm of Claim 1 or 2 wherein said electrical power source is further characterized by means for interconnecting said means for emitting an audible signal and said optical sensing means to the electrical system of said vehicle.
9. The light activated backup alarm of Claim 1 or 2 ΓÇö wherein said means for emitting an audible signal is further characterized by: an oscillator, electrically connected to said optical sensing means, for producing an oscillating output signal when said optical sensing means senses that said vehicle backup light is illuminated; and a transducer electrically connected to said oscillator for producing an audible signal responsive to said oscillator output signal, wherein said transducer is further characterized by a piezoelectric transducer.
10. The light activated backup alarm of Claim 1 or 2 ΓÇö which is further characterized by: a differentially transparent film which is configured for mounting on a lens of a vehicle backup light, wherein said film freely allows transmittal of light from inside said vehicle backup light to outside said vehicle backup light, but reduces or eliminates transmittal of light from outside of said vehicle backup light to outside said vehicle backup light .
PCT/US1999/011063 1998-09-15 1999-05-13 Light activated back-up alarm WO2000015463A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU40043/99A AU4004399A (en) 1998-09-15 1999-05-13 Light activated back-up alarm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/153,351 US6028511A (en) 1998-09-15 1998-09-15 Light activated back-up alarm
US09/153,351 1998-09-15

Publications (1)

Publication Number Publication Date
WO2000015463A1 true WO2000015463A1 (en) 2000-03-23

Family

ID=22546843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/011063 WO2000015463A1 (en) 1998-09-15 1999-05-13 Light activated back-up alarm

Country Status (3)

Country Link
US (2) US6028511A (en)
AU (1) AU4004399A (en)
WO (1) WO2000015463A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004029693B3 (en) * 2004-06-14 2005-10-20 Siemens Ag Substrate for optoelectronic building block has cutout with adhesive hardened by UV, holding adjustable block with 45 degree mirror surface and includes light guide layer

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2345392C (en) * 2000-03-28 2015-01-28 Brigade Electronics Plc Reversing alarm
US6720868B2 (en) * 2001-05-31 2004-04-13 Omega Patents, L.L.C. Back-up warning system in a license plate holder and related method
US20030116077A1 (en) * 2001-12-26 2003-06-26 Bucalo Louis R. Emergency signal system for vehicles
US20040217851A1 (en) * 2003-04-29 2004-11-04 Reinhart James W. Obstacle detection and alerting system
US7123133B2 (en) * 2004-04-15 2006-10-17 Preco Electronics, Inc. Combined back-up and battery low-level alarm for vehicle
US7339462B1 (en) 2005-09-06 2008-03-04 Chris Diorio Reverse gear volume reducer
FR2959972B1 (en) * 2010-05-17 2012-07-27 Vignal Systems VEHICLE REAR LIGHT COMPRISING A RECOVERY ALARM
EP2402214A1 (en) * 2010-07-02 2012-01-04 Hsi-Chi Lai Car reverse alarm
JP5977575B2 (en) * 2011-09-02 2016-08-24 株式会社小糸製作所 Vehicle lamp
US10448476B2 (en) 2016-05-20 2019-10-15 JST Performance, LLC Method and apparatus for a signal indicator light
IT201700008110A1 (en) * 2017-01-25 2018-07-25 B Lab S R L ASSISTANCE SYSTEM FOR MOTOR VEHICLES
US10913425B1 (en) 2019-08-07 2021-02-09 Keep Technologies, Inc. Multi-sensor intrusion detection and validation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5005004A (en) * 1988-10-21 1991-04-02 Udofot Michael P Light activated vehicle sensor with flashing light and pulsing sound alarm
WO1992001586A1 (en) * 1990-07-25 1992-02-06 Designtech International, Inc. Combination back-up light and sound emitting device
EP0699560A2 (en) * 1994-09-01 1996-03-06 Gebr. Happich GmbH Reversing light for vehicle

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3541504A (en) * 1967-06-01 1970-11-17 Howard R Bush Vehicle lamp failure indicator
US3688297A (en) * 1970-10-27 1972-08-29 Gen Motors Corp Lights out detector for providing a continuous indication of the failure of lamps which are illuminated intermittently or have intermittent failures
US3818438A (en) * 1972-07-06 1974-06-18 Blount R Vehicle back-up warning system
DE2818019C2 (en) * 1978-04-25 1980-07-17 Bayerische Motoren Werke Ag, 8000 Muenchen Vehicle headlights with a pollution sensor
US4449602A (en) * 1982-07-09 1984-05-22 Municipal Industries, Inc. Rear suspension and storage box for a three-wheel motorcycle
US4603317A (en) * 1982-11-08 1986-07-29 Electronic Controls Co. Electrically-operated backup alarm
US4803488A (en) * 1984-02-10 1989-02-07 Steven F. Sommers Driver alerting device
JPH0449612Y2 (en) * 1987-07-13 1992-11-24
US4885567A (en) * 1987-10-19 1989-12-05 Danny Katz Vehicular back-up lamp alarm device
US4903007A (en) * 1988-07-22 1990-02-20 Design Tech International, Inc. Combination back-up light and sound emitting device for automotive vehicle
US4851813A (en) * 1988-07-22 1989-07-25 Design Tech International, Inc. Combination back-up light and sound emitting device for automotive vehicle
US5223814A (en) * 1988-12-05 1993-06-29 Prince Corporation Sensor for vehicle accessories
US4994800A (en) * 1989-02-21 1991-02-19 Milliken Franklin L Snap-in housing for backup alarm
US5272464A (en) * 1990-04-23 1993-12-21 Jorgensen Adam A Centralized automotive resource management system
US5132665A (en) * 1990-06-27 1992-07-21 Dominion Automotive Industries Corp. Hub-mounted vehicle back-up alarm
DE69327866T2 (en) * 1992-09-09 2000-11-02 Hitachi Ltd Mobile communication device
US5276594A (en) * 1992-09-22 1994-01-04 Burkett Mark E Add-on vehicle safety light monitor
US5510763A (en) * 1993-06-02 1996-04-23 Ryder Truck Rental, Inc. Rear truck strobe light controller for backing or parking
US5440288A (en) * 1994-08-05 1995-08-08 Design Tech International, Inc. Controller for a backup alarm system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5005004A (en) * 1988-10-21 1991-04-02 Udofot Michael P Light activated vehicle sensor with flashing light and pulsing sound alarm
WO1992001586A1 (en) * 1990-07-25 1992-02-06 Designtech International, Inc. Combination back-up light and sound emitting device
EP0699560A2 (en) * 1994-09-01 1996-03-06 Gebr. Happich GmbH Reversing light for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004029693B3 (en) * 2004-06-14 2005-10-20 Siemens Ag Substrate for optoelectronic building block has cutout with adhesive hardened by UV, holding adjustable block with 45 degree mirror surface and includes light guide layer

Also Published As

Publication number Publication date
US6028511A (en) 2000-02-22
AU4004399A (en) 2000-04-03
US6064302A (en) 2000-05-16

Similar Documents

Publication Publication Date Title
US6028511A (en) Light activated back-up alarm
US4952910A (en) Warning triangle for motor vehicles
US3947815A (en) Automobile emergency-alerting system
US4631516A (en) Auxiliary vehicle warning system
US5313191A (en) Warning device for an electric vehicle
US6946965B2 (en) Driver fatigue detector with automatic deactivation
SE8803784D0 (en) DEVICE TO SAVE LIFE IN TRAFFIC
US6939021B2 (en) Triangular light assembly with flashing and non-flashing lights
US5382941A (en) Vehicle alarm set signal level control
US5984496A (en) Lighted mirror assembly
SE9602244L (en) Vehicle driver control system
US4912454A (en) Flashing led safety lights for demarcating the sides of a vehicle
WO1993010550A1 (en) Light operated switch
US5038133A (en) Simulated vehicle alarm
US6803858B2 (en) Blind spot alert system
US20030189165A1 (en) Car seat monitoring device
JPH0226758Y2 (en)
JP2600760Y2 (en) Automatic flashing device for automotive lighting
WO2000034085A1 (en) Airbag door including a state display for a switchable airbag system
JP3078586B2 (en) Vehicle notification device
JPH05325601A (en) Blinking light device
KR0112964Y1 (en) Alarming apparatus for wrong switch of a light
KR880002163Y1 (en) Signal device for a vehicle
JPH0521486Y2 (en)
KR0115435Y1 (en) Parking alarm apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR CA CH CN CU CZ DE DK EE FI GB GD GE HU ID IL IN IS JP KP KR LT LV MD MX NO NZ PL PT RO RU SE SG SK TR UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase