WO2000021143A1 - Radiation emitting semiconductor chip - Google Patents

Radiation emitting semiconductor chip Download PDF

Info

Publication number
WO2000021143A1
WO2000021143A1 PCT/DE1999/003211 DE9903211W WO0021143A1 WO 2000021143 A1 WO2000021143 A1 WO 2000021143A1 DE 9903211 W DE9903211 W DE 9903211W WO 0021143 A1 WO0021143 A1 WO 0021143A1
Authority
WO
WIPO (PCT)
Prior art keywords
active layer
semiconductor chip
gan
quantum well
emitting semiconductor
Prior art date
Application number
PCT/DE1999/003211
Other languages
German (de)
French (fr)
Inventor
Volker HÄRLE
Berthold Hahn
Andreas Hangleiter
Original Assignee
Osram Opto Semiconductors Gmbh & Co. Ohg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh & Co. Ohg filed Critical Osram Opto Semiconductors Gmbh & Co. Ohg
Publication of WO2000021143A1 publication Critical patent/WO2000021143A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/021Silicon based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3407Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers characterised by special barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3425Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers comprising couples wells or superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser

Definitions

  • the invention relates to a radiation-emitting semiconductor chip, in particular based on GaN / GalnN, in which the active layer has a single or multiple quantum well structure, in particular UV, blue - light or green light-emitting semiconductor chips.
  • the active layer In the case of a single quantum well, the active layer generally has two barrier layers and a quantum film lying between them, and in the case of a multiple quantum well there are usually x quantum films and x + 1 barrier layers (where x> l) in which the quantum films are embedded are.
  • x quantum films and x + 1 barrier layers where x> l
  • Single and multiple quantum well structures are known per se and are therefore not explained in more detail here.
  • Emitting diode chips strongly depends on the level of the operating current.
  • the reason for this can be, on the one hand, an in-segregation in the quantum well range and, on the other hand, can be piezoelectric fields that are caused by internal tension in the chip. Applying electrical voltage to the chip in the forward direction leads to a scanning of the internal fields and, with increasing current strength through the chip, to a wavelength shift of the emitted radiation toward shorter wavelengths. The greater the wavelength of the emitted radiation, the stronger this effect is shown.
  • the object of the invention is to develop a semiconductor chip of the type mentioned, in which the wavelength of the emitted radiation is largely is independent of changes in the current through the chip.
  • the former is achieved with a semiconductor chip of the type mentioned in the introduction, in which the active layer has thin quantum films with a thickness of ⁇ 3 nm.
  • FIG. 1 A particularly preferred exemplary embodiment of this, shown schematically in FIG. 1, is a
  • Semiconductor chip with an active layer 4 which has a GaN / GalnN multi-quantum well structure, in which 3.5 GalnN quantum films with a thickness ⁇ 3 nm are arranged between GaN barrier layers and which is produced on an SiC substrate 1, whereby Additional layers, in particular a buffer layer 2, can be located between the substrate 1 and the active layer 4.
  • the second is achieved with a semiconductor chip of the type mentioned in the introduction, in which the barrier layers 3, 5 and / or the quantum films are doped in an electrically conductive manner.
  • the doping is designed for the existing fields so that they are compensated for. It is based on the tension in the active layer.
  • Optimal compensation of the piezo fields is achieved by high doping of the active layer. As a result, the piezo fields are virtually short-circuited. This also anticipates the charge carrier densities that occur in later operation. Technically, this is possible, for example, through high n-doping in the area of the active zone. To a To achieve the highest possible ratio p / (p + n), high p-doping is required.
  • the charge carrier densities required for the compensation of the internal fields are greater than 10 19 cm 3 . They are achieved by doping the quantum well range or by remote doping of barrier layers.
  • the barrier layers can be doped bipolar. Effective compensation can be achieved by acceptors and donors directly on the quantum well.
  • the charge carrier densities are greater than 10 19 cm 3 .
  • p-doping and below the quantum well is advantageously heavily n-doped. The piezo fields are canceled by the fields caused by the ionized donors and acceptors.
  • a particularly preferred exemplary embodiment is a semiconductor chip with an active layer which has a GaN / GalnN multi-quantum well structure in which between GaN
  • Barrier layers of GalnN quantum films are arranged and which is produced on an SiC substrate and in which further layers, in particular a buffer layer, can be located between the substrate and the active layer, the GaN barrier layers and / or the GalnN -
  • Quantum films are electrically doped, ie they are n- or p-doped. The doping is based on the tension and not on the structure, i. H. z. B. on an n- or p-doped buffer layer.
  • a relaxed semiconductor layer is arranged between the substrate and the active layer, which has the same lattice constant as the lattice constant in the quantum well.
  • a particularly preferred exemplary embodiment of this shown schematically in FIG. 2, is a Semiconductor chip with an active layer 4, which has a GaN / GalnN multi-quantum well structure, in which 3.5 GalnN quantum files are arranged between GaN barrier layers and which is produced on an SiC substrate 1, wherein between the substrate 1 and the active
  • Layer 4 is a relaxed InGaAlN layer 6, which has the same lattice constant as that of the quantum well.
  • the barrier layers 5, 6 consist of AlGalnN.
  • the structures given above can be used for all GalnN / GaN-based LEDs as well as for all structures that have strong internal stress fields.

Abstract

A semiconductor chip, especially a GaN/GaInN based chip, that emits radiation, whereby the active layer has a multi quantum wave structure. The active layer has very thin quantum films (maximum thickness: 3 nm) and/or electro-conductive doped barrier layers and/or quantum films. The wavelengths of the emitted radiation is substantially independent of changes in the intensity of the current through the chip.

Description

Beschreibungdescription
Strahlungsemittierender HalbleiterchipRadiation-emitting semiconductor chip
Die Erfindung bezieht sich auf einen strahlungsemittierenden Halbleiterchip, insbesondere auf der Basis von GaN/GalnN, bei dem die aktive Schicht eine Einfach- oder Mehrfach- Quantenwell-Struktur aufweist, insbesondere auf UV-, blaues - Licht oder grünes Licht emittierende Halbleiterchips .The invention relates to a radiation-emitting semiconductor chip, in particular based on GaN / GalnN, in which the active layer has a single or multiple quantum well structure, in particular UV, blue - light or green light-emitting semiconductor chips.
Die aktive Schicht weist bei einer Einfach-Quantenwell in der Regel zwei Barriereschichten und einen zwischen diesen liegenden Quantenfilm auf, und bei einer Mehrfach-Quantenwell in der Regel x Quantenfilme und x+1 Barriereschichten (wobei x>l), in die die Quantenfilme eingebettet sind. Einfach- und Mehrfach-Quantenwell-Strukturen sind an sich bekannt und werden von daher an dieser Stelle nicht näher erläutert.In the case of a single quantum well, the active layer generally has two barrier layers and a quantum film lying between them, and in the case of a multiple quantum well there are usually x quantum films and x + 1 barrier layers (where x> l) in which the quantum films are embedded are. Single and multiple quantum well structures are known per se and are therefore not explained in more detail here.
Die Wellenlänge der ausgesandten Strahlung von bekannten derartigen lichtemittierenden Halbleiterchips (LED (LightThe wavelength of the emitted radiation from known light-emitting semiconductor chips of this type (LED (Light
Emitting Diode) -Chips) ist stark abhängig von der Höhe des Betriebsstromes .Emitting diode) chips) strongly depends on the level of the operating current.
Ursache dafür kann zum Einen eine In-Segregation im Quantenwellbereich und können zum anderen piezoelektrische Felder sein, die durch interne Verspannungen im Chip hervorgerufen werden. Ein Anlegen von elektrischer Spannung an den Chip in Vorwärtsrichtung führt zu einem Abrastern der internen Felder und mit zunehmender Stromstärke durch den Chip zu einer Wellenlängenverschiebung der emittierten Strahlung zu kürzeren Wellenlängen hin. Je größer die Wellenlänge der emittierten Strahlung ist, umso stärker zeigt sich dieser Effekt.The reason for this can be, on the one hand, an in-segregation in the quantum well range and, on the other hand, can be piezoelectric fields that are caused by internal tension in the chip. Applying electrical voltage to the chip in the forward direction leads to a scanning of the internal fields and, with increasing current strength through the chip, to a wavelength shift of the emitted radiation toward shorter wavelengths. The greater the wavelength of the emitted radiation, the stronger this effect is shown.
Die Aufgabe der Erfindung besteht darin, einen Halbleiterchip der eingangs genannten Art zu entwickeln, bei dem die Wellenlänge der emittierten Strahlung weitestgehend unabhängig ist gegenüber Veränderungen der Stromstärke durch den Chip.The object of the invention is to develop a semiconductor chip of the type mentioned, in which the wavelength of the emitted radiation is largely is independent of changes in the current through the chip.
Diese Aufgabe wird durch einen Halbleiterchip mit den Merkmalen des Anspruches 1, 4, 5 oder 6 gelöst. Bei einem solchen Halbleiterchip sind die piezoelektrischen Felder klein gehalten und/oder durch den Einbau von zusätzlichen internen Feldern weitestgehend kompensiert.This object is achieved by a semiconductor chip with the features of claims 1, 4, 5 or 6. In such a semiconductor chip, the piezoelectric fields are kept small and / or largely compensated for by the installation of additional internal fields.
Ersteres wird mit einem Halbleiterchip der eingangs genannten Art erreicht, bei dem die aktive Schicht dünne Quantenfilme mit einer Dicke < 3nm aufweist.The former is achieved with a semiconductor chip of the type mentioned in the introduction, in which the active layer has thin quantum films with a thickness of <3 nm.
Ein besonders bevorzugtes, in Figur 1 schematisch dargestelltes Ausführungsbeispiel hierfür ist einA particularly preferred exemplary embodiment of this, shown schematically in FIG. 1, is a
Halbleiterchip mit einer aktiven Schicht 4, die eine GaN/GalnN-Multiquantenwell-Struktur aufweist, bei der zwischen GaN-Barriereschichten 3,5 GalnN-Quantenfilme mit einer Dicke < 3nm angeordnet sind und die auf einem SiC- Substrat 1 hergestellt ist, wobei sich zwischen dem Substrat 1 und der aktiven Schicht 4 noch weitere Schichten, insbesondere eine Puffer-Schicht 2, befinden können.Semiconductor chip with an active layer 4, which has a GaN / GalnN multi-quantum well structure, in which 3.5 GalnN quantum films with a thickness <3 nm are arranged between GaN barrier layers and which is produced on an SiC substrate 1, whereby Additional layers, in particular a buffer layer 2, can be located between the substrate 1 and the active layer 4.
Zweiteres wird mit einem Halbleiterchip der eingangs genannten Art erreicht, bei dem die Barriereschichten 3,5 und/oder die Quantenfilme elektrisch leitend dotiert sind. Die Dotierung ist auf die vorliegenden Felder ausgelegt, so daß diese kompensiert werden. Sie orientiert sich an der Verspannung in der aktiven Schicht.The second is achieved with a semiconductor chip of the type mentioned in the introduction, in which the barrier layers 3, 5 and / or the quantum films are doped in an electrically conductive manner. The doping is designed for the existing fields so that they are compensated for. It is based on the tension in the active layer.
Eine optimale Kompensation der Piezofelder wird durch eine hohe Dotierung der aktiven Schicht erreicht. Dadurch werden die Piezofelder quasi kurzgeschlossen. Dadurch werden auch die im späteren Betrieb auftretenden Ladungsträgerdichten vorweggenommen. Technisch ist dies beispielsweise durch hohe n-Dotierung im Bereich der aktiven Zone möglich. Um ein möglichst hohes Verhältnis p/ (p+n) zu erreichen ist hohe p- Dotierung erforderlich.Optimal compensation of the piezo fields is achieved by high doping of the active layer. As a result, the piezo fields are virtually short-circuited. This also anticipates the charge carrier densities that occur in later operation. Technically, this is possible, for example, through high n-doping in the area of the active zone. To a To achieve the highest possible ratio p / (p + n), high p-doping is required.
Die für die Kompensation der internen Felder benötigten Ladungsträgerdichten sind größer 1019cιrf3. Sie werden durch Dotierung des Quantenwellbereichs oder durch remote doping von Barriereschichten erzielt.The charge carrier densities required for the compensation of the internal fields are greater than 10 19 cm 3 . They are achieved by doping the quantum well range or by remote doping of barrier layers.
Alternativ können die Barriereschichten bipolar dotiert werden. Eine effektive Kompensation kann durch Akzeptoren und Donatoren direkt am Quantenwell erzielt werden. Die Ladungsträgerdichten sind größer 1019cιrf3. Vorteilhafterweise ist für eine effektive Dotierung über dem Quantenwell p- und unter dem Quantenwell stark n-dotiert. Die Piezofelder werden durch die von den ionisierten Donatoren und Akzeptoren verursachten Felder aufgehoben.Alternatively, the barrier layers can be doped bipolar. Effective compensation can be achieved by acceptors and donors directly on the quantum well. The charge carrier densities are greater than 10 19 cm 3 . For an effective doping above the quantum well, p-doping and below the quantum well is advantageously heavily n-doped. The piezo fields are canceled by the fields caused by the ionized donors and acceptors.
Ein besonders bevorzugtes Ausführungsbeispiel ist ein Halbleiterchip mit einer aktiven Schicht, die eine GaN/GalnN- Multiquantenwell-Struktur aufweist, bei der zwischen GaN-A particularly preferred exemplary embodiment is a semiconductor chip with an active layer which has a GaN / GalnN multi-quantum well structure in which between GaN
Barriereschichten GalnN-Quantenfilme angeordnet sind und die auf einem SiC-Substrat hergestellt ist, und bei der sich zwischen dem Substrat und der aktiven Schicht noch weitere Schichten, insbesondere eine Puffer-Schicht, befinden können, wobei die GaN-Barriereschichten und/oder die GalnN-Barrier layers of GalnN quantum films are arranged and which is produced on an SiC substrate and in which further layers, in particular a buffer layer, can be located between the substrate and the active layer, the GaN barrier layers and / or the GalnN -
Quantenfilme elektrisch leitend dotiert, also n- oder p- dotiert sind. Die Dotierung orientiert sich an der Verspannung und nicht am Aufbau, d. h. z. B. an einer n- oder p-dotierten Pufferschicht.Quantum films are electrically doped, ie they are n- or p-doped. The doping is based on the tension and not on the structure, i. H. z. B. on an n- or p-doped buffer layer.
Bei einer dritten Lösungsmöglichkeit ist zwischen dem Substrat und der aktiven Schicht eine relaxierte Halbleiterschicht angeordnet, die die gleiche Gitterkonstante aufweist wie die Gitterkonstante im Quantenwell.In a third possible solution, a relaxed semiconductor layer is arranged between the substrate and the active layer, which has the same lattice constant as the lattice constant in the quantum well.
Ein besonders bevorzugtes, in Figur 2 schematisch dargestelltes Ausführungsbeispiel hierfür ist ein Halbleiterchip mit einer aktiven Schicht 4, die eine GaN/GalnN-Multiquantenwell-Struktur aufweist, bei der zwischen GaN-Barriereschichten 3,5 GalnN-Quantenfil e angeordnet sind und die auf einem SiC-Substrat 1 hergestellt ist, wobei sich zwischen dem Substrat 1 und der aktivenA particularly preferred exemplary embodiment of this, shown schematically in FIG. 2, is a Semiconductor chip with an active layer 4, which has a GaN / GalnN multi-quantum well structure, in which 3.5 GalnN quantum files are arranged between GaN barrier layers and which is produced on an SiC substrate 1, wherein between the substrate 1 and the active
Schicht 4 eine relaxierte InGaAlN-Schicht 6 befindet, die die gleiche Gitterkonstante aufweist wie die der Quantenwell. Die Barriereschichten 5, 6 bestehen aus AlGalnN.Layer 4 is a relaxed InGaAlN layer 6, which has the same lattice constant as that of the quantum well. The barrier layers 5, 6 consist of AlGalnN.
Die oben angegebenen Strukturen können für alle GalnN/GaN- basierten LEDs sowie für alle Strukturen angewandt werden, die starke interne Verspannungsfeider aufweisen. The structures given above can be used for all GalnN / GaN-based LEDs as well as for all structures that have strong internal stress fields.

Claims

Patentansprüche claims
1. Strahlungsemittierender Halbleiterchip, insbesondere auf der Basis von GaN/GalnN, bei dem eine aktive Schicht (4) eine Einfach- oder Mehrfach-Quantenwell-Struktur aufweist, dadurch gekennzeichnet, daß die aktive Schicht Quantenfilme mit einer Dicke < 3 nm aufweist.1. Radiation-emitting semiconductor chip, in particular based on GaN / GalnN, in which an active layer (4) has a single or multiple quantum well structure, characterized in that the active layer has quantum films with a thickness of <3 nm.
2. Strahlungsemittierender Halbleiterchip gemäß Anspruch 1, dadurch gekennzeichnet, daß die aktive Schicht (4) eine GaN/GalnN-Multiquantenwell- Struktur aufweist, bei der zwischen GaN-Barriereschichten (3,5) GalnN-Quantenfil e mit einer Dicke < 3nm angeordnet sind und die über einem SiC-Substrat (1) hergestellt ist.2. Radiation-emitting semiconductor chip according to claim 1, characterized in that the active layer (4) has a GaN / GalnN multi-quantum well structure, in which GaNN quantum files with a thickness of <3 nm are arranged between GaN barrier layers (3.5) and which is produced over an SiC substrate (1).
3. Strahlungsemittierender Halbleiterchip gemäß Anspruch 2, dadurch gekennzeichnet, daß die Quantenfilme und/oder die Barriereschichten elektrisch leitend dotiert sind.3. Radiation-emitting semiconductor chip according to claim 2, characterized in that the quantum films and / or the barrier layers are doped in an electrically conductive manner.
4. Strahlungsemittierender Halbleiterchip, insbesondere auf der Basis von GaN/GalnN, bei dem eine aktive Schicht (4) eine Einfach- oder Mehrfach-Quantenwell-Struktur aufweist, dadurch gekennzeichnet, daß die Quantenfilme der Einfach- oder Mehrfach-Quantenwell- Struktur elektrisch leitend dotiert sind.4. Radiation-emitting semiconductor chip, in particular based on GaN / GalnN, in which an active layer (4) has a single or multiple quantum well structure, characterized in that the quantum films of the single or multiple quantum well structure are electrically conductive are endowed.
5. Strahlungsemittierender Halbleiterchip, insbesondere auf der Basis von GaN/GalnN, bei dem die aktive Schicht (4) eine Einfach- oder Mehrfach-Quantenwell-Struktur aufweist, die zwischen Barriereschichten (3,5) angeordnet ist, dadurch gekennzeichnet, daß die Quantenfilme und/oder die Barriereschichten elektrisch leitend dotiert sind. 5. Radiation-emitting semiconductor chip, in particular based on GaN / GalnN, in which the active layer (4) has a single or multiple quantum well structure, which is arranged between barrier layers (3,5), characterized in that the quantum films and / or the barrier layers are doped in an electrically conductive manner.
6. Strahlungsemittierender Halbleiterchip, insbesondere auf der Basis von GaN/GalnN, bei dem eine aktive Schicht (4) eine Einfach- oder Mehrfach-Quantenwell-Struktur aufweist, dadurch gekennzeichnet, daß zwischen einem Substrat (1) und der aktiven Schicht (4) eine relaxierte Halbleiterschicht angeordnet, die die gleiche Gitterkonstante aufweist wie die Gitterkonstante im Quantenwell.6. Radiation-emitting semiconductor chip, in particular based on GaN / GalnN, in which an active layer (4) has a single or multiple quantum well structure, characterized in that between a substrate (1) and the active layer (4) a relaxed semiconductor layer is arranged, which has the same lattice constant as the lattice constant in the quantum well.
7. Strahlungsemittierender Halbleiterchip gemäß Anspruch 6, dadurch gekennzeichnet, daß die aktive Schicht (4) eine GaN/GalnN-Multiquantenwell- Struktur aufweist, bei der zwischen GaN-Barriereschichten (3,5) GalnN-Quantenfilme angeordnet sind und die auf einem SiC-Substrat (1) hergestellt ist, wobei sich zwischen dem Substrat (1) und der aktiven Schicht eine relaxierte InGaAlN-Schicht befindet. 7. Radiation-emitting semiconductor chip according to claim 6, characterized in that the active layer (4) has a GaN / GalnN multi-quantum well structure, in which GaNN quantum films are arranged between GaN barrier layers (3.5) and which are on a SiC Substrate (1) is produced, a relaxed InGaAlN layer being located between the substrate (1) and the active layer.
PCT/DE1999/003211 1998-10-05 1999-10-05 Radiation emitting semiconductor chip WO2000021143A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19845748 1998-10-05
DE19845748.0 1998-10-05

Publications (1)

Publication Number Publication Date
WO2000021143A1 true WO2000021143A1 (en) 2000-04-13

Family

ID=7883410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/003211 WO2000021143A1 (en) 1998-10-05 1999-10-05 Radiation emitting semiconductor chip

Country Status (1)

Country Link
WO (1) WO2000021143A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092428A1 (en) * 2000-06-02 2001-12-06 Erhard Kohn Heterostructure with rear-face donor doping
WO2002097904A2 (en) * 2001-05-30 2002-12-05 Cree, Inc. Group iii nitride based light emitting diode structures with a quantum well and superlattice
WO2003012877A2 (en) * 2001-07-20 2003-02-13 Erhard Kohn Field effect transistor
US7692182B2 (en) 2001-05-30 2010-04-06 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
WO2011098799A2 (en) 2010-02-10 2011-08-18 Pulmagen Therapeutics (Inflammation) Limited Respiratory disease treatment
US8772757B2 (en) 2005-05-27 2014-07-08 Cree, Inc. Deep ultraviolet light emitting devices and methods of fabricating deep ultraviolet light emitting devices
US9012937B2 (en) 2007-10-10 2015-04-21 Cree, Inc. Multiple conversion material light emitting diode package and method of fabricating same
US9041139B2 (en) 2007-01-19 2015-05-26 Cree, Inc. Low voltage diode with reduced parasitic resistance and method for fabricating
US20170213868A1 (en) * 2014-04-01 2017-07-27 Centre National De La Recherche Scientifique Semiconducting pixel, matrix of such pixels, semiconducting structure for the production of such pixels and their methods of fabrication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19613265C1 (en) * 1996-04-02 1997-04-17 Siemens Ag Circuit element, e.g. laser diode
EP0772249A2 (en) * 1995-11-06 1997-05-07 Nichia Chemical Industries, Ltd. Nitride semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0772249A2 (en) * 1995-11-06 1997-05-07 Nichia Chemical Industries, Ltd. Nitride semiconductor device
DE19613265C1 (en) * 1996-04-02 1997-04-17 Siemens Ag Circuit element, e.g. laser diode

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AKASAKI I ET AL: "STIMULATED EMISSION BY CURRENT INJECTION FROM AN ALGAN/GAN/GAINN QUANTUM WELL DEVICE", JAPANESE JOURNAL OF APPLIED PHYSICS,JP,PUBLICATION OFFICE JAPANESE JOURNAL OF APPLIED PHYSICS. TOKYO, vol. 34, PART 2, no. 11B, 15 November 1995 (1995-11-15), pages L1517 - L1519, XP000735115, ISSN: 0021-4922 *
CHICHIBU S ET AL: "EFFECTS OF SI-DOPING IN THE BARRIERS OF INGAN MULTIQUANTUM WELL PURPLISH-BLUE LASER DIODES", APPLIED PHYSICS LETTERS,US,AMERICAN INSTITUTE OF PHYSICS. NEW YORK, vol. 73, no. 4, 27 July 1998 (1998-07-27), pages 496 - 498, XP000774917, ISSN: 0003-6951 *
DEGUCHI T ET AL: "Luminescence spectra from InGaN multiquantum wells heavily doped with Si", APPLIED PHYSICS LETTERS, 22 JUNE 1998, AIP, USA, vol. 72, no. 25, pages 3329 - 3331, XP002129502, ISSN: 0003-6951 *
SUN C J ET AL: "QUANTUM SHIFT OF BAND-EDGE STIMULATED EMISSION IN INGAN-GAN MULTIPLE QUANTUM WELL LIGHT-EMITTING DIODES", APPLIED PHYSICS LETTERS,US,AMERICAN INSTITUTE OF PHYSICS. NEW YORK, vol. 70, no. 22, 2 June 1997 (1997-06-02), pages 2978 - 2980, XP000694810, ISSN: 0003-6951 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092428A1 (en) * 2000-06-02 2001-12-06 Erhard Kohn Heterostructure with rear-face donor doping
WO2001092428A3 (en) * 2000-06-02 2002-05-30 Erhard Kohn Heterostructure with rear-face donor doping
US7352008B2 (en) * 2000-06-02 2008-04-01 Microgan Gmbh Heterostructure with rear-face donor doping
US7312474B2 (en) 2001-05-30 2007-12-25 Cree, Inc. Group III nitride based superlattice structures
US7692182B2 (en) 2001-05-30 2010-04-06 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US9112083B2 (en) 2001-05-30 2015-08-18 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
US6958497B2 (en) 2001-05-30 2005-10-25 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
CN100350637C (en) * 2001-05-30 2007-11-21 克里公司 Group III nitride based light emitting diode structures with a quantum well and superlattice
US9054253B2 (en) 2001-05-30 2015-06-09 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
WO2002097904A2 (en) * 2001-05-30 2002-12-05 Cree, Inc. Group iii nitride based light emitting diode structures with a quantum well and superlattice
WO2002097904A3 (en) * 2001-05-30 2003-02-20 Cree Inc Group iii nitride based light emitting diode structures with a quantum well and superlattice
WO2003012877A2 (en) * 2001-07-20 2003-02-13 Erhard Kohn Field effect transistor
WO2003012877A3 (en) * 2001-07-20 2003-09-18 Erhard Kohn Field effect transistor
US8772757B2 (en) 2005-05-27 2014-07-08 Cree, Inc. Deep ultraviolet light emitting devices and methods of fabricating deep ultraviolet light emitting devices
US9041139B2 (en) 2007-01-19 2015-05-26 Cree, Inc. Low voltage diode with reduced parasitic resistance and method for fabricating
US9012937B2 (en) 2007-10-10 2015-04-21 Cree, Inc. Multiple conversion material light emitting diode package and method of fabricating same
WO2011098799A2 (en) 2010-02-10 2011-08-18 Pulmagen Therapeutics (Inflammation) Limited Respiratory disease treatment
US20170213868A1 (en) * 2014-04-01 2017-07-27 Centre National De La Recherche Scientifique Semiconducting pixel, matrix of such pixels, semiconducting structure for the production of such pixels and their methods of fabrication
US10103195B2 (en) * 2014-04-01 2018-10-16 Centre National De La Recherche Scientifique Semiconducting pixel, matrix of such pixels, semiconducting structure for the production of such pixels and their methods of fabrication

Similar Documents

Publication Publication Date Title
EP1966836B1 (en) Led semiconductor body and use of an led semiconductor body
DE102004058732B4 (en) Structure of plates of light emitting diodes with alternating current
DE112004001447B4 (en) Nitride semiconductor light emitting device
DE102011015821B4 (en) Optoelectronic semiconductor chip
DE102005043649A1 (en) Light emission device with circuit protection circuit
EP2519980B1 (en) Light-emitting semiconductor chip
EP2193550B1 (en) Radiation-emitting semiconductor body
DE102005009060A1 (en) Module with radiation-emitting semiconductor bodies
DE102008034560A1 (en) A radiation-emitting semiconductor chip and method for producing a radiation-emitting semiconductor chip
DE102008059151A1 (en) Light-emitting diode with active region of a multiple quantum well structure
DE102006051745A1 (en) LED semiconductor body and use of an LED semiconductor body
DE102011116232B4 (en) Optoelectronic semiconductor chip and method for its production
DE102008051050A1 (en) Opto-electronic semiconductor module for e.g. projection application, has semiconductor segments characterized by operating voltages, where one of voltage range includes weighted sum of natural numbers with different voltage ranges
DE102012106143A1 (en) Nitride semiconductor light-emitting device
DE102017101731A1 (en) Light-emitting device
DE102011112706A1 (en) Optoelectronic component
DE102016117477A1 (en) Semiconductor layer sequence
DE102007030062A1 (en) Monolithically integrated laser diode chip with a construction as a multi-beam laser diode
WO2000021143A1 (en) Radiation emitting semiconductor chip
DE102013017275B4 (en) Optoelectronic semiconductor component
DE102005003460A1 (en) Thin film light emitting diode with current-dispersing structure has transverse conductivity of current dispersion layer increased by forming two-dimensional electron or hole gas
DE102009047791B4 (en) RGB laser light source
DE102015111487A1 (en) Method for producing an optoelectronic semiconductor chip and optoelectronic semiconductor chip
DE102015105693A1 (en) Radiation-emitting semiconductor component
DE102008030821A1 (en) An electroluminescent device and method of making an electroluminescent device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase