WO2000023190A1 - Dispositif d'analyse chimique et/ou biochimique avec un support d'analyse - Google Patents

Dispositif d'analyse chimique et/ou biochimique avec un support d'analyse Download PDF

Info

Publication number
WO2000023190A1
WO2000023190A1 PCT/FR1999/002499 FR9902499W WO0023190A1 WO 2000023190 A1 WO2000023190 A1 WO 2000023190A1 FR 9902499 W FR9902499 W FR 9902499W WO 0023190 A1 WO0023190 A1 WO 0023190A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
analysis
thermal
substrate
cuvette
Prior art date
Application number
PCT/FR1999/002499
Other languages
English (en)
Inventor
Yves Fouillet
Jean-Frédéric Clerc
Jean Therme
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to AT99947579T priority Critical patent/ATE256501T1/de
Priority to EP99947579A priority patent/EP1121199B1/fr
Priority to JP2000576958A priority patent/JP4398096B2/ja
Priority to US09/806,515 priority patent/US6680193B1/en
Priority to DE69913721T priority patent/DE69913721T2/de
Publication of WO2000023190A1 publication Critical patent/WO2000023190A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • B01L7/525Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples with physical movement of samples between temperature zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0883Serpentine channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1838Means for temperature control using fluid heat transfer medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1883Means for temperature control using thermal insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components

Definitions

  • the present invention relates to a chemical and / or biological analysis device, equipped with an analysis support which may be of the single-use type.
  • the invention finds applications in the fields of chemistry and biology.
  • the device can be used in chemical amplification or PCR polymerase reaction (Polymerase Chain Reaction) methods for the analysis of genetic material (DNA).
  • Macroscopic systems of chemical or biological analysis are currently known using titration plates. These plates have cuvettes in which samples and reagents are mixed by pipetting (with a pipette). To allow chemical or biological reactions, the plates are successively heated to set temperatures by successive stoving, then are cooled. With such systems, the supply of reagents is a long and complex operation, in particular because of a successive supply of each reagent. In addition, the thermal inertia of heating and cooling of the titration plates proves to be too high and lengthens the analysis time.
  • the equipment also has a high manufacturing cost.
  • the object of the invention is to propose a biological and / or chemical analysis device which does not have the limitations mentioned above.
  • Another aim is to reduce the heating and cooling times and to allow precise and selective temperature control of the components to be analyzed during the various reaction phases.
  • Another object of the invention is to propose such a device which can be quickly adapted to different types of products to analyze and not requiring complex connection operations.
  • the invention also aims to provide a device with an analysis support, very low cost, which can be for single use, which can be discarded and replaced after each use, or after a limited number of uses. For example, consider a thousand sequential analyzes with a device before discarding it.
  • the invention more specifically relates to a chemical and / or biological analysis device comprising an analysis support with at least one inlet cuvette for collecting a sample, at least one outlet cuvette for delivering said sample, at least one internal channel passing through the support for connecting the inlet cuvette to the outlet cuvette, and at least one reagent tank, connected to each channel respectively between an inlet cuvette and an outlet cuvette, in which the inlet cuvette, the outlet cuvette and the reservoir open onto a first face of the analysis support.
  • the device may in particular comprise a plurality of inlet bowls and a corresponding plurality of outlet bowls, each inlet bowl being respectively connected to an associated outlet bowl, by means of a channel.
  • the placing of the liquids to be analyzed in the inlet cuvettes and / or of the reagents in the corresponding tanks can take place by micropipetting (with a micropipette).
  • the placement of liquids to be analyzed in the cuvettes inlet and / or reagents in the corresponding tanks can take place by sealed means for supplying fluids such as a plug deposited on the tank or the bowl and connected to a syringe or to a pressurized tank.
  • the supply of liquids to be analyzed and / or reagents can be automated by means of a high resolution dispensing robot (exemption).
  • the sequential analyzes presupposing the replacement over time of at least one reagent by another can be automated by the sequential introduction into the corresponding reservoir of several distinct reagents.
  • a neutral buffer liquid may or may not be introduced into the reservoir.
  • the internal channel or channels can be provided to extend near at least one second face of the analysis support so as not to be separated from said second face only by a thin wall.
  • the thin wall may have a thickness of less than 100 ⁇ .
  • the wall is chosen to be thin enough to allow heat exchange with thermal sources external to the analysis support.
  • the wall separating the channels from the second face can be chosen to be thinner than a wall separating the channels from one another or from bowls.
  • the face of the channels opposite to the thin wall may have a thermal barrier, this being able to be produced by a layer of material with low thermal conductivity and / or a structuring of the substrate making it possible to locate on the channels a cavity filled with air or a gas with little heat transfer.
  • the device can also comprise a thermal support independent of the analysis support, the thermal support having an exchange face. thermal with at least one thermal source, and said thermal support can be removably attached to the analysis support in order to bring the heat exchange face into contact with the second face of the analysis support.
  • this support can be of the single-use or multi-use type, that is to say be discarded after one or more uses. By use is meant the sequential realization of a number of analyzes close to, for example, 1000.
  • the heat exchange face may include one or more thermostatically controlled zones, each equipped with at least one thermal source. Thermostated zones coincide with at least one zone of the analysis support located downstream of a connection between a reagent tank and a channel.
  • thermo support By associating a thermostated zone of the thermal support with a corresponding zone of the analysis support situated respectively in the vicinity, for example downstream, of each reagent reservoir, it is possible to selectively control and adapt the temperature of the liquid to be analyzed by function of each reagent used.
  • the downstream term used here is understood in relation to a direction of flow of the liquids to be analyzed from the inlet basins to the outlet basins.
  • the thermal sources may include one or more thermostatically controlled electric heating resistors.
  • the thermal sources may also include one or more channels through which a heat transfer fluid passes. This fluid can be used to locally heat or cool the analysis support.
  • this may include a first substrate having through openings which respectively form the cuvettes and reservoirs, and a second substrate, bonded to the first substrate, the second substrate having grooves, covered by the first substrate to form channels, and coinciding respectively with the through openings.
  • the first substrate may have two thermally non-conductive layers, for example a few microns thick.
  • the first substrate may have at least one non-through opening so as to create at least one thermal insulation cavity.
  • the invention also relates to a method of implementing an analysis device as described above, according to which the analysis support is brought into contact with the thermal support during an analysis phase of determined duration, at least one sample to be analyzed and at least one reagent being introduced into the analysis support prior to the analysis phase or during the analysis phase, then, after the analysis phase, the analysis support is removed thermal support. At the end of the analysis, the analysis support can be reused.
  • FIG. 1A is a simplified schematic section of an analysis support according to the invention.
  • Figure 1B shows the analysis support of Figure 1A equipped with means for filling reagent tanks.
  • FIG. 2 is an exploded perspective showing more precisely the structure of the analysis support.
  • FIG. 3 is a simplified perspective view of an analysis support according to the figure
  • FIG. 4 is a schematic longitudinal section of the analysis support placed on the thermal support.
  • FIG. 5 is a plan view of part of an analysis support according to the invention, constituting a variant with respect to Figures 1 to 4.
  • FIG. 6 is a simplified cross-section of an analysis support including a part in accordance with Figure 5.
  • FIG. 7 is a simplified cross section of an analysis support including a part in accordance with FIG. 5 and constituting a variant with respect to FIG. 6.
  • FIG. 12 is a cross section of an analysis support and a thermal support according to one invention and illustrating a particular embodiment of the thermal support.
  • FIG. 1 is a section of an analysis support 100 according to the invention.
  • an inlet bowl 102 formed essentially by a through opening made in a substrate 100a of the support, in the vicinity of one of its ends.
  • an outlet bowl 104 is formed in the vicinity of a second end. The bowls 102,
  • An internal channel 108 connects the inlet and outlet bowls.
  • the channel 108 is in the form of a groove etched in a second substrate 100b bonded to the first substrate so that the latter covers the groove. It is observed that the depth of the groove is practically equal to the thickness of the second substrate
  • the support 100 is of generally parallelepiped shape and the first and second faces are the main opposite and parallel faces.
  • the figure also shows in section the reagent reservoirs 120a, 120b, 120c arranged between the inlet 102 and outlet 104 cuvettes.
  • the reservoirs also open on the first face 106 of the analysis support 100. Fittings or passages 122a are provided to connect each of the tanks to channel 108.
  • passages 122a are shown in the plane of the figure, so that the reservoirs are not distinguished from the inlet and outlet bowls in FIG. 1.
  • the liquid to be analyzed can be introduced into the inlet cuvettes by means of a pipette.
  • the reagent reservoirs can be filled in the same way.
  • FIG. 1B shows an analysis support in accordance with FIG. 1A, the reservoirs 120a, 120b and 120c are respectively associated with fluid supply means 150a, 150b and 150c.
  • These means comprise plugs, or supply caps 152a, 152b, 152c applied in leaktight manner above the reservoirs and connected to syringe pumps 154a, 154b and 154c which contain reagents.
  • the caps can be glued to the surface of the test stand or tightened against the surface, using a gasket.
  • the references 156a, 156b and 156c respectively designate pressure sensors formed on pipes connecting the syringe pumps to the caps 152a, 152b and 152c, so as to control the pressure and / or the flow rate of the reagents.
  • a similar feeding system can also be fitted to the inlet bowls.
  • the inlet basins and the tanks are subjected to atmospheric pressure, or to a pressure fixed by the supply system, while a vacuum line 124 is applied to the outlet basins .
  • a first spontaneous filling of the analysis support can be carried out with a polar solvent (such as alcohol) followed by a nominal solvent in order to avoid the formation of bubbles.
  • a polar solvent such as alcohol
  • a nominal solvent such as water
  • Figure 2 shows more precisely and separately the two substrates 100a and 100b which form the analysis support.
  • the analysis support comprises a plurality of inlet cuvettes 102 and a plurality of outlet cuvettes 104.
  • the bowls have the form of through openings made in the first substrate 100a. These openings have a flared V shape, forming a funnel.
  • each inlet bowl 102 is individually connected to an outlet bowl 104 by a channel 108.
  • the analysis support includes three reagent reservoirs 120a, 120b, 120c.
  • each reservoir is common to several channels 108 to which it is connected by means of fittings 122a, 122b.
  • the reference 122a more precisely designates holes in the first substrate 110a connecting a reservoir to corresponding branches 122b, formed in the second substrate 110b and connected respectively to the channels. (Of course, reservoirs can also be individualized for the different channels).
  • the quantities of liquids (liquids to be analyzed, and reagents) which mix at the intersection of the branches 122b and the channels 108 depend on the respective size of these branches and the channels 108.
  • FIG. 3 shows an analysis support 100, in accordance with that of FIG. 2, the substrates 100a and 100b of which are permanently bonded. The analysis support is shown above a corresponding thermal support 200.
  • the thermal support 200 has a heat exchange face 212 facing the second face 112 of the analysis support 100, in the vicinity of which the channels are located.
  • the heat exchange face 212 of the thermal support 200 and the second face 112 of the analysis support are intended to be brought into contact.
  • the heat exchange face 212 has three thermostatically controlled zones 220a, 220b, 220c each equipped with one or more thermal sources (not shown).
  • the three thermostatically controlled zones 220a, 220b, 220c are arranged so as to coincide with portions of channels of the analysis support located in the vicinity respectively of the reservoirs 120a, 120b, 120c, or more precisely of the branches supplying the reagents.
  • the fluid in the channel 122b can pass through each thermal zone only once or several times thanks to suitable channel patterns as shown in FIG. 5 described later.
  • FIG. 4 is a diagrammatic section of the analysis support transferred to the thermal support making it possible to represent in more detail the thermostatically controlled zones.
  • the thermostat zones can have several thermal sources. This is the case of the thermostatically controlled area 220a.
  • This comprises a first thermal source 230 formed of electrical resistors, such as for example microresistors in platinum. It also includes two sources 232 and 234 in the form of channels crossed by heat transfer fluids.
  • the electrical resistances of the first source 230 can be brought to a temperature of 94 ° C, the heat transfer fluid of the second heat source 232 to a temperature of 55 ° C and the heat transfer fluid from the third heat source 234 at a temperature of 72 ° C.
  • FIG. 5 is a top view of part of a first substrate 100a of an analysis support and shows an alternative embodiment of a channel 108.
  • the channel 108 is folded in a repeated geometric pattern.
  • FIG. 6 and 7 show two alternative embodiments of the device making it possible to improve the uniformity of the temperature in the channels by isolating their upper face, that is to say the face opposite to said second face 112 of the support. analysis.
  • a second solution represented in FIG. 7, consists in placing between the upper and lower parts 100a, 100b of the analysis support a layer 100c of weakly conductive material of the heat. It is also possible to use an upper substrate equipped with a layer 100c of a thermal insulating material.
  • FIG. 8 shows an example of a method of producing an analysis support as described above.
  • a first substrate plate 100a for example made of silicon
  • openings are made, as shown in FIG. 8.
  • These openings constitute the bowls or tanks 102, 104, 120a, 120b, 120c.
  • the chemically etched openings are made with inclined sides by anisotropic chemical etching for example (KOH) so as to give them a flared shape.
  • the location of the openings is defined by an etching mask (not shown) coincident with the pattern of the grooves.
  • the drilling of the layer 100c of thermal insulating material for example Si0 2 in the case of the variant proposed in FIG. 7, can be carried out, for example, by etching CHF 3 by dry process, the dimension of the perforation being defined by an etching mask or by using the walls of the chemically created hole as a mask.
  • FIG. 9 shows the etching of grooves, forming the channels 108, in a second substrate 100b, for example of silicon.
  • the etching is carried out through an etching mask (not shown) having a pattern corresponding to the desired channels. This is, for example, chemical etching (KOH).
  • KOH chemical etching
  • the depth of the grooves is for example of the order of 100 ⁇ m for a substrate 100b with a thickness of 250 to 450 ⁇ m.
  • a third step shown in FIG. 10 comprises the sealing of the first and second substrates 100a and 100b, so as to put the cuvettes or reservoirs 102, 104, 120a, 120b, 120c into communication with the corresponding channels (grooves) 108. Sealing takes place, for example, by direct (molecular) bonding of the two substrates.
  • the grooves 108 of the second substrate 100b are covered by the first substrate 100a to form the channels.
  • a last step, represented in FIG. 11, comprises the thinning of the second substrate 100b so as to preserve between the channel 108 and the external surface 112 only a thin wall 110.
  • This wall 110 has a thickness of
  • Thinning is achieved by etching and / or mechanochemical polishing.
  • a plurality of analysis supports in accordance with the invention can be produced simultaneously and collectively according to the above method in two silicon wafers (corresponding to the first and second substrates).
  • the process is completed by cutting the slices with a saw to individualize the analysis supports.
  • FIG. 12 shows a particular embodiment of the thermal support 200 of an analysis device according to the invention.
  • the thermal support 200 essentially comprises a base 202 on which one or more thermostatic bars are arranged.
  • the thermal support comprises three thermostatic bars 320a, 320b, 320c which respectively form three thermostatically controlled zones. All or part of the bars can be embedded in a thermal insulating material.
  • two bars 320b and 320c are surrounded by a solid thermal insulating material, while the first bar 320a is left in free contact with the ambient air on its lateral faces.
  • Each bar is equipped with heating and / or cooling means.
  • the first bar 320a is equipped with a channel 322a which runs through it and which makes it possible to thermostate it by circulation of a heat transfer fluid.
  • the other bars 320b and 320c are also equipped with such channels 322b and 322c.
  • the channels are respectively connected to thermostatic baths with pumping systems (not shown) for circulating the heat transfer fluid.
  • connection between the baths and the bars can take place by means of hydraulic connections, not shown.
  • the channels can be of the circular type, as shown in the figures, but can also be provided with fin systems to optimize the heat exchanges. Additional heating elements can be integrated into the bars.
  • the third bar 320c is equipped with an electrical resistance 330. The electrical resistance is used here as “hot source” while the heat transfer fluid is used as “cold source”.
  • the second bar 320b comprises an element 340 for measuring the temperature, such as a resistor, used to control, for example, the temperature of the associated thermostated bath.
  • the reference 100 generally designates a removable analysis support disposed on the thermal support so as to be in contact with the thermostatic bars. The detailed description of such a support is not repeated here. On this subject, reference can be made to the explanations given with reference to the preceding figures.
  • the analysis support 100 can be simply placed on the thermal support 200. It can also be pressed against the thermal support by means of a flange or a suction system not shown.
  • the means for temperature control that is to say in particular the baths thermostates and thermostats bars, are integral with the thermal support or in fluid connection with the thermal support, and as the analysis support is removable, it is possible to produce the latter in a simple and inexpensive manner.

Abstract

Dispositif d'analyse chimique et/ou biologique comprenant un support d'analyse (100) avec au moins une cuvette d'entrée (102) pour recueillir un échantillon, au moins une cuvette de sortie (104) pour délivrer ledit échantillon, au moins un canal interne (108) traversant le support pour relier la cuvette d'entrée et la cuvette de sortie, et au moins un réservoir à réactif (120a, 120b, 120c) relié à chaque canal (108) entre la cuvette d'entrée et la cuvette de sortie, dans lequel la cuvette d'entrée, la cuvette de sortie et le réservoir débouchent sur une première face (106) du support d'analyse.

Description

DISPOSITIF D'ANALYSE CHIMIQUE ET/OU BIOCHIMIQUE AVEC UN
SUPPORT D'ANALYSE
Domaine technique La présente invention concerne un dispositif d'analyse chimique et/ou biologique, équipé d'un support d'analyse pouvant être du type à usage unique.
L'invention trouve des applications dans les domaines de la chimie et de la biologie. En particulier, le dispositif peut être mis à profit dans des procédés d'amplification chimique ou de réaction de polymerase de type PCR (Polymerase Chain Reaction) pour l'analyse de matériau génétique (ADN).
Etat de la technique antérieure
On connaît actuellement des systèmes macroscopiques d'analyse chimique ou biologique utilisant des plaques de titrage. Ces plaques comportent des cuvettes dans lesquelles on mélange des échantillons et des réactifs par pipetage (à la pipette) . Pour permettre les réactions chimiques ou biologiques, les plaques sont successivement chauffées à des températures de consigne par des étuvages successifs, puis sont refroidies. Avec de tels systèmes, l'apport des réactifs est une opération longue et complexe, notamment en raison d'un apport successif de chaque réactif. De plus, l'inertie thermique de chauffage et de refroidissement des plaques de titrage s'avère trop importante et allonge le temps d'analyse.
On connaît par ailleurs, des équipements d'analyse chimique et/ou biochimique qui se présentent sous forme de structures complètes incorporant les moyens de chauffage nécessaires à l'analyse. Des systèmes de connexion par tuyauterie permettent d'amener les échantillons et les réactifs dans la structure. L'utilisation de ces équipements implique cependant des opérations complexes et fastidieuses de connexion pour l'amenée des fluides, analytes et réactifs, ainsi que des opérations de connexion électrique pour l'alimentation en énergie des moyens de chauffage. En raison de la spécificité des analyses, il est nécessaire de renouveler les opérations de connexion lors de chaque nouvelle utilisation de 1 ' équipement .
Les équipements présentent en outre un coût de fabrication élevé.
Une illustration plus complète des techniques et équipements dans le domaine de l'analyse biochimique est donnée par les documents (1) et (2) dont les références sont précisées à la fin de la présente description.
Exposé de 1 ' invention
L'invention a pour but de proposer un dispositif d'analyse biologique et/ou chimique ne présentant pas les limitations évoquées ci-dessus.
Un autre but est de réduire les temps de chauffage, de refroidissement et de permettre un contrôle en température précis et sélectif des composants à analyser au cours des différentes phases de réaction.
Un but de 1 ' invention est encore de proposer un tel dispositif pouvant être adapté rapidement à différents types de produits à analyser et ne nécessitant pas d'opérations de connexion complexes.
L'invention a aussi pour but de proposer un dispositif avec un support d'analyse, de très faible coût, pouvant être à usage unique, qui peut être jeté et remplacé après chaque utilisation, ou après un nombre limité d'utilisations. On envisage par exemple d'effectuer un millier d'analyses séquentielles avec un dispositif avant de le jeter. Pour atteindre ces buts, l'invention a plus précisément pour objet un dispositif d'analyse chimique et/ou biologique comprenant un support d'analyse avec au moins une cuvette d'entrée pour recueillir un échantillon, au moins une cuvette de sortie pour délivrer ledit échantillon, au moins un canal interne traversant le support pour relier la cuvette d'entrée à la cuvette de sortie, et au moins un réservoir à réactif, relié à chaque canal respectivement entre une cuvette d'entrée et une cuvette de sortie, dans lequel la cuvette d'entrée, la cuvette de sortie et le réservoir débouchent sur une première face du support d' analyse.
Le dispositif peut en particulier comporter une pluralité de cuvettes d'entrée et une pluralité correspondante de cuvettes de sortie, chaque cuvette d'entrée étant respectivement reliée à une cuvette de sortie associée, au moyen d'un canal.
La mise en place des liquides à analyser dans les cuvettes d'entrée et/ou des réactifs dans les réservoirs correspondants peut avoir lieu par icropipetage (à la micropipette) .
Selon un autre mode d'utilisation, la mise en place des liquides à analyser dans les cuvettes d'entrée et/ou des réactifs dans les réservoirs correspondants peut avoir lieu par des moyens étanches d'amenée de fluides tels qu'un bouchon déposé sur le réservoir ou la cuvette et relié à une seringue ou à une citerne sous pression.
La mise en place des liquides et/ou des réactifs peut être obtenue par une combinaison des deux modes décrits précédemment .
Pour des supports avec un grand nombre de cuvettes et/ou de réservoirs, l'apport des liquides à analyser et/ou des réactifs peut être automatisé au moyen d'un robot de distribution (dispense) à haute résolution. Par ailleurs, les analyses séquentielles supposant le remplacement dans le temps d'au moins un réactif par un autre peuvent être automatisées par 1 ' introduction séquentielle dans le réservoir correspondant de plusieurs réactifs distincts . Entre deux réactifs distincts un liquide tampon neutre peut, ou non, être introduit dans le réservoir. Selon un aspect particulier de l'invention, le ou les canaux internes peu(ven)t être prévu (s) pour s'étendre à proximité d'au moins une deuxième face du support d'analyse de façon à n'être séparé de ladite deuxième face que par une paroi mince . Dans une réalisation particulière la paroi mince peut présenter une épaisseur inférieure à 100 μ .
De façon plus précise, la paroi est choisie suffisamment mince pour permettre un échange thermique avec des sources thermiques externes au support d'analyse.
En particulier, la paroi séparant les canaux de la deuxième face peut être choisie plus mince qu'une paroi séparant les canaux entre eux ou des cuvettes. Selon un autre aspect de l'invention, la face des canaux opposée à la paroi mince peut présenter une barrière thermique, celle-ci pouvant être réalisée par une couche de matériau peu conducteur thermique et/ou une structuration du substrat permettant de localiser sur les canaux une cavité remplie d'air ou d'un gaz peu caloporteur .
Cette barrière thermique permet d'uniformiser la température dans les canaux. Selon un autre aspect de l'invention, le dispositif peut comporter en outre un support thermique indépendant du support d'analyse, le support thermique présentant une face d ' échange . thermique avec au moins une source thermique, et ledit support thermique pouvant être rapporté de façon amovible sur le support d'analyse afin de mettre en contact la face d'échange thermique avec la deuxième face du support d'analyse.
Le caractère séparé du support d'analyse et du support thermique permet de concevoir des supports d'analyse sans propres moyens de chauffage ou de refroidissement. Cette caractéristique permet de réduire par conséquent dans des proportions importantes le coût du support d'analyse. Ainsi, ce support peut être du type à utilisation unique ou à plusieurs utilisations, c'est-à-dire être jeté après une ou plusieurs utilisations. On entend par utilisation la réalisation séquentielle d'un nombre d'analyses voisin par exemple de 1000.
La face d'échange thermique peut comporter une ou plusieurs zones thermostatées équipées chacune d'au moins une source thermique. Les zones thermostatées coïncident avec au moins une zone du support d'analyse située en aval d'un raccord entre un réservoir à réactif et un canal.
En associant une zone thermostatée du support thermique avec une zone correspondante du support d'analyse située respectivement au voisinage, par exemple en aval, de chaque réservoir à réactif, il est possible de contrôler et d'adapter sélectivement la température du liquide à analyser en fonction de chaque réactif utilisé. Le terme aval utilisé ici s'entend par rapport à une direction d'écoulement des liquides à analyser depuis les cuvettes d'entrée jusqu'aux cuvettes de sortie.
Les sources thermiques peuvent comporter une ou plusieurs résistances électriques chauffantes thermostatées .
A titre alternatif ou complémentaire les sources thermiques peuvent comporter également un ou plusieurs canaux traversés par un fluide caloporteur. Ce fluide peut être utilisé pour chauffer ou refroidir localement le support d'analyse.
Dans une réalisation particulière du support d'analyse, celui-ci peut comporter un premier substrat présentant des ouvertures traversantes qui forment respectivement les cuvettes et réservoirs, et un deuxième substrat, collé au premier substrat, le deuxième substrat présentant des rainures, recouvertes par le premier substrat pour former des canaux, et coïncidant respectivement avec les ouvertures traversantes.
Cette structure particulièrement simple permet de réduire les coûts de fabrication des supports d' analyse. La fabrication du support peut avoir lieu, conformément à l'invention, selon un procédé comprenant les étapes successives suivantes :
- formation, dans un premier substrat, d'ouvertures traversantes, lesdites ouvertures correspondant respectivement à des cuvettes d'entrée ou de sortie, ou à des réservoirs de réactif,
- formation dans un deuxième substrat de rainures selon un motif permettant de relier entre elles au moins deux ouvertures du premier substrat,
- collage du premier substrat sur le deuxième substrat de façon à recouvrir les rainures,
- amincissement du deuxième substrat, après le collage, en préservant une épaisseur de substrat supérieure à une profondeur maximale des rainures.
Selon un mode de réalisation particulier, le premier substrat peut présenter deux couches thermiquement peu conductrices, épaisses par exemple de quelques microns . Selon un second mode particulier de réalisation, le premier substrat peut présenter au moins une ouverture non traversante de façon à créer au moins une cavité d'isolation thermique.
L'invention concerne également un procédé de mise en oeuvre d'un dispositif d'analyse tel que décrit ci-dessus, selon lequel on met en contact le support d'analyse avec le support thermique pendant une phase d'analyse de durée déterminée, au moins un échantillon à analyser et au moins un réactif étant introduits dans le support d'analyse préalablement à la phase d'analyse ou pendant la phase d'analyse, puis, après la phase d'analyse, on retire le support d'analyse du support thermique . Au terme de l'analyse, le support d'analyse peut être réutilisé.
D'autres caractéristiques et avantages de la présente invention ressortiront mieux de la description qui va suivre, en référence aux figures des dessins annexés. Cette description est donnée à titre purement illustratif et non limitatif.
Brève description des figures - La figure 1A est une coupe schématique simplifiée d'un support d'analyse conforme à 1 ' invention.
- La figure 1B montre le support d'analyse de la figure 1A équipé de moyens de remplissage de réservoirs à réactifs.
- La figure 2 est un éclaté en perspective montrant de façon plus précise la structure du support d ' analyse .
- La figure 3 est une vue en perspective simplifiée d'un support d'analyse conforme à la figure
2 et d'un support thermique.
- La figure 4 est une coupe longitudinale schématique du support d'analyse mis en place sur le support thermique . - La figure 5 est une vue en plan d'une partie d'un support d'analyse conforme à l'invention, constituant une variante par rapport aux figures 1 à 4.
- La figure 6 est une coupe transversale simplifiée d'un support d'analyse incluant une partie conforme à la figure 5.
- La figure 7 est une coupe transversale simplifiée d'un support d'analyse incluant une partie conforme à la figure 5 et constituant une variante par rapport à la figure 6.
- Les figures 8, 9, 10 et 11 sont des coupes longitudinales schématiques de substrats lors d'étapes successives de fabrication d'un support d'analyse conforme à l'invention.
- La figure 12 est une coupe transversale d'un support d'analyse et d'un support thermique conforme à 1 ' invention et illustrant une réalisation particulière du support thermique.
Description détaillée de modes de mise en œuyre de
1 ' invention
Dans la description qui suit, des parties identiques, similaires ou équivalentes des figures sont repérées avec les mêmes références numériques afin d'en faciliter la lecture.
La figure 1 est une coupe d'un support d'analyse 100 conforme à l'invention. Sur cette figure, est représentée une cuvette d'entrée 102 formée pour l'essentiel par une ouverture traversante pratiquée dans un substrat 100a du support, au voisinage de l'une de ses extrémités. De la même façon, une cuvette de sortie 104 est pratiquée au voisinage d'une deuxième extrémité. Les cuvettes 102,
104 débouchent en une première face 106 du support 100.
Un canal interne 108 relie les cuvettes d'entrée et de sortie.
Le canal 108 se présente sous la forme d'une rainure gravée dans un second substrat 100b collé au premier substrat de sorte que ce dernier recouvre la rainure. On observe que la profondeur de la rainure est pratiquement égale à l'épaisseur du deuxième substrat
100b, de sorte que seul une mince paroi 110 sépare le canal 108 d'une deuxième face 112 du support d'analyse 100.
Dans l'exemple illustré, le support 100 est de forme générale parallélépipédique et les première et deuxième faces sont les faces principales opposées et parallèles. La figure représente également en coupe des réservoirs de réactif 120a, 120b, 120c agencés entre les cuvettes d'entrée 102 et de sortie 104. Les réservoirs débouchent également sur la première face 106 du support d'analyse 100. Des raccords ou passages 122a sont prévus pour relier chacun des réservoirs au canal 108.
Pour des raisons de simplification, les passages 122a sont représentés dans le plan de la figure, de sorte que les réservoirs ne se distinguent pas des cuvettes d'entrée et de sortie sur la figure 1.
Le liquide à analyser peut être introduit dans les cuvettes d'entrée au moyen d'une pipette.
Les réservoirs des réactifs peuvent être remplis de la même façon. Dans le cas de l'analyse séquentielle mettant en oeuvre de façon successive des réactifs différents, dans le cas également où les réactifs doivent être conservés à une température bien contrôlée avant usage, il est préférable d'utiliser des réservoirs de petits volumes alimentés par un système de type pousse- seringue tel que représenté à la figure 1B.
La figure 1B montre un support d'analyse conforme à la figure 1A dont les réservoirs 120a, 120b et 120c sont respectivement associés à des moyens d'amenée de fluide 150a, 150b et 150c.
Ces moyens comportent des bouchons, ou capuchons d'alimentation 152a, 152b, 152c appliqués de façon étanche au-dessus des réservoirs et reliés à des pousse-seringues 154a, 154b et 154c qui contiennent des réactifs . Les capuchons peuvent être collés à la surface du support d'analyse ou serrés contre la surface, en utilisant un joint d' étanchéité . Les références 156a, 156b et 156c désignent respectivement des capteurs de pressions ménagés sur des conduites reliant les pousse-seringues aux capuchons 152a, 152b et 152c, de façon à contrôler la pression et/ou le débit des réactifs. Bien que non représenté, un système d'alimentation semblable peut également équiper les cuvettes d'entrée.
Comme le montrent les figures 1A et 1B, les cuvettes d'entrée et les réservoirs sont soumis à la pression atmosphérique, ou à une pression fixée par le système d'alimentation, tandis qu'une ligne à vide 124 est appliquée aux cuvettes de sortie.
Un premier remplissage spontané du support d'analyse peut être effectué avec un solvant polaire (tel que de l'alcool) suivi d'un solvant nominal afin d'éviter la formation de bulles. Ce remplissage met à profit un effet de capillarité dans les canaux.
Après ce premier remplissage, les analytes et réactifs sont ajoutés. Le produit d'analyse arrivant aux cuvettes de sortie peut y être prélevé également au moyen de pipettes . La figure 2 montre de façon plus précise et de façon séparée les deux substrats 100a et 100b qui forment le support d'analyse.
On observe que le support d ' analyse comporte une pluralité de cuvettes d'entrée 102 et une pluralité de cuvettes de sortie 104.
Les cuvettes ont la forme d'ouvertures traversantes pratiquées dans le premier substrat 100a. Ces ouvertures présentent une forme évasée en V, formant un entonnoir.
Par ailleurs, dans l'exemple de la figure 2, chaque cuvette d'entrée 102 est individuellement reliée à une cuvette de sortie 104 par un canal 108.
Le support d'analyse comprend trois réservoirs à réactif 120a, 120b, 120c.
Dans cet exemple, chaque réservoir est commun à plusieurs canaux 108 auxquels il est relié au moyen de raccords 122a, 122b. La référence 122a désigne plus précisément des perçages du premier substrat 110a reliant un réservoir à des embranchements 122b correspondants, pratiqués dans le deuxième substrat 110b et connectés respectivement aux canaux. (Bien entendu, des réservoirs peuvent également être individualisés pour les différents canaux) . Les quantités de liquides (liquides à analyser, et réactifs) qui se mélangent au croisement des embranchements 122b et des canaux 108 dépendent de la taille respective de ces embranchements et des canaux 108. La figure 3 montre un support d'analyse 100, conforme à celui de la figure 2, dont les substrats 100a et 100b sont définitivement collés. Le support d'analyse est représenté au-dessus d'un support thermique 200 correspondant.
Le support thermique 200 présente une face d'échange thermique 212 tournée vers la deuxième face 112 du support d'analyse 100, au voisinage de laquelle se trouvent les canaux. La face d'échange thermique 212 du support thermique 200 et la deuxième face 112 du support d'analyse sont destinées à être mises en contact. La face d'échange thermique 212 présente trois zones thermostatées 220a, 220b, 220c équipées chacune d'une ou de plusieurs sources thermiques (non représentées) .
Les trois zones thermostatées 220a, 220b, 220c sont disposées de façon à coïncider avec des portions de canaux du support d'analyse situés au voisinage respectivement des réservoirs 120a, 120b, 120c, ou plus précisément des embranchements apportant les réactifs.
Le fluide dans le canal 122b peut traverser une seule fois chaque zone thermique ou plusieurs fois grâce à des motifs de canal adaptés comme représenté figure 5 décrite ultérieurement.
La figure 4 est une coupe schématique du support d'analyse reporté sur le support thermique permettant de représenter de façon plus détaillée les zones thermostatées.
Pour des raisons de clarté de la figure, le support d'analyse et le support thermique sont représentés avec un léger espacement. Ces supports sont cependant en contact.
Comme indiqué ci-dessus, les zones thermostatées peuvent comporter plusieurs sources thermiques. Ceci est le cas de la zone thermostatée 220a. Celle-ci comporte une première source thermique 230 formée de résistances électriques, telles que par exemple des microrésistances en platine. Elle comporte également deux sources 232 et 234 sous la forme de canaux traversés par des fluides caloporteurs .
Dans le cas d'une analyse de type PCR, les résistances électriques de la première source 230 peuvent être portées à une température de 94°C, le fluide caloporteur de la deuxième source thermique 232 à une température de 55°C et le fluide caloporteur de la troisième source thermique 234 à une température de 72°C.
Ces températures correspondent respectivement à des étapes de dénaturation, d'hybridation et d'élongation d'ADN (cf. document (1))
Les sources thermiques peuvent être miniaturisées de sorte que le support thermique présente une résolution thermique submillimétrique (inférieure au millimètre) . La figure 5 est une vue de dessus d'une partie d'un premier substrat 100a d'un support d'analyse et montre une variante de réalisation d'un canal 108.
Le canal 108 est replié selon un motif géométrique répété. Sur la figure, on a représenté également en trait discontinu la position de sources thermiques d'une zone thermostatée 200, d'un support thermique pouvant être associé au support d'analyse. On observe que, grâce au motif géométrique du canal, un liquide à analyser peut, en parcourant différents tronçons du motif, être mis en contact thermique de façon séquentielle avec différentes sources thermiques de la zone thermostatée. Les figure 6 et 7 présentent deux variantes de réalisation du dispositif permettant d'améliorer l'uniformité de la température dans les canaux en isolant leur face supérieure, c'est-à-dire la face opposée à ladite deuxième face 112 du support d'analyse. Une première solution représentée à la figure 6 consiste à réaliser dans la partie supérieure 100a du support d'hybridation une cavité 160 (débouchante ou non) . Cette cavité coïncide avec au moins une partie de canal 108. Une seconde solution, représentée à la figure 7, consiste à mettre en place entre les parties supérieure et inférieure 100a, 100b du support d'analyse une couche 100c de matériau faiblement conducteur de la chaleur. Il est possible également d'utiliser un substrat supérieur équipé d'une couche 100c d'un matériau isolant thermique.
Les figures 8 à 11, décrites ci-après, donnent un exemple de procédé de réalisation d'un support d'analyse tel que décrit précédemment. Dans une première plaque de substrat 100a, par exemple en silicium, on pratique, comme le montre la figure 8, des ouvertures traversantes. Ces ouvertures constituent les cuvettes ou les réservoirs 102, 104, 120a, 120b, 120c. Les ouvertures gravées par voie chimique sont réalisées avec des flancs inclinés par gravure chimique anisotrope par exemple (KOH) de façon à leur conférer une forme évasée. L'emplacement des ouvertures est défini par un masque de gravure (non représenté) en coïncidence avec le motif des rainures. Le perçage de la couche 100c de matériau isolant thermique, par exemple Si02 dans le cas de la variante proposée figure 7, peut être effectué, par exemple, par gravure CHF3 par voie sèche, la dimension de la perforation étant définie par un masque de gravure ou en utilisant les parois du trou créé par voie chimique comme masque.
La figure 9 montre la gravure de rainures, formant les canaux 108, dans un deuxième substrat 100b par exemple de silicium. La gravure est effectuée à travers un masque de gravure (non représenté) présentant un motif correspondant aux canaux souhaités . Il s'agit, par exemple, d'une gravure chimique (KOH). La profondeur des rainures est par exemple de l'ordre de lOOμm pour un substrat 100b d'une épaisseur de 250 à 450μm.
Il peut s'agir aussi d'une gravure sèche SG6 permettant de réaliser des rainures plus profondes que larges par exemple 100μmx20μm.
Une troisième étape représentée à la figure 10 comprend le scellement des premier et deuxième substrats 100a et 100b, de manière à mettre en communication les cuvettes ou réservoirs 102, 104, 120a, 120b, 120c, avec les canaux (rainures) 108 correspondants. Le scellement a lieu, par exemple, par collage direct (moléculaire) des deux substrats.
Lors de cette opération, les rainures 108 du deuxième substrat 100b sont recouvertes par le premier substrat 100a pour former les canaux.
Une dernière étape, représentée à la figure 11, comprend l'amincissement du deuxième substrat 100b de façon à ne préserver entre le canal 108 et la surface extérieure 112 qu'une mince paroi 110. Cette paroi 110 présente une épaisseur de
1 ' ordre de lOμ de façon à favoriser les échanges thermiques . L'amincissement est réalisé par gravure et/ou par polissage mécanochimique .
Une pluralité de supports d'analyse conformes à l'invention peuvent être fabriqués simultanément et collectivement selon le procédé ci-dessus dans deux tranches de silicium (correspondant aux premier et deuxième substrats) .
Dans ce cas, le procédé est complété par un découpage des tranches à la scie pour individualiser les supports d'analyse.
La figure 12 montre une réalisation particulière du support thermique 200 d'un dispositif d'analyse conforme à l'invention.
Le support thermique 200 comprend pour l'essentiel un socle 202 sur lequel sont disposés un ou plusieurs barreaux thermostates. Dans l'exemple de la figure, le support thermique comprend trois barreaux thermostates 320a, 320b, 320c qui forment respectivement trois zones thermostatées . Tout ou partie des barreaux peuvent être noyés dans un matériau isolant thermique. Dans l'exemple de la figure deux barreaux 320b et 320c sont entourés par un matériau isolant thermique solide, tandis que le premier barreau 320a est laissé en contact libre avec l'air ambiant sur ses faces latérales.
Chaque barreau est équipé de moyens de chauffage et/ou de refroidissement.
Le premier barreau 320a est équipé d'un canal 322a qui le parcourt et qui permet de le thermostater par circulation d'un fluide caloporteur.
Les autres barreaux 320b et 320c sont également équipés de tels canaux 322b et 322c. Les canaux sont respectivement reliés à des bains thermostates avec des systèmes de pompage (non représentés) pour faire circuler le fluide caloporteur.
La liaison entre les bains et les barreaux peut avoir lieu au moyen de connexion hydrauliques non représentées .
Les canaux peuvent être du type circulaire, comme le montrent les figures, mais peuvent également être pourvus de systèmes d'ailettes pour optimiser les échanges thermiques . Des éléments chauffants complémentaires peuvent être intégrés dans les barreaux. A titre d'illustration, le troisième barreau 320c est équipé d'une résistance électrique 330. La résistance électrique est utilisée ici comme "source chaude" tandis que le fluide caloporteur est utilisé comme "source froide".
Le deuxième barreau 320b comporte un élément 340 de mesure de la température, tel qu'une résistance, utilisé pour asservir, par exemple, la température du bain thermostaté associé.
La référence 100 désigne de façon générale un support d'analyse amovible disposé sur le support thermique de façon à être en contact avec les barreaux thermostates. La description détaillée d'un tel support n'est pas répétée ici. On peut se reporter à ce sujet aux explications données en référence aux figures précédentes. Le support d'analyse 100 peut être simplement posé sur le support thermique 200. Il peut également être pressé contre le support thermique au moyen d'une bride ou d'un système d'aspiration non représentés .
Comme les moyens destinés au contrôle de température, c'est-à-dire en particulier les bains thermostates et les barreaux thermostates, sont solidaires du support thermique ou en connexion fluidique avec le support thermique, et comme le support d'analyse est amovible, il est possible de réaliser ce dernier de façon simple et peu coûteuse.
DOCUMENTS CITES
(1)
Martin U. Kopp, et al.,
"Chemical Amplification : continuous-Flow PCR on a chip" ,
Science, vol. 280, 15 May 1998, pages 1046-1048
(2)
"Chip advance but cost contraints remain" dans Nature Biotechnology, vol. 16, juin 1998, page 509.

Claims

REVENDICATIONS
1. Dispositif d'analyse chimique et/ou biologique comprenant :
— un support d'analyse (100) avec au moins une cuvette d'entrée (102) pour recueillir un échantillon, au moins une cuvette de sortie (104) pour délivrer ledit échantillon, au moins un canal interne (108) traversant le support pour relier la cuvette d'entrée et la cuvette de sortie, et au moins un réservoir à réactif (120a, 120b, 120c) relié à chaque canal (108) entre la cuvette d'entrée et la cuvette de sortie, dans lequel la cuvette d'entrée, la cuvette de sortie et le réservoir débouchent sur une première face (106) du support d'analyse, dans lequel le canal interne (100) s'étend à proximité d'au moins une deuxième face (112) du support d'analyse de façon à être séparé de ladite deuxième face par une paroi mince (110) , et
- un support thermique (200) indépendant du support d'analyse (100), le support thermique présentant une face d'échange thermique (212) avec au moins une zone thermostatée (220a, 220b, 220c) équipé d'au moins une source thermique ; le support d'analyse (100) pouvant être rapporté de façon amovible sur le support thermique (200) afin de mettre en contact la face d'échange thermique (212) du support thermique avec la deuxième face (112) du support d'analyse (100).
2. Dispositif selon la revendication 1, caractérisé en ce qu'une barrière thermique est disposée sur un côté des canaux opposé à une deuxième face du support .
3. Dispositif selon la revendication 2, dans lequel la barrière thermique comporte une couche (100c) d'isolation thermique au-dessus des canaux.
4. Dispositif selon la revendication 2, dans lequel la barrière thermique comporte une cavité d'isolation thermique (160) au-dessus des canaux.
5. Dispositif selon la revendication 1, dans lequel la paroi mince (110) présente une épaisseur inférieure à 100 μm.
6. Dispositif d'analyse selon la revendication
1, dans lequel la zone thermostatée coïncide avec au moins une zone du support d'analyse (100) située au voisinage d'un raccord (122b) entre un réservoir à réactif et un canal, lorsque le support d'analyse est reporté sur le support thermique.
7. Dispositif selon la revendication 1, dans lequel le support thermique comprend des moyens de refroidissement et/ou des moyens de chauffage.
8. Dispositif selon la revendication 7, dans lequel les moyens de chauffage comportent au moins une résistance électrique (230) .
9. Dispositif selon la revendication 7, dans lequel les moyens de refroidissement et/ou les moyens de chauffage comportent au moins un canal à fluide caloporteur.
10. Dispositif selon la revendication 1, comprenant une pluralité de cuvettes d'entrée (102) et une pluralité correspondante de cuvettes de sortie
(104), chaque cuvette d'entrée étant respectivement reliée à une cuvette de sortie associée au moyen d'un canal (108) .
11. Dispositif selon la revendication 11, comportant une pluralité de réservoirs à réactif (120a, 120b, 120c) , chaque réservoir étant relié à chacun des canaux (108) .
12. Dispositif selon la revendication 11, avec des moyens externes (150a, 150b, 150c) de remplissage des réservoirs, comportant au moins un pousse-seringue (154a, 154b, 154c) avec ou sans mélangeur de réactifs, connecté de façon étanche à au moins un réservoir.
13. Dispositif selon la revendication 12, dans lequel les moyens de remplissage comportent des capuchons d'alimentation (152a, 152b, 152c) recouvrant de façon étanche les réservoirs, et équipés chacun d'au moins une conduite reliée respectivement à au moins un pousse-seringue .
14. Dispositif selon la revendication 1, dans lequel le support d'analyse (100) comprend un premier substrat (100a) présentant des ouvertures traversantes qui forment respectivement les cuvettes et réservoirs, et un deuxième substrat (100b) , collé au premier substrat, le deuxième substrat présentant des rainures (108) , recouvertes par le premier substrat pour former des canaux, et coïncidant avec les ouvertures traversantes .
15. Procédé de fabrication d'un support d'analyse selon la revendication 1, comprenant les étapes suivantes :
- formation dans un premier substrat (100a), des ouvertures traversantes, lesdites ouvertures correspondant respectivement à des cuvettes d'entrée ou de sortie, ou à des réservoirs de réactif, - formation dans un deuxième substrat (100b) de rainures selon un motif permettant de relier entre elles au moins deux ouvertures du premier substrat, - collage du premier substrat sur le deuxième substrat de façon à recouvrir les rainures,
- amincissement du deuxième substrat, après le collage, en préservant une épaisseur de substrat supérieure à une profondeur maximale des rainures .
16. Procédé de mise en oeuvre d'un dispositif d'analyse selon la revendication 1, selon lequel on met en contact le support d'analyse avec le support thermique pendant une phase d'analyse de durée déterminée, au moins un échantillon à analyser et au moins un réactif étant introduits dans le support d'analyse préalablement à la phase d'analyse ou pendant la phase d'analyse, puis, après la phase d'analyse, on retire le support d'analyse du support thermique.
PCT/FR1999/002499 1998-10-16 1999-10-14 Dispositif d'analyse chimique et/ou biochimique avec un support d'analyse WO2000023190A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT99947579T ATE256501T1 (de) 1998-10-16 1999-10-14 Testträger zur chemischen und/oder biochemischen analyse
EP99947579A EP1121199B1 (fr) 1998-10-16 1999-10-14 Dispositif d'analyse chimique et/ou biochimique avec un support d'analyse
JP2000576958A JP4398096B2 (ja) 1998-10-16 1999-10-14 分析支持体を有する、化学及び/又は生化学分析装置
US09/806,515 US6680193B1 (en) 1998-10-16 1999-10-14 Device for chemical and/or biological analysis with analysis support
DE69913721T DE69913721T2 (de) 1998-10-16 1999-10-14 Testträger zur chemischen und/oder biochemischen analyse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9813012 1998-10-16
FR98/13012 1998-10-16

Publications (1)

Publication Number Publication Date
WO2000023190A1 true WO2000023190A1 (fr) 2000-04-27

Family

ID=9531670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/002499 WO2000023190A1 (fr) 1998-10-16 1999-10-14 Dispositif d'analyse chimique et/ou biochimique avec un support d'analyse

Country Status (6)

Country Link
US (1) US6680193B1 (fr)
EP (1) EP1121199B1 (fr)
JP (1) JP4398096B2 (fr)
AT (1) ATE256501T1 (fr)
DE (1) DE69913721T2 (fr)
WO (1) WO2000023190A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001007159A2 (fr) * 1999-07-28 2001-02-01 Genset Integration de protocoles biochimiques dans un dispositif microfluidique a ecoulement continu
FR2799139A1 (fr) * 1999-10-01 2001-04-06 Genset Sa Dispositif d'analyse biochimique comprenant un substrat microfluidique notamment pour l'amplification ou l'analyse d'acides nucleiques.
WO2001089692A2 (fr) * 2000-05-24 2001-11-29 Micronics, Inc. Amplification et detection d'acides nucleiques et detection a l'aide de structures a base de diffusion microfluidique
EP1161985A1 (fr) * 2000-06-05 2001-12-12 STMicroelectronics S.r.l. Méthode de fabrication de microréacteurs chimiques d'un matériau semiconducteur, et microréacteur intégré
EP1193214A1 (fr) * 2000-09-27 2002-04-03 STMicroelectronics S.r.l. Microréacteur chimique intégré, avec isolation thermique des électrodes de détection, et procédé pour sa fabrication
WO2002060584A2 (fr) * 2001-01-29 2002-08-08 Genset S.A. Procede de mise en oeuvre d'un protocole biochimique en flux continu dans un microreacteur
EP1314479A2 (fr) * 2001-11-24 2003-05-28 GeSIM Gesellschaft für Silizium-Mikrosysteme mbH Dispositif pour le transfert d' échantillons liquides
US6727479B2 (en) 2001-04-23 2004-04-27 Stmicroelectronics S.R.L. Integrated device based upon semiconductor technology, in particular chemical microreactor
EP1980321A3 (fr) * 2007-04-09 2014-10-15 Hitachi Software Engineering Co., Ltd. Appareil de réaction et puce de réaction
US8986934B2 (en) 2008-08-29 2015-03-24 Anagnostics Bioanalysis Gmbh Device for thermally regulating a rotationally symmetrical container
US9012810B2 (en) 2001-12-20 2015-04-21 Stmicroelectronics, Inc. Heating element for microfluidic and micromechanical applications

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030032172A1 (en) * 2001-07-06 2003-02-13 The Regents Of The University Of California Automated nucleic acid assay system
KR100442836B1 (ko) * 2001-11-10 2004-08-02 삼성전자주식회사 생화학 유체를 온도가 다른 폐쇄된 챔버 구간을 따라 회전이동시키는 폐쇄 유체 회로 시스템
US7179639B2 (en) * 2002-03-05 2007-02-20 Raveendran Pottathil Thermal strip thermocycler
US20040101870A1 (en) * 2002-11-26 2004-05-27 Caubet Bruno S. Microvolume biochemical reaction chamber
JP2004305009A (ja) * 2003-04-02 2004-11-04 Hitachi Ltd 核酸増幅装置及び核酸増幅方法
EP2265375A1 (fr) 2007-10-12 2010-12-29 Rheonix, Inc. Dispositif microfluidique intégré et procédés
FR2930457B1 (fr) * 2008-04-24 2010-06-25 Commissariat Energie Atomique Procede de fabrication de microcanaux reconfigurables
US9724695B2 (en) * 2008-06-23 2017-08-08 Canon U.S. Life Sciences, Inc. Systems and methods for amplifying nucleic acids
CN103781543A (zh) * 2011-08-22 2014-05-07 松下电器产业株式会社 微流体器件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3926466A1 (de) * 1989-08-10 1991-02-14 Messerschmitt Boelkow Blohm Mikroreaktor zur durchfuehrung chemischer reaktionen mit starker waermetoenung
WO1994021372A1 (fr) * 1993-03-19 1994-09-29 E.I. Du Pont De Nemours And Company Appareil de traitement chimique integre et procedes de preparation associes
WO1996015269A2 (fr) * 1994-11-14 1996-05-23 Trustees Of The University Of Pennsylvania Dispositifs d'amplification de polynucleotides a meso-echelle
DE19519015C1 (de) * 1995-05-24 1996-09-05 Inst Physikalische Hochtech Ev Miniaturisierter Mehrkammer-Thermocycler
US5589136A (en) * 1995-06-20 1996-12-31 Regents Of The University Of California Silicon-based sleeve devices for chemical reactions
WO1997002357A1 (fr) * 1995-06-29 1997-01-23 Affymetrix, Inc. Dispositif de diagnostic nucleotidique integre
WO1997004297A1 (fr) * 1995-07-21 1997-02-06 Northeastern University Systeme permettant des transferts de micro-quantites de fluide
US5716825A (en) * 1995-11-01 1998-02-10 Hewlett Packard Company Integrated nucleic acid analysis system for MALDI-TOF MS
WO1998032535A1 (fr) * 1997-01-24 1998-07-30 Peter Lindberg Element microfluidique integre

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998028623A1 (fr) 1996-12-20 1998-07-02 Gamera Bioscience Corporation Systeme a base de liaisons par affinite permettant de detecter des particules dans un fluide

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3926466A1 (de) * 1989-08-10 1991-02-14 Messerschmitt Boelkow Blohm Mikroreaktor zur durchfuehrung chemischer reaktionen mit starker waermetoenung
WO1994021372A1 (fr) * 1993-03-19 1994-09-29 E.I. Du Pont De Nemours And Company Appareil de traitement chimique integre et procedes de preparation associes
WO1996015269A2 (fr) * 1994-11-14 1996-05-23 Trustees Of The University Of Pennsylvania Dispositifs d'amplification de polynucleotides a meso-echelle
DE19519015C1 (de) * 1995-05-24 1996-09-05 Inst Physikalische Hochtech Ev Miniaturisierter Mehrkammer-Thermocycler
US5589136A (en) * 1995-06-20 1996-12-31 Regents Of The University Of California Silicon-based sleeve devices for chemical reactions
WO1997002357A1 (fr) * 1995-06-29 1997-01-23 Affymetrix, Inc. Dispositif de diagnostic nucleotidique integre
WO1997004297A1 (fr) * 1995-07-21 1997-02-06 Northeastern University Systeme permettant des transferts de micro-quantites de fluide
US5716825A (en) * 1995-11-01 1998-02-10 Hewlett Packard Company Integrated nucleic acid analysis system for MALDI-TOF MS
WO1998032535A1 (fr) * 1997-01-24 1998-07-30 Peter Lindberg Element microfluidique integre

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOPP ET AL.: "chemical amplification:continuous flow PCR on a chip", SCIENCE, vol. 280, 15 May 1998 (1998-05-15), us, pages 1046 - 1048, XP002107956 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001007159A3 (fr) * 1999-07-28 2001-05-25 Genset Sa Integration de protocoles biochimiques dans un dispositif microfluidique a ecoulement continu
WO2001007159A2 (fr) * 1999-07-28 2001-02-01 Genset Integration de protocoles biochimiques dans un dispositif microfluidique a ecoulement continu
US7015030B1 (en) 1999-07-28 2006-03-21 Genset S.A. Microfluidic devices and uses thereof in biochemical processes
US6977145B2 (en) 1999-07-28 2005-12-20 Serono Genetics Institute S.A. Method for carrying out a biochemical protocol in continuous flow in a microreactor
FR2799139A1 (fr) * 1999-10-01 2001-04-06 Genset Sa Dispositif d'analyse biochimique comprenant un substrat microfluidique notamment pour l'amplification ou l'analyse d'acides nucleiques.
WO2001089692A2 (fr) * 2000-05-24 2001-11-29 Micronics, Inc. Amplification et detection d'acides nucleiques et detection a l'aide de structures a base de diffusion microfluidique
WO2001089692A3 (fr) * 2000-05-24 2002-04-18 Micronics Inc Amplification et detection d'acides nucleiques et detection a l'aide de structures a base de diffusion microfluidique
US6710311B2 (en) 2000-06-05 2004-03-23 Stmicroelectronics S.R.L. Process for manufacturing integrated chemical microreactors of semiconductor material
EP1161985A1 (fr) * 2000-06-05 2001-12-12 STMicroelectronics S.r.l. Méthode de fabrication de microréacteurs chimiques d'un matériau semiconducteur, et microréacteur intégré
US7009154B2 (en) 2000-06-05 2006-03-07 Stmicroelectronics S.R.L. Process for manufacturing integrated chemical microreactors of semiconductor material
EP1193214A1 (fr) * 2000-09-27 2002-04-03 STMicroelectronics S.r.l. Microréacteur chimique intégré, avec isolation thermique des électrodes de détection, et procédé pour sa fabrication
US6770471B2 (en) 2000-09-27 2004-08-03 Stmicroelectronics S.R.L. Integrated chemical microreactor, thermally insulated from detection electrodes, and manufacturing and operating methods therefor
US6929968B2 (en) 2000-09-27 2005-08-16 Stmicroelectronics S.R.L. Integrated chemical microreactor, thermally insulated from detection electrodes, and manufacturing and operating methods therefor
US6974693B2 (en) 2000-09-27 2005-12-13 Stmicroelectronics S.R.L. Integrated chemical microreactor, thermally insulated from detection electrodes, and manufacturing and operating methods therefor
WO2002060584A3 (fr) * 2001-01-29 2003-02-13 Genset Sa Procede de mise en oeuvre d'un protocole biochimique en flux continu dans un microreacteur
WO2002060584A2 (fr) * 2001-01-29 2002-08-08 Genset S.A. Procede de mise en oeuvre d'un protocole biochimique en flux continu dans un microreacteur
AU2002244899B2 (en) * 2001-01-29 2006-08-24 Commissariat A L'energie Atomique Method for carrying out a biochemical protocol in continuous flow in a microreactor
US6727479B2 (en) 2001-04-23 2004-04-27 Stmicroelectronics S.R.L. Integrated device based upon semiconductor technology, in particular chemical microreactor
EP1314479A3 (fr) * 2001-11-24 2004-03-24 GeSIM Gesellschaft für Silizium-Mikrosysteme mbH Dispositif pour le transfert d' échantillons liquides
EP1314479A2 (fr) * 2001-11-24 2003-05-28 GeSIM Gesellschaft für Silizium-Mikrosysteme mbH Dispositif pour le transfert d' échantillons liquides
US9012810B2 (en) 2001-12-20 2015-04-21 Stmicroelectronics, Inc. Heating element for microfluidic and micromechanical applications
EP1980321A3 (fr) * 2007-04-09 2014-10-15 Hitachi Software Engineering Co., Ltd. Appareil de réaction et puce de réaction
US8986934B2 (en) 2008-08-29 2015-03-24 Anagnostics Bioanalysis Gmbh Device for thermally regulating a rotationally symmetrical container

Also Published As

Publication number Publication date
EP1121199A1 (fr) 2001-08-08
DE69913721D1 (de) 2004-01-29
US6680193B1 (en) 2004-01-20
JP2002527760A (ja) 2002-08-27
DE69913721T2 (de) 2004-10-28
JP4398096B2 (ja) 2010-01-13
EP1121199B1 (fr) 2003-12-17
ATE256501T1 (de) 2004-01-15

Similar Documents

Publication Publication Date Title
EP1121199B1 (fr) Dispositif d'analyse chimique et/ou biochimique avec un support d'analyse
US7892493B2 (en) Fluid sample transport device with reduced dead volume for processing, controlling and/or detecting a fluid sample
US20040132059A1 (en) Integrated device for biological analyses
US20090185955A1 (en) Microfluidic device for molecular diagnostic applications
US6432695B1 (en) Miniaturized thermal cycler
US8097222B2 (en) Microfluidic device with integrated micropump, in particular biochemical microreactor, and manufacturing method thereof
US8695355B2 (en) Thermal management techniques, apparatus and methods for use in microfluidic devices
US20050279635A1 (en) Controller/detector interfaces for microfluidic systems
TWI447393B (zh) 反應晶片及其製造方法
WO2001041931A2 (fr) Dispositifs microfluidiques multicouches pour reactions de substances a analyser
US7442542B2 (en) Shallow multi-well plastic chip for thermal multiplexing
EP0379437A1 (fr) Procédé et dispositif de régulation rapide d'une température de paroi
EP1356303B1 (fr) Procede et systeme permettant de realiser en flux continu un protocole biologique, chimique ou biochimique.
FR2900400A1 (fr) Procede collectif de fabrication de membranes et de cavites de faible volume et de haute precision
CN108043481B (zh) 一种多指标检测微流控芯片及其使用方法
EP1515794A1 (fr) DISPOSITIF FLUIDIQUE PERMETTANT DE MANIERE THERMO-PNEUMATIQUE L'ISOLEMENT ET EVENTUELLEMENT L AGITATION DU CONTENU D&apo s;UNE CAVITE OPERATOIRE
JP2009002933A (ja) 分析用媒体
FR2799139A1 (fr) Dispositif d'analyse biochimique comprenant un substrat microfluidique notamment pour l'amplification ou l'analyse d'acides nucleiques.
EP3541514B1 (fr) Procédé et système de commande d'un dispositif microfluidique
EP1306674A1 (fr) Dispositif d'injection parallelisée et synchronisée pour injections séquentielles de réactifs differents
WO2009079052A2 (fr) Dispositifs et procédés pour isoler thermiquement des chambres d'une carte d'analyse
EP1261426A1 (fr) Procede de mise en oeuvre d'une carte d'analyse
FR2796863A1 (fr) Procede et dispositif permettant de realiser en flux continu un protocole de traitement thermique sur une substance
FR2901490A1 (fr) Dispositif micro fluidique notamment pour doser un liquide ou un prelevement et/ou une distribution de liquide et procede pour la fabrication d'un dispositif micro fluidique
WO2000053320A1 (fr) Dispositif de pompage permettant de transferer au moins un fluide dans un consommable

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999947579

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 576958

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09806515

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999947579

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999947579

Country of ref document: EP