WO2000027576A1 - Laser treatment of materials, in particular cutting and welding - Google Patents

Laser treatment of materials, in particular cutting and welding Download PDF

Info

Publication number
WO2000027576A1
WO2000027576A1 PCT/FR1999/002731 FR9902731W WO0027576A1 WO 2000027576 A1 WO2000027576 A1 WO 2000027576A1 FR 9902731 W FR9902731 W FR 9902731W WO 0027576 A1 WO0027576 A1 WO 0027576A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
layer
strip
frequency
treatment
Prior art date
Application number
PCT/FR1999/002731
Other languages
French (fr)
Inventor
Didier Bauchiere
Jean-Charles Pinoli
Michel Duvaley
Original Assignee
Cebal S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cebal S.A. filed Critical Cebal S.A.
Priority to AU10532/00A priority Critical patent/AU1053200A/en
Publication of WO2000027576A1 publication Critical patent/WO2000027576A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/034Observing the temperature of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/0344Observing the speed of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0838Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt
    • B23K26/0846Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt for moving elongated workpieces longitudinally, e.g. wire or strip material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/116Single bevelled joints, i.e. one of the parts to be joined being bevelled in the joint area
    • B29C66/1162Single bevel to bevel joints, e.g. mitre joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/14Particular design of joint configurations particular design of the joint cross-sections the joint having the same thickness as the thickness of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/244Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being non-straight, e.g. forming non-closed contours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/431Joining the articles to themselves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/432Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms
    • B29C66/4322Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms by joining a single sheet to itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/851Bag or container making machines
    • B29C66/8511Bag making machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91431Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being kept constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91631Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being kept constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/934Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
    • B29C66/9392Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges in explicit relation to another variable, e.g. speed diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/952Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the wavelength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1674Laser beams characterised by the way of heating the interface making use of laser diodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1687Laser beams making use of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7234General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a barrier layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73773General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being semi-crystalline
    • B29C66/73774General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being semi-crystalline the to-be-joined areas of both parts to be joined being semi-crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/959Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables
    • B29C66/9592Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables in explicit relation to another variable, e.g. X-Y diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • B29K2023/086EVOH, i.e. ethylene vinyl alcohol copolymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/005Hoses, i.e. flexible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7128Bags, sacks, sachets
    • B29L2031/7129Bags, sacks, sachets open

Definitions

  • the invention relates to the field of methods which use a laser to transform materials, in particular to weld, cut, incise or mark materials, in particular materials in strips or sheets comprising a material layer. plastic.
  • European Patent No. 237,192 B1 describes a method for welding plastic surfaces using surfaces reflecting the laser beam.
  • French Application No. 2,289,588 A1 describes a method for fixing two elements coated with thermoplastic material using a laser operating in part of the absorption spectrum of said thermoplastic material.
  • the problem posed relates to the treatment by a laser, on an industrial line of materials, typically in a strip or in a sheet, comprising a plastic material.
  • a conventional laser to replace, on an industrial line operating in continuous, a contribution of conventional thermal energy (for example by electrical resistance, by induction, etc.) in order to weld a multilayer material comprising a layer of plastic material
  • it encountered various problems - on the one hand it first observes large variations in quality (or even a non-weldable) depending on the nature of the plastics used and depending on the laser used - on the other hand, it also observes, even for the same plastic used, variations in quality according to the desired rates
  • the great difficulty if not the impossibility of ensuring a constant supply of energy by appropriate regulation ⁇ ee laser, which is convenient, inexpensive, compact, ergonomic and flexible She therefore sought an overall solution to these problems
  • the laser treatment of a material comprising at least one layer absorbing the energy of the laser radiation, typically made of plastic, in order to carry out in particular a cutting operation of incision, of marking at least said layer, or of welding of said material on itself or with a second material, by supply of energy from the laser beam located on all or part of said layer in order to carry at least said layer at the temperature necessary for carrying out said operation, is characterized in that, typically once and for all before said supply, and for any new material to be treated, a) first, if not known, the spectral absorption curve of at least said layer is established, in order to determine a frequency interval corresponding to an absorption peak, b) said laser is chosen from lasers whose frequency, or length of corresponding wave beam is adjustable over a range of frequencies including at least said frequency interval relative to said absorption peak, c) gives the frequency of said laser at a frequency v w, said working, of said absorption frequency interval, chosen to allow reaching said temperature and
  • the above means, and in particular the use of a laser with variable frequency over a given frequency range, adjustable over a given frequency interval corresponding to an absorption peak of the material M of said layer, make it possible to resolve a essential problem of the invention.
  • most plastics have absorption peaks in the same part of the IR absorption spectrum.
  • many plastics with carbon-hydrogen bonds generally have absorption peaks in common or neighboring frequency intervals corresponding to certain modes of vibration of C-H bonds. The same laser can therefore be used for a large number of plastics.
  • the invention allows this adaptation of the same laser to the conditions required by adjusting its frequency on said working frequency, taking into account the absorption curve of said plastic material and the nature of said work.
  • FIG. 1 illustrates the principle of the invention and represents absorption diagrams (100) A1, A2 and A3, relating respectively to three materials Ml, M2 and M3 constituting said layer (10) absorbing energy.
  • absorption peaks (101) are represented on these 3 schematic diagrams where the frequency v appears on the abscissa and the absorption A on the ordinate, which correspond frequency intervals (106).
  • the superposition of these three absorption patterns A1, A2 and A3 makes it possible to define a common frequency domain (102), in which each material has at least one absorption peak, this frequency domain, which extends from v ⁇ to v b . being that of the chosen laser.
  • a working frequency v w (103) is chosen for each material vêt ⁇ for Ml, v w2 for M2, v w3 for M3.
  • Figures 2 and 3 illustrate a method of the invention in which the frequency of said laser can vary step by step (104) around said working frequency v w (103), over a working range (105) extending from 'a frequency vi at a frequency v 2 , as shown in Figure 2.
  • Figure 2 shows a portion (1010) of absorption curve (101) corresponding to said working range (105), and a portion of curve corresponding temperature T, with the frequency v on the abscissa and the ordinate, the absorption A on the left for the portion of the curve (1010), the temperature T on the right for the portion of the curve (101 1).
  • FIG. 3 is related to FIG. 2 and represents a portion of the curve (1012), called “isothermal", giving the relative speed of travel of the material with respect to the laser beam as a function of the frequency v so that , taking into account the absorption curve (1010) of FIG. 2, the energy received per unit of time, and therefore the temperature of the absorbent material remains constant, thus, desired or accidental variations in speed on the production line can be compensated for by automatic frequency variations of the laser FIG.
  • Said regulating means comprises links (220, 221) with the laser and with the reel (7) to typically ensure regulation between the instantaneous speed Vi of the strip (1) and the instantaneous frequency vi of the laser beam (20).
  • FIG. 5 is a schematic perspective view illustrating the formation of a cylindrical tube (3) by folding, using means, in particular traction means (8), not shown, the edges (1 1) of a strip material (1) comprising external layers M1 and M2, as shown in FIG. 5a, which can be welded by absorbing the energy of the laser (2) to form a junction (30) with solder (12), as shown in FIGS. 5b and 5c, FIG. 5b corresponding to a junction by covering and welding (12) of the layers Ml and M2, and FIG. 5c to an edge-to-edge junction and welding (12) of the layers Ml on Ml on one side and M2 on M2 on the other side
  • FIG. 6 is a schematic perspective view illustrating the formation of sachets (5) from a material (1) in a strip, by folding the strip relative to the longitudinal center line (16) by means not shown, and forming, using the laser (2) whose beam (20) can be moved and / or distributed using said displacement and / or focusing means (21), in the longitudinal directions X -X ', transverse Y- Y' and vertical Z-Z ', transverse welds (14) regularly spaced and perpendicular to a fold line (15).
  • the bags (5) are obtained, the open rib (50) being at the top of the bag, ready to be filled.
  • Figure 7 is a schematic perspective view illustrating the formation of sachets (5) from two strip materials (1), by welding, using the laser (2) which can be moved and / or distributed to the using said displacement and / or focusing means (21) in the longitudinal XX 'and transverse Y- Y' directions, the two films to form, for each bag, a longitudinal weld (13) and two transverse welds (14) .
  • the bags (5) have an opening (50) in the longitudinal direction.
  • FIG. 8 illustrates the kinematics of the laser beam in the case of FIG. 7 and in the case where said bands (1) advance continuously at constant speed V.
  • the beam initially at point A is moved diagonally to point B in the X-Y plane, so as to form a transverse weld (14) which is perpendicular to the direction of advancement of the bands.
  • the beam remains stationary, as long as the longitudinal weld (13) is formed and point C is reached
  • the beam is moved diagonally to point C, with a very rapid return to point A to continue the next welding cycle.
  • the beam therefore followed a predetermined path (23).
  • the other option would be to advance the strip (s) (1) step by step, to immobilize it during the welding and to move the laser beam while the strip is immobilized
  • Figure 9 illustrates a variant of Figure 7, wherein the bags are oriented in a different way since each bag comprises two longitudinal seams (13) and one transverse weld (14).
  • the bags (4) formed have openings (40) in the transverse direction.
  • FIG. 1 shows schematically the general principle of the invention.
  • an adjustable frequency laser is chosen for its frequency domain (102), a domain which includes a certain number of frequency intervals (106) corresponding to peaks of absorption (101) belonging to each of the absorption curves Ai of each material Mi.
  • the same laser can potentially be suitable for a large number of plastic materials, and be finely adjusted for each of them at a working frequency v wi .
  • said laser can be a solid-state laser using a pumped diode.
  • This type of laser can deliver an adjustable wavelength, typically using a parametric optical oscillator.
  • Said parametric optical oscillator may be made of lithium niobate and have an adjustable frequency between 1 and 5 ⁇ m, that is to say between 10,000 and 2,000 cm " ', an area which corresponds in particular to infrared and in which most of the plastics have absorption peaks.
  • the range 2400 - 3200 cm “1 is chosen as the frequency range (102) which corresponds in particular to a certain mode of vibration of the CH bonds, so that most of the plastics constituting said layers, in particular said outer layer, having absorption peaks between 2400 and 3200 cm -1 , the same laser, typically with lithium niobate, can be used for most common plastics.
  • an initial frequency range called the working range (105)
  • the working range (105) is chosen, going from v, to v 2 as illustrated in FIG. 2, and corresponding to an area of strong variation, typically a side, of a portion (1010) of an absorption peak (101) of said absorption curve Ai, and it is varied step by step. and preferably with a pitch (104) less than 0.01 ⁇ m, in one direction or the other of said zone, the frequency of said laser, so as to be able to adjust in a substantially proportional manner the quantity of energy absorbed , and thus the temperature of said layer to be treated.
  • said material can be a material in the form of a very long strip which is scrolled at a determined speed, the laser beam being fixed or mobile, so as to carry out said treatment of said material on a small width, less than 5 mm and typically equal to 2 mm (or even edge to edge), and the step-by-step variation of the frequency of said laser is controlled by the relative speed variation Vr of said material with respect to the laser beam, way to
  • FIG. 3 which, taking into account in particular the curves (1010) and (101 1) of FIG. 2, gives the relationship between the relative speed Vr between beam and
  • FIG. 4 schematically represents a possible solution of the global regulation making it possible to control the treatment line to have a treatment temperature
  • said layer is an external layer (10) of plastic material, each face of said strip (1) comprising said
  • said laser beam can be moved, at least over the straight line portions of the path (23), at a predetermined relative speed, said material being typically fixed during said treatment, so as to produce said treatment of said material, and it is possible to control said relative speed and the step-by-step variation of the frequency of said laser so that the quantity of energy absorbed, and therefore the temperature of said layer, is substantially constant whatever said relative speed of movement of said laser beam relative to said material
  • said strip advances step by step, said treatment being carried out, at least in part, during the stop phase of the strip.
  • this method can be advantageous because, without penalizing the processing speed too much, it can avoid having to resort to expensive kinematic means to ensure the relative displacement of the laser beam according to a desired path. It is a great advantage to be able to slave the frequency to the relative speed of the beam, because, as soon as the path (23) of the beam is not linear and presents changes of direction, there are locally phases of deceleration and acceleration of the movement of the laser beam (20) which can not only lead to local temperature variations.
  • said layer can be an external plastic layer on one face of said strip (1), said strip can be folded in the longitudinal direction so as to bring into with regard to the two half-portions of longitudinal strips, and said treatment can be applied transversely over the width of said half-portion, so as to form transverse welds (14, 14 ′), regularly spaced in the longitudinal direction, over a length equal to the half-width of said strip (1). leading, after appropriate cutting, to the formation of sachets (5) open on one side (50).
  • the position of the laser (2) is only indicated schematically and symbolically.
  • said layer may be an external plastic layer, in which said treatment is applied in a "U" shape and a second strip, identical or not to said strip, is applied to said strip, so as to form "U” welds between said strip and said second strip, leading, after appropriate cutting, to the formation of sachets (4,5) open on one side.
  • the treatment according to the invention is not limited to the sealing of two layers of plastic material. It also aims to cut, incise, engrave, mark, continuously or discontinuously, over all or part of its thickness, said material, all operations for which it is desirable to control the supply of energy and therefore for which the means of the present invention can be applied advantageously.
  • a very long cylindrical tube (3) was made from a strip (1) of multilayer material having as structure PE ⁇ / Adh / EVOH / Adh / PE 2 , or PEi denotes a layer of polyethylene of 150 ⁇ m and PE 2 denotes a layer of PE of 100 ⁇ m, where Adh denotes a layer of adhesive of 10 ⁇ m and EVOH a barrier layer, in EVOH, of 15 ⁇ m
  • layer (10) absorbing the laser energy we chose a solid type laser with pumped diode with optical parametric oscillator with lithium niobate, and a frequency domain (102) with v ⁇ equal to 2.8 ⁇ m and v b equal to 4 ⁇ m
  • v w equal to 3.3 ⁇ m
  • a frequency which belongs to the absorption peak (101) of the PE used peak having a frequency interval (106) ranging from 3.2 ⁇ m to
  • the speed of travel of the strip (1) was fixed at a nominal value of 40 m / min.
  • bags were made from a PE film 60 ⁇ m thick forming a strip (1) 30 cm wide.
  • the laser used is the same as that of the previous example. The same is true for experimental conditions, and typically for the working frequency v w , the energy absorbing layer (10) also being PE.
  • the strip (1) has been scrolled step by step, so as to have a simplified kinematics for the laser beam (20).
  • the laser beam (20) was focused and moved along a "V" shaped trajectory, the two half-portions of the film (10) being only partially folded back. moment when said supply of energy by laser beam occurs.
  • the movement of the focal point of the beam (20), controlled by said displacement means (21), comprises a transverse component in the direction Y-Y ', and a vertical component in the direction Z-Z ', the assembly constituting the trajectory in "V”
  • the invention provides a relevant and flexible solution to the difficult problem of regulating the energy supply by laser beam in all laser material processing where the temperature of the material plays a critical role, which is the case of most treatments involving an energy supply by laser beam
  • the invention provides a general solution to this problem, in no way limited to the examples according to the invention, each time that an organic material is involved and especially each time what happens is a relative speed of the focal point with respect to the support or material to be treated
  • the invention therefore makes it possible to treat with the same laser, typically to weld, different plastic materials, by tuning the frequency of the laser, without having to modify the plastic, typically by adding additives, to make it absorbent at lengths d 'predetermined conventional waves, as is known
  • LAISON BETWEEN LASER & REGUALTION 220 LINK BETWEEN HOSE REEL & REGULATION 221

Abstract

The invention concerns the laser treatment (2) of a material in the form of a strip (1), comprising at least a layer (10) of material M absorbing the laser radiation energy, to bring at least said layer to the temperature required for performing said treatment. The invention is characterised in that for each new material to be transformed, it consists in: a) first, elaborating the spectral curve Ai of said layer (10) of material Mi, so as to determine a frequency spacing (106) corresponding to an absorption peak (101); b) selecting said laser (2) among lasers whereof the beam frequency, or corresponding wavelength, is adjustable on the frequency domain (102) comprising at least said frequency spacing (106); c) tuning said laser frequency on a frequency ξw (103) of said selected spacing to reach said temperature and perform said treatment in a predetermined time interval.

Description

TRAITEMENT DE MATERIAUX AU LASER, NOTAMMENT DE DECOUPAGE OU DE SOUDURE TREATMENT OF LASER MATERIALS, IN PARTICULAR CUTTING OR WELDING
DOMAINE DE L'INVENTIONFIELD OF THE INVENTION
L'invention concerne le domaine des procédés qui utilisent un laser en vue de transformer des matériaux, notamment en vue de souder, de découper, d'inciser ou de marquer des matériaux , en particulier des matériaux en bandes ou feuilles comprenant une couche en matière plastique.The invention relates to the field of methods which use a laser to transform materials, in particular to weld, cut, incise or mark materials, in particular materials in strips or sheets comprising a material layer. plastic.
ETAT DE LA TECHNIQUESTATE OF THE ART
Les applications du laser à la transformation des matériaux ont fait l'objet d'un très grand nombre de travaux et de publications.Laser applications in materials processing were the subject of a very large number of works and publications.
A titre d'exemple, on peut citer les documents typiques qui suivent : La demande internationale WO 89/10231 décrit un procédé de soudure tubulaire d'une feuille comprenant une couche de matériau thermoplastique, par fusion, sous irradiation au laser, des parties à souder.For example, there may be mentioned typical following documents: International patent application WO 89/10231 discloses a tubular welding method for a sheet comprising a layer of thermoplastic material, by melting, under laser irradiation, portions to solder.
Le brevet européen n° 237 192 Bl décrit un procédé pour souder des surfaces de matière plastique à l'aide de surfaces réfléchissant le faisceau laser.European Patent No. 237,192 B1 describes a method for welding plastic surfaces using surfaces reflecting the laser beam.
La demande française n° 2 289 588 Al décrit un procédé de fixation de deux éléments revêtus de matière thermoplastique à l'aide d'un laser fonctionnant dans une partie du spectre d'absorption de ladite matière thermoplastique.French Application No. 2,289,588 A1 describes a method for fixing two elements coated with thermoplastic material using a laser operating in part of the absorption spectrum of said thermoplastic material.
Il existe aussi, dans la littérature, de très nombreux articles sur l'utilisation des lasers . A titre d'exemple, on citera l'article de LA. Jones et N.S. Taylor " High speed welding of plastics using lasers " dans ANTEC'94 pages 1360 à 1363, ainsi que l'article de J. KORTE et de H. POTENTE Taylor " Laser butt welding of semi-cristalline thermoplastics " dans ANTEC96 pages 1255 à 1259. PROBLEME POSEThere are also numerous articles in the literature on the use of lasers. As an example, we can cite the LA article. Jones and NS Taylor "High speed welding of plastics using lasers" in ANTEC'94 pages 1360 to 1363, as well as the article by J. KORTE and H. POTENTE Taylor "Laser butt welding of semi-crystalline thermoplastics" in ANTEC96 pages 1255 to 1259. PROBLEM
Le problème pose est relatif au traitement par un laser, sur ligne industrielle de matériaux, typiquement en bande ou en feuille, comprenant une matière plastique En effet, lorsque la demanderesse a essaye d'utiliser un laser classique pour remplacer, sur ligne industrielle fonctionnant en continu, un apport d'énergie thermique classique (par exemple par résistance électrique, par induction, etc ) en vue de souder un matériau multicouche comprenant une couche de matière plastique, elle s est heurtée a différents problèmes - d'une part, elle a d'abord observe de grandes variations de qualité (voire une non soudabihte) selon la nature des matières plastiques utilisées et suivant le laser utilise - d'autre part, elle a aussi observe, même pour une même matière plastique utilisée, des variations de qualité suivant les cadences souhaitées Elle a donc constate la grande difficulté, sinon l' impossibilité d'assurer un apport constant d'énergie par une régulation appropπee du laser, qui soit commode, peu coûteuse, de faible encombrement, ergonomique et flexible Elle a donc recherche une solution d'ensemble a ces problèmesThe problem posed relates to the treatment by a laser, on an industrial line of materials, typically in a strip or in a sheet, comprising a plastic material. Indeed, when the applicant has tried to use a conventional laser to replace, on an industrial line operating in continuous, a contribution of conventional thermal energy (for example by electrical resistance, by induction, etc.) in order to weld a multilayer material comprising a layer of plastic material, it encountered various problems - on the one hand, it first observes large variations in quality (or even a non-weldable) depending on the nature of the plastics used and depending on the laser used - on the other hand, it also observes, even for the same plastic used, variations in quality according to the desired rates It has therefore noted the great difficulty, if not the impossibility of ensuring a constant supply of energy by appropriate regulation πee laser, which is convenient, inexpensive, compact, ergonomic and flexible She therefore sought an overall solution to these problems
DESCRIPTION DE L'INVENTIONDESCRIPTION OF THE INVENTION
Selon l'invention, le traitement au laser d'un matériau, typiquement sous forme de bande, comprenant au moins une couche absorbant l'énergie du rayonnement laser, typiquement en matière plastique, en vue d'effectuer notamment une opération de découpage d' incision, de marquage d'au moins ladite couche, ou de soudure dudit matériau sur lui- même ou avec un second matériau, par apport d'énergie du faisceau laser localise sur tout ou partie de ladite couche en vue de porter au moins ladite couche a la température nécessaire pour effectuer ladite opération, est caractérise en ce que, typiquement une fois pour toutes avant ledit apport, et pour tout nouveau matériau a traiter, a) on établit d'abord, si elle n'est pas connue, la courbe d'absorption spectrale au moins de ladite couche, afin de déterminer un intervalle de fréquences correspondant à un pic d'absorption, b) on choisit ledit laser parmi les lasers dont la fréquence, ou longueur d'onde correspondante, du faisceau est ajustable sur un domaine de fréquences comprenant au moins ledit intervalle de fréquences relatif audit pic d'absorption, c) on accorde la fréquence dudit laser sur une fréquence vw, dite de travail, dudit intervalle de fréquences d'absorption, choisie pour permettre d'atteindre ladite température et d'effectuer ladite opération en un temps prédéterminé dudit traitement.According to the invention, the laser treatment of a material, typically in the form of a strip, comprising at least one layer absorbing the energy of the laser radiation, typically made of plastic, in order to carry out in particular a cutting operation of incision, of marking at least said layer, or of welding of said material on itself or with a second material, by supply of energy from the laser beam located on all or part of said layer in order to carry at least said layer at the temperature necessary for carrying out said operation, is characterized in that, typically once and for all before said supply, and for any new material to be treated, a) first, if not known, the spectral absorption curve of at least said layer is established, in order to determine a frequency interval corresponding to an absorption peak, b) said laser is chosen from lasers whose frequency, or length of corresponding wave beam is adjustable over a range of frequencies including at least said frequency interval relative to said absorption peak, c) gives the frequency of said laser at a frequency v w, said working, of said absorption frequency interval, chosen to allow reaching said temperature and to perform said operation in a predetermined time of said treatment.
Ainsi, les moyens précédents, et notamment l'utilisation d'un laser à fréquence variable sur un domaine de fréquences donné, ajustable sur un intervalle de fréquence donné correspondant à un pic d'absorption du matériau M de ladite couche, permettent de résoudre un problème essentiel de l'invention. En effet, d'une part, la plupart des matières plastiques présentent des pics d'absorption dans une même partie du spectre d'absorption IR. Ainsi, par exemple, beaucoup de matières plastiques ayant des liaisons carbone-hydrogène présentent généralement des pics d'absorption dans des intervalles de fréquence communs ou voisins correspondant à certains modes de vibration des liaisons C-H. Un même laser pourra donc être utilisable pour un grand nombre de matières plastiques.Thus, the above means, and in particular the use of a laser with variable frequency over a given frequency range, adjustable over a given frequency interval corresponding to an absorption peak of the material M of said layer, make it possible to resolve a essential problem of the invention. On the one hand, most plastics have absorption peaks in the same part of the IR absorption spectrum. Thus, for example, many plastics with carbon-hydrogen bonds generally have absorption peaks in common or neighboring frequency intervals corresponding to certain modes of vibration of C-H bonds. The same laser can therefore be used for a large number of plastics.
D'autre part, pour une même matière plastique, la variété des traitements et conditions expérimentales entraîne une égale variété des apports d'énergie par le laser aux matières plastiques et donc des températures requises. On conçoit aisément que, selon qu'il s'agisse par exemple de découpage ou de soudure, la température à atteindre dans ladite couche absorbant l'énergie ne sera pas la même.On the other hand, for the same plastic material, the variety of treatments and experimental conditions results in an equal variety of energy inputs by the laser to the plastic materials and therefore of the required temperatures. It is easily understood that, depending on whether it is for example cutting or welding, the temperature to be reached in said energy absorbing layer will not be the same.
L'invention permet cette adaptation d'un même laser aux conditions requises par ajustement de sa fréquence sur ladite fréquence de travail, compte tenu de la courbe d'absorption de ladite matière plastique et de la nature dudit travail.The invention allows this adaptation of the same laser to the conditions required by adjusting its frequency on said working frequency, taking into account the absorption curve of said plastic material and the nature of said work.
DESCRIPTION DES FIGURES La figure 1 illustre le principe de l'invention et représente des diagrammes d'absorption (100) Al, A2 et A3, relatifs respectivement à trois matériaux Ml, M2 et M3 constituant ladite couche (10) absorbant l'énergie. Sur ces 3 diagrammes schématiques où la fréquence v figure en abscisse et l'absorption A en ordonnée, sont représentés des pics d'absorption ( 101) auxquels correspondent des intervalles de fréquence ( 106). La superposition de ces trois diagrammes d'absorption Al, A2 et A3 permet de définir un domaine de fréquence commun ( 102), dans lequel chaque matériau présente au moins un pic d'absorption, ce domaine de fréquences, qui s'étend de vα à vb. étant celui du laser choisi. Selon le matériau, une fréquence de travail vw (103) est choisie pour chaque matériau v„ι pour Ml, vw2 pour M2, vw3 pour M3.DESCRIPTION OF THE FIGURES FIG. 1 illustrates the principle of the invention and represents absorption diagrams (100) A1, A2 and A3, relating respectively to three materials Ml, M2 and M3 constituting said layer (10) absorbing energy. On these 3 schematic diagrams where the frequency v appears on the abscissa and the absorption A on the ordinate, are represented absorption peaks (101) to which correspond frequency intervals (106). The superposition of these three absorption patterns A1, A2 and A3 makes it possible to define a common frequency domain (102), in which each material has at least one absorption peak, this frequency domain, which extends from v α to v b . being that of the chosen laser. Depending on the material, a working frequency v w (103) is chosen for each material v „ι for Ml, v w2 for M2, v w3 for M3.
Les figures 2 et 3 illustrent une modalité de l'invention dans laquelle la fréquence dudit laser peut varier pas à pas (104) autour de ladite fréquence de travail vw (103), sur une plage de travail ( 105) s'étendant d'une fréquence vi à une fréquence v2, comme représenté sur la figure 2. La figure 2 représente une portion (1010) de courbe d'absorption (101) correspondant à ladite plage de travail ( 105), et une portion de courbe de température T correspondante, avec en abscisse la fréquence v et en ordonnée, l'absorption A à gauche pour la portion de courbe (1010), la température T à droite pour la portion de courbe ( 101 1).Figures 2 and 3 illustrate a method of the invention in which the frequency of said laser can vary step by step (104) around said working frequency v w (103), over a working range (105) extending from 'a frequency vi at a frequency v 2 , as shown in Figure 2. Figure 2 shows a portion (1010) of absorption curve (101) corresponding to said working range (105), and a portion of curve corresponding temperature T, with the frequency v on the abscissa and the ordinate, the absorption A on the left for the portion of the curve (1010), the temperature T on the right for the portion of the curve (101 1).
La figure 3 est en relation avec la figure 2 et représente une portion de courbe ( 1012), dite '' isotherme ", donnant la vitesse relative de défilement du matériau par rapport au faisceau laser en fonction de la fréquence v de manière à ce que, compte tenu de la courbe d'absorption (1010) de la figure 2, l'énergie reçue par unité de temps, et donc la température du matériau absorbant reste constante. Ainsi, des variations souhaitées ou accidentelles de vitesse sur ligne de production peuvent être compensées par des variations automatiques de fréquence du laser La figure 4 représente schématiquement une régulation dudit procédé et représente d'une part un matériau en bande (1) à traiter défilant à la vitesse V entre un dérouleur (6) et un enrouleur (7) sous un laser de traitement (2) comprenant un moyen de déplacement (21) et/ou de focalisation du faisceau (20) selon les directions X et/ou Y, et/ou Z, et d'autre part un moyen de régulation (22), typiquement un ordinateur ayant en mémoire la courbe d'absorption A = φ (v), et les courbes T = f(V,v) conduisant aux courbes v = F (V) pour T=ToFIG. 3 is related to FIG. 2 and represents a portion of the curve (1012), called "isothermal", giving the relative speed of travel of the material with respect to the laser beam as a function of the frequency v so that , taking into account the absorption curve (1010) of FIG. 2, the energy received per unit of time, and therefore the temperature of the absorbent material remains constant, thus, desired or accidental variations in speed on the production line can be compensated for by automatic frequency variations of the laser FIG. 4 schematically represents a regulation of said process and represents on the one hand a strip material (1) to be treated moving at speed V between an unwinder (6) and a rewinder (7) under a treatment laser (2) comprising a means of displacement (21) and / or of focusing of the beam (20) in the directions X and / or Y, and / or Z, and on the other hand a means of regulation (22), typically a computer having in memory the absorption curve A = φ (v), and the curves T = f (V, v) leading to the curves v = F (V) for T = To
Ledit moyen de régulation comprend des liaisons (220,221) avec le laser et avec l'enrouleur (7) pour assurer typiquement la régulation entre la vitesse instantanée Vi de la bande (1) et la fréquence instantanée vi du faisceau laser (20).Said regulating means comprises links (220, 221) with the laser and with the reel (7) to typically ensure regulation between the instantaneous speed Vi of the strip (1) and the instantaneous frequency vi of the laser beam (20).
La figure 5 est une vue en perspective schématique illustrant la formation d'un tube cylindrique (3) en repliant, à l'aide de moyens, notamment des moyens de traction (8), non représentés, les bords ( 1 1) d'un matériau en bande (1) comprenant des couches externes Ml et M2, comme représenté à la figure 5a, pouvant être soudées en absorbant l'énergie du laser (2) pour former une jonction (30) avec soudure (12), comme représenté aux figures 5b et 5c, la figure 5b correspondant à une jonction par recouvrement et soudure (12) des couches Ml et M2, et la figure 5c à une jonction bord à bord et soudure (12) des couches Ml sur Ml d'un côté et M2 sur M2 de l'autre côtéFigure 5 is a schematic perspective view illustrating the formation of a cylindrical tube (3) by folding, using means, in particular traction means (8), not shown, the edges (1 1) of a strip material (1) comprising external layers M1 and M2, as shown in FIG. 5a, which can be welded by absorbing the energy of the laser (2) to form a junction (30) with solder (12), as shown in FIGS. 5b and 5c, FIG. 5b corresponding to a junction by covering and welding (12) of the layers Ml and M2, and FIG. 5c to an edge-to-edge junction and welding (12) of the layers Ml on Ml on one side and M2 on M2 on the other side
La figure 6 est une vue en perspective schématique illustrant la formation de sachets (5) à partir d'un matériau (1) en bande, en repliant la bande par rapport à la ligne médiane longitudinale (16) à l'aide de moyens non représentés, et en formant, à l'aide du laser (2) dont le faisceau (20) peut être mû et/ou distribué à l'aide dudit moyen de déplacement et/ou de focalisation (21), selon les directions longitudinale X-X', transversale Y- Y' et verticale Z-Z', des soudures transversales (14) régulièrement espacées et perpendiculaires à une ligne de pliage ( 15). Après découpage (non représenté) entre deux soudures transversales (14, 14') selon les lignes (51), les sachets (5) sont obtenus, le côte ouvert (50) étant à la partie supérieure du sachet, prêts à être remplis. La figure 7 est une vue en perspective schématique illustrant la formation de sachets (5) à partir de deux matériaux en bande ( 1), en soudant, à l'aide du laser (2) qui peut être mû et/ou distribué à l'aide desdits moyens de déplacement et/ou de focalisation (21) selon les directions longitudinale X-X' et transversale Y- Y', les deux films pour former, pour chaque sachet, une soudure longitudinale (13) et deux soudures transversales ( 14). Les sacs (5) présentent une ouverture (50) dans le sens longitudinal.FIG. 6 is a schematic perspective view illustrating the formation of sachets (5) from a material (1) in a strip, by folding the strip relative to the longitudinal center line (16) by means not shown, and forming, using the laser (2) whose beam (20) can be moved and / or distributed using said displacement and / or focusing means (21), in the longitudinal directions X -X ', transverse Y- Y' and vertical Z-Z ', transverse welds (14) regularly spaced and perpendicular to a fold line (15). After cutting (not shown) between two transverse welds (14, 14 ') along the lines (51), the bags (5) are obtained, the open rib (50) being at the top of the bag, ready to be filled. Figure 7 is a schematic perspective view illustrating the formation of sachets (5) from two strip materials (1), by welding, using the laser (2) which can be moved and / or distributed to the using said displacement and / or focusing means (21) in the longitudinal XX 'and transverse Y- Y' directions, the two films to form, for each bag, a longitudinal weld (13) and two transverse welds (14) . The bags (5) have an opening (50) in the longitudinal direction.
La figure 8 illustre la cinématique du faisceau laser dans le cas de la figure 7 et dans le cas où lesdites bandes (1) avancent de manière continue à vitesse V constante. Dans ce cas, le faisceau, initialement au point A est déplacé en diagonale jusqu'au point B dans le plan X-Y, de manière à former une soudure transversale (14) qui soit perpendiculaire à la direction d'avancement des bandes. Une fois en B, le faisceau reste immobile, le temps que la soudure longitudinale (13) soit formée et que le point C soit atteint Puis, le faisceau est déplacé en diagonale jusqu'au point C, avec un retour très rapide au point A pour poursuite du cycle de soudure suivant. Le faisceau a donc suivi un parcours (23) prédéterminé.FIG. 8 illustrates the kinematics of the laser beam in the case of FIG. 7 and in the case where said bands (1) advance continuously at constant speed V. In this case, the beam, initially at point A is moved diagonally to point B in the X-Y plane, so as to form a transverse weld (14) which is perpendicular to the direction of advancement of the bands. Once at B, the beam remains stationary, as long as the longitudinal weld (13) is formed and point C is reached Then, the beam is moved diagonally to point C, with a very rapid return to point A to continue the next welding cycle. The beam therefore followed a predetermined path (23).
L'autre option serait de faire avancer la ou les bandes ( 1) pas à pas, de l'immobiliser durant la soudure et de déplacer le faisceau laser alors que la bande est immobiliséeThe other option would be to advance the strip (s) (1) step by step, to immobilize it during the welding and to move the laser beam while the strip is immobilized
La figure 9 illustre une variante de la figure 7, dans laquelle les sacs sont orientés d'une manière différente puisque chaque sac comprend deux soudures longitudinales ( 13) et une seule soudure transversale (14). Les sacs (4) formés présentent des ouvertures (40) dans le sens transversal.Figure 9 illustrates a variant of Figure 7, wherein the bags are oriented in a different way since each bag comprises two longitudinal seams (13) and one transverse weld (14). The bags (4) formed have openings (40) in the transverse direction.
DESCRIPTION DETAILLEE DE L'INVENTIONDETAILED DESCRIPTION OF THE INVENTION
La figure 1 schématise le principe général de l'invention . à partir des courbes d'absorption des divers matériaux Mi à traiter, un laser à fréquence ajustable est choisi pour son domaine de fréquence (102), domaine qui comprend un certain nombre d'intervalles de fréquence ( 106) correspondants à des pics d'absorption ( 101 ) appartenant à chacune des courbes d'absorption Ai de chaque matériau Mi. Ainsi, un même laser peut potentiellement convenir pour un grand nombre de matériaux plastiques, et être ajusté finement pour chacun d'eux à une fréquence de travail vwi.Figure 1 shows schematically the general principle of the invention. from the absorption curves of the various materials Mi to be treated, an adjustable frequency laser is chosen for its frequency domain (102), a domain which includes a certain number of frequency intervals (106) corresponding to peaks of absorption (101) belonging to each of the absorption curves Ai of each material Mi. Thus, the same laser can potentially be suitable for a large number of plastic materials, and be finely adjusted for each of them at a working frequency v wi .
En vue de réaliser le traitement selon l'invention, ledit laser peut être un laser à solide utilisant une diode pompée.In order to carry out the treatment according to the invention, said laser can be a solid-state laser using a pumped diode.
Ce type de laser peut délivrer une longueur d'onde ajustable, typiquement à l'aide d'un oscillateur optique paramétrique.This type of laser can deliver an adjustable wavelength, typically using a parametric optical oscillator.
Ledit oscillateur optique paramétrique peut être au niobate de lithium et présenter une fréquence ajustable entre 1 et 5 μm, c'est à dire entre 10000 et 2000 cm"' , domaine qui correspond notamment à l' infra-rouge et dans lequel la plupart des matières plastiques présentent des pics d'absorption.Said parametric optical oscillator may be made of lithium niobate and have an adjustable frequency between 1 and 5 μm, that is to say between 10,000 and 2,000 cm " ', an area which corresponds in particular to infrared and in which most of the plastics have absorption peaks.
De préférence, on choisit comme domaine de fréquence ( 102) la plage 2400 - 3200 cm"1 qui correspond notamment à un certain mode de vibration des liaisons C-H, de manière à ce que, la plupart des matières plastiques constituant lesdites couches, notamment ladite couche externe, présentant des pics d'absorptions entre 2400 et 3200 cm'1, un même laser, typiquement au niobate de lithium, puisse être utilisé pour la plupart des matières plastiques courantes.Preferably, the range 2400 - 3200 cm "1 is chosen as the frequency range (102) which corresponds in particular to a certain mode of vibration of the CH bonds, so that most of the plastics constituting said layers, in particular said outer layer, having absorption peaks between 2400 and 3200 cm -1 , the same laser, typically with lithium niobate, can be used for most common plastics.
Il est avantageux de choisir un laser dont la fréquence est ajustable avec un pas inférieur à 0, 1 μm, et typiquement avec un pas de 10 nm.It is advantageous to choose a laser whose frequency is adjustable with a pitch of less than 0.1 μm, and typically with a pitch of 10 nm.
Selon l'invention, par ajustement de ladite fréquence, on choisit une plage de fréquence initiale, dite de travail ( 105), allant de v, à v2 comme illustré sur la figure 2, et correspondant à une zone de forte variation, typiquement un flanc, d'une portion ( 1010) d'un pic d'absorption (101) de ladite courbe d'absorption Ai, et on fait varier pas à pas. et de préférence avec un pas ( 104) inférieur à 0,01 μm, dans un sens ou dans l'autre de ladite zone, la fréquence dudit laser, de manière à pouvoir ajuster d'une manière sensiblement proportionnelle la quantité d'énergie absorbée, et ainsi la température de ladite couche à traiter. La figure 2, qui illustre ce concept, montre bien qu'à la portion de courbe d'absorption ( 1010) correspond une portion de courbe de température ( 101 1 ) et qu'ainsi, à un réglage fin de la fréquence v correspond un réglage fin de la température du matériau absorbant l'énergie et donc une maîtrise opératoire dudit traitement.According to the invention, by adjusting said frequency, an initial frequency range, called the working range (105), is chosen, going from v, to v 2 as illustrated in FIG. 2, and corresponding to an area of strong variation, typically a side, of a portion (1010) of an absorption peak (101) of said absorption curve Ai, and it is varied step by step. and preferably with a pitch (104) less than 0.01 μm, in one direction or the other of said zone, the frequency of said laser, so as to be able to adjust in a substantially proportional manner the quantity of energy absorbed , and thus the temperature of said layer to be treated. FIG. 2, which illustrates this concept, clearly shows that the portion of the absorption curve (1010) corresponds to a portion of the temperature curve (101 1) and that thus, a fine adjustment of the frequency v corresponds a fine adjustment of the temperature of the energy absorbing material and therefore an operational control of said treatment.
Selon une première modalité pratique dudit traitement, ledit matériau peut être un 5 matériau sous forme de bande de grande longueur que l'on fait défiler à une vitesse déterminée, le faisceau laser étant fixe ou mobile, de manière à réaliser ledit traitement dudit matériau sur une faible largeur, inférieure à 5 mm et typiquement égale à 2 mm (voire bord à bord), et on asservit la variation pas à pas de la fréquence dudit laser à la variation de vitesse relative Vr dudit matériau par rapport au faisceau laser, de manière àAccording to a first practical modality of said treatment, said material can be a material in the form of a very long strip which is scrolled at a determined speed, the laser beam being fixed or mobile, so as to carry out said treatment of said material on a small width, less than 5 mm and typically equal to 2 mm (or even edge to edge), and the step-by-step variation of the frequency of said laser is controlled by the relative speed variation Vr of said material with respect to the laser beam, way to
10 ce que la quantité d'énergie absorbée par lesdites couches externes, et donc la température desdites couches du matériau à traiter, soit sensiblement constante quelle que soit ladite vitesse de défilement de ladite bande.10 that the amount of energy absorbed by said outer layers, and therefore the temperature of said layers of the material to be treated, is substantially constant regardless of said running speed of said strip.
Ce concept est illustré à la figure 3 qui, compte tenu notamment des courbes ( 1010) et (101 1) de la figure 2, donne la relation entre la vitesse relative Vr entre faisceau etThis concept is illustrated in FIG. 3 which, taking into account in particular the curves (1010) and (101 1) of FIG. 2, gives the relationship between the relative speed Vr between beam and
15 matériau à traiter pour maintenir un apport constant d'énergie par unité de temps, et donc une même température des couches absorbantes. La courbe ( 1012) de la figure 3 est donc une isotherme calculée pour une température donnée T≈To. La figure 4 représente de manière schématique une solution possible de la régulation globale permettant de piloter la ligne de traitement pour avoir une température de traitement15 material to be treated to maintain a constant supply of energy per unit of time, and therefore the same temperature of the absorbent layers. The curve (1012) of FIG. 3 is therefore an isotherm calculated for a given temperature T≈To. FIG. 4 schematically represents a possible solution of the global regulation making it possible to control the treatment line to have a treatment temperature
20 constante en dépit de variations de la vitesse relative Vr, qui peuvent être dues à des variations de la vitesse V de la bande à traiter .20 constant despite variations in the relative speed Vr, which may be due to variations in the speed V of the strip to be treated.
Selon une première application illustrée à la figure 5, ladite couche est une couche externe (10) en matière plastique, chaque face de ladite bande (1) comprenant laditeAccording to a first application illustrated in FIG. 5, said layer is an external layer (10) of plastic material, each face of said strip (1) comprising said
-> couche (Ml sur une face - M2 sur l'autre face, comme représenté à la figure 5a), et. de préférence après avoir rapproché les bords parallèles (1 1) de ladite bande, on applique ledit traitement sur au moins un des deux bords ( 1 1) de ladite bande pour souder, de préférence bord à bord, les deux côtés parallèles de ladite bande, de manière à former un tube cylindrique (3) de grande longueur grâce à la jonction longitudinale (30) résultant d'une soudure ( 1 1) typiquement soit par recouvrement comme illustré à la figure 5b, soit bord à bord comme illustré à la figure 5c. Selon une seconde modalité pratique de l'invention, ledit faisceau laser peut être déplacé, au moins sur les portions de ligne droite du parcours (23), à une vitesse relative prédéterminée, ledit matériau étant typiquement fixe lors dudit traitement, de manière à réaliser ledit traitement dudit matériau, et on peut asservir ladite vitesse relative et la variation pas à pas de la fréquence dudit laser de manière à ce que la quantité d'énergie absorbée, et donc la température de ladite couche, soit sensiblement constante quelle que soit ladite vitesse relative de déplacement dudit faisceau laser par rapport audit matériau Dans ce cas, ladite bande avance pas à pas, ledit traitement étant réalisé, au moins en partie, lors de la phase d'arrêt de la bande. Dans certains cas, cette modalité peut être intéressante, car, sans trop pénaliser la vitesse de traitement, elle peut éviter d'avoir recours à des moyens cinématiques coûteux pour assurer le déplacement relatif du faisceau laser selon un parcours souhaité. C'est un grand avantage de pouvoir asservir la fréquence à la vitesse relative du faisceau, car, dès que le parcours (23) du faisceau n'est pas linéaire et présente des changements de direction, il y a localement des phases de ralentissement et d'accélération du déplacement du faisceau laser (20) qui ne peuvent que conduire à des variations locales de température.-> layer (Ml on one side - M2 on the other side, as shown in FIG. 5a), and. preferably after bringing the parallel edges (1 1) of said strip together, said treatment is applied to at least one of the two edges (1 1) of said strip in order to weld, preferably edge to edge, the two parallel sides of said strip , so as to form a cylindrical tube (3) of great length thanks to the longitudinal junction (30) resulting from a weld (1 1) typically either by overlapping as illustrated in FIG. 5b, or edge to edge as illustrated in Figure 5c. According to a second practical modality of the invention, said laser beam can be moved, at least over the straight line portions of the path (23), at a predetermined relative speed, said material being typically fixed during said treatment, so as to produce said treatment of said material, and it is possible to control said relative speed and the step-by-step variation of the frequency of said laser so that the quantity of energy absorbed, and therefore the temperature of said layer, is substantially constant whatever said relative speed of movement of said laser beam relative to said material In this case, said strip advances step by step, said treatment being carried out, at least in part, during the stop phase of the strip. In certain cases, this method can be advantageous because, without penalizing the processing speed too much, it can avoid having to resort to expensive kinematic means to ensure the relative displacement of the laser beam according to a desired path. It is a great advantage to be able to slave the frequency to the relative speed of the beam, because, as soon as the path (23) of the beam is not linear and presents changes of direction, there are locally phases of deceleration and acceleration of the movement of the laser beam (20) which can not only lead to local temperature variations.
Selon une autre application du traitement selon l'invention illustrée à la figure 6, ladite couche peut être une couche externe en matière plastique sur une face de ladite bande ( 1), ladite bande peut être pliée dans le sens longitudinal de manière à mettre en regard les deux demi-portions de bandes longitudinales, et ledit traitement peut être appliqué transversalement sur la largeur de ladite demi-portion, de manière à former des soudures transversales (14, 14'), régulièrement espacées dans le sens longitudinal, sur une longueur égale à la demi-largeur de ladite bande ( 1). conduisant, après découpe appropriée, à la formation de sachets (5) ouverts sur un côté (50). Sur les figures, et notamment sur la figure 6, la position du laser (2) n'est indiquée que de manière schématique et symbolique. En pratique, il peut être avantageux que le faisceau laser arrive sous une incidence différente de celle illustrée sur les figures et utilise des dispositifs complémentaires connus en eux-mêmes pour permettre une localisation précise de l'apport d'énergie par ledit faisceau sur ladite couche à traiter (10). Ne figurent pas sur la figure 6 les moyens, connus par ailleurs, qui permettent de replier la bande (1) et d'appliquer chaque moitié de bande pour former lesdites soudures transversales. Selon une autre variante illustrée aux figures 7 et 9, ladite couche peut être une couche externe en matière plastique, dans lequel ledit traitement est appliqué en " U " et une seconde bande, identique ou non à ladite bande, est appliquée sur ladite bande, de manière à former des soudures en " U " entre ladite bande et ladite seconde bande, conduisant, après découpe appropriée, à la formation de sachets (4,5) ouverts sur un côté.According to another application of the treatment according to the invention illustrated in FIG. 6, said layer can be an external plastic layer on one face of said strip (1), said strip can be folded in the longitudinal direction so as to bring into with regard to the two half-portions of longitudinal strips, and said treatment can be applied transversely over the width of said half-portion, so as to form transverse welds (14, 14 ′), regularly spaced in the longitudinal direction, over a length equal to the half-width of said strip (1). leading, after appropriate cutting, to the formation of sachets (5) open on one side (50). In the figures, and in particular in FIG. 6, the position of the laser (2) is only indicated schematically and symbolically. In practice, it may be advantageous for the laser beam to arrive at a different incidence from that illustrated in the figures and use complementary devices known in themselves to allow a precise location of the energy supply by said beam on said layer to be treated (10). Do not appear in Figure 6 the means, known elsewhere, which allow to fold the strip (1) and apply each half of the strip to form said transverse welds. According to another variant illustrated in FIGS. 7 and 9, said layer may be an external plastic layer, in which said treatment is applied in a "U" shape and a second strip, identical or not to said strip, is applied to said strip, so as to form "U" welds between said strip and said second strip, leading, after appropriate cutting, to the formation of sachets (4,5) open on one side.
La soudure est dite en " U " pour désigner la forme générique d'un sachet (4,5), les sachets étant habituellement de forme carré ou rectangulaire, mais il va de soi qu'il n'y a pas de limitation du traitement selon l'invention à une forme particulière de sachet. Les figures 7 et 9 se distinguent par l'orientation des sachets par rapport au sens de défilement des bandes (l), l'ouverture (40) étant transversale à la figure 9, l'ouverture (50) étant longitudinale à la figure 7.The welding is so-called "U" to denote the generic form of a bag (4,5), the bags usually being square or rectangular, but it goes without saying that n 'there is no limitation of the treatment according to the invention in a particular form of sachet. Figures 7 and 9 are distinguished by the orientation of the bags relative to the direction of travel of the strips (l), the opening (40) being transverse to Figure 9, the opening (50) being longitudinal in Figure 7 .
Il est bien sûr possible d'envisager d'obtenir non pas un mais plusieurs sacs sur une même largeur de bande, et éventuellement de mettre en oeuvre pour cela plusieurs faisceaux laser simultanément.It is of course possible to envisage obtaining not one but several bags on the same bandwidth, and possibly implementing for this several laser beams simultaneously.
Le traitement selon l'invention ne se limite pas au scellage de deux couches de matière plastique. Il vise aussi à découper, inciser, graver, marquer, de manière continue ou discontinue, sur tout ou partie de son épaisseur, ledit matériau, toutes opérations pour lesquelles il est souhaitable de maîtriser l'apport d'énergie et donc pour lesquelles les moyens de la présente invention peuvent s'appliquer avantageusement.The treatment according to the invention is not limited to the sealing of two layers of plastic material. It also aims to cut, incise, engrave, mark, continuously or discontinuously, over all or part of its thickness, said material, all operations for which it is desirable to control the supply of energy and therefore for which the means of the present invention can be applied advantageously.
D'une manière générale, il vise à modifier la surface d'un matériau pour former une trace discrète selon un parcours donné. Mais il peut aussi, par balayage du faisceau sur toute une surface, modifier sensiblement la totalité de la surface en ce qui concerne sa texture. sa rugosité ou son énergie de surface. Pour mettre en oeuvre le traitement selon l'invention, on peut utiliser une fibre optique véhiculant le faisceau laser, ou tout dispositif de déflection et/ou séparation du faisceau laser, pour effectuer ledit apport d'énergie à l'endroit souhaité de ladite coucheIn general, it aims to modify the surface of a material to form a discrete trace along a given path. But it can also, by scanning the beam over an entire surface, substantially modify the entire surface as regards its texture. its roughness or its surface energy. To implement the treatment according to the invention, it is possible to use an optical fiber carrying the laser beam, or any deflection and / or separation device of the laser beam, to effect said supply of energy at the desired location of said layer.
EXEMPLES DE REALISATIONEXAMPLES OF REALIZATION
Les figures constituent les exemples de réalisationThe figures constitute the exemplary embodiments
Selon un premier exemple, illustré à la figure 5, on a fabriqué un tube cylindrique de grande longueur (3) a partir d'une bande (1) de matériau multicouches ayant comme structure PEι/Adh/EVOH/Adh/PE2, ou PEi désigne une couche de polyethylene de 150 μm et PE2 désigne une couche de PE de 100 μm, où Adh désigne une couche d'adhésif de 10 μm et EVOH une couche barrière, en EVOH, de 15μm Compte tenu du diagramme d'absorption du PE, couche ( 10) absorbant l'énergie du laser, on a choisi un laser de type solide a diode pompée avec oscillateur paramétrique optique au niobate de lithium, et un domaine de fréquence (102) avec vα égal a 2,8 μm et vb égal a 4 μm On a choisi une fréquence de travail vw égale à 3,3 μm, fréquence qui appartient au pic d'absorption ( 101) du PE utilisé, pic ayant un intervalle de fréquence ( 106) allant de 3,2 μm a 3,7 μm .Afin de réaliser la régulation du procède, comme illustré aux figures 2 et 4, on a choisi un pas (104) de 10 nm et une plage de travail ( 105) allant de Vi = 3, 1 μm à v2 = 3,4 μm On a réalisé les deux types de soudures illustrées aux figures 5b et 5c, avec M1=M2= couche de PE La vitesse V de défilement de la bande ( 1) a ete fixée à une valeur nominale de 40 m/min On a fait varier la vitesse de -/- 20% autour de la valeur nominale et on a examine la qualité de la soudure ( 12) de la jonction (30) soit avec la régulation selon l'invention, soit sans régulation en effectuant des tests de traction et de délaminage permettant d'évaluer la qualité de la soudure (12) On a ainsi pu observer que le tube obtenu selon l'invention présentait une soudure de qualité constante quelle que soit la vitesse V, alors que le tube obtenu selon l'état de la technique, c'est à dire sans régulation selon l'invention, présentait une irrégularité de la qualité de la soudure pouvant conduire a de graves problèmes de qualité des tubes, typiquement des tubes dentifrice obtenus après avoir sectionné ledit tube cylindrique (3) de grande longueur en tronçons et avoir surmoulé une tête.According to a first example, illustrated in FIG. 5, a very long cylindrical tube (3) was made from a strip (1) of multilayer material having as structure PEι / Adh / EVOH / Adh / PE 2 , or PEi denotes a layer of polyethylene of 150 μm and PE 2 denotes a layer of PE of 100 μm, where Adh denotes a layer of adhesive of 10 μm and EVOH a barrier layer, in EVOH, of 15 μm Taking into account the absorption diagram PE, layer (10) absorbing the laser energy, we chose a solid type laser with pumped diode with optical parametric oscillator with lithium niobate, and a frequency domain (102) with v α equal to 2.8 μm and v b equal to 4 μm We have chosen a working frequency v w equal to 3.3 μm, a frequency which belongs to the absorption peak (101) of the PE used, peak having a frequency interval (106) ranging from 3.2 μm to 3.7 μm. In order to regulate the process, as illustrated in FIGS. 2 and 4, a step has been chosen (104) of 10 nm and a working range (105) ranging from Vi = 3, 1 μm to v 2 = 3.4 μm The two types of welds illustrated in FIGS. 5b and 5c were produced, with M1 = M2 = layer of PE The speed of travel of the strip (1) was fixed at a nominal value of 40 m / min. The speed was varied by - / - 20% around the nominal value and the quality of the weld was examined ( 12) of the junction (30) either with the regulation according to the invention, or without regulation by carrying out tension and delamination tests making it possible to assess the quality of the weld (12) It has thus been observed that the tube obtained according to the invention exhibited a weld of constant quality whatever the speed V, while the tube obtained according to the state of the art, that is to say without regulation according to the invention, exhibited an irregularity in the quality of the welding that can lead to serious problems with the quality of the tubes, typically toothpaste tubes obtained after having cut said cylindrical tube (3) of great length into sections and having molded a head.
Selon un second exemple illustré à la figure 6, on a fabriqué des sachets à partir d'un film de PE de 60 μm d'épaisseur formant une bande ( 1) de 30 cm de large. Le laser utilisé est le même que celui de l'exemple précédent. Il en est de même des conditions expérimentales, et typiquement de la fréquence de travail vw, la couche (10) absorbant l'énergie étant également du PE. Dans cet exemple, on a fait défiler la bande (1) pas à pas, de manière à avoir une cinématique simplifiée pour le faisceau laser (20).According to a second example illustrated in FIG. 6, bags were made from a PE film 60 μm thick forming a strip (1) 30 cm wide. The laser used is the same as that of the previous example. The same is true for experimental conditions, and typically for the working frequency v w , the energy absorbing layer (10) also being PE. In this example, the strip (1) has been scrolled step by step, so as to have a simplified kinematics for the laser beam (20).
A chaque pas, la bande étant à l'arrêt, le faisceau laser (20) a été focalisé et déplacé selon une trajectoire en forme de " V ", les deux demi-portions du film ( 10) n'étant que partiellement repliées au moment où intervient ledit apport d'énergie par faisceau laser Le mouvement du point focal du faisceau (20), piloté par ledit moyen de déplacement (21), comprend une composante transversale selon la direction Y- Y', et une composante verticale selon la direction Z-Z', l'ensemble constituant la trajectoire en " V " On a choisi une vitesse transversale constante selon la direction Y-Y' et, compte tenu de la trajectoire réelle en " V " introduite dans l'ordinateur (22) de régulation, la composante verticale selon l'axe Z-Z' du mouvement du point focal, ou hauteur du point focal, est calculée et imposée audit point focal grâce à un actionneur correspondant, de même qu'est calculée la vitesse relative Vr du point focal. At each step, the strip being stopped, the laser beam (20) was focused and moved along a "V" shaped trajectory, the two half-portions of the film (10) being only partially folded back. moment when said supply of energy by laser beam occurs. The movement of the focal point of the beam (20), controlled by said displacement means (21), comprises a transverse component in the direction Y-Y ', and a vertical component in the direction Z-Z ', the assembly constituting the trajectory in "V" We chose a constant transverse speed in the direction YY' and, taking into account the real trajectory in "V" introduced into the computer (22) of regulation , the vertical component along the axis ZZ of the movement of the focal point, or height of the focal point, is calculated and imposed on said focal point by means of a corresponding actuator, in the same way as the relative speed Vr of the focal point is calculated.
AVANTAGES DE L'INVENTIONADVANTAGES OF THE INVENTION
L'invention apporte une solution pertinente et flexible au problème difficile de la régulation de l'apport d'énergie par faisceau laser dans tous les traitements de matériaux par laser où la température du matériau joue un rôle critique, ce qui est le cas de la plupart des traitements faisant intervenir un apport d'énergie par faisceau laser En outre, l'invention apporte une solution générale à ce problème, nullement limitée aux exemples selon l'invention, chaque fois qu'une matière organique est en jeu et surtout chaque fois qu'intervient une vitesse relative du point focal par rapport au support ou matériau à traiterThe invention provides a relevant and flexible solution to the difficult problem of regulating the energy supply by laser beam in all laser material processing where the temperature of the material plays a critical role, which is the case of most treatments involving an energy supply by laser beam In addition, the invention provides a general solution to this problem, in no way limited to the examples according to the invention, each time that an organic material is involved and especially each time what happens is a relative speed of the focal point with respect to the support or material to be treated
L'invention permet donc de traiter avec un même laser, typiquement de souder, différents matériaux plastiques, en accordant la fréquence du laser, sans avoir à modifier la matière plastique, typiquement par ajout d'additifs, pour la rendre absorbante a des longueurs d'ondes classiques prédéterminées, comme cela est connu Ainsi, c'est la fréquence du laser selon l'invention qui s'adapte à la fréquence d'absorption du matériau et non l'inverse. The invention therefore makes it possible to treat with the same laser, typically to weld, different plastic materials, by tuning the frequency of the laser, without having to modify the plastic, typically by adding additives, to make it absorbent at lengths d 'predetermined conventional waves, as is known Thus, it is the frequency of the laser according to the invention which adapts to the absorption frequency of the material and not the reverse.
LISTE DES REFERENCESLIST OF REFERENCES
MATERIAU EN BANDE 1STRIP MATERIAL 1
COUCHE ABSORBANT L'ENERGIE 10 DIAGRAMME D'ABSORPTION 100ENERGY ABSORBING LAYER 10 ABSORPTION DIAGRAM 100
PIC D'ABSORPTION 101ABSORPTION PIC 101
PORTION DE PIC 1010PORTION OF PIC 1010
COURBE DE TEMPERATURE 1011TEMPERATURE CURVE 1011
COURBE ISOTHERME 1012 DOMAINE DE FREQUENCE 102ISOTHERMAL CURVE 1012 FREQUENCY DOMAIN 102
FREQUENCE DE TRAVAIL 103WORKING FREQUENCY 103
PAS 104PAS 104
PLAGE DE TRAVAIL 105 INTERVALLE DE FREQUENCE D'UN PIC 106 BORD DE LA BANDE 1 1WORKING RANGE 105 FREQUENCY INTERVAL OF A PIC 106 EDGE OF THE BAND 1 1
SOUDURE LONGITUDINALE DE TUBE 12LONGITUDINAL TUBE WELDING 12
SOUDURE LONGITUDINALE DE SACHET 13LONGITUDINAL WELDING OF BAG 13
SOUDURE TRANSVERSALE DE SACHET 14CROSS BAG SOLDER 14
LIGNE DE PLIAGE 15 LIGNE MEDIANE DE LA BANDE 16FOLDING LINE 15 MEDIAN STRIP LINE 16
LASER 2LASER 2
FAISCEAU LASER 20LASER BEAM 20
MOYEN DE DEPLACEMENT X, Y,Z 21 MOYEN DE REGULATION sur VITESSE 22MEANS OF MOVEMENT X, Y, Z 21 MEANS OF REGULATION on SPEED 22
PARCOURS DU FAISCEAU LASER 23LASER BEAM ROUTE 23
LAISON ENTRE LASER & REGUALTION 220 LIASON ENTRE ENROULEUR & REGULATION 221LAISON BETWEEN LASER & REGUALTION 220 LINK BETWEEN HOSE REEL & REGULATION 221
TUBE CYLINDRIQUE 3CYLINDRICAL TUBE 3
JONCTION 30 SACHET LONGITUDINAL 4JUNCTION 30 LONGITUDINAL BAG 4
COTE OUVERT 40OPEN SIDE 40
SACHET TRANSVERSAL 5TRANSVERSAL BAG 5
COTE OUVERT 50OPEN SIDE 50
LIGNES DE DECOUPAGE 51CUTTING LINES 51
DEROULEUR BOBINE 6 ENROULEUR BOBINE 7COIL REWINDER 6 COIL REEL 7
MOYEN DE TRACTION 8 MEANS OF TRACTION 8

Claims

REVENDICATIONS
1. Traitement au laser (2) d'un matériau, typiquement sous forme de bande ( 1), comprenant au moins une couche (10) en matière plastique M absorbant l'énergie du rayonnement laser, en vue d'effectuer notamment une opération de découpage, d'incision, de marquage d'au moins ladite couche, ou de soudure dudit matériau sur lui- même ou avec un second matériau, par apport d'énergie du faisceau laser (20) localisé sur tout ou partie de ladite couche en vue de porter au moins ladite couche à la température nécessaire pour effectuer ladite opération, caractérisé en ce que, typiquement une fois pour toutes avant ledit apport, et pour tout nouveau matériau à transformer, a) on établit d'abord, si elle n'est pas connue, la courbe d'absorption spectrale .Ai de ladite couche (10) en matériau Mi, afin de déterminer un intervalle de fréquences ( 106) correspondant à un pic d'absorption (101), b) on choisit ledit laser (2) parmi les lasers dont la fréquence, ou longueur d'onde correspondante, du faisceau est ajustable sur un domaine de fréquences ( 102) comprenant au moins ledit intervalle de fréquences (106) relatif audit pic d'absorption ( 101), c) on accorde la fréquence dudit laser sur une fréquence vw ( 103), dite de travail, dudit intervalle de fréquences d'absorption, choisie pour permettre d'atteindre ladite température et d'effectuer ladite opération en un temps prédéterminé dudit traitement1. Laser treatment (2) of a material, typically in the form of a strip (1), comprising at least one layer (10) of plastic M absorbing the energy of the laser radiation, with a view in particular to carrying out an operation cutting, incising, marking at least said layer, or welding said material to itself or to a second material, by supplying energy from the laser beam (20) located on all or part of said layer with a view to bringing at least the said layer to the temperature necessary for carrying out the said operation, characterized in that, typically once and for all before the said addition, and for any new material to be transformed, a) it is established first, if it n is not known, the spectral absorption curve .Ai of said layer (10) of material Mi, in order to determine a frequency interval (106) corresponding to an absorption peak (101), b) said laser is chosen (2) among the lasers whose frequency, or length of ond e corresponding, the beam is adjustable over a frequency domain (102) comprising at least said frequency interval (106) relative to said absorption peak (101), c) the frequency of said laser is tuned to a frequency v w (103 ), said to be working, of said absorption frequency interval, chosen to allow said temperature to be reached and said operation to be carried out in a predetermined time of said treatment
2. Traitement selon la revendication 1 dans lequel ledit laser (2) est un laser à solide utilisant une diode pompée.2. Treatment according to claim 1 wherein said laser (2) is a solid state laser using a pumped diode.
3. Traitement selon la revendication 2 dans lequel ledit laser (2) délivre une longueur d'onde ajustable, typiquement à l'aide d'un oscillateur optique paramétrique.3. Treatment according to claim 2 wherein said laser (2) delivers an adjustable wavelength, typically using a parametric optical oscillator.
4. Traitement selon la revendication 3 dans lequel ledit oscillateur optique paramétrique est au niobate de lithium et présente une fréquence ajustable entre 1 et 5 μm, c'est à dire entre 10000 et 2000 cm'1 . 4. Treatment according to claim 3 in which said parametric optical oscillator is made of lithium niobate and has an adjustable frequency between 1 and 5 μm, that is to say between 10000 and 2000 cm '1 .
5 Traitement selon une quelconque des revendications 1 a 4 dans lequel la fréquence dudit laser (2) est ajustable avec un pas inférieur a 0, 1 μm, et typiquement avec un pas de lO nm5 Treatment according to any one of claims 1 to 4 wherein the frequency of said laser (2) is adjustable with a step less than 0.1 μm, and typically with a step of 10 nm
6 Traitement selon la revendication 5 dans lequel on choisit une plage de fréquence initiale (105), dite de travail, correspondant a une zone de forte variation, typiquement un flanc, de ladite courbe d'absorption A, et on fait varier pas a pas et de préférence avec un pas ( 104) inférieur a 0,01 μm, dans un sens ou dans l'autre de ladite zone la fréquence dudit laser, de manière a pouvoir ajuster d'une manière sensiblement proportionnelle la quantité d'énergie absorbée, et ainsi la température de ladite couche (10) a traiter6 Treatment according to claim 5 in which an initial frequency range (105), called the working range, corresponding to a zone of strong variation, typically a flank, of said absorption curve A is chosen, and it is varied step by step and preferably with a pitch (104) less than 0.01 μm, in one direction or the other of said zone, the frequency of said laser, so as to be able to adjust in a substantially proportional manner the quantity of energy absorbed, and thus the temperature of said layer (10) to be treated
7 Traitement selon la revendication 6 dans lequel ledit matériau est un matériau sous forme de bande (1) de grande longueur que l'on fait défiler a une vitesse déterminée, le faisceau laser (20) étant fixe ou mobile, de manière a réaliser ledit traitement dudit matériau sur une faible largeur, inférieure a 5 mm et typiquement égale a 2 mm, et on asservit la variation pas a pas de la fréquence dudit laser a la variation de vitesse relative dudit matériau, de manière a ce que la quantité d'énergie absorbée par ladite couche externe, et donc la température de ladite couche ( 10) du matériau a traiter soit sensiblement constante quelle que soit ladite vitesse de défilement de ladite bande ( 1)7 Treatment according to claim 6 wherein said material is a material in the form of a strip (1) of great length which is scrolled at a determined speed, the laser beam (20) being fixed or movable, so as to achieve said treatment of said material over a small width, less than 5 mm and typically equal to 2 mm, and the step-by-step variation of the frequency of said laser is controlled by the relative speed variation of said material, so that the quantity of energy absorbed by said outer layer, and therefore the temperature of said layer (10) of the material to be treated is substantially constant regardless of said running speed of said strip (1)
8 Traitement selon la revendication 7 dans lequel ladite couche ( 10) est une couche externe en matière plastique, chaque face de ladite bande comprenant ladite couche, et dans lequel, de préférence après avoir rapproche les bords parallèles ( 1 1) de ladite bande, on applique ledit traitement sur au moins un des deux bords de ladite bande pour souder, de préférence bord a bord, les deux côtes parallèles de ladite bande, de manière a former un tube cylindrique (3) de grande longueur8 Treatment according to claim 7 wherein said layer (10) is an outer plastic layer, each side of said strip comprising said layer, and wherein, preferably after having brought the parallel edges (1 1) of said strip, applying said treatment to at least one of the two edges of said strip to weld, preferably edge to edge, the two parallel ribs of said strip, so as to form a cylindrical tube (3) of great length
9 Traitement selon la revendication 6 dans lequel ledit faisceau laser (20) est déplace a une vitesse relative prédéterminée, ledit matériau étant typiquement fixe lors dudit traitement, de manière à réaliser ledit traitement dudit matériau, et dans lequel on asservit ladite vitesse relative et la variation pas à pas de la fréquence dudit laser (2) de manière à ce que la quantité d'énergie absorbée, et donc la température de ladite couche ( 10), soit sensiblement constante quelle que soit ladite vitesse relative de déplacement dudit faisceau laser par rapport audit matériau.9 Treatment according to claim 6 wherein said laser beam (20) is moved at a predetermined relative speed, said material being typically fixed during said processing, so as to carry out said processing of said material, and in which said relative speed and the step-by-step variation of the frequency of said laser (2) are controlled so that the quantity of energy absorbed, and therefore the temperature of said layer (10) is substantially constant whatever said relative speed of movement of said laser beam relative to said material.
10 Traitement selon une quelconque des revendication 7 ou 9, dans lequel ladite couche (10) est une couche externe en matière plastique sur une face de ladite bande (1), et dans lequel ladite bande est pliée dans le sens longitudinal de manière à mettre en regard les deux demi-portions de bandes longitudinales, et dans lequel ledit traitement est appliqué transversalement sur la largeur de ladite demi-portion, de manière à former des soudures transversales, régulièrement espacées dans le sens longitudinal, sur une longueur égale à la demi-largeur de ladite bande, conduisant, après découpe appropriée, à la formation de sachets (5) ouverts sur un côté.10 Treatment according to any one of claims 7 or 9, wherein said layer (10) is an outer plastic layer on one side of said strip (1), and wherein said strip is folded in the longitudinal direction so as to put opposite the two half-portions of longitudinal strips, and in which said treatment is applied transversely over the width of said half-portion, so as to form transverse welds, regularly spaced longitudinally, over a length equal to half -width of said strip, leading, after appropriate cutting, to the formation of sachets (5) open on one side.
1 1 Traitement selon une quelconque des revendications 7 ou 9, dans lequel ladite couche (10) est une couche externe en matière plastique, dans lequel ledit traitement est appliqué en " U " et dans lequel une seconde bande, identique ou non à ladite bande, est appliquée sur ladite bande, de manière à former des soudures en " U " ( 13, 14) entre ladite bande et ladite seconde bande, conduisant, après découpe appropriée, à la formation de sachets (4,5) ouverts sur un côté.1 1 Treatment according to any one of claims 7 or 9, in which said layer (10) is an outer layer of plastic material, in which said treatment is applied in a "U" shape and in which a second strip, identical or not to said strip , is applied to said strip, so as to form "U" welds (13, 14) between said strip and said second strip, leading, after appropriate cutting, to the formation of sachets (4,5) open on one side .
12. Traitement selon une quelconque des revendications 7 et 1 1 visant à découper, inciser, graver, de manière continue ou discontinue, sur tout ou partie de son épaisseur. ledit matériau.12. Treatment according to any one of claims 7 and 1 1 for cutting, incising, engraving, continuously or discontinuously, over all or part of its thickness. said material.
13. Traitement selon une quelconque des revendications 1 à 12 dans lequel on choisit comme domaine de fréquence ( 102) la plage 2400 - 3200 cm" 1 qui correspond notamment à un certain mode de vibration des liaisons C-H, de manière à ce que, la plupart des matières plastiques constituant ladite couche externe présentant des pics d'absorptions entre 2400 et 3200 cm*1, un même laser, typiquement au niobate de lithium, puisse être utilisé pour l'ensemble des matières plastiques courantes.13. Treatment according to any one of claims 1 to 12 in which the range 2400 - 3200 cm "1 is chosen as the frequency domain (102), which corresponds in particular to a certain mode of vibration of the CH bonds, so that the most of the plastics constituting said outer layer having peaks absorption between 2400 and 3200 cm * 1 , the same laser, typically with lithium niobate, can be used for all common plastics.
14. Traitement selon une quelconque des revendications 1 à 13 dans lequel on utilise une fibre optique, ou tout dispositif de déflection du faisceau laser, pour effectuer ledit apport d'énergie à l'endroit souhaité de ladite couche. 14. Treatment according to any one of claims 1 to 13 in which an optical fiber, or any device for deflecting the laser beam, is used to effect said supply of energy at the desired location of said layer.
PCT/FR1999/002731 1998-11-10 1999-11-08 Laser treatment of materials, in particular cutting and welding WO2000027576A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU10532/00A AU1053200A (en) 1998-11-10 1999-11-08 Laser treatment of materials, in particular cutting and welding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR98/14300 1998-11-10
FR9814300A FR2785564B1 (en) 1998-11-10 1998-11-10 TREATMENT OF LASER MATERIALS, IN PARTICULAR CUTTING OR WELDING

Publications (1)

Publication Number Publication Date
WO2000027576A1 true WO2000027576A1 (en) 2000-05-18

Family

ID=9532717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/002731 WO2000027576A1 (en) 1998-11-10 1999-11-08 Laser treatment of materials, in particular cutting and welding

Country Status (3)

Country Link
AU (1) AU1053200A (en)
FR (1) FR2785564B1 (en)
WO (1) WO2000027576A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8303290B2 (en) 2004-11-22 2012-11-06 Sidel Participations Method and installation for the production of containers
US8546277B2 (en) 2007-03-02 2013-10-01 Sidel Participations Heating plastics via infrared radiation
US8662876B2 (en) 2007-06-11 2014-03-04 Sidel Participations Installation for heating the bodies of preforms for blow-moulding containers
CN104159698A (en) * 2012-03-06 2014-11-19 东丽工程株式会社 Marking device and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007049362A1 (en) * 2007-10-09 2009-04-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for welding at least two layers of a polymeric material with laser radiation
US11541609B2 (en) * 2018-07-03 2023-01-03 Dukane Ias, Llc System and method for simultaneous welding of plastic bags using a carrier film
US11548235B2 (en) 2018-07-03 2023-01-10 Dukane Ias, Llc Laser welding system and method using machined clamping tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0237192A2 (en) * 1986-02-20 1987-09-16 Elopak A/S A method and a device for welding together plastic or plastic covered surfaces
WO1989010231A1 (en) * 1988-04-22 1989-11-02 Fraunhofer-Gesellschaft Zur Förderung Der Angewand Process for joining workpieces made of fusible material using a laser beam
US5540677A (en) * 1990-06-15 1996-07-30 Rare Earth Medical, Inc. Endoscopic systems for photoreactive suturing of biological materials
US5569239A (en) * 1990-06-15 1996-10-29 Rare Earth Medical, Inc. Photoreactive suturing of biological materials
DE19534590A1 (en) * 1995-09-11 1997-03-13 Laser & Med Tech Gmbh Scanning ablation of ceramic materials, plastics and biological hydroxyapatite materials, especially hard tooth substance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0237192A2 (en) * 1986-02-20 1987-09-16 Elopak A/S A method and a device for welding together plastic or plastic covered surfaces
WO1989010231A1 (en) * 1988-04-22 1989-11-02 Fraunhofer-Gesellschaft Zur Förderung Der Angewand Process for joining workpieces made of fusible material using a laser beam
US5540677A (en) * 1990-06-15 1996-07-30 Rare Earth Medical, Inc. Endoscopic systems for photoreactive suturing of biological materials
US5569239A (en) * 1990-06-15 1996-10-29 Rare Earth Medical, Inc. Photoreactive suturing of biological materials
DE19534590A1 (en) * 1995-09-11 1997-03-13 Laser & Med Tech Gmbh Scanning ablation of ceramic materials, plastics and biological hydroxyapatite materials, especially hard tooth substance

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JONES I A ET AL: "High speed welding of plastics using lasers", PROCEEDINGS OF THE 52ND ANNUAL TECHNICAL CONFERENCE ANTEC 94. PART 1 (OF 3);SAN FRANCISCO, CA, USA MAY 1-5 1994, no. part 1, 1994, Annu Tech Conf ANTEC Conf Proc;Annual Technical Conference - ANTEC, Conference Proceedings 1994 Publ by Soc of Plastics Engineers, Brookfield, CT, USA, pages 1360 - 1362, XP002108019 *
POTENTE H ET AL: "Laser butt welding of semi-crystalline thermoplastics", PROCEEDINGS OF THE 1996 54TH ANNUAL TECHNICAL CONFERENCE. PART 1 (OF 3);INDIANAPOLIS, IN, USA MAY 5-10 1996, vol. 1, 1996, Annu Tech Conf ANTEC Conf Proc;Annual Technical Conference - ANTEC, Conference Proceedings; Processing 1996 Soc of Plastics Engineers, Brookfield, CT, USA, pages 1255 - 1259, XP002108020 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8303290B2 (en) 2004-11-22 2012-11-06 Sidel Participations Method and installation for the production of containers
US8354051B2 (en) 2004-11-22 2013-01-15 Sidel Participations Method and installation for the production of containers
US8546277B2 (en) 2007-03-02 2013-10-01 Sidel Participations Heating plastics via infrared radiation
US8662876B2 (en) 2007-06-11 2014-03-04 Sidel Participations Installation for heating the bodies of preforms for blow-moulding containers
CN104159698A (en) * 2012-03-06 2014-11-19 东丽工程株式会社 Marking device and method

Also Published As

Publication number Publication date
AU1053200A (en) 2000-05-29
FR2785564A1 (en) 2000-05-12
FR2785564B1 (en) 2000-12-08

Similar Documents

Publication Publication Date Title
EP1375113A1 (en) Method for the manufacture of a precut packaging
EP1038774B1 (en) Bag with transverse closure profiles and closure means for its manufacture
FR2757835A1 (en) PROCESS FOR MANUFACTURING PACKAGING AND PACKAGING WITH LASER PREDECHOUPE
EP1272332B1 (en) Ultrasonic sealing methods and related packages
FR2557018A1 (en) METHOD FOR MANUFACTURING ELASTIC LAYERS, APPARATUS FOR CARRYING OUT SAID METHOD, AND PRODUCT OBTAINED
EP2926977B1 (en) Ultrasonic welding device
WO2000027576A1 (en) Laser treatment of materials, in particular cutting and welding
FR2547756A1 (en) METHOD AND INSTALLATION FOR LASER BEAM STITCH WELDING
FR2929549A1 (en) METHOD FOR MANUFACTURING ALVEOLAR STRUCTURE, CORRESPONDING ALVEOLAR STRUCTURE AND INSTALLATION
FR2702414A1 (en) Process for the continuous manufacture of tubular bodies of boxes, especially cardboard boxes
EP2459360B1 (en) Method and device for sealing tubular plastic packaging, and resulting packaging
FR2930740A1 (en) Heat-sealable plastic material i.e. polyethylene, layers welding method for e.g. forming reservoir for bubbles packaging film, involves heating face of support side layer at temperature lower than welding temperature of layers
EP0036381A2 (en) Method of forming profiles, especially tubular profiles
US20050123724A1 (en) Apparatus for producing scored lines in a film
FR2805198A1 (en) PROCESS FOR PRODUCING LASER WELDING TUBES
EP3087020A1 (en) Method for joining together the ends of two hot-melt items in the form of strips or plies, and end-joining module for implementing said method
JP6776539B2 (en) Heat seal method
FR2619339A1 (en) Process and device for grooving plastic films using ultrasound
FR2829961A1 (en) Ultrasound welding procedure and apparatus for two or more films uses uniform level of ultrasound radiation in lengthwise and transverse directions
CA2742646A1 (en) Method and device for making a bag
FR2829416A1 (en) Method, for fabricating light metal honeycomb structure involves laser welding of corrugated or crenellated segments formed for a light metal strip
FR2810911A1 (en) Honeycomb structural panel for vehicle has corrugated aluminum sheets laser welded together along lines of contact
BE560830A (en)
BE1005424A6 (en) Building element with a cell structure and method for manufacturing construction element.
FR2710571A1 (en) Process for welding at least two metal workpieces and tube obtained by this welding process

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: AU

Ref document number: 2000 10532

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase