WO2000031153A1 - Verfahren zur nachvernetzung von hydrogelen mit 2-oxotetrahydro-1,3-oxazinen - Google Patents

Verfahren zur nachvernetzung von hydrogelen mit 2-oxotetrahydro-1,3-oxazinen Download PDF

Info

Publication number
WO2000031153A1
WO2000031153A1 PCT/EP1999/009003 EP9909003W WO0031153A1 WO 2000031153 A1 WO2000031153 A1 WO 2000031153A1 EP 9909003 W EP9909003 W EP 9909003W WO 0031153 A1 WO0031153 A1 WO 0031153A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polymer
water
weight
polymers
Prior art date
Application number
PCT/EP1999/009003
Other languages
English (en)
French (fr)
Inventor
Ulrich Riegel
Matthias Weismantel
Volker Frenz
Thomas Daniel
Fritz Engelhardt
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to CA002347897A priority Critical patent/CA2347897A1/en
Priority to US09/831,382 priority patent/US6657015B1/en
Priority to EP99963322A priority patent/EP1141039B1/de
Priority to JP2000583977A priority patent/JP2002530491A/ja
Priority to AT99963322T priority patent/ATE259834T1/de
Priority to DE59908601T priority patent/DE59908601D1/de
Publication of WO2000031153A1 publication Critical patent/WO2000031153A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to a method for gel or surface post-crosslinking of water-absorbing hydrogels with 2 -oxotetrahydro-1, 3-oxazines, the polymers obtainable in this way and their use in hygiene articles, packaging materials and nonwovens.
  • Hydrophilic, highly swellable hydrogels are in particular polymers of (co) polymerized hydrophilic monomers, graft (co) polymers of one or more hydrophilic monomers on a suitable graft base, crosslinked cellulose or starch ethers, crosslinked carboxymethyl cellulose, partially crosslinked polyalkylene oxide or in aqueous liquids swellable natural products, such as guar derivatives.
  • Such hydrogels are used as products which absorb aqueous solutions for the production of diapers, tampons, sanitary napkins and other hygiene articles, but also as water-retaining agents in agricultural horticulture.
  • Crosslinkers suitable for this purpose are compounds which contain at least two groups which can form covalent bonds with the carobxyl groups of the hydrophilic polymer.
  • Suitable compounds are, for example, di- or polyglycidyl compounds, such as phosphonic acid diglycidyl ester, alkoxysilyl compounds, polyaziridines, polyamines or polyamidoamines, it being also possible to use the compounds mentioned in mixtures with one another (see, for example, EP-A-0 083 022, EP-A -0 543 303 and EP-A-0 530 438).
  • Polyamidoamines suitable as crosslinkers are described in particular in EP-A-0 349 935.
  • crosslinkers A major disadvantage of these crosslinkers is their high reactivity, since this requires special protective measures in production to avoid undesirable side effects.
  • the above-mentioned crosslinkers also have irritating properties, which appears problematic when used in hygiene articles.
  • Polyfunctional alcohols are also known as crosslinkers.
  • EP-A-0 372 981, US-A-4 666 983 and US-A-5 385 983 teach the use of hydrophilic polyalcohols or the use of polyhydroxy surfactants.
  • the reaction is then carried out at high temperatures of 120-250 ° C.
  • the process has the disadvantage that the esterification reaction leading to crosslinking proceeds slowly even at these temperatures.
  • German patent application DE-A-19 807 502 describes a process for post-crosslinking with 2-oxazolidinones.
  • Suitable catalysts are the known inorganic mineral acids, their acid salts with alkali metals or ammonium, and their corresponding anhydrides.
  • Suitable organic catalysts are the known carboxylic acids, sulfonic acids and amino acids.
  • the invention relates to a method for gel and / or surface postcrosslinking of water-absorbing polymers, by treating the polymer with a surface postcrosslinking solution and postcrosslinking and drying during or after the treatment by increasing the temperature, characterized in that the crosslinker is a compound of the general formula I
  • R 1 is hydrogen, C 1 -C 4 alkyl, -C-C 4 hydroxyalkyl, trialkylsilyl or acetyl and R 2 , R 2 ', R 3 , R 3 ', R 4 , R 4 'independently of one another Hydrogen, C 1 -C 12 alkyl, C 1 -C 12 alkenyl or C 6 "-C aryl mean, dissolved in an inert solvent.
  • the surface postcrosslinking solution is preferably applied by spraying onto the polymer in suitable spray mixers. Following the spraying, the polymer powder is thermally dried, and the crosslinking reaction can take place both before and during the drying. It is preferred to spray on a solution of the crosslinking agent in reaction mixers or mixing and drying systems such as Lödige mixers, BEPEX ® mixers, NAUTA ® mixers, SHUGGI ® mixers or PROCESSALL ® . Fluidized bed dryers can also be used.
  • Drying can take place in the mixer itself, by heating the jacket or by blowing in warm air.
  • a downstream dryer such as a tray dryer, a rotary kiln or a heated screw is also suitable. But it can also e.g. an azeotropic distillation can be used as the drying process.
  • the preferred residence time at this temperature in the reaction mixer or dryer is less than 60 min. , particularly preferably under 30 min.
  • an acid catalyst is added to the surface postcrosslinking solution to accelerate the reaction.
  • All inorganic acids, their corresponding anhydrides or organic acids can be used as catalysts in the process according to the invention. Examples are boric acid, sulfuric acid, hydroiodic acid,
  • Phosphoric acid tartaric acid, acetic acid and toluenesulfonic acid.
  • their polymeric forms, anhydrides and the acidic salts of the polyvalent acids are also suitable. Examples of these are boron oxide, sulfur trioxide, diphosphorus pentaoxide and ammonium dihydrogen phosphate.
  • the crosslinker is dissolved in inert solvents.
  • the crosslinker is used in an amount of 0.01 to 5, preferably 0.01-1.0, preferably 0.05 to 0.5% by weight, based on the polymer used.
  • Water and mixtures of water with mono- or polyhydric alcohols are preferred as the inert solvent. However, all immiscible or ganic solvents are used that are not reactive even under the process conditions. If an alcohol / water mixture is used, the alcohol content of this solution is, for example, 10-90% by weight, preferably 30-70% by weight, in particular 40-60% by weight. All alcohols which are miscible with water can be used, as well as mixtures of several alcohols (e.g. methanol + glycerol + water).
  • the alcohol mixtures can contain the alcohols in any mixing ratio.
  • the use of the following alcohols in aqueous solution is particularly preferred: methanol, ethanol, isopropanol, ethylene glycol and particularly preferably 1,2-propanediol and 1,3-propanediol.
  • the surface postcrosslinking solution is used in a ratio of 1-20% by weight, based on the mass of the polymer.
  • the invention further relates to crosslinked water-absorbing polymers which can be obtained by the process according to the invention.
  • the hydrophilic, highly swellable hydrogels to be used in the process according to the invention are in particular polymers of (co) polymerized hydrophilic monomers, graft (co) polymers of one or more hydrophilic monomers on a suitable graft base, crosslinked cellulose or starch ethers or swellable in aqueous liquids Natural products, such as guar derivatives.
  • the polymer to be crosslinked is preferably a polymer which contains structural units which are derived from acrylic acid or its esters, or which have been obtained by graft copolymerization of acrylic acid or acrylic acid esters onto a water-soluble polymer matrix.
  • hydrogels are known to the person skilled in the art and are described, for example, in US-A-4,286,082, DE-C-27 06 135, US-A-4 340 706, DE-C-37 13 601, DE-C-28 40 010, DE-A-43 44 548, DE-A-40 20 780, DE-A-40 15 085, DE-A-39 17 846, DE-A-38 07 289, DE-A-35 33 337, DE- A-35 03 458, DE-A-42 44 548, DE-A-42 19 607, DE-A-40 21 847, DE-A-38 31 261, DE-A-35 11 086, DE-A- 31 18 172, DE-A-30 28 043, DE-A-44 18 881, EP-A-0 801 483, EP-A-0 455 985, EP-A-0 467 073, EP-A-0 312 952, EP-A-0 205 874, EP-A-0 499 774, DE-A 26 12 846, DE
  • Hydrophilic monomers suitable for the preparation of these hydrophilic, highly swellable hydrogels are, for example, polymerizable acids, such as acrylic acid, methacrylic acid, vinyl sulfonic acid, vinyl phosphonic acid, maleic acid including its anhydride, fumaric acid, itaconic acid, 2-acrylamido-2-methylpropane sulfonic acid, 2-acrylamido-2 -methylpropanephosphonic acid and its amides, hydroxyalkyl esters and esters and amides containing amino groups or ammonium groups and the alkali metal and / or ammonium salts of the monomers containing acid groups.
  • Water-soluble N-vinylamides such as N-vinylformamide or diallyldimethylammonium chloride, are also suitable.
  • Preferred hydrophilic monomers are compounds of the general formula II
  • R 5 is hydrogen, methyl or ethyl
  • R 6 -COOR 8 hydroxysulfonyl or phosphonyl, one with a
  • R 7 is hydrogen, methyl, ethyl or carboxyl
  • R 8 is hydrogen, amino (C 1 -C 4 ) alkyl, hydroxy (C 1 -C 4 ) alkyl, alkali metal or ammonium ion and
  • R 9 represents a sulfonyl group, a phosphonyl group or a carboxyl group or their alkali metal or ammonium salts.
  • C 1 -C 4 -alkanols examples are methanol, ethanol, n-propanol,
  • hydrophilic monomers are acrylic acid and methacrylic acid, and their alkali metal or ammonium salts, for example sodium acrylate, potassium acrylate or ammonium acrylate.
  • Suitable graft bases for hydrophilic hydrogels which can be obtained by graft copolymerization of olefinically unsaturated acids or their alkali metal or ammonium salts, can be of natural or synthetic origin. Examples are starch, cellulose or cellulose derivatives and other polysaccharides and oligosaccharides, polyalkylene oxides, in particular polyethylene oxides and polyethylene oxides and polypropylene oxides, and hydrophilic polyesters.
  • Suitable polyalkylene oxides have, for example, the formula IV
  • R 10 and R 11 independently of one another are hydrogen, alkyl, alkenyl or aryl,
  • R 11 is hydrogen or methyl
  • n is an integer from 1 to 10,000.
  • R 10 and R 11 are preferably hydrogen, (C 1 -C 4 ) alkyl, (C 2 -C 6 ) alkenyl or phenyl.
  • Preferred hydrogels are, in particular, polyacrylates, polymethacrylates and the graft polymers described in US Pat. No. 4,931,497, US Pat. No. 5,011,892 and US Pat. No. 5,041,496.
  • the hydrophilic, highly swellable hydrogels are preferably crosslinked, ie they contain compounds with at least two double bonds which are polymerized into the polymer network.
  • Suitable crosslinkers are, in particular, N, N '-methylene bis-acrylamide and N, N' -methylene bismethacrylamide, esters of unsaturated mono- or polycarboxylic acids of polyols, such as diacrylate or triacrylate, for example butanediol or ethylene diacrylate or methacrylate, and trimethylolpropane triacrylate and allyl compounds such as Allyl (meth) acrylate, triallyl cyanurate, maleic acid diallyl ester, polyallyl ester, tetraallyloxyethane, triallylamine, tetraallylethylene diamine, allyl ester of phosphoric acid and vinylphosphonic acid derivatives, as described, for example, in EP-A-0 3453 427.
  • hydrogels which use polyallyl ethers as crosslinking agents and by acidic homopolymerization of Acrylic acid can be produced.
  • Suitable crosslinkers are pentaerythritol tri- and tetraallyl ether, polyethylene glycol diallyl ether, monoethylene glycol diallyl ether, glycerol di and triallyl ether, polyallyl ether based on sorbitol, and ethoxylated variants thereof.
  • the water-absorbing polymer is preferably a polymeric acrylic acid or a polyacrylate.
  • This water-absorbing polymer can be prepared by a process known from the literature. Polymers which contain crosslinking comonomers in amounts of 0.001-10 mol%, preferably 0.01-1 mol% are preferred, but very particularly preferred are polymers which have been obtained by radical polymerization and in which a polyfunctional ethylenically unsaturated radical crosslinker is used that also carries at least one free hydroxyl group (such as pentaerythritol triallyl ether or trimethylolpropane diallyl ether).
  • the hydrophilic, highly swellable hydrogels can be produced by polymerization processes known per se. Polymerization in aqueous solution by the so-called gel polymerization method is preferred. For example, 15 to 50 wt. -% aqueous solutions of one or more hydrophilic monomers and, if appropriate, a suitable graft base in the presence of a radical initiator, preferably without mechanical mixing using the Trommsdorff-Norish effect (Makromol. Chem. 1, 169 (1947)).
  • the polymerization reaction can be carried out in the temperature range between 0 and 150.degree. C., preferably between 10 and 100.degree. C., both under normal pressure and under elevated or reduced pressure.
  • the polymerization can also be carried out in a protective gas atmosphere, preferably under nitrogen, to initiate the polymerization, high-energy electromagnetic radiation or the usual chemical polymerization initiators can be used, for example organic peroxides, such as benzoyl peroxide, tert. -Butyl hydroperoxide, methyl ethyl ketone peroxide, cumene hydroperoxide, azo compounds such as azodiisobutyronitrile and inorganic peroxy compounds such as (NH 4 ) 2 S 2 ⁇ 8 • KS 2 0s or H0.
  • organic peroxides such as benzoyl peroxide, tert. -Butyl hydroperoxide, methyl ethyl ketone peroxide, cumene hydroperoxide, azo compounds such as azodiisobutyronitrile and inorganic peroxy compounds such as (NH 4 ) 2 S 2 ⁇ 8 • KS 2 0s or H0.
  • reducing agents such as sodium bisulfite and iron (II) sulfate or redox systems which contain an aliphatic and aromatic sulfinic acid, such as benzenesulfinic acid and toluenesulfinic acid or derivatives of these acids, such as Mannich adducts of sulfinic acids, aldehydes and Amino compounds as described in DE-A-1 301 566 can be used.
  • reducing agents such as sodium bisulfite and iron (II) s
  • the gels obtained are neutralized, for example, to 0-100 mol%, preferably 25-100 mol% and particularly preferably to 50-85 mol%, based on the monomer used, it being possible to use the customary neutralizing agents, preferably alkali metal hydroxides or oxides, but particularly preferably sodium hydroxide, sodium carbonate and sodium hydrogen carbonate.
  • the customary neutralizing agents preferably alkali metal hydroxides or oxides, but particularly preferably sodium hydroxide, sodium carbonate and sodium hydrogen carbonate.
  • the neutralization is usually achieved by mixing in the neutralizing agent as an aqueous solution or preferably also as a solid.
  • the gel is mechanically crushed, e.g. using a meat grinder and the neutralizing agent is sprayed on, sprinkled on or poured on, and then mixed thoroughly.
  • the gel mass obtained can be minced several times for homogenization.
  • the neutralized gel mass is then dried with a belt or roller dryer until the residual moisture content is preferably below 10% by weight, in particular below 5% by weight.
  • the dried hydrogel is then ground and sieved, it being possible to use roller mills, pin mills or vibrating mills for the grinding.
  • the particle size of the sieved hydrogel is preferably in the range 45-1000 ⁇ m, particularly preferably 45-850 ⁇ m and very particularly preferably 200-850 ⁇ m.
  • the dried hydrogel is tested using the test methods described below:
  • This method determines the free swellability of the hydrogel in the tea bag. Approx. 0.200 g of dried hydrogel are welded into a tea bag (format: 60 mm x 60 mm, Dexter 1234 T paper) and for 30 minutes in a 0.9 wt. - Soaked saline solution. The tea bag is then 3 min in a commercial laundry centrifuge (Bauknecht WS 130,
  • the measuring cell When absorbing under pressure, 0.900 g of dry hydrogel are evenly distributed on the sieve bottom of a measuring cell.
  • a cover plate is placed over the evenly distributed hydrogel and loaded with an appropriate weight.
  • AUL Absorbency Under Load
  • the apparatus consists of a measuring cylinder + cover plate. 35
  • the base polymer is sprayed in a Waring laboratory mixer with crosslinking agent solution having the following composition: 4% by weight of methanol, 6% by weight of water and 0.20% by weight of 2 -oxotetrahydro-1, 3 -oxazine, based on polymer used. Subsequently, part of the moist product is annealed at 175 ° C for 60 min and the rest at 175 ° C for 10 90 min in a forced-air drying cabinet. The dried product is sieved at 850 micron to remove lumps.
  • Base polymer according to Example 1 is sprayed with a crosslinking agent solution in a Waring laboratory mixer.
  • the solution is composed such that the following dosage, based on the base polymer used, is achieved: 0.30% by weight of 2-oxotetrahydro-1, 3-oxazine, 3% by weight of 1,2-propanediol, 7% by weight % Water and 0.2% by weight boric acid.
  • Base polymer according to Example 1 is sprayed with crosslinking agent solution in a Waring laboratory mixer 35.
  • the solution is composed such that the following dosage, based on the base polymer used, is achieved: 0.40% by weight of N-methyl -2-oxotetrahydro-1,3-oxazine, 4% by weight of ethanol, 6% by weight % Water and 0.2% by weight ammonium dihydrogen phosphate.
  • the moist polymer is then dried at 40 175 ° C for 60 min.
  • Crosslinker 1 2 -oxotetrahydro-1, 3 -oxazine
  • Crosslinker 2 N-methyl -2-oxotetrahydro-1, 3-oxazine
  • drying temperature and time relate to the tempering of the base polymer sprayed with surface postcrosslinking solution.

Abstract

Die Erfindung betrifft ein Verfahren zur Gel- und/oder Oberflächennachvernetzung wasserabsorbierender Polymere, indem das Polymer mit einer Oberflächennachvernetzungslösung behandelt und während oder nach dem Behandeln durch Temperaturerhöhung nachvernetzt und getrocknet wird, wobei der Vernetzer eine Verbindung der Formel (I) ist, worin R1 für Wasserstoff, C¿1?-C4-Alkyl, C1-C4-Hydroxyalkyl, Trialkylsilyl oder Acetyl steht und R?2, R2', R3, R3', R4, R4'¿ unabhängig voneinander Wasserstoff, C¿1?-C12-Alkyl, C2-C12-Alkenyl oder C6-C12-Aryl bedeuten, gelöst in einem inerten Lösungsmittel enthält, die hiernach erhältlichen flüssigkeitsabsorbierenden Polymere sowie deren Verwendung in Hygieneartikeln, Verpackungsmaterialien und Nonwovens.

Description

Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxotetra- hydro-1,3-oxazinen
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Gel- bzw. Oberflächennachvernetzung von wasserabsorbierenden Hydrogelen mit 2 -Oxotetrahydro-1, 3 -oxazinen, die so erhältlichen Polymeren sowie ihre Verwendung in Hygieneartikeln, Verpackungsmaterialien und Nonwovens .
Hydrophile, hochquell ähige Hydrogele sind insbesondere Polymere aus (co)polymerisierten hydrophilen Monomeren, Pfropf (co)polymere von einem oder mehreren hydrophilen Monomeren auf einer geeigneten Pfropfgrundlage, vernetzte Cellulose- oder Stärkeether, vernetzte Carboxymethylcellulose, teilweise vernetztes Poly- alkylenoxid oder in wäßrigen Flüssigkeiten quellbare Naturprodukte, wie beispielsweise Guarderivate. Solche Hydrogele werden als wäßrige Lösungen absorbierende Produkte zur Herstellung von Windeln, Tampons, Damenbinden und anderen Hygieneartikeln, aber auch als wasserzurückhaltende Mittel im landwirtschaftlichen Gartenbau verwendet.
Zur Verbesserung der Anwendungseigenschaften, wie z.B. Rewet in der Windel und absorbency under load (AUL) , werden hydrophile, hochquellfähige Hydrogele im allgemeinen Oberflächen- oder gel - nachvernetzt. Diese Nachvernetzung erfolgt bevorzugt in wäßriger Gelphase oder als Oberflächennachvernetzung der gemahlenen und abgesiebten Polymerpartikel.
Dazu geeignete Vernetzer sind Verbindungen, die mindestens zwei Gruppen enthalten, die mit den Carobxylgruppen des hydrophilen Polymeren kovalente Bindungen bilden können. Geeignete Ver- bindungen sind beispielsweise Di- oder PolyglycidylVerbindungen, wie Phosphonsäurediglycidylester, Alkoxysilylverbindungen, Poly- aziridine, Polyamine oder Polyamidoamine, wobei die genannten Verbindungen auch in Mischungen untereinander verwendet werden können (siehe beispielsweise die EP-A-0 083 022, EP-A-0 543 303 und EP-A-0 530 438). Als Vernetzer geeignete Polyamidoamine sind insbesondere in der EP-A-0 349 935 beschrieben.
Ein wesentlicher Nachteil dieser Vernetzer ist deren hohe Reaktivität, da diese besondere Schutzvorkehrungen im Pro- duktionsbetrieb erforderlich macht, um unerwünschte Nebeneffekte zu vermeiden. Ebenso besitzen die vorgenannten Vernetzer haut- reizende Eigenschaften, was bei der Verwendung in Hygieneartikeln problematisch erscheint.
Als Vernetzer sind auch polyfunktionelle Alkohole bekannt. Beispielsweise lehren die EP-A-0 372 981, US-A-4 666 983 sowie US-A-5 385 983 die Verwendung von hydrophilen Polyalkoholen bzw. die Verwendung von Polyhydroxytensiden. Die Reaktion wird hiernach bei hohen Temperaturen von 120-250°C durchgeführt. Das Verfahren hat den Nachteil, daß die zur Vernetzung führende Ver- esterungsreaktion selbst bei diesen Temperaturen nur langsam abläuft.
Die ältere deutsche Patentanmeldung DE-A-19 807 502 beschreibt ein Verfahren zur Nachvernetzung mit 2 -Oxazolidinonen.
Es bestand daher die Aufgabe, unter Verwendung relativ reaktions- träger, aber dennoch mit Carboxylgruppen reaktionsfähiger Verbindungen eine ebenso gute oder bessere Gel- bzw. Oberflächennachvernetzung zu erreichen. Diese Aufgabe ist so zu lösen, daß die Reaktionszeit möglichst kurz und die Reaktionstemperatur möglichst niedrig sind.
Überraschenderweise wurde nun gefunden, daß 2 -Oxotetrahydro- 1,3-oxazine als Vernetzer hervorragend zur Lösung dieser Aufgabe geeignet sind. Insbesondere kann die mittlere Reaktivität dieser Vernetzer durch Zugabe von anorganischen oder organischen sauren Katalysatoren gesteigert werden. Als Katalysatoren geeignet sind die bekannten anorganischen Mineralsäuren, deren saure Salze mit Alkalimetallen oder Ammonium, sowie deren entsprechender Anhydride. Geeignete organische Katalysatoren sind die bekannten Carbonsäuren, Sulfonsäuren sowie Aminosäuren.
Gegenstand der Erfindung ist ein Verfahren zur Gel- und/oder Oberflächennachvernetzung wasserabsorbierender Polymere, indem das Polymer mit einer Oberflächennachvernetzungslösung behandelt und während oder nach dem Behandeln durch Temperaturerhöhung nachvernetzt und getrocknet wird, das dadurch gekennzeichnet, daß der Vernetzer eine Verbindung der allgemeinen Formel I
Figure imgf000004_0001
worin R1 für Wasserstoff, C1-C4 -Alkyl, Cι-C4-Hydroxyalkyl, Tri- alkylsilyl oder Acetyl steht und R2, R2', R3 , R3', R4, R4' unabhängig voneinander Wasserstoff, C1-C12-Alkyl, C1-C12-Alkenyl oder C6"Cι -Aryl bedeuten, gelöst in einem inerten Lösungsmittel ent- hält.
Bevorzugt zur Nachvernetzung und Trocknung ist dabei der Temperaturbereich zwischen 50 und 250°C, insbesondere 50-200°C, ganz besonders bevorzugt ist der Bereich zwischen 100-180°C. Die Aufbringung der Oberflächennachvernetzungslösung erfolgt bevorzugt durch Aufsprühen auf das Polymere in geeigneten Sprühmischern. Im Anschluß an das Aufsprühen wird das Polymerpulver thermisch getrocknet, wobei die Vernetzungsreaktion sowohl vor als auch während der Trocknung stattfinden kann. Bevorzugt ist das Aufsprühen einer Lösung des Vernetzers in Reaktionsmischern oder Misch- und Trocknungsanlagen wie beispielsweise Lödige- Mischer, BEPEX®-Mischer, NAUTA®-Mischer, SHUGGI®-Mischer oder PROCESSALL®. Überdies können auch Wirbelschichttrockner eingesetzt werden.
Die Trocknung kann im Mischer selbst erfolgen, durch Beheizung des Mantels oder Einblasen von Warmluft. Ebenso geeignet ist ein nachgeschalteter Trockner wie ein Hordentrockner, ein Drehrohr- ofen, oder eine beheizbare Schnecke. Es kann aber auch z.B. eine azeotrope Destillation als Trocknungsverfahren benutzt werden. Die bevorzugte Verweilzeit bei dieser Temperatur im Reaktionsmischer oder Trockner beträgt unter 60 min. , besonders bevorzugt unter 30 min.
In einer bevorzugten Ausführungsform der Erfindung wird zur Beschleunigung der Reaktion ein saurer Katalysator der Ober- flächennachvernetzungslösung zugesetzt. Als Katalysator im erfindungsgemäßen Verfahren sind alle anorganischen Säuren, deren korrespondierende Anhydride, bzw. organischen Säuren verwendbar. Beispiele sind Borsäure, Schwefelsäure, Iodwasserstoffsäure,
Phosphorsäure, Weinsäure, Essigsäure und Toluolsulfonsäure. Insbesondere sind auch deren polymere Formen, Anhydride, sowie die sauren Salze der mehrwertigen Säuren geeignet. Beispiele hierfür sind Boroxid, Schwefeltrioxid, Diphosphorpentaoxid und Ammonium- dihydrogenphosphat .
Der Vernetzer wird in inerten Lösungsmitteln gelöst. Der Vernetzer wird dabei in einer Menge von 0,01 bis 5, bevorzugt 0,01-1,0, vorzugsweise 0,05 bis 0,5 Gew. -%, bezogen auf das ein- gesetzte Polymer, verwendet. Als inertes Lösemittel bevorzugt ist Wasser sowie Gemische von Wasser mit ein- oder mehrwertigen Alkoholen. Es können jedoch alle mit Wasser unbegrenzt mischbaren or- ganischen Lösemittel eingesetzt werden, die nicht selbst unter den Verfahrensbedingungen reaktiv sind. Sofern ein Alkohol/Wasser-Gemisch eingesetzt wird, beträgt der Alkoholgehalt dieser Lösung beispielsweise 10-90 Gew. -%, bevorzugt 30-70 Gew. -%, ins- besondere 40-60 Gew.-%. Es können alle mit Wasser unbeschränkt mischbaren Alkohole eingesetzt werden, sowie Gemische mehrerer Alkohole (z.B. Methanol + Glycerin + Wasser). Die Alkoholgemische können die Alkohole in beliebigem Mischungsverhältnis enthalten. Besonders bevorzugt ist jedoch der Einsatz folgender Alkohole in wäßriger Lösung: Methanol, Ethanol, Isopropanol, Ethylenglykol und besonders bevorzugt 1, 2 -Propandiol sowie 1, 3 -Propandiol .
In einer weiteren bevorzugten Ausführungsform der Erfindung wird die Oberflächennachvernetzungslösung in einem Verhältnis von 1-20 Gew. -%, bezogen auf die Masse des Polymeren eingesetzt. Besonders bevorzugt ist eine Lösungsmenge von 0,5-10 Gew. -%, bezogen auf das Polymer.
Ein weiterer Gegenstand der Erfindung sind vernetzte wasser- absorbierende Polymere, die nach dem erfindungsgemäßen Verfahren erhältlich sind.
Die im erfindungsgemäßen Verfahren einzusetzenden hydrophilen, hochquellfähigen Hydrogele sind insbesondere Polymere aus (co)po- lymerisierten hydrophilen Monomeren, Pfropf (co) polymere von einem oder mehreren hydrophilen Monomeren auf eine geeignete Pfropf - grundlage, vernetzte Cellulose- oder Stärkeether oder in wäßrigen Flüssigkeiten quellbare Naturprodukte, wie beispielsweise Guar- derivate. Bevorzugt handelt es sich bei dem zu verneztenden Poly- mer um ein Polymer, das Struktureinheiten enthält, die sich von Acrylsäure oder deren Estern ableiten, oder die durch Pfropf - copolymerisation von Acrylsäure oder Acrylsäureestern auf eine wasserlösliche Polymermatrix erhalten wurden. Diese Hydrogele sind dem Fachmann bekannt und beispielsweise in der US-A-4 286 082, DE-C-27 06 135, US-A-4 340 706, DE-C-37 13 601, DE-C-28 40 010, DE-A-43 44 548, DE-A-40 20 780, DE-A-40 15 085, DE-A-39 17 846, DE-A-38 07 289, DE-A-35 33 337, DE-A-35 03 458, DE-A-42 44 548, DE-A-42 19 607, DE-A-40 21 847, DE-A-38 31 261, DE-A-35 11 086, DE-A-31 18 172, DE-A-30 28 043, DE-A-44 18 881, EP-A-0 801 483, EP-A-0 455 985, EP-A-0 467 073, EP-A-0 312 952, EP-A-0 205 874, EP-A-0 499 774, DE-A 26 12 846, DE-A-40 20 780, EP-A-0 205 674, US-A-5 145 906, EP-A-0 530 438, EP-A-0 670 073, US-A-4 057 521, US-A-4 062 817, TJS-A-4 525 527, US-A-4 295 987, US-A-5 011 892, US-A-4 076 663 oder US-A-4 931 497 beschrieben. Der Inhalt der vorstehend genannten Patentdokumente ist ausdrücklich Bestandteil der vorliegenden Offenbarung. Zur Herstellung dieser hydrophilen, hochquellfähigen Hydrogele geeignete hydrophile Monomere sind beispielsweise polymerisationsfähige Säuren, wie Acrylsäure, Methacrylsäure, Vinyl - sulfonsaure, Vinylphosphonsäure, Maleinsäure einschließlich deren Anhydrid, Fumarsäure, Itaconsäure, 2 -Acrylamido-2 -methylpropan- sulfonsäure, 2 -Acrylamido-2 -methylpropanphosphonsäure sowie deren Amide, Hydroxyalkylester und aminogruppen- oder ammoniumgruppen- haltige Ester und Amide sowie die Alkalimetall- und/oder Ammoniumsalze der Säuregruppen enthaltenden Monomeren. Des wei - teren eignen sich wasserlösliche N-Vinylamide wie N-Vinylformamid oder auch Diallyldimethyl-ammoniumchlorid. Bevorzugte hydrophile Monomere sind Verbindungen der allgemeinen Formel II
R7 R5
Figure imgf000007_0001
H R6 worin
R5 Wasserstoff, Methyl oder Ethyl,
R6 -COOR8, Hydroxysulfonyl oder Phosphonyl, eine mit einem
(C1-C4) -Alkanol veresterte Phosphonylgruppe oder eine Gruppe der Formel III
R7 Wasserstoff, Methyl, Ethyl oder Carboxyl ,
R8 Wasserstoff, Amino- (C1-C4) -alkyl, Hydroxy- (C1-C4) -alkyl , Alkalimetall- oder Ammoniumion und
R9 eine Sulfonylgruppe, eine Phosphonylgruppe oder eine Carboxylgruppe oder jeweils deren Alkalimetall- oder Ammoniumsalze, bedeuten.
Beispiele für Cj_-C4-Alkanole sind Methanol, Ethanol, n-Propanol,
Isopropanol oder n-Butanol.
Besonders bevorzugte hydrophile Monomere sind Acrylsäure und Methacrylsäure, sowie deren Alkalimetall- oder Ammoniumsalze, z.B. Natriumacrylat, Kaliumacrylat oder Ammoniumacrylat . Geeignete Pfropfgrundlagen für hydrophile Hydrogele, die durch Pfropfcopolymerisation olefinisch ungesättigter Säuren oder ihrer Alkalimetall- oder Ammoniumsalze erhältlich sind, können natürlichen oder synthetischen Ursprungs sein. Beispiele sind Stärke, Cellulose oder Cellulosederivate sowie andere Polysaccharide und Oligosaccharide, Polyalkylenoxide, insbesondere Polyethylenoxide und Polyethylenoxide und Polypropylenoxide, sowie hydrophile Polyester.
Geeignete Polyalkylenoxide haben beispielsweise die Formel IV
Figure imgf000008_0001
worin
R10 und R11 unabhängig voneinander Wasserstoff, Alkyl, Alkenyl oder Aryl,
R11 Wasserstoff oder Methyl und
n eine ganze Zahl von 1 bis 10.000 bedeuten.
R10 und R11 bedeuten bevorzugt Wasserstoff, (C1-C4) -Alkyl , (C2-C6) -Alkenyl oder Phenyl .
Bevorzugte Hydrogele sind insbesondere Polyacrylate, Polymeth- acrylate sowie die in der US-A-4 931 497, US-A-5 011 892 und US-A-5 041 496 beschriebene Pfropfpolymere.
Die hydrophilen, hochquellfähigen Hydrogele sind bevorzugt vernetzt, d.h. sie enthalten Verbindungen mit mindestens zwei Doppelbindungen, die in das Polymernetzwerk einpolymerisiert sind. Geeignete Vernetzer sind insbesondere N,N' -Methylenbis- acrylamid und N,N' -Methylenbismethacrylamid, Ester ungesättigter Mono- oder Polycarbonsäuren von Polyolen, wie Diacrylat oder Triacrylat, z.B. Butandiol- oder Ethylendiacrylat bzw. -meth- acrylat sowie Trimethylolpropantriacrylat und Allylverbindungen wie Allyl (meth) acrylat, Triallylcyanurat, Maleinsäurediallyl - ester, Polyallylester, Tetraallyloxyethan, Triallylamin, Tetra- allylethylendiamin, Allylester der Phosphorsäure sowie Vinyl - phosphonsäurederivate, wie sie beispielsweise in EP-A-0 3453 427 beschrieben sind. Besonders bevorzugt werden im erfindungsgemäßen Verfahren jedoch Hydrogele, die unter Verwendung von Polyallyl- ethern als Vernetzer und durch saure Homopolymerisation von Acrylsäure hergestellt werden. Geeignete Vernetzer sind Penta- erythritoltri- und - tetraallylether, Polyethylenglykoldiallyl- ether, Monoethylenglykoldiallylether, Glyceroldi- und Triallyl- ether, Polyallylether auf Basis Sorbitol, sowie ethoxylierte Varianten davon.
Das wasserabsorbierende Polymer ist bevorzugt eine polymere Acrylsäure oder ein Polyacrylat. Die Herstellung dieses wasser- absorbierenden Polymeren kann nach einem aus der Literatur be- kannten Verfahren erfolgen. Bevorzugt sind Polymere, die vernetzende Comonomere in Mengen von 0,001-10 mol-%, vorzugsweise 0,01-1 mol-% enthalten, ganz besonders bevorzugt sind jedoch Polymere, die durch radikalische Polymerisation erhalten wurden und bei denen ein mehrfunktioneller ethylenisch ungesättigter Radikalvernetzer verwendet wurde, der zusätzlich noch mindestens eine freie Hydroxylgruppe trägt (wie z.B. Pentaerythritoltri- allylether oder Trimethylolpropandiallylether) .
Die hydrophilen, hochquellfähigen Hydrogele können durch an sich bekannte Polymerisationsverfahren hergestellt werden. Bevorzugt ist die Polymerisation in wäßriger Lösung nach dem Verfahren der sogenannten Gelpolymerisation. Dabei werden beispielsweise 15 bis 50 gew. -%ige wäßrige Lösungen eines oder mehrerer hydrophiler Monomerer und gegebenenfalls einer geeigneten Pfropfgrundlage in Gegenwart eines Radikalinitiators, bevorzugt ohne mechanische Durchmischung unter Ausnutzung des Trommsdorff -Norrish-Effektes (Makromol. Chem. 1, 169 (1947)), polymerisiert. Die Polymerisationsreaktion kann im Temperaturbereich zwischen 0 und 150°C, vorzugsweise zwischen 10 und 100°C, sowohl bei Normaldruck als auch unter erhöhtem oder erniedrigtem Druck durchgeführt werden. Wie üblich kann die Polymerisation auch in einer Schutzgas - atmosphäre, vorzugsweise unter Stickstoff, ausgeführt werden, zur Auslösung der Polymerisation können energiereiche elektromagnetische Strahlen oder die üblichen chemischen Polymeri- sationsinitiatoren herangezogen werden, z.B. organische Peroxide, wie Benzoylperoxid, tert . -Butylhydroperoxid, Methylethylketonper- oxid, Cumolhydroperoxid, Azoverbindungen wie Azodiisobutyronitril sowie anorganische Peroxiverbindungen wie (NH4)2S2θ8 KS20s oder H0 . Sie können gegebenenfalls in Kombination mit Reduktions- mittein wie Natriumhydrogensulfit und Eisen (II) -sulfat oder Redoxsystemen, welche als reduzierende Komponente eine alipha- tische und aromatische Sulfinsäure, wie Benzolsulfinsäure und Toluolsulfinsäure oder Derivate dieser Säuren enthalten, wie Mannichaddukte aus Sulfinsäuren, Aldehyden und Aminoverbindungen, wie sie in der DE-A-1 301 566 beschrieben sind, verwendet werden. Durch mehrstündiges Nachheizen der Polymerisatgele im Temperatur- bereich 50 bis 130°C, vorzugsweise 70 bis 100°C, können die
Qualitätseigenschaften der Polymerisate noch verbessert werden.
Die erhaltenen Gele werden beispielsweise zu 0-100 mol-%, bevor- zugt 25-100 mol-% und besonders bevorzugt zu 50-85 mol-%, bezogen auf eingesetztes Monomer neutralisiert, wobei die üblichen Neutralisationsmittel verwendet werden können, bevorzugt Alkali - metallhydroxide oder -oxide, besonders bevorzugt jedoch Natriumhydroxid, Natriumcarbonat und Natriumhydrogencarbonat .
Üblicherweise wird die Neutralisation durch Einmischung des Neutralisationsmittels als wäßrige Lösung oder bevorzugt auch als Feststoff erreicht. Das Gel wird hierzu mechanisch zerkleinert, z.B. mittels eines Fleischwolfes und das Neutralisationsmittel wird aufgesprüht, übergestreut oder aufgegossen, und dann sorgfältig untergemischt. Dazu kann die erhaltene Gelmasse noch mehrmals zur Homogenisierung gewolft werden. Die neutralisierte Gel - masse wird dann mit einem Band- oder Walzentrockner getrocknet bis der Restfeuchtegehalt vorzugsweise unter 10 Gew. -%, ins - besondere unter 5 Gew. -% liegt. Das getrocknete Hydrogel wird hiernach gemahlen und gesiebt, wobei zur Mahlung üblicherweise Walzenstühle, Stiftmühlen oder Schwingmühlen eingesetzt werden können. Die Partikelgröße des gesiebten Hydrogels liegt vorzugsweise im Bereich 45-1000 μm, besonders bevorzugt bei 45-850 μm und ganz besonders bevorzugt bei 200-850 μm.
Zur Bestimmung der Güte der Oberflächennachvernetzung wir das getrocknete Hydrogel mit den Testmethoden geprüft, die nachfolgend beschrieben sind:
Methoden:
1) Zentrifugenretentionskapazität (CRC) :
Bei dieser Methode wird die freie Quellbarkeit des Hydrogels im Teebeutel bestimmt. Es werden ca. 0,200 g getrocknetes Hydrogel in einen Teebeutel eingeschweißt (Format: 60 mm x 60 mm, Dexter 1234 T- Papier) und für 30 min in eine 0,9 gew. -%ige Kochsalzlösung eingeweicht. Anschließend wird der Teebeutel 3 min in einer handelsüblichen Wäschezentrifuge (Bauknecht WS 130,
1400 U/min Korbdurchmesser 230 mm) geschleudert. Die Bestimmung der aufgenommenen Flüssigkeitsmenge geschieht durch Auswiegen des zentrifugierten Teebeutels. Zur Berücksichtigung der Aufnahmeka- pazität des Teebeutels selbst wird ein Blindwert bestimmt (Tee- beutel ohne Hydrogel) , welcher von der Auswaage (Teebeutel mit gequollenem Hydrogel) abgezogen wird. Retention CRC {g/g] = (Auswaage Teebeutel - Blindwert - Einwaage
Hydrogel) -r- Einwaage Hydrogel.
2) Absorption unter Druck (0,3/0,5/0,7 psi) : 5
Bei der Absorption unter Druck werden 0,900 g trockenen Hydrogels gleichmäßig auf dem Siebboden einer Meßzelle verteilt. Die Meß- zelle besteht aus einem Plexiglaszylinder (Höhe = 50 mm, Durchmesser = 60 mm) , auf den als Boden ein Sieb aus Stahlgewebe 0 (Maschenweite 36 micron bzw. 400 mesh) aufgeklebt ist. Über das gleichmäßig verteilte Hydrogel wird eine Abdeckplatte gelegt und mit einem entsprechenden Gewicht belastet. Die Zelle wird dann auf ein Filterpapier (S&S 589 Schwarzband, Durchmesser = 90 mm) gestellt, welches auf einer porösen Glasfilterplatte liegt, diese
15 Filterplatte liegt in einer Petrischale (Höhe = 30 mm, Durchmesser = 200 mm), welche soviel 0,9 gew. -%ige Kochsalzlösung enthält, daß der Flüssigkeitsspiegel zu Beginn des Experiments identisch mit der Oberkante der Glasfritte ist. Man läßt das Hydrogel dann für 60 min die Salzlösung absorbieren. Dann nimmt man die
20 komplette Zelle mit dem gequollenen Gel von der Filterplatte und wiegt die Apparatur nach Entfernen des Gewichts zurück.
Die Absorption unter Druck (AUL = Absorbency Under Load) wird wie folgt berechnet: 25
AUL [g/g] = (Wb-Wa) H- Ws
wobei
30 Wb die Masse der Apparatur + Gel nach dem Quellen,
Wa die Masse der Apparatur + Einwaage vor dem Quellen, Ws die Einwaage an trockenem Hydrogel ist.
Die Apparatur besteht aus Meßzylinder + Abdeckplatte. 35
Beispiele la und lb
Grundpolymer :
In einem 40 1 -Plastikeimer werden 6,9 kg reine Acrylsäure mit
40 23 kg Wasser verdünnt. Zu dieser Lösung fügt man 45 g Penta- erythritoltriallylether unter Rühren hinzu und inertisiert den verschlossenen Eimer durch Durchleiten von Stickstoff. Die Polymerisation wird dann durch Zugabe von ca. 400 mg Wasserstoffperoxid und 200 mg Ascorbinsäure gestartet. Nach Beendigung der
45 Reaktion wird das Gel mechanisch zerkleinert und mit soviel
Natronlauge versetzt, bis ein Neutralisationsgrad von 75 mol-%, bezogen auf die eingesetzte Acrylsäure, erreicht wird. Das neutralisierte Gel wird dann auf einem Walzentrockner getrocknet, mit einer Stiftmühle gemahlen, und schließlich abgesiebt. Dies ist das in den nachfolgenden Beispielen verwendete Grundpolymer.
5 Das Grundpolymer wird in einem Waring-Labormischer mit Vernetzer- Lösung folgender Zusammensetzung besprüht: 4 Gew. -% Methanol, 6 Gew. -% Wasser und 0,20 Gew. -% 2 -Oxotetrahydro-1, 3 -oxazin, bezogen auf eingesetztes Polymer. Anschließend wird ein Teil des feuchten Produkts bei 175°C für 60 min und der Rest bei 175°C für 10 90 min im Umlufttrockenschrank getempert. Das getrocknete Produkt wird bei 850 micron abgesiebt, um Klumpen zu entfernen.
Beispiel 2a und 2b
15 Grundpolymer gemäß Beispiel 1 wird in einem Waring-Labormischer mit Vernetzer-Lösung besprüht. Die Lösung ist dabei so zusammengesetzt, daß folgende Dosierung, bezogen auf eingesetztes Grundpolymer, erreicht wird: 0,40 Gew. -% 2 -Oxotetrahydro- 1, 3 -oxazin, 4 Gew. -% Propylenglykol und 6 Gew. -% Wasser. Jeweils ein Teil des
20 feuchten Polymers wird dann bei 165°C für 60 bzw. 90 min getrocknet.
Beispiel 3
25 Grundpolymer gemäß Beispiel 1 wird in einem Waring-Labormischer mit Vernetzer-Lösung besprüht. Die Lösung ist dabei so zusammengesetzt, daß folgende Dosierung, bezogen auf eingesetztes Grundpolymer erreicht wird: 0,30 Gew. -% 2 -Oxotetrahydro-1, 3 -oxazin, 3 Gew. -% 1,2 -Propandiol, 7 Gew. -% Wasser und 0,2 Gew. -% Borsäure.
30 Das feuchte Polymer wird dann bei 175°C für 60 min getrocknet.
Beispiel 4
Grundpolymer gemäß Beispiel 1 wird in einem Waring -Labormischer 35 mit Vernetzer-Lösung besprüht. Die Lösung ist dabei so zusammengesetzt, daß folgende Dosierung, bezogen auf eingesetztes Grund- polymer erreicht wird: 0,40 Gew. -% N-Methyl -2 -oxotetrahydro- 1, 3 -oxazin, 4 Gew. -% Ethanol, 6 Gew. -% Wasser und 0,2 Gew. -% Ammoniumdihydrogenphosphat. Das feuchte Polymer wird dann bei 40 175°C für 60 min getrocknet.
Die gemäß obigen Beispielen hergestellten Polymere wurden getestet und die Ergebnisse sind in nachfolgender Tabelle 1 zusammengefaßt : 45
Figure imgf000013_0001
Figure imgf000013_0002
Vernetzer 1: 2 -Oxotetrahydro-1, 3 -oxazin
Vernetzer 2: N-Methyl -2 -oxotetrahydro- 1, 3 -oxazin
Alle Prozentangaben sind Gewichtsprozente bezogen auf eingesetztes Polymer. Trocknungstemperatur und -zeit beziehen sich hierbei auf die Temperung des mit Oberflächennachvernetzungslösung besprühten Grundpolymers .

Claims

Patentansprüche
1. Verfahren zur Gel- und/oder Oberflächennachvernetzung wasser- absorbierender Polymere, indem das Polymere mit einer Ober- flächennachvernetzungslösung behandelt und während oder nach dem Behandeln durch Temperaturerhöhung nachvernetzt und getrocknet wird, dadurch gekennzeichnet, daß der Vernetzer eine Verbindung der Formel I
Figure imgf000015_0001
R3 ' R3
worin R1 für Wasserstoff, C1-C4 -Alkyl, Cι-C4-Hydroxyalkyl, Trialkylsilyl oder Acetyl steht und R2, R2', R3 , R3', R4, R4' unabhängig voneinander Wasserstoff, C1-C12 -Alkyl , ci"c l2 -Alkenyl oder C6-Cι2-Aryl bedeuten, gelöst in einem inerten Lösungsmittel enthält.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß es sich bei dem zu vernetzenden Polymer um ein Polymer handelt, das Struktureinheiten enthält, die sich von Acrylsäure oder deren Estern ableiten, oder die durch Pfropfcopolymerisation von Acrylsäure oder Acrylsäureestern auf eine wasserlösliche Polymermatrix erhalten wurden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zur Oberflächennachvernetzung ein Katalysator verwendet wird, der eine Säure oder deren Anhydrid umfaßt.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß es sich bei der Säure um Borsäure, Schwefelsäure, Iodwasser- stoffsäure, Phosphorsäure, Weinsäure, Essigsäure oder Toluol- sulfonsäure, sowie deren polymere Formen, sauren Salze oder Anhydride handelt.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das inerte Lösemittel Wasser oder eine Mischung von Wasser mit mono- oder mehrfachfunktionellen Alkoholen mit 10 bis 90 Gew. -% Alkohol ist.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Vernetzer in einer Menge von 0,01 bis 5 Gew. -%, bezogen auf das Gewicht des Polymeren verwendet wird.
7. Wasserabsorbierende Polymere, erhältlich gemäß dem Verfahren der Ansprüche 1 bis 6.
8. Verwendung der gemäß Anspruch 7 erhältlichen Polymere in Hygieneartikeln, Verpackungsmaterialien und in Nonowovens.
PCT/EP1999/009003 1998-11-26 1999-11-23 Verfahren zur nachvernetzung von hydrogelen mit 2-oxotetrahydro-1,3-oxazinen WO2000031153A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002347897A CA2347897A1 (en) 1998-11-26 1999-11-23 Method for the secondary cross-linking of hydrogels with 2-oxotetrahydro-1,3-oxazines
US09/831,382 US6657015B1 (en) 1998-11-26 1999-11-23 Method for the secondary cross-linking of hydrogels with 2-oxotetrahydro-1,3-oxazines
EP99963322A EP1141039B1 (de) 1998-11-26 1999-11-23 Verfahren zur nachvernetzung von hydrogelen mit 2-oxotetrahydro-1,3-oxazinen
JP2000583977A JP2002530491A (ja) 1998-11-26 1999-11-23 2−オキソテトラヒドロ−1,3−オキサジンでのヒドロゲルの後架橋法
AT99963322T ATE259834T1 (de) 1998-11-26 1999-11-23 Verfahren zur nachvernetzung von hydrogelen mit 2-oxotetrahydro-1,3-oxazinen
DE59908601T DE59908601D1 (de) 1998-11-26 1999-11-23 Verfahren zur nachvernetzung von hydrogelen mit 2-oxotetrahydro-1,3-oxazinen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19854573.8 1998-11-26
DE19854573A DE19854573A1 (de) 1998-11-26 1998-11-26 Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxo-tetrahydro-1,3-oxazinen

Publications (1)

Publication Number Publication Date
WO2000031153A1 true WO2000031153A1 (de) 2000-06-02

Family

ID=7889097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/009003 WO2000031153A1 (de) 1998-11-26 1999-11-23 Verfahren zur nachvernetzung von hydrogelen mit 2-oxotetrahydro-1,3-oxazinen

Country Status (8)

Country Link
US (1) US6657015B1 (de)
EP (1) EP1141039B1 (de)
JP (1) JP2002530491A (de)
AT (1) ATE259834T1 (de)
CA (1) CA2347897A1 (de)
DE (2) DE19854573A1 (de)
ES (1) ES2216617T3 (de)
WO (1) WO2000031153A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031482A1 (de) * 2001-10-05 2003-04-17 Basf Aktiengesellschaft Verfahren zur vernetzung von hydrogelen mit morpholin-2,3-dionen
DE10204938A1 (de) * 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit beta-Hydroxyalkylamiden
US6809158B2 (en) 2000-10-20 2004-10-26 Nippon Shokubai Co., Ltd. Water-absorbing agent and process for producing the same
US7098284B2 (en) 2001-01-26 2006-08-29 Nippon Shokubal Co., Ltd Water-absorbing agent and production process therefor, and water-absorbent structure
US7312278B2 (en) 2001-06-08 2007-12-25 Nippon Shokubai Co., Ltd. Water-absorbing agent and production process therefor, and sanitary material

Families Citing this family (236)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19854575A1 (de) * 1998-11-26 2000-05-31 Basf Ag Vernetzte quellfähige Polymere
DE60238439D1 (de) * 2001-12-19 2011-01-05 Nippon Catalytic Chem Ind Wasserabsorbierende polymere und verfahren zu deren herstellung
EP1447066B1 (de) 2003-02-12 2008-10-01 The Procter & Gamble Company Bequem Windel
DE60331115D1 (de) 2003-02-12 2010-03-11 Procter & Gamble Saugfähiger Kern für einen saugfähigen Artikel
DE10334584A1 (de) 2003-07-28 2005-02-24 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit bicyclischen Amidacetalen
JP2007501081A (ja) 2003-08-06 2007-01-25 ビーエーエスエフ アクチェンゲゼルシャフト コーティングされた水膨潤性ポリマーを含有する水膨潤性材料
JP2007501315A (ja) 2003-08-06 2007-01-25 ザ プロクター アンド ギャンブル カンパニー コーティングされた水膨潤性材料
EP1651283B1 (de) 2003-08-06 2011-03-16 The Procter & Gamble Company Saugfähiger artikel mit einem beschichteten in wasser quellbaren material
EP1518567B1 (de) 2003-09-25 2017-06-28 The Procter & Gamble Company Absorbierende artikel mit flüssigkeitsaufnahmezone und darin beschichteten superabsorbierenden partikeln
DE102004009438A1 (de) 2004-02-24 2005-09-15 Basf Ag Verfahren zur Oberflächennachvernetzung wasserabsorbierender Polymere
DE102004038015A1 (de) 2004-08-04 2006-03-16 Basf Ag Verfahren zur Nachvernetzung wasserabsorbierender Polymere mit zyklischen Carba-maten und/oder zyklischen Harnstoffen
EP1799721B1 (de) 2004-09-28 2011-11-23 Basf Se Verfahren zur kontinuierlichen herstellung von vernetzten feinteiligen gelförmigen polymerisaten
DE102004051242A1 (de) 2004-10-20 2006-05-04 Basf Ag Feinteilige wasserabsorbierende Polymerpartikel mit hoher Flüssigkeitstransport- und Absorptionsleistung
DE102004057868A1 (de) 2004-11-30 2006-06-01 Basf Ag Unlösliche Metallsulfate in wasserabsorbierenden Polymerpartikeln
WO2006097389A2 (en) * 2005-02-04 2006-09-21 Basf Aktiengesellschaft A process for producing a water-absorbing material having a coating of elastic filmforming polymers
WO2006082241A2 (en) * 2005-02-04 2006-08-10 Basf Aktiengesellschaft A process for producing a water-absorbing material having a coating of elastic filmforming polymers
TWI415637B (zh) * 2005-02-04 2013-11-21 Basf Ag 具有彈性成膜聚合物塗層之吸水材料
EP1843797B1 (de) * 2005-02-04 2014-01-22 The Procter and Gamble Company Absorptionsstruktur mit verbessertem wasserabsorbierendem material
EP1846475A1 (de) * 2005-02-04 2007-10-24 Basf Aktiengesellschaft Wasserquellbares material
DE102005010198A1 (de) * 2005-03-05 2006-09-07 Degussa Ag Hydrolysestabile, nachvernetzte Superabsorber
DE102005014291A1 (de) 2005-03-24 2006-09-28 Basf Ag Verfahren zur Herstellung wasserabsorbierender Polymere
TWI344469B (en) 2005-04-07 2011-07-01 Nippon Catalytic Chem Ind Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin
US20060264861A1 (en) 2005-05-20 2006-11-23 Lavon Gary D Disposable absorbent article having breathable side flaps
DE102005042604A1 (de) 2005-09-07 2007-03-08 Basf Ag Neutralisationsverfahren
TWI377222B (en) 2005-12-22 2012-11-21 Nippon Catalytic Chem Ind Method for surface crosslinking water-absorbing resin and method for manufacturing water-absorbing resin
TWI394789B (zh) * 2005-12-22 2013-05-01 Nippon Catalytic Chem Ind 吸水性樹脂組成物及其製造方法、吸收性物品
JP2009522387A (ja) * 2005-12-28 2009-06-11 ビーエーエスエフ ソシエタス・ヨーロピア 吸水物質の製法
EP1837348B9 (de) * 2006-03-24 2020-01-08 Nippon Shokubai Co.,Ltd. Wasserabsorbierendes Harz und Verfahren zu seiner Herstellung
TWI410447B (zh) 2006-03-27 2013-10-01 Nippon Catalytic Chem Ind 吸水性樹脂組合物
US8124229B2 (en) 2006-07-19 2012-02-28 Basf Se Method for producing water-absorbent polymer particles with a higher permeability by polymerising droplets of a monomer solution
DE102008000237A1 (de) 2007-02-06 2008-08-07 Basf Se Phenol-Imidazolderivate zur Stabilisierung von polymerisationsfähigen Verbindungen
CN101627086B (zh) 2007-03-01 2013-07-10 株式会社日本触媒 以吸水性树脂为主成分的粒状吸水剂
WO2008126793A1 (ja) 2007-04-05 2008-10-23 Nippon Shokubai Co., Ltd. 吸水性樹脂を主成分とする粒子状吸水剤
WO2008155722A2 (en) 2007-06-18 2008-12-24 The Procter & Gamble Company Disposable absorbent article with sealed absorbent core with substantially continuously distributed absorbent particulate polymer material
DE112008000010B4 (de) 2007-06-18 2013-08-22 The Procter & Gamble Company Einwegabsorptionsartikel mit im wesentlichen kontinuierlich verteilten, teilchenförmigem polymerem Absorptionsmaterial und Verfahren zu dessen Herstellung
EP2018876A1 (de) * 2007-07-27 2009-01-28 The Procter and Gamble Company Saugfähiger Artikel mit wasserabsorbierenden Polymerteilchen und Herstellungsverfahren dafür
SA08290542B1 (ar) 2007-08-28 2012-11-14 نيبون شوكوباي كو. ، ليمتد طريقة لإنتاج راتنج ماص للماء
SA08290556B1 (ar) * 2007-09-07 2012-05-16 نيبون شوكوباي كو. ، ليمتد طريقة لربط راتنجات ممتصة للماء
JP2011518648A (ja) 2008-04-29 2011-06-30 ザ プロクター アンド ギャンブル カンパニー 耐歪み性のコアカバーを備える吸収性コアの作製プロセス
US20090318884A1 (en) * 2008-06-20 2009-12-24 Axel Meyer Absorbent structures with immobilized absorbent material
EP2398597B1 (de) 2009-02-18 2018-01-24 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2404954B1 (de) 2009-03-04 2015-04-22 Nippon Shokubai Co., Ltd. Herstellungsverfahren für wasserabsorbierendes harz
US20100247916A1 (en) 2009-03-24 2010-09-30 Basf Se Process for Producing Surface Postcrosslinked Water-Absorbing Polymer Particles
CN102414226B (zh) 2009-04-30 2013-07-03 巴斯夫欧洲公司 去除金属杂质的方法
JP2012527267A (ja) 2009-05-20 2012-11-08 ビーエーエスエフ ソシエタス・ヨーロピア 吸水性貯蔵層
US8502012B2 (en) * 2009-06-16 2013-08-06 The Procter & Gamble Company Absorbent structures including coated absorbent material
CN102803316B (zh) 2009-06-26 2015-09-16 巴斯夫欧洲公司 具有低结块倾向和在压力下的高吸收的吸水性聚合物颗粒的制备方法
JP5615364B2 (ja) 2009-08-26 2014-10-29 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 臭気を抑制する組成物
JP5629688B2 (ja) 2009-08-27 2014-11-26 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂およびその製造方法
US8481159B2 (en) 2009-09-04 2013-07-09 Basf Se Water-absorbent porous polymer particles having specific sphericity and high bulk density
EP2478050B1 (de) 2009-09-18 2018-01-24 Basf Se Mit superabsorber ausgerüstete offenzellige schäume
CN102548654A (zh) 2009-09-29 2012-07-04 株式会社日本触媒 颗粒状吸水剂及其制造方法
US9328207B2 (en) 2009-10-09 2016-05-03 Basf Se Method for re-wetting surface post-cross-linked, water-absorbent polymer particles
EP2485774B1 (de) 2009-10-09 2015-09-09 Basf Se Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP2485773B1 (de) 2009-10-09 2013-12-11 Basf Se Verwendung von heizdampfkondensat zur herstellung wasserabsorbierender polymerpartikel
JP5871803B2 (ja) 2009-10-09 2016-03-01 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 表面後架橋された吸水性ポリマー粒子の後給湿方法
US20120209231A1 (en) 2009-11-06 2012-08-16 Basf Se Textiles containing improved superabsorbers
US9120878B2 (en) 2009-11-23 2015-09-01 Basf Se Method for producing water-absorbent polymer foams
CN102770469B (zh) 2009-11-23 2015-04-15 巴斯夫欧洲公司 制备具有改善的色彩稳定性的吸水性聚合物颗粒的方法
CN102665771A (zh) 2009-11-23 2012-09-12 巴斯夫欧洲公司 制备吸水性起泡聚合物颗粒的方法
EP2329803B1 (de) 2009-12-02 2019-06-19 The Procter & Gamble Company Vorrichtungen und verfahren zum transportieren von teilchenförmigem material
EP2528630B1 (de) 2010-01-27 2016-03-30 Basf Se Geruchsinhibierende wasserabsorbierende verbundstoffe
JP5605855B2 (ja) 2010-02-10 2014-10-15 株式会社日本触媒 吸水性樹脂粉末の製造方法
EP2539381A1 (de) 2010-02-24 2013-01-02 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2011104152A1 (de) 2010-02-24 2011-09-01 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
US10307506B2 (en) 2010-03-12 2019-06-04 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
CN102803302A (zh) 2010-03-15 2012-11-28 巴斯夫欧洲公司 通过聚合单体溶液的液滴生产吸水性聚合物颗粒的方法
US8703876B2 (en) 2010-03-15 2014-04-22 Basf Se Process for producing water absorbing polymer particles with improved color stability
CN102812053B (zh) 2010-03-24 2015-01-14 巴斯夫欧洲公司 通过聚合单体溶液的液滴制备吸水性聚合物颗粒的方法
CN102906124B (zh) 2010-03-24 2014-12-17 巴斯夫欧洲公司 从吸水性聚合物颗粒中移除残余单体的方法
CN102905661B (zh) 2010-03-24 2016-09-07 巴斯夫欧洲公司 超薄流体吸收芯
JP2013523903A (ja) 2010-03-25 2013-06-17 ビーエーエスエフ ソシエタス・ヨーロピア 吸水性ポリマー粒子の製造方法
WO2011131526A1 (de) 2010-04-19 2011-10-27 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2011157656A2 (de) 2010-06-14 2011-12-22 Basf Se Wasserabsorbierende polymerpartikel mit verbesserter farbstabilität
US9962459B2 (en) 2010-07-02 2018-05-08 Basf Se Ultrathin fluid-absorbent cores
US9089624B2 (en) 2010-08-23 2015-07-28 Basf Se Ultrathin fluid-absorbent cores comprising adhesive and having very low dry SAP loss
US9669386B2 (en) 2010-09-30 2017-06-06 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent and production method for the same
EP2625207A1 (de) 2010-10-06 2013-08-14 Basf Se Verfahren zur herstellung thermisch oberflächennachvernetzter wasserabsorbierender polymerpartikel
US20130207037A1 (en) 2010-10-21 2013-08-15 Basf Se Water-Absorbing Polymeric Particles and Method for the Production Thereof
WO2012054661A1 (en) 2010-10-21 2012-04-26 The Procter & Gamble Company Absorbent structures comprising post-crosslinked water-absorbent particles
EP2476714A1 (de) 2011-01-13 2012-07-18 Basf Se Polyurethanintegralschaumstoffe mit verbesserter Oberflächenhärte
WO2012102406A1 (ja) 2011-01-28 2012-08-02 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
US9567414B2 (en) 2011-01-28 2017-02-14 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water absorbent resin powder
WO2012107432A1 (de) 2011-02-07 2012-08-16 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher anquellgeschwindigkeit
WO2012107344A1 (de) 2011-02-07 2012-08-16 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
DE102011003882A1 (de) 2011-02-09 2012-08-09 Sb Limotive Company Ltd. Zusammensetzung zum Löschen und/oder Hemmen von Fluor- und/oder Phosphor-haltigen Bränden
DE102011003877A1 (de) 2011-02-09 2012-08-09 Sb Limotive Company Ltd. Zusammensetzung zum Löschen und/oder Hemmen von Fluor- und/oder Phosphor-haltigen Bränden
CN103415553B (zh) 2011-03-08 2015-07-08 巴斯夫欧洲公司 用于制备具有改进渗透性的吸水性聚合物颗粒的方法
EP2705075B1 (de) 2011-05-06 2016-12-21 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
US20120296297A1 (en) 2011-05-18 2012-11-22 Achille Di Cintio Feminine hygiene absorbent articles comprising water-absorbing polymeric foams
US9279048B2 (en) 2011-05-18 2016-03-08 Basf Se Use of water-absorbing polymer particles for dewatering feces
US8987545B2 (en) 2011-05-18 2015-03-24 The Procter & Gamble Company Feminine hygiene absorbent articles comprising water-absorbing polymer particles
EP2709682B1 (de) 2011-05-18 2016-12-14 Basf Se Verwendung wasserabsorbierender polymerpartikel zur absorption von blut und/oder menstruationsflüssigkeit
WO2012160174A1 (de) 2011-05-26 2012-11-29 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
JP2014515413A (ja) 2011-05-26 2014-06-30 ビーエーエスエフ ソシエタス・ヨーロピア 吸水性ポリマー粒子の連続的な製造法
DE112012002289A5 (de) 2011-06-01 2014-03-13 Basf Se Geruchsinhibierende Mischungen für Inkontinenzartikel
US8664151B2 (en) 2011-06-01 2014-03-04 The Procter & Gamble Company Articles comprising reinforced polyurethane coating agent
US8999884B2 (en) 2011-06-01 2015-04-07 The Procter & Gamble Company Absorbent structures with coated water-absorbing material
JP6188683B2 (ja) 2011-06-03 2017-08-30 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 吸水性ポリマー粒子の連続的な製造法
WO2012163930A1 (de) 2011-06-03 2012-12-06 Basf Se Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
ES2751141T3 (es) 2011-06-10 2020-03-30 Procter & Gamble Estructura absorbente para artículos absorbentes
EP2532329B1 (de) 2011-06-10 2018-09-19 The Procter and Gamble Company Verfahren und vorrichtung zum herstellen von absorptionsstrukturen mit absorptionsmaterial
EP2532334B1 (de) 2011-06-10 2016-10-12 The Procter and Gamble Company Saugfähiger Kern für einen saugfähigen Einwegartikel
CA3042501C (en) 2011-06-10 2020-06-23 The Procter & Gamble Company An absorbent core for disposable diapers comprising longitudinal channels
EP3287110B1 (de) 2011-06-10 2019-03-20 The Procter and Gamble Company Verfahren zur herstellung von saugfähigen strukturen für saugfähige artikel
PL2532328T3 (pl) 2011-06-10 2014-07-31 Procter & Gamble Sposób i urządzenie do wytworzenia struktur chłonnych z materiałem chłonnym
MX2013014596A (es) 2011-06-10 2014-01-24 Procter & Gamble Centro de absorbente para articulos absorbentes desechables.
EP2532332B2 (de) 2011-06-10 2017-10-04 The Procter and Gamble Company Einwegwindel mit reduzierter Befestigung zwischen saugfähigem Kern und äusserer Schicht
US9757491B2 (en) 2011-06-30 2017-09-12 The Procter & Gamble Company Absorbent structure comprising an oil-scavenger component
JP5980325B2 (ja) 2011-07-14 2016-08-31 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 高い膨潤速度を有する吸水性ポリマー粒子の製造法
WO2013045163A1 (en) 2011-08-12 2013-04-04 Basf Se A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
CN103889385B (zh) 2011-10-18 2016-05-11 巴斯夫欧洲公司 流体吸收制品
EP2586412A1 (de) 2011-10-24 2013-05-01 Bostik SA Neuer saugfähiger Artikel und Herstellungsverfahren dafür
EP2586409A1 (de) 2011-10-24 2013-05-01 Bostik SA Neuer saugfähiger Artikel und Herstellungsverfahren dafür
EP2586410A1 (de) 2011-10-24 2013-05-01 Bostik SA Neuartiges Verfahren zur Herstellung eines absorbierenden Artikels
US9126186B2 (en) 2011-11-18 2015-09-08 Basf Se Process for producing thermally surface postcrosslinked water-absorbing polymer particles
US20130146810A1 (en) 2011-12-08 2013-06-13 Basf Se Process for Producing Water-Absorbing Polymer Fibres
JP2015506406A (ja) 2012-02-06 2015-03-02 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 吸水性ポリマー粒子の製造法
WO2013120722A1 (de) 2012-02-15 2013-08-22 Basf Se Wasserabsorbierende polymerpartikel mit hoher quellgeschwindigkeit und hoher permeabilität
JP2015512990A (ja) 2012-03-30 2015-04-30 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 逆スクリューヘリックスを備えたドラム型熱交換器中で熱表面後架橋する方法
JP2015514841A (ja) 2012-04-17 2015-05-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 表面後架橋された吸水性ポリマー粒子の製造法
EP2838573A1 (de) 2012-04-17 2015-02-25 Basf Se Verfahren zur herstellung von oberflächennachvernetzten wasserabsorbierenden polymerpartikeln
EP2859039A2 (de) 2012-06-08 2015-04-15 Basf Se Superabsorptionsmittel mit geruchssteuerung
EP2671554B1 (de) 2012-06-08 2016-04-27 The Procter & Gamble Company Absorbierender Kern zur Verwendung in saugfähigen Artikeln
EP2861631B1 (de) 2012-06-13 2017-04-12 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel in einem polymerisationsreaktor mit mindestens zwei achsparallel rotierenden wellen
CN104411731B (zh) 2012-06-19 2016-06-15 巴斯夫欧洲公司 用于制备吸水性聚合物颗粒的方法
EP2679208B1 (de) 2012-06-28 2015-01-28 The Procter & Gamble Company Absorbierender Kern zur Verwendung in saugfähigen Artikeln
EP2679209B1 (de) 2012-06-28 2015-03-04 The Procter & Gamble Company Absorbierende Artikel mit verbessertem Kern
EP2679210B1 (de) 2012-06-28 2015-01-28 The Procter & Gamble Company Absorbierende Artikel mit verbessertem Kern
US9840598B2 (en) 2012-07-03 2017-12-12 Basf Se Method for producing water-absorbent polymer particles with improved properties
WO2014019813A1 (de) 2012-07-30 2014-02-06 Basf Se Geruchsinhibierende mischungen für inkontinenzartikel
KR102226473B1 (ko) 2012-08-27 2021-03-12 가부시키가이샤 닛폰 쇼쿠바이 입자상 흡수제 및 그의 제조 방법
JP6344744B2 (ja) 2012-08-27 2018-06-20 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 吸水性ポリマー粒子の製造方法
CN104619755B (zh) 2012-09-11 2019-03-15 株式会社日本触媒 聚丙烯酸(盐)系吸水剂的制造方法及其吸水剂
WO2014041969A1 (ja) 2012-09-11 2014-03-20 株式会社日本触媒 ポリアクリル酸(塩)系吸水剤の製造方法及びその吸水剤
WO2014044780A1 (en) 2012-09-19 2014-03-27 Basf Se Process for producing water-absorbing polymer particles
WO2014054731A1 (ja) 2012-10-03 2014-04-10 株式会社日本触媒 吸水剤及びその製造方法
EP2730596A1 (de) 2012-11-13 2014-05-14 Basf Se Polyurethanweichschaumstoffe enthaltend Pflanzensamen
GB2510665C (en) 2012-11-13 2017-01-25 Procter & Gamble Absorbent articles with channels and signals
MY171776A (en) 2012-11-21 2019-10-29 Basf Se A process for producing surface-postcrosslinked water-absorbent polymer particles
US9822197B2 (en) 2012-11-26 2017-11-21 Basf Se Method for producing superabsorbers based on renewable raw materials
US10639215B2 (en) 2012-12-10 2020-05-05 The Procter & Gamble Company Absorbent articles with channels and/or pockets
PL2740449T3 (pl) 2012-12-10 2019-07-31 The Procter & Gamble Company Artykuł chłonny o wysokiej zawartości materiału chłonnego
US8979815B2 (en) 2012-12-10 2015-03-17 The Procter & Gamble Company Absorbent articles with channels
ES2743718T3 (es) 2012-12-10 2020-02-20 Procter & Gamble Artículo absorbente con sistema de sistema de captación-distribución perfilado
EP2740452B1 (de) 2012-12-10 2021-11-10 The Procter & Gamble Company Saugfähiger Artikel mit hohem Anteil an Absorptionsmaterial
US9216118B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US9216116B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels
DE202012013571U1 (de) 2012-12-10 2017-12-06 The Procter & Gamble Company Absorptionspartikel mit hohem Absorptionsmaterialgehalt
DE202012013572U1 (de) 2012-12-10 2017-12-05 The Procter & Gamble Company Absorptionsartikel mit hohem Absorptionsmaterialgehalt
EP2740450A1 (de) 2012-12-10 2014-06-11 The Procter & Gamble Company Saugfähiger Artikel mit hohem Anteil an Superabsorptionsmaterial
CN104936989B (zh) 2013-01-29 2019-04-16 巴斯夫欧洲公司 制备具有高自由溶胀率、高离心保留容量和高溶胀凝胶床渗透性的吸水性聚合物颗粒的方法
US9434802B2 (en) 2013-01-30 2016-09-06 Basf Se Method for removal of residual monomers from water-absorbing polymer particles
US9820894B2 (en) 2013-03-22 2017-11-21 The Procter & Gamble Company Disposable absorbent articles
EP3254656B1 (de) 2013-06-14 2021-11-10 The Procter & Gamble Company Saugfähiger artikel und saugfähiger kern mit kanalformung bei nässe
JP2016535646A (ja) 2013-08-26 2016-11-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 流体吸収性製品
US9987176B2 (en) 2013-08-27 2018-06-05 The Procter & Gamble Company Absorbent articles with channels
CN105473113B (zh) 2013-08-27 2019-03-08 宝洁公司 具有通道的吸收制品
KR102329973B1 (ko) 2013-08-28 2021-11-24 가부시키가이샤 닛폰 쇼쿠바이 흡수성 수지의 제조 방법
WO2015036273A1 (de) 2013-09-12 2015-03-19 Basf Se Verfahren zur herstellung von acrylsäure
US11207220B2 (en) 2013-09-16 2021-12-28 The Procter & Gamble Company Absorbent articles with channels and signals
CN105555243A (zh) 2013-09-16 2016-05-04 宝洁公司 带有通道和信号的吸收制品
EP3351225B1 (de) 2013-09-19 2021-12-29 The Procter & Gamble Company Absorbierende kerne mit materialfreien bereichen
US20160280825A1 (en) 2013-10-30 2016-09-29 Basf Se Method for Producing Water-Absorbing Polymer Particles by Suspension Polymerization
JP6474403B2 (ja) 2013-11-22 2019-02-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 吸水性ポリマー粒子の製造方法
US9789009B2 (en) 2013-12-19 2017-10-17 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
PL2886092T3 (pl) 2013-12-19 2017-03-31 The Procter And Gamble Company Wkłady chłonne z obszarami tworzącymi kanały i zgrzewami osłony c
US10646612B2 (en) 2013-12-20 2020-05-12 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt) water absorbent, and method for producing same
EP2905001B1 (de) 2014-02-11 2017-01-04 The Procter and Gamble Company Verfahren und Vorrichtung zum Herstellen von absorbierenden Strukturen mit Kanälen
EP2949301B1 (de) 2014-05-27 2018-04-18 The Procter and Gamble Company Saugfähiger Kern mit gebogenen und geraden Absorptionsmaterialbereichen
EP2949300B1 (de) 2014-05-27 2017-08-02 The Procter and Gamble Company Saugfähiger Kern mit saugfähiger Materialstruktur
EP2949302B1 (de) 2014-05-27 2018-04-18 The Procter and Gamble Company Saugfähiger Kern mit gebogenen, kanalbildenden Bereichen
PL2949299T3 (pl) 2014-05-27 2018-01-31 Procter & Gamble Wkład chłonny z układem rozmieszczenia materiału chłonnego
EP2995322B1 (de) 2014-09-15 2017-03-01 Evonik Degussa GmbH Geruchsadsorptionsmittel
EP2995323B1 (de) 2014-09-15 2019-02-27 Evonik Degussa GmbH Aminopolycarboxylsäuren als Prozesshilfsmittel bei der Superabsorberherstellung
WO2016050397A1 (de) 2014-09-30 2016-04-07 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP3009474B1 (de) 2014-10-16 2017-09-13 Evonik Degussa GmbH Herstellverfahren für wasserlösliche Polymere
WO2016135020A1 (de) 2015-02-24 2016-09-01 Basf Se Verfahren zur kontinuierlichen dehydratisierung von 3-hydroxypropionsäure zu acrylsäure
JP2018508292A (ja) 2015-03-16 2018-03-29 ザ プロクター アンド ギャンブル カンパニー 改善されたコアを有する吸収性物品
US10507144B2 (en) 2015-03-16 2019-12-17 The Procter & Gamble Company Absorbent articles with improved strength
JP6577572B2 (ja) 2015-04-02 2019-09-18 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂を主成分とする粒子状吸水剤の製造方法
WO2016162175A1 (de) 2015-04-07 2016-10-13 Basf Se Verfahren zur dehydratisierung von 3-hydroxypropionsäure zu acrylsäure
EP3280743B1 (de) 2015-04-07 2022-03-09 Basf Se Verfahren zur agglomeration von superabsorberpartikeln
WO2016162238A1 (de) 2015-04-07 2016-10-13 Basf Se Verfahren zur herstellung von superabsorberpartikeln
EP3295102B1 (de) 2015-05-08 2023-06-07 Basf Se Herstellungsverfahren zur herstellung wasserabsorbierender polymerartikel und bandtrockner
EP3294248B1 (de) 2015-05-12 2020-12-30 The Procter and Gamble Company Saugfähiger artikel mit verbessertem kern- an-rückseite-klebstoff
JP6743057B2 (ja) 2015-05-29 2020-08-19 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company チャネル及び湿り度インジケータを有する吸収性物品
WO2016207444A1 (en) 2015-06-26 2016-12-29 Bostik Inc. New absorbent article comprising an acquisition/distribution layer and process for making it
WO2017002972A1 (ja) 2015-07-01 2017-01-05 株式会社日本触媒 粒子状吸水剤
EP3167859B1 (de) 2015-11-16 2020-05-06 The Procter and Gamble Company Absorbierende kerne mit materialfreien bereichen
EP3175832B1 (de) 2015-12-02 2020-10-28 Paul Hartmann AG Saugfähiger artikel mit verbessertem kern
EP3205318A1 (de) 2016-02-11 2017-08-16 The Procter and Gamble Company Absorbierender artikel mit hoher absorptionsfähigkeit
US10806640B2 (en) 2016-03-30 2020-10-20 Basf Se Ultrathin fluid-absorbent article
US20170281425A1 (en) 2016-03-30 2017-10-05 Basf Se Fluid-absorbent article
US10881555B2 (en) 2016-03-30 2021-01-05 Basf Se Fluid-absorbent article
EP3238676B1 (de) 2016-04-29 2019-01-02 The Procter and Gamble Company Saugkern mit profilierter verteilung von absorbierendem material
EP3238678B1 (de) 2016-04-29 2019-02-27 The Procter and Gamble Company Saugfähiger kern mit transversalen faltlinien
WO2017207330A1 (de) 2016-05-31 2017-12-07 Basf Se Verfahren zur herstellung von superabsorbern
EP3251648A1 (de) 2016-05-31 2017-12-06 The Procter and Gamble Company Absorbierender artikel mit verbesserter flüssigkeitsverteilung
EP3278782A1 (de) 2016-08-02 2018-02-07 The Procter and Gamble Company Absorbierender artikel mit verbesserter flüssigkeitsspeicherung
EP3497141B1 (de) 2016-08-10 2020-11-25 Basf Se Verfahren zur herstellung von superabsorbern
EP3532195B1 (de) 2016-10-26 2024-02-14 Basf Se Verfahren zum entladen von superabsorbierenden partikeln aus einem silo und zum füllen derselben in schüttgutbehälter
US10828208B2 (en) 2016-11-21 2020-11-10 The Procte & Gamble Company Low-bulk, close-fitting, high-capacity disposable absorbent pant
EP3576701B1 (de) 2017-02-06 2022-10-19 Basf Se Flüssigkeitsaufnehmender artikel
US20200060897A1 (en) 2017-02-17 2020-02-27 Basf Se Fluid-absorbent article
US10875985B2 (en) 2017-04-19 2020-12-29 The Procter & Gamble Company Superabsorbent polymer particles comprising one or more than one area(s) with clay platelets and at least two distinct areas substantially free of clay platelets
EP3391961A1 (de) 2017-04-19 2018-10-24 The Procter & Gamble Company Agglomerierte supersaugfähige polymerteilchen mit spezifischem grössenverhältnis
EP3391958B1 (de) 2017-04-19 2020-08-12 The Procter & Gamble Company Verfahren zur herstellung von oberflächenbeschichteten wasserabsorbierenden polymerpartikeln in einer mikrofluidischen vorrichtung
US11053370B2 (en) 2017-04-19 2021-07-06 The Procter & Gamble Company Agglomerated superabsorbent polymer particles having a specific size ratio
EP3391960B1 (de) 2017-04-19 2023-11-22 The Procter & Gamble Company Superabsorbierende polymerpartikel mit einem oder mehr als einem bereich(en) mit tonplättchen und mindestens zwei getrennte, nicht benachbarte bereiche ohne tonplättchen aufweisen
EP3391959A1 (de) 2017-04-19 2018-10-24 The Procter & Gamble Company Verfahren zur herstellung wasserabsorbierender polymerpartikel mit bereichen mit anorganischen festpartikeln und bereichen, die im wesentlichen frei von anorganischen festpartikeln sind
EP3391963B1 (de) 2017-04-19 2021-04-14 The Procter & Gamble Company Verfahren zur herstellung von agglomerierten superabsorbierenden polymerpartikeln mit tonplättchen mit kantenmodifikation und/oder oberflächenmodifikation
EP3391962A1 (de) 2017-04-19 2018-10-24 The Procter & Gamble Company Verfahren zur herstellung von wasserabsorbierenden polymerpartikeln
SG11201909971YA (en) 2017-05-02 2019-11-28 Basf Se Method for the discontinuous production of superabsorber particles by polymerizing an aqueous monomer solution dispersed in a hydrophobic solvent
EP3619244B1 (de) 2017-05-02 2021-08-04 Basf Se Verfahren zur diskontinuierlichen herstellung von superabsorberpartikeln durch polymerisation einer in einem hydrophoben lösungsmittel dispergierten wässrigen monomerlösung
US20180333310A1 (en) 2017-05-18 2018-11-22 The Procter & Gamble Company Incontinence pant with low-profile unelasticized zones
JP7229987B2 (ja) 2017-07-12 2023-02-28 ビーエーエスエフ ソシエタス・ヨーロピア 超吸収性ポリマー粒子の製造方法
JP7287946B2 (ja) 2017-07-31 2023-06-06 ビーエーエスエフ ソシエタス・ヨーロピア 超吸収性ポリマー粒子の分級方法
KR102621946B1 (ko) 2017-10-18 2024-01-05 바스프 에스이 초흡수제의 제조 방법
DE202017005496U1 (de) 2017-10-24 2017-12-19 The Procter & Gamble Company Einwegwindel
DE202017006014U1 (de) 2017-11-21 2018-01-14 The Procter & Gamble Company Absorptionsartikel mit Taschen
DE202017006016U1 (de) 2017-11-21 2017-12-01 The Procter & Gamble Company Absorptionsartikel mit Kanälen
KR102568226B1 (ko) 2017-12-11 2023-08-18 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
US11491463B2 (en) 2018-01-09 2022-11-08 Basf Se Superabsorber mixtures
JP7342035B2 (ja) 2018-02-06 2023-09-11 ビーエーエスエフ ソシエタス・ヨーロピア 超吸収体粒子を空気輸送する方法
JP7337823B2 (ja) 2018-02-22 2023-09-04 ビーエーエスエフ ソシエタス・ヨーロピア 超吸収体粒子を製造する方法
CN112040919B (zh) 2018-04-20 2023-06-27 巴斯夫欧洲公司 薄流体吸收芯-吸收性纸
EP3781108B1 (de) 2018-04-20 2023-11-29 Basf Se Verfahren zur herstellung von superabsorbern
KR20210035807A (ko) 2018-07-24 2021-04-01 바스프 에스이 초흡수제의 제조 방법
WO2020025401A1 (en) 2018-08-01 2020-02-06 Basf Se Fluid-absorbent core
CN112638337B (zh) 2018-08-01 2023-01-20 巴斯夫欧洲公司 女性卫生吸收制品
CN112533692B (zh) 2018-08-20 2023-03-28 巴斯夫欧洲公司 制备超吸收剂的方法
US20210338882A1 (en) 2018-09-28 2021-11-04 Basf Se Method for the production of superabsorbents
JP2022506105A (ja) 2018-10-29 2022-01-17 ビーエーエスエフ ソシエタス・ヨーロピア 長期色安定性の超吸収性ポリマー粒子を製造する方法
KR102418591B1 (ko) 2018-11-13 2022-07-07 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
CN116209718A (zh) 2020-09-17 2023-06-02 巴斯夫欧洲公司 制备超吸收性聚合物颗粒的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE645195A (de) * 1963-03-13 1964-09-14
US3364181A (en) * 1965-11-10 1968-01-16 Dow Chemical Co Cyclic carbamate resins and method of preparation
FR2304630A1 (fr) * 1975-03-20 1976-10-15 Ceskosiovenska Akademie Ved Procede de preparation de produits de polymerisation contenant des groupes n-acyllactame
US4056502A (en) * 1974-08-05 1977-11-01 The Dow Chemical Company Absorbent articles made from carboxylic polyelectrolyte solutions containing bis-oxazoline crosslinker and methods for their preparation
US5288811A (en) * 1992-11-05 1994-02-22 Exxon Research And Engineering Company Cyclic carbonyl containing compounds via radical grafting
WO1994009043A1 (en) * 1992-10-14 1994-04-28 The Dow Chemical Company Water-absorbent polymer having improved properties

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1301566B (de) 1966-11-30 1969-08-21 Continental Gummi Werke Ag Verfahren zur Herstellung von hydrolysebestaendigen Polyurethanelastomeren
DE2304630A1 (de) 1973-01-31 1974-08-08 John L Grund Nadel
US4057521A (en) 1974-08-05 1977-11-08 The Dow Chemical Company Absorbent articles made from carboxylic synthetic polyelectrolytes having copolymerized N-substituted acrylamide crosslinker
JPS51125468A (en) 1975-03-27 1976-11-01 Sanyo Chem Ind Ltd Method of preparing resins of high water absorbency
DE2706135C2 (de) 1977-02-14 1982-10-28 Chemische Fabrik Stockhausen GmbH, 4150 Krefeld Verdickungsmittel für ausgeschiedenen Darminhalt und Harn
US4062817A (en) 1977-04-04 1977-12-13 The B.F. Goodrich Company Water absorbent polymers comprising unsaturated carboxylic acid, acrylic ester containing alkyl group 10-30 carbon atoms, and another acrylic ester containing alkyl group 2-8 carbon atoms
US4131576A (en) 1977-12-15 1978-12-26 National Starch And Chemical Corporation Process for the preparation of graft copolymers of a water soluble monomer and polysaccharide employing a two-phase reaction system
US4286082A (en) 1979-04-06 1981-08-25 Nippon Shokubai Kagaku Kogyo & Co., Ltd. Absorbent resin composition and process for producing same
US4295987A (en) 1979-12-26 1981-10-20 The Procter & Gamble Company Cross-linked sodium polyacrylate absorbent
JPS6025045B2 (ja) 1980-03-19 1985-06-15 製鉄化学工業株式会社 塩水吸収能のすぐれたアクリル酸重合体の製造方法
DE3028043A1 (de) 1980-07-24 1982-02-18 Vdo Adolf Schindling Ag, 6000 Frankfurt Getriebe
DE3118172A1 (de) 1981-05-08 1982-11-25 Philips Kommunikations Industrie AG, 8500 Nürnberg Laengswasserdichtes optisches nachrichtenkabel
JPS6018690B2 (ja) 1981-12-30 1985-05-11 住友精化株式会社 吸水性樹脂の吸水性改良方法
US4525527A (en) 1982-01-25 1985-06-25 American Colloid Company Production process for highly water absorbable polymer
JPS58180233A (ja) 1982-04-19 1983-10-21 Nippon Shokubai Kagaku Kogyo Co Ltd 吸収剤
JPS60163956A (ja) 1984-02-04 1985-08-26 Arakawa Chem Ind Co Ltd 吸水性樹脂の製法
JPS6173704A (ja) 1984-09-19 1986-04-15 Arakawa Chem Ind Co Ltd 高吸水性樹脂の製造方法
DE3511086A1 (de) 1985-03-27 1986-10-09 Belzer-Dowidat Gmbh Werkzeug-Union, 5600 Wuppertal Zange
US4588490A (en) 1985-05-22 1986-05-13 International Business Machines Corporation Hollow cathode enhanced magnetron sputter device
US4654039A (en) 1985-06-18 1987-03-31 The Proctor & Gamble Company Hydrogel-forming polymer compositions for use in absorbent structures
DE3713601A1 (de) 1987-04-23 1988-11-10 Stockhausen Chem Fab Gmbh Verfahren zur herstellung eines stark wasserabsorbierenden polymerisats
US4833222A (en) 1987-10-22 1989-05-23 The Dow Chemical Company Crosslinker stabilizer for preparing absorbent polymers
DE3738602A1 (de) 1987-11-13 1989-05-24 Cassella Ag Hydrophile quellbare pfropfpolymerisate, deren herstellung und verwendung
ATE72801T1 (de) 1988-03-05 1992-03-15 Henkel Kgaa Verpackungsbehaelter mit in einer steifen umhuellung gelagertem flexiblen sack mit verschliessbarem auslaufspund.
DE3822490A1 (de) 1988-07-02 1990-01-04 Hoechst Ag Waessrige loesungen von polyamidoamin-epichlorhyrin-harzen, verfahren zu ihrer herstellung und ihre verwendung
AT391321B (de) 1988-08-29 1990-09-25 Chemie Linz Gmbh Verfahren zur herstellung von fluessigkeitsabsorbierenden acrylharzen
CA2004864A1 (en) 1988-12-08 1990-06-08 Kinya Nagasuna Method for production of absorbent resin excelling in durability
DE3910563A1 (de) 1989-04-01 1990-10-04 Cassella Ag Hydrophile, quellfaehige pfropfcopolymerisate, deren herstellung und verwendung
DE3911433A1 (de) 1989-04-07 1990-10-11 Cassella Ag Hydrophile quellfaehige pfropfpolymerisate, deren herstellung und verwendung
DE3917846A1 (de) 1989-06-01 1990-12-06 Hilti Ag Traegerstreifen fuer pulverkraftbetriebene setzgeraete
US5145906A (en) 1989-09-28 1992-09-08 Hoechst Celanese Corporation Super-absorbent polymer having improved absorbency properties
US5051545A (en) 1990-04-06 1991-09-24 Summagraphics Corporation Digitizer with serpentine conductor grid having non-uniform repeat increment
US5408019A (en) 1990-05-11 1995-04-18 Chemische Fabrik Stockhausen Gmbh Cross-linked, water-absorbing polymer and its use in the production of hygiene items
DE4015085C2 (de) 1990-05-11 1995-06-08 Stockhausen Chem Fab Gmbh Vernetztes, wasserabsorbierendes Polymer und Verwendung zur Herstellung von Hygieneartikeln, zur Bodenverbesserung und in Kabelummantelungen
DE4020780C1 (de) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
DE4021847C2 (de) 1990-07-09 1994-09-08 Stockhausen Chem Fab Gmbh Verfahren zur Herstellung wasserquellbarer Produkte unter Verwendung von Feinstanteilen wasserquellbarer Polymerer
DE69108804T2 (de) 1990-07-17 1995-08-24 Sanyo Chemical Ind Ltd Verfahren zur Herstellung von Wasser absorbierenden Harzen.
DE4105000A1 (de) 1991-02-19 1992-08-20 Starchem Gmbh Verfahren zur herstellung von feinteiligen, wasserquellbaren polysaccharid-pfropfpolymeren
DE69217433T2 (de) 1991-09-03 1997-06-26 Hoechst Celanese Corp Superabsorbierendes Polymer mit verbesserten Absorbiereigenschaften
DE4138408A1 (de) 1991-11-22 1993-05-27 Cassella Ag Hydrophile, hochquellfaehige hydrogele
DE4219607C2 (de) 1992-06-16 1995-09-21 Kabelmetal Electro Gmbh Verfahren zur Herstellung einer optischen Hohl- oder Bündelader
US5385983A (en) 1992-11-12 1995-01-31 The Dow Chemical Company Process for preparing a water-absorbent polymer
DE4244548C2 (de) 1992-12-30 1997-10-02 Stockhausen Chem Fab Gmbh Pulverförmige, unter Belastung wäßrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung in textilen Konstruktionen für die Körperhygiene
US5417316A (en) 1993-03-18 1995-05-23 Authentication Technologies, Inc. Capacitive verification device for a security thread embedded within currency paper
DE4440015A1 (de) 1993-12-24 1995-06-29 Rieter Ingolstadt Spinnerei Verfahren und Vorrichtung zum Speichern und Vereinzeln von Hülsen
DE4418881A1 (de) 1994-05-30 1995-12-07 Rexroth Mannesmann Gmbh Hubwerkregelsystem mit Regelventil
GB9606834D0 (en) 1996-03-30 1996-06-05 Int Computers Ltd Inter-processor communication
DE19807502B4 (de) 1998-02-21 2004-04-08 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxazolidinonen, daraus hergestellte Hydrogele und deren Verwendung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE645195A (de) * 1963-03-13 1964-09-14
US3364181A (en) * 1965-11-10 1968-01-16 Dow Chemical Co Cyclic carbamate resins and method of preparation
US4056502A (en) * 1974-08-05 1977-11-01 The Dow Chemical Company Absorbent articles made from carboxylic polyelectrolyte solutions containing bis-oxazoline crosslinker and methods for their preparation
FR2304630A1 (fr) * 1975-03-20 1976-10-15 Ceskosiovenska Akademie Ved Procede de preparation de produits de polymerisation contenant des groupes n-acyllactame
WO1994009043A1 (en) * 1992-10-14 1994-04-28 The Dow Chemical Company Water-absorbent polymer having improved properties
US5288811A (en) * 1992-11-05 1994-02-22 Exxon Research And Engineering Company Cyclic carbonyl containing compounds via radical grafting

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6809158B2 (en) 2000-10-20 2004-10-26 Nippon Shokubai Co., Ltd. Water-absorbing agent and process for producing the same
US7098284B2 (en) 2001-01-26 2006-08-29 Nippon Shokubal Co., Ltd Water-absorbing agent and production process therefor, and water-absorbent structure
US7495056B2 (en) 2001-01-26 2009-02-24 Nippon Shokubai Co., Ltd. Water-absorbing agent and production process therefor, and water-absorbent structure
US7312278B2 (en) 2001-06-08 2007-12-25 Nippon Shokubai Co., Ltd. Water-absorbing agent and production process therefor, and sanitary material
WO2003031482A1 (de) * 2001-10-05 2003-04-17 Basf Aktiengesellschaft Verfahren zur vernetzung von hydrogelen mit morpholin-2,3-dionen
US7183360B2 (en) 2001-10-05 2007-02-27 Basf Aktiengesellschaft Method for crosslinking hydrogels with morpholine-2,3-diones
CN1305914C (zh) * 2001-10-05 2007-03-21 巴斯福股份公司 用吗啉-2,3-二酮化合物交联水凝胶的方法
DE10204938A1 (de) * 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit beta-Hydroxyalkylamiden

Also Published As

Publication number Publication date
EP1141039B1 (de) 2004-02-18
ATE259834T1 (de) 2004-03-15
DE19854573A1 (de) 2000-05-31
DE59908601D1 (de) 2004-03-25
CA2347897A1 (en) 2000-06-02
ES2216617T3 (es) 2004-10-16
US6657015B1 (en) 2003-12-02
EP1141039A1 (de) 2001-10-10
JP2002530491A (ja) 2002-09-17

Similar Documents

Publication Publication Date Title
EP1141039B1 (de) Verfahren zur nachvernetzung von hydrogelen mit 2-oxotetrahydro-1,3-oxazinen
EP1056787B1 (de) Nachvernetzung von hydrogelen mit 2-oxazolidinonen
EP1133525B1 (de) Verfahren zur nachvernetzung von hydrogelen mit n-acyl-2-oxazoli-dinonen
EP1058695B1 (de) Verfahren zur vernetzung von hydrogelen mit bis- und poly-2-oxazolidinonen
EP1651683B1 (de) Verfahren zur nachvernetzung von hydrogelen mit bicyclischen amidacetalen
EP0400283B1 (de) Hydrophile quellfähige Pfropfpolymerisate, deren Herstellung und Verwendung
EP1165638B1 (de) Vernetzte, hydrophile, hochquellfähige hydrogele, verfahren zu ihrer herstellung und ihre verwendung
EP0798335A2 (de) Verfahren zur Herstellung von porösen hydrophilen, hochquellfähigen Hydrogelen
EP1866345B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP1056789A1 (de) Vernetzte quellfähige polymere
EP0545126A2 (de) Hydrophile quellfähige Pfropfpolymerisate
DE19807501C1 (de) Verfahren zur Nachvernetzung von Hydrogelen mittels Borsäureestern
DE19813443A1 (de) Wasser- und wäßrige Flüssigkeiten absorbierende Polymerisatteilchen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19807500C1 (de) Vernetzung von Hydrogelen mit Phosphorsäureestern
WO2006015729A2 (de) Verfahren zur nachvernetzung wasserabsorbierender polymere mit zyklischen carbamaten und/oder zyklischen harnstoffen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP MX PL US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999963322

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2347897

Country of ref document: CA

Ref country code: CA

Ref document number: 2347897

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: PA/a/2001/004094

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 09831382

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 583977

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1999963322

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999963322

Country of ref document: EP