WO2000033786A1 - Teilbare feste dosierungsformen und verfahren zu ihrer herstellung - Google Patents

Teilbare feste dosierungsformen und verfahren zu ihrer herstellung Download PDF

Info

Publication number
WO2000033786A1
WO2000033786A1 PCT/EP1999/009463 EP9909463W WO0033786A1 WO 2000033786 A1 WO2000033786 A1 WO 2000033786A1 EP 9909463 W EP9909463 W EP 9909463W WO 0033786 A1 WO0033786 A1 WO 0033786A1
Authority
WO
WIPO (PCT)
Prior art keywords
sectional area
dosage form
cross
longitudinal axis
dosage forms
Prior art date
Application number
PCT/EP1999/009463
Other languages
English (en)
French (fr)
Inventor
Jürgen Zeidler
Jörg Rosenberg
Werner Maier
Jörg Neumann
Original Assignee
Knoll Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Knoll Aktiengesellschaft filed Critical Knoll Aktiengesellschaft
Priority to DE59908773T priority Critical patent/DE59908773D1/de
Priority to AT99965435T priority patent/ATE260633T1/de
Priority to EP99965435A priority patent/EP1135092B1/de
Priority to CA002352625A priority patent/CA2352625C/en
Priority to JP2000586281A priority patent/JP4330275B2/ja
Priority to US09/857,018 priority patent/US6488939B1/en
Publication of WO2000033786A1 publication Critical patent/WO2000033786A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/10Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of compressed tablets

Definitions

  • the present invention relates to divisible solid dosage forms, in particular solid pharmaceutical dosage forms, and a process for their preparation.
  • solid pharmaceutical dosage forms e.g. As tablets, are divisible in order to be able to vary the dosage of an active ingredient without having to produce tablets for specific dosages.
  • the division of a tablet into precisely predetermined parts allows the administration of a subset or any multiple of the subset of the active ingredient contained in the tablet.
  • tablets usually have notches.
  • the tablet is broken apart by applying pressure to the tablet, holding the tablet between two fingers or with both hands.
  • Divisible tablets are e.g. B. in CH 683 066 or US 3,927,194.
  • DE-OS 30 30 622 describes a divisible tablet with controlled and delayed drug delivery.
  • the ratio of length to width to height should be about 2.5 to 5 to about 0.9 to 2 to 1.
  • the base and top surfaces are independent of one another flat or curved convexly about the longitudinal axis or parallels thereto.
  • DE-OS 44 46 470 describes a process for the production of divisible tablets by shaping a melt containing the active substance in a calender with two counter-rotating molding rolls which have depressions for receiving and shaping the melt into tablets, the depressions being subdivided by at least one web, which extends essentially to the outer surface of the forming roller and causes the break groove to be formed.
  • a problem with the known divisible solid dosage forms is that a relatively large amount of force is required to divide the dosage forms. This problem is particularly pronounced with dosage forms produced by melt extrusion, since these are usually made of a very hard and brittle material. An attempt has been made to work around this problem by providing the solid dosage forms with very deep notches with large notch angles. With these approaches, however, there is a risk that the solid dosage forms during post-treatment steps, e.g. B. during deburring or film coating, break through the material load, which leads to a high proportion of rejects.
  • the present invention is therefore based on the object of providing solid dosage forms which are easy to divide and at the same time have a sufficient load-bearing capacity for further processing steps. Furthermore, the solid dosage forms should be designed in such a way that the fractions of the solid dosage forms resulting from the manual division have the best possible mass uniformity.
  • the present invention therefore relates to a fixed, elongated dosage form (10) having a longitudinal axis (11) and a length (L) defined by projecting the ends (12, 13) of the dosage form onto the longitudinal axis, one perpendicular to the
  • Cross-sectional area (14, 15, 16) oriented along the longitudinal axis (11) has a variable surface area along the longitudinal axis (11), which has a cross-sectional area (15) between the ends (12, 13) with a minimal area to both ends (12, 13 ) substantially continuously increases up to a cross-sectional area (14 or 16) with a maximum area, which is characterized in that the distance of the maximum cross-sectional area (14) located in the vicinity of one end (12) from that in the vicinity of the other end (13) located maximum cross-sectional area (16) in projection on the longitudinal axis (11) is more than half the length (L) of the dosage form (10).
  • FIG. 1 shows a dosage form according to the invention in cross section.
  • FIG. 2 shows a depression in the molding roll of a molding calender, with which dosage forms according to the invention can be obtained.
  • FIG. 3 shows a dosage form according to the invention which can be obtained using a shaping roller with depressions of the type shown in FIG. 2.
  • the longitudinal axis is the main axis of inertia of the fixed dosage form on which the projection of the dosage form has the greatest extent. This extension is referred to below as the length (L) of the dosage form.
  • the dimensions of the projections of the dosage form on the two other main axes of inertia correspond to the height or width of the dosage form.
  • “Elongated” means that the length of the dosage form is greater than its width or height.
  • the length of the dosage form is preferably more than 2.5 times, in particular 3 to 4.5 times, the width or height.
  • the cross-sectional area is understood to mean the area which is enclosed by the plane of intersection of the outer surface of the dosage form on a plane oriented perpendicular to the longitudinal axis of the solid dosage form.
  • the two cross-sectional areas with the maximum area are opposite each other with respect to the cross-sectional areas with the minimum area at a distance of more than half the length of the dosage form.
  • the dosage forms of the invention can e.g. B. at the level of the minimum cross-sectional area have an all-round "constriction".
  • dosage forms according to the invention can be provided with notches on opposite sides.
  • the area of the cross-sectional area usually decreases again after reaching the maximum cross-sectional area towards one or both ends. However, even after reaching the maximum cross-sectional area up to the two ends of the dosage form, it can remain constant at this maximum value. In certain embodiments, the maximum cross section is only reached at the ends of the dosage form.
  • the shape of the dosage form according to the invention allows the dosage form to be easily gripped with both hands. The elongated shape with the center of gravity on the outside creates a favorable torque effect, which facilitates the division of the dosage forms. Due to the small cross-sectional area along which the dosage form is divided, little "fractional work" is required.
  • the dosage forms according to the invention can be divided into fragments with an exactly predetermined size.
  • the dosage forms according to the invention can also be processed very well without breaking. Because of the mass distribution prescribed by the shape of the dosage forms according to the invention, the dosage forms are largely stable against axial loading and against side impact.
  • Preferred solid dosage forms according to the invention are characterized in that the area of the minimum cross-sectional area (15) is at most two thirds, in particular at most 0.6 times, the area of the maximum cross-sectional area.
  • the most important application of the present invention is halved solid dosage forms. With these dosage forms, the minimum cross-sectional area lies in a mirror symmetry plane of the dosage form.
  • At least one longitudinal line of the dosage form has a kink at the level of the minimum cross-sectional area.
  • a notch angle can be defined as a measure of the kink, which corresponds to the angle which is enclosed by the two tangential planes applied to the dosage form surface on both sides of the minimal cross-sectional area.
  • Preferred dosage forms according to the invention have a notch angle of more than 90 °, in particular of more than 100 °.
  • the notch angle is generally less than 170 °, preferably less than 162 °. Any break groove, if any, discussed below remains out of consideration.
  • dosage forms according to the invention therefore have essentially rounded edges. It is particularly preferred that the dosage forms according to the invention are on their Equator essentially have no web. In this way, active ingredient losses in the manual division of the dosage forms can be minimized.
  • a break groove can be left out in the surface of the dosage form according to the invention along the circumference or along sections of the circumference of the minimum cross-sectional area.
  • the depth of the breaking groove is preferably small compared to the depth of the constriction or the notch, which is due to the difference in the cross-sectional areas.
  • Solid dosage forms according to the invention can be prepared by any method. However, it is particularly preferred to manufacture the dosage forms by melt calendering. Melt calendering allows the production of dosage forms that do not have a pronounced tablet bridge. In the case of tablets which are produced by conventional compression tabletting, the web is the surface formed by the die wall.
  • At least one polymeric binder, at least one active ingredient and, if appropriate, conventional additives are mixed to form a plastic mixture, and this mixture is shaped in a calender with two counter-rotating molding rolls.
  • At least one of the shaping rollers has depressions for receiving and shaping the plastic mixture into dosage forms, the depressions being designed in such a way that solid dosage forms are obtained in accordance with the above definition.
  • the dosage forms of the invention generally include:
  • Suitable polymeric binders are polymers, copolymers, cellulose derivatives, starch and starch derivatives, for example:
  • Polyvinylpyrrolidone PVP
  • copolymers of N-vinylpyrrolidone (NVP) and vinyl acetate or vinyl propionate copolymers of vinyl acetate and crotonic acid, partially saponified polyvinyl acetate, poly- lyvinyl alcohol, polyhydroxyalkyl acrylates, polyhydroxyalkyl methacrylates, polyacrylates and polymethacrylates (Eudragit types), copolymers of methyl methacrylate and acrylic acid, polyacrylamides, polyethylene glycols, polyvinylformamide (optionally partially or completely hydrolyzed), cellulose esters, cellulose ethers, in particular methyl cellulose and ethyl cellulose , Hydroxyalkyl celluloses, in particular hydroxypropyl cellulose, hydroxyalkyl alkyl celluloses, in particular hydroxypropyl ethyl cellulose, cellulose phthalates, in particular cellulose acetate phthalate and hydroxypropyl methyl
  • polyvinylpyrrolidone copolymers of N-vinylpyrrolidone and vinyl esters
  • polyhydroxyalkyl acrylates polyhydroxyalkyl methacrylates
  • polyacrylates polymethacrylates
  • alkyl celluloses and hydroxyalkyl celluloses are particularly preferred.
  • the polymeric binder must soften or melt in the total mixture of all components in the range from 50 to 180 ° C., preferably 60 to 130 ° C.
  • the glass transition temperature of the mixture must therefore be below 180 ° C, preferably below 130 ° C. If necessary, it is reduced by customary, pharmacologically acceptable plasticizing auxiliaries.
  • the amount of plasticizer is at most 30% by weight, based on the total weight of binder and plasticizer, so that storage-stable drug forms are formed which do not show a cold flow. However, the mixture preferably contains no plasticizer.
  • plasticizers examples include:
  • long-chain alcohols ethylene glycol, propylene glycol, glycerol, trimethylolpropane, triethylene glycol, butanediols, pentanols, such as pentaerythritol, hexanols, polyethylene glycols, polypropylene glycols, polyethylene propylene glycols, silicones, aromatic carboxylic acid esters (e.g.
  • dialkyl phthalate dialkyl phthalate, benzyl acid phthalate acid ester, trimerezoic acid ester acid (eg dialkyl adipates, sebacic acid esters, azelaic acid esters, citric and tartaric acid esters), fatty acid esters such as glycerol mono-, glycerol di- or glycerol triacetate or sodium diethylsulfosuccinate.
  • concentration of plasticizer is generally 0.5 to 15, preferably 0.5 to 5% by weight, based on the total weight of the mixture.
  • Common pharmaceutical auxiliaries are, for.
  • extenders or fillers such as silicates or silica, magnesium oxide, aluminum oxide, titanium oxide, methyl cellulose, sodium carboxymethyl cellulose, talc, sucrose, lactose, corn or corn starch, potato flour, polyvinyl alcohol, in particular especially in a concentration of 0.02 to 50, preferably 0.20 to 20 wt .-%, based on the total weight of the mixture.
  • Mold release agents such as magnesium, zinc and calcium stearate, sodium stearyl fumarate, talc and silicones, in a concentration of 0.1 to 5, preferably 0.1 to 3% by weight, based on the total weight of the mixture.
  • Animal or vegetable fats in particular in hydrogenated form and those which are solid at room temperature, are also suitable as mold release agents. These fats preferably have a melting point of 50 ° C or higher.
  • Triglycerides of C ⁇ 2 , C ⁇ 4 , C ⁇ 6 and Ci ⁇ fatty acids are preferred.
  • Waxes such as carnauba wax can also be used. These fats and waxes can advantageously be mixed in alone or together with mono- and / or diglycerides or phosphatides, in particular lecithin.
  • the mono- and diglycerides are preferably derived from the fatty acid types mentioned above.
  • the total amount of fats, waxes, mono-, diglycerides and / or lecithins is 0.1 to 30, preferably 0.1 to 5% by weight, based on the total weight of the mass for the respective layer;
  • Flow agents such as Aerosil (highly disperse Si0 2 ) or talc;
  • Dyes such as azo dyes, organic or inorganic pigments or dyes of natural origin, preference being given to inorganic pigments in a concentration of 0.001 to 10, preferably 0.5 to 3% by weight, based on the total weight of the mixture;
  • Stabilizers such as antioxidants, light stabilizers, hydroperoxide destroyers, radical scavengers, stabilizers against microbial attack.
  • wetting agents, preservatives, disintegrants and adsorbents can also be added (cf., for example, H. Sucker et al., Pharmaceutical See Technology, Thieme-Verlag, Stuttgart 1978).
  • auxiliaries are, for example, pentaerythritol and pentaerythritol tetraacetate, polymers such as, for. B. polyethylene or polypropylene oxides and their block copolymers (poloxamers), phosphatides such as lecithin, homo- and copolymers of vinyl pyrrolidone, surfactants such as polyoxyethylene 40 stearate and citric and succinic acid, bile acids, sterols and others such. B. at JL Ford, Pharm. Acta Helv. 61, 69-88 (1986).
  • Additives of bases and acids to control the solubility of an active ingredient are also considered auxiliary substances (see, for example, K. Thoma et al., Pharm. Ind. 5_1, 98-101 (1989)).
  • Active substances in the sense of the invention are understood to mean all substances with a physiological effect, provided they do not completely decompose under the processing conditions.
  • they are active pharmaceutical ingredients (for humans and animals), active ingredients for plant treatment, insecticides, feed and food ingredients, fragrances and perfume oils.
  • the amount of active ingredient per dose unit and the concentration can vary within wide limits depending on the effectiveness and rate of release. The only requirement is that they are sufficient to achieve the desired effect.
  • the active substance concentration can thus be in the range from 0.1 to 95, preferably from 20 to 80, in particular 30 to 70,% by weight. Combinations of active substances can also be used.
  • Active substances in the sense of the invention are also vitamins and minerals.
  • the vitamins include the vitamins of the A group and the B group, which in addition to Bi, B 2 , B ß and B ⁇ 2 as well as nicotinic acid and nicotinamide also include compounds with vitamin B properties, such as. B. adenine, choline, pantothenic acid, biotin, adenylic acid, folic acid, orotic acid, pangamic acid, carnitine, p-aminobenzoic acid, myo-inositol and lipoic acid as well as vitamin C, vitamins of the D group, E group, F group, H -Group, I and J group, K group and P group. Active substances in the sense of the invention also include peptide therapeutics. Plant treatment agents include e.g. B. Vinclozolin, Epoxiconazol and Quinmerac.
  • the method according to the invention is suitable, for example, for processing the following active ingredients:
  • Benzalkonium hydrochloride benzocaine, benzoic acid, betamethasone, bezafibrate, biotin, biperiden, bisoprolol, bromazepam, bromhexine, bromocriptine, budesonide, bufexamac, buflomedil, buspirone, caffeine, camphor, captopril, carbamazepine, carbidopa
  • Carboplatin cefachlor, cefadroxil, cefalexin, cefazolin, cefixime, cefotaxime, ceftazidime, ceftriaxone, cefuroxime, Chloramphenicol, chlorhexidine, chloropheniramine, chlortalidone, choline, cyclosporin, cilastatin, cimetidine, ciprofloxacin, cisapride, cisplatin, clarithromycin, clavulanic acid, clomipramine, clonazepam, clonidine, clotrimazol, codin, cholinoglyonoglyin, cholomoglyonoglyin, cholestonoglyin, cholestonyl cholestonyl, cholestonyl, cholestonyl, cholestonyl, cholestonyl, cholestonyl, codin, cholin
  • Itraconazole ketotifen, ketoconazole, ketoprofen, ketorolac, labetalol, lactulose, lecithin, levocarnitin, levodopa, levoglutamide, levonorgestrel, levothyroxine, lidocaine, lipase, lisinopril, loperamide, meta-xenolate, methylastolone, methylastolone, medastone, medastone, medastone, medastone, medastone, medastone, medastone, medastone, medastone, medastone, medastone, medastone, medastone, medastone, medastone, medastone, medastone, medastone, holo
  • Preferred active substances are ibuprofen (as racemate, enantiomer or enriched enantiomer), metoprolol, ketoprofen, flurbiprofen, acetylsalicylic acid, verapamil, paracetamol, nifedipine or captopril.
  • a plastic mixture of the components (melt) is provided, which is then subjected to a shaping cut.
  • the components can be mixed and the melt formed in different ways. Mixing can take place before, during and / or after the formation of the melt. For example, the components can first be mixed and then melted, or mixed and melted simultaneously. The plastic mixture is often still homogenized in order to obtain a highly disperse distribution of the active ingredient.
  • the active ingredient (s) can be used in solid form or as a solution or dispersion.
  • the components are used as such in the manufacturing process. However, they can also be in liquid form, i.e. H. are used as a solution, suspension or dispersion.
  • Suitable solvents for the liquid form of the components are primarily water or a water-miscible organic solvent or a mixture thereof with water. However, usable solvents are also water-immiscible or miscible, organic solvents. Suitable water-miscible solvents are, in particular, C ⁇ -C alkanols, such as ethanol, isopropanol or n-propanol, polyols, such as ethylene glycol, glycerol and polyethylene glycols.
  • Suitable water-immiscible solvents are alkanes such as pentane or hexane, esters such as ethyl acetate or butyl acetate, chlorinated hydrocarbons such as methylene chloride and aromatic hydrocarbons such as toluene and xylene.
  • Another usable solvent is liquid CO 2 .
  • which solvent is used in an individual case depends on the component to be absorbed and its properties.
  • active pharmaceutical ingredients are often used in the form of a salt, which is generally water-soluble. Water-soluble active ingredients can therefore be used as an aqueous solution or preferably incorporated into the aqueous solution or dispersion of the binder. The same applies to active substances which are soluble in one of the solvents mentioned, if the liquid form of the components used is based on an organic solvent.
  • Extruders or optionally heated containers with stirrers e.g. B. kneader, (like the type mentioned below).
  • Suitable devices are described, for example, in "Mixing during the manufacture and processing of plastics", H. Pahl, VDI-Verlag, 1986.
  • Particularly suitable mixing devices are extruders and dynamic and static mixers, as well as stirred tanks, single-shaft stirrers with stripping devices, in particular so-called paste stirrers, multi-shaft Agitators, in particular PDSM mixers, solids mixers and preferably mixing / kneading reactors (for example ORP, CRP, AP, DTB from List or Reactotherm from Krauss-Maffei or Ko-Kneaders from Buss).
  • mixing / kneading reactors for example ORP, CRP, AP, DTB from List or Reactotherm from Krauss-Maffei or Ko-Kneaders from Buss.
  • Double-bowl mixer trough mixer
  • stamp mixer internal mixer
  • rotor / stator systems e.g. Dispax from IKA
  • the polymer binder is preferably first melted in an extruder and then the active substance is mixed in in a kneading reactor.
  • a rotor / stator system can be used for intensive dispersion of the active ingredient.
  • the mixing device is loaded continuously or discontinuously in the usual way.
  • Powdery components can be fed freely, e.g. B. be introduced via a differential weigher.
  • Plastic masses can be fed in directly from an extruder or fed in via a gear pump, which is particularly advantageous for high viscosities and high pressures.
  • Liquid media can be metered in using a suitable pump unit.
  • the mixture obtained by mixing and / or melting the binder, the active ingredient and optionally the additive or additives is pasty to viscous (thermoplastic) or liquid and therefore extrudable.
  • the glass transition temperature of the mixture is below the decomposition temperature of all components contained in the mixture.
  • the binder should preferably be soluble or swellable in a physiological environment.
  • the mixing and melting process steps can be carried out in the same apparatus or in two or more separately operating devices.
  • the preparation of a premix can be carried out in one of the conventional mixing devices described above. Such a premix can then directly, for. B. fed into an extruder and then optionally extruded with the addition of other components.
  • the method according to the invention makes it possible to use single-screw machines, intermeshing screw machines or also multi-screw extruders, in particular twin-screw extruders, rotating in the same direction or in opposite directions and optionally equipped with kneading disks. If a solvent has to be evaporated during the extrusion, the extruders are generally equipped with an evaporation part. Extruders of the ZSK series from Werner u. Pfleiderer.
  • the mixture obtained is preferably solvent-free, i.e. H. it contains neither water nor an organic solvent.
  • the plastic mixture is subjected to shaping in a calender with counter-rotating molding rolls.
  • the surface of the shaping rollers has depressions which are suitable for receiving and shaping the plastic mixture.
  • the plastic mixture is in the trough-like space between the forming rollers, for. B. filled with a filler wedge.
  • two corresponding depressions on the form rollers briefly come together to form a tablet.
  • the depressions diverge again and give the shaped dosage form free.
  • the depressions on the form rollers are designed in such a way that they correspond to the negative form of a "half" of the dosage forms according to the invention. Corresponding depressions on the forming rollers can have the same shape or different shapes.
  • the depressions on one form roller can have a uniform depth, while the depressions of the other form roller have different depths along their longitudinal axis.
  • the depressions in both forming rolls can have varying depths along the longitudinal axes. It is preferred that the longitudinal axis of the depressions is parallel to the axis of rotation of the forming rolls.
  • the dosage forms obtained can be rounded, deburred and / or provided with a coating in a subsequent process step by customary methods.
  • Suitable materials for film coatings are film formers, such as. B. polyacrylates, such as the Eudragit types, cellulose esters, such as the hydroxypropyl cellulose, as well as cellulose ethers, such as ethyl cellulose, hydroxypropyl methyl cellulose or hydroxypropyl cellulose, optionally in admixture with fillers, color pigments, wetting agents and plasticizers.
  • solid solutions can be formed.
  • the term “solid solutions” is familiar to the person skilled in the art, for example from the literature cited at the beginning.
  • the active ingredient is molecularly dispersed in the polymer.
  • FIG. 1 shows a dosage form according to the invention in cross section.
  • the dosage form (10) has a longitudinal axis (11) and two ends (12, 13). In the vicinity of one end (12) there is a first maximum cross-sectional area (14), in the vicinity of the other end (13) there is a second maximum cross-sectional area (16).
  • a cross-sectional area (15) with a minimal cross-section is arranged in the middle of the tablet.
  • the jacket plane (17) lying in the plane of the drawing has a kink (18) at the level of the minimum cross-sectional area (15).
  • a notch angle ( ⁇ ) is enclosed by the tangential planes on both sides of the minimal cross-sectional area (15) on the dosage form surface.
  • the dosage form shown also has a break groove (19). Examples
  • a pharmaceutical mixture was produced according to the following recipe:
  • the pharmaceutical mixture was extruded in a twin-screw extruder under the following conditions:
  • the melt was fed into a form calender with two form rolls.
  • One of the form rollers had depressions of the type shown in FIG. 2 on its surface.
  • the surface of the second shaping roller had elongated depressions with a corresponding circumferential line and uniform depth.
  • tablets as shown in FIG. 3 were obtained. They were easy and smooth to break in half.
  • the standard deviations determined for the manually divided dosage forms were in the range of 2% with a total mass of the dosage forms of 500 mg. The standard deviation thus achieved is in a pharmaceutically acceptable range.

Abstract

Beschrieben werden feste, längliche Dosierungsformen (10) mit einer Längsachse (11) und einer durch Projektion der Enden (12, 13) der Dosierungsform auf die Längsachse definierten Länge (L), wobei eine senkrecht zu der Längsachse (11) orientierte Querschnittsfläche (14, 15, 16) einen entlang der Längsachse (11) variablen Flächeninhalt aufweist, der von einer zwischen den Enden (12, 13) befindlichen Querschnittsfläche (15) mit minimalem Flächeninhalt zu beiden Enden (12, 13) hin im Wesentlichen kontinuierlich bis zu jeweils einer Querschnittsfläche (14 bzw. 16) mit maximalem Flächeninhalt ansteigt, die dadurch gekennzeichnet sind, dass der Abstand der in der Nähe des einen Endes (12) befindlichen maximalen Querschnittsfläche (14) von der in der Nähe des anderen Endes (13) befindlichen maximalen Querschnittsfläche (16) in Projektion auf die Längsachse (11) mehr als die halbe Länge (L) der Dosierungsform (10) beträgt.

Description

Teilbare feste Dosierungsformen und Verfahren zu ihrer Herstellung
Beschreibung
Die vorliegende Erfindung betrifft teilbare feste Dosierungsformen, insbesondere feste pharmazeutische Dosierungsformen, und ein Verfahren zu ihrer Herstellung.
Häufig ist es erwünscht, dass feste pharmazeutische Dosierungsformen, z. B. Tabletten, teilbar sind, um die Dosierung eines Wirkstoffs variieren zu können, ohne dass für bestimmte Dosierungen jeweils eigene Tabletten hergestellt werden müssen. Die Tei- lung einer Tablette in genau vorbestimmte Teile gestattet die Verabreichung einer Teilmenge oder eines beliebigen Vielfachen der Teilmenge des in der Tablette enthaltenen Wirkstoffs.
Zur Erleichterung der Teilung weisen Tabletten üblicherweise Bruchkerben auf. Das Auseinanderbrechen der Tablette erfolgt, indem auf die Tablette Druck ausgeübt wird, wobei die Tablette zwischen zwei Fingern oder mit beiden Händen gehalten wird. Teilbare Tabletten sind z. B. in der CH 683 066 oder der US 3,927,194 beschrieben.
Die DE-OS 30 30 622 beschreibt eine teilbare Tablette mit kontrollierter und verzögerter Wirkstoffabgäbe. Das Verhältnis von Länge zu Breite zu Höhe soll dabei etwa 2,5 bis 5 zu etwa 0,9 bis 2 zu 1 betragen. Es ist eine oder mehrere senkrecht zur Länge und zur Höhe verlaufende relativ tiefe Bruchrille vorhanden. Die Grund- und Deckfläche sind unabhängig voneinander plan oder um die Längsachse oder Parallelen zu dieser konvex gebogen.
Die DE-OS 44 46 470 beschreibt ein Verfahren zur Herstellung teilbarer Tabletten durch Formen einer wirkstoffhaltigen Schmelze in einem Kalander mit zwei gegenläufig rotierenden Formwalzen, die Vertiefungen zur Aufnahme und Formung der Schmelze zu Tabletten aufweisen, wobei die Vertiefungen durch mindestens einen Steg unterteilt sind, der sich im Wesentlichen bis zur Mantelfläche der Formwalze erstreckt und die Formung der Bruchrille bewirkt.
Ein Problem bei den bekannten teilbaren festen Dosierungsformen besteht darin, dass ein relativ hoher Kraftaufwand zur Teilung der Dosierungsformen erforderlich ist. Dieses Problem ist bei durch Schmelzextrusion hergestellten Dosierungsformen besonders ausgeprägt, da diese gewöhnlich aus einem sehr harten und spröden Material bestehen. Man hat versucht, dieses Problem zu umgehen, indem man die festen Dosierungsformen mit sehr tiefen Einkerbungen mit großen Kerbwinkeln versehen hat. Bei diesen Lösungsansätzen besteht allerdings die Gefahr, dass die festen Dosierungsformen bei Nachbehandlungsschritten, z. B. beim Entgraten oder Film- coating, durch die Materialbelastung zerbrechen, was zu einem hohen Ausschussanteil führt.
Ein weiteres großes Problem stellt bei bekannten teilbaren festen Dosierungsformen die unzureichende Masseneinheitlichkeit der ma- nuell geteilten Hälften der Dosierungsformen dar. Entsprechende Untersuchungen ergaben Standardabweichungen der Tablettenhälften zwischen 3 und 13 % (siehe H.G. Kristensen et al., Pharmeuropa, Band 7, Nr. 2, Juni 1995, S. 298 ff.). Derartig hohe Standardabweichungen führen zu ungenauen Dosierungen, was insbesondere bei hochwirksamen Wirkstoffen unerwünscht ist. Die unzureichende Masseneinheitlichkeit der manuell geteilten Tablettenhälften beruht zum einen darauf, dass die Bruchfläche nicht exakt an der vorhergesehenen Stelle verläuft, und zum anderen darauf, dass das Tablettenmaterial an äußeren Kanten der Tablettenform zum Ausbre- chen neigt, was zu WirkstoffVerlusten führt.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, feste Dosierungsformen zur Verfügung zu stellen, die eine leichte Teilbarkeit und gleichzeitig eine ausreichende Belastbarkeit für Weiterverarbeitungsschritte aufweisen. Weiterhin sollten die festen Dosierungsformen so gestaltet sein, dass die bei der manuellen Teilung hervorgehenden Bruchteile der festen Dosierungsformen eine möglichst gute Masseneinheitlichkeit aufweisen.
Überraschenderweise wurde gefunden, dass diese Aufgabe durch eine bestimmte Geometrie der festen Dosierungsformen gelöst werden kann. Die vorliegende Erfindung betrifft daher eine feste, längliche Dosierungsform (10) mit einer Längsachse (11) und einer durch Projektion der Enden (12, 13) der Dosierungsform auf die Längsachse definierten Länge (L) , wobei eine senkrecht zu der
Längsachse (11) orientierte Querschnittsfläche (14, 15, 16) einen entlang der Längsachse (11) variablen Flächeninhalt aufweist, der von einer zwischen den Enden (12, 13) befindlichen Querschnittsfläche (15) mit minimalem Flächeninhalt zu beiden Enden (12, 13) hin im Wesentlichen kontinuierlich bis zu jeweils einer Querschnittsfläche (14 bzw. 16) mit maximalem Flächeninhalt ansteigt, die dadurch gekennzeichnet ist, dass der Abstand der in der Nähe des einen Endes (12) befindlichen maximalen Querschnittsfläche (14) von der in der Nähe des anderen Endes (13) befindlichen ma- ximalen Querschnittsfläche (16) in Projektion auf die Längsachse (11) mehr als die halbe Länge (L) der Dosierungsform (10) beträgt.
Figur 1 zeigt eine erfindungsgemäße Dosierungsform im Quer- schnitt.
Figur 2 zeigt eine Vertiefung in der Formwalze eines Formkalanders, mit dem erfindungsgemäße Dosierungsformen erhalten werden können.
Figur 3 zeigt eine erfindungsgemäße Dosierungsform, die unter Anwendung einer Formwalze mit Vertiefungen der in Figur 2 gezeigten Art erhalten werden kann.
Als Längsachse wird hier diejenige Hauptträgheitsachse der festen Dosierungsform bezeichnet, auf der die Projektion der Dosierungsform die größte Ausdehnung hat. Diese Ausdehnung wird im Folgenden als Länge (L) der Dosierungsform bezeichnet. Die Ausdehnungen der Projektionen der Dosierungsform auf die beiden anderen Haupt- trägheitsachsen entsprechen der Höhe bzw. Breite der Dosierungsform. "Länglich" bedeutet, dass die Länge der Dosierungsform größer als ihre Breite oder ihre Höhe ist. Vorzugsweise beträgt die Länge der Dosierungsform mehr als das 2,5-fache, insbesondere das 3- bis 4,5-fache, der Breite oder Höhe. Unter der Querschnitts- fläche wird für die Zwecke der vorliegenden Erfindung die Fläche verstanden, die auf einer senkrecht zur Längsachse der festen Dosierungsform orientierten Ebene von der Schnittlinie der äußeren Oberfläche der Dosierungsform mit der Ebene eingeschlossen wird. Die beiden Querschnittsflächen mit maximalem Flächeninhalt liegen sich bezüglich der Querschnittsflächen mit minimalem Flächeninhalt in einem Abstand von mehr als der halben Länge der Dosierungsform gegenüber. Die erfindungsgemäßen Dosierungsformen können z. B. auf Höhe der minimalen Querschnittsfläche eine allseitige "Einschnürung" aufweisen. Alternativ kann nur an einer Ta- blettenseite eine Kerbe vorliegen, während die gegenüberliegende Seite plan verläuft. Ferner können erfindungsgemäße Dosierungsformen an gegenüberliegneden Seiten mit Kerben versehen sein.
Üblicherweise nimmt bei den erfindungsgemäßen Dosierungsformen der Flächeninhalt der Querschnittsfläche nach Erreichen der maximalen Querschnittsfläche zu einem oder zu beiden Enden hin wieder ab. Er kann aber auch nach Erreichen der maximalen Querschnittsfläche bis zu den beiden Enden der Dosierungsform auf diesem maximalen Wert konstant bleiben. In bestimmten Ausführungsformen wird der maximale Querschnitt erst an den Enden der Dosierungs- form erreicht. Die Form der erfindungsgemäßen Dosierungsform gestattet eine gute Greifbarkeit der Dosierungsform mit beiden Händen. Die längliche Form mit den außenliegenden Masseschwerpunkten bewirkt eine günstige Drehmomentwirkung, die die Teilung der Dosierungsformen er- leichtert. Aufgrund der kleinen Querschnittsfläche, entlang derer die Teilung der Dosierungsform erfolgt, ist eine geringe "Brucharbeit" zu leisten. Die erfindungsgemäßen Dosierungsformen lassen sich in Bruchstücke mit exakt vorherbestimmter Größe teilen. Hierdurch wird eine gute Masseneinheitlichkeit der manuell ge- teilten Bruchstücke der erfindungsgemäßen Dosierungsformen mit geringer Standardabweichung erreicht. Die erfindungsgemäßen Dosierungsformen können auch sehr gut weiterverarbeitet werden, ohne zu zerbrechen. Aufgrund der durch die Form der erfindungsgemäßen Dosierungsformen vorgegebenen Massenverteilung sind die Do- sierungsformen gegenüber axialer Belastung und gegenüber Seitenaufprall weitgehend stabil.
Bevorzugte erfindungsgemäße feste Dosierungsformen sind dadurch gekennzeichnet, dass der Flächeninhalt der minimalen Quer- schnittsfläche (15) höchstens zwei Drittel, insbesondere höchstens das 0,6-fache, des Flächeninhalts der maximalen Querschnittsfläche beträgt.
Der wichtigste Anwendungsfall der vorliegenden Erfindung sind halbierbare feste Dosierungsformen. Bei diesen Dosierungsformen liegt die minimale Querschnittsfläche in einer Spiegelsymmetrieebene der Dosierungsform.
Bei bevorzugten erfindungsgemäßen Dosierungsformen weist wenig- stens eine in Längsrichtung verlaufende Mantellinie der Dosierungsform auf Höhe der minimalen Querschnittsfläche einen Knick auf. Hierdurch wird die Sollbruchstelle der Dosierungsform genauer definiert. Als Maß für den Knick lässt sich ein Kerbwinkel definieren, der dem Winkel entspricht, der von den beiden beid- seits der minimalen Querschnittsfläche an die Dosierungsformoberfläche angelegten Tangentialebenen eingeschlossen wird. Bevorzugte erfindungsgemäße Dosierungsformen weisen einen Kerbwinkel von mehr als 90°, insbesondere von mehr als 100°, auf. Der Kerbwinkel ist im Allgemeinen kleiner als 170°, vorzugsweise kleiner als 162°. Eine gegebenenfalls vorhandene, nachstehend erörterte, Bruchrille bleibt hierbei außer Betracht.
Es wurde festgestellt, dass beim Auseinanderbrechen von Dosierungsformen das Tablettenmaterial an scharfen Kanten zum Ausbre- chen neigt. Bevorzugte erfindungsgemäße Dosierungsformen weisen daher im Wesentlichen abgerundete Kanten auf . Insbesondere ist bevorzugt, dass die erfindungsgemäßen Dosierungsformen an ihrem Äquator im Wesentlichen keinen Steg aufweisen. Auf diese Weise können Wirkstoffverluste bei der manuellen Teilung der Dosierungsformen minimiert werden.
Zur weiteren Erleichterung der Teilbarkeit kann in der Oberfläche der erfindungsgemäßen Dosierungsform entlang des Umfangs oder entlang von Abschnitten des Umfangs der minimalen Querschnittsfläche eine Bruchrille ausgespart sein. Die Tiefe der Bruchrille ist vorzugsweise klein gegenüber der Tiefe der Einschnürung bzw. der Kerbe, die durch den Unterschied der Querschnittsflächen bedingt ist.
Erfindungsgemäße feste Dosierungsformen können nach einem beliebigen Verfahren hergestellt werden. Es ist jedoch besonders be- vorzugt, die Dosierungsformen durch Schmelzkalandrieren herzustellen. Die Schmelzkalandrierung gestattet die Herstellung von Dosierungsformen, die keinen ausgeprägten Tablettensteg aufweisen. Als Steg wird bei Tabletten, die durch übliche Presstablettierung hergestellt sind, die von der Matrizenwand gebildete Flä- ehe bezeichnet.
Bei der Schmelzkalandrierung werden mindestens ein polymeres Bindemittel, mindestens ein Wirkstoff und gegebenenfalls übliche Additive unter Bildung eines plastischen Gemisches vermischt, und dieses Gemisch wird in einem Kalander mit zwei gegenläufig rotierenden Formwalzen geformt. Wenigstens eine der Formwalzen weist dabei Vertiefungen zur Aufnahme und Formung des plastischen Gemisches zu Dosierungsformen auf, wobei die Vertiefungen so ausgestaltet sind, dass feste Dosierungsformen gemäß der obigen Defi- nition erhalten werden.
Die erfindungsgemäßen Dosierungsformen umfassen im Allgemeinen:
a) 0,1 bis 90 Gew.-%, insbesondere 0,1 bis 60 Gew.-% (bezogen auf das Gesamtgewicht der Dosierungsform) eines Wirkstoffes,
b) 10 bis 99,9 Gew.-%, insbesondere 40 bis 99,9 Gew.-% eines Bindemittels, vorzugsweise polymeren Bindemittels und
c) gegebenenfalls Additive.
Als polymere Bindemittel geeignet sind Polymere, Copolymere, Cel- lulosederivate, Stärke und Stärkederivate, beispielsweise:
Polyvinylpyrrolidon (PVP), Copolymerisate von N-Vinylpyrroli- don (NVP) und Vinylacetat oder Vinylpropionat, Copolymerisate von Vinylacetat und Crotonsäure, teilverseiftes Polyvinylacetat, Po- lyvinylalkohol, Polyhydroxyalkylacrylate, Polyhydroxyalkylmeth- acrylate, Polyacrylate und Polymethacrylate (Eudragit-Typen) , Copolymerisate von Methylmethacrylat und Acrylsäure, Polyacryl- amide, Polyethylenglykole, Polyvinylformamid (gegebenenfalls par- tiell oder vollständig hydrolysiert) , Celluloseester, Cellulose- ether, insbesondere Methylcellulose und Ethylcellulose, Hydroxy- alkylcellulosen, insbesondere Hydroxypropylcellulose, Hydroxyal- kyl-Alkylcellulosen, insbesondere Hydroxypropyl-Ethylcellulose, Cellulosephthalate, insbesondere Celluloseacetatphthalat und Hy- droxypropylmethylcellulosephthalat, und Mannane, insbesondere Ga- lactomannane . Davon sind Polyvinylpyrrolidon, Copolymerisate von N-Vinylpyrrolidon und Vinylestern, Polyhydroxyalkylacrylate, Po- lyhydroxyalkylmethacrylate, Polyacrylate, Polymethacrylate, Al- kylcellulosen und Hydroxyalkylcellulosen besonders bevorzugt.
Das polyme.re Bindemittel muß in der Gesamtmischung aller Komponenten im Bereich von 50 bis 180°C, vorzugsweise 60 bis 130°C erweichen oder schmelzen. Die Glasübergangstemperatur der Mischung muss daher unter 180°C, vorzugsweise unter 130°C liegen. Erforder- lichenfalls wird sie durch übliche, pharmakologisch akzeptable weichmachende Hilfsstoffe herabgesetzt. Die Menge an Weichmacher beträgt höchstens 30 Gew.-%, bezogen auf das Gesamtgewicht von Bindemittel und Weichmacher, damit lagerstabile Arzneiformen gebildet werden, die keinen kalten Fluss zeigen. Vorzugsweise aber enthält das Gemisch keinen Weichmacher.
Beispiele für derartige Weichmacher sind:
langkettige Alkohole, Ethylenglykol, Propylenglykol, Glycerin, Trimethylolpropan, Triethylenglykol, Butandiole, Pentanole, wie Pentaerythrit, Hexanole, Polyethylenglykole, Polypropylenglykole, Polyethylenpropylenglykole, Silicone, aromatische Carbonsäureester (z. B. Dialkylphthalate, Trimellithsäureester, Benzoesäure- ester, Terephthalsäureester) oder aliphatische Dicarbonsäureester (z. B. Dialkyladipate, Sebacinsäureester, Azelainsäureester, Zitronen- und Weinsäureester), Fettsäureester, wie Glycerinmono-, Glycerindi- oder Glycerintriacetat oder Natriumdiethylsulfosucci- nat. Die Konzentration an Weichmacher beträgt im Allgemeinen 0,5 bis 15, vorzugsweise 0,5 bis 5 Gew.-%, bezogen auf das Gesamtge- wicht des Gemisches.
Übliche galenische Hilfsstoffe, deren Gesamtmenge bis zu 100 Gew.-%, bezogen auf das Polymerisat, betragen kann, sind z. B. Streckmittel bzw. Füllstoffe, wie Silikate oder Kieselerde, Magnesiumoxid, Aluminiumoxid, Titanoxid, Methylcellulose, Na- trium-Carboxymethylcellulose, Talkum, Saccharose, Lactose, Getreide- oder Maisstärke, Kartoffelmehl, Polyvinylalkohol, insbe- sondere in einer Konzentration von 0,02 bis 50, vorzugsweise 0,20 bis 20 Gew.-%, bezogen auf das Gesamtgewicht des Gemisches.
Formtrennmittel, wie Magnesium-, Zink- und Calciumstearat, Natri- umstearylfumarat, Talkum und Silicone, in einer Konzentration von 0,1 bis 5, vorzugsweise 0,1 bis 3 Gew.-%, bezogen auf das Gesamtgewicht des Gemisches . Als Formtrennmittel geeignet sind weiterhin tierische oder pflanzliche Fette, insbesondere in hydrierter Form und solche, die bei Raumtemperatur fest sind. Diese Fette haben vorzugsweise einen Schmelzpunkt von 50°C oder höher. Bevorzugt sind Triglyceride der Cχ2-, Cχ4-, Cχ6- und Ciβ-Fettsäuren. Auch Wachse, wie Carnaubawachs , sind brauchbar. Diese Fette und Wachse können vorteilhaft alleine oder zusammen mit Mono- und/ oder Diglyceriden oder Phosphatiden, insbesondere Lecithin, zuge- mischt werden. Die Mono- und Diglyceride stammen vorzugsweise von den oben erwähnten Fettsäuretypen ab. Die Gesamtmenge an Fetten, Wachsen, Mono-, Diglyceriden und/oder Lecithinen beträgt 0,1 bis 30, vorzugsweise 0,1 bis 5 Gew.-%, bezogen auf das Gesamtgewicht der Masse für die jeweilige Schicht;
Fließmittel, wie Aerosil (hochdisperses Si02) oder Talkum;
Farbstoffe, wie Azofarbstoffe, organische oder anorganische Pigmente oder Farbstoffe natürlicher Herkunft, wobei anorganische Pigmente in einer Konzentration von 0,001 bis 10, vorzugsweise 0,5 bis 3 Gew.-%, bezogen auf das Gesamtgewicht des Gemisches bevorzugt sind;
Stabilisatoren, wie Antioxidanzien, LichtStabilisatoren, Hydro- peroxid-Vernichter, Radikalfänger, Stabilisatoren gegen mikro- biellen Befall.
Ferner können Netz-, Konservierungs- , Spreng- und Adsorptionsmittel zugesetzt werden (vgl. z. B. H. Sucker et al., Pharmazeuti- sehe Technologie, Thieme-Verlag, Stuttgart 1978).
Unter Hilfsstoffen im Sinne der Erfindung sind auch Substanzen zur Herstellung einer festen Lösung des Wirkstoffs zu verstehen. Diese Hilfsstoffe sind beispielsweise Pentaerythrit und Penta- erythrit-tetraacetat, Polymere wie z. B. Polyethylen- bzw. Polypropylenoxide und deren Blockcopolymere (Poloxamere) , Phosphatide wie Lecithin, Homo- und Copolymere des Vinylpyrrolidons , Tenside wie Polyoxyethylen-40-stearat sowie Zitronen- und Bernsteinsäure, Gallensäuren, Sterine und andere wie z. B. bei J. L. Ford, Pharm. Acta Helv. 61, 69-88 (1986) angegeben. Als Hilfsstoffe gelten auch Zusätze von Basen und Säuren zur Steuerung der Löslichkeit eines Wirkstoffes (siehe beispielsweise K. Thoma et al., Pharm. Ind. 5_1, 98-101 (1989)).
Einzige Voraussetzung für die Eignung von Hilfsstoffen sind eine ausreichende Temperaturstabilität sowie eine ausreichende Kompatibilität des Hilfsstoffes mit dem Wirkstoff.
Unter Wirkstoffen im Sinne der Erfindung sind alle Stoffe mit ei- ner physiologischen Wirkung zu verstehen, sofern sie sich unter den Verarbeitungsbedingungen nicht vollständig zersetzen. Es handelt sich insbesondere um pharmazeutische Wirkstoffe (für Mensch und Tier), Wirkstoffe für die Pflanzenbehandlung, Insektizide, Futter- und Nahrungsmittelwirkstoffe, Riechstoffe und Parfümöle. Die Wirkstoffmenge pro Dosiseinheit und die Konzentration können je nach Wirksamkeit und Freisetzungsgeschwindigkeit in weiten Grenzen variieren. Die einzige Bedingung ist, dass sie zur Erzielung der gewünschten Wirkung ausreichen. So kann die Wirkstoff- konzentration im Bereich von 0,1 bis 95, vorzugsweise von 20 bis 80, insbesondere 30 bis 70 Gew.-% liegen. Auch Wirkstoff-Kombinationen können eingesetzt werden. Wirkstoffe im Sinne der Erfindung sind auch Vitamine und Mineralstoffe. Zu den Vitaminen gehören die Vitamine der A-Gruppe, der B-Gruppe, worunter neben Bi, B2, Bß und Bχ2 sowie Nicotinsäure und Nicotinamid auch Verbindun- gen mit Vitamin B-Eigenschaften verstanden werden, wie z. B. Adenin, Cholin, Pantothensäure, Biotin, Adenylsäure, Folsäure, Orot- säure, Pangamsäure, Carnitin, p-Aminobenzoesäure, myo-Inosit und Liponsäure sowie Vitamin C, Vitamine der D-Gruppe, E-Gruppe, F- Gruppe, H-Gruppe, I- und J-Gruppe, K-Gruppe und P-Gruppe. Zu Wirkstoffen im Sinne der Erfindung gehören auch Peptidtherapeu- tika. Zu Pflanzenbehandlungsmitteln zählen z. B. Vinclozolin, Epoxiconazol und Quinmerac .
Das erfindungsgemäße Verfahren ist beispielsweise zur Verarbei- tung folgender Wirkstoffe geeignet:
Acebutolol, Acetylcystein, Acetylsalicylsäure, Acyclovir, Alfacalcidol, Allantoin, Allopurinol, Alprazolam, Ambroxol, Amikacin, Amilorid, Aminoessigsäure, Amiodaron, Amitriptylin, Amlodipin, Amoxicillin, Ampicillin, Ascorbinsäure, Aspartam, Astemizol, Atenolol, Beclomethason, Benserazid,
Benzalkonium-Hydrochlorid, Benzocain, Benzoesäure, Betamethason, Bezafibrat, Biotin, Biperiden, Bisoprolol, Bromazepam, Bromhexin, Bromocriptin, Budesonid, Bufexamac, Buflomedil, Buspiron, Coffein, Campher, Captopril, Carbamazepin, Carbidopa,
Carboplatin, Cefachlor, Cefadroxil, Cefalexin, Cefazolin, Cefixim, Cefotaxim, Ceftazidim, Ceftriaxon, Cefuroxim, Chloramphenicol, Chlorhexidin, Chlor-pheniramin, Chlortalidon, Cholin, Cyclosporin, Cilastatin, Cimetidin, Ciprofloxacin, Cisapride, Cisplatin, Clarithromycin, Clävulansäure, Clomipramin, Clonazepam, Clonidin, Clotrimazol, Codein, Cholestyramin, Cromoglycinsäure, Cyanocobalamin, Cyproteron, Desogestrel,
Dexamethason, Dexpanthenol, Dextromethorphan, Dextropropoxiphen, Diazepam, Diclofenac, Digoxin, Dihydrocodein, Dihydroergotamin, Dihydroergotoxin, Diltiazem, Diphenhydramin, Dipyridamol, Dipyron, Disopyramid, Domperidon, Dopamin, Doxycyclin, Enalapril, Ephedrin, Epinephrin, Ergocalciferol, Ergotamin, Erythromycin, Estradiol, Ethinylestradiol, Etoposid, Eucalyptus Globulus, Famotidin, Felodipin, Fenofibrat, Fenoterol, Fentanyl, Flavin-Mononucleotid, Fluconazol, Flunarizin, Fluorouracil, Fluoxetin, Flurbiprofen, Folinsäure, Furosemid, Gallopamil, Gemfibrozil, Gentamicin, Gingko Biloba, Glibenclamid, Glipizid, Clozapin, Glycyrrhiza glabra, Griseofulvin, Guaifenesin, Haloperidol, Heparin, Hyaluronsäure, Hydrochlorothiazid, Hydrocodon, Hydrocortison, Hydromorphon, Ipratropium-Hydroxid, Ibuprofen, Imipenem, Imipramin, Indomethacin, Iohexol, lopamidol, Isosorbid-Dinitrat, Isosorbid-Mononitrat, Isotretinoin,
Itraconazol, Ketotifen, Ketoconazol, Ketoprofen, Ketorolac, Labetalol, Lactulose, Lecithin, Levocarnitin, Levodopa, Levoglutamid, Levonorgestrel, Levothyroxin, Lidocain, Lipase, Lisinopril, Loperamid, Lorazepam, Lovastatin, Medroxyprogesteron, Menthol, Methotrexat, Methyldopa, Methylprednisolon,
Metoclopramid, Metoprolol, Miconazol, Midazolam, Minocyclin, Minoxidil, Misoprostol, Morphin, Multivitamin-Mischungen bzw. -Kombinationen und Mineralsalze, N-Methylephedrin, Naftidrofuryl, Naproxen, Neomycin, Nicardipin, Nicergolin, Nicotinamid, Nicotin, Nicotinsäure, Nifedipin, Nimodipin, Nitrazepam, Nitrendipin,
Nizatidin, Norethisteron, Norfloxacin, Norgestrel, Nortriptylin, Nystatin, Ofloxacin, Omeprazol, Ondansetron, Pancreatin, Panthenol, Pantothensäure, Paracetamol, Penicillin G, Penicillin V, Pentoxifyllin, Phenobarbital, Phenoxymethylpenicillin, Phenylephrin, Phenylpropanolamin, Phenytoin, Piroxicam, Polymyxin B, Povidon-Iod, Pravastatin, Prazepam, Prazosin, Prednisolon, Prednison, Propafenon, Propranolol, Proxyphyllin, Pseudoephedrin, Pyridoxin, Quinidin, Ramipril, Ranitidin, Reserpin, Retinol, Riboflavin, Rifampicin, Rutosid, Saccharin, Salbutamol, Salcatonin, Salicylsäure, Selegilin, Simvastatin, Somatropin, Sotalol, Spironolacton, Sucralfat, Sulbactam, Sulfamethoxazol, Sulfasalazin, Sulpirid, Tamoxifen, Tegafur, Teprenon, Terazosin, Terbutalin, Terfenadin, Tetracyclin, Theophyllin, Thiamin, Ticlopidin, Timolol, Tranexamsäure, Tretinoin, Triamcinolon-Acetonid, Triamteren, Trimethoprim, Troxerutin, Uracil, Valproinsäure, Vancomycin, Verapamil, Vitamin E, Zidovudin.
Bevorzugte Wirkstoffe sind Ibuprofen (als Racemat, Enantiomer oder angereichertes Enantiomer), Metoprolol, Ketoprofen, Flurbiprofen, Acetylsalicylsäure, Verapamil, Paracetamol, Nifedipin oder Captopril .
Zur Herstellung der festen Dosierungsformen wird ein plastisches Gemisch der Komponenten (Schmelze) bereitgestellt, das anschließend einem Formgebungsschnitt unterzogen wird. Das Vermischen der Komponenten und die Bildung der Schmelze können auf unterschiedliche Weise erfolgen. Das Vermischen kann vor, während und/oder nach der Bildung der Schmelze erfolgen. Beispielsweise können die Komponenten zuerst vermischt und dann aufgeschmolzen oder gleichzeitig vermischt und aufgeschmolzen werden. Häufig erfolgt noch eine Homogenisierung des plastischen Gemisches, um eine hochdisperse Verteilung des Wirkstoffes zu erhalten.
Insbesondere bei Verwendung von empfindlichen Wirkstoffen hat es sich aber als bevorzugt erwiesen, zuerst das polymere Bindemittel, gegebenenfalls zusammen mit üblichen pharmazeutischen Additiven, aufzuschmelzen und vorzuvermischen und dann den (die) empfindlichen Wirkstoff(e) in "Intensivmischern" in plastischer Phase bei sehr kleinen Verweilzeiten einzumischen (Homogenisieren) . Der (die) Wirkstoff (e) kann (können) dabei in fester Form oder als Lösung oder Dispersion eingesetzt werden.
Im Allgemeinen werden die Komponenten als solche in das Herstel- lungsverfahren eingesetzt. Sie können jedoch auch in flüssiger Form, d. h. als Lösung, Suspension oder Dispersion zur Anwendung kommen.
Als Lösungsmittel für die flüssige Form der Komponenten kommt in erster Linie Wasser oder ein mit Wasser mischbares, organisches Lösungsmittel oder ein Gemisch davon mit Wasser in Betracht. Brauchbare Lösungsmittel sind aber auch mit Wasser nicht mischbare oder mischbare, organische Lösungsmittel. Geeignete, mit Wasser mischbare Lösungsmittel sind insbesondere Cχ-C -Alkanole, wie Ethanol, Isopropanol oder n-Propanol, Polyole, wie Ethylen- glykol, Glycerin und Polyethylenglykole. Geeignete, mit Wasser nicht mischbare Lösungsmittel sind Alkane, wie Pentan oder Hexan, Ester, wie Ethylacetat oder Butylacetat, chlorierte Kohlenwasserstoffe, wie Methylenchlorid und aromatische Kohlenwasserstoffe, wie Toluol und Xylol. Ein weiteres brauchbares Lösungsmittel ist flüssiges C02. Welches Lösungsmittel im Einzelfall verwendet wird, hängt von der aufzunehmenden Komponente und deren Eigenschaften ab. Beispielsweise kommen pharmazeutische Wirkstoffe häufig in Form eines Salzes, das im Allgemeinen wasserlöslich ist, zur Anwendung. Wasser- lösliche Wirkstoffe können daher als wässrige Lösung eingesetzt werden oder vorzugsweise in die wässrige Lösung oder Dispersion des Bindemittels aufgenommen werden. Entsprechendes gilt für Wirkstoffe, die in einem der genannten Lösungsmittel löslich sind, wenn die flüssige Form der zur Anwendung kommenden Kompo- nenten auf einem organischen Lösungsmittel basiert.
Gegebenenfalls kann an die Stelle des Aufschmelzens ein Lösen, Suspendieren oder Dispergieren in den oben genannten Lösungsmitteln, falls erwünscht und/oder erforderlich unter Zusatz geeigne- ter Hilfsstoffe, wie z. B. Emulgatoren, treten. Das Lösungsmittel wird dann im Allgemeinen unter Bildung der Schmelze in einer geeigneten Apparatur, z. B. einem Extruder, entfernt. Im Folgenden soll dies von dem Begriff Vermischen umfasst werden.
Das Aufschmelzen und/oder Vermischen erfolgt in einer für diesen Zweck üblichen Vorrichtung. Besonders geeignet sind Extruder oder gegebenenfalls beheizbare Behälter mit Rührwerk, z. B. Kneter, (wie der unten noch erwähnten Art) .
Als Mischapparat sind insbesondere solche Vorrichtungen brauchbar, die in der Kunststofftechnologie zum Mischen eingesetzt werden. Geeignete Vorrichtungen sind beispielsweise beschrieben in "Mischen beim Herstellen und Verarbeiten von Kunststoffen", H. Pahl, VDI-Verlag, 1986. Besonders geeignete Mischapparaturen sind Extruder und dynamische und statische Mischer, sowie Rührkessel, einwellige Rührwerke mit AbstreifVorrichtungen, insbesondere sogenannte Pastenrührwerke, mehrwellige Rührwerke, insbesondere PDSM-Mischer, Feststoffmischer sowie vorzugsweise Misch- Knetreaktoren (z. B. ORP, CRP, AP, DTB der Firma List oder Reac- totherm der Firma Krauss-Maffei oder Ko-Kneter der Fa. Buss),
Doppelmuldenkneter (Trogmischer) und Stempelkneter (Innenmischer) oder Rotor/Stator-Systeme (z. B. Dispax der Firma IKA) .
Bei empfindlichen Wirkstoffen erfolgt vorzugsweise zunächst das Aufschmelzen des polymeren Bindemittels in einem Extruder und anschließend das Zumischen des Wirkstoffs in einem Misch-Knetreak- tor. Bei weniger empfindlichen Wirkstoffen kann man dagegen zum intensiven Dispergieren des Wirkstoffs ein Rotor/Stator-System einsetzen. Das Beschicken der Mischvorrichtung erfolgt je nach deren Konzeption kontinuierlich oder diskontinuierlich in üblicher Weise. Pulverförmige Komponenten können im freien Zulauf, z. B. über eine Differentialdosierwaage eingeführt werden. Plastische Massen können direkt aus einem Extruder eingespeist oder über eine Zahnradpumpe, die insbesondere bei hohen Viskositäten und hohen Drü- ken von Vorteil ist, zugespeist werden. Flüssige Medien können über ein geeignetes Pumpenaggregat zudosiert werden.
Das durch Vermischen und/oder Aufschmelzen des Bindemittels, des Wirkstoffes und gegebenenfalls des Additivs oder der Additive erhaltene Gemisch ist teigig bis zähflüssig (thermoplastisch) oder flüssig und daher extrudierbar. Die Glasübergangstemperatur des Gemisches liegt unter der Zersetzungstemperatur aller in dem Ge- misch enthaltenen Komponenten. Das Bindemittel soll vorzugsweise in physiologischer Umgebung löslich oder quellbar sein.
Die Verfahrensschritte Vermischen und Aufschmelzen können in derselben Apparatur oder in zwei oder mehreren getrennt arbeitenden Vorrichtungen ausgeführt werden. Die Zubereitung einer Vormischung kann in einer der oben beschriebenen üblichen Mischvorrichtungen durchgeführt werden. Eine solche Vormischung kann dann direkt, z. B. in einen Extruder, eingespeist und anschließend gegebenenfalls unter Zusatz weiterer Komponenten extrudiert werden.
Das erfindungsgemäße Verfahren erlaubt es, als Extruder Einschneckenmaschinen, kämmende Schneckenmaschinen oder auch Mehrwellenextruder, insbesondere Zweischnecken-Extruder, gleichsinnig oder gegensinnig drehend und gegebenenfalls mit Knetscheiben aus- gerüstet, einzusetzen. Wenn bei der Extrusion ein Lösungsmittel verdampft werden muss, sind die Extruder im Allgemeinen mit einem Verdampfungsteil ausgerüstet. Besonders bevorzugt sind Extruder der ZSK-Baureihe von Werner u. Pfleiderer.
Das erhaltene Gemisch ist vorzugsweise lösungsmittelfrei, d. h. es enthält weder Wasser noch ein organisches Lösungsmittel.
Das plastische Gemisch wird einer Formgebung in einem Kalander mit gegenläufig rotierenden Formwalzen unterzogen. Die Formwalzen weisen auf ihren Oberflächen Vertiefungen auf, die zur Aufnahme und Formung des plastischen Gemisches geeignet sind. Das plastische Gemisch wird dabei in den trogähnlichen Raum zwischen den Formwalzen, z. B. mittels eines Füllkeils, eingefüllt. An der Berührungslinie der Formwalzen treten kurzzeitig jeweils zwei ein- ander entsprechende Vertiefungen auf den Formwalzen zu einer Tablettenform zusammen. Bei der Weiterrotation streben die Vertiefungen wieder auseinander und geben die geformte Dosierungsform frei. Die Vertiefungen auf den Formwalzen sind so ausgestaltet, dass sie der Negativform einer "Hälfte" der erfindungsgemäßen Dosierungsformen entsprechen. Einander entsprechende Vertiefungen auf den Formwalzen können gleiche Form oder unterschiedliche Form haben. Die Vertiefungen auf einer Formwalze können eine gleichförmige Tiefe aufweisen, während die Vertiefungen der anderen Formwalze entlang ihrer Längsachse unterschiedliche Tiefen aufweist. Alternativ können die Vertiefungen in beiden Formwalzen entlang der Längsachsen variierende Tiefen aufweisen. Es ist be- vorzugt, dass die Längsachse der Vertiefungen parallel zur Rotationsachse der Formwalzen liegt.
Die erhaltenen Dosierungsformen können in einem nachgeschalteten Verfahrensschritt nach üblichen Verfahren gerundet, entgratet und/oder mit einem Coating versehen werden. Geeignete Materialien für Filmüberzüge sind Filmbildner, wie z. B. Polyacrylate, wie die Eudragit-Typen, Celluloseester, wie die Hydroxypropylcellulo- sephthalate, sowie Celluloseether, wie Ethylcellulose, Hydroxy- propylmethylcellulose oder Hydroxypropylcellulose, gegebenenfalls in Abmischung mit Füllmitteln, Farbpigmenten, Benetzungsmitteln und Weichmachern.
Im Einzelnen kann es zur Ausbildung von festen Lösungen kommen. Der Begriff "feste Lösungen" ist dem Fachmann geläufig, bei- spielsweise aus der eingangs zitierten Literatur. In festen Lösungen von Wirkstoffen in Polymeren liegt der Wirkstoff molekulardispers im Polymer vor.
Die Figuren und das nachstehende Beispiel sollen die Erfindung näher veranschaulichen.
Figur 1 zeigt eine erfindungsgemäße Dosierungsform im Querschnitt. Die Dosierungsform (10) weist eine Längsachse (11) und zwei Enden (12, 13) auf. In der Nähe des einen Endes (12) befin- det sich eine erste maximale Querschnittsfläche (14), in der Nähe des anderen Endes (13) eine zweite maximale Querschnittsfläche (16). In der Mitte der Tablette ist eine Querschnittsfläche (15) mit minimalem Querschnitt angeordnet. Die in der Zeichenebene liegende Mantelebene (17) weist auf Höhe der minimalen Quer- schnittsfläche (15) einen Knick (18) auf. Durch die beidseits der minimalen Querschnittsfläche (15) an die Dosierungsformoberfläche angelegten Tangentialebenen wird ein Kerbwinkel (α) eingeschlossen. Die dargestellte Dosierungsform weist außerdem eine Bruchrille (19) auf. Beispiele
Beispiel 1
Es wurde gemäß folgender Rezeptur eine pharmazeutische Mischung hergestellt:
Verapamil-HCl 48,0 Gew.-%
Hydroxypropylcellulose 31,5 Gew.-% Hydroxypropylmethylcellulose 17,5 Gew.-% Lecithin 3,0 Gew.-%.
Die pharmazeutische Mischung wurde in einem Zweischnecken-Extruder unter folgenden Bedingungen extrudiert:
Temperaturbereich 80-125°C
Schneckendrehzahl 120 U/min
Vakuum 100 mbar
Massenfluß 120 kg/h
Die Schmelze wurde in einen Formkalander mit zwei Formwalzen geführt. Eine der Formwalzen wies auf ihrer Oberfläche Vertiefungen der in Figur 2 gezeigten Art auf. Die zweite Formwalze wies auf ihrer Oberfläche längliche Vertiefungen mit entsprechender Um- fangslinie und einheitlicher Tiefe auf. Man erhielt auf diese Weise Tabletten, wie sie in Figur 3 abgebildet sind. Sie waren leicht und glatt in zwei gleiche Hälften zu zerbrechen. Die ermittelten Standardabweichungen bei den manuell geteilten Dosierungsformen lagen im Bereich von 2 % bei einer Gesamtmasse der Dosierungsformen von 500 mg. Die somit erreichte Standardabweichung liegt in einem pharmazeutisch akzeptablen Bereich.

Claims

Patentansprüche
1. Feste, längliche Dosierungsform (10) mit einer Längsachse (11) und einer durch Projektion der Enden (12, 13) der Dosierungsform auf die Längsachse definierten Länge (L), wobei eine senkrecht zu der Längsachse (11) orientierte Querschnittsfläche (14, 15, 16) einen entlang der Längsachse (11) variablen Flächeninhalt aufweist, der von einer zwischen den Enden (12, 13) befindlichen Querschnittsfläche (15) mit minimalem Flächeninhalt zu beiden Enden (12, 13) hin im Wesentlichen kontinuierlich bis zu jeweils einer Querschnittsfläche (14 bzw. 16) mit maximalem Flächeninhalt ansteigt, dadurch gekennzeichnet, dass der Abstand der in der Nähe des einen Endes (12) befindlichen maximalen Querschnittsfläche (14) von der in der Nähe des anderen Endes (13) befindlichen maximalen Querschnittsfläche (16) in Projektion auf die Längsachse (11) mehr als die halbe Länge (L) der Dosierungsform (10) beträgt.
2. Dosierungsform nach Anspruch 1, dadurch gekennzeichnet, dass der Abstand der in der Nähe des einen Endes ( 12 ) befindlichen maximalen Querschnittsfläche (14) von der in der Nähe des anderen Endes (13) befindlichen maximalen Querschnittsfläche (16) in Projektion auf die Längsachse mehr als das 0,6-fache der Länge (L) beträgt.
3. Dosierungsform nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Flächeninhalt der minimalen Querschnittsfläche (15) höchstens zwei Drittel des Flächeninhalts der maximalen Querschnittsfläche (14, 16) beträgt.
4. Dosierungsform nach Anspruch 3, dadurch gekennzeichnet, dass der Flächeninhalt der minimalen Querschnittsfläche (15) höchstens das 0,6-fache des Flächeninhalts der maximalen Quer- schnittsfläche (14, 16) beträgt.
5. Dosierungsform nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die minimale Querschnittsfläche (15) in einer Spiegelsymmetrieebene der Dosierungsform liegt.
6. Dosierungsform nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens eine in Längsrichtung verlaufende Mantellinie (17) der Dosierungsform (10) auf Höhe der minimalen Querschnittsfläche (15) einen Knick (18) auf- weist.
7. Dosierungsform nach Anspruch 6, dadurch gekennzeichnet, dass die Dosierungsform einen Kerbwinkel (α) von mehr als 90° aufweist.
5 8. Dosierungsform nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie im Wesentlichen abgerundete Kanten aufweist.
9. Dosierungsform nach einem der vorhergehenden Ansprüche, da- 10 durch gekennzeichnet, dass in der Oberfläche der Dosierungsform (10) entlang des Umfangs oder entlang von Abschnitten des Umfangs der minimalen Querschnittsfläche (15) eine Bruchrille (19) ausgespart ist.
15 10. Verfahren zur Herstellung von Dosierungsformen durch Formen einer wirkstoffhaltigen Schmelze in einem Kalander mit zwei gegenläufig rotierenden Formwalzen, von denen wenigstens eine Vertiefungen zur Aufnahme und Formung der Schmelze zu Dosierungsformen aufweist, dadurch gekennzeichnet, dass die Form-
20 walze(n) Vertiefungen aufweist (aufweisen), die so ausgestaltet sind, dass Dosierungsformen nach einem der vorhergehenden Ansprüche erhalten werden.
25
30
35
40
45
PCT/EP1999/009463 1998-12-04 1999-12-03 Teilbare feste dosierungsformen und verfahren zu ihrer herstellung WO2000033786A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE59908773T DE59908773D1 (de) 1998-12-04 1999-12-03 Teilbare feste dosierungsformen und verfahren zu ihrer herstellung
AT99965435T ATE260633T1 (de) 1998-12-04 1999-12-03 Teilbare feste dosierungsformen und verfahren zu ihrer herstellung
EP99965435A EP1135092B1 (de) 1998-12-04 1999-12-03 Teilbare feste dosierungsformen und verfahren zu ihrer herstellung
CA002352625A CA2352625C (en) 1998-12-04 1999-12-03 Cleavable solid dosage forms and method for the production thereof
JP2000586281A JP4330275B2 (ja) 1998-12-04 1999-12-03 分割可能な固体剤形及びその製造法
US09/857,018 US6488939B1 (en) 1998-12-04 1999-12-03 Cleavable solid dosage forms and method for the production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19856147A DE19856147A1 (de) 1998-12-04 1998-12-04 Teilbare feste Dosierungsformen und Verfahren zu ihrer Herstellung
DE19856147.4 1998-12-04

Publications (1)

Publication Number Publication Date
WO2000033786A1 true WO2000033786A1 (de) 2000-06-15

Family

ID=7890080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/009463 WO2000033786A1 (de) 1998-12-04 1999-12-03 Teilbare feste dosierungsformen und verfahren zu ihrer herstellung

Country Status (8)

Country Link
US (1) US6488939B1 (de)
EP (1) EP1135092B1 (de)
JP (1) JP4330275B2 (de)
AT (1) ATE260633T1 (de)
CA (1) CA2352625C (de)
DE (2) DE19856147A1 (de)
ES (1) ES2217872T3 (de)
WO (1) WO2000033786A1 (de)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4245746B2 (ja) 1999-09-20 2009-04-02 協和発酵バイオ株式会社 発酵法によるアミノ酸の製造法
JP5767429B2 (ja) 1999-11-12 2015-08-19 アッヴィ・インコーポレイテッド 固体分散剤中の結晶化阻害剤
US7364752B1 (en) 1999-11-12 2008-04-29 Abbott Laboratories Solid dispersion pharamaceutical formulations
DE10026698A1 (de) 2000-05-30 2001-12-06 Basf Ag Selbstemulgierende Wirkstoffformulierung und Verwendung dieser Formulierung
US7776314B2 (en) 2002-06-17 2010-08-17 Grunenthal Gmbh Abuse-proofed dosage system
DE102005005446A1 (de) 2005-02-04 2006-08-10 Grünenthal GmbH Bruchfeste Darreichungsformen mit retardierter Freisetzung
US8075872B2 (en) 2003-08-06 2011-12-13 Gruenenthal Gmbh Abuse-proofed dosage form
DE102004032051A1 (de) 2004-07-01 2006-01-19 Grünenthal GmbH Verfahren zur Herstellung einer gegen Missbrauch gesicherten, festen Darreichungsform
US20070048228A1 (en) 2003-08-06 2007-03-01 Elisabeth Arkenau-Maric Abuse-proofed dosage form
DE10361596A1 (de) 2003-12-24 2005-09-29 Grünenthal GmbH Verfahren zur Herstellung einer gegen Missbrauch gesicherten Darreichungsform
DE10336400A1 (de) 2003-08-06 2005-03-24 Grünenthal GmbH Gegen Missbrauch gesicherte Darreichungsform
US8025899B2 (en) 2003-08-28 2011-09-27 Abbott Laboratories Solid pharmaceutical dosage form
US8377952B2 (en) 2003-08-28 2013-02-19 Abbott Laboratories Solid pharmaceutical dosage formulation
JP2005145821A (ja) * 2003-11-11 2005-06-09 Kao Corp 打錠製剤
TWI428271B (zh) * 2004-06-09 2014-03-01 Smithkline Beecham Corp 生產藥物之裝置及方法
DE102004032049A1 (de) 2004-07-01 2006-01-19 Grünenthal GmbH Gegen Missbrauch gesicherte, orale Darreichungsform
DE102005005449A1 (de) 2005-02-04 2006-08-10 Grünenthal GmbH Verfahren zur Herstellung einer gegen Missbrauch gesicherten Darreichungsform
DE102007011485A1 (de) 2007-03-07 2008-09-11 Grünenthal GmbH Darreichungsform mit erschwertem Missbrauch
AU2009207796B2 (en) 2008-01-25 2014-03-27 Grunenthal Gmbh Pharmaceutical dosage form
ES2599031T3 (es) 2008-05-09 2017-01-31 Grünenthal GmbH Proceso para la preparación de una formulación de polvo intermedia y una forma de dosificación solida final utilizando un paso de congelación por pulverización
PT2456424E (pt) 2009-07-22 2013-09-30 Gruenenthal Gmbh Forma de dosagem resistente à adulteração e estabilizada contra a oxidação
NZ596667A (en) 2009-07-22 2013-09-27 Gruenenthal Chemie Hot-melt extruded controlled release dosage form
EP2475507A4 (de) * 2009-09-11 2013-07-17 Mars Inc Gurt für ein tiernahrungsprodukt
MX2013002377A (es) 2010-09-02 2013-04-29 Gruenenthal Gmbh Forma de dosificacion resistente a manipulacion que comprende una sal inorganica.
CA2808541C (en) 2010-09-02 2019-01-08 Gruenenthal Gmbh Tamper resistant dosage form comprising an anionic polymer
MX348054B (es) 2011-07-29 2017-05-25 Gruenenthal Gmbh Tableta a prueba de alteracion que proporciona liberacion inmediata del farmaco.
AR087360A1 (es) 2011-07-29 2014-03-19 Gruenenthal Gmbh Tableta a prueba de manipulacion que proporciona liberacion de farmaco inmediato
AU2013225106B2 (en) 2012-02-28 2017-11-02 Grunenthal Gmbh Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer
RS57913B1 (sr) 2012-04-18 2019-01-31 Gruenenthal Gmbh Farmaceutske dozne forme otporne na neovlašćenu upotrebu i naglo oslobađanje celokupne doze
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
WO2014146093A2 (en) * 2013-03-15 2014-09-18 Inspirion Delivery Technologies, Llc Abuse deterrent compositions and methods of use
JP6466417B2 (ja) 2013-05-29 2019-02-06 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 二峰性放出プロファイルを有する改変防止(tamper−resistant)剤形
JP6445537B2 (ja) 2013-05-29 2018-12-26 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 1個または複数の粒子を含有する改変防止(tamper−resistant)剤形
JP6449871B2 (ja) 2013-07-12 2019-01-09 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング エチレン−酢酸ビニルポリマーを含有する改変防止剤形
BR112016010482B1 (pt) 2013-11-26 2022-11-16 Grünenthal GmbH Preparação de uma composição farmacêutica em pó por meio de criomoagem
WO2015173195A1 (en) 2014-05-12 2015-11-19 Grünenthal GmbH Tamper resistant immediate release capsule formulation comprising tapentadol
JP2017516789A (ja) 2014-05-26 2017-06-22 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング エタノール過量放出に対して防護されている多粒子
EA035434B1 (ru) 2015-04-24 2020-06-15 Грюненталь Гмбх Защищенная от применения не по назначению лекарственная форма с немедленным высвобождением и устойчивостью к экстракции растворителями
US10842750B2 (en) 2015-09-10 2020-11-24 Grünenthal GmbH Protecting oral overdose with abuse deterrent immediate release formulations

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735805A (en) * 1987-03-11 1988-04-05 The Upjohn Company Bisectable drug tablet
DE4229085A1 (de) * 1992-09-01 1994-03-03 Boehringer Mannheim Gmbh Längliche, teilbare Tablette
DE4446470A1 (de) * 1994-12-23 1996-06-27 Basf Ag Verfahren zur Herstellung von teilbaren Tabletten
JPH08277217A (ja) * 1995-04-05 1996-10-22 Sumitomo Pharmaceut Co Ltd 分割性錠剤

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927194A (en) 1972-12-06 1975-12-16 Ives Lab Inc Tablet formulation
US4353887A (en) 1979-08-16 1982-10-12 Ciba-Geigy Corporation Divisible tablet having controlled and delayed release of the active substance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735805A (en) * 1987-03-11 1988-04-05 The Upjohn Company Bisectable drug tablet
DE4229085A1 (de) * 1992-09-01 1994-03-03 Boehringer Mannheim Gmbh Längliche, teilbare Tablette
DE4446470A1 (de) * 1994-12-23 1996-06-27 Basf Ag Verfahren zur Herstellung von teilbaren Tabletten
JPH08277217A (ja) * 1995-04-05 1996-10-22 Sumitomo Pharmaceut Co Ltd 分割性錠剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 02 28 February 1997 (1997-02-28) *

Also Published As

Publication number Publication date
JP2002531225A (ja) 2002-09-24
DE19856147A1 (de) 2000-06-08
ATE260633T1 (de) 2004-03-15
EP1135092B1 (de) 2004-03-03
CA2352625C (en) 2009-10-13
JP4330275B2 (ja) 2009-09-16
EP1135092A1 (de) 2001-09-26
US6488939B1 (en) 2002-12-03
CA2352625A1 (en) 2000-06-15
ES2217872T3 (es) 2004-11-01
DE59908773D1 (de) 2004-04-08

Similar Documents

Publication Publication Date Title
EP1135092B1 (de) Teilbare feste dosierungsformen und verfahren zu ihrer herstellung
EP0864324B1 (de) Verfahren zur Herstellung von festen Kombinationsarzneiformen
EP0998920B1 (de) Verfahren zur Herstellung von festen Dosierungsformen
EP0930875B1 (de) Verfahren zur herstellung fester pharmazeutischer formen durch extrudierung
EP0993828B1 (de) Verfahren zur Herstellung von beschichteten festen Dosierungsformen
EP0864326B1 (de) Mehrphasige wirkstoffhaltige Zubereitungsformen
EP1035841B1 (de) Verfahren zur herstellung von festen dosierungsformen
EP2114375B1 (de) Schnelldispergierbares, teilchenförmiges filmüberzugsmittel basierend auf polyvinylalkohol-polyether-pfropfcopolymeren
EP0998918B1 (de) Feste Dosierungsform mit copolymerem Bindemittel
EP1107739B1 (de) Verfahren zur herstellung von festen dosierungsformen
EP0820753A2 (de) Verfahren zur Herstellung von festen Arzneiformen
EP1475068B1 (de) Verfahren zur Herstellung unterschiedlicher fester Dosierungsformen
EP1133271B1 (de) Verfahren zur herstellung von festen dosierungsformen
EP0922462A2 (de) Verfahren zur Herstellung von festen Dosierungsformen
EP0922463A2 (de) Verfahren zur Herstellung von festen Dosierungsformen
EP0931552A2 (de) Verfahren zur Herstellung von festen Dosierungsformen
WO1997015291A1 (de) Verfahren zur herstellung von festen arzneiformen
WO2008080773A1 (de) Verfahren zur herstellung von festen dosierungsformen enthaltend pfropfcopolymere
WO1999027909A1 (de) Verfahren zur herstellung von festen dosierungsformen
DE19637479A1 (de) Verfahren zur Herstellung fester pharmazeutischer Formen
WO1997015290A1 (de) Verfahren zur herstellung von festen arzneiformen
WO1997015292A1 (de) Verfahren zur herstellung von festen arzneiformen
DE19734011A1 (de) Verfahren zur Herstellung fester pharmazeutischer Formen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2352625

Country of ref document: CA

Ref country code: CA

Ref document number: 2352625

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09857018

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999965435

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 586281

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1999965435

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999965435

Country of ref document: EP