WO2000048672A1 - Stomach treatment apparatus and method - Google Patents

Stomach treatment apparatus and method Download PDF

Info

Publication number
WO2000048672A1
WO2000048672A1 PCT/US2000/004432 US0004432W WO0048672A1 WO 2000048672 A1 WO2000048672 A1 WO 2000048672A1 US 0004432 W US0004432 W US 0004432W WO 0048672 A1 WO0048672 A1 WO 0048672A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
antenna
stomach
lumen
expansion member
Prior art date
Application number
PCT/US2000/004432
Other languages
French (fr)
Inventor
Edward W. Knowlton
Original Assignee
Knowlton Edward W
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Knowlton Edward W filed Critical Knowlton Edward W
Priority to AU33720/00A priority Critical patent/AU3372000A/en
Publication of WO2000048672A1 publication Critical patent/WO2000048672A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves

Definitions

  • the parietal or acid producing cells are mainly located within the gastric glands of the fundus and corpus. These exocrine cells also produce intrinsic factor that binds with vitamin B12 to facilitate absorption in the small intestine. Failure by the parietal cells to produce intrinsic factor leads to pernicious anemia, a condition commonly seen with atrophy of the gastric mucosa.
  • the subjacent layer is frequently subdivided into the lamina basement, the muscularis mucosa and the submucosa. With the exception of the thin muscularis mucosa, this subjacent layer consists of collagen containing connective tissue.
  • the next layer, the muscularis externa consists of smooth muscle which propels food forward in the digestive tract.
  • fundic muscle exhibits an active tone at rest that pushes ingested food into the antrum.
  • the fundus also exhibits the phenomenon of receptive relaxation in which resting tone is decreased to accommodate the recently ingested bolus.
  • the distal two-thirds of the stomach is termed the antrum which propels the partially digested food into the duodenum.
  • Antral smooth muscle cells possess a higher resting potential that leads to rapid depolarization. Pacesetter potentials are initiated from the interstitial cells of Cajal that are located along the proximal aspect of the greater curvature. A wave of rapid depolarization is created within the antral smooth muscle that results in a type 2 peristaltic contraction.
  • an apparatus to modify a stomach wall comprises an elongated member including at least one lumen.
  • a deployable member is coupled to the elongated member.
  • the deployable member is configured to be advanceable and removable from the stomach in a non-deployed state and sized to be positioned in the stomach in a deployed state to engage at least portions of the stomach wall.
  • the deployable member is further configured to house a fluidic media and at least portions of the deployable member wall is configured to be cooled by the fluidic media.
  • the deployable member has a contour in the deployed state approximating at least a portion of a stomach.
  • a microwave antenna is movably positioned in the deployable member so as to control a microwave field strength vector in relation to the antenna.
  • Expansion device 14 has an expanded and non-expanded state and is configured to be positionable within the stomach. More specifically, expansion device 14 is configured in its expanded state to contact all or a portion of an interior surface or gastric mucosa 20" of stomach wall 20'. This can be facilitated by expansion device 14 having an inflated diameter sufficient to expand the stomach to an amount sufficient to at least partially efface and/or straighten the folds of the internal surface 20" of the stomach.
  • balloon 14 can be made of a non-compliant material (as is known in the art) in order to achieve a predictable fixed balloon diameter.
  • non-compliant materials can include PET, irradiated polyethylene, polyurethane and others known in the art.
  • balloon 14 can be configured to have an adjustable diameter (e.g. pressure compliant) by constructing all or a portion of balloon 14 from compliant materials.
  • compliant materials include latex, silicone, and other thermoplastics and elastomers known in the art.
  • lumen 13' is concentric with respect to the circumference of elongated shaft 12; and inner member lumen 11 ' is concentric with respect to the circumference of inner member 11 and/or elongated shaft 12. All or a portion of the length of shaft 12 (including the wall of lumens 13' and/or 11') can include microwave absorbable materials known in the art to reduce/prevent microwave emissions from sections of cable 22 other than antenna 16.
  • the delivery of microwave energy and heating of non target tissue can be prevented/reduced and the degree of microwave energy heating of a tissue site 18 can be selectively controlled by the use of a liquid microwave absorption media 24' that fills all or a portion of balloon 14.
  • microwave media 24' serves to absorb and reduce the power of microwaves radiating out from antenna 16.
  • the degree of microwave absorption can be increased by: i) expanding the filled diameter of balloon 14 with microwave absorption media 24' or ii) adding microwave absorbing compounds 24" or compounds or particles 24" or compound containing solutions to media 24' to increase its microwave absorbing properties.
  • Such material includes, but is not limited to, one or more compounds found in margarine or butter and one or more fatty acids with melting points in the temperature range describe above. Additionally, the use of liposomes which contain microwave absorbing materials that are released upon rupture of the liposome wall with heat from microwave or other energy can also be employed.
  • microwave absorbing media 24' can be removed from balloon 14 and/or the concentration of absorbing compounds 24" can be reduced by aspirating balloon 14 using techniques known in the art.
  • absorption media 24' can include various aqueous solutions which can be used to suspend particles 24".
  • the heating of viable tissue is mainly determined by the duration and timing of surface convection cooling with the delivery of electromagnetic energy into the subjacent tissue. Patterns of tissue heating are predicted with four different permutations of cooling and power. These permutations and patterns of tissue heating are described in reference to the following definitions. With the aid of a spread sheet disclosed in Appendix 2, the model can predict depth and temperature of tissue heating at specific settings of cooling and microwave power.
  • elements of stomach treatment apparatus 10 can be coupled to an open or closed loop feedback control system 28, also called feedback resources 28.
  • an open or closed loop feedback control system 28 couples sensor 346 to energy source 392.
  • energy delivery device 314 is one or more microwave antennas 314.
  • controller 404 Signals representative of power and impedance values are received by a controller 404.
  • a control signal is generated by controller 404 that is proportional to the difference between an actual measured value, and a desired value.
  • the control signal is used by power circuits 406 to adjust the power output an appropriate amount in order to maintain the desired power delivered at respective microwave antennas 314.
  • temperature measurement device 408 measures the temperature of tissue site 416 and/or microwave antenna 314.
  • a comparator 424 receives a signal representative of the measured temperature and compares this value to a pre-set signal representative of the desired temperature. If the measured temperature has not exceeded the desired temperature, comparator 424 sends a signal to flow regulator 418 to maintain the cooling solution flow rate at its existing level. However, if the tissue temperature is too high, comparator 424 sends a signal to a flow regulator 418 (connected to an electronically controlled micropump, not shown) representing a need for an increased cooling solution flow rate.
  • TGP Total Grid Power. This is the power (watts) that is delivered by the RF generator or the microwave magnetron to the RF electrode or microwave antenna.
  • Pcd ⁇ and Tge- Px and Tx — . Acts in concert to decrease the protected zone (Px). The superficial interface (1st) is raised and the deep interface (Idt) is deepened. The thickness of the treatment zone (Tz) is increased and the treatment zone median is deepened. The percent denaturation (D%) of the matrix is increased. The probability of mucosal necrosis is increased. It is predicted that the matrix will be densely compacted and denatured throughout the entire thickness of the submucosa. The pattern will be evident on H&E stain.
  • the Effect of Heating Duration Although the laser literature has supported the concept of millisecond pulsing, the continuous application of microwave energy has been described for the "non invasive" treatment of benign prostatic hypertrophy. With RF power, pulsed and continuous modes of application have been evaluated. Shorter durations with pulsing may provide advantages for dynamic applications but may not provide enough time for uniform thermal conduction within a treatment zone. Continuous applications of RF power may not provide the same degree of control in a dynamic application, but may provide a more uniform pattern of heating in a treatment zone. Overall, the shortest duration of power will be limited by the need to evenly heat tissue by thermal conduction. The longest duration of power will be limited by the thermal conductivity of tissue in combination with convection losses from the mucosal surface and convection losses from subjacent vascular structures.
  • Electrode configuration and Phase transitions Changes in electrode geometry will also modify the pattern of tissue heating at both treatment interfaces.
  • a bipolar or hybrid polar array will decrease the depth of the deep interface and increase the percent denaturation for a specific setting of grid power.
  • a phase transition with freezing of the tissue surface will deepen the level of the superficial interface.
  • the deep interface is raised and the superficial interface is deepened with freezing of the tissue surface.
  • a narrow treatment zone with compaction of the matrix will be created with bipolar electrodes.

Abstract

An apparatus to modify a stomach wall comprises an elongated member including at least one lumen. A deployable member is coupled to the elongated member. The deployable member is configured to be advanceable and removable from the stomach in a non-deployed state and sized to be positioned in the stomach in a deployed state to engage at least portions of the stomach wall. The deployable member is further configured to house a fluidic media and at least portions of the deployable member wall is configured to be cooled by the fluidic media. The deployable member has a contour in the deployed state approximating at least a portion of a stomach. A microwave antenna is movably positioned in the deployable member so as to control a microwave field strength vector in relation to the antenna. The microwave antenna is configured to be coupled to a microwave energy source and deliver microwave energy to a selectable tissue site in the stomach wall while minimizing thermal injury to one of a mucosal or a submucosal layer. A cable member is coupled to the microwave antenna and is configured to be advanceable within the elongated member.

Description

STOMACH TREATMENT APPARATUS AND METHOD
Cross-Reference to Related Application This application claims priority to Application No. 60/120,781 , entitled
STOMACH TREATMENT APPARATUS AND METHOD, filed February 19, 1999.
BACKGROUND OF THE INVENTION
Field of the Invention
This invention relates generally to an apparatus and method for the treatment of the stomach. More specifically, the invention relates to an apparatus and method to reduce the distensibility and/or volume of the stomach to treat obesity and other eating disorder related conditions.
Description of Related Art
Currently, a large segment of the American population suffers from eating disorders which can cause obesity, bulimia and anorexia leading to a number of disease states both physical and psychological. Since the advent of processed foods with designer taste addition, obesity has become prevalent in every geographic area of the United States. The snack food slogan, "you cannot eat just one" has become a reality. Modification of excessive dietary intake is a multibillion-dollar industry. There are many severe health consequences of obesity including heart disease, stroke and diabetes all of which can result in death, morbidity and/or significant quality of life issues. Related health conditions include gastroesophageal reflux (GERD) which is caused from regurgitation of gastric contents into the esophagus is aggravated by excessive food intake typical of compulsive eating and other eating disorders associated with the obese patient. These contents are highly acidic and potentially injurious to the esophagus resulting in a number of possible complications of varying medical severity. The reported incidence of GERD in the U.S. is as high as 10% of the population. Acute symptoms of GERD include heartburn, pulmonary disorders and chest pain. On a chronic basis, GERD subjects the esophagus to ulcer formation, or esophagitis and may result in more severe complications including esophageal obstruction, significant blood loss and perforation of the esophagus. Severe esophageal ulcerations occur in 20-30% of patients over age 65.
Current medical management has not been able to successfully intervene to significantly reduce the incidence of obesity within the US. For example, pharmacological modification with diet suppressants has been associated with significant metabolic side effects. Various attempts to reduce the volume of the stomach through surgical intervention or indwelling devices have had limited effectiveness with significant drawbacks. For example, in the morbidly obese, surgical intervention with gastric stapling, gastric banding and ileo-jejunal bypass has been abandoned because of the severe short-term surgical complications and the long-term side effects of surgically induced malabsorption and/or the potential for gastric obstruction. Other attempts to reduce the volume of the stomach through the use of indwelling gastric balloons have had only limited effectiveness in combatting the dietary rages of these patients. Such devices are prone to failure due to the extremely corrosive /acidic environment of the stomach. Once placed, they can not be readily modified or adjusted to meet the changing eating patterns and dietary needs of the patient. Also, they fail to address the significant problem of injurious contact with the gastric mucosa that can result from leaving an inflated bag in the stomach for an extended period of time. Moreover, these devices and approaches present the potentially fatal risks of gastric obstruction and infection from the indwelling device. Finally, due to combination of one or more of gastric wall contact, gastric obstruction and bacterial infection, such devices present a significant risk of causing gastric ulcers. The present therapies for GERD include pharmacological, surgical and minimally invasive treatment. Despite marginal success, all have clinical limitations and none adequately treat the disease or address the patient's need to reduce ingested food. Current drug therapy for GERD includes histamine receptor blockers which reduce stomach acid secretion and other drugs which may completely block stomach acid. However, while drugs may provide short- term relief, they do not address the underlying cause of LES dysfunction. They also present the disadvantage of adverse side affects as well as requiring the patient to remain on long term drug therapy which is often cost prohibitive.
Surgically invasive procedures requiring percutaneous introduction of instrumentation into the abdomen exist for the surgical correction of GERD. One such procedure, Nissen fundoplication, involves constructing a new "valve" to support the LES by wrapping the gastric fundus around the lower esophagus. Although the operation has a high rate of success, it is an open abdominal procedure with the usual risks of abdominal surgery including: postoperative infection, herniation at the operative site, internal hemorrhage and perforation of the esophagus or of the cardia. A 10-year study reported the morbidity rate for this procedure to be 17% and mortality 1%. This rate of complication drives up both the medical cost and convalescence period for the procedure and excludes significant portions of certain patient populations (e.g., the elderly and immuno- compromised). Efforts to perform Nissen fundoplication and related sphincteroplasty procedures by less invasive techniques have resulted in the development of laparoscopic Nissen fundoplication and related laparoscopic procedures. Other attempts to perform fundoplication involve fastening of the invaginated gastroesophageal junction to the fundus of the stomach via a transoral approach using a remotely operated fastening device, eliminating the need for an abdominal incision. However, this procedure is still traumatic to the LES and presents the postoperative risks of gastroesophageal leaks, infection and foreign body reaction, the latter two sequela resulting when foreign materials such as surgical staples are implanted in the body. While the methods reported above are less invasive than an open Nissen fundoplication, some still involve making an incision into the abdomen and hence the increased morbidity and mortality risks and convalescence period associated with abdominal surgery. Others incur the increased risk of infection associated with placing foreign materials into the body. All involve trauma to the LES and the risk of leaks developing at the newly created gastroesophageal junction. Other noninvasive procedures for tightening the LES still do not solve the fundamental problem of reducing the patient's ability to overeat and cause an overproduction of stomach acid which results in acid reflux. It is predicted that such a reduction can ameliorate gastroesophageal reflux without direct modification of the sphincter and the resulting complications. In order to more fully appreciate the issue involved in the treatment of obesity and the diagnosis and treatment of obesity-related conditions a description of the anatomy of the stomach and adjoining structures will now be presented. Referring to Figures 1 A and IB, the anatomy of the stomach can be divided into different segments on the basis of the mucosal cell types in relation to external anatomical boundaries. The cardiac segment is immediately subjacent to the gastroesophageal junction and is a transition zone of the esophageal squamous epithelium into the gastric mucosa. The fundus is the portion of the stomach that extends above the gastroesophageal junction. The body or corpus of the stomach extends from the fundus to the incisura angularis on the lesser curvature of the stomach. The majority of parietal acid forming cells are present in this segment. The fundus and the corpus function as the main reservoir of ingested food. The antrum extends from the lower border of the corpus to the pyloric sphincter. The majority of gastrin producing or G-cells are present in the antral mucosa. The main blood supply is variable but typically courses from the celiac axis into the gastric and gastroepiploic arcades. Nutrient vessels to the stomach coarse from the vascular arcades of the greater and lesser curvatures. These vessels penetrate the gastric wall in a perpendicular fashion and arborize horizontally in a dense vascular plexus throughout the wall of the stomach. For the most part, gastric innervation is provided by the vagus nerves which form a plexus around the esophagus and then reform into vagal trunks above the esophageal haitus. An extensive my enteric plexus is formed within the muscular wall of the stomach. Impulses from stretch or tension receptors within the gastric wall are transmitted to the nucleus tractus solitaris of the brain stem by afferent vagal fibers. These stretch/tension receptors within the fundus and corpus detect gastric distension or gastric pressure from ingested food. Recent studies appear to favor the role of gastric tension instead of gastric distension as the main elicitor of satiety. A smaller and less defined contribution is provided by sympathetic fibers from the celiac plexus. Within the submucosal layer, these fibers form Meissner's plexus may regulate mucosal secretion and absorption. The four basic components of the gastric wall are the mucosa, submucosa, muscularis and the serosa. These four components are found throughout the entire gastrointestinal tract. The mucosa consists of mucus secreting columnar epithelium that invaginates into glands. The cellular components of the glands vary within each segment of the stomach. The parietal or acid producing cells are mainly located within the gastric glands of the fundus and corpus. These exocrine cells also produce intrinsic factor that binds with vitamin B12 to facilitate absorption in the small intestine. Failure by the parietal cells to produce intrinsic factor leads to pernicious anemia, a condition commonly seen with atrophy of the gastric mucosa. The subjacent layer is frequently subdivided into the lamina propria, the muscularis mucosa and the submucosa. With the exception of the thin muscularis mucosa, this subjacent layer consists of collagen containing connective tissue. The next layer, the muscularis externa, consists of smooth muscle which propels food forward in the digestive tract. The muscularis is typically subdivided into two layers of circular and longitudinal fibers. An oblique layer of muscle fibers between the circular and longitudinal layers is typically present in the stomach. Auerbach's my enteric plexus of parasympathetic fibers is contained within the muscularis externa. The fourth layer serosa is a dense outer covering of connective tissue that merges into the peritoneum. Although subdivided into five anatomical segments, the physiological function of the stomach is described in two main components. The proximal third is termed the fundus which includes the corpus and fundus as a single functioning reservoir of ingested food. Smooth muscle cells of the physiological fundus have a lower resting potential that inhibits rapid depolarization and contraction. Instead, fundic muscle exhibits an active tone at rest that pushes ingested food into the antrum. The fundus also exhibits the phenomenon of receptive relaxation in which resting tone is decreased to accommodate the recently ingested bolus. The distal two-thirds of the stomach is termed the antrum which propels the partially digested food into the duodenum. Antral smooth muscle cells possess a higher resting potential that leads to rapid depolarization. Pacesetter potentials are initiated from the interstitial cells of Cajal that are located along the proximal aspect of the greater curvature. A wave of rapid depolarization is created within the antral smooth muscle that results in a type 2 peristaltic contraction. In contradistinction to the fundus, a resting tone is not exhibited in the antrum. The initiation of a fed pattern of gastric motility involves a complex interaction of locally released hormones with intrinsic and extrinsic neural pathways that are mediated through the vagus nerves.
A variety of non-invasive methods to study gastric motility evaluation are available although they include technical drawbacks and limitations. Contrast cinefluoroscopy with a barium meal has been used extensively for animal research but has limited application in humans due to exposure from ionizing radiation. Gastric intubation techniques can provide objective data on distensibility and motility with manometric/strain gauge transducers. Impedance epigastrography measures electrical patterns of gastric emptying. More recently, high resolution/real time ultrasonic imaging has provided a convenient non-invasive methodology to view gastric motility.
Currently a need exists for an efficacious minimally or non-invasive apparatus that is able to treat eating disorder related obesity. A further need exists for a non-invasive device that is able to reduce the distensibility and/or volume of the stomach. Still a further need exists for a non-invasive apparatus that is able to produce appetite suppression. SUMMARY OF THE INVENTION
Accordingly, in view of the above presentation it is an immediate object of this invention to provide an apparatus and method for treating eating-disorder obesity that overcomes the deficiencies and omissions associated with the prior art.
Another object of the present invention is to provide an apparatus to treat the stomach and reduce the distensibility of the stomach.
Still another object of the invention is to provide an apparatus to treat the stomach and reduce the volume of the stomach.
Yet another object of the invention is to provide an apparatus to treat the stomach and produce appetite suppression.
Still yet another object of the invention is to treat the stomach without damaging a mucosal lining of the stomach. Yet another object of the invention is to treat the stomach and produce a perception of stomach fullness with a reduced volume of food in the stomach.
These and other objects of the invention are achieved in an apparatus to modify a stomach wall comprises an elongated member including at least one lumen. A deployable member is coupled to the elongated member. The deployable member is configured to be advanceable and removable from the stomach in a non-deployed state and sized to be positioned in the stomach in a deployed state to engage at least portions of the stomach wall. The deployable member is further configured to house a fluidic media and at least portions of the deployable member wall is configured to be cooled by the fluidic media. The deployable member has a contour in the deployed state approximating at least a portion of a stomach. A microwave antenna is movably positioned in the deployable member so as to control a microwave field strength vector in relation to the antenna. The microwave antenna is configured to be coupled to a microwave energy source and deliver microwave energy to a selectable tissue site in the stomach wall while minimizing thermal injury to one of a mucosal or a submucosal layer. A cable member is coupled to the microwave antenna and is configured to be advancecable within the elongated member.
In another embodiment, the wound healing response is a circumferential wound healing response and includes deposition of scar collagen within the gastric wall.
In yet another embodiment, the energy delivery device is coupled to a cooling media. The cooling media cools a selected tissue site within the stomach wall to preserve the mucosal layers of the stomach during the delivery of energy from the energy delivery device.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1A is a cross-sectional view of the stomach wall illustrating the anatomy of the stomach wall. FIG. IB is a perspective view of the stomach illustrating the anatomical regions of the stomach.
FIG. 2 A depicts a lateral view of an embodiment of the stomach treatment apparatus illustrating components of the apparatus and its placement and use in treating the stomach and stomach wall. FIG. 2B is a lateral view illustrating a shaped expansion member including a first and second radius of curvature.
FIG. 3 is a lateral view of an embodiment of the stomach treatment apparatus illustrating the use of a dipole microwave antenna, cooling solution and cooling apertures. FIG. 4A is a lateral view of an embodiment of a linear coaxial microwave antenna.
FIG. 4B is a lateral view of a microwave antenna illustrating various parameters and attributes of the microwave beam.
FIG. 5 A is a lateral view of the distal portion of the apparatus illustrating the juncture between the inner member and balloon, a dipole microwave and cooling channels.
FIG. 5B is a cross-sectional view of the elongated shaft illustrating lumens for cooling, steering wires, antenna cabling and fiber optics.
FIG. 5C is a cross-sectional view of an oval elongated shaft illustrating placement of cooling lumens in a surrounding relation to the antenna cabling.
FIG. 5D is a cross-sectional view of the elongated shaft illustrating semicircular cooling lumens.
FIG. 6A is a lateral view of the distal portion of an embodiment of the apparatus having a non-coaxial /eccentric placement of the inner member and cooling channels.
FIG. 6B is a cross-sectional view of the elongated shaft of the embodiment from FIG 6A.
FIG. 7A is a lateral view of an embodiment of the apparatus having a double jointed or articulated shaft.
FIGS. 7B and 7C are cross-sectional views of the elongated shaft of embodiments from FIG 7A illustrating coaxial and eccentric placement of the antenna cabling and cooling channels.
FIG. 8A is a lateral view of an embodiment of the apparatus having a bendable shaft.
FIG. 8B is a cross-sectional view of the elongated shaft of the embodiment from FIG 8A. FIG. 9 is a lateral view of the stomach wall illustrating the various parameter/zones of the tissue interaction model described in an embodiment of the invention.
FIG. 10 depicts a block diagram of the feed back control system that can be used with the pelvic treatment apparatus. FIG. 11 depicts a block diagram of an analog amplifier, analog multiplexer and microprocessor used with the feedback control system of FIG. 10.
FIG. 12 depicts a block diagram of the operations performed in the feedback control system depicted in FIG. 11.
DETAILED DESCRIPTION
The present invention provides an apparatus and method to treat the stomach and other organs and tissue within the gastro-intenstinal tract through the delivery of thermal energy to the stomach wall to cause a contraction or reduction in volume of the stomach or other selected tissue. In various embodiments, the present invention can be configured to heat a broad submucosal layer of tissue within the stomach wall without thermal damage (e.g. burning, protein denaturization, etc.) of the mucosa of the stomach or other selected organ. A thermal lesion is created within the wall of the stomach without mucosal burning. The delivery of energy can be configured to result in an immediate contraction of the preexisting collagen matrix of the stomach wall or it may result in a delayed initiation of a wound healing sequence. One or both of these effects can serve to reduce both distensibility and volume of the stomach.
With a wound healing sequence, soft tissue contraction is achieved via myofibroblastic contraction that is secured with subsequent deposition of a static-supporting matrix of scar collagen. The key functional effects of the wound healing response are either i) to reduce gastric distensibility with the deposition of a static supporting matrix of collagen, or ii) to reduce overall gastric volume by contracting the subserosal layers of the stomach. Resistance to stomach distension from either effect will be neurologically interpreted as a full stomach. For many patients, a reduction in stomach distensibility without reduction in overall gastric volume will be sufficient to produce a full stomach sensation due to a centrally mediated neurological response of the vagus nerve. The ability to sequentially titrate the perception of stomach distention will be an important factor when accounting for personal variations in appetite from one patient to the next. The invention can also be used to restrict or otherwise control the outflow of contents from the pylorsus. Moderate restriction to outflow at the pylorus may also enhance feedback sensation of a "full stomach". The perception of distention with smaller caloric loads is the key therapeutic effect for weight reduction and subsequent weight control. Referring now to Figure 2 A, in an embodiment of the present invention, a stomach treatment apparatus 10 includes an elongated member or shaft 12 coupled to an expansion device 14, in turn coupled to an energy delivery device 16 configured to deliver energy to a selected tissue site 18 in a hollow structure of the body including the stomach 20 and produce lesions and/or tissue contraction sites 21 within stomach wall 20' while preserving mucosal layer 20". In various embodiments, energy delivery device 16 can be coupled to an energy source 17.
At least portions of apparatus 10 may be sufficiently radiopaque in order to be visible under fluoroscopy and/or sufficiently echogenic to be visible under ultrasonography and the like. Also as will be discussed herein, apparatus 10 can include visualization capability including, but not limited to, a viewing scope, an expanded eyepiece, fiber optics, video imaging and the like. Such viewing means may be delivered through a central lumen 13 within elongated shaft 12.
Shaft 12 (also called catheter 12) has a proximal and distal end 12' and
12" and has sufficient length to position expansion device 14 in the stomach using a transoral approach. Typical lengths for shaft 12 include, but are not limited to, a range of 40-220 cms. Shaft 12 can also be coupled at its proximal end to a handpiece 15, which in various embodiments can include various ports for the delivery of gases, liquids and other media. In various embodiments, shaft 12 is flexible, articulated and steerable and can contain fiber optics (including illumination and imaging fibers), fluid and gas paths, and sensor and electronic cabling. In one embodiment, shaft 12 can be a multi-lumen catheter, as is well known to those skilled in the art. In various embodiments shaft 12 can be fabricated from a variety of medical grade resilient polymers including polyethylene (including HPDP, LDPE, HDPE/LDPE blends and irradiated HDPE), polyurethane, Pebax®, silicone, polyimide and other thermoplastics and elastomers known in the art. Shaft 12 can also include a reinforcing braid or spiral which serves to increase longitudinal, torsional (e.g. pushability and torqueability), and hoop stiffness which reduces kinking and preserves the patency of lumens 13. Braiding involves reinforcing the shaft 12 with a reinforced wire mesh that is typically composed of 8 or 16 individual wire elements. Common flat wire braid sizes can include: 0.0005"x0.003", 0.0007"x0.003", 0.0007"x0.0005", 0.001 "xθ.003", 0.001 "xθ.005", and larger. Round wire braid sizes can include: 0.001", 0.0015", 0.002", and larger. Spiral reinforcement involves radially winding one or more flat or round wire elements within or on the surface of the shaft wall. Typical braid/spiral wire materials can include stainless steel, copper, and other ferrous and nonferrous materials. Spiral reinforcement may be selected for applications requiring increased kink resistance and lumen patency versus but not as much as longitudinal or torsional stiffness as braided application.
In various embodiments, elongated shaft 12 may have one or more lumens 13 which can be configured for the advancement of medical imaging/visualization devices such as fiber optic view scopes and the like. Lumens 13 can also be configured for the delivery of liquids (including cooling liquids), gases and medicaments. In one embodiment lumen 13 can be configured as an inflation lumen to inflate expansion device 14 using a liquid or gaseous inflation media.
Expansion device 14 has an expanded and non-expanded state and is configured to be positionable within the stomach. More specifically, expansion device 14 is configured in its expanded state to contact all or a portion of an interior surface or gastric mucosa 20" of stomach wall 20'. This can be facilitated by expansion device 14 having an inflated diameter sufficient to expand the stomach to an amount sufficient to at least partially efface and/or straighten the folds of the internal surface 20" of the stomach.
In various embodiments, expansion device 14 can be an inflatable balloon as is well known in the medical device art. Balloon 14 has an external surface 14', an internal surface 14", a proximal end 14'" and a distal end 14"".
Balloon 14 is inflated using gas or liquid inflation media delivered via means of an inflation lumen 13 disposed within elongated member 12 fluidically coupled to balloon 14, preferably at or near proximal end 14'". In various embodiments, balloon 14 can be formed/blown at the distal end 12" of catheter 12 or can be attached using heat sealing or other balloon attachment method well known in the art. In various embodiments, balloon 14 can have a variety of shapes including spherical, crescent, or oval. Referring now to Figure 2B, balloon 14 can also have a shape/contour 33 approximately that of the oblong internal contour of the human stomach or other portion thereof including but not limited to, the antrum, corpus, fundus, cardia, pylorus, or the pyloric region. In a specific embodiment, balloon 14 can have a first and a second radius of curvature 35, 37 that are substantially parallel over least a portion of their respective lengths and can approximate the lesser and a greater curvatures of the stomach. Balloon 14 can also be configured to be translucent to microwaves or otherwise non-absorbing and non-reflecting to microwave radiation. In various embodiments, this can be achieved through the selection of balloon materials and dimensions (e.g. diameter, wall thickness, etc). Also, various thermoplastics or elastomers known in the art to have low microwave absorption characteristics may be selected. The compliance of balloon 14 can be selected (through choice of balloon materials, balloon wall thickness, balloon shape, etc) such that balloon 14 expands and conforms to fill all or a portion of stomach 20 making uniform contact with gastric mucosa 20" including crevices and folds 20'". This can be achieved by the use of compliant balloon materials described herein. In one embodiment the compliance of balloon 14 is selected to be less than that of the stomach wall 20'. Alternatively, the compliance of balloon 14 can be selected such that when balloon 14 is expanded it expands the internal volume of the stomach and/or stretches the stomach wall 20'. This can be achieved by setting the compliance of balloon 14 to be equal to or greater than the compliance of the stomach wall 20' through the use of non-compliant materials described herein.
All or a portion of balloon 14 can be made of a non-compliant material (as is known in the art) in order to achieve a predictable fixed balloon diameter. In various embodiments, such non-compliant materials can include PET, irradiated polyethylene, polyurethane and others known in the art. In alternative embodiments, balloon 14 can be configured to have an adjustable diameter (e.g. pressure compliant) by constructing all or a portion of balloon 14 from compliant materials. Such compliant materials include latex, silicone, and other thermoplastics and elastomers known in the art.
Turning now to a discussion of energy delivery, suitable energy sources 17 and energy delivery devices 16 that can be employed in one or more embodiments of the invention include: (i) a radio-frequency (RF) source coupled to an RF electrode, (ii) a coherent source of light coupled to an optical fiber, (iii) an incoherent light source coupled to an optical fiber, (iv) a heated fluid coupled to a catheter with a closed channel configured to receive the heated fluid, (v) a heated fluid coupled to a catheter with an open channel configured to receive the heated fluid, (vi) a cooled fluid coupled to a catheter with a closed channel configured to receive the cooled fluid, (vii) a cooled fluid coupled to a catheter with an open channel configured to receive the cooled fluid, (viii) a cryogenic fluid, (ix) a resistive heating source coupled to a heating element positioned on or within the balloon 14, (x) a microwave source led to an ultrasound emitter, wherein the ultrasound power source produces energy in the range of 300 KHz to 3 GHz.
For ease of discussion for the remainder of this application, the energy source 17 utilized is a microwave energy source, and energy delivery device 16 is a microwave antenna 16. The use of microwave energy is well suited to the stomach because it produces a more uniform field over a larger area than other forms of energy. When antenna 16 is energized by microwave generating source 17, antenna 16 emits electromagnetic energy which causes heating of tissue within stomach wall 20' at target location 18. In various embodiments, microwave energy source 17, emits energy in a frequency range that includes, but is not limited to, 915 MHz to 2.45 GHz. In a preferred embodiment microwave power source 17 emits microwave energy at a preferred frequency of 1300 MHz +- 50 MHz, and at power levels adjustable up to 50 or 100 watts. Accordingly, the microwave energy source 17 is capable of generating microwaves at a frequency of 1 ,300 MHz +- 50 MHz and can be set at a precise frequency value within this range. Referring now to Figures 3, 4 A and 4B, in various embodiments microwave antenna 16 can be a linear coaxial microwave antenna with a choke or a standard single junction dipole microwave antenna. The dipole microwave antenna 16 can be constructed from a flexible coaxial cable 22 having an inner conductor 22' covered by an inner insulation layer 22", an outer conductor 22'" and an outer insulating jacket 22"". Coaxial cable 22 from which the antenna 16 is formed extends from the proximal end of elongated member 12 and terminates in a slotted radiating portion 19 of antenna 16. In various embodiments antenna 16 and coaxial cable section 22 within balloon 14 may have a double joint articulation. The operation of the dipole microwave antenna 16 as is utilized in one embodiment of the apparatus of the present invention is described more fully in U.S. Patent No. 4,825,880 to Stauffer et. al. for an Implantable Helical Coil Microwave Antenna, which is incorporated herein by reference. Coaxial cable 22 can be disposed within elongated member 12 (via a lumen 13) and extend from proximal end 12' distally into balloon 14 including proximal or distal portions 14'" and 14"" or a section there between. Coaxial cable 22 can be coupled to microwave energy source 17 via an electronic connector (such as a lemo connector or other connector known in the art) in the proximal portion 12' of member 12 including handpiece 15. In one embodiment antenna 16 is tethered or otherwise fixed to the distal end 14 "" of balloon 14 to assure centralization of the device within the stomach. In alternative embodiments, microwave antenna 16 is movable within balloon 14 by advancement of coaxial cable 22. In this embodiment the length of antenna 16 can be increased or decreased in length by a sliding a sheath 11 of microwave absorbable material/insulation (which can be an inner member discussed herein) over antenna 16. This configuration provides means for controlling the emitted power levels, the direction and strength (e.g. field strength vector) of the microwave beam/field. In various embodiments, antenna 16 can be configured to produce one or more of the following types of antenna/microwave beams 31 : omnidirectional, pencil-beam, flat-top flared beam and the asymmetrically flared beam. In a preferred embodiment, antenna 16 is configured to produce an omnidirectional beam. In related embodiments, antenna 16 can be configured to produce a beam 31 with a selectable beam arc 31 ' and selectable microwave field strength beam vector 31". Beam arc 31' can be selected from 1 to 360°.
The arc 31 ' and direction of beam 31 can be controlled or modified using one or more approaches. In an embodiment the directivity and field vector 31" of antenna 16 can be controlled by varying the length of antenna 16 through the use of sliding sheath 11. In another embodiment, the directivity of beam 31 including an omnidirectional beam can be increased through the use of an array 16' of radiating elements 16" built up along the symmetry axis 31 '" of beam 31. In various embodiments these or other approaches can be used to select beam arc 31 ' from 1 to 360°, with specific embodiments of 30, 45 60, 90, 120, 180 and 270°. Antenna 16 is configured to minimize impedance mismatches as measured by VS WR (voltage standing wave ratio) of cable 22 and/or antenna 16. This can be accomplished by controlling the length of the dipole elements to a fraction (e.g. 1/4 or 1/2) of the microwave wavelength used or through the use of a slow wave structure antenna described herein. In various embodiments, a cooling media 24 can partially or completely fill balloon 14 (via lumen 13") and/or all or a portion of lumens 13. Cooling media 24 can serve to cool antenna 16, cable 22 and tissue site 18. In one embodiment, cooling media 24 can be chilled water 24 which can be chilled to temperatures approaching 32° F using a refrigeration device or a recirculating water chilling device, (not shown) well known in the art.
In an alternative embodiment, antenna 16 can have a "slow wave structure" and the length of two dipole elements can be shorter or longer than 1/4 of the wavelength of the microwave frequency used. One such slow wave structure is described in US Patent No. 4,495,503 to Morman which is incoφorated by reference herein.
An alternative embodiment of balloon 14 and antenna 16 is shown in Figures 5a and 5b. In this embodiment, balloon 14 can be made out of a latex material or other elastomer and is attached (by adhesive bonding, heat sealing other plastic bonding method known in the art) to the distal end 12" of elongated shaft 12. This embodiment also includes an inner member 11 that is positioned within a lumen 13' of shaft 12. Inner member 11 includes a lumen 11' that is configured (e.g. of sufficient inner diameter, etc.) to receive and allow the axial advancement of coaxial cable 22, including antenna 16. Inner member 11 may also be configured to receive and allow the advancement of a fiber optic viewing device as well. In a preferred embodiment, lumen 13' is concentric with respect to the circumference of elongated shaft 12; and inner member lumen 11 ' is concentric with respect to the circumference of inner member 11 and/or elongated shaft 12. All or a portion of the length of shaft 12 (including the wall of lumens 13' and/or 11') can include microwave absorbable materials known in the art to reduce/prevent microwave emissions from sections of cable 22 other than antenna 16.
In various embodiments, inner member 11 can be fixed or configured to be advanceable within shaft 12. In one embodiment, shown in Figure 5 A, the distal end 11" of the inner member is attached (using a medical grade adhesive or other bonding method known in the art) to the distal end 14"" of balloon 14. Inner member 11 can be made of a variety of resilient medical polymers known in the art including polyimide, irradiated polyethylene, polyurethane, or Pebax® and other thermoplastics. Inner member 11 can also be reinforced with a wire braid or coil (discussed herein) that may be embedded or on the surface of member 11. The coil or braid serves to strengthen longitudinal and torsional stiffness (e.g. pushability and torqueability) of inner member 11 and preserve lumen integrity/patency.
For the embodiments shown in Figures 5-8, antenna 16 is comprised of two dipole elements. The first dipole element 23, consists of a conductive cylinder 23' positioned over a distal section of coaxial cable 22 that has its outer jacket 22"" removed. More specifically, cylinder 23' is fixedly positioned over outer conductor 22'" of coaxial cable 22 using soldering, brazing, crimping or a metal joining method known in the art. The second dipole element 25 consists of a metal cylinder 25' with a metal ball 25" attached (via soldering or brazing) at its distal end. Metal cylinder 25' is fixedly positioned over the distal most section of inner conductor 22' which extends distally from the distal end of the first dipole element 23. Metal cylinder 25' is attached to inner conductor 22' using soldering, brazing, crimping or metal joining method known in the art. In a preferred embodiment, both first and second dipole elements 23 and 25 have axial lengths one quarter of the wavelength of the microwave frequency transmitted to antenna 16. In preferred embodiments, this frequency is 915 MHz or 2.45 GHz. Cylinders 23' and 25' and ball 25" can be fabricated from a variety of conducting metals including, but not limited to, aluminum, stainless steel, gold, platinum, copper and combinations thereof. Ball 25" serves to disperse/reduce current density at the tip of cylinder 25' and to reduce and/or prevent excessive heating and/or arcing from dipole element 25. Referring now to Figure 5b which shows a cross section of elongated shaft 12, shaft 12 can include separate lumens 13 for the inflow and the outflow of cooling media 24 and for the advancement of coaxial cable 22, steering wires, the inner member, and a fiber optic view assembly. All or a portion of lumens 13 can be concentric or nonconcentric with respect to the circumference of shaft 12. In this and related embodiments, shaft 12 includes lumens 13' for the advancement of coaxial cable 22 and/or inner member 11; lumens 13" and 13'" for the inflow and return of cooling media 24 to cool antenna 16, balloon 14 and cable 22; and lumens 13"" for steering and pull wires and the like. In the embodiment shown in Figures 5a-b, lumen 13' is concentrically positioned with respect to shaft 12 and other lumens 13", 13'" and 13"" are radially distributed around the center of lumen 13'. Lumen 13' preferably has a substantially circular cross section and has sufficient diameter to allow the passage of inner member 11 or coaxial cable 22 and a fiber optic viewing device. Lumens 13", 13'" and 13"" can have a substantially oval, circular or crescent cross section. For multilumen embodiments of catheter 12, the integrity/patency of lumens 13 can be maintained with the use a reinforcing braid or coil (discussed herein) embedded or on the surface of shaft 12. In various embodiments, the inner diameter of lumens 13 can range from 1- 40 mm with specific embodiments of 3, 5 and 20 mm. In various embodiments, shaft 12 can have an outside diameter in the range 3-50 mm, with specific embodiments of 11 and 12, 15 and 20 mm. Referring now to Figure 5c (a cross-sectional view of shaft 12), in one embodiment, cooling lumens 13" and 13'" can be configured to surround a substantial portion (about 75%) of the circumference of inner member lumen 13' or inner member 11 or coaxial cable 22. In this embodiment, when cooling lumens 13" and 13'" are filled with a liquid cooling media 24, cooling lumens 13" and 13'" absorb any unwanted microwaves radiating out of coaxial cable 22 or antenna 16. To facilitate surrounding of the circumference of lumen 13', lumens 13" and 13'" can have a partial kidney or oval shape. In a specific embodiment shown in Figure 5d, lumens 13" and 13'" can be at least partially semicircular and can share the same locus as lumen 13'. The use of liquid filled cooling lumens for the absorption of microwave radiation is described more fully in US Patent No. 5,776,176 to Rudie, which is incorporated by reference herein. The present invention provides the improvement of using enhanced microwave absorbable liquids, compounds, particles, etc. (described herein) in order to be able titrate/control the amount of microwave absorption. The present invention also provides the improvement of the use of microwave absorbable compounds (described herein) which increase their microwave absorbing qualities with an increase in temperature or microwave power.
Referring now to Figures 6a and 6b, in another embodiment, lumen 13' can be eccentric, or positioned off center, with respect to the center of shaft 12, but still be positioned on a center line 9 of shaft 12. Cooling media inflow lumen 13" can be similarly positioned on the same center line 9 as lumen 13'. Steering wire lumen 13"" is positioned off center line 9. Cooling out flow lumen 13'" fills the remainder of the space of the interior of shaft 12 not occupied by the other lumens. In this and related embodiments, shaft 12 can have a substantially oval or circular cross section. Cooling lumens 13" and 13'" in this embodiment can also be configured for absorption of microwaves. Specifically lumen 13'" and/or lumen 13" can be configured to surround 75% or more of the circumference of lumen 13' or coaxial cable 22.
Referring back to Figure 3, in another embodiment, the delivery of microwave energy and heating of non target tissue can be prevented/reduced and the degree of microwave energy heating of a tissue site 18 can be selectively controlled by the use of a liquid microwave absorption media 24' that fills all or a portion of balloon 14. Specifically, microwave media 24' serves to absorb and reduce the power of microwaves radiating out from antenna 16. The degree of microwave absorption can be increased by: i) expanding the filled diameter of balloon 14 with microwave absorption media 24' or ii) adding microwave absorbing compounds 24" or compounds or particles 24" or compound containing solutions to media 24' to increase its microwave absorbing properties. Such compounds 24" are well known in the art and include carbon black, ferrites in the form of sintered iron and other metallic oxides having a cubic crystal structure and fullerenes or "Bucky Balls". Other microwave absorbable compounds 24" or particles 24" can be selected whose microwave absorbable properties increase with an increase in temperature or an increase in microwave power. Such compounds include the use of solids which undergo a partial or complete phase change to a liquid at a temperature within the operating range of temperatures of cooling media 24 or microwave absorbing media 24'. Such a temperature range include, but is not limited to a range of 0 to 70° C with preferred embodiments of 30-50° C, 37-50° C 37-60°C 37-65°C, 40-60 C° and 40-65° C. Such material includes, but is not limited to, one or more compounds found in margarine or butter and one or more fatty acids with melting points in the temperature range describe above. Additionally, the use of liposomes which contain microwave absorbing materials that are released upon rupture of the liposome wall with heat from microwave or other energy can also be employed.
Once added to balloon 14, all or a portion of microwave absorbing media 24' can be removed from balloon 14 and/or the concentration of absorbing compounds 24" can be reduced by aspirating balloon 14 using techniques known in the art. In various embodiments, absorption media 24' can include various aqueous solutions which can be used to suspend particles 24".
In various embodiments, absorbing media 24' can be the same as cooling media 24. Also, the degree of microwave absorption by filled balloon 14 can be determined through the use of microwave sensors 26 (well known in the art) positioned on or within the wall of balloon 14. This use of microwave absorbable compounds in balloon 14 represents a novel and distinct advantage in that delivered microwave power levels and the area of tissue heating can be controlled in vivo and more importantly can be titrated in vivo to achieve the desired tissue affect without injury to non-target tissue.
Alternative embodiments of the invention using a double jointed catheter 12 are shown in Figures 7a-7c and 8a-8b. Such joints 30, allow the movement of catheter 12 in two axises and serve to facilitate the introduction of apparatus 10 within the stomach using a transoral approach and the positioning and/or deployment of balloon 14 at a specific treatment site 18. Joints 30 can include swivel joints, articulated joints and other mechanical joints well known in the art. The movement about joints 30 can also be controlled by the use of pull wires using deflection mechanisms well known in the art.
The orientation of antenna 16 within the stomach can be obtained from either an incorporated or external medical imaging device such as an endoscope, video imaging camera, fiber optic viewing scope and the like. Antenna orientation within the stomach can also be ascertained via the use of an in vivo ultrasound transducer (positioned on the apparatus or in the esophagus as is known in the art) electronically coupled to an external ultrasound imaging device or through use of an external ultrasound transducer. In alternative embodiments, antenna orientation can also be obtained from a microwave receiver that is positioned on or within balloon 14. Depending upon the configuration of insulated coating antenna 16, the delivery of energy from antenna 16 can either be 360 omnidirectional or be directed out at in a beam arc 31 ' from 1 to 360°, with specific embodiments of 30, 45 60, 90, 120, 180 and 270°. For omnidirectional embodiments, the selection of a particular treatment site 18 can be made by positioning antenna 16 sufficiently close to the site such that the radiated power (dictated by the inverse square law known in the art) is high enough to cause the desired effect in the tissue (e.g. temperatures raised to range between 40-70 °C to cause collagen shrinkage). By similar application of the inverse square law and the control of the power supplied to antenna 16, the delivery of energy can be limited to the treatment site and kept below a threshold so as not to have a significant affect on tissue outside (e.g. at a set distance) from the tissue treatment site.
Referring back to Figures 2 and 3, apparatus 10 can also be configured for the delivery of a cooling media 24 to tissue site 18, or other portions of gastric mucosa 20" and stomach wall 20' as well as energy delivery device 16. Cooling media 24 can cool tissue site 18 and gastric mucosa 20' via convection, conduction or a combination thereof. Cooling media 24 can be delivered through lumen 13 to apertures 29 in elongated member 12 or balloon 14. The use of cooling preserves protects the mucosal layers 20' of the stomach and protects, or otherwise reduces the degree of cell damage in the vicinity of tissue site 18.
Suitable cooling media 24 include chilled fluids (such as cooled saline solutions) and gases and cryogenic solutions or gases (e.g. nitrogen or carbon dioxide). Alternatively, cooling media 24 can be contained within member 12 or balloon 14 and used to cool all or a portion of balloon 14 including external surface 14. In one embodiment, cooling media 24 can be a cryogen spray that is also used to inflate balloon 14. Cooling of a selected tissue site 18 is facilitated by assuring uniform contact of balloon surface 14' with gastric mucosa 20" including near or adjacent tissue site 18. In other embodiments cooling can be accomplished by use of a cooling device such as a thermoelectric cooling device (e.g. Peltier Effect Device) positioned on or within balloon 14 or otherwise coupled to balloon 14.
One or more sensors 26 may be coupled to balloon 14 and/or elongated member 12. Sensors 26 can include biomedical pressure transducers and
LVDT's known in the art and can be used for measuring and/or assessing gastric distensibility, volume and motility. Similar techniques to esophageal manometry (a known procedure) may be used to make one or more of these assessments. This can include measurement of gastric motility by recording the pattern of pressure changes when the stomach is inflated to a prescribed volume. Suitable pressure sensors 24 include strain gauge sensors including solid state (e.g. silicon based) sensors known in the art. Manometric measurements may be utilized to (i) make baseline measurements of gastric distensibility prior to treatment(s), (ii) assess the effectiveness of a given treatment in decreasing distensibility, (iii) determine the need for follow up treatments; and (iv) evaluate, determine and quantitate clinical endpoints. Such methods allow for a titrated/graduated delivery of therapy over varying periods of time to meet the varying needs of individual patients.
In other embodiments, sensors 26 can include temperature sensors for measuring the temperature of energy delivery devices 16, cooling media 24 and gastric tissue at or near tissue site 18. One or more temperature sensors 24 can be positioned or otherwise configured for temperature measurement of the gastric mucosa 20" and deeper tissue within stomach wall 20". Suitable temperature sensors 24 include thermocouples, thermistors, and IR detectors and the like. In various embodiments, temperature sensors 24 can be configured and used for controlling the delivery of energy and/or cooling media to a selected tissue site 18 in order to optimize the generation of lesion /tissue contraction sites 21, and minimize thermal injury to tissue at or near tissue site 18 including gastric mucosa 20". Temperature sensor 24 and/or microwave power source 17 can be coupled to a feedback control system 28 known in the art (such as a PID-based system) to control, optimize or enhance the performance of one or more of these tasks. In various embodiments, the feedback control system 28 modifies or interrupts microwave power (or other energy source 17) if a selected temperature at the tissue surface or at a selected depth is exceeded. In related embodiments, energy delivery and tissue temperature can be controlled through the use of timed duty cycles (without feedback control) of cooling and power delivery. This includes prescribed periods of precooling, concurrent cooling and post cooling in addition to continuous cooling. The microwave power can be applied continuously or in a pulsed fashion. A database of cooling and heating is used to safely apply energy to the gastric wall without mucosal (or serosal) burning. The database can include tissue surface temperatures, tissue temperature depth and time profiles (e.g. rate of heating or cooling), and data (duration, frequency and amplitude) on the heating and cooling cycles.
It is advantageous for the physician to be able to monitor and be assured of the degree of contact of balloon 14 with gastric mucosa 20" before, during and after the delivery of energy to the tissue site. Accordingly in various embodiments, sensors 24 can include contact sensors known in the art. Sensors 24 can be coupled to an electronic monitoring system known in the art (which can also be the same as control system 28) to inform the physician of the degree of contact of balloon 14 with gastric mucosa 20". The combination of control system 28 and contact sensors 26 can also be used to regulate the delivery of energy to tissue site 18. Suitable contact sensors include strain gauges, impedance/conductivity sensors, optical sensors and ultrasound sensors.
In various embodiments, sensors 24 (including pressure, temperature, contact and microwave sensors) can be positioned on or within balloon 14 including external surface 14', internal surface 14" and also be embedded within the walls of balloon 14 or elongated member 12.
Sufficient energy is delivered to tissue site 18 to contract collagen tissue within the stomach wall 20' including the subserosal layers 20"" and/or initiate a wound healing response sufficient to cause fibroblasts and myofibroblasts to infiltrate into the site with subsequent deposition of a scar collagen matrix.
These cells cause a contraction of tissue around lesion 21, decreasing its volume and distensibility (e.g. decreased flexibility, increased Young's modulus). This effect is further enhanced by the deposition of the scar collagen matrix. The net result is a tightening and reduction of the distensibility of the stomach wall tissue 20 at or near lesion 21. A series of lesions 21 can be controUably placed in stomach wall 20' to controUably decrease the distensibility of all or any desired portion of stomach 20. In one embodiment, lesions 21 are positioned in a circumferential manner in stomach wall 20' so as to produce a circumferential wound healing response in stomach wall 20' and fϊbroblastic reduction in stomach diameter along with an accompanying decrease in distensibility. This decreased distensibility increases the tension in stomach wall 20' with a concomitant increase in the stimulation of stomach wall tension receptors 27 for a given volumetric increase of the stomach due to the consumption of food. The increased stimulation of stomach wall tension receptors 27 in turn may serve to produce neurological perception of a full stomach feeling for a smaller volume of consumed food. In various embodiments, the response or output from wall tension receptors 27 can be measured using electrogastrographic methods (including evoked response methods) and devices (such as the Digitrapper® EGG manufactured by the Medtronic Synectics, Stockholm Sweden) and used to assess the effectiveness of individual treatments and establish clinical endpoints.
The ability to predict the depth and extent of subsurface tissue heating may be useful for improving the performance of the apparatus in one or more embodiments of the present invention. Appendix 1 discloses a tissue interaction model that describes the interaction of heating and cooling in general descriptive terms. Multiple patterns of subsurface tissue heating are created that can be observed histologically and morphologically. Radio frequency or microwave energy are two of the more frequently used energy sources but others are equally applicable.
The heating of viable tissue is mainly determined by the duration and timing of surface convection cooling with the delivery of electromagnetic energy into the subjacent tissue. Patterns of tissue heating are predicted with four different permutations of cooling and power. These permutations and patterns of tissue heating are described in reference to the following definitions. With the aid of a spread sheet disclosed in Appendix 2, the model can predict depth and temperature of tissue heating at specific settings of cooling and microwave power. In an embodiment, elements of stomach treatment apparatus 10 can be coupled to an open or closed loop feedback control system 28, also called feedback resources 28. Referring now to FIG. 10, an open or closed loop feedback control system 28 couples sensor 346 to energy source 392. In this embodiment, energy delivery device 314 is one or more microwave antennas 314. The temperature of the tissue, or of microwave antenna 314, is monitored, and the output power of energy source 392 adjusted accordingly. The physician can, if desired, override the closed or open loop control system 28. Logic resources 394, also called microprocessor 394, can be included and incorporated in the closed or open loop system to switch power on and off, as well as modulate the power. Closed loop feedback control system 28 utilizes microprocessor 394 to serve as a controller, monitor the temperature or tissue contact force, adjust the microwave power, analyze the result, refeed the result, and then modulate the power or fluid flow rate. With the use of sensor 346 and feedback control system 28, tissue adjacent to microwave antenna 314 can be maintained at a desired temperature for a selected period of time without causing a shut down of the power circuit to electrode 314 due to the development of excessive electrical impedance at electrode 314 or adjacent tissue as is discussed herein. Each microwave antenna 314 is connected to resources that generate an independent output. The output maintains a selected energy at microwave antenna 314 for a selected length of time.
Current delivered through microwave antenna 314 is measured by current sensor 396. Voltage is measured by voltage sensor 398. Impedance and power are then calculated at power and impedance calculation device 400.
These values can then be displayed at a user interface and display 402. Signals representative of power and impedance values are received by a controller 404. A control signal is generated by controller 404 that is proportional to the difference between an actual measured value, and a desired value. The control signal is used by power circuits 406 to adjust the power output an appropriate amount in order to maintain the desired power delivered at respective microwave antennas 314.
In a similar manner, temperatures detected at sensor 346 provide feedback for maintaining a selected power. Temperature at sensor 346 is used as a safety means to interrupt the delivery of power when maximum pre-set temperatures are exceeded. The actual temperatures are measured at temperature measurement device 408, and the temperatures are displayed at user interface and display 402. A control signal is generated by controller 404 that is proportional to the difference between an actual measured temperature and a desired temperature. The control signal is used by power circuits 406 to adjust the power output an appropriate amount in order to maintain the desired temperature delivered at the sensor 346. A multiplexer 405 can be included to measure current, voltage and temperature, at the sensor 346, and energy can be delivered to microwave antenna 314 in continuous or pulsed fashion.
In various embodiments, user interface and display 402 can include operator controls. Controller 404 can be a digital or analog controller, or a digital computer with embedded software (e.g. on a ROM chip) loadable software (e.g. by disc, CD or other readable storage media), or downloadable software from a distributed computer network (e.g. the internet). When controller 404 is a computer it can include a central processing unit or CPU electronically coupled to various components of control system 28 through a system bus. This computer system can include a keyboard, a disk drive, or other non-volatile memory systems, a display, and other peripherals, as are known in the art. A program memory, data memory, RAM and ROM can also be coupled to the bus. Also, controller 404 can be coupled to imaging systems including, but not limited to, ultrasound, CT scanners (including fast CT scanners), X-ray, MRI, mammographic X-ray and the like. Further, direct visualization and tactile imaging can also be utilized.
The output of current sensor 396 and voltage sensor 398 are used by controller 404 to maintain a selected power level at each microwave antenna 314. The amount of microwave energy delivered controls the amount of power. A profile of the power delivered to antenna 314 can be incorporated in controller 404 and a preset amount of energy to be delivered may also be profiled.
Circuitry, software and feedback to controller 404 result in process control, the maintenance of the selected power (microwave or other) setting which is independent of changes in voltage or current, and is used to change the following process variables: (i) the selected microwave power setting, (ii) the duty cycle (e.g., on-off time), (iii) standing wave ratio; and, (iv) fluid delivery, including flow rate and pressure. These process variables are controlled and varied, while maintaining the desired delivery of power independent of changes in voltage or current, based on temperatures monitored at sensor 346. Similar process controls can be used to monitor tissue temperature to produce collagen contraction or initiate a wound healing response at a selectable tissue depth at tissue site 416. In related embodiments control resources 28 can be used to monitor and control the distensiblity and volume of the stomach by controlling energy delivery at tissue site 416 and monitoring the distensibility of tissue site/stomach 416 using one or more pressure or force or sensors 346 distributed over the expandable member 310.
Referring now to FIG. 11, current sensor 396 and voltage sensor 398 are connected to the input of an analog amplifier 410. Analog amplifier 410 can be a conventional differential amplifier circuit for use with sensor 346. The output of analog amplifier 410 is sequentially connected by an analog multiplexer 412 to the input of A/D converter 414. The output of analog amplifier 410 is a voltage, which represents the respective sensed temperatures. Digitized amplifier output voltages are supplied by A/D converter 414 to microprocessor 394. Microprocessor 394 may be a type 68HCII available from Motorola. However, it will be appreciated that any suitable microprocessor or general purpose digital or analog computer can be used to calculate impedance or temperature.
Microprocessor 394 sequentially receives and stores digital representations of impedance and temperature. Each digital value received by microprocessor 394 corresponds to different temperatures and impedances. Calculated power and impedance values can be indicated on user interface and display 402. Alternatively, or in addition to the numerical indication of power or impedance, calculated impedance and power values can be compared by microprocessor 394 to power and impedance limits. When the values exceed or fall below predetermined power or impedance values, a warning can be given on user interface and display 402, and additionally, the delivery of microwave energy can be reduced, modified or interrupted. A control signal from microprocessor 394 can modify the power level supplied by energy source 392. FIG. 12 illustrates a block diagram of a temperature and impedance feedback system that can be used to control the delivery of energy to tissue site 416 by energy source 392 and the delivery of cooling medium 50 to electrode 314 and/or tissue site 416 by flow regulator 418. Energy is delivered to microwave antenna 314 by energy source 392, and applied to tissue site 416. A monitor 420 (also called impedance monitoring device 420) ascertains tissue impedance, based on the energy delivered to tissue, and compares the measured impedance value to a set value. If measured impedance is within acceptable limits, energy continues to be applied to the tissue. However if the measured impedance exceeds the set value, a disabling signal 422 is transmitted to energy source 392, ceasing further delivery of energy to microwave antenna 314. The use of impedance monitoring with control system 28 provides a controlled delivery of energy to tissue site 416 (also called mucosal layer 416) and underlying cervical soft tissue structure which reduces, and even eliminates, cell necrosis and other thermal damage to mucosal layer 416. Impedance monitoring device 420 is also used to monitor other conditions and parameters including, but not limited to, presence of an open circuit, short circuit; or if the current/energy delivery to the tissue has exceeded a predetermined time threshold. Such conditions may indicate a problem with apparatus 10. Open circuits are detected when impedance falls below a set value, while short circuits and exceeded power delivery times are detected when impedance exceeds a set value. The control of cooling medium 50 to electrode 314 and/or tissue site 416 is done in the following manner. During the application of energy, temperature measurement device 408 measures the temperature of tissue site 416 and/or microwave antenna 314. A comparator 424 receives a signal representative of the measured temperature and compares this value to a pre-set signal representative of the desired temperature. If the measured temperature has not exceeded the desired temperature, comparator 424 sends a signal to flow regulator 418 to maintain the cooling solution flow rate at its existing level. However, if the tissue temperature is too high, comparator 424 sends a signal to a flow regulator 418 (connected to an electronically controlled micropump, not shown) representing a need for an increased cooling solution flow rate.
The foregoing description of a preferred embodiment of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications, variations and different combinations of embodiments will be apparent to practitioners skilled in this art. Also, elements from one embodiment can be recombined with one or more other embodiments. For example, in various other embodiments, the invention may also be applicable to the non-invasive management of gastroesophageal reflux, intestinal stomas and other gastrointestinal related disorders and pathologies and sleep apnea. Sequential treatments for sleep apnea with non invasive contraction of the soft palate and tongue will provide a more precise correction than a single surgery. Non-invasive contraction of an intestinal viscus should significantly benefit the creation of continent ileostomies for patients who have undergone a total colectomy for ulcerative colitis or Crohn's disease. Patients that require resection of the rectosigmoid colon may avoid a permanent colostomy with a pull through insertion onto the anal vault. Reduction of small bowel absorption may provide another means of weight control other than non-invasive gastroptyxis. Furthermore, this specification is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Appendix 1 Tissue Interaction Model
Model Definitions: Listed below are the definitions of various parameters used in the model. These parameters are also illustrated in Figure 9. 1. TGP: Total Grid Power. This is the power (watts) that is delivered by the RF generator or the microwave magnetron to the RF electrode or microwave antenna.
2. TGE: Total Grid Energy is the amount of energy (Joules) that is delivered by the power source in a specific period of time to the RF electrode or microwave antenna.
3. CC: Convection cooling. This is the heat loss from the tissue surface due to forced convective flow of a cooling solution over the tissue. Convection cooling is measured as in units of joules/sees and is dependent upon the flow rate of the cooling fluid, the temperature gradient between the tissue and the cooling solutions
4. Pcd: Precool Duration.
5. Dt: Duration of treatment. 6. Tf: Tissue fluence. This is defined as the amount of energy delivered to the tissue and is the net product of total grid energy minus surface convection cooling.
7. Px: Protected Region of the tissue surface
8. Tx: Treatment zone. This is the zone that is subjacent to the protected region
9. Tzt: Treatment Zone Thickness. This the is the thickness measured between the superficial and the deep tissue interfaces.
10. Tzm: Treatment Zone Median is the line that horizontally bisects the treatment zone
11. 1st: Superficial tissue Interface. This is the most superficial level of the treatment zone that is immediately subjacent to the protected region.
12. Idt: Deep Tissue Interface. This is the deepest level of the treatment zone that is in contact with subjacent soft tissue 13. D%: Percent Denaturation. This represents the relative amount of denatured matrix within the treatment zone.
Permutations of Power and cooling with predicted patterns of tissue heating
1. Pcd- and Tge-= Px_- and Tx-. The effect upon the Px is canceled between an increased duration of cooling and an increase in grid power. There will be little or no movement of superficial interface (1st). The thickness of the treatment zone (Tz) is increased with a lowering of the deep interface (Idt). The treatment zone median (Tzm) is lowered with an increase in the percent denaturation (D%). A deep pattern of densely denatured matrix of the submucosa and muscle is predicted with preservation of the mucosa. The pattern will be evident on H&E stain.
2. Pcd~ and Tge-= Px and Tx — . Acts in concert to decrease the protected zone (Px). The superficial interface (1st) is raised and the deep interface (Idt) is deepened. The thickness of the treatment zone (Tz) is increased and the treatment zone median is deepened. The percent denaturation (D%) of the matrix is increased. The probability of mucosal necrosis is increased. It is predicted that the matrix will be densely compacted and denatured throughout the entire thickness of the submucosa. The pattern will be evident on H&E stain.
3. Pcd— and Tge = Px — and Tx . Acts in concert to increase the preserved region (Px) and decrease the treatment zone (Tx). The superficial interface is (Tis) is lowered and the deep interface (Tid) is raised. The treatment zone thickness (Tzt) is narrowed and the percent denaturation (D%) is decreased. The treatment zone median (Tzm) is unchanged. It is predicted that the mid submucosal matrix will be contracted but minimal denaturation will be visible with an H&E stain. The mucosal and the lamina propria will be preserved. This combination of cooling and power may produce an optimal tissue heating pattern for gastroptyxis.
4. Pcd- and Tge~ = Px - and Tx- . Acts to cancel the effect on the preserved region (Px) and the treatment zone (Tx). The superficial interface (1st) will be raised slightly and the deep interface (Idt) will be raised a greater amount. The treatment zone thickness (Tzt) will be narrowed and the treatment zone median (Tzm) will be raised. The percent denaturation (D%) will be decreased. It is predicted that a more superficial pattern of heating in the submucosa will occur with preservation of the fundal mucosa. Minimal denaturation of the treatment zone will be evident on an H&E stain.
The Effect of Heating Duration: Although the laser literature has supported the concept of millisecond pulsing, the continuous application of microwave energy has been described for the "non invasive" treatment of benign prostatic hypertrophy. With RF power, pulsed and continuous modes of application have been evaluated. Shorter durations with pulsing may provide advantages for dynamic applications but may not provide enough time for uniform thermal conduction within a treatment zone. Continuous applications of RF power may not provide the same degree of control in a dynamic application, but may provide a more uniform pattern of heating in a treatment zone. Overall, the shortest duration of power will be limited by the need to evenly heat tissue by thermal conduction. The longest duration of power will be limited by the thermal conductivity of tissue in combination with convection losses from the mucosal surface and convection losses from subjacent vascular structures.
Electrode configuration and Phase transitions: Changes in electrode geometry will also modify the pattern of tissue heating at both treatment interfaces. In comparison to a monopolar array, a bipolar or hybrid polar array will decrease the depth of the deep interface and increase the percent denaturation for a specific setting of grid power. Regardless of the electrode geometry, a phase transition with freezing of the tissue surface will deepen the level of the superficial interface. With a bipolar array, the deep interface is raised and the superficial interface is deepened with freezing of the tissue surface. As a result, a narrow treatment zone with compaction of the matrix will be created with bipolar electrodes.
Appendix 2 Mathlab Spread Sheet For Microwave Heating
From preliminary bench testing, a spread sheet of predicted temperatures within tissue has been created. The spread accounts for variations in tissue depth and microwave power. Additional variation in temperature will be observed with different tissues and different device geometries.
Tissue Temperature Table cells show degrees C. Predictor
Rows are for time in seconds. Columns arc for depth in mm.
12.0 Set absorbed microwave power in watts/cm2.
50.0 Set time in seconds for when to turn on microwaves.
90.0 Set time in seconds for when to turn off microwaves.
Figure imgf000037_0001
0.9129 0.0426 0.0010 Per Matlab
Thermal coefficients 0.9100 0.0440 0.0010 Used 1.0000

Claims

What is claimed is: Claims :
1. An apparatus to modify a stomach wall comprising: an elongated member including at least one lumen; a deployable member coupled to the elongated member, the deployable member configured to be advanceable and removable from the stomach in a non-deployed state and sized to be positioned in the stomach in a deployed state to engage at least portions of the stomach wall, the deployable member further configured to contain a fluidic media, at least a portion of a deployable member wall configured to be cooled by the fluidic media, the deployable member having a contour in the deployed state approximating at least a portion of a stomach interior; a microwave antenna movably positioned in the deployable member so as to control a microwave field strength vector in relation to the antenna, the microwave antenna being configured to be coupled to a microwave energy source and deliver microwave energy to a selectable tissue site in the stomach wall while minimizing thermal injury to one of a mucosal or a submucosal layer; and a cable member coupled to the microwave antenna, the cable member configured to be advancecable within the elongated member.
2. The apparatus of claim 1 , wherein the contour includes a first a radius of curvature and a second radius of curvature, the second radius of curvature being greater than the first radius of curvature and at least a portion of the first curvature being substantially parallel to at least a portion of the second curvature.
3. The apparatus of claim 1 , wherein the first radius of curvature approximates a stomach lesser curvature and the second radius of curvature approximates a stomach greater curvature.
4. The apparatus of claim 1, wherein the expansion device deployed has a contour approximating at least one of a fundus, an antrum, a stomach corpus or a pyloric region.
5. The apparatus of claim 1 , wherein at least portion of the elongated member is formed of one of a microwave absorbable material or a microwave absorbable material with a variable microwave absorption.
6. The apparatus of claim 5, wherein the microwave absorption varies with respect to at least one of a temperature or an emitted microwave power.
7. The apparatus of claim 1 , wherein the at least one the expansion member or the elongated member includes at least one aperture.
8. The apparatus of claim 7, wherein the at least one aperture is fluidically coupled with the at least one lumen.
9. The apparatus of claim 1 , wherein the at least one lumen includes a fluid lumen and cable member lumen.
10. The apparatus of claim 9, wherein the fluid lumen is positioned in a substantially surrounding relationship to the cable lumen.
11. The apparatus of claim 10, wherein the fluid lumen includes a first fluid lumen and second fluid lumen.
12. The apparatus of claim 9, wherein the fluid lumen is positioned relative to the cable lumen to increase heat exchange between a cooling fluid disposed in the fluid lumen and the cable lumen.
13. The apparatus of claim 9, wherein the fluid lumen is positioned relative to the cable lumen to increase absorption of microwaves radiating from the cable lumen by a microwave absorbing media disposed in the fluid lumen.
14. The apparatus of claim 10, wherein the fluid lumen has one of a semi-circular shape, a kidney shape or a crescent shape.
15. The apparatus of claim 10, wherein the fluid lumen and the cable lumen have a substantially common locus.
16. The apparatus of claim 1, wherein the fluidic medium contains at least one of a cooling fluid, a cooled fluid, a microwave absorbing solution, a microwave absorbing particle or a microwave absorbing solution with a variable microwave absorption.
17. The apparatus of claim 16, wherein the microwave absorbing solution has a microwave absorption that varies with one of a solution temperature or an emitted microwave power.
18. The apparatus of claim 1 , wherein the antenna is constructed from a portion of a coaxial cable.
19. The apparatus of claim 18, wherein the antenna comprises a slotted radiating portion of the coaxial cable.
20. The apparatus of claim 18, wherein the antenna further comprises: an inner conductor; an inner insulation layer substantially surrounding the inner conductor; an outer conductor substantially surrounding the inner insulation; and an outer insulation layer substantially surrounding the outer conductor.
21. The apparatus of claim 20, wherein the inner insulation layer comprises a plurality of insulation segments longitudinally distributed over the inner conductor with a gap between each insulation segment.
22. The apparatus of claim 1 , wherein the antenna further comprises a plurality of radiating elements.
23. The apparatus of claim 22, wherein the plurality of radiating elements comprise an array of radiating elements or an array of radiating elements distributed along a beam axis of symmetry.
24. The apparatus of claim 1, further comprising: a microwave absorbable sheath member slidably positioned over the microwave antenna.
25. The apparatus of claim 24, wherein the sheath member is configured to control one of a radiating length of the microwave antenna, an emitted microwave radiation power level, or a microwave field strength.
26. The apparatus of claim 1 , wherein the antenna is configured to produce one of an omnidirectional beam, a pencil-beam, a flat-top flared beam or an asymmetrically flared beam.
27. The apparatus of claim 1 , wherein the antenna has a directionally selectable microwave beam.
28. The apparatus of claim 27, wherein the antenna has a selectable beam arc in the range from 1 to 360°.
29. The apparatus of claim 1 , wherein at least a portion of the deployable member include one of a microwave absorbable material or a microwave absorbable material with a variable microwave absorption.
30. The apparatus of claim 29, wherein the microwave absorption varies with respect to at least one of a temperature or an emitted microwave power.
31. The apparatus of claim 29, wherein the position of the microwave material is configured to produce a directional microwave beam.
32. The apparatus of claim 31 , wherein the beam has a beam arc in the range from 1 to 360°.
33. The apparatus of claim 1 , wherein the antenna is configured to radiate microwave energy at a frequency range selected from the group consisting of about 915 MHz to about 2.45 GHz and about 1250 MHz to about 1350 MHz.
34. The apparatus of claim 1, wherein the antenna comprises: a first and a second dipole element.
35. The apparatus of claim 34, wherein one of the first dipole element has a cylindrical shape and the second dipole element has one of a cylindrical shape or a cylindrical ball-tipped shape.
36. The apparatus of claim 34 wherein one of a first dipole element length or a second dipole element length is substantially nonequivalent to one quarter of a selected microwave wavelength.
37. The apparatus of claim 36 wherein the microwave antenna has a slow wave structure.
38. The apparatus of claim 1 , wherein the expansion member is an inflatable balloon.
39. The apparatus of claim 38, wherein the expansion member is sized to produce a selected post treatment stomach volume.
40. The apparatus of claim 38, wherein the expansion member is shaped to produce a selected post treatment stomach shape.
41. The apparatus of claim 1, wherein an expansion member parameter is configured to yield an expansion member compliance less than the stomach wall.
42. The apparatus of claim 41 , wherein the expansion member parameter includes at least one of an expansion member wall thickness, an expansion member shape, an expansion member size or an expansion member material.
43. The apparatus of claim 41 , wherein the expansion member is configured to conform to at least a portion of the stomach wall when the expansion member is in the deployed state.
44. The apparatus of claim 41 , wherein the expansion member is configured to uniformly contact the stomach wall including a stomach wall crevice.
45. The apparatus of claim 1, wherein an expansion member parameter is configured to yield an expansion member compliance greater than the stomach wall.
46. The apparatus of claim 45, wherein the expansion member parameter includes at least one of an expansion member wall thickness, an expansion member shape or an expansion member material.
47. The apparatus of claim 45, wherein the expansion member is sized to produce a selected post treatment stomach volume.
48. The apparatus of claim 45, wherein the expansion member is configured to at least partial stretch at least a portion of the stomach wall when the expansion member is in the deployed state.
49. The apparatus of claim 1, further comprising: an inner elongated member disposed within the elongated member, the inner member including a lumen.
50. The apparatus of claim 49, wherein the inner member is advanceable within the elongated member.
51. The apparatus of claim 49, wherein at least portions of the inner member include a fluid lumen, a reinforcing braid, a radiopaque marker or an echogenic marker.
52. The apparatus of claim 49, wherein at least a portion of the inner member include one of a microwave absorbable material or a microwave absorbable material with a variable microwave absorption.
53. The apparatus of claim 49, wherein the inner member is slidably advanceable over at least portions of the antenna.
54. The apparatus of claim 49, wherein at least one of the elongated member or the inner member is deflectable.
55. The apparatus of claim 54, wherein at least one of the elongated member or the inner member has an articulated portion.
56. The apparatus of claim 54, wherein at least one of the elongated member or the inner member is coupled to a deflection mechanism.
57. The apparatus of claim 1, further comprising: a sensor coupled to one of the expansion member or the elongated member.
58. The apparatus of claim 57, wherein the sensor is one of a microwave sensor, a thermal sensor, an ultrasound transducer, an optical sensor, a pressure sensor, a force sensor or a contact sensor.
59. The apparatus of claim 57, wherein the sensor is a contact sensor configured to facilitate positioning the deployable member adjacent a selectable portion of the stomach wall.
60. The apparatus of claim 57, wherein the sensor comprises a first sensor coupled to the deployable member and second sensor coupled to the microwave antenna.
61. The apparatus of claim 57, wherein the first and second sensors are configured to monitor one of a microwave antenna position, a microwave beam direction or a microwave field strength.
62. The apparatus of claim 57, further comprising feedback control resources coupled to at least one of the sensor, the antenna, microwave power source coupled to the antenna or a fluid delivery device coupled to the elongated member.
63. The apparatus of claim 62, wherein the feedback control resources are configured to reduce one of an expansion member surface temperature or an expansion member tissue interface temperature.
64. The apparatus of claim 62, wherein the feedback control resources are configured to minimize thermal injury to one of a mucosa or submucosa in proximity to the expansion member.
65. The apparatus of claim 62, wherein one of the feedback control resources, the antenna or an antenna beam is configured to cause collagen contraction of a selectable depth of the stomach wall.
66. The apparatus of claim 62, wherein one of the feedback control resources, the antenna or an antenna beam is configured to initiate a wound healing response of a selectable portion of the stomach.
67. The apparatus of claim 66, wherein the wound healing response is of a selectable circumferential portion of the stomach.
68. The apparatus of claim 66, wherein the wound healing response is of a selectable portion of the stomach wall.
69. The apparatus of claim 62, wherein the feedback control resources are configured to monitor and reduce a distensibility of at least a portion of the stomach.
70. The apparatus of claim 62, wherein the feedback control resources are configured to reduce a volume of at least a portion of the stomach.
71. The apparatus of claim 62, wherein the feedback control resources are configured to control one of an input microwave power to the antenna, an antenna emitted microwave power, an antenna microwave field strength, or a fluid media flow to the expansion member.
72. An apparatus to modify a stoma comprising: an elongated member including at least one lumen; a deployable member coupled to the elongated member, the deployable member configured to be advanceable and removable from the stoma in a non- deployed state and sized to be positioned in the stoma in a deployed state to engage at least portions of the stoma wall, the deployable member further configured to contain a fluidic media, at least a portion of a deployable member wall configured to be cooled by the fluidic media, the deployable member having a contour in the deployed state approximating at least a portion of a stoma interior; a microwave antenna movably positioned in the deployable member so as to control a microwave field strength vector in relation to the antenna, the microwave antenna being configured to be coupled to a microwave energy source and deliver microwave energy to a selectable tissue site in the stoma wall while minimizing thermal injury to one of a mucosal or a submucosal layer; and a cable member coupled to the microwave antenna, the cable member configured to be advanceable within the elongated member.
PCT/US2000/004432 1999-02-19 2000-02-22 Stomach treatment apparatus and method WO2000048672A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU33720/00A AU3372000A (en) 1999-02-19 2000-02-22 Stomach treatment apparatus and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12078199P 1999-02-19 1999-02-19
US60/120,781 1999-02-19
US09/507,597 2000-02-18
US09/507,597 US6427089B1 (en) 1999-02-19 2000-02-18 Stomach treatment apparatus and method

Publications (1)

Publication Number Publication Date
WO2000048672A1 true WO2000048672A1 (en) 2000-08-24

Family

ID=26818759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/004432 WO2000048672A1 (en) 1999-02-19 2000-02-22 Stomach treatment apparatus and method

Country Status (3)

Country Link
US (1) US6427089B1 (en)
AU (1) AU3372000A (en)
WO (1) WO2000048672A1 (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003020124A2 (en) * 2001-09-06 2003-03-13 Aalborg Universitet Method an apparatus for stimulating a bodily hollow system and method and apparatus for measuring reactions to stimuli of such system
WO2006117682A2 (en) * 2005-04-05 2006-11-09 Renewave Medical Systems Sa. Microwave devices for treating biological samples and tissue and methods for using the same
EP1978876A2 (en) * 2006-02-03 2008-10-15 Baronova, Inc. Devices and methods for gastrointestinal stimulation
EP2106763A1 (en) * 2008-03-31 2009-10-07 Vivant Medical, Inc. Re-hydration antenna for ablation
US8048169B2 (en) 2003-07-28 2011-11-01 Baronova, Inc. Pyloric valve obstructing devices and methods
US8152821B2 (en) 2000-03-03 2012-04-10 C.R. Bard, Inc. Endoscopic tissue apposition device with multiple suction ports
WO2013136337A1 (en) * 2012-03-15 2013-09-19 Gema Medical Ltd A sensing system, device and methods for gastroparesis monitoring
US8834460B2 (en) 2009-05-29 2014-09-16 Covidien Lp Microwave ablation safety pad, microwave safety pad system and method of use
US8834409B2 (en) 2008-07-29 2014-09-16 Covidien Lp Method for ablation volume determination and geometric reconstruction
US8832927B2 (en) 2009-03-10 2014-09-16 Covidien Lp Method of manufacturing surgical antennas
US8847830B2 (en) 2009-06-19 2014-09-30 Covidien Lp Microwave ablation antenna radiation detector
US8888797B2 (en) 2007-09-07 2014-11-18 Baronova, Inc. Device for intermittently obstructing a gastric opening and method of use
US8945144B2 (en) 2010-09-08 2015-02-03 Covidien Lp Microwave spacers and method of use
US8945111B2 (en) 2008-01-23 2015-02-03 Covidien Lp Choked dielectric loaded tip dipole microwave antenna
US8968297B2 (en) 2011-07-19 2015-03-03 Covidien Lp Microwave and RF ablation system and related method for dynamic impedance matching
US8966981B2 (en) 2003-10-30 2015-03-03 Covidien Ag Switched resonant ultrasonic power amplifier system
US8968291B2 (en) 2007-11-16 2015-03-03 Covidien Lp Dynamically matched microwave antenna for tissue ablation
US8968292B2 (en) 2009-02-20 2015-03-03 Covidien Lp Leaky-wave antennas for medical applications
US8968289B2 (en) 2010-10-22 2015-03-03 Covidien Lp Microwave spacers and methods of use
US8992413B2 (en) 2011-05-31 2015-03-31 Covidien Lp Modified wet tip antenna design
US9028482B2 (en) 2011-07-19 2015-05-12 Covidien Lp Microwave and RF ablation system and related method for dynamic impedance matching
US9031668B2 (en) 2009-08-06 2015-05-12 Covidien Lp Vented positioner and spacer and method of use
US9033973B2 (en) 2011-08-30 2015-05-19 Covidien Lp System and method for DC tissue impedance sensing
US9057468B2 (en) 2007-11-27 2015-06-16 Covidien Lp Wedge coupling
US9113900B2 (en) 1998-10-23 2015-08-25 Covidien Ag Method and system for controlling output of RF medical generator
US9113932B1 (en) 2008-08-28 2015-08-25 Covidien Lp Microwave antenna with choke
US9113624B2 (en) 2008-10-15 2015-08-25 Covidien Lp System and method for perfusing biological organs
US9113924B2 (en) 2008-10-17 2015-08-25 Covidien Lp Choked dielectric loaded tip dipole microwave antenna
US9149270B2 (en) 2004-08-27 2015-10-06 Davol, Inc. (a C.R. Bard Company) Endoscopic tissue apposition device and method of use
US9173706B2 (en) 2008-08-25 2015-11-03 Covidien Lp Dual-band dipole microwave ablation antenna
US9192422B2 (en) 2011-07-19 2015-11-24 Covidien Lp System and method of matching impedances of an electrosurgical generator and/or a microwave generator
US9192436B2 (en) 2010-05-25 2015-11-24 Covidien Lp Flow rate verification monitor for fluid-cooled microwave ablation probe
US9192437B2 (en) 2009-05-27 2015-11-24 Covidien Lp Narrow gauge high strength choked wet tip microwave ablation antenna
US9254172B2 (en) 2008-09-03 2016-02-09 Covidien Lp Shielding for an isolation apparatus used in a microwave generator
US9271796B2 (en) 2008-06-09 2016-03-01 Covidien Lp Ablation needle guide
US9277969B2 (en) 2009-04-01 2016-03-08 Covidien Lp Microwave ablation system with user-controlled ablation size and method of use
US9510834B2 (en) 2003-07-28 2016-12-06 Baronova, Inc. Gastric retaining devices and methods
US9529025B2 (en) 2012-06-29 2016-12-27 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US9622813B2 (en) 2007-11-01 2017-04-18 Covidien Lp Method for volume determination and geometric reconstruction
US9636165B2 (en) 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US9642735B2 (en) 2003-07-28 2017-05-09 Baronova, Inc. Pyloric valve corking device
US9681916B2 (en) 2012-01-06 2017-06-20 Covidien Lp System and method for treating tissue using an expandable antenna
US9693823B2 (en) 2012-01-06 2017-07-04 Covidien Lp System and method for treating tissue using an expandable antenna
US9700450B2 (en) 2003-07-28 2017-07-11 Baronova, Inc. Devices and methods for gastrointestinal stimulation
US9833286B2 (en) 2009-05-06 2017-12-05 Covidien Lp Power-stage antenna integrated system with high-strength shaft
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9925002B2 (en) 2008-01-31 2018-03-27 Covidien Lp Articulating ablation device and method
US9949794B2 (en) 2008-03-27 2018-04-24 Covidien Lp Microwave ablation devices including expandable antennas and methods of use
EP3188669A4 (en) * 2014-09-04 2018-05-23 Medtronic Cryocath LP Cryoadhesive device for left atrial appendage occlusion
US10045819B2 (en) 2009-04-14 2018-08-14 Covidien Lp Frequency identification for microwave ablation probes
US10070981B2 (en) 2013-03-15 2018-09-11 Baronova, Inc. Locking gastric obstruction device and method of use
US10076383B2 (en) 2012-01-25 2018-09-18 Covidien Lp Electrosurgical device having a multiplexer

Families Citing this family (281)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6770071B2 (en) 1995-06-07 2004-08-03 Arthrocare Corporation Bladed electrosurgical probe
US7429262B2 (en) * 1992-01-07 2008-09-30 Arthrocare Corporation Apparatus and methods for electrosurgical ablation and resection of target tissue
US7297145B2 (en) 1997-10-23 2007-11-20 Arthrocare Corporation Bipolar electrosurgical clamp for removing and modifying tissue
US6104959A (en) 1997-07-31 2000-08-15 Microwave Medical Corp. Method and apparatus for treating subcutaneous histological features
US7468060B2 (en) * 1998-02-19 2008-12-23 Respiratory Diagnostic, Inc. Systems and methods for treating obesity and other gastrointestinal conditions
US9101765B2 (en) 1999-03-05 2015-08-11 Metacure Limited Non-immediate effects of therapy
US8666495B2 (en) 1999-03-05 2014-03-04 Metacure Limited Gastrointestinal methods and apparatus for use in treating disorders and controlling blood sugar
WO2000069376A1 (en) * 1999-05-18 2000-11-23 Silhouette Medical Inc. Surgical weight control device
ES2435094T3 (en) 2000-05-19 2013-12-18 C.R. Bard, Inc. Device and method of tissue capture and suturing
AU2001265728A1 (en) * 2000-06-08 2001-12-17 Lawson Research Institute Diagnosis and classification of disease and disability using low frequency magnetic field designed pulses (cnps)
US6699241B2 (en) * 2000-08-11 2004-03-02 Northeastern University Wide-aperture catheter-based microwave cardiac ablation antenna
US6660026B2 (en) * 2000-10-05 2003-12-09 Seacoast Technologies, Inc. Multi-tipped cooling probe
EP1357971B1 (en) * 2001-01-05 2015-05-20 Metacure Limited Regulation of eating habits
US6740108B1 (en) * 2001-04-05 2004-05-25 Urologix, Inc. Thermal treatment catheter having preferential asymmetrical heating pattern
US7330753B2 (en) * 2001-04-18 2008-02-12 Metacure N.V. Analysis of eating habits
US7979127B2 (en) 2001-05-01 2011-07-12 Intrapace, Inc. Digestive organ retention device
US7643887B2 (en) * 2001-05-01 2010-01-05 Intrapace, Inc. Abdominally implanted stimulator and method
US7756582B2 (en) * 2001-05-01 2010-07-13 Intrapace, Inc. Gastric stimulation anchor and method
US20050143784A1 (en) * 2001-05-01 2005-06-30 Imran Mir A. Gastrointestinal anchor with optimal surface area
US7747322B2 (en) * 2001-05-01 2010-06-29 Intrapace, Inc. Digestive organ retention device
US6535764B2 (en) * 2001-05-01 2003-03-18 Intrapace, Inc. Gastric treatment and diagnosis device and method
US20080065169A1 (en) * 2001-05-01 2008-03-13 Intrapace, Inc. Endoscopic Instrument for Engaging a Device
US7616996B2 (en) * 2005-09-01 2009-11-10 Intrapace, Inc. Randomized stimulation of a gastrointestinal organ
US9668690B1 (en) 2001-05-01 2017-06-06 Intrapace, Inc. Submucosal gastric implant device and method
US7020531B1 (en) * 2001-05-01 2006-03-28 Intrapace, Inc. Gastric device and suction assisted method for implanting a device on a stomach wall
US7689284B2 (en) * 2001-05-01 2010-03-30 Intrapace, Inc. Pseudounipolar lead for stimulating a digestive organ
US7702394B2 (en) 2001-05-01 2010-04-20 Intrapace, Inc. Responsive gastric stimulator
EP1414378B1 (en) * 2001-05-17 2008-10-08 Wilson-Cook Medical Inc. Intragastric device for treating obesity
US6953469B2 (en) * 2001-08-30 2005-10-11 Ethicon, Inc, Device and method for treating intraluminal tissue
WO2003024309A2 (en) * 2001-09-19 2003-03-27 Urologix, Inc. Microwave ablation device
EP1434526A1 (en) * 2001-10-12 2004-07-07 Boston Scientific Limited Catheter with piezo elements for lesion diagnostics
US6878147B2 (en) 2001-11-02 2005-04-12 Vivant Medical, Inc. High-strength microwave antenna assemblies
US20030138823A1 (en) * 2001-11-05 2003-07-24 Irm, Llc Sample preparation methods for maldi mass spectrometry
US7004941B2 (en) * 2001-11-08 2006-02-28 Arthrocare Corporation Systems and methods for electrosurigical treatment of obstructive sleep disorders
WO2003068055A2 (en) * 2002-02-11 2003-08-21 Arthrocare Corporation Electrosurgical apparatus and methods for laparoscopy
US7756583B2 (en) 2002-04-08 2010-07-13 Ardian, Inc. Methods and apparatus for intravascularly-induced neuromodulation
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US7617005B2 (en) * 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US8845672B2 (en) 2002-05-09 2014-09-30 Reshape Medical, Inc. Balloon system and methods for treating obesity
US20040082859A1 (en) * 2002-07-01 2004-04-29 Alan Schaer Method and apparatus employing ultrasound energy to treat body sphincters
US6780183B2 (en) 2002-09-16 2004-08-24 Biosense Webster, Inc. Ablation catheter having shape-changing balloon
US6709392B1 (en) * 2002-10-10 2004-03-23 Koninklijke Philips Electronics N.V. Imaging ultrasound transducer temperature control system and method using feedback
CA2513274A1 (en) * 2003-01-16 2004-07-29 Galil Medical Ltd. Device, system, and method for detecting and localizing obstruction within a blood vessel
CA2513275A1 (en) * 2003-01-16 2004-07-29 Galil Medical Ltd. Device, system, and method for detecting, localizing, and characterizing plaque-induced stenosis of a blood vessel
US7430449B2 (en) * 2003-03-14 2008-09-30 Endovx, Inc. Methods and apparatus for testing disruption of a vagal nerve
US7758623B2 (en) * 2003-03-17 2010-07-20 The Board Of Trustees Of The Leland Stanford Junior University Transesophageal heat exchange catheter for cooling of the heart
US6981980B2 (en) * 2003-03-19 2006-01-03 Phagia Technology Self-inflating intragastric volume-occupying device
US20060058829A1 (en) * 2003-03-19 2006-03-16 Sampson Douglas C Intragastric volume-occupying device
JP4943841B2 (en) * 2003-06-20 2012-05-30 メタキュアー リミティド Gastrointestinal methods and devices for use in treating disorders
US7081113B2 (en) * 2003-06-26 2006-07-25 Depuy Acromed, Inc. Helical probe
US8293349B1 (en) * 2003-07-18 2012-10-23 Boston Scientific Scimed, Inc. Balloon forming process and balloons made therefrom
US8792985B2 (en) 2003-07-21 2014-07-29 Metacure Limited Gastrointestinal methods and apparatus for use in treating disorders and controlling blood sugar
US20070060971A1 (en) * 2003-07-21 2007-03-15 Ofer Glasberg Hepatic device for treatment or glucose detection
DE202004021942U1 (en) 2003-09-12 2013-05-13 Vessix Vascular, Inc. Selectable eccentric remodeling and / or ablation of atherosclerotic material
US7054690B2 (en) 2003-10-22 2006-05-30 Intrapace, Inc. Gastrointestinal stimulation device
US7282050B2 (en) * 2003-10-31 2007-10-16 Medtronic, Inc. Ablation of exterior of stomach to treat obesity
US7252665B2 (en) * 2003-10-31 2007-08-07 Medtronic, Inc Ablation of stomach lining to reduce stomach acid secretion
US7041124B2 (en) * 2003-12-23 2006-05-09 Kimberly-Clark Worldwide, Inc. System and method for providing therapy to a portion of a body
FR2866557B1 (en) * 2004-02-20 2006-08-25 Cie Euro Etude Rech Paroscopie INTRA-GASTRIC POCKET BALL WITH A SHUTTER ASSEMBLY IMPROVED ON THE SAME POCKET
US7238184B2 (en) 2004-03-15 2007-07-03 Boston Scientific Scimed, Inc. Ablation probe with peltier effect thermal control
AU2005231443B2 (en) 2004-04-01 2012-02-23 The General Hospital Corporation Method and apparatus for dermatological treatment and tissue reshaping
US7101369B2 (en) * 2004-04-29 2006-09-05 Wisconsin Alumni Research Foundation Triaxial antenna for microwave tissue ablation
US7467015B2 (en) 2004-04-29 2008-12-16 Neuwave Medical, Inc. Segmented catheter for tissue ablation
US20070055224A1 (en) * 2004-04-29 2007-03-08 Lee Fred T Jr Intralumenal microwave device
US7244254B2 (en) * 2004-04-29 2007-07-17 Micrablate Air-core microwave ablation antennas
US20050246037A1 (en) 2004-04-30 2005-11-03 Medtronic, Inc. Partial esophageal obstruction to limit food intake for treatment of obesity
WO2005107641A2 (en) * 2004-05-03 2005-11-17 Fulfillium, Inc. Method and system for gastric volume control
US7704249B2 (en) 2004-05-07 2010-04-27 Arthrocare Corporation Apparatus and methods for electrosurgical ablation and resection of target tissue
FR2870450B1 (en) * 2004-05-18 2007-04-20 David Jean Marie Nocca ADJUSTABLE PROSTHETIC STRIP
WO2006002337A2 (en) 2004-06-24 2006-01-05 Arthrocare Corporation Electrosurgical device having planar vertical electrode and related methods
US8612016B2 (en) 2004-08-18 2013-12-17 Metacure Limited Monitoring, analysis, and regulation of eating habits
US9125667B2 (en) * 2004-09-10 2015-09-08 Vessix Vascular, Inc. System for inducing desirable temperature effects on body tissue
US9456915B2 (en) 2004-11-19 2016-10-04 Fulfilium, Inc. Methods, devices, and systems for obesity treatment
US8070807B2 (en) 2004-11-19 2011-12-06 Fulfillium, Inc. Wireless breach detection
US9821158B2 (en) 2005-02-17 2017-11-21 Metacure Limited Non-immediate effects of therapy
WO2006129321A2 (en) 2005-06-02 2006-12-07 Metacure N.V. Gi lead implantation
WO2007080595A2 (en) 2006-01-12 2007-07-19 Metacure N.V. Electrode assemblies, tools, and methods for gastric wall implantation
US7736392B2 (en) * 2005-04-28 2010-06-15 Medtronic, Inc. Bulking of upper esophageal sphincter for treatment of obesity
US20060282107A1 (en) * 2005-05-09 2006-12-14 Kiyoshi Hashiba Intragastric device for treating obesity
US7691053B2 (en) * 2005-05-20 2010-04-06 Tyco Healthcare Group Lp Gastric restrictor assembly and method of use
US7666180B2 (en) * 2005-05-20 2010-02-23 Tyco Healthcare Group Lp Gastric restrictor assembly and method of use
US20060264982A1 (en) * 2005-05-20 2006-11-23 Viola Frank J Gastric restrictor assembly and method of use
US7967818B2 (en) 2005-06-10 2011-06-28 Cook Medical Technologies Llc Cautery catheter
WO2006138382A2 (en) 2005-06-14 2006-12-28 Micrablate, Llc Microwave tissue resection tool
US20070016274A1 (en) * 2005-06-29 2007-01-18 Boveja Birinder R Gastrointestinal (GI) ablation for GI tumors or to provide therapy for obesity, motility disorders, G.E.R.D., or to induce weight loss
US20050240239A1 (en) * 2005-06-29 2005-10-27 Boveja Birinder R Method and system for gastric ablation and gastric pacing to provide therapy for obesity, motility disorders, or to induce weight loss
US20090018606A1 (en) * 2005-10-12 2009-01-15 Intrapace, Inc. Methods and Devices for Stimulation of an Organ with the Use of a Transectionally Placed Guide Wire
US7509175B2 (en) 2006-08-03 2009-03-24 Intrapace, Inc. Method and devices for stimulation of an organ with the use of a transectionally placed guide wire
US8442841B2 (en) 2005-10-20 2013-05-14 Matacure N.V. Patient selection method for assisting weight loss
US20070100368A1 (en) * 2005-10-31 2007-05-03 Quijano Rodolfo C Intragastric space filler
US7887488B2 (en) * 2005-11-12 2011-02-15 Scimed Life Systems, Inc. Systems and methods for reducing noise in an imaging catheter system
US8295932B2 (en) * 2005-12-05 2012-10-23 Metacure Limited Ingestible capsule for appetite regulation
EP1962710B1 (en) 2005-12-06 2015-08-12 St. Jude Medical, Atrial Fibrillation Division, Inc. Apparatus for displaying catheter electrode-tissue contact in electro-anatomic mapping and navigation system
US8603084B2 (en) * 2005-12-06 2013-12-10 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing the formation of a lesion in tissue
US10362959B2 (en) 2005-12-06 2019-07-30 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing the proximity of an electrode to tissue in a body
US8403925B2 (en) 2006-12-06 2013-03-26 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing lesions in tissue
US8406866B2 (en) * 2005-12-06 2013-03-26 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing coupling between an electrode and tissue
US9492226B2 (en) 2005-12-06 2016-11-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Graphical user interface for real-time RF lesion depth display
US9254163B2 (en) 2005-12-06 2016-02-09 St. Jude Medical, Atrial Fibrillation Division, Inc. Assessment of electrode coupling for tissue ablation
CA2633228A1 (en) * 2005-12-14 2007-06-21 Mobilestream Oil, Inc. Device producing and use of microwave energy for thermotherapy
BRPI0620706A2 (en) * 2005-12-14 2011-11-22 Mobilestream Oil Inc method for decomposing a composition, method for extracting a petroleum based material; apparatus for decomposing a composition; apparatus for extracting a petroleum-based material from a compound; and polymer, carbon black, steel, oil, gas, monomer, petroleum based material produced by the method of the invention
US20070142884A1 (en) * 2005-12-16 2007-06-21 Acoustx Corporation Methods and apparatuses for treating an esophageal disorder such as gastroesophageal reflux disease
US20070142699A1 (en) * 2005-12-16 2007-06-21 Acoustx Corporation Methods and implantable apparatuses for treating an esophageal disorder such as gastroesophageal reflux disease
US8216268B2 (en) * 2005-12-22 2012-07-10 Cook Medical Technologies Llc Intragastric bag for treating obesity
EP1968506B1 (en) * 2005-12-22 2011-09-14 Wilson-Cook Medical Inc. Coiled intragastric member for treating obesity
US20070265608A1 (en) * 2006-01-23 2007-11-15 Hernandez Lyndon V Method of energy ablation for the treatment of gastrointestinal diseases
US8961511B2 (en) * 2006-02-07 2015-02-24 Viveve, Inc. Vaginal remodeling device and methods
US20070225781A1 (en) * 2006-03-21 2007-09-27 Nidus Medical, Llc Apparatus and methods for altering temperature in a region within the body
WO2007112081A1 (en) 2006-03-24 2007-10-04 Micrablate Transmission line with heat transfer ability
WO2007112102A1 (en) 2006-03-24 2007-10-04 Micrablate Center fed dipole for use with tissue ablation systems, devices, and methods
EP1998699A1 (en) * 2006-03-24 2008-12-10 Neuwave Medical, Inc. Energy delivery system
US8246611B2 (en) 2006-06-14 2012-08-21 Candela Corporation Treatment of skin by spatial modulation of thermal heating
US10376314B2 (en) 2006-07-14 2019-08-13 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US11389235B2 (en) 2006-07-14 2022-07-19 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US20080221650A1 (en) * 2006-08-04 2008-09-11 Turner Paul F Microwave applicator with adjustable heating length
AU2007310988B2 (en) 2006-10-18 2013-08-15 Vessix Vascular, Inc. Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
AU2007310986B2 (en) 2006-10-18 2013-07-04 Boston Scientific Scimed, Inc. Inducing desirable temperature effects on body tissue
WO2008067304A2 (en) * 2006-11-27 2008-06-05 Michael Lau Methods and apparatuses for contouring tissue by selective application of energy
US7655004B2 (en) 2007-02-15 2010-02-02 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US9149331B2 (en) 2007-04-19 2015-10-06 Miramar Labs, Inc. Methods and apparatus for reducing sweat production
WO2008131306A1 (en) 2007-04-19 2008-10-30 The Foundry, Inc. Systems and methods for creating an effect using microwave energy to specified tissue
RU2523620C2 (en) 2007-04-19 2014-07-20 Мирамар Лэбс,Инк. Systems and methods for generating exposure on target tissue with using microwave energy
US20100114086A1 (en) 2007-04-19 2010-05-06 Deem Mark E Methods, devices, and systems for non-invasive delivery of microwave therapy
US8496653B2 (en) 2007-04-23 2013-07-30 Boston Scientific Scimed, Inc. Thrombus removal
US20080269735A1 (en) * 2007-04-26 2008-10-30 Agustina Vila Echague Optical array for treating biological tissue
US8007507B2 (en) * 2007-05-10 2011-08-30 Cook Medical Technologies Llc Intragastric bag apparatus and method of delivery for treating obesity
US20080306506A1 (en) * 2007-06-11 2008-12-11 Leatherman Dennis A Self-inflating and deflating intragastric balloon implant device
US8435203B2 (en) * 2007-06-20 2013-05-07 Covidien Lp Gastric restrictor assembly and method of use
US20080319523A1 (en) * 2007-06-22 2008-12-25 Neuro Vasx, Inc Aneurysm filler device
US8142469B2 (en) * 2007-06-25 2012-03-27 Reshape Medical, Inc. Gastric space filler device, delivery system, and related methods
US8568410B2 (en) 2007-08-31 2013-10-29 Ethicon Endo-Surgery, Inc. Electrical ablation surgical instruments
US8579897B2 (en) 2007-11-21 2013-11-12 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8262655B2 (en) 2007-11-21 2012-09-11 Ethicon Endo-Surgery, Inc. Bipolar forceps
US20090112059A1 (en) 2007-10-31 2009-04-30 Nobis Rudolph H Apparatus and methods for closing a gastrotomy
US8480657B2 (en) 2007-10-31 2013-07-09 Ethicon Endo-Surgery, Inc. Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ
US20090149879A1 (en) * 2007-12-10 2009-06-11 Dillon Travis E Dynamic volume displacement weight loss device
EP2231274B1 (en) 2007-12-12 2014-03-12 Miramar Labs, Inc. System and apparatus for the noninvasive treatment of tissue using microwave energy
BRPI0820706B8 (en) 2007-12-12 2021-06-22 Miramar Labs Inc disposable medical device for use with an applicator
US7883524B2 (en) * 2007-12-21 2011-02-08 Wilson-Cook Medical Inc. Method of delivering an intragastric device for treating obesity
US8016851B2 (en) * 2007-12-27 2011-09-13 Cook Medical Technologies Llc Delivery system and method of delivery for treating obesity
US9204927B2 (en) 2009-05-13 2015-12-08 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for presenting information representative of lesion formation in tissue during an ablation procedure
US8290578B2 (en) 2007-12-28 2012-10-16 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for complex impedance compensation
US8262680B2 (en) 2008-03-10 2012-09-11 Ethicon Endo-Surgery, Inc. Anastomotic device
EP2271276A4 (en) 2008-04-17 2013-01-23 Miramar Labs Inc Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
US8771260B2 (en) 2008-05-30 2014-07-08 Ethicon Endo-Surgery, Inc. Actuating and articulating surgical device
US8679003B2 (en) 2008-05-30 2014-03-25 Ethicon Endo-Surgery, Inc. Surgical device and endoscope including same
US8403926B2 (en) 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
US8529612B2 (en) 2008-06-24 2013-09-10 Mayo Foundation For Medical Education And Research Gastroduodenal balloon tubes and methods for use in localized hypothermia
US8361112B2 (en) 2008-06-27 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical suture arrangement
US8262563B2 (en) 2008-07-14 2012-09-11 Ethicon Endo-Surgery, Inc. Endoscopic translumenal articulatable steerable overtube
US8888792B2 (en) 2008-07-14 2014-11-18 Ethicon Endo-Surgery, Inc. Tissue apposition clip application devices and methods
US8211125B2 (en) 2008-08-15 2012-07-03 Ethicon Endo-Surgery, Inc. Sterile appliance delivery device for endoscopic procedures
US20100045559A1 (en) * 2008-08-25 2010-02-25 Vivant Medical, Inc. Dual-Band Dipole Microwave Ablation Antenna
US8529563B2 (en) 2008-08-25 2013-09-10 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8241204B2 (en) 2008-08-29 2012-08-14 Ethicon Endo-Surgery, Inc. Articulating end cap
US8480689B2 (en) * 2008-09-02 2013-07-09 Ethicon Endo-Surgery, Inc. Suturing device
US8409200B2 (en) 2008-09-03 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical grasping device
US8337394B2 (en) 2008-10-01 2012-12-25 Ethicon Endo-Surgery, Inc. Overtube with expandable tip
US9782565B2 (en) 2008-10-01 2017-10-10 Covidien Lp Endoscopic ultrasound-guided biliary access system
US9186128B2 (en) 2008-10-01 2015-11-17 Covidien Lp Needle biopsy device
US9332973B2 (en) 2008-10-01 2016-05-10 Covidien Lp Needle biopsy device with exchangeable needle and integrated needle protection
US8968210B2 (en) 2008-10-01 2015-03-03 Covidien LLP Device for needle biopsy with integrated needle protection
US11298113B2 (en) 2008-10-01 2022-04-12 Covidien Lp Device for needle biopsy with integrated needle protection
WO2010045477A2 (en) 2008-10-16 2010-04-22 Obalon Therapeutics, Inc. Intragastric volume-occupying device and method for fabricating same
US8157834B2 (en) 2008-11-25 2012-04-17 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
US8361066B2 (en) 2009-01-12 2013-01-29 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US20100238278A1 (en) * 2009-01-27 2010-09-23 Tokendo Videoendoscopy system
US9226772B2 (en) * 2009-01-30 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical device
US8252057B2 (en) 2009-01-30 2012-08-28 Ethicon Endo-Surgery, Inc. Surgical access device
US9301871B2 (en) 2009-02-26 2016-04-05 Advanced Cooling Therapy, Inc. Devices and methods for controlling patient temperature
US9622909B2 (en) 2009-02-26 2017-04-18 Advanced Cooling Therapy, Inc. Devices and methods for controlling patient temperature
US9326890B2 (en) 2009-02-26 2016-05-03 Advanced Cooling Therapy, Inc. Devices and methods for controlling patient temperature
US9174031B2 (en) * 2009-03-13 2015-11-03 Reshape Medical, Inc. Device and method for deflation and removal of implantable and inflatable devices
US20110087076A1 (en) 2009-04-03 2011-04-14 Intrapace, Inc. Feedback systems and methods for communicating diagnostic and/or treatment signals to enhance obesity treatments
US8551096B2 (en) 2009-05-13 2013-10-08 Boston Scientific Scimed, Inc. Directional delivery of energy and bioactives
EP2456507A4 (en) 2009-07-22 2013-07-03 Reshape Medical Inc Retrieval mechanisms for implantable medical devices
WO2011011741A2 (en) 2009-07-23 2011-01-27 Reshape Medical, Inc. Inflation and deflation mechanisms for inflatable medical devices
EP2456505B1 (en) 2009-07-23 2017-05-24 ReShape Medical, Inc. Deflation and removal of implantable medical devices
EP2859862B1 (en) 2009-07-28 2017-06-14 Neuwave Medical, Inc. Ablation system
CN105879238B (en) 2009-09-18 2019-10-18 女康乐公司 Repair the instrument and method of vagina tissue
WO2011038270A2 (en) 2009-09-24 2011-03-31 Reshape Medical, Inc. Normalization and stabilization of balloon surfaces for deflation
US20110098704A1 (en) 2009-10-28 2011-04-28 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8608652B2 (en) 2009-11-05 2013-12-17 Ethicon Endo-Surgery, Inc. Vaginal entry surgical devices, kit, system, and method
US8414570B2 (en) * 2009-11-17 2013-04-09 Bsd Medical Corporation Microwave coagulation applicator and system
US20110125148A1 (en) * 2009-11-17 2011-05-26 Turner Paul F Multiple Frequency Energy Supply and Coagulation System
US8551083B2 (en) 2009-11-17 2013-10-08 Bsd Medical Corporation Microwave coagulation applicator and system
US9993294B2 (en) * 2009-11-17 2018-06-12 Perseon Corporation Microwave coagulation applicator and system with fluid injection
US8353487B2 (en) 2009-12-17 2013-01-15 Ethicon Endo-Surgery, Inc. User interface support devices for endoscopic surgical instruments
US8496574B2 (en) 2009-12-17 2013-07-30 Ethicon Endo-Surgery, Inc. Selectively positionable camera for surgical guide tube assembly
US9028483B2 (en) 2009-12-18 2015-05-12 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US8506564B2 (en) 2009-12-18 2013-08-13 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US8986293B2 (en) * 2010-01-27 2015-03-24 Medtronic Cryocath Lp Cryoballoon refrigerant dispersion control
US9005198B2 (en) 2010-01-29 2015-04-14 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US8934975B2 (en) 2010-02-01 2015-01-13 Metacure Limited Gastrointestinal electrical therapy
WO2011097636A1 (en) 2010-02-08 2011-08-11 Reshape Medical, Inc. Improved and enhanced aspiration processes and mechanisms for intragastric devices
WO2011097637A1 (en) 2010-02-08 2011-08-11 Reshape Medical, Inc. Materials and methods for improved intragastric balloon devices
EP2539011A4 (en) 2010-02-25 2014-03-26 Reshape Medical Inc Improved and enhanced explant processes and mechanisms for intragastric devices
WO2011127205A1 (en) 2010-04-06 2011-10-13 Reshape Medical , Inc. Inflation devices for intragastric devices with improved attachment and detachment and associated systems and methods
KR20130108067A (en) 2010-04-09 2013-10-02 베식스 바스큘라 인코포레이티드 Power generating and control apparatus for the treatment of tissue
JP6153865B2 (en) 2010-05-03 2017-06-28 ニューウェーブ メディカル, インコーポレイテッドNeuwave Medical, Inc. Energy delivery system
US9192510B2 (en) 2010-08-18 2015-11-24 Mayo Foundation For Medical Education And Research Localized hypothermia to treat weight disorders
WO2012045030A2 (en) 2010-10-01 2012-04-05 Intrapace, Inc. Feedback systems and methods to enhance obstructive and other obesity treatments, optionally using multiple sensors
US9084610B2 (en) 2010-10-21 2015-07-21 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
US10448992B2 (en) 2010-10-22 2019-10-22 Arthrocare Corporation Electrosurgical system with device specific operational parameters
TW201221174A (en) * 2010-10-25 2012-06-01 Medtronic Ardian Luxembourg Microwave catheter apparatuses, systems, and methods for renal neuromodulation
US8747401B2 (en) 2011-01-20 2014-06-10 Arthrocare Corporation Systems and methods for turbinate reduction
MX345691B (en) 2011-01-21 2017-02-10 Obalon Therapeutics Inc Intragastric device.
US8202291B1 (en) 2011-01-21 2012-06-19 Obalon Therapeutics, Inc. Intragastric device
US8292911B2 (en) 2011-01-21 2012-10-23 Obalon Therapeutics, Inc. Intragastric device
US8647358B2 (en) 2011-01-21 2014-02-11 Obalon Therapeutics Inc. Intragastric device
US10092291B2 (en) 2011-01-25 2018-10-09 Ethicon Endo-Surgery, Inc. Surgical instrument with selectively rigidizable features
US9168082B2 (en) 2011-02-09 2015-10-27 Arthrocare Corporation Fine dissection electrosurgical device
US9271784B2 (en) 2011-02-09 2016-03-01 Arthrocare Corporation Fine dissection electrosurgical device
US9314620B2 (en) 2011-02-28 2016-04-19 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9254169B2 (en) 2011-02-28 2016-02-09 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9233241B2 (en) 2011-02-28 2016-01-12 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9011428B2 (en) 2011-03-02 2015-04-21 Arthrocare Corporation Electrosurgical device with internal digestor electrode
WO2012125785A1 (en) 2011-03-17 2012-09-20 Ethicon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
WO2012129516A1 (en) * 2011-03-24 2012-09-27 C. R. Bard, Inc. Fixation and protection of an implanted medical device
CA2845795A1 (en) * 2011-04-08 2013-07-18 Covidien Lp Flexible microwave catheters for natural or artificial lumens
CA2832311A1 (en) 2011-04-08 2012-11-29 Covidien Lp Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery
EP2701623B1 (en) 2011-04-25 2016-08-17 Medtronic Ardian Luxembourg S.à.r.l. Apparatus related to constrained deployment of cryogenic balloons for limited cryogenic ablation of vessel walls
US9314301B2 (en) 2011-08-01 2016-04-19 Miramar Labs, Inc. Applicator and tissue interface module for dermatological device
US9788882B2 (en) 2011-09-08 2017-10-17 Arthrocare Corporation Plasma bipolar forceps
JP2015503963A (en) 2011-12-21 2015-02-05 ニューウェーブ メディカル, インコーポレイテッドNeuwave Medical, Inc. Energy supply system and method of use thereof
US8986199B2 (en) 2012-02-17 2015-03-24 Ethicon Endo-Surgery, Inc. Apparatus and methods for cleaning the lens of an endoscope
US9277958B2 (en) 2012-02-22 2016-03-08 Candela Corporation Reduction of RF electrode edge effect
US9889297B2 (en) 2012-02-22 2018-02-13 Candela Corporation Reduction of RF electrode edge effect
EP2817061B1 (en) * 2012-02-24 2018-02-07 Isolase, Ltd. Improvements in ablation techniques for the treatment of atrial fibrillation
CN103301567B (en) 2012-03-16 2016-04-06 女康乐公司 A kind of therapeutic apparatus repairing vagina tissue
US10085879B2 (en) * 2012-04-17 2018-10-02 Empire Technology Development, Llc Heat treatment device
US9427255B2 (en) 2012-05-14 2016-08-30 Ethicon Endo-Surgery, Inc. Apparatus for introducing a steerable camera assembly into a patient
US9901398B2 (en) 2012-06-29 2018-02-27 Covidien Lp Microwave antenna probes
US9078662B2 (en) 2012-07-03 2015-07-14 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US9545290B2 (en) 2012-07-30 2017-01-17 Ethicon Endo-Surgery, Inc. Needle probe guide
US10314649B2 (en) 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power
US9572623B2 (en) 2012-08-02 2017-02-21 Ethicon Endo-Surgery, Inc. Reusable electrode and disposable sheath
US9277957B2 (en) 2012-08-15 2016-03-08 Ethicon Endo-Surgery, Inc. Electrosurgical devices and methods
WO2014047355A1 (en) * 2012-09-19 2014-03-27 Denervx LLC Cooled microwave denervation
US9044575B2 (en) 2012-10-22 2015-06-02 Medtronic Adrian Luxembourg S.a.r.l. Catheters with enhanced flexibility and associated devices, systems, and methods
US9254166B2 (en) 2013-01-17 2016-02-09 Arthrocare Corporation Systems and methods for turbinate reduction
US10098527B2 (en) 2013-02-27 2018-10-16 Ethidcon Endo-Surgery, Inc. System for performing a minimally invasive surgical procedure
US9301723B2 (en) 2013-03-15 2016-04-05 Covidien Lp Microwave energy-delivery device and system
US9119650B2 (en) * 2013-03-15 2015-09-01 Covidien Lp Microwave energy-delivery device and system
US9161814B2 (en) 2013-03-15 2015-10-20 Covidien Lp Microwave energy-delivery device and system
US10548663B2 (en) 2013-05-18 2020-02-04 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters with shafts for enhanced flexibility and control and associated devices, systems, and methods
WO2015013502A2 (en) 2013-07-24 2015-01-29 Miramar Labs, Inc. Apparatus and methods for the treatment of tissue using microwave energy
US9439717B2 (en) * 2013-08-13 2016-09-13 Covidien Lp Surgical forceps including thermal spread control
US10390881B2 (en) 2013-10-25 2019-08-27 Denervx LLC Cooled microwave denervation catheter with insertion feature
KR20160094397A (en) 2013-12-04 2016-08-09 오발론 테라퓨틱스 인코퍼레이티드 Systems and methods for locating and/or characterizing intragastric devices
US20150209107A1 (en) 2014-01-24 2015-07-30 Denervx LLC Cooled microwave denervation catheter configuration
EP4253024A3 (en) 2014-01-27 2023-12-27 Medtronic Ireland Manufacturing Unlimited Company Neuromodulation catheters having jacketed neuromodulation elements and related devices
US10736690B2 (en) 2014-04-24 2020-08-11 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters and associated systems and methods
US10709490B2 (en) 2014-05-07 2020-07-14 Medtronic Ardian Luxembourg S.A.R.L. Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods
US10159447B2 (en) 2014-07-02 2018-12-25 Covidien Lp Alignment CT
CN106659455B (en) 2014-07-02 2020-06-05 柯惠有限合伙公司 Unified coordinate system for multiple CT scan slices of a patient's lungs
US10624697B2 (en) 2014-08-26 2020-04-21 Covidien Lp Microwave ablation system
US10813691B2 (en) 2014-10-01 2020-10-27 Covidien Lp Miniaturized microwave ablation assembly
WO2016057716A1 (en) 2014-10-09 2016-04-14 Obalon Therapeutics, Inc. Ultrasonic systems and methods for locating and /or characterizing intragastric devices
US10231770B2 (en) * 2015-01-09 2019-03-19 Medtronic Holding Company Sárl Tumor ablation system
CA3003192A1 (en) 2015-10-26 2017-05-04 Neuwave Medical, Inc. A device for delivering microwave energy and uses thereof
US10335303B2 (en) 2015-12-07 2019-07-02 Obalon Therapeutics, Inc. Intragastric device
US10136945B2 (en) * 2015-12-09 2018-11-27 Biosense Webster (Israel) Ltd. Ablation catheter with light-based contact sensors
US10537453B2 (en) 2015-12-16 2020-01-21 Obalon Therapeutics, Inc. Intragastric device with expandable portions
US10813692B2 (en) 2016-02-29 2020-10-27 Covidien Lp 90-degree interlocking geometry for introducer for facilitating deployment of microwave radiating catheter
US10350100B2 (en) 2016-04-12 2019-07-16 Obalon Therapeutics, Inc. System for detecting an intragastric balloon
MX2018012563A (en) 2016-04-15 2019-07-08 Neuwave Medical Inc Systems for energy delivery.
US10265111B2 (en) 2016-04-26 2019-04-23 Medtronic Holding Company Sárl Inflatable bone tamp with flow control and methods of use
US10751534B2 (en) * 2016-10-24 2020-08-25 Boston Scientific Scimed, Inc. Systems and methods for obesity diagnosis and/or treatment
US10772752B2 (en) 2016-11-04 2020-09-15 Obalon Therapeutics, Inc. Pressure control system for intragastric device
US11511110B2 (en) 2018-06-27 2022-11-29 Viveve, Inc. Methods for treating urinary stress incontinence
US11896823B2 (en) 2017-04-04 2024-02-13 Btl Healthcare Technologies A.S. Method and device for pelvic floor tissue treatment
US11478298B2 (en) 2018-01-24 2022-10-25 Medtronic Ardian Luxembourg S.A.R.L. Controlled irrigation for neuromodulation systems and associated methods
US11464576B2 (en) 2018-02-09 2022-10-11 Covidien Lp System and method for displaying an alignment CT
US11672596B2 (en) 2018-02-26 2023-06-13 Neuwave Medical, Inc. Energy delivery devices with flexible and adjustable tips
EP3843649A2 (en) 2018-08-28 2021-07-07 NewUro, B.V. Flexible bipolar electrode and methods of manufacturing and use for treating medical conditions including obesity and constipation
US11832879B2 (en) 2019-03-08 2023-12-05 Neuwave Medical, Inc. Systems and methods for energy delivery
DE102019117871B4 (en) 2019-07-02 2021-08-19 Georg Nollert Catheter system for cryoablation of the vagus nerve
US11484355B2 (en) 2020-03-02 2022-11-01 Medtronic Holding Company Sàrl Inflatable bone tamp and method for use of inflatable bone tamp
US20220117645A1 (en) * 2020-10-15 2022-04-21 Tsunami Medtech, Llc Medical system and method of use
US20230346592A1 (en) * 2022-04-29 2023-11-02 Donnell W. Gurskis Apparatus and method for localized hypothermia of the pancreas

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0105677A1 (en) * 1982-09-27 1984-04-18 Kureha Kagaku Kogyo Kabushiki Kaisha Endotract antenna device for hyperthermia
US4495503A (en) 1982-02-19 1985-01-22 Morman William H Slow wave antenna
US4825880A (en) 1987-06-19 1989-05-02 The Regents Of The University Of California Implantable helical coil microwave antenna
US5057106A (en) * 1986-02-27 1991-10-15 Kasevich Associates, Inc. Microwave balloon angioplasty
US5496271A (en) * 1990-09-14 1996-03-05 American Medical Systems, Inc. Combined hyperthermia and dilation catheter
US5628771A (en) * 1993-05-12 1997-05-13 Olympus Optical Co., Ltd. Electromagnetic-wave thermatological device
US5776176A (en) 1996-06-17 1998-07-07 Urologix Inc. Microwave antenna for arterial for arterial microwave applicator
WO1999035988A1 (en) * 1998-01-14 1999-07-22 Conway-Stuart Medical, Inc. Electrosurgical device for sphincter treatment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4638813A (en) * 1980-04-02 1987-01-27 Bsd Medical Corporation Electric field probe
US5007437A (en) * 1989-06-16 1991-04-16 Mmtc, Inc. Catheters for treating prostate disease
US5275597A (en) * 1992-05-18 1994-01-04 Baxter International Inc. Percutaneous transluminal catheter and transmitter therefor
US6002968A (en) * 1994-06-24 1999-12-14 Vidacare, Inc. Uterine treatment apparatus
US6056744A (en) * 1994-06-24 2000-05-02 Conway Stuart Medical, Inc. Sphincter treatment apparatus
US6073052A (en) * 1996-11-15 2000-06-06 Zelickson; Brian D. Device and method for treatment of gastroesophageal reflux disease

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4495503A (en) 1982-02-19 1985-01-22 Morman William H Slow wave antenna
EP0105677A1 (en) * 1982-09-27 1984-04-18 Kureha Kagaku Kogyo Kabushiki Kaisha Endotract antenna device for hyperthermia
US5057106A (en) * 1986-02-27 1991-10-15 Kasevich Associates, Inc. Microwave balloon angioplasty
US4825880A (en) 1987-06-19 1989-05-02 The Regents Of The University Of California Implantable helical coil microwave antenna
US5496271A (en) * 1990-09-14 1996-03-05 American Medical Systems, Inc. Combined hyperthermia and dilation catheter
US5628771A (en) * 1993-05-12 1997-05-13 Olympus Optical Co., Ltd. Electromagnetic-wave thermatological device
US5776176A (en) 1996-06-17 1998-07-07 Urologix Inc. Microwave antenna for arterial for arterial microwave applicator
WO1999035988A1 (en) * 1998-01-14 1999-07-22 Conway-Stuart Medical, Inc. Electrosurgical device for sphincter treatment

Cited By (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9168089B2 (en) 1998-10-23 2015-10-27 Covidien Ag Method and system for controlling output of RF medical generator
US9113900B2 (en) 1998-10-23 2015-08-25 Covidien Ag Method and system for controlling output of RF medical generator
US8152821B2 (en) 2000-03-03 2012-04-10 C.R. Bard, Inc. Endoscopic tissue apposition device with multiple suction ports
WO2003020124A3 (en) * 2001-09-06 2004-03-18 Univ Aalborg Method an apparatus for stimulating a bodily hollow system and method and apparatus for measuring reactions to stimuli of such system
WO2003020124A2 (en) * 2001-09-06 2003-03-13 Aalborg Universitet Method an apparatus for stimulating a bodily hollow system and method and apparatus for measuring reactions to stimuli of such system
US9510834B2 (en) 2003-07-28 2016-12-06 Baronova, Inc. Gastric retaining devices and methods
US9687243B2 (en) 2003-07-28 2017-06-27 Baronova, Inc. Gastric retaining devices and methods
US8048169B2 (en) 2003-07-28 2011-11-01 Baronova, Inc. Pyloric valve obstructing devices and methods
US9924948B2 (en) 2003-07-28 2018-03-27 Baronova, Inc. Gastric retaining devices and methods
US9642735B2 (en) 2003-07-28 2017-05-09 Baronova, Inc. Pyloric valve corking device
US11197774B2 (en) 2003-07-28 2021-12-14 Baronova, Inc. Devices and methods for gastrointestinal stimulation
US9931122B2 (en) 2003-07-28 2018-04-03 Baronova, Inc. Gastric retaining devices and methods
US9700450B2 (en) 2003-07-28 2017-07-11 Baronova, Inc. Devices and methods for gastrointestinal stimulation
US9768373B2 (en) 2003-10-30 2017-09-19 Covidien Ag Switched resonant ultrasonic power amplifier system
US8966981B2 (en) 2003-10-30 2015-03-03 Covidien Ag Switched resonant ultrasonic power amplifier system
US9149270B2 (en) 2004-08-27 2015-10-06 Davol, Inc. (a C.R. Bard Company) Endoscopic tissue apposition device and method of use
WO2006117682A3 (en) * 2005-04-05 2008-01-31 Renewave Medical Systems Sa Microwave devices for treating biological samples and tissue and methods for using the same
WO2006117682A2 (en) * 2005-04-05 2006-11-09 Renewave Medical Systems Sa. Microwave devices for treating biological samples and tissue and methods for using the same
EP1978876A4 (en) * 2006-02-03 2010-01-20 Baronova Inc Devices and methods for gastrointestinal stimulation
AU2007212473B2 (en) * 2006-02-03 2012-08-09 Baronova, Inc. Devices and methods for gastrointestinal stimulation
EP1978876A2 (en) * 2006-02-03 2008-10-15 Baronova, Inc. Devices and methods for gastrointestinal stimulation
US8888797B2 (en) 2007-09-07 2014-11-18 Baronova, Inc. Device for intermittently obstructing a gastric opening and method of use
US9504591B2 (en) 2007-09-07 2016-11-29 Baronova, Inc. Device for intermittently obstructing a gastric opening and method of use
US10166133B2 (en) 2007-09-07 2019-01-01 Baronova, Inc. Device for intermittently obstructing a gastric opening
US10736763B2 (en) 2007-09-07 2020-08-11 Baronova, Inc. Device for intermittently obstructing a gastric opening
US9622813B2 (en) 2007-11-01 2017-04-18 Covidien Lp Method for volume determination and geometric reconstruction
US10321962B2 (en) 2007-11-01 2019-06-18 Covidien Lp Method for volume determination and geometric reconstruction
US8968291B2 (en) 2007-11-16 2015-03-03 Covidien Lp Dynamically matched microwave antenna for tissue ablation
US9579151B2 (en) 2007-11-16 2017-02-28 Covidien Lp Dynamically matched microwave antenna for tissue ablation
US9057468B2 (en) 2007-11-27 2015-06-16 Covidien Lp Wedge coupling
US9861439B2 (en) 2008-01-23 2018-01-09 Covidien Lp Choked dielectric loaded tip dipole microwave antenna
US10058384B2 (en) 2008-01-23 2018-08-28 Covidien Lp Choked dielectric loaded tip dipole microwave antenna
US8945111B2 (en) 2008-01-23 2015-02-03 Covidien Lp Choked dielectric loaded tip dipole microwave antenna
US10743934B2 (en) 2008-01-23 2020-08-18 Covidien Lp Choked dielectric loaded tip dipole microwave antenna
US9925002B2 (en) 2008-01-31 2018-03-27 Covidien Lp Articulating ablation device and method
US9949794B2 (en) 2008-03-27 2018-04-24 Covidien Lp Microwave ablation devices including expandable antennas and methods of use
EP2106763A1 (en) * 2008-03-31 2009-10-07 Vivant Medical, Inc. Re-hydration antenna for ablation
US9198723B2 (en) 2008-03-31 2015-12-01 Covidien Lp Re-hydration antenna for ablation
US9750571B2 (en) 2008-03-31 2017-09-05 Covidien Lp Re-hydration antenna for ablation
US9763728B2 (en) 2008-06-09 2017-09-19 Covidien Lp Ablation needle guide
US9271796B2 (en) 2008-06-09 2016-03-01 Covidien Lp Ablation needle guide
US8834409B2 (en) 2008-07-29 2014-09-16 Covidien Lp Method for ablation volume determination and geometric reconstruction
US9439730B2 (en) 2008-08-25 2016-09-13 Covidien Lp Dual-band dipole microwave ablation antenna
US9173706B2 (en) 2008-08-25 2015-11-03 Covidien Lp Dual-band dipole microwave ablation antenna
US9707038B2 (en) 2008-08-28 2017-07-18 Covidien Lp Microwave antenna with cooled handle
US10022186B2 (en) 2008-08-28 2018-07-17 Covidien Lp Microwave antenna with cooled handle
US9375280B2 (en) 2008-08-28 2016-06-28 Covidien Lp Microwave antenna with cooling system
US9113932B1 (en) 2008-08-28 2015-08-25 Covidien Lp Microwave antenna with choke
US9198725B2 (en) 2008-08-28 2015-12-01 Covidien Lp Microwave antenna with choke
US11147620B2 (en) 2008-08-28 2021-10-19 Covidien Lp Microwave antenna with cooled hub
US9254172B2 (en) 2008-09-03 2016-02-09 Covidien Lp Shielding for an isolation apparatus used in a microwave generator
US9113624B2 (en) 2008-10-15 2015-08-25 Covidien Lp System and method for perfusing biological organs
US9113924B2 (en) 2008-10-17 2015-08-25 Covidien Lp Choked dielectric loaded tip dipole microwave antenna
US10188460B2 (en) 2008-10-17 2019-01-29 Covidien Lp Choked dielectric loaded tip dipole microwave antenna
US8968292B2 (en) 2009-02-20 2015-03-03 Covidien Lp Leaky-wave antennas for medical applications
US10080610B2 (en) 2009-02-20 2018-09-25 Covidien Lp Leaky-wave antennas for medical applications
US8832927B2 (en) 2009-03-10 2014-09-16 Covidien Lp Method of manufacturing surgical antennas
US9277969B2 (en) 2009-04-01 2016-03-08 Covidien Lp Microwave ablation system with user-controlled ablation size and method of use
US10111718B2 (en) 2009-04-01 2018-10-30 Covidien Lp Microwave ablation system with user-controlled ablation size and method of use
US10499998B2 (en) 2009-04-01 2019-12-10 Covidien Lp Microwave ablation system with user-controlled ablation size and method of use
US9867670B2 (en) 2009-04-01 2018-01-16 Covidien Lp Microwave ablation system and user-controlled ablation size and method of use
US10758306B2 (en) 2009-04-14 2020-09-01 Covidien Lp Frequency identification for microwave ablation probes
US10045819B2 (en) 2009-04-14 2018-08-14 Covidien Lp Frequency identification for microwave ablation probes
US9833286B2 (en) 2009-05-06 2017-12-05 Covidien Lp Power-stage antenna integrated system with high-strength shaft
US10499989B2 (en) 2009-05-27 2019-12-10 Covidien Lp Narrow gauge high strength choked wet tip microwave ablation antenna
US9662172B2 (en) 2009-05-27 2017-05-30 Covidien Lp Narrow gauge high strength choked wet tip microwave ablation antenna
US9192437B2 (en) 2009-05-27 2015-11-24 Covidien Lp Narrow gauge high strength choked wet tip microwave ablation antenna
US8834460B2 (en) 2009-05-29 2014-09-16 Covidien Lp Microwave ablation safety pad, microwave safety pad system and method of use
US9625395B2 (en) 2009-06-19 2017-04-18 Covidien Lp Microwave ablation antenna radiation detector
US8847830B2 (en) 2009-06-19 2014-09-30 Covidien Lp Microwave ablation antenna radiation detector
US9031668B2 (en) 2009-08-06 2015-05-12 Covidien Lp Vented positioner and spacer and method of use
US9192436B2 (en) 2010-05-25 2015-11-24 Covidien Lp Flow rate verification monitor for fluid-cooled microwave ablation probe
US9668812B2 (en) 2010-05-25 2017-06-06 Covidien Lp Flow rate verification monitor for fluid-cooled microwave ablation probe
US10251701B2 (en) 2010-05-25 2019-04-09 Covidien Lp Flow rate verification monitor for fluid-cooled microwave ablation probe
US9943366B2 (en) 2010-09-08 2018-04-17 Covidien Lp Microwave spacers and method of use
US8945144B2 (en) 2010-09-08 2015-02-03 Covidien Lp Microwave spacers and method of use
US8968289B2 (en) 2010-10-22 2015-03-03 Covidien Lp Microwave spacers and methods of use
US8992413B2 (en) 2011-05-31 2015-03-31 Covidien Lp Modified wet tip antenna design
US10588693B2 (en) 2011-05-31 2020-03-17 Covidien Lp Modified wet tip antenna design
US9028482B2 (en) 2011-07-19 2015-05-12 Covidien Lp Microwave and RF ablation system and related method for dynamic impedance matching
US9192422B2 (en) 2011-07-19 2015-11-24 Covidien Lp System and method of matching impedances of an electrosurgical generator and/or a microwave generator
US8968297B2 (en) 2011-07-19 2015-03-03 Covidien Lp Microwave and RF ablation system and related method for dynamic impedance matching
US9033973B2 (en) 2011-08-30 2015-05-19 Covidien Lp System and method for DC tissue impedance sensing
US9681916B2 (en) 2012-01-06 2017-06-20 Covidien Lp System and method for treating tissue using an expandable antenna
US10271902B2 (en) 2012-01-06 2019-04-30 Covidien Lp System and method for treating tissue using an expandable antenna
US9693823B2 (en) 2012-01-06 2017-07-04 Covidien Lp System and method for treating tissue using an expandable antenna
US10076383B2 (en) 2012-01-25 2018-09-18 Covidien Lp Electrosurgical device having a multiplexer
WO2013136337A1 (en) * 2012-03-15 2013-09-19 Gema Medical Ltd A sensing system, device and methods for gastroparesis monitoring
US9529025B2 (en) 2012-06-29 2016-12-27 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US10338115B2 (en) 2012-06-29 2019-07-02 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US10073125B2 (en) 2012-06-29 2018-09-11 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US10874538B2 (en) 2013-03-15 2020-12-29 Baronova, Inc. Locking gastric obstruction device and method of use
US10070981B2 (en) 2013-03-15 2018-09-11 Baronova, Inc. Locking gastric obstruction device and method of use
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US11135001B2 (en) 2013-07-24 2021-10-05 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9655670B2 (en) 2013-07-29 2017-05-23 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US9636165B2 (en) 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
EP3188669A4 (en) * 2014-09-04 2018-05-23 Medtronic Cryocath LP Cryoadhesive device for left atrial appendage occlusion
US10398488B2 (en) 2014-09-04 2019-09-03 Medtronic Cryocath Lp Cryoadhesive device for left atrial appendage occlusion
US11806063B2 (en) 2014-09-04 2023-11-07 Medtronic Cryocath Lp Cryoadhesive device for left atrial appendage occlusion

Also Published As

Publication number Publication date
AU3372000A (en) 2000-09-04
US6427089B1 (en) 2002-07-30

Similar Documents

Publication Publication Date Title
US6427089B1 (en) Stomach treatment apparatus and method
JP3879055B2 (en) Electrosurgical sphincter treatment instrument
US6009877A (en) Method for treating a sphincter
US9351787B2 (en) Sphincter treatment apparatus
US6056744A (en) Sphincter treatment apparatus
US6006755A (en) Method to detect and treat aberrant myoelectric activity
US8790339B2 (en) Apparatus to detect and treat aberrant myoelectric activity
US20100114087A1 (en) Methods and devices for treating urinary incontinence
US20070016274A1 (en) Gastrointestinal (GI) ablation for GI tumors or to provide therapy for obesity, motility disorders, G.E.R.D., or to induce weight loss
US20040215180A1 (en) Ablation of stomach lining to treat obesity
JP2002508989A (en) Electrosurgical instruments and methods for treating gastroesophageal reflux disease (GERD)
JP2002503513A (en) Instruments for detection of abnormal myoelectric activity and electrosurgical procedures

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase