WO2000050943A1 - High isolation couplers - Google Patents

High isolation couplers Download PDF

Info

Publication number
WO2000050943A1
WO2000050943A1 PCT/IE2000/000023 IE0000023W WO0050943A1 WO 2000050943 A1 WO2000050943 A1 WO 2000050943A1 IE 0000023 W IE0000023 W IE 0000023W WO 0050943 A1 WO0050943 A1 WO 0050943A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupler
wavelength
fibre
output ports
light
Prior art date
Application number
PCT/IE2000/000023
Other languages
French (fr)
Inventor
Patrick William Burke
Satoru Moriya
Hillary Patricia Cronin
Ooto Kazuhiro
Original Assignee
Sumicem Opto-Electronics (Ireland) Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumicem Opto-Electronics (Ireland) Ltd. filed Critical Sumicem Opto-Electronics (Ireland) Ltd.
Priority to AU25692/00A priority Critical patent/AU2569200A/en
Publication of WO2000050943A1 publication Critical patent/WO2000050943A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29317Light guides of the optical fibre type
    • G02B6/29319With a cascade of diffractive elements or of diffraction operations
    • G02B6/2932With a cascade of diffractive elements or of diffraction operations comprising a directional router, e.g. directional coupler, circulator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29331Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
    • G02B6/29332Wavelength selective couplers, i.e. based on evanescent coupling between light guides, e.g. fused fibre couplers with transverse coupling between fibres having different propagation constant wavelength dependency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers

Definitions

  • the present invention relates to couplers with high isolation and in particular is directed to devices that include a fused taper wavelength division multiplexer (WDM) and w avelength selective optical reflection element such as a fibre Bragg grating.
  • WDM fused taper wavelength division multiplexer
  • w avelength selective optical reflection element such as a fibre Bragg grating.
  • Fibre optic couplers are known for a variety of uses including the splitting of light into two or more component wavelengths or splitting of power as required.
  • T ⁇ pically the type of coupler used for the splitting of wavelengths is known as a WDM coupler. They may be manufactured using a process called Fused Biconical Taper (FBT) technology.
  • FBT Fused Biconical Taper
  • a FBT fibre coupler consists of two or more optical fibres whose optical cladding has been fused together. The structure is tapered by elongation while it is hot until appropriate coupling properties are achieved that allows light to transfer between the fibres.
  • Gratings in fibre may be achieved by photo inducing an index change in the glass of the fibre by exposing the glass to UN light and thus changing the refractive index. Photosensitivity is the fibre characteristics that make the w riting of the fibre grating possible.
  • a fibre bragg grating is a periodic modulation of the index of refraction in the core of the fibre. When light travelling down the core of the fibre comes in contact with the bragg grating a selected band of wavelengths is reflected back in the opposite direction.
  • Bragg gratings are short period gratings ⁇ orking in reflection, other grating types available are long period gratings or intermodal coupling gratings.
  • Conventional methods of forming such gratings on fibre optic are described in US 5042 897, US 5061 032 and US 5367 588.
  • Figure 1 shows a bi-directional WDM coupler 1 according to the prior art. It consists of two fibres 2. 3 whose optical cladding has been fused together to form a coupling region 4.
  • the WDM coupler has two input ports 5, 6 and two output ports 7, 8. Light entering an input port 5 at two different wavelengths ⁇ l 5 ⁇ 2 is separated into the two components ⁇ , and ⁇ 2 .
  • Wavelength isolation, or crosstalk is a measure of how well the different wavelengths are separated at the two output ports, is expressed in dB, and using the example of Figure 1 can be defined as:
  • ⁇ ,(port 8) is the amount of light at wavelength ⁇ _ passing though port 8
  • ⁇ (port 7) is the amount of light at wavelength ⁇ _ passing through port 7.
  • the isolation of the 1480 nm wavelengths port is the measure of 1550 light that is outputted through that port, conversely the isolation of 1550 port is the measure of the 1480 light outputted.
  • the majority of transmission over fibre optic lines operates at 1550nm wavelength.
  • 1550nm is the most popular wavelength due to the existence of an optical amplifier which has the capability to amplify signals at this wavelength.
  • This optical amplifier is an Erbium Doped Fibre Amplifier (EDFA).
  • EDFA Erbium Doped Fibre Amplifier
  • the EDFA is one of the most critical components in a long haul fibre optic network that amplifies the transmission signal by use of a 980 or 1480nm pump laser.
  • the pump wavelength (980 or 1480nm) is introduced to excite a rare element known as Erbium that is doped into a piece of fibre.
  • the excited ions collide with the 1550nm photons, thus boosting the signal as it exits the amplifier.
  • WDM couplers are commonly used in amplifiers such as that described above to combine pump and signal wavelengths and thus allow amplification to occur.
  • the WDM facilitates the addition of the 980 or 1480 wavelengths which excites the Erbium.
  • a 1480/1550 WDM splits or combines 1480 and 1550 wavelengths.
  • Two of the critical parameters for WDM couplers are to have high isolation while keeping insertion loss low. High isolation is essential to ensure maximum separation of the two wavelengths, while low insertion loss is a critical parameter for any optical component or system.
  • the WDM 1480/1550 has the narrower wavelength separation, and thus has poorer isolation across the wider wavelength range (1550-1570nm).
  • acceptable isolation figures are currently not achievable, and as a result amplifier manufacturers have to utilise bulk optic WDM systems in order to utilise the coupler within amplification systems.
  • the present invention provides a fibre optic coupler comprising: at least one input port, at least two output ports, and wavelength filtering means located substantially at, or on, at least one of said at least two output ports, the wavelength filtering means predefined to allow light of particular wavelengths to pass through said at least one of said at least two output ports and to reflect light of all other wavelengths.
  • the coupler is preferably an all fibre optic component.
  • the wavelength filtering means is preferably an integral part of the all fibre optic coupler. Where two or more wavelength filtering means are used on two or more output ports, the choice of which wavelength filtering means is used at which port is made based on the desired wavelength to be emitted through said port
  • the wavelength filtering means is preferably a fibre reflection grating
  • the fibre grating is preferably a Bragg fibre grating
  • the grating is either written, or etched, directly on said at least one of said at least two output ports, or written on a piece of fibre which is subsequently spliced to said at least one of said at least two output ports
  • the coupler is preferably for use with optical amplifiers to combine pump and signal wavelengths, and more preferably for use with the type of optical amplifiers known as Erbium Doped Fibre Amplifier (EDFA)
  • EDFA Erbium Doped Fibre Amplifier
  • the coupler may also be used for the splitting or combining of signals in optical transmission systems
  • the coupler is preferably used in conjunction with inputted light of wavelengths 1480 and 1550nm where it is desired to separate the light at output ports into the component wavelengths
  • the coupler may be used in combination with inputted light of u avelengths of 1310 and 1550 nm where it is desired to separate the light at output ports into the component wavelengths
  • the coupler may be used in conjunction with any other wavelength combination w here high isolation is required
  • the coupler preferably achieves isolation values in excess of 20dB over the range 1530 to 1560 nm Brief Description of the Drawings
  • Figure 1 shows a known WDM coupler
  • Figure 2 shows a WDM coupler according to the present invention
  • Figure 1 shows a known WDM coupler 1.
  • Figure 2 shows a WDM coupler 11 according to one embodiment of the present invention. The same reference numerals are used for similar parts.
  • the coupler comprises two fibres 2, 3, the optical cladding of which has been stripped back and fused together to form a coupling region 4.
  • the coupler has two input ports 5, 6 and two output ports 7, 8.
  • two gratings 12, 13 are written on the output ports 7, 8 respectively, but depending on the application or requirement for the coupler the number of gratings can be one or more, i.e. both ports may have gratings written to them or either one of them may have.
  • the choice of which grating is written to which port is made on the basis of which wavelengths of light are required to pass through this port and which wavelengths are required for reflection.
  • a high isolation WDM coupler is thus achieved by writing a particular fibre grating on the required output port.
  • the grating can be placed inside or outside the WDM coupler package, and can be written on the output port, or on a fibre spliced to the output port, in order to reflect the unwanted wavelength at that output port.
  • Gratings can be achieved on standard off the shelf single mode fibre or photosensitive fibre.
  • the coupler of the present invention can be modified to utilise any wavelength combination, such as 980/ 1550 nm or 1310/ 1550 nm. It will also be apparent to those skilled in the art that although the invention has been described with reference to a "2 X 2" coupler, i.e. 2 input ports and 2 output ports, it will be equally applicable to any "n X n" (where n is a whole number) coupling device. It will also be apparent to those skilled in the art that depending on the application, any number of input ports may be terminated so as to make them redundant.
  • the combination of the fused taper device & fibre grating allows dramatic improvement in the isolation value normally achievable with fused taper WDM couplers.
  • the grating as an integral fibre component the size of the complete package is reduced and the complexity of the high isolation WDM system is minimised.
  • Typical isolation figures achievable using the device described in Fig 2 are greater than 2 ⁇ dB.
  • a fused taper WDM coupler is manufactured using standard FBT manufacturing techniques, such as that described in US 4 392 712.
  • a Bragg fibre grating is etched or written on an equivalent fibre, in accordance with known methodologies, which is subsequently attached to the fused taper WDM coupler. This may be achieved by a technique such as fusion splicing or other standard techniques.
  • fibre grating is etched on the required output port of the fused taper WDM coupler.
  • Table 1 illustrates typical isolation results over a wavelength range 1530 to 1560 nm. The tests were done using standard optical test procedures and equipment.

Abstract

The invention relates to wavelength couplers (11) with high isolation and in particular it is directed and describes devices that include a fused taper wavelength division multiplexer (DWM) which incorporates wavelength selective optical reflection elements such as fibre Bragg gratings. The incorporation of wavelength filtering means (12, 13) located on at least one of the output ports (7, 8) on the coupler allow the filtering of light of particular wavelengths through the output ports (7, 8).

Description

High Isolation Couplers
Field of Invention
The present invention relates to couplers with high isolation and in particular is directed to devices that include a fused taper wavelength division multiplexer (WDM) and w avelength selective optical reflection element such as a fibre Bragg grating.
Background to the Invention
Fibre optic couplers are known for a variety of uses including the splitting of light into two or more component wavelengths or splitting of power as required. T\ pically the type of coupler used for the splitting of wavelengths is known as a WDM coupler. They may be manufactured using a process called Fused Biconical Taper (FBT) technology. A FBT fibre coupler consists of two or more optical fibres whose optical cladding has been fused together. The structure is tapered by elongation while it is hot until appropriate coupling properties are achieved that allows light to transfer between the fibres.
As detailed in US 5,388,173, US4,474,427, US5, 104,209 and US 5367,588 gratings are already known. Gratings in fibre may be achieved by photo inducing an index change in the glass of the fibre by exposing the glass to UN light and thus changing the refractive index. Photosensitivity is the fibre characteristics that make the w riting of the fibre grating possible. A fibre bragg grating is a periodic modulation of the index of refraction in the core of the fibre. When light travelling down the core of the fibre comes in contact with the bragg grating a selected band of wavelengths is reflected back in the opposite direction. Bragg gratings are short period gratings \\ orking in reflection, other grating types available are long period gratings or intermodal coupling gratings. Conventional methods of forming such gratings on fibre optic are described in US 5042 897, US 5061 032 and US 5367 588. Figure 1 shows a bi-directional WDM coupler 1 according to the prior art. It consists of two fibres 2. 3 whose optical cladding has been fused together to form a coupling region 4. The WDM coupler has two input ports 5, 6 and two output ports 7, 8. Light entering an input port 5 at two different wavelengths λl 5 λ2 is separated into the two components λ, and λ2. In an ideal WDM coupler the wavelength separation is complete, i.e. that 100% of λ_ exits the coupler through output port 7 and 100% of λ2 exits through output port 8. In reality this degree of separation is not possible and some percentage of λ, will also exit through output port 8 and some percentage of λ2 through port 7. Wavelength isolation, or crosstalk, is a measure of how well the different wavelengths are separated at the two output ports, is expressed in dB, and using the example of Figure 1 can be defined as:
isolation λ = -lOlog (λ,(port 8)/ λι(port 7))
where
λ,(port 8) is the amount of light at wavelength λ_ passing though port 8, and λι(port 7) is the amount of light at wavelength λ_ passing through port 7.
Using the example of the 1480/ 1550 nm coupler above, the isolation of the 1480 nm wavelengths port is the measure of 1550 light that is outputted through that port, conversely the isolation of 1550 port is the measure of the 1480 light outputted.
The majority of transmission over fibre optic lines operates at 1550nm wavelength. 1550nm is the most popular wavelength due to the existence of an optical amplifier which has the capability to amplify signals at this wavelength. This optical amplifier is an Erbium Doped Fibre Amplifier (EDFA). The EDFA is one of the most critical components in a long haul fibre optic network that amplifies the transmission signal by use of a 980 or 1480nm pump laser. To amplify the optical signal the pump wavelength (980 or 1480nm) is introduced to excite a rare element known as Erbium that is doped into a piece of fibre. When a transmission signal in the 1550nm window passes through the same fibre, the excited ions collide with the 1550nm photons, thus boosting the signal as it exits the amplifier.
WDM couplers are commonly used in amplifiers such as that described above to combine pump and signal wavelengths and thus allow amplification to occur.
Essentially the WDM facilitates the addition of the 980 or 1480 wavelengths which excites the Erbium. For example a 1480/1550 WDM splits or combines 1480 and 1550 wavelengths. Two of the critical parameters for WDM couplers are to have high isolation while keeping insertion loss low. High isolation is essential to ensure maximum separation of the two wavelengths, while low insertion loss is a critical parameter for any optical component or system.
Using Fused Biconical Taper technology alone the isolation requirements for some EDFA\s are very difficult to achieve. The coupling ratio of WDM couplers today are designed based on sine wave wavelength dependency, which causes poor isolation with wider wavelength range. This can be seen especially in the example of a 1480/1550 WDM due to narrow wavelength separation. For example if typical isolation values of a 1480/1550 WDM are considered, isolation typically achievable at 1550nm would be 23dB, whereas at 1570nm, isolation can by typically approximately lOdB. With a 980/1550 WDM, isolation typically achievable at 1550nm would 25dB, whereas at 1570nm, isolation can by typically approximately 20dB. The fundamental difference between these devices is the wavelength separation of the two wavelengths, the WDM 1480/1550 has the narrower wavelength separation, and thus has poorer isolation across the wider wavelength range (1550-1570nm). Using the currently available WDM couplers acceptable isolation figures are currently not achievable, and as a result amplifier manufacturers have to utilise bulk optic WDM systems in order to utilise the coupler within amplification systems.
There are several known methods to achieve high isolation WDM couplers. One such method is to cascade several WDM couplers together, the disadvantages of this method are that they introduce higher insertion loss due to using several WDM's plus the package size is large. As mentioned previously another method used is bulk optics technology, which can achieve high isolation but components are expensive and show higher insertion loss. In addition with the bulk optic technology, several components need to be combined in order to achieve high isolation.
The limitations of known fused taper WDM couplers in today's market is that they do not always achieve satisfactory levels of high isolation across the required wavelength range, without the addition of other physical components such as isolators or filters. The limitations of the technologies described so far are cost, size and complexity. There are no known one piece components available that have the necessary specifications.
Object of Invention
It is an object of the present invention to provide a WDM coupler which provides an additional improvement in isolation. It is a further object of the present invention to provide an all fibre WDM with isolation values not previously achievable with an all fibre component.
Summary of Invention
Accordingly the present invention provides a fibre optic coupler comprising: at least one input port, at least two output ports, and wavelength filtering means located substantially at, or on, at least one of said at least two output ports, the wavelength filtering means predefined to allow light of particular wavelengths to pass through said at least one of said at least two output ports and to reflect light of all other wavelengths.
The coupler is preferably an all fibre optic component. The wavelength filtering means is preferably an integral part of the all fibre optic coupler. Where two or more wavelength filtering means are used on two or more output ports, the choice of which wavelength filtering means is used at which port is made based on the desired wavelength to be emitted through said port
The wavelength filtering means is preferably a fibre reflection grating
The fibre grating is preferably a Bragg fibre grating
The grating is either written, or etched, directly on said at least one of said at least two output ports, or written on a piece of fibre which is subsequently spliced to said at least one of said at least two output ports
The coupler is preferably for use with optical amplifiers to combine pump and signal wavelengths, and more preferably for use with the type of optical amplifiers known as Erbium Doped Fibre Amplifier (EDFA)
The coupler may also be used for the splitting or combining of signals in optical transmission systems
The coupler is preferably used in conjunction with inputted light of wavelengths 1480 and 1550nm where it is desired to separate the light at output ports into the component wavelengths
Alternatively the coupler may be used in combination with inputted light of u avelengths of 1310 and 1550 nm where it is desired to separate the light at output ports into the component wavelengths
The coupler may be used in conjunction with any other wavelength combination w here high isolation is required
The coupler preferably achieves isolation values in excess of 20dB over the range 1530 to 1560 nm Brief Description of the Drawings
Figure 1 shows a known WDM coupler, Figure 2 shows a WDM coupler according to the present invention,
Detailed Description of the Invention
As detailed above in the section "Background to the Invention" Figure 1 shows a known WDM coupler 1. Figure 2 shows a WDM coupler 11 according to one embodiment of the present invention. The same reference numerals are used for similar parts. The coupler comprises two fibres 2, 3, the optical cladding of which has been stripped back and fused together to form a coupling region 4. The coupler has two input ports 5, 6 and two output ports 7, 8. In this embodiment two gratings 12, 13 are written on the output ports 7, 8 respectively, but depending on the application or requirement for the coupler the number of gratings can be one or more, i.e. both ports may have gratings written to them or either one of them may have. The choice of which grating is written to which port is made on the basis of which wavelengths of light are required to pass through this port and which wavelengths are required for reflection. A high isolation WDM coupler is thus achieved by writing a particular fibre grating on the required output port. The grating can be placed inside or outside the WDM coupler package, and can be written on the output port, or on a fibre spliced to the output port, in order to reflect the unwanted wavelength at that output port. Gratings can be achieved on standard off the shelf single mode fibre or photosensitive fibre.
Referring to Figure 2 and using the example of a WDM coupler operating with incoming light at input port 5 of a mixture of 1480/1550 nm, which requires separation to the component wavelengths at the output ports 7, 8. The grating is written on output port 7 to allow light of wavelength 1480 nm to pass through and to reflect light of wavelengths 1550 nm. Conversely the choice of grating 13 made at output port 8 is such to reflect light wavelength 1480 nm and to allow light of wavelength 1550 nm through. Using the isolation formula highlighted previously this elimination of the mixture of wavelengths passing through each output port improves the isolation of the wavelengths.
To explain further with an example of a high isolation 1480/1550WDM grating coupler, on the 1550nm output port the 148ϋnm power range will be reflected back. Conversely on the 1480nm port the 1550nm wavelength range power will be reflected. As such a WDM coupler is achieved that provides high isolation across specified wavelength ranges and as gratings produces very low power loss their combination with WDM's has minimal effect on the WDM coupler loss.
Although described with reference to a 1480/ 1550 nm WDM coupler it will be appreciated by those skilled in the art that the coupler of the present invention can be modified to utilise any wavelength combination, such as 980/ 1550 nm or 1310/ 1550 nm. It will also be apparent to those skilled in the art that although the invention has been described with reference to a "2 X 2" coupler, i.e. 2 input ports and 2 output ports, it will be equally applicable to any "n X n" ( where n is a whole number) coupling device. It will also be apparent to those skilled in the art that depending on the application, any number of input ports may be terminated so as to make them redundant.
The combination of the fused taper device & fibre grating allows dramatic improvement in the isolation value normally achievable with fused taper WDM couplers. By incorporating the grating as an integral fibre component the size of the complete package is reduced and the complexity of the high isolation WDM system is minimised.
Typical isolation figures achievable using the device described in Fig 2 are greater than 2ϋdB.
Example of manufacture of WDM coupler of the present invention
A fused taper WDM coupler is manufactured using standard FBT manufacturing techniques, such as that described in US 4 392 712. A Bragg fibre grating is etched or written on an equivalent fibre, in accordance with known methodologies, which is subsequently attached to the fused taper WDM coupler. This may be achieved by a technique such as fusion splicing or other standard techniques.
Alternatively the fibre grating is etched on the required output port of the fused taper WDM coupler.
Example of Isolation Results obtained using the WDM coupler of the present invention
The following table (Table 1) illustrates typical isolation results over a wavelength range 1530 to 1560 nm. The tests were done using standard optical test procedures and equipment.
Figure imgf000010_0001
Table 1
As can be seen from the table isolation results with an improvement of approximately 20dB are achieved across the entire tested range.
Advantages of the present invention
By using the device of the present invention it is possible to achieve a high isolation coupler in a one piece component without using additional physical components such as filters or isolators. The words "comprises/comprising" and the words "having/including" when used herein with reference to the present invention are used to specify the presence of stated features, integers, steps or components but does not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.

Claims

Claims
1. A fibre optic coupler 11 comprising: a) at least one input port 5, 6, b) at least two output ports 7, 8, and c) wavelength filtering means 12, 13 located substantially at, or on, at least one of said at least two output ports, the wavelength filtering means predefined to allow light of particular wavelengths to pass through said at least one of said at least two output ports and to reflect light of all other wavelengths.
2. The coupler as claimed in claim 1 whereby the coupler is an all fibre optic WDM coupler, and the wavelength filtering means is an integral part of the coupler.
3. The coupler as claimed in any preceding claim whereby where two or more wavelength filtering means are used on two or more output ports, the choice of which wavelength filtering means is used at which port is made based on the desired wavelength to be emitted through said port.
4. The coupler as claimed in any preceding claim whereby the wavelength filtering means is a fibre reflection grating, preferably a Bragg fibre grating, either written, or etched, directly on said at least one of said at least two output ports, or written on a piece of fibre which is subsequently spliced to said at least one of said at least two output ports.
The coupler as claimed in any preceding claim wherein the light of particular wavelengths is selected from one of the following wavelength types: a) light of wavelength of 1310 and 1550 nm, or b) light of wavelength of 1480 and 1550 nm.
6. The couplers claimed in any preceding claim wherein isolation values in excess 20dB are achieved over the range 1530 to 1560nm.
7. Use of the coupler as claimed in any preceding claim with optical amplifiers.
8. Use of the coupler as claimed in any preceding claim with optical amplifiers of the type known as Erbium Doped Fibre Amplifiers (EDFA).
PCT/IE2000/000023 1999-02-22 2000-02-16 High isolation couplers WO2000050943A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU25692/00A AU2569200A (en) 1999-02-22 2000-02-16 High isolation couplers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IES990137 1999-02-22
IES990137 IES990137A2 (en) 1999-02-22 1999-02-22 High isolation couplers

Publications (1)

Publication Number Publication Date
WO2000050943A1 true WO2000050943A1 (en) 2000-08-31

Family

ID=11042008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IE2000/000023 WO2000050943A1 (en) 1999-02-22 2000-02-16 High isolation couplers

Country Status (3)

Country Link
AU (1) AU2569200A (en)
IE (1) IES990137A2 (en)
WO (1) WO2000050943A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055445A2 (en) 2001-01-12 2002-07-18 Corning Incorporated Optical fiber and preform, method of manufacturing same, and optical component made therefrom
US7215884B2 (en) 2003-06-24 2007-05-08 Samsung Electronics Co., Ltd. Optical demultiplexer having bragg diffration grating and optical communication module using the optical demultiplexer
CN102570255A (en) * 2011-12-30 2012-07-11 北京交通大学 Multi-wavelength optical fiber laser

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0527265A1 (en) * 1991-08-12 1993-02-17 Corning Incorporated Fiber amplifier having modified gain spectrum
US5491764A (en) * 1994-05-31 1996-02-13 Tacan Corporation Narrowband twisted optical fiber wavelength division multiplexer
US5555330A (en) * 1994-12-21 1996-09-10 E-Tek Dynamics, Inc. Wavelength division multiplexed coupler with low crosstalk between channels and integrated coupler/isolator device
US5570440A (en) * 1993-06-17 1996-10-29 At&T Corp. Optical waveguiding component comprising a band-pass filter
GB2301249A (en) * 1995-05-24 1996-11-27 Bosch Gmbh Robert Optical transceiver
US5657406A (en) * 1994-09-23 1997-08-12 United Technologies Corporation Efficient optical wavelength multiplexer/de-multiplexer
US5717798A (en) * 1996-09-12 1998-02-10 Lucent Technologies Inc. Optical waveguide system comprising a mode coupling grating and a mode discrimination coupler

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0527265A1 (en) * 1991-08-12 1993-02-17 Corning Incorporated Fiber amplifier having modified gain spectrum
US5570440A (en) * 1993-06-17 1996-10-29 At&T Corp. Optical waveguiding component comprising a band-pass filter
US5491764A (en) * 1994-05-31 1996-02-13 Tacan Corporation Narrowband twisted optical fiber wavelength division multiplexer
US5657406A (en) * 1994-09-23 1997-08-12 United Technologies Corporation Efficient optical wavelength multiplexer/de-multiplexer
US5555330A (en) * 1994-12-21 1996-09-10 E-Tek Dynamics, Inc. Wavelength division multiplexed coupler with low crosstalk between channels and integrated coupler/isolator device
GB2301249A (en) * 1995-05-24 1996-11-27 Bosch Gmbh Robert Optical transceiver
US5717798A (en) * 1996-09-12 1998-02-10 Lucent Technologies Inc. Optical waveguide system comprising a mode coupling grating and a mode discrimination coupler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055445A2 (en) 2001-01-12 2002-07-18 Corning Incorporated Optical fiber and preform, method of manufacturing same, and optical component made therefrom
US7215884B2 (en) 2003-06-24 2007-05-08 Samsung Electronics Co., Ltd. Optical demultiplexer having bragg diffration grating and optical communication module using the optical demultiplexer
CN102570255A (en) * 2011-12-30 2012-07-11 北京交通大学 Multi-wavelength optical fiber laser

Also Published As

Publication number Publication date
AU2569200A (en) 2000-09-14
IES990137A2 (en) 2000-08-23

Similar Documents

Publication Publication Date Title
US5570440A (en) Optical waveguiding component comprising a band-pass filter
US5701194A (en) Amplified telecommunication system for wavelength-division multiplexing transmissions capable of limiting variations in the output power
EP0938172B1 (en) Apparatus comprising an improved cascaded optical fiber raman device
US5796889A (en) Integrated WDM coupler devices for fiberoptic networks
US5572357A (en) Optical system for amplifying signal light
JPH10104454A (en) Device consisting of optical waveguide
US6546168B1 (en) Integrated isolator fused coupler method and apparatus
US6433924B1 (en) Wavelength-selective optical amplifier
AU7569700A (en) Compact optical amplifier with integrated optical waveguide and pump source
JPH1032562A (en) Optical add/drop circuit
EP1318579A1 (en) Multi-wavelength raman laser
US6011644A (en) Hybrid fiber amplifier
KR20030000285A (en) Wavelength division multiplexer using planar lightwave circuit
US6088494A (en) Aperiodic Mach-Zehnder optical filters
US6175444B1 (en) Bi-directional optical amplifier
WO2000050943A1 (en) High isolation couplers
WO2004011971A1 (en) Optical filter
US20030068119A1 (en) Mismatched mode field diameter device
KR100396266B1 (en) Gain flattening device of a fiber amplifier
CN117233888B (en) Grating filter and wavelength division multiplexing demultiplexer based on Bragg grating
US20020039227A1 (en) Optical amplifier, light source module and optical system
Arkwright et al. Custom designed gain-flattening filters with highly reproducible spectral characteristics
US5946432A (en) Periodic mach-zehnder optical filters
KR20000038939A (en) Optical fiber device
TW302582B (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ CZ DE DE DK DK DM EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase