WO2000063627A2 - Refrigerating system for domestic refrigerating appliances - Google Patents

Refrigerating system for domestic refrigerating appliances Download PDF

Info

Publication number
WO2000063627A2
WO2000063627A2 PCT/EP2000/003356 EP0003356W WO0063627A2 WO 2000063627 A2 WO2000063627 A2 WO 2000063627A2 EP 0003356 W EP0003356 W EP 0003356W WO 0063627 A2 WO0063627 A2 WO 0063627A2
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
piston
fluxomizer
suction
motor
Prior art date
Application number
PCT/EP2000/003356
Other languages
German (de)
French (fr)
Other versions
WO2000063627A3 (en
Inventor
Eberhard Günther
Ingrid GÜNTHER
Eberhard Findeisen
Matthias Schubert
Andre Trautmann
Original Assignee
Günther Engineering Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Günther Engineering Gmbh filed Critical Günther Engineering Gmbh
Priority to AU45490/00A priority Critical patent/AU4549000A/en
Priority to KR1020017013066A priority patent/KR20020000799A/en
Priority to JP2000612681A priority patent/JP2002542448A/en
Priority to CA002370346A priority patent/CA2370346A1/en
Priority to EP00926921A priority patent/EP1171743A2/en
Priority to BR0009796-9A priority patent/BR0009796A/en
Publication of WO2000063627A2 publication Critical patent/WO2000063627A2/en
Publication of WO2000063627A3 publication Critical patent/WO2000063627A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/02Compression machines, plants or systems with non-reversible cycle with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • F04B39/0016Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons with valve arranged in the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/164Sealings between relatively-moving surfaces the sealing action depending on movements; pressure difference, temperature or presence of leaking fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/042Details of condensers of pcm condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound

Definitions

  • the invention relates to a hermetic motor compressor, a nerêtrkolben for this purpose and a Fluxomizer as well as a refrigeration system for household cooling devices realized using the motor compressor with the piston and the Fluxomizer.
  • refrigeration systems In household refrigerators, refrigeration systems are usually used which operate on the principle of the compression refrigeration machine and consequently have a refrigerant circuit which consists of a compressor with suction and / or pressure damper, a condenser and an evaporator, with a relaxation throttle between the condenser and the evaporator a capillary tube is preferably arranged in household cooling devices.
  • the aforementioned components of the refrigerant circuit are known in a wide variety of designs as well as their arrangement in or on cooling devices.
  • the refrigeration unit is usually accommodated in the appliance base, with the exception of the evaporator, which is integrated in the rear wall of the appliance or forms it.
  • the known refrigeration units for household refrigeration appliances have the disadvantage that each component is assembled at the location provided for it and the refrigerant circuit is produced by means of corresponding lines, which means that the manufacture of the refrigeration appliances is technologically complex and therefore inexpensive.
  • the arrangement of the refrigeration unit as a preassembled module as is known, for example, from German utility model 92 06 167, provides a remedy in this regard.
  • the known solution relates to a refrigerator and / or freezer with a base part, in which the condenser and compressor are accommodated and which are blown by a fan.
  • the condenser, compressor and fan are arranged in a closed air duct, the suction and discharge openings of which are closed by porous and / or lattice-like disks and lie on a base side and are covered by doors or flaps.
  • the side walls of the air duct are lined with sound absorbing material, the air duct itself consists of a U-shaped, tube-like tube and is held on the surrounding base box by elastic or elastomeric elements or is supported in a similar manner on the base of the base box.
  • the known solution provides that the compressor and / or the condenser is connected to the wall of the air duct via elastic or elastomeric elements or is supported on the bottom of the air duct.
  • a disadvantage of the known solution is that the arrangement of the functional elements accommodated in the base part occupies the entire space of the armature, which not least means that the insulation of the room sound requires a relatively high outlay.
  • the known solution is tailored to the geometry of the base part of a specific cooling device, so that use in a different type requires at least structural modifications.
  • the storage conditions of the refrigerated goods are in the foreground.
  • the refrigerator compartment temperature is controlled by switching the compressor on and off relatively quickly, ie by intermittent operation of the refrigeration system.
  • this results in considerable fluctuations in the temperature of the refrigerator compartment, especially when storing new food, combined with the fact that there is a considerable difference between the temperature of the storage room and the surface of the evaporator and the resulting drying of the refrigerated goods.
  • a departure from intermittent operation is made possible by the use of an evaporator with latent heat storage, as is known from the German description of the invention 39 26 250 AI.
  • the evaporator is surrounded by a cold store, which is filled with a cold storage agent, which has a phase transition point at a certain temperature and whose heat capacity corresponds to the heat absorption of the cooling device in a predetermined time, which is at least several hours.
  • the compressor operation can thus be regulated within narrow limits close to the phase transition temperature, especially since a fan for forced convection advantageously improves the heat transfer between the evaporator surface and the cooling compartment. This ensures a high temperature consistency in the storage compartment, a high cooling rate and a significant reduction in the drying out of the refrigerated goods.
  • a refrigeration system for household cooling devices forming a refrigerant circuit, which consists of a hermetic motor compressor, a condenser on the pressure side connected to the motor compressor, a capillary tube which is connected on the outlet side to the condenser and which is in thermal contact with the suction line of the motor compressor there is an evaporator connected to the capillary tube, which is thermally coupled to a latent heat store and connected to the motor compressor on the suction side, and a fan for increasing the convection in the cooling compartment of the cooling unit, the output of the evaporator being connected to the suction port of the motor compressor connected Fluxomizer is guided, the motor compressor and the Fluxomizer are mounted elastically in a soundproof sleeve on a chassis and the maximum height of the chassis including the assembled modules and the soundproofing cover corresponds to the base height of the cooling unit.
  • a preferred embodiment of the refrigeration system according to the invention is that the maximum overall height of the chassis, including the assembled assemblies and the soundwave
  • This relates to a hermetic motor compressor with a capsule bottom and a capsule cover, which are hermetically connected to one another.
  • a drive motor is arranged in the interior of the capsule, the power supply of which is hermetically guided through the capsule cover.
  • a cylinder assembly is hermetically connected to the capsule cover, a suction valve being arranged in the cylinder head.
  • the stator pack of the drive motor is preferably pressed into the capsule cover.
  • a pressure line is led hermetically through the capsule bottom to the outside.
  • a tube is fixedly arranged between the capsule base and the capsule lid, the tube interior being connected to the interior of the capsule and to the pressure line by means of at least one jacket bore. The tube serves as a bearing axis for the rotor package of the drive motor.
  • the upper bearing shell of the rotor is designed as a cylindrical disk and is arranged eccentrically with respect to the tube axis and serves as a lifting disk in that the connecting rod bearing surrounds the outer surface of the cylindrical disk.
  • the connecting rod pivotally connected to the connecting rod bearing is rigidly connected to the piston oscillating in the cylinder.
  • the piston is equipped with a pressure valve.
  • the rotor core can suitably have a balance mass balance.
  • connection between the flow path and the displacement of the piston is advantageously arranged at a crank angle of approximately 20 ° above the bottom dead center position of the piston.
  • the flow section is connected on the input side to the connecting line of the condenser to the capillary, during which the outlet of the flow section opens into the condenser inlet or into the pressure line.
  • Compressor piston is provided, which is arranged rigidly connected to a reciprocating connecting rod, has a sealing lip abutting the cylinder inner wall and has a flow channel for the refrigerant with a valve which opens the flow channel during the compression stroke and closes during the intake stroke, whereby at a bell-shaped guide element is rigidly attached to the reciprocating connecting rod and has a cylindrical, axially arranged jacket region. On the side of the guide element facing the compression chamber, this is arranged in a radially projecting manner and has a flat piston head.
  • the edge of the cylindrical region of the guide element facing away from the piston crown is angled all around towards the inner wall of the cylinder, the guide element being surrounded by a sealing ring which is slidably arranged on the cylindrical outer surface and which has an edge which lies all around the inner wall of the cylinder.
  • the guide element is provided with passages whose openings on the compression chamber side are released by the sealing ring during the compression stroke and are covered during the suction stroke.
  • the length of the connecting rod is at least eight times the crank radius.
  • the object of the invention is achieved by the design of the fluxomizer, which consists of a liquid separator into which the suction line connected to the evaporator outlet of a refrigeration system opens and which has a liquid collecting container, and a suction damper which is connected to the liquid separator and to the suction nozzle the compressor of a refrigeration system is connected.
  • the suction damper is designed as an internal counterflow heat exchanger.
  • a riser pipe is arranged in the liquid collecting container and opens as an injection cannula into the suction port of the compressor.
  • the fluxomizer according to the invention is advantageously designed in that its outlet opening is connected directly to the suction port of the compressor.
  • the inner counterflow heat exchanger consists of the capillary of the refrigeration system connecting the condenser to the evaporator, which is wound twice around the suction line, and the suction line.
  • the fluxomizer according to the invention is advantageously designed in that it represents a closed assembly which is thermally decoupled from the environment, in particular by a cylindrical casing is provided which, in addition to the thermal decoupling, functions as elastic mounting and sound insulation, preferably both for the fluxomizer and for the hermetic compressor.
  • the hermetic compressor, condenser and fluxomizer limits the overall height of the refrigeration system according to the invention to the base height of household appliances and the compact construction and arrangement of the components, the hermetic compressor, condenser and fluxomizer, is the prerequisite for applications in cooling units of various designs. With the exception of the installation of the evaporator, both the components and the refrigeration system are installed independently of the manufacture of the cooling units.
  • the components and in particular the hermetic compressor consist of a few, easily assembled components. Because of the liquid reservoir arranged in the Fluxomizer, there is no need to optimize the refrigerant charge. Instead, there is a self-regulating behavior in that the compressor draws in the optimal amount of refrigerant.
  • the design of the hermetic compressor makes it possible to dispense with the function of heat dissipation via the capsule surface and to reduce the noise level to a low level by means of secondary noise protection measures.
  • the secondary noise protection measures around the hermetic compressor also form the elastic mounting of the hermetic compressor and the fluxomizer in the chassis of the refrigeration system.
  • the process behavior of the refrigeration system according to the invention is further optimized in such a way that a high specific refrigeration capacity is generated and undefined liquid suction of the compressor is avoided by the refrigerant being overheated to the ambient temperature.
  • the overheating heat is not extracted from the environment but is obtained from the subcooling of the liquefied refrigerant through the use of the counterflow heat exchanger.
  • the overall energetic behavior is characterized in that compression begins at ambient temperature and is isotropic in principle, but takes place under adiabatic when liquid refrigerant is injected. The losses of the compressor are minimized and added to the refrigerant after compression.
  • the suction gas mass flow drawn in by the compressor is compressed in the displacement and, according to the direct current principle, reaches the interior of the capsule through the pressure valve arranged in the piston.
  • the piston force corresponds to the rod force, so that the process forces do not produce any normal force that causes wear.
  • the rod force is lower than with conventional engine designs. The result is a lower torque requirement for the drive motor. Since the sealing ring is extremely slippery and its surface abutting the inner wall of the cylinder is small due to the configuration as a lip, the friction losses between the piston and the cylinder are minimal.
  • the friction is nevertheless sufficient to prevent the axial vibration behavior of the sealing ring, as a result of which the function of the sealing ring as a pressure valve is performed without bounce, without the need for a valve spring, since the mass force of the sealing ring provides the closing force for the valve.
  • the stroke gap area of the pressure valve realized by means of the sealing ring can be chosen to be so large due to its location outside the compression space without enlarging the harmful space that the flow losses remain minimal.
  • the reduction of the oscillating mass in comparison to conventional engine designs to is up to V 35 results in a noticeable acoustic improvement in the operation of reciprocating compressors in addition to a reduction in the manufacturing effort.
  • a DC compressor implemented with the suction valve in the cylinder head and the pressure valve in the piston is characterized by the almost complete avoidance of heating of the suction gas on its way into the cylinder.
  • the face of the piston which can be made completely flat, ensures minimal damage volume during compression. Due to the compressed gas atmosphere in the interior of the capsule and the targeted delivery of compressed gas, there is no need for a special pressure damper to reduce the pressure pulsation.
  • the compressed gas flows through the stator package, the annular gap between the stator and the rotor, the rotor bearings and the annular space within the rotor, from which it passes through the jacket bore into the interior of the axle tube and from there into the pressure line, whereby it passes on this Way the engine heat loss absorbs.
  • the pressurized gas then flows through the condenser, the expansion capillary and the evaporator, from which the mass flow is sucked into the fluxomizer.
  • the mass flow enters the liquid separator of the fluxomizer, liquid components of the mass flow are separated, which can contain both oil and liquid refrigerant.
  • the gas mass flow flows through the suction line inside the fluxomizer, which is part of the counterflow heat exchanger, which also acts as a suction damper, absorbs heat, causing the liquid flow through the capillary to be supercooled, and reaches the suction port of the compressor.
  • Liquid oil / refrigerant mixture is introduced into the suction gas stream via the injection cannula opening into the suction nozzle, so that under-adiabatic compression is achieved.
  • the sub-adiabatic behavior which leads to a reduction in compressor losses, is reinforced by additional cooling of the cylinder.
  • the additional cooling takes place with liquid refrigerant by passing it through the flow section thermally coupled to the cylinder or additionally sucking it out of the flow section through the injection bore into the displacement when the piston reaches the area of bottom dead center and thereby the injection bore releases, and evaporates in the displacement.
  • Spray lubrication is carried out in the same way as the lubrication of 2-stroke engines, but without oil combustion, which supplies all bearing points with sufficient oil and lubricates them safely.
  • Fig. 1 is a block diagram of a refrigeration system according to the invention
  • 2 shows a diagram of a hermetic compressor according to the invention
  • FIG. 3 shows a diagram of a fluxomizer according to the invention
  • FIG. 4 shows a diagram of a compressor piston according to the invention
  • Fig. 5 is a block diagram of a refrigeration system according to the invention with cylinder cooling and
  • FIG. 6 shows a diagram of a hermetic compressor according to the invention with cylinder cooling.
  • the fluxomizer 40 comprises a suction damper 43 designed as an internal heat exchanger and a liquid separator 41, in the liquid reservoir of which an injection cannula 45 is immersed, which opens into the middle of the suction nozzle 44 of the compressor 102.
  • a suction line 6 connected to the outlet of an evaporator 3 opens tangentially into the liquid separator 41.
  • the evaporator 3 has a latent heat accumulator for lowering the difference between the evaporator surface temperature and the storage room temperature, in that heat is also absorbed when the refrigeration system is switched off.
  • the refrigerant inlet of the evaporator 3 is connected to a condenser 2 via a capillary tube 42.
  • the capillary tube 42 is in thermal contact with the suction damper 43.
  • a pressure line 5 opens into the condenser 2 and is hermetically guided outwards from the capsule of the hermetic compressor 10.
  • the refrigeration system according to the invention is designed as a compact assembly.
  • the hermetic compressor 10, the fluxomizer 40 and the condenser 2 are accordingly arranged on a chassis and constructed such that the overall height, including secondary soundproofing means, does not exceed 100 mm.
  • the secondary soundproofing means simultaneously serve for the elastic mounting of the hermetic compressor 10 and the fluxomizer 40 on the chassis.
  • the coupling point of the suction line 6 with the fluxomizer 40 is vibration-free. forms to avoid excitation of the evaporator 3.
  • the capsule of the hermetic compressor 10 consists of a capsule base 11 and a capsule cover 12, which are hermetically connected to one another.
  • a cylinder assembly 13 is hermetically connected to the capsule cover 12.
  • a stator pack 14 of a drive motor 101 with a field winding 14 ′ is pressed into the capsule cover 12.
  • An axle tube 15 is arranged centrally between the capsule base 11 and the capsule cover 12.
  • the capsule cover 12 has a pin 12 ', onto which the axle tube 15 is pressed, and the capsule bottom 11 has a socket 11' which is advantageously designed to accommodate a bearing and into which the axle tube 15 is inserted.
  • the axle tube 15 is provided at least half of its length with at least one radial jacket bore 16.
  • a pressure line 5 opens into the interior of the axle tube 15, which is hermetically guided out of the capsule base 11.
  • a rotor 18 of the drive motor 101 with an upper bearing plate 19 and a lower bearing plate 20 is mounted on the axle tube 15, a lower bearing 20 ′, preferably designed as a sliding bearing, being received at the end by the bushing 11 ′.
  • An upper bearing 19 ' which is arranged in the region of the pin 12', can be designed as a gas or sliding bearing.
  • the upper end plate 19 of the rotor 18 is designed as a circular disk which is arranged eccentrically with respect to the tube axis and is surrounded by a connecting rod bearing 21.
  • a connecting rod 22 is pivotally connected to the connecting rod bearing 21, to which a piston 23 is rigidly attached.
  • the piston 23 oscillates translationally in the cylinder assembly 13 due to the stroke generated by means of the eccentric mounting of the upper end plate 19 and transmitted via the connecting rod 22.
  • the piston 23 is shown in its bottom dead center position.
  • the rigid connection of the piston 23 to the connecting rod 22 causes the piston 23 to undergo a tilting vibration with respect to the cylinder axis, as a result of which the piston force is transmitted directly to the connecting rod 22 and thus corresponds to the rod force, that is to say that there is no disassembly into a normal and a Rod force share takes place.
  • This has the advantage of reducing the wear and tear that occurs with conventional piston designs. gene with a connecting rod pivotally mounted on a piston pin results essentially from the normal force.
  • the piston 23 is also provided with a pressure valve shown in Figure 4, which consists of a slightly axially displaceable sealing ring 236, whereby the direct current principle of the refrigerant mass flow and thus the spray lubrication of all bearings is realized by the suction valve arranged in the cylinder head, not shown
  • Aspirated suction gas including any liquid refrigerant and oil after compression through the pressure valve located in the piston 23 enters the capsule interior so that it flows through the annular gap between the stator 14 and rotor 18 and the upper rotor bearing 19 'one between the rotor 18 and the axle tube 15 located annular space 24, from which it passes through the radial bore 16 into the interior of the axle tube 15 and from this into the pressure line 5.
  • the forced path of the pressurized gas flow in the interior of the capsule formed in this way lubricates all bearing points and absorbs the heat loss from the engine, so that the capsule itself does not have to perform any heat transfer function. This makes it possible to absorb the vibrations outside the capsule by means of an elastic covering which provides sound insulation.
  • a fluxomizer 40 according to the invention is shown in FIG. 3. It consists of a cylindrical liquid separator 41, into which the suction line 6 connected to the outlet of the evaporator 3 opens tangentially, and a suction damper 43 designed as an inner heat exchanger.
  • the inner heat exchanger 43 comprises a spiral-shaped flow body through which the suction gas flow flows and in addition to whose calming is dampened in the liquid separator 41, and a double-helical section 47, pressed into the flow body, of the capillary tube 42 connecting the condenser 2 to the evaporator 3 as a relaxation throttle, which can advantageously be wound around the suction line 6 before it enters the fluxomizer 40.
  • a liquid reservoir 46 is formed, into which a riser tube is immersed, which, as an injection cannula 45, opens centrally in the outlet opening of the fluxomizer 40, into which the suction nozzle 44 of the compressor 102 is inserted and hermetically connected to the fluxomizer 40.
  • An elastic covering of the fluxomizer 40 is not shown, which the damping mounting of the fluxomizer 40 on the chassis and also for its thermal decoupling from the environment and advantageously forms a unit with the casing of the hermetic compressor 10.
  • the Fluxomizer 40 is essentially responsible for ensuring that the process behavior actually achieved is optimally approximated to the theoretical cycle. Because of the liquid reservoir 46, which is at the same time a refrigerant collector and a lubricant depot, the assembly of the refrigeration system according to the invention is simplified since an optimization of the refrigerant charge is not necessary.
  • FIG. 4 shows a preferred embodiment of the piston according to the invention.
  • the drawing shows cylinder walls 237 of a reciprocating compressor 102 (according to FIG. 1), between which a piston according to the invention oscillates. The stroke movements are indicated by dashed arrows. Accordingly, the left side of the drawing symbolizes the piston during the compression stroke and the right side the piston during the intake stroke.
  • the cylinder has a cylinder head which is connected to a suction line 6 (according to FIG. 1) and in which a suitable suction valve is arranged.
  • the piston consists of a guide element 232, which is bell-shaped and rigidly connected to a connecting rod 22 on its side facing away from the crank, and a piston head 233, which is fixedly connected to the guide element 232.
  • connecting rod 22 and guide element 232 in one piece.
  • the connecting rod 22 is articulated on a crank driven by an electric motor.
  • the guide element 232 has an annular end face on which the piston head 233 is fastened flat.
  • the diameter of the piston head 233 is smaller than the diameter of the cylinder bore in order to prevent the piston from jamming with the cylinder inner wall 237, since the piston rigidly connected to the connecting rod 22 oscillates axially with the crank rotation.
  • the diameter of the guide element 232 is in turn smaller than the diameter of the piston head 233, the guide element 232, starting from the annular end face, being formed on its periphery coaxially and cylindrically to the connecting rod 22 and in this way as a sliding surface 234 facing the inner cylinder wall 237.
  • the cylindrical sliding surface area 234 of the guide element 232 is provided with through openings 238 distributed at the same angle over the entire lateral surface.
  • the sliding surface area 234 is delimited by the rear side of the peripheral area of the piston head 233 projecting over the guide element 232. on the one hand and an edge 235 angled all round towards the cylinder inner wall 237, which serves as a lift catcher, on the other hand.
  • a sealing ring 236 made of polytetrafluoroethylene is placed around the cylindrical region 234 of the guide element 232 and has a first sliding edge abutting against the sliding surface 234 and a second one against the inner wall 237 of the cylinder.
  • the side of the sealing ring 236 facing the rear of the piston head 233 is flat.
  • the sealing ring 236 changes its position due to a greater friction on the cylinder inner wall 237 than on the sliding surface 234.
  • the sealing ring 236 is in contact with the stroke catcher 235 and releases a stroke gap 239V.
  • the left side of the drawing symbolizes this state.
  • the right side of the drawing shows the position of the sealing ring 236 during the suction stroke of the piston.
  • the sealing ring 236 lies flat against the rear of the piston head 233.
  • sealing ring 236, each with a sealing lip resting on the cylinder inner wall 237 and a sealing lip on the sliding surface 234, results in a slidability on the respective surfaces which, even with the greatest inclination of the connecting rod 22 with respect to the cylinder axis and thus the greatest tendency of the piston to tilt, seals the compression chamber 2310 against the crankcase between the piston and the cylinder inner wall 237 and the function of the sealing ring 236 as a pressure valve.
  • the embodiment of the refrigeration system according to the invention according to FIGS. 5 and 6 has an additional cylinder cooling 51. Since the rest of the design is identical, reference is made to the explanations relating to FIGS. 1 and 2.
  • the additional cylinder The cooling of the compressor 102 consists of a flow section 51 through which liquid refrigerant flows. The liquid refrigerant is branched off from the connection between the condenser 2 and the capillary 42 and, after flowing through the flow path 51, is returned to the pressure line 5 between the compressor outlet and the condenser inlet, both the branch and the return connection being arranged at positions that are suitable in terms of construction can.
  • FIG. 1 the flow path 51
  • FIG. 6 shows its connection to the cylinder displacement 2310 (according to FIG. 4) in the form of at least one injection bore 25.
  • the injection bores 25 are at a crank angle of 20 ° above the bottom dead center position of the piston 23. They are evenly distributed over the circumference of the cylinder wall 237 (according to FIG. 4). The transition from the inner surface of the cylinder wall to the bore is as burr-free as possible.

Abstract

The invention relates to a refrigerating system for domestic refrigerating appliances which comprises a motor-compressor set with reciprocating compressor piston and a so-called fluxomizer. The aim of the invention is to provide a refrigerating system for domestic refrigerating appliances that can be produced with few components, that can be used for various applications without prior extensive modifications and that optimally makes use of the theoretical cyclic process. To this end, the inventive refrigerating system for domestic refrigerating appliances is provided with a hermetic motor-compressor set, a condenser that is connected to the motor-compressor set at the pressure-side and a capillary tube that is connected to the condenser at the outlet side and that is in thermal contact with the suction tube of the motor-compressor set. The refrigerating system further comprises a refrigeratory that is connected to the capillary tube, that is thermally coupled to a PCM device and that is connected to the motor-compressor set at the suction end, and a cooling fan for intensifying the convection in the refrigerator section of the refrigerating appliance. The outlet of the refrigeratory is connected to a fluxomizer which in turn is connected to the air intake of the motor-compressor set. Said motor-compressor set and said fluxomizer are mounted on a chassis and are flexibly supported and enclosed by a sound protection cover. The maximum overall height of said chassis including the components and the sound protection cover mounted thereon corresponds to the base height of the refrigerating appliance. The invention further relates to the inventive design of the hermetic refrigeration compressor, of the reciprocating compressor piston and of the fluxomizer.

Description

Kälteanlage für HaushaltkühlgeräteRefrigeration system for household cooling devices
Die Erfindung betrifft einen hermetischen Motorkompressor, einen Nerdichterkolben hierzu und einen Fluxomizer sowie eine unter Verwendung des Motorkompressors mit dem Kolben und des Fluxomizers realisierte Kälteanlage für Haushaltkühlgeräte.The invention relates to a hermetic motor compressor, a nerdichterkolben for this purpose and a Fluxomizer as well as a refrigeration system for household cooling devices realized using the motor compressor with the piston and the Fluxomizer.
In Haushaltkühlgeräten werden üblicherweise Kälteanlagen eingesetzt, die nach dem Prinzip der Kompressionskältemaschine arbeiten und demzufolge einen Kältemittelkreis aufweisen, der aus einem Verdichter mit Saug- und/oder Druckdämpfer, einem Verflüs- siger und einem Verdampfer besteht, wobei als Entspannungsdrossel zwischen dem Verflüssiger und dem Verdampfer in Haushaltkühlgeräten vorzugsweise ein Kapillar- rohr angeordnet ist. Die genannten Komponenten des Kältemittelkreises sind in vielfaltigen Ausführungen gleichermaßen bekannt wie ihre Anordnung in oder an Kühlgeräten. Hierbei erfolgt die Unterbringung des Kälteaggregates üblicherweise im Gerätesok- kel, ausgenommen der Verdampfer, der in die Rückwand des Gerätes integriert ist oder diese bildet. Die bekannten Kälteaggregate für Haushaltkühlgeräte weisen den Nachteil auf, daß jede Komponente für sich an der dafür vorgesehenen Stelle montiert und mittels entsprechender Leitungen der Kältemittelkreis hergestellt wird, wodurch die Herstellung der Kühlgeräte technologisch aufwendig und somit kostenungünstig ist. Abhilfe diesbezüglich schafft die Anordnung des Kälteaggregates als vormontierbare Baugruppe, wie es beispielsweise nach dem deutschen Gebrauchsmuster 92 06 167 bekannt ist. Die bekannte Lösung betrifft einen Kühl- und/oder Gefrierschrank mit einem Sok- kelteil, in dem Verflüssiger und Kompressor untergebracht sind und die von einem Ventilator angeblasen werden. Verflüssiger, Kompressor und Ventilator sind in einem geschlossenen Luftkanal angeordnet, dessen Ansaug- und Ausblasöffnungen durch poröse und/oder gitterartige Scheiben geschlossen sind sowie auf einer Sockelseite liegen und mittels Türen oder Klappen verdeckt sind. Die seitlichen Wandungen des Luftkanals sind mit Schall absorbierendem Material ausgekleidet, der Luftkanal selbst besteht aus einem u-formig gebogenen gehäuseartigen Rohr und ist an dem umgebenden Sok- kelkasten durch elastische oder elastomere Elemente gehaltert oder gleichartig auf dem Boden des Sockelkastens abgestützt. Desweiteren sieht die bekannte Lösung vor, daß der Kompressor und/oder der Verflüssiger über elastische oder elastomere Elemente mit der Wandung des Luftkanals verbunden oder auf dem Boden des Luftkanals abgestützt ist.In household refrigerators, refrigeration systems are usually used which operate on the principle of the compression refrigeration machine and consequently have a refrigerant circuit which consists of a compressor with suction and / or pressure damper, a condenser and an evaporator, with a relaxation throttle between the condenser and the evaporator a capillary tube is preferably arranged in household cooling devices. The aforementioned components of the refrigerant circuit are known in a wide variety of designs as well as their arrangement in or on cooling devices. The refrigeration unit is usually accommodated in the appliance base, with the exception of the evaporator, which is integrated in the rear wall of the appliance or forms it. The known refrigeration units for household refrigeration appliances have the disadvantage that each component is assembled at the location provided for it and the refrigerant circuit is produced by means of corresponding lines, which means that the manufacture of the refrigeration appliances is technologically complex and therefore inexpensive. The arrangement of the refrigeration unit as a preassembled module, as is known, for example, from German utility model 92 06 167, provides a remedy in this regard. The known solution relates to a refrigerator and / or freezer with a base part, in which the condenser and compressor are accommodated and which are blown by a fan. The condenser, compressor and fan are arranged in a closed air duct, the suction and discharge openings of which are closed by porous and / or lattice-like disks and lie on a base side and are covered by doors or flaps. The side walls of the air duct are lined with sound absorbing material, the air duct itself consists of a U-shaped, tube-like tube and is held on the surrounding base box by elastic or elastomeric elements or is supported in a similar manner on the base of the base box. Furthermore, the known solution provides that the compressor and / or the condenser is connected to the wall of the air duct via elastic or elastomeric elements or is supported on the bottom of the air duct.
Nachteilig an der bekannten Lösung ist, daß die Anordnung der im Sockelteil untergebrachten Funktionselemente dessen gesamten Irmenraum beansprucht, wodurch nicht zuletzt die Dämmung des Raumschalls einen relativ hohen Aufwand erfordert. Darüber hinaus ist die bekannte Lösung auf die Geometrie des Sockelteils eines bestimmten Kühlgerätes zugeschnitten, so daß ein Einsatz in einem anderen Typ wenigstens konstruktive Modifizierungen erfordert.A disadvantage of the known solution is that the arrangement of the functional elements accommodated in the base part occupies the entire space of the armature, which not least means that the insulation of the room sound requires a relatively high outlay. In addition, the known solution is tailored to the geometry of the base part of a specific cooling device, so that use in a different type requires at least structural modifications.
Hinsichtlich der Gebrauchseigenschaften von Haushaltkühlgeräten stehen die Lagerbedingungen des Kühlgutes im Vordergrund. In herkömmlichen Haushaltkühlgeräten erfolgt die Regelung der Kühlfachtemperatur durch relativ kurzfristige Zu- und Abschaltung des Kompressors, d.h. durch intermittierenden Betrieb der Kälteanlage. Daraus resultieren jedoch erhebliche Schwankungen der Kühlfachtemperatur, insbesondere bei Neueinlagerung von Lebensmitteln, verbunden mit dem Umstand einer beträchtlichen Differenz zwischen Lagerraum- und Verdampferoberflächentemperatur und daraus folgender Austrocknung des Kühlgutes. Eine Abkehr vom intermittierenden Betrieb wird durch den Einsatz eines Verdampfers mit Latentwärmespeicher ermöglicht, wie dies nach der deutschen Erfindungsbeschreibung 39 26 250 AI bekannt ist. Der Verdampfer ist von einem Kältespeicher umgeben, der mit einem Kältespeichermittel gefüllt ist, das bei einer bestimmten Temperatur einen Phasenumwandlungspunkt aufweist und dessen Wärmekapazität der Wärmeaufnahme des Kühlgerätes in einer vorgegebenen Zeit entspricht, die wenigstens mehrere Stunden beträgt. Der Kompressorbetrieb kann damit in engen Grenzen nahe der Phasenumwandlungstemperatur geregelt werden, zumal vorteilhafterweise ein Lüfter zur Zwangskonvektion den Wärmeübergang zwischen Ver- dampferoberfläche und Kühlfach verbessert. Dadurch wird eine hohe Temperaturkonstanz im Lagerfach, eine hohe Abkühlgeschwindigkeit sowie eine bedeutende Verringerung der Austrocknung des Kühlgutes erreicht. Doch weder eine Kompaktanordnung der Komponenten der Kälteanlage noch der Einsatz eines Verdampfers mit Latentwärmespeicher für sich gesehen sind geeignet, zum einen den Herstellungsaufwand von Haushaltkühlgeräten zu senken, und zum anderen den theoretischen Kreisprozeß auf das Prozeßverhalten realer Kälteanlagen derart anzuwenden, daß bei geringem Energieverbrauch eine hohe spezifische Kälteleistung abrufbar ist und darüber hinaus die in jüngerer Vergangenheit immer stärker werdende Forderung nach Reduzierung des Einsatzes von umweltbelastenden Stoffen hinreichend zu erfüllen.With regard to the usage properties of household refrigerators, the storage conditions of the refrigerated goods are in the foreground. In conventional household refrigerators, the refrigerator compartment temperature is controlled by switching the compressor on and off relatively quickly, ie by intermittent operation of the refrigeration system. However, this results in considerable fluctuations in the temperature of the refrigerator compartment, especially when storing new food, combined with the fact that there is a considerable difference between the temperature of the storage room and the surface of the evaporator and the resulting drying of the refrigerated goods. A departure from intermittent operation is made possible by the use of an evaporator with latent heat storage, as is known from the German description of the invention 39 26 250 AI. The evaporator is surrounded by a cold store, which is filled with a cold storage agent, which has a phase transition point at a certain temperature and whose heat capacity corresponds to the heat absorption of the cooling device in a predetermined time, which is at least several hours. The compressor operation can thus be regulated within narrow limits close to the phase transition temperature, especially since a fan for forced convection advantageously improves the heat transfer between the evaporator surface and the cooling compartment. This ensures a high temperature consistency in the storage compartment, a high cooling rate and a significant reduction in the drying out of the refrigerated goods. However, neither a compact arrangement of the components of the refrigeration system nor the use of an evaporator with latent heat storage are suitable, on the one hand, to reduce the manufacturing expenditure of household cooling appliances, and, on the other hand, to apply the theoretical cycle process to the process behavior of real refrigeration systems in such a way that high energy consumption is achieved with low energy consumption specific cooling capacity can be called up and, moreover, it has adequately met the demand for reducing the use of environmentally harmful substances, which has been increasing in recent years.
Daraus ergibt sich die Aufgabe der Erfindung, eine Kälteanlage für Haushaltkühlgeräte zu schaffen, die mit geringem technologischen Aufwand herstellbar und für verschiedene Anwendungsfälle ohne umfangreiche Modifikationen einsetzbar ist und dabei den theoretischen Kreisprozeß optimal nutzt.This is the object of the invention to provide a refrigeration system for household refrigerators, which can be produced with little technological effort and can be used for various applications without extensive modifications and thereby makes optimal use of the theoretical cycle.
Die Aufgabe wird gelöst durch eine einen mit Kältemittel gefüllten Kältekreis bildenden Kälteanlage für Haushaltkühlgeräte, die aus einem hermetischen Motorkompressor, einem druckseitig an den Motorkompressor angeschlossenen Verflüssiger, einem Kapillarrohr, das ausgangsseitig mit dem Verflüssiger verbunden ist und das in thermischem Kontakt mit der Saugleitung des Motorkompressors steht, einem an das Kapillar- rohr angeschlossenen Verdampfer, der mit einem Latentwärmespeicher thermisch gekoppelt und mit dem Motorkompressor saugseitig verbunden ist, sowie einem Lüfter zur Verstärkung der Konvektion im Kühlfach des Kühlgerätes besteht, wobei der Ausgang des Verdampfers an einen mit dem Saugstutzen des Motorkompressors verbundenen Fluxomizer geführt ist, der Motorkompressor und der Fluxomizer in einer Schallschutzhülle elastisch gelagert auf einem Chassis montiert sind und die maximale Bauhöhe des Chassis einschließlich der aufmontierten Baugruppen und der Schallschutzhülle der Sockelhöhe des Kühlgerätes entspricht. Eine bevorzugte Ausgestaltung der erfindungsgemäßen Kälteanlage besteht darin, daß die maximale Bauhöhe des Chassis einschließlich der aufmontierten Baugruppen und der Schallschutzhülle 100 mm beträgt. Die Aufgabe der Erfindung wird weiterhin durch die erfinderische Ausbildung von Komponenten der Kälteanlage gelöst.The task is solved by a refrigeration system for household cooling devices forming a refrigerant circuit, which consists of a hermetic motor compressor, a condenser on the pressure side connected to the motor compressor, a capillary tube which is connected on the outlet side to the condenser and which is in thermal contact with the suction line of the motor compressor there is an evaporator connected to the capillary tube, which is thermally coupled to a latent heat store and connected to the motor compressor on the suction side, and a fan for increasing the convection in the cooling compartment of the cooling unit, the output of the evaporator being connected to the suction port of the motor compressor connected Fluxomizer is guided, the motor compressor and the Fluxomizer are mounted elastically in a soundproof sleeve on a chassis and the maximum height of the chassis including the assembled modules and the soundproofing cover corresponds to the base height of the cooling unit. A preferred embodiment of the refrigeration system according to the invention is that the maximum overall height of the chassis, including the assembled assemblies and the soundproof cover, is 100 mm. The object of the invention is further achieved by the inventive design of components of the refrigeration system.
Dies betrifft einmal einen hermetischen Motorkompressor mit einem Kapselboden und einem Kapseldeckel, die hermetisch miteinander verbunden sind. Im Kapselinneren ist ein Antriebsmotor angeordnet, dessen Stromversorgung hermetisch durch den Kapseldeckel geführt ist. Mit dem Kapseldeckel ist eine Zylinderbaugruppe hermetisch verbunden, wobei im Zylinderkopf ein Saugventil angeordnet ist. Das Statorpaket des Antriebsmotors ist vorzugsweise im Kapseldeckel eingepreßt. Eine Druckleitung ist hermetisch durch den Kapselboden nach außen geführt. Zwischen dem Kapselboden und dem Kapseldeckel ist ein Rohr feststehend angeordnet, wobei der Rohrinnenraum mittels wenigstens einer Manteldurchbohrung mit dem Kapselinnenraum und mit der Druckleitung verbunden ist. Das Rohr dient als Lagerachse für das Rotorpaket des Antriebsmotors. Die obere Lagerschale des Rotors ist als zylindrische Scheibe ausgebildet und bezüglich der Rohrachse exzentrisch angeordnet und dient derart als Hubscheibe, indem das Pleuellager die Mantelfläche der zylindrischen Scheibe umgibt. Die mit dem Pleuellager schwenkbar verbundene Pleuelstange ist starr mit dem im Zylinder oszillierenden Kolben verbunden. Der Kolben ist mit einem Druckventil versehen. Das Rotorpaket kann in geeigneter Weise einen Schwungmassenausgleich aufweisen. Eine Weiterbildung des erfindungsgemäßen Motorkompressors besteht darin, daß die Zylinderbaugruppe mit einer von flüssigem Kältemittel durchströmten Fließstrecke thermisch gekoppelt ist, die zudem über wenigstens eine die Zylinderwand geringfügig oberhalb der unteren Totpunktstellung des Kolbens durchdringende Einspritzbohrung mit dem Hubraum des Kolbens verbunden sein kann. Vorteilhaft angeordnet ist die Verbindung zwischen der Fließstrecke und dem Hubraum des Kolbens bei etwa 20 ° Kurbelwinkel oberhalb der unteren Totpunktstellung des Kolbens. Die Fließstrecke ist eingangsseitig an die Verbindungsleitung des Verflüssigers mit der Kapillare angeschlossen während dessen der Ausgang der Fließstrecke in den Verflüssigereingang oder in die Druckleitung mündet.This relates to a hermetic motor compressor with a capsule bottom and a capsule cover, which are hermetically connected to one another. A drive motor is arranged in the interior of the capsule, the power supply of which is hermetically guided through the capsule cover. A cylinder assembly is hermetically connected to the capsule cover, a suction valve being arranged in the cylinder head. The stator pack of the drive motor is preferably pressed into the capsule cover. A pressure line is led hermetically through the capsule bottom to the outside. A tube is fixedly arranged between the capsule base and the capsule lid, the tube interior being connected to the interior of the capsule and to the pressure line by means of at least one jacket bore. The tube serves as a bearing axis for the rotor package of the drive motor. The upper bearing shell of the rotor is designed as a cylindrical disk and is arranged eccentrically with respect to the tube axis and serves as a lifting disk in that the connecting rod bearing surrounds the outer surface of the cylindrical disk. The connecting rod pivotally connected to the connecting rod bearing is rigidly connected to the piston oscillating in the cylinder. The piston is equipped with a pressure valve. The rotor core can suitably have a balance mass balance. A further development of the motor compressor according to the invention is that the cylinder assembly is thermally coupled to a flow section through which liquid refrigerant flows, which can also be connected to the displacement of the piston via at least one injection hole penetrating the cylinder wall slightly above the bottom dead center position of the piston. The connection between the flow path and the displacement of the piston is advantageously arranged at a crank angle of approximately 20 ° above the bottom dead center position of the piston. The flow section is connected on the input side to the connecting line of the condenser to the capillary, during which the outlet of the flow section opens into the condenser inlet or into the pressure line.
Für den erfindungsgemäßen Motorkompressor ist ein die Erfindung kennzeichnender Verdichterkolben vorgesehen, der mit einer hin- und hergehenden Pleuelstange starr verbunden angeordnet ist, eine an der Zylinderinnenwand anliegende Dichtlippe aufweist und über einen Strömungskanal für das Kältemittel mit einem Ventil verfügt, das den Strömungskanal während des Verdichtungshubes öffnet und während des Ansaughubes schließt, wobei an der hin- und hergehenden Pleuelstange ein glockenförmig ausgebildetes Führungselement starr befestigt ist, das über einen zylindrisch ausgebildeten, axial angeordneten Mantelbereich verfügt. An der zum Verdichtungsraum weisenden Seite des Führungselementes ist dieses radial überragend ein plan ausgebildeter Kolbenboden angeordnet. Die dem Kolbenboden abgewandte Kante des zylindrischen Bereiches des Führungselementes ist umlaufend zur Zylinderinnenwand hin abgewinkelt, wobei das Führungselement von einem an der zylindrischen Mantelfläche gleitfähig angeordneten Dichtring umgeben ist, der über eine umlaufend an der Zylinderinnenwand anliegende Kante verfügt. Das Führungselement ist mit Durchgängen versehen, deren verdichtungsraumseitige Öffnungen während des Verdichtungshubes von dem Dichtring freigegeben und während des Ansaughubes abgedeckt sind. Die Länge der Pleuelstange beträgt wenigstens das achtfache des Kurbelradius.For the motor compressor according to the invention is a characteristic of the invention Compressor piston is provided, which is arranged rigidly connected to a reciprocating connecting rod, has a sealing lip abutting the cylinder inner wall and has a flow channel for the refrigerant with a valve which opens the flow channel during the compression stroke and closes during the intake stroke, whereby at a bell-shaped guide element is rigidly attached to the reciprocating connecting rod and has a cylindrical, axially arranged jacket region. On the side of the guide element facing the compression chamber, this is arranged in a radially projecting manner and has a flat piston head. The edge of the cylindrical region of the guide element facing away from the piston crown is angled all around towards the inner wall of the cylinder, the guide element being surrounded by a sealing ring which is slidably arranged on the cylindrical outer surface and which has an edge which lies all around the inner wall of the cylinder. The guide element is provided with passages whose openings on the compression chamber side are released by the sealing ring during the compression stroke and are covered during the suction stroke. The length of the connecting rod is at least eight times the crank radius.
Desweiteren wird die Aufgabe der Erfindung durch die Ausbildung des Fluxomizers gelöst, der aus einem Flüssigkeitsabscheider, in den die an den Verdampferausgang einer Kälteanlage angeschlossene Saugleitung mündet und der über einen Flüssigkeitsauffangbehälter verfügt, und einem Saugdämpfer besteht, der an den Flüssigkeitsabscheider angeschlossen und mit dem Saugstutzen des Kompressors einer Kälteanlage verbunden ist. Der Saugdämpfer ist als innerer Gegenstromwärmeübertrager ausgebildet. In dem Flüssigkeitsauffangbehälter ist ein Steigrohr angeordnet, das als Iηjektions- kanüle in den Saugstutzen des Kompressors mündet. Vorteilhaft ausgebildet ist der erfindungsgemäße Fluxomizer, indem seine Ausgangsöffnung unmittelbar mit dem Saugstutzen des Kompressors verbunden ist. Der innere Gegenstromwärmeübertrager besteht aus der den Verflüssiger mit dem Verdampfer verbindenden Kapillare der Kälteanlage, die doppelt um die Saugleitung gewendelt ist, und der Saugleitung. Vorteilhaft ausgebildet ist der erfindungsgemäße Fluxomizer dadurch, daß er eine geschlossene, thermisch von der Umgebung entkoppelte Baugruppe darstellt, insbesondere, indem eine zylindrische ausgebildete Ummantelung vorgesehen ist, die neben der thermischen Entkopplung als elastische Lagerung und Schallschutz fungiert, vorzugsweise sowohl für den Fluxomizer als auch für den Hermetikkompressor.Furthermore, the object of the invention is achieved by the design of the fluxomizer, which consists of a liquid separator into which the suction line connected to the evaporator outlet of a refrigeration system opens and which has a liquid collecting container, and a suction damper which is connected to the liquid separator and to the suction nozzle the compressor of a refrigeration system is connected. The suction damper is designed as an internal counterflow heat exchanger. A riser pipe is arranged in the liquid collecting container and opens as an injection cannula into the suction port of the compressor. The fluxomizer according to the invention is advantageously designed in that its outlet opening is connected directly to the suction port of the compressor. The inner counterflow heat exchanger consists of the capillary of the refrigeration system connecting the condenser to the evaporator, which is wound twice around the suction line, and the suction line. The fluxomizer according to the invention is advantageously designed in that it represents a closed assembly which is thermally decoupled from the environment, in particular by a cylindrical casing is provided which, in addition to the thermal decoupling, functions as elastic mounting and sound insulation, preferably both for the fluxomizer and for the hermetic compressor.
Die Begrenzung der Bauhöhe der erfindungsgemäßen Kälteanlage auf die Sockelhöhe von Haushaltgeräten und die Kompaktbauweise und -anordnung der Komponenten Hermetikkompressor, Verflüssiger und Fluxomizer ist die Voraussetzung für Anwendungen in Kühlgeräten verschiedenster Ausführung. Die Montage sowohl der Komponenten als auch der Kälteanlage erfolgt, mit Ausnahme des Einbaus des Verdampfers, unabhängig von der Herstellung der Kühlgeräte. Die Komponenten und insbesondere der Hermetikkompressor bestehen aus wenigen, einfach montierbaren Bauteilen. Wegen des im Fluxomizer angeordneten Flüssigkeitsreservoirs kann auf eine Optimierung der Kältemittelfüllmenge verzichtet werden, vielmehr kommt es diesbezüglich zu einem Selbstregelverhalten, indem der Kompressor die jeweils optimale Kältemittelmenge ansaugt. Aus Sicht der Forderung nach größerer Umweltverträglichkeit fallt einerseits ins Gewicht, daß die Schmierölmenge drastisch reduziert ist, da das Öl lediglich zur Schmierung und nicht zur Abführung der Kompressorverluste erforderlich ist. Andererseits ermöglicht die Gestaltung des Hermetikkompressors, daß auf die Funktion der Verlustwärmeableitung über die Kapseloberfläche verzichtet und dafür durch sekundäre Schallschutzmaßnahmen der Geräuschpegel auf ein niedriges Niveau gesenkt werden kann. Die sekundären Schallschutzmaßnahmen um den Hermetikkompressor bilden gleichzeitig die elastische Lagerung des Hermetikkompressors und des Fluxomizers im Chassis der Kälteanlage.Limiting the overall height of the refrigeration system according to the invention to the base height of household appliances and the compact construction and arrangement of the components, the hermetic compressor, condenser and fluxomizer, is the prerequisite for applications in cooling units of various designs. With the exception of the installation of the evaporator, both the components and the refrigeration system are installed independently of the manufacture of the cooling units. The components and in particular the hermetic compressor consist of a few, easily assembled components. Because of the liquid reservoir arranged in the Fluxomizer, there is no need to optimize the refrigerant charge. Instead, there is a self-regulating behavior in that the compressor draws in the optimal amount of refrigerant. From the point of view of the need for greater environmental compatibility, on the one hand, it is important that the amount of lubricating oil is drastically reduced, since the oil is only required for lubrication and not to discharge the compressor losses. On the other hand, the design of the hermetic compressor makes it possible to dispense with the function of heat dissipation via the capsule surface and to reduce the noise level to a low level by means of secondary noise protection measures. The secondary noise protection measures around the hermetic compressor also form the elastic mounting of the hermetic compressor and the fluxomizer in the chassis of the refrigeration system.
Das Prozeßverhalten der erfindungsgemäßen Kälteanlage erfährt neben dem Einsatz eines Verdampfers mit Latentwärmespeicher eine weitere Optimierung in der Weise, daß eine hohe spezifische Kälteleistung erzeugt und eine Undefinierte Flüssigkeitsan- saugung des Kompressors vermieden wird, indem das Kältemittel bis zur Umgebungstemperatur überhitzt wird. Dabei wird die Überhitzungswärme nicht der Umgebung entzogen sondern durch den Einsatz des Gegenstromwärmeübertragers aus der Unterkühlung des verflüssigten Kältemittels gewonnen. Das energetische Gesamtverhalten ist dadurch gekennzeichnet, daß die Verdichtung bei Umgebungstemperatur beginnt und grundsätzlich isentrop, bei Einspritzung von flüssigem Kältemittel jedoch unteradiabat erfolgt. Dabei werden die Verluste des Kompressors minimiert und nach erfolgter Verdichtung dem Kältemittel zugeführt. Der vom Verdichter angesaugte Sauggasmassen- strom wird im Hubraum verdichtet und gelangt nach dem Gleichstromprinzip durch das im Kolben angeordnete Druckventil in den Kapselinnenraum. Durch das starre Befestigen des Kolbenbodens an der Pleuelstange entspricht die Kolbenkraft der Stangenkraft, so daß aus den Prozeßkräften keine einen Verschleiß verursachende Normalkraft entsteht. Die Stangenkraft ist niedriger als bei herkömmlichen Triebwerksgestaltungen. Die Folge ist ein geringerer Momentenbedarf des Antriebsmotors. Da der Dichtring extrem gleitfähig und seine an der Zylinderinnenwand anliegende Fläche aufgrund der Ausgestaltung als Lippe klein ist, sind die zwischen Kolben und Zylinder entstehenden Reibungsverluste minimal. Die Reibung ist dennoch ausreichend, das axiale Schwingungsverhalten des Dichtringes zu unterbinden, wodurch die Funktion des Dichtrings als Druckventil prellfrei erfüllt wird, ohne daß eine Ventilfeder erforderlich ist, da die Massenkraft des Dichtrings die Schließkraft für das Ventil erbringt. Die Hubspaltfläche des mittels des Dichtringes realisierten Druckventils kann aufgrund seiner Lage außerhalb des Verdichtungsraumes ohne Vergrößerung des Schadraumes so groß gewählt werden, daß die Strömungsverluste minimal bleiben. Die Reduzierung der oszillierenden Masse im Vergleich zu herkömmlichen Triebwerksgestaltungen auf is bis V35 bewirkt neben einer Reduzierung des Herstellungsaufwandes eine merkliche akustische Verbesserung beim Betrieb von Hubkolbenverdichtern. Ein mit dem Saugventil im Zylinderkopf und dem Druckventil im Kolben realisierter Gleichstromverdichter zeichnet sich aus durch die nahezu vollständige Vermeidung der Aufheizung des Sauggases auf dessen Weg in den Zylinder. Die vollständig plan ausführbare Stirnfläche des Kolbens sichert ein minimales Schadvolumen bei der Verdichtung. Durch die Druckgasathmosphäre im Kapselinnenraum und die gezielte Druckgasführung kann auf einen besonderen Druckdämpfer zum Abbau der Druckpulsation verzichtet werden. Das Druckgas durchströmt das Statorpaket, den Ringspalt zwischen Stator und Rotor, die Rotorlager sowie den Ringraum innerhalb des Rotors, von dem es durch die Manteldurchbohrung in den Innenraum des Achsrohres und von dort in die Druckleitung gelangt, wobei es auf diesem Weg die Motorverlustwärme aufnimmt. Das Druckgas durchströmt daraufhin den Verflüssiger, die Entspannungskapillare und den Verdampfer, aus dem der Massenstrom in den Fluxomizer gesaugt wird. Beim Eintritt des Massenstroms in den Flüssigkeitsabscheider des Fluxomizers erfolgt die Abscheidung flüssiger Bestandteile des Massenstroms, die sowohl Öl als auch flüssiges Kältemittel aufweisen können. Der Gasmassenstrom durchströmt die Saugleitung im Innern des Fluxomizers, die Bestandteil des auch als Saugdämpfer wirkenden Gegenstromwärmeübertragers ist, nimmt dabei Wärme auf, wodurch der die Kapillare durchströmende Flüssigkeitsstrom unterkühlt wird, und gelangt in den Saugstutzen des Kompressors. Dabei wird über die in den Saugstutzen mündende Injektionskanüle flüssiges Öl-Kältemittel-Gemisch in den Sauggasstrom eingetragen, so daß eine unteradiabate Verdichtung realisiert wird. Das unteradiabate Verhalten, das zur Verringerung der Kompressorverluste führt, wird durch zusätzliche Kühlung des Zylinders verstärkt. Die zusätzliche Kühlung erfolgt mit flüssigem Kältemittel, indem dieses durch die mit dem Zylinder thermisch gekoppelte Fließstrecke geführt wird bzw. zusätzlich aus der Fließstrecke teilweise durch die Einspritzbohrung in den Hubraum eingesaugt wird, wenn der Kolben in den Bereich des unteren Totpunktes gelangt und dabei die Einspritzbohrung frei gibt, und im Hubraum verdampft. Gleichermaßen erfolgt eine Sprayschmierung analog der Schmierung von 2-Takt- Motoren, allerdings ohne Ölverbrennung, die alle Lagerstellen hinreichend mit Öl versorgt und sicher schmiert. Die Ausbildung des Verdichters mit exzentrischer Hubscheibe, Pleuellager, Pleuelstange und insbesondere starr mit der Pleuelstange verbundenem Kolben sowie die Anordnung des Druckventils im Kolben ermöglicht Anwendungen, die durch extrem hohe Prozeßkräfte und -drücke gekennzeichnet sind, wie etwa bei der Verwendung von Kohlendioxid (CO2) als Kältemittel.In addition to the use of an evaporator with latent heat storage, the process behavior of the refrigeration system according to the invention is further optimized in such a way that a high specific refrigeration capacity is generated and undefined liquid suction of the compressor is avoided by the refrigerant being overheated to the ambient temperature. The overheating heat is not extracted from the environment but is obtained from the subcooling of the liquefied refrigerant through the use of the counterflow heat exchanger. The overall energetic behavior is characterized in that compression begins at ambient temperature and is isotropic in principle, but takes place under adiabatic when liquid refrigerant is injected. The losses of the compressor are minimized and added to the refrigerant after compression. The suction gas mass flow drawn in by the compressor is compressed in the displacement and, according to the direct current principle, reaches the interior of the capsule through the pressure valve arranged in the piston. By rigidly attaching the piston crown to the connecting rod, the piston force corresponds to the rod force, so that the process forces do not produce any normal force that causes wear. The rod force is lower than with conventional engine designs. The result is a lower torque requirement for the drive motor. Since the sealing ring is extremely slippery and its surface abutting the inner wall of the cylinder is small due to the configuration as a lip, the friction losses between the piston and the cylinder are minimal. The friction is nevertheless sufficient to prevent the axial vibration behavior of the sealing ring, as a result of which the function of the sealing ring as a pressure valve is performed without bounce, without the need for a valve spring, since the mass force of the sealing ring provides the closing force for the valve. The stroke gap area of the pressure valve realized by means of the sealing ring can be chosen to be so large due to its location outside the compression space without enlarging the harmful space that the flow losses remain minimal. The reduction of the oscillating mass in comparison to conventional engine designs to is up to V 35 results in a noticeable acoustic improvement in the operation of reciprocating compressors in addition to a reduction in the manufacturing effort. A DC compressor implemented with the suction valve in the cylinder head and the pressure valve in the piston is characterized by the almost complete avoidance of heating of the suction gas on its way into the cylinder. The face of the piston, which can be made completely flat, ensures minimal damage volume during compression. Due to the compressed gas atmosphere in the interior of the capsule and the targeted delivery of compressed gas, there is no need for a special pressure damper to reduce the pressure pulsation. The compressed gas flows through the stator package, the annular gap between the stator and the rotor, the rotor bearings and the annular space within the rotor, from which it passes through the jacket bore into the interior of the axle tube and from there into the pressure line, whereby it passes on this Way the engine heat loss absorbs. The pressurized gas then flows through the condenser, the expansion capillary and the evaporator, from which the mass flow is sucked into the fluxomizer. When the mass flow enters the liquid separator of the fluxomizer, liquid components of the mass flow are separated, which can contain both oil and liquid refrigerant. The gas mass flow flows through the suction line inside the fluxomizer, which is part of the counterflow heat exchanger, which also acts as a suction damper, absorbs heat, causing the liquid flow through the capillary to be supercooled, and reaches the suction port of the compressor. Liquid oil / refrigerant mixture is introduced into the suction gas stream via the injection cannula opening into the suction nozzle, so that under-adiabatic compression is achieved. The sub-adiabatic behavior, which leads to a reduction in compressor losses, is reinforced by additional cooling of the cylinder. The additional cooling takes place with liquid refrigerant by passing it through the flow section thermally coupled to the cylinder or additionally sucking it out of the flow section through the injection bore into the displacement when the piston reaches the area of bottom dead center and thereby the injection bore releases, and evaporates in the displacement. Spray lubrication is carried out in the same way as the lubrication of 2-stroke engines, but without oil combustion, which supplies all bearing points with sufficient oil and lubricates them safely. The design of the compressor with an eccentric lifting disc, connecting rod bearing, connecting rod and in particular a piston rigidly connected to the connecting rod, as well as the arrangement of the pressure valve in the piston, enables applications which are characterized by extremely high process forces and pressures, such as when using carbon dioxide (CO 2 ) as a refrigerant.
Nachfolgend wird ein bevorzugtes Ausführungsbeispiel einer erfindungsgemäßen Kälteanlage unter Verwendung bevorzugter Ausführungsbeispiele eines erfindungsgemäßen Hermetikkompressors und eines erfindungsgemäßen Fluxomizers anhand der Zeichnung näher erläutert. Die Zeichnung zeigt inA preferred exemplary embodiment of a refrigeration system according to the invention using preferred exemplary embodiments of a hermetic compressor according to the invention and a fluxomizer according to the invention is explained in more detail with reference to the drawing. The drawing shows in
Fig. 1 ein Blockschaltbild einer erfindungsgemäßen Kälteanlage; Fig. 2 ein Schema eines erfindungsgemäßen Hermetikkompressors;Fig. 1 is a block diagram of a refrigeration system according to the invention; 2 shows a diagram of a hermetic compressor according to the invention;
Fig. 3 ein Schema eines erfindungsgemäßen Fluxomizers;3 shows a diagram of a fluxomizer according to the invention;
Fig. 4 ein Schema eines erfindungsgemäßen Verdichterkolbens;4 shows a diagram of a compressor piston according to the invention;
Fig. 5 ein Blockschaltbild einer erfindungsgemäßen Kälteanlage mit Zylinderkühlung undFig. 5 is a block diagram of a refrigeration system according to the invention with cylinder cooling and
Fig. 6 ein Schema eines erfindungsgemäßen Hermetikkompressors mit Zylin- derkühlung.6 shows a diagram of a hermetic compressor according to the invention with cylinder cooling.
Die erfindungsgemäße Kälteanlage gemäß Fig. 1 besteht aus einem Hermetikkompressor 10 mit einem Antriebsmotor 101 und einem Verdichter 102, an dessen Saugstutzen 44 (gemäß Fig. 3) unmittelbar ein Fluxomizer 40 angeordnet ist. Der Fluxomizer 40 umfaßt einen als inneren Wärmeübertrager ausgebildeten Saugdämpfer 43 und einen Flüssigkeitsabscheider 41, in dessen Flüssigkeitsreservoir eine Injektionskanüle 45 eintaucht, die in den Saugstutzen 44 des Verdichters 102 mittig einmündet. In den Flüssigkeitsabscheider 41 mündet eine mit dem Ausgang eines Verdampfers 3 verbundene Saugleitung 6 tangential. Der Verdampfer 3 verfügt über einen Latentwärmespeicher zur Absenkung der Differenz zwischen der Verdampferoberflächentemperatur und der Lagerraumtemperatur, indem auch dann Wärme aufgenommen wird, wenn die Kälteanlage ausgeschaltet ist. Anstatt lediglich die freie Konvektion zu nutzen, ist es möglich, mittels eines nicht dargestellten Lüfters eine erzwungene Konvektion herbeizuführen, um die gewünschte Lagerraumtemperatur einzustellen. Der Kältemitteleingang des Verdampfers 3 ist über ein Kapillarrohr 42 mit einem Verflüssiger 2 verbunden. Das Kapillarrohr 42 steht in thermischem Kontakt mit dem Saugdämpfer 43. In den Verflüssiger 2 mündet eine Druckleitung 5, die aus der Kapsel des Hermetikkompressors 10 hermetisch nach außen geführt ist. Die erfndungsgemäße Kälteanlage ist als Kompaktbaugruppe konzipiert. Der Hermetikkompressor 10, der Fluxomizer 40 und der Verflüssiger 2 sind dementsprechend auf einem Chassis angeordnet und derart konstruktiv ausgebildet, daß die Gesamtbauhöhe einschließlich sekundärer Schallschutzmittel 100 mm nicht überschreitet. Die sekundären Schallschutzmittel dienen gleichzeitig zur elastischen Lagerung des Hermetikkompressors 10 und des Fluxomizers 40 auf dem Chassis. Der Koppelpunkt der Saugleitung 6 mit dem Fluxomizer 40 ist schwingungsfrei ausge- bildet, um eine Anregung des Verdampfers 3 zu vermeiden.1 consists of a hermetic compressor 10 with a drive motor 101 and a compressor 102, on the suction connection 44 (according to FIG. 3) a fluxomizer 40 is arranged directly. The fluxomizer 40 comprises a suction damper 43 designed as an internal heat exchanger and a liquid separator 41, in the liquid reservoir of which an injection cannula 45 is immersed, which opens into the middle of the suction nozzle 44 of the compressor 102. A suction line 6 connected to the outlet of an evaporator 3 opens tangentially into the liquid separator 41. The evaporator 3 has a latent heat accumulator for lowering the difference between the evaporator surface temperature and the storage room temperature, in that heat is also absorbed when the refrigeration system is switched off. Instead of just using free convection, it is possible to use forced ventilation, which is not shown, to bring about forced convection in order to set the desired storage room temperature. The refrigerant inlet of the evaporator 3 is connected to a condenser 2 via a capillary tube 42. The capillary tube 42 is in thermal contact with the suction damper 43. A pressure line 5 opens into the condenser 2 and is hermetically guided outwards from the capsule of the hermetic compressor 10. The refrigeration system according to the invention is designed as a compact assembly. The hermetic compressor 10, the fluxomizer 40 and the condenser 2 are accordingly arranged on a chassis and constructed such that the overall height, including secondary soundproofing means, does not exceed 100 mm. The secondary soundproofing means simultaneously serve for the elastic mounting of the hermetic compressor 10 and the fluxomizer 40 on the chassis. The coupling point of the suction line 6 with the fluxomizer 40 is vibration-free. forms to avoid excitation of the evaporator 3.
Fig. 2 zeigt einen erfindungsgemäßen Hermetikkompressor 10 in einer schematisierten Schnittdarstellung. Die Kapsel des Hermetikkompressors 10 besteht aus einem Kapselboden 11 und einem Kapseldeckel 12, die hermetisch miteinander verbunden sind. Mit dem Kapseldeckel 12 hermetisch verbunden ist eine Zylinderbaugruppe 13. Ein Statorpaket 14 eines Antriebsmotors 101 mit einer Feldwicklung 14' ist in den Kapseldeckel 12 eingepreßt. Zwischen dem Kapselboden 11 und dem Kapseldeckel 12 ist ein Achsrohr 15 zentrisch angeordnet. Vorzugsweise verfügen der Kapseldeckel 12 über einen Zapfen 12', auf den das Achsrohr 15 aufgepreßt angeordnet ist, und der Kapselboden 11 über eine vorteilhafterweise zur Aufnahme eines Lagers ausgebildete Buchse 11 ', in die das Achsrohr 15 eingesteckt ist. Das Achsrohr 15 ist etwa auf der Hälfte seiner Länge mit wenigstens einer radialen Manteldurchbohrung 16 versehen. Im Bereich der Aufnahmebuchse 11' des Kapselbodens 11 mündet eine Druckleitung 5 in den Innenraum des Achsrohres 15, die hermetisch aus dem Kapselboden 11 heraus geführt ist. An dem Achsrohr 15 ist ein Rotor 18 des Antriebsmotors 101 mit einem oberen Lagerschild 19 und einem unteren Lagerschild 20 gelagert, wobei ein unteres, vorzugsweise als Gleitlager ausgeführtes Lager 20' von der Buchse 11 ' stirnseitig aufgenommen wird. Ein oberes Lager 19', das im Bereich des Zapfens 12' angeordnet ist, kann als Gas- oder Gleitlager ausgebildet sein. Das obere Lagerschild 19 des Rotors 18 ist als kreisrunde Scheibe ausgeführt, die exzentrisch in Bezug auf die Rohrachse angeordnet ist und von einem Pleuellager 21 umfaßt wird. Mit dem Pleuellager 21 ist schwenkbar eine Pleuelstange 22 verbunden, an der starr ein Kolben 23 befestigt ist. Der Kolben 23 oszilliert translatorisch in der Zylinderbaugruppe 13 aufgrund des mittels der exzentrischen Lagerung des oberen Lagerschildes 19 erzeugten und über die Pleuelstange 22 übertragenen Hubes. Dargestellt ist der Kolben 23 in seiner unteren Totpunktlage. Die starre Verbindung des Kolbens 23 mit der Pleuelstange 22 bewirkt, daß der Kolben 23 gegenüber der Zylinderachse einer Neigeschwingung unterliegt, wodurch die Kolbenkraft direkt auf die Pleuelstange 22 übertragen wird und somit der Stangenkraft entspricht, d.h., daß keine Zerlegung in einen Normal- und einen Stangenkraftanteil erfolgt. Daraus ergibt sich der Vorteil der Verminderung des Verschleißes, der bei herkömmlichen Kolbenausbildun- gen mit an einem Kolbenbolzen schwenkbar gelagerter Pleuelstange im wesentlichen aus der Normalkraft resultiert. Der Kolben 23 ist weiterhin mit einem in Fig.4 dargestellten Druckventil versehen, das aus einem gering axial verschieblichen Dichtring 236 besteht, wodurch das Gleichstromprinzip des Kältemittelmassenstromes und damit die Sprayschmierung aller Lagerstellen realisiert wird, indem das über ein im Zylinderkopf angeordnetes, nicht dargestelltes Saugventil angesaugte Sauggas einschließlich eventueller flüssiger Kältemittel- und Ölanteile nach der Verdichtung durch das im Kolben 23 befindliche Druckventil in den Kapselinnenraum gelangt, so daß es den Ringspalt zwischen Stator 14 und Rotor 18 und das obere Rotorlager 19' durchströmend einen zwischen dem Rotor 18 und dem Achsrohr 15 befindlichen Ringraum 24 erreicht, von dem es durch die Radialbohrung 16 in den Innenraum des Achsrohres 15 und von diesem in die Druckleitung 5 gelangt. Der auf diese Weise gebildete Zwangsweg des Druckgasstromes im Kapselinneren bewirkt die Schmierung aller Lagerstellen und die Aufnahme der Motorverlustwärme, so daß die Kapsel selbst keine Wärmeübertragungsfunktion erfüllen muß. Dadurch ist es möglich, die Schwingungen außerhalb der Kapsel mittels einer elastischen, den Schallschutz bewirkenden Umhüllung aufzufangen.2 shows a hermetic compressor 10 according to the invention in a schematic sectional illustration. The capsule of the hermetic compressor 10 consists of a capsule base 11 and a capsule cover 12, which are hermetically connected to one another. A cylinder assembly 13 is hermetically connected to the capsule cover 12. A stator pack 14 of a drive motor 101 with a field winding 14 ′ is pressed into the capsule cover 12. An axle tube 15 is arranged centrally between the capsule base 11 and the capsule cover 12. Preferably, the capsule cover 12 has a pin 12 ', onto which the axle tube 15 is pressed, and the capsule bottom 11 has a socket 11' which is advantageously designed to accommodate a bearing and into which the axle tube 15 is inserted. The axle tube 15 is provided at least half of its length with at least one radial jacket bore 16. In the area of the receptacle 11 'of the capsule base 11, a pressure line 5 opens into the interior of the axle tube 15, which is hermetically guided out of the capsule base 11. A rotor 18 of the drive motor 101 with an upper bearing plate 19 and a lower bearing plate 20 is mounted on the axle tube 15, a lower bearing 20 ′, preferably designed as a sliding bearing, being received at the end by the bushing 11 ′. An upper bearing 19 ', which is arranged in the region of the pin 12', can be designed as a gas or sliding bearing. The upper end plate 19 of the rotor 18 is designed as a circular disk which is arranged eccentrically with respect to the tube axis and is surrounded by a connecting rod bearing 21. A connecting rod 22 is pivotally connected to the connecting rod bearing 21, to which a piston 23 is rigidly attached. The piston 23 oscillates translationally in the cylinder assembly 13 due to the stroke generated by means of the eccentric mounting of the upper end plate 19 and transmitted via the connecting rod 22. The piston 23 is shown in its bottom dead center position. The rigid connection of the piston 23 to the connecting rod 22 causes the piston 23 to undergo a tilting vibration with respect to the cylinder axis, as a result of which the piston force is transmitted directly to the connecting rod 22 and thus corresponds to the rod force, that is to say that there is no disassembly into a normal and a Rod force share takes place. This has the advantage of reducing the wear and tear that occurs with conventional piston designs. gene with a connecting rod pivotally mounted on a piston pin results essentially from the normal force. The piston 23 is also provided with a pressure valve shown in Figure 4, which consists of a slightly axially displaceable sealing ring 236, whereby the direct current principle of the refrigerant mass flow and thus the spray lubrication of all bearings is realized by the suction valve arranged in the cylinder head, not shown Aspirated suction gas including any liquid refrigerant and oil after compression through the pressure valve located in the piston 23 enters the capsule interior so that it flows through the annular gap between the stator 14 and rotor 18 and the upper rotor bearing 19 'one between the rotor 18 and the axle tube 15 located annular space 24, from which it passes through the radial bore 16 into the interior of the axle tube 15 and from this into the pressure line 5. The forced path of the pressurized gas flow in the interior of the capsule formed in this way lubricates all bearing points and absorbs the heat loss from the engine, so that the capsule itself does not have to perform any heat transfer function. This makes it possible to absorb the vibrations outside the capsule by means of an elastic covering which provides sound insulation.
Ein erfindungsgemäßer Fluxomizer 40 ist in Fig. 3 dargestellt. Er besteht aus einem zylindrischen Flüssigkeitsabscheider 41, in den die an den Ausgang des Verdampfers 3 angeschlossene Saugleitung 6 tangential einmündet, und einem als innerer Wärmeübertrager ausgebildeten Saugdämpfer 43. Der innere Wärmeübertrager 43 umfaßt einen spiralförmig gestalteten Strömungskörper, durch den der Sauggasstrom fließt und zusätzlich zu dessen Beruhigung im Flüssigkeitsabscheider 41 gedämpft wird, und einen in den Strömungskörper eingepreßten doppelt gewendelten Abschnitt 47 des den Verflüssiger 2 mit dem Verdampfer 3 als Entspannungsdrossel verbindenden Kapillarrohres 42, das vorteilhafterweise vor deren Eintritt in den Fluxomizer 40 um die Saugleitung 6 gewendelt sein kann. Im unteren Bereich des Flüssigkeitsabscheiders 41 bildet sich ein Flüssigkeitsreservoir 46, in das ein Steigrohr eintaucht, das als Injektionskanüle 45 mittig in der Austrittsöffnung des Fluxomizers 40 mündet, in die der Saugstutzen 44 des Verdichters 102 eingeführt und hermetisch mit dem Fluxomizer 40 verbunden ist. Nicht dargestellt ist eine elastische Umhüllung des Fluxomizers 40, die sowohl zur schwin- gungsdämpfenden Lagerung des Fluxomizers 40 auf dem Chassis als auch zu seiner thermischen Entkopplung von der Umgebung dient und vorteilhafterweise mit der Umhüllung des Hermetikkompressors 10 eine Einheit bildet. Der Fluxomizer 40 ist im wesentlichen dafür verantwortlich, daß das real erreichte Prozeßverhalten dem theoretischen Kreisprozeß optimal angenähert ist. Wegen des Flüssigkeitsreservoirs 46, das gleichzeitig Kältemittelsammler und Schmiermitteldepot ist, wird die Montage der erfindungsgemäßen Kälteanlage vereinfacht, da eine Optimierung der Kältemittelfüllmenge nicht erforderlich ist.A fluxomizer 40 according to the invention is shown in FIG. 3. It consists of a cylindrical liquid separator 41, into which the suction line 6 connected to the outlet of the evaporator 3 opens tangentially, and a suction damper 43 designed as an inner heat exchanger. The inner heat exchanger 43 comprises a spiral-shaped flow body through which the suction gas flow flows and in addition to whose calming is dampened in the liquid separator 41, and a double-helical section 47, pressed into the flow body, of the capillary tube 42 connecting the condenser 2 to the evaporator 3 as a relaxation throttle, which can advantageously be wound around the suction line 6 before it enters the fluxomizer 40. In the lower area of the liquid separator 41, a liquid reservoir 46 is formed, into which a riser tube is immersed, which, as an injection cannula 45, opens centrally in the outlet opening of the fluxomizer 40, into which the suction nozzle 44 of the compressor 102 is inserted and hermetically connected to the fluxomizer 40. An elastic covering of the fluxomizer 40 is not shown, which the damping mounting of the fluxomizer 40 on the chassis and also for its thermal decoupling from the environment and advantageously forms a unit with the casing of the hermetic compressor 10. The Fluxomizer 40 is essentially responsible for ensuring that the process behavior actually achieved is optimally approximated to the theoretical cycle. Because of the liquid reservoir 46, which is at the same time a refrigerant collector and a lubricant depot, the assembly of the refrigeration system according to the invention is simplified since an optimization of the refrigerant charge is not necessary.
In Fig. 4 ist eine bevorzugte Ausbildung des erfindungsgemäßen Kolbens dargestellt. Die Zeichnung zeigt Zylinderwände 237 eines Hubkolbenkompressors 102 (gemäß Fig. 1), zwischen denen ein erfindungsgemäßer Kolben oszilliert. Die Hubbewegungen sind durch gestrichelt gezeichnete Pfeile angedeutet. Demnach symbolisiert die linke Seite der Zeichnung den Kolben während des Verdichtungs- und die rechte Seite den Kolben während des Ansaughubes. Der Zylinder verfügt über einen Zylinderkopf, der mit einer Saugleitung 6 (gemäß Fig. 1) verbunden und in dem ein geeignetes Ansaugventil angeordnet ist. Der Kolben besteht aus einem Führungselement 232, das glockenförmig ausgebildet und starr mit einer Pleuelstange 22 an deren von der Kurbel abgewandten Seite verbunden ist, und einem Kolbenboden 233, der fest mit dem Führungselement 232 verbunden ist. Es ist technologisch gleichermaßen möglich, Pleuelstange 22 und Führungselement 232 einteilig zu fertigen. Die Pleuelstange 22 ist an einer von einem Elektromotor angetriebenen Kurbel angelenkt. Das Führungselement 232 verfügt über eine ringförmige Stirnseite, an welcher der Kolbenboden 233 flächig befestigt ist. Der Durchmesser des Kolbenbodens 233 ist kleiner als der Durchmesser der Zylinderbohrung, um ein Verklemmen des Kolbens mit der Zylinderinnenwand 237 zu vermeiden, da der starr mit der Pleuelstange 22 verbundene Kolben mit der Kurbelumdrehung axial pendelt. Der Durchmesser des Führungselements 232 ist wiederum kleiner als der Durchmesser des Kolbenbodens 233, wobei das Führungselement 232 von der ringförmigen Stirnfläche ausgehend an seiner Peripherie koaxial und zylindrisch zur Pleuelstange 22 und derart als zur Zylinderinnenwand 237 weisende Gleitfläche 234 ausgebildet ist. Der zylindrisch ausgebildete Gleitflächenbereich 234 des Führungselements 232 ist mit über die gesamte Mantelfläche winkelgleich verteilten Durchgangsöffnungen 238 versehen. Der Gleitflächenbereich 234 wird begrenzt durch die Rückseite des über das Führungselement 232 ragenden Peripheriebereiches des Kolbenbodens 233 einer- seits und eine umlaufend zur Zylinderinnenwand 237 hin abgewinkelte Kante 235, die als Hubfänger dient, andererseits. Um den zylindrischen Bereich 234 des Führungselements 232 ist ein Dichtring 236 aus Polytetrafluorethylen gelegt, der über eine erste an der Gleitfläche 234 und eine zweite an der Zylinderinnenwand 237 anliegende Gleitkante verfügt. Die zur Rückseite des Kolbenbodens 233 weisende Seite des Dichtrings 236 ist eben ausgebildet.4 shows a preferred embodiment of the piston according to the invention. The drawing shows cylinder walls 237 of a reciprocating compressor 102 (according to FIG. 1), between which a piston according to the invention oscillates. The stroke movements are indicated by dashed arrows. Accordingly, the left side of the drawing symbolizes the piston during the compression stroke and the right side the piston during the intake stroke. The cylinder has a cylinder head which is connected to a suction line 6 (according to FIG. 1) and in which a suitable suction valve is arranged. The piston consists of a guide element 232, which is bell-shaped and rigidly connected to a connecting rod 22 on its side facing away from the crank, and a piston head 233, which is fixedly connected to the guide element 232. It is technologically equally possible to produce connecting rod 22 and guide element 232 in one piece. The connecting rod 22 is articulated on a crank driven by an electric motor. The guide element 232 has an annular end face on which the piston head 233 is fastened flat. The diameter of the piston head 233 is smaller than the diameter of the cylinder bore in order to prevent the piston from jamming with the cylinder inner wall 237, since the piston rigidly connected to the connecting rod 22 oscillates axially with the crank rotation. The diameter of the guide element 232 is in turn smaller than the diameter of the piston head 233, the guide element 232, starting from the annular end face, being formed on its periphery coaxially and cylindrically to the connecting rod 22 and in this way as a sliding surface 234 facing the inner cylinder wall 237. The cylindrical sliding surface area 234 of the guide element 232 is provided with through openings 238 distributed at the same angle over the entire lateral surface. The sliding surface area 234 is delimited by the rear side of the peripheral area of the piston head 233 projecting over the guide element 232. on the one hand and an edge 235 angled all round towards the cylinder inner wall 237, which serves as a lift catcher, on the other hand. A sealing ring 236 made of polytetrafluoroethylene is placed around the cylindrical region 234 of the guide element 232 and has a first sliding edge abutting against the sliding surface 234 and a second one against the inner wall 237 of the cylinder. The side of the sealing ring 236 facing the rear of the piston head 233 is flat.
In Abhängigkeit von der Hubrichtung des Kolbens ändert der Dichtring 236 aufgrund einer größeren Reibung an der Zylinderinnenwand 237 als an der Gleitfläche 234 seine Position. Zum Ende des Verdichtungshubes befindet sich der Dichtring 236 im Anschlag mit dem Hubfänger 235 und gibt einen Hubspalt 239V frei. Diesen Zustand symbolisiert die linke Seite der Zeichnung. Durch die Auswahl von Dichtringen 236 nach ihrer Gleitfähigkeit oder durch entsprechende Oberflächenausführung der Gleitfläche 234 ist es möglich, den Öffnungszeitpunkt zu variieren. Bei geöffnetem Hubspalt 239V kann das komprimierte Kältemittel aus dem Verdichtungsraum 2310 durch den Hubspalt 239V und die Durchgangsöffnungen 238 in den Kurbelraum 2311 strömen. Der Kurbelraum 2311 ist über den Motorraum mit dem Druckgasausgang 5 (gemäß Fig. 2) des Kompressors verbunden. Die rechte Seite der Zeichnung zeigt die Position des Dichtrings 236 während des Ansaughubes des Kolbens. Der Dichtring 236 liegt flächig an der Rückseite des Kolbenbodens 233 an. Dadurch ist kein Hubspalt 239V gegeben und die Durchgangsöffhungen 238 sind verschlossen, so daß Kältemittel in den Verdichtungsraum 2310 gesaugt wird.Depending on the stroke direction of the piston, the sealing ring 236 changes its position due to a greater friction on the cylinder inner wall 237 than on the sliding surface 234. At the end of the compression stroke, the sealing ring 236 is in contact with the stroke catcher 235 and releases a stroke gap 239V. The left side of the drawing symbolizes this state. By selecting sealing rings 236 according to their slidability or by appropriate surface design of the sliding surface 234, it is possible to vary the time of opening. When the stroke gap 239V is open, the compressed refrigerant can flow from the compression space 2310 through the stroke gap 239V and the through openings 238 into the crank chamber 2311. The crank chamber 2311 is connected to the compressed gas outlet 5 (according to FIG. 2) of the compressor via the engine compartment. The right side of the drawing shows the position of the sealing ring 236 during the suction stroke of the piston. The sealing ring 236 lies flat against the rear of the piston head 233. As a result, there is no lifting gap 239V and the through openings 238 are closed, so that refrigerant is sucked into the compression space 2310.
Die Ausbildung des Dichtringes 236 mit je einer an der Zylinderinnenwand 237 und einer an der Gleitfläche 234 anliegenden Dichtlippe bewirkt eine Gleitfähigkeit an den jeweiligen Flächen, die auch bei größter Neigung der Pleuelstange 22 gegenüber der Zylinderachse und damit größter Kippneigung des Kolbens die Abdichtung des Verdichtungsraumes 2310 gegen das Kurbelgehäuse zwischen Kolben und Zylinderinnenwand 237 und die Funktion des Dichtrings 236 als Druckventil sichert.The formation of the sealing ring 236, each with a sealing lip resting on the cylinder inner wall 237 and a sealing lip on the sliding surface 234, results in a slidability on the respective surfaces which, even with the greatest inclination of the connecting rod 22 with respect to the cylinder axis and thus the greatest tendency of the piston to tilt, seals the compression chamber 2310 against the crankcase between the piston and the cylinder inner wall 237 and the function of the sealing ring 236 as a pressure valve.
Im Unterschied zu der in Fig. 1 und Fig. 2 dargestellten Ausführungsform weist die Ausführungsform der erfindungsgemäßen Kälteanlage nach Fig. 5 und Fig. 6 eine zusätzliche Zylinderkühlung 51 auf. Da die übrige Ausbildung identisch ist, wird insoweit auf die Erläuterungen zu Fig. 1 bzw. Fig. 2 Bezug genommen. Die zusätzliche Zylin- derkühlung des Kompressors 102 besteht aus einer Fließstrecke 51, die von flüssigem Kältemittel durchströmt wird. Das flüssige Kältemittel wird aus der Verbindung zwischen dem Verflüssiger 2 und der Kapillare 42 abgezweigt und nach dem Durchströmen der Fließstrecke 51 in die Druckleitung 5 zwischen dem Kompressorausgang und dem Verflüssigereingang zurückgeführt, wobei sowohl der Abzweig als auch die Rückführverbindung an jeweils konstruktiv geeigneten Positionen angeordnet sein können. In Fig. 6 ist neben der Fließstrecke 51 deren Verbindung mit dem Zylinderhubraum 2310 (gemäß Fig. 4) in Form wenigstens einer Einspritzbohrung 25 zu sehen. Die Einspritzbohrungen 25 befinden sich bei 20 ° Kurbel winkel oberhalb der unteren Totpunktstellung des Kolbens 23. Sie sind gleichmäßig über den Umfang der Zylinderwand 237 (gemäß Fig. 4) verteilt. Der Übergang von der Zylinderinnenwandoberfläche zur Bohrung ist möglichst gratfrei ausgebildet. In contrast to the embodiment shown in FIGS. 1 and 2, the embodiment of the refrigeration system according to the invention according to FIGS. 5 and 6 has an additional cylinder cooling 51. Since the rest of the design is identical, reference is made to the explanations relating to FIGS. 1 and 2. The additional cylinder The cooling of the compressor 102 consists of a flow section 51 through which liquid refrigerant flows. The liquid refrigerant is branched off from the connection between the condenser 2 and the capillary 42 and, after flowing through the flow path 51, is returned to the pressure line 5 between the compressor outlet and the condenser inlet, both the branch and the return connection being arranged at positions that are suitable in terms of construction can. In addition to the flow path 51, FIG. 6 shows its connection to the cylinder displacement 2310 (according to FIG. 4) in the form of at least one injection bore 25. The injection bores 25 are at a crank angle of 20 ° above the bottom dead center position of the piston 23. They are evenly distributed over the circumference of the cylinder wall 237 (according to FIG. 4). The transition from the inner surface of the cylinder wall to the bore is as burr-free as possible.

Claims

Patentansprüche claims
1. Kälteanlage für Haushaltkühlgeräte, die einen mit Kältemittel gefüllten Kältekreis bildet, bestehend aus einem hermetischen Motorkompressor, einem druckseitig an den Motorkompressor angeschlossenen Verflüssiger, einem Kapillarrohr, das ausgangsseitig mit dem Verflüssiger verbunden ist und das in thermischem Kontakt mit der Saugleitung des Motorkompressors steht, einem an das Kapillarrohr angeschlossenen Verdampfer, der mit einem Latentwärmespeicher thermisch gekoppelt und mit dem Motorkompressor saugseitig verbunden ist, sowie einem Lüfter zur Verstärkung der Konvektion im Kühlfach des Kühlgerätes, dadurch gekennzeichnet, daß der Ausgang des Verdampfers (3) an einen mit dem Saugstutzen (44) des Motorkompressors (10) verbundenen Fluxomizer (40) geführt ist, der Motorkompressor (10) und der Fluxomizer (40) in einer Schallschutzhülle elastisch gelagert auf einem Chassis montiert sind und die maximale Bauhöhe des Chassis einschließlich der aufmontierten Baugruppen und der Schallschutzhülle der Sockelhöhe des Kühlgerätes entspricht.1.Refrigeration system for household cooling devices, which forms a refrigerant circuit filled with refrigerant, consisting of a hermetic motor compressor, a condenser connected on the pressure side to the motor compressor, a capillary tube which is connected on the outlet side to the condenser and which is in thermal contact with the suction line of the motor compressor, an evaporator connected to the capillary tube, which is thermally coupled to a latent heat store and connected to the engine compressor on the suction side, and a fan for increasing the convection in the cooling compartment of the cooling device, characterized in that the outlet of the evaporator (3) is connected to a suction port ( 44) of the motor compressor (10) connected fluxomizer (40) is guided, the motor compressor (10) and the fluxomizer (40) are elastically mounted in a soundproof sleeve on a chassis and the maximum height of the chassis including the assembled modules un d the soundproof cover corresponds to the base height of the cooling unit.
2. Kälteanlage nach Anspruch 1, dadurch gekennzeichnet, daß die maximale Bauhöhe des Chassis einschließlich der aufmontierten Baugruppen und der Schallschutzhülle 100 mm beträgt.2. Refrigeration system according to claim 1, characterized in that the maximum overall height of the chassis including the assembled assemblies and the soundproof cover is 100 mm.
3. Hermetischer Motorkompressor mit einem Kapselboden und einem Kapseldeckel, die hermetisch miteinander verbunden sind, einem im Kapselinneren angeordneten Antriebsmotor und hermetisch durch den Kapseldeckel geführter Stromversorgung für den Antriebsmotor, dadurch gekennzeichnet, daß mit dem Kapseldeckel (12) eine Zylinderbaugruppe (13) hermetisch verbunden ist, wobei im Zylinderkopf ein Saugventil angeordnet ist, das Statorpaket (14) des Antriebsmotors (101) im Kapseldeckel (12) eingepreßt ist, eine Druckleitung (5) hermetisch durch den Kapselboden (11) nach außen geführt ist, zwischen dem Kapselboden (11) und dem Kapseldeckel (12) ein Rohr (15) feststehend angeordnet ist, der Rohrinnenraum mit der Druckleitung (5) und mittels wenigstens einer Manteldurchbohrung (16) mit dem Kapselinnenraum verbunden ist, das Rohr (15) als Lagerachse für das Rotorpaket (18) des Antriebsmotors (101) dient, die obere Lagerschale (19) des Rotors (18) als zylindrische Scheibe ausgebildet und bezüglich der Rohrachse exzentrisch angeordnet ist und derart als Hubscheibe dient, indem das Pleuellager (21) die Mantelfläche der zylindrischen Scheibe umgibt, die mit dem Pleuellager (21) schwenkbar verbundene Pleuelstange (22) starr mit dem im Zylinder (13) oszillierenden Kolben (23) verbunden ist und der Kolben (23) mit einem Druckventil versehen ist.3. Hermetic motor compressor with a capsule bottom and a capsule cover, which are hermetically connected to one another, a drive motor arranged inside the capsule and a power supply for the drive motor hermetically guided through the capsule cover, characterized in that a cylinder assembly (13) is hermetically connected to the capsule cover (12) a suction valve is arranged in the cylinder head, the stator pack (14) of the drive motor (101) is pressed into the capsule cover (12), a pressure line (5) is hermetically led through the capsule base (11) to the outside, between the capsule base (11 ) and the capsule cover (12) a tube (15) is arranged fixed, the tube interior with the pressure line (5) and by means of at least one jacket bore (16) with the Capsule interior is connected, the tube (15) serves as a bearing axis for the rotor assembly (18) of the drive motor (101), the upper bearing shell (19) of the rotor (18) is designed as a cylindrical disk and is arranged eccentrically with respect to the tube axis and thus as a lifting disk serves by the connecting rod bearing (21) surrounding the outer surface of the cylindrical disk, the connecting rod (22) pivotally connected to the connecting rod bearing (21) being rigidly connected to the piston (23) oscillating in the cylinder (13) and the piston (23) with is provided with a pressure valve.
4. Hermetischer Motorkompressor nach Anspruch 3, dadurch gekennzeichnet, daß das Rotorpaket (18) zum Schwungmassenausgleich geeignet ausgebildet ist.4. Hermetic motor compressor according to claim 3, characterized in that the rotor package (18) is designed to be suitable for flywheel balancing.
5. Hermetischer Motorkompressor nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die Zylinderbaugruppe (13) mit einer von flüssigem Kältemittel durchströmten Fließstrecke (51) thermisch gekoppelt ist.5. Hermetic motor compressor according to claim 3 or 4, characterized in that the cylinder assembly (13) is thermally coupled to a flow section (51) through which liquid refrigerant flows.
6. Hermetischer Motorkompressor nach Anspruch 5, dadurch gekennzeichnet, daß die Fließstrecke (51) über wenigstens eine die Zylinderwand geringfügig oberhalb der unteren Totpunktstellung des Kolbens (23) durchdringende Einspritzbohrung (25) mit dem Hubraum des Kolbens (23) verbunden ist.6. Hermetic motor compressor according to claim 5, characterized in that the flow path (51) via at least one cylinder wall slightly above the bottom dead center position of the piston (23) penetrating injection bore (25) is connected to the displacement of the piston (23).
7. Hermetischer Motorkompressor nach Anspruch 6, dadurch gekennzeichnet, daß die Verbindung (25) zwischen der Fließstrecke (51) und dem Hubraum des Kolbens (23) bei etwa 20 ° Kurbelwinkel oberhalb der unteren Totpunktstellung des Kolbens (23) angeordnet ist.7. Hermetic motor compressor according to claim 6, characterized in that the connection (25) between the flow path (51) and the displacement of the piston (23) is arranged at about 20 ° crank angle above the bottom dead center position of the piston (23).
8. Kolben für Kältemittelverdichter, der innerhalb eines Zylinders, dessen Verdichtungsraum über ein Einlaßventil mit einer Saugleitung verbunden ist, mit einer hin- und hergehenden Pleuelstange starr verbunden angeordnet ist, eine an der Zylin- derinnenwand anliegende Dichtlippe aufweist und über einen Strömungskanal für das Kältemittel mit einem Ventil verfügt, das den Strömungskanal während des Verdichtungshubes öffnet und während des Ansaughubes schließt, dadurch gekennzeichnet, daß an der hin- und hergehenden Pleuelstange (22) ein glockenförmig aus- gebildetes Führungselement (232) starr befestigt ist, das über einen zylindrisch ausgebildeten, axial angeordneten Mantelbereich (234) verfügt, an der zum Verdichtungsraum (2310) weisenden Seite des Führungselementes (232) dieses radial überragend ein plan ausgebildeter Kolbenboden (233) angeordnet ist, die dem Kolbenboden (233) abgewandte Kante des zylindrischen Bereiches (234) des Führungselementes (2) umlaufend zur Zylinderinnenwand (237) hin abgewinkelt (235) ist, das Führungselement (232) von einem an der zylindrischen Mantelfläche (234) gleitfähig angeordneten Dichtring (236) umgeben ist, der über eine umlaufend an der Zylinderinnenwand (237) anliegende Kante verfügt, das Führungselement (232) mit Durchgängen (238) versehen ist, deren verdichtungsraumseitige Öffnungen während des Verdichtungshubes von dem Dichtring (236) freigegeben und während des Ansaughubes abgedeckt sind und der Kurbelraum (2311) des Verdichters mit einem Druckgasausgang (5) verbunden ist.8. Piston for refrigerant compressor, which is arranged within a cylinder, the compression chamber of which is connected via an inlet valve to a suction line, rigidly connected to a reciprocating connecting rod, has a sealing lip abutting the inner wall of the cylinder, and has a flow channel for the refrigerant with a valve that opens the flow channel during the compression stroke and closes during the intake stroke, characterized in that a bell-shaped extension on the reciprocating connecting rod (22) formed guide element (232) is rigidly fastened, which has a cylindrical, axially arranged jacket region (234), on the side of the guide element (232) facing the compression space (2310), a radially projecting piston head (233) is arranged, the edge of the cylindrical region (234) of the guide element (2) facing away from the piston crown (233) is angled (235) all the way to the inner cylinder wall (237), the guide element (232) is slidably arranged on the cylindrical outer surface (234) of a sealing ring ( 236) is surrounded, which has a peripheral edge on the cylinder inner wall (237), the guide element (232) is provided with passages (238) whose openings on the compression chamber side are released by the sealing ring (236) during the compression stroke and covered during the suction stroke and the crank chamber (2311) of the compressor is connected to a compressed gas outlet (5).
9. Kolben nach Anspruch 8, dadurch gekennzeichnet, daß die Länge der Pleuelstange (22) wenigstens das achtfache des Kurbelradius beträgt.9. Piston according to claim 8, characterized in that the length of the connecting rod (22) is at least eight times the crank radius.
10. Fluxomizer (40), bestehend aus einem Flüssigkeitsabscheider (41), in den die an den Verdampferausgang einer Kälteanlage angeschlossene Saugleitung (6) mündet und der über einen Flüssigkeitsauffangbehälter verfügt, und einem Saugdämpfer (43), der an den Flüssigkeitsabscheider (41) angeschlossen und mit dem Saugstutzen (44) des Kompressors (102) einer Kälteanlage verbunden ist, wobei der Saugdämpfer (43) als innerer Gegenstromwärmeübertrager ausgebildet ist und in dem Flüssigkeitsauffangbehälter ein Steigrohr angeordnet ist, das als Injektionskanüle (45) in den Saugstutzen (44) des Kompressors (102) mündet.10. Fluxomizer (40), consisting of a liquid separator (41) into which the suction line (6) connected to the evaporator outlet of a refrigeration system opens and which has a liquid collecting container, and a suction damper (43) connected to the liquid separator (41) connected and connected to the suction nozzle (44) of the compressor (102) of a refrigeration system, the suction damper (43) being designed as an internal countercurrent heat exchanger and a riser pipe being arranged in the liquid collecting container and being used as an injection cannula (45) in the suction nozzle (44) of the compressor (102) opens.
11. Fluxomizer nach Anspruch 10, dadurch gekennzeichnet, daß seine Ausgangsöffnung unmittelbar mit dem Saugstutzen (44) des Kompressors (102) verbunden ist.11. Fluxomizer according to claim 10, characterized in that its outlet opening is connected directly to the suction port (44) of the compressor (102).
12. Fluxomizer nach Anspruch 10 oder 11, dadurch gekermzeichnet, daß der innere Gegenstromwärmeübertrager aus der den Verflüssiger (2) mit dem Verdampfer (3) verbindenden Kapillare (42) der Kälteanlage und der Saugleitung (6) gebildet ist. 12. Fluxomizer according to claim 10 or 11, characterized in that the inner countercurrent heat exchanger is formed from the condenser (2) with the evaporator (3) connecting the capillary (42) of the refrigeration system and the suction line (6).
13. Fluxomizer nach Anspruch 12, dadurch gekennzeichnet, daß die Kapillare (42) doppelt spiralförmig um die Saugleitung (6) gewendelt ist.13. Fluxomizer according to claim 12, characterized in that the capillary (42) is double spiral around the suction line (6).
14. Fluxomizer nach Anspruch 10, 11, 12 oder 13, dadurch gekennzeichnet, daß er als geschlossene, thermisch von der Umgebung entkoppelte Baugruppe ausgebildet ist.14. Fluxomizer according to claim 10, 11, 12 or 13, characterized in that it is designed as a closed, thermally decoupled from the environment assembly.
15. Fluxomizer nach Anspruch 14, dadurch gekennzeichnet, daß eine zylindrisch ausgebildete Ummantelung vorgesehen ist. 15. Fluxomizer according to claim 14, characterized in that a cylindrical jacket is provided.
PCT/EP2000/003356 1999-04-15 2000-04-13 Refrigerating system for domestic refrigerating appliances WO2000063627A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU45490/00A AU4549000A (en) 1999-04-15 2000-04-13 Refrigerating system for domestic refrigerating appliances
KR1020017013066A KR20020000799A (en) 1999-04-15 2000-04-13 Refrigerating system for domestic refrigerating appliances
JP2000612681A JP2002542448A (en) 1999-04-15 2000-04-13 Cooling equipment for household coolers
CA002370346A CA2370346A1 (en) 1999-04-15 2000-04-13 Refrigerating system for domestic refrigerating appliances
EP00926921A EP1171743A2 (en) 1999-04-15 2000-04-13 Kälteanlage für haushaltkühlgeräte
BR0009796-9A BR0009796A (en) 1999-04-15 2000-04-13 Household refrigeration appliances

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19916993.4 1999-04-15
DE19916993A DE19916993C1 (en) 1999-04-15 1999-04-15 Piston for compressor for air conditioning system has a cylinder sealing ring which is caused to moved with a reciprocating motion to open and close the outlet for the compressed fluid

Publications (2)

Publication Number Publication Date
WO2000063627A2 true WO2000063627A2 (en) 2000-10-26
WO2000063627A3 WO2000063627A3 (en) 2001-03-15

Family

ID=7904640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/003356 WO2000063627A2 (en) 1999-04-15 2000-04-13 Refrigerating system for domestic refrigerating appliances

Country Status (9)

Country Link
EP (1) EP1171743A2 (en)
JP (1) JP2002542448A (en)
KR (1) KR20020000799A (en)
CN (1) CN1347490A (en)
AU (1) AU4549000A (en)
BR (1) BR0009796A (en)
CA (1) CA2370346A1 (en)
DE (1) DE19916993C1 (en)
WO (1) WO2000063627A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3478967A4 (en) * 2016-06-30 2020-03-11 Graco Minnesota Inc. Piston pump and seal ring
CN113748011A (en) * 2019-04-26 2021-12-03 大陆轮胎德国有限公司 Compressor unit for compressing air in a portable/transportable system, use of a flutter valve in such a compressor unit, and portable/transportable system for sealing and pumping vehicle pneumatic tires

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107899803A (en) * 2017-12-26 2018-04-13 安徽开诚电器有限公司 A kind of spraying equipment of appliance switch element processing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3926250A1 (en) 1989-08-09 1991-02-14 Juergen Mertens Refrigerator with efficient freezer compartment heat exchanger - has fan circulated thermal exchange between main compartment and freezer requiring small energy input for drive
DE9206167U1 (en) 1992-05-08 1993-06-09 Liebherr-Hausgeraete Gmbh, 7955 Ochsenhausen, De

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE643935A (en) *
US2530648A (en) * 1946-09-26 1950-11-21 Harry Alter Company Combination accumulator, heat exchanger, and metering device for refrigerating systems
US3070973A (en) * 1961-06-16 1963-01-01 Gen Motors Corp Refrigerating apparatus
US3084523A (en) * 1962-01-30 1963-04-09 Refrigeration Research Refrigeration component
US3283524A (en) * 1964-03-17 1966-11-08 Byron John Thomson Refrigeration system
US3319577A (en) * 1965-02-25 1967-05-16 Margrete L Stinnes Sliding seal and valve for reciprocating pump plunger
FR1540705A (en) * 1967-10-11 1968-09-27 Danfoss As Shielded motor-compressor, especially for refrigerators
US3545891A (en) * 1968-11-01 1970-12-08 Lennox Ind Inc Compressor crankshaft arrangement
US3563677A (en) * 1969-04-01 1971-02-16 Carrier Corp Compressor
DE2915848A1 (en) * 1979-04-19 1980-11-06 Helmut Thurner Piston for compressor and suction pump - is of PTFE with spring-loaded lip maintaining cylinder wall sealing
JPS60164684A (en) * 1984-02-08 1985-08-27 Hitachi Ltd Compressor for car air-conditioner
DE3616968A1 (en) * 1986-05-20 1987-11-26 Bosch Gmbh Robert Nutating-piston compressor
JPS63137267U (en) * 1987-02-27 1988-09-09
JPH0679883A (en) * 1992-09-02 1994-03-22 Fuji Xerox Co Ltd Fluid transfer pump
DE4243320A1 (en) * 1992-12-21 1994-06-23 Illbruck Gmbh Refrigeration cabinets
DE4429097A1 (en) * 1994-08-17 1996-02-22 Thurner Bayer Druckguss Piston compressor for gaseous media
US5669232A (en) * 1994-11-22 1997-09-23 Sanyo Electric Co., Ltd. Refrigerating unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3926250A1 (en) 1989-08-09 1991-02-14 Juergen Mertens Refrigerator with efficient freezer compartment heat exchanger - has fan circulated thermal exchange between main compartment and freezer requiring small energy input for drive
DE9206167U1 (en) 1992-05-08 1993-06-09 Liebherr-Hausgeraete Gmbh, 7955 Ochsenhausen, De

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3478967A4 (en) * 2016-06-30 2020-03-11 Graco Minnesota Inc. Piston pump and seal ring
US11015595B2 (en) 2016-06-30 2021-05-25 Graco Minnesota Inc. Piston pump and seal ring
CN113748011A (en) * 2019-04-26 2021-12-03 大陆轮胎德国有限公司 Compressor unit for compressing air in a portable/transportable system, use of a flutter valve in such a compressor unit, and portable/transportable system for sealing and pumping vehicle pneumatic tires
CN113748011B (en) * 2019-04-26 2024-01-23 大陆轮胎德国有限公司 Compressor unit, use of a vibrating valve and system for sealing and pumping gas

Also Published As

Publication number Publication date
CN1347490A (en) 2002-05-01
AU4549000A (en) 2000-11-02
WO2000063627A3 (en) 2001-03-15
CA2370346A1 (en) 2000-10-26
EP1171743A2 (en) 2002-01-16
DE19916993C1 (en) 2000-02-10
BR0009796A (en) 2002-03-26
JP2002542448A (en) 2002-12-10
KR20020000799A (en) 2002-01-05

Similar Documents

Publication Publication Date Title
DE602004004772T2 (en) SYSTEM FOR ADJUSTING THE RESONANCE FREQUENCIES IN A LINEAR COMPRESSOR
DE60108572T2 (en) scroll machine
DE3249765C2 (en) Refrigerating compressor (cooling compressor) encapsulated in an airtight fashion
DE60116684T2 (en) linear compressor
DE602005000066T2 (en) compressor
EP1503079B1 (en) Linear compressor
CN1818383B (en) Variable displacement compressor
EP1726778A1 (en) Fluid machine
EP1828603B1 (en) Hermetic refrigerant compressor
CN108343589A (en) A kind of novel piston component, compression unit and oil-free lubrication Linearkompressor
EP1965022A1 (en) Rotary fluid machine and refrigerating cycle device
CN104797821A (en) Compressor valve system and assembly
US5888055A (en) Connection between a refrigerant pipe and a suction muffler of a hermetic reciprocating compressor
WO2000063627A2 (en) Refrigerating system for domestic refrigerating appliances
CN106194735B (en) Rotary compressor and refrigerating circulatory device with it
DE112011104568B4 (en) Compressor with a control valve of an opening in a suction passage
CN209523874U (en) Low-pressure shell double-cylinder horizontal rotary compressor and refrigerating circulatory device with it
JP5943101B1 (en) Screw compressor
JP2012515873A (en) Compressors, especially radial piston compressors that use carbon dioxide as refrigerant
KR100764783B1 (en) Reciprocating compressor and refrigerating system with this and sopercritical refrigerating system with this
DE102008008860A1 (en) Compressor e.g. for compressing cooling agents, has lubrication hole arranged with movable base plate part and which intermittently communicates to lubrication hole of movable pin
DE2938255C2 (en) Encapsulated motor compressor for small refrigerators
DE2323441A1 (en) RADIAL COMPRESSOR
KR20030085070A (en) Oil pumping system for a reciprocating hermetic compressor
CN112412789B (en) Compressor and refrigeration cycle device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00806212.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AU BR CA CN EE IN JP KR LT LV MX SI TR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AU BR CA CN EE IN JP KR LT LV MX SI TR US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: PA/A/2001/010225

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020017013053

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020017013066

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2370346

Country of ref document: CA

Ref document number: 2370346

Country of ref document: CA

Kind code of ref document: A

Ref document number: 2000 612681

Country of ref document: JP

Kind code of ref document: A

WWW Wipo information: withdrawn in national office

Ref document number: 1020017013053

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2000926921

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2001/01406/MU

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 45490/00

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020017013066

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09958894

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000926921

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000926921

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020017013066

Country of ref document: KR