WO2000067036A1 - Blood control and system for erythrocyte sedimentation measurement - Google Patents

Blood control and system for erythrocyte sedimentation measurement Download PDF

Info

Publication number
WO2000067036A1
WO2000067036A1 PCT/US2000/009739 US0009739W WO0067036A1 WO 2000067036 A1 WO2000067036 A1 WO 2000067036A1 US 0009739 W US0009739 W US 0009739W WO 0067036 A1 WO0067036 A1 WO 0067036A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
control
comprised
test
diluent
Prior art date
Application number
PCT/US2000/009739
Other languages
French (fr)
Inventor
Wayne L. Ryan
Original Assignee
Streck Laboratories, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Streck Laboratories, Inc. filed Critical Streck Laboratories, Inc.
Priority to AU43417/00A priority Critical patent/AU4341700A/en
Publication of WO2000067036A1 publication Critical patent/WO2000067036A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/96Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood or serum control standard

Definitions

  • the present invention relates to blood controls and more particularly to controls for use in indirect acute phase protein measurement tests.
  • acute phase proteins proteins that are macromolecules of the plasma such as fibrinogen and the globulins.
  • the proteins are synthesized in the liver and their levels in the plasma rise with inflammation.
  • Han Moshage divides the acute phase proteins into two groups: (1) Type I proteins, which include serum amyloid, C-reactive protein, Complement C3, haptoglobin and ⁇ l-acid glycoprotein.
  • interleukin-1-like cytokines such as IL-l ⁇ , IL-1B, TNF- ⁇ , and TNF-B
  • Type II proteins which are induced by IL-6 like cytokines which include IL-61, LIF, IL-H, OSM, CNTF, and CT-1.
  • the IL-6 will synergize with IL-1 to induce the Type I proteins of the cytokines.
  • IL-6 is believed to be the main cause of the induction of acute-phase proteins. Gabay, Cem et al. Acute-Phase Proteins and Other Systemic Responses to Inflammation. The New England Journal of Medicine. 448-454. Moshage, Han. Cytokines and the Hepatic Acute Phase Response. Journal of Pathology. 1997; 181:257-266.
  • Coulter Corporation has offered an instrument, the ZETAFUGE, for determining the zeta sedimentation ratio.
  • Bull and Brailsford (Bull, B., Brailsford, D. The Zeta Sedimentation Ratio. Blood 1972; 40; 550-559) have described a method for making controls or "standards" for this system.
  • the plasma viscosity test is commonly employed for indirectly measuring acute phase proteins in the United Kingdom.
  • One suitable instrument, the Viscometer, and controls for it are manufactured by Coulter Corporation. This technique was described by Cooke and Stuart in 1988. An earlier article describing this methodology was published in the J. Clinical Pathology in 1980 by Stuart and Kenny. Cooke, B.M. et al. Automated Measurement of Plasma Viscosity by Capillary Viscomenter. J. Clin Pathol. 1988; 41:1213-1216. Stuart, J., Kenny, M.W. Blood Rheology. J. Clin Path. 1980; 33:417-429.
  • Methods for determining acute phase proteins can be influenced by numerous factors. Several of these relate to the type of tube used and other environmental conditions. For instance, bench-top vibration, temperature and tube angle may affect rates obtained. The need for using control preparations for these methods is well established.
  • the ICSH Committee has addressed this issue in 1988 (International Committee for Standardization in Haematoloy (Expert panel on Blood Rheology). Guidelines on Selection of Laboratory Tests for Monitoring the Acute Phase Response. J. Clin Pathol. 1988; -41; 1203-1212) and 1993 (Thomas, Robert et al. Calibration and Validation for Erythrocyte Sedimentation Tests. Arch Pathol Lab Med. 1993; 117; 719-723).
  • One preferred method for achieving long-term stability in a control includes the combination of using a citrate-based diluent, and heating the cells above room temperature and preferably below about 51°C.
  • the cells are fixed morphologically, such as with a suitable aldehyde (e.g., glutaraldehyde).
  • An aggregating agent also is preferably employed in solution to facilitate an appropriate predetermined sedimentation rate.
  • Controls made according to the present invention are useful for acute phase protein measurement in systems using a manual, semiautomated or automated test apparatus. The controls are stable over long-term and short-term intervals.
  • Preparation of a long-term stable i.e., capable of achieving up to several months of stability or shelf-life
  • control desirably avoids reliance on the use of unmodified fibrinogen and normal RBC.
  • the present control and system of the present invention provides an improved approach to indirect acute phase protein measurement. They afford the ability to have stable controls with relatively long shelf- lives, and with relative ease of manufacture.
  • FIGS. 1-6 are some of the many examples of test results obtainable by use of the control and system of the present invention. Detailed Description of the Preferred Embodiment
  • a predetermined amount of a cell source e.g., blood
  • the cell source is washed to remove undesired constituents, and provides a source of washed cells.
  • the washed cells are fixed morphologically.
  • the cells are stabilized and combined with an aggregating agent.
  • red blood cells when a blood source for providing red blood cells (RBC) is used, the starting blood is washed substantially free of plasma, platelets, and leukocytes preferably with a saline solution, such as one containing 1.5% polyethylene glycol-(20)(PEG-20K). This causes the red cells to aggregate and settle. After settling, the supernatant is removed. This is repeated multiple times (e.g., three times) to obtain washed red cells substantially free of contaminants.
  • the starting blood may be from any suitable source and may be, for example, human or porcine blood. In an alternative embodiment, other surrogate RBC can be used, being prepared from any known method.
  • the washed cells are suspended in a diluent (e.g., a citrate diluent as disclosed herein in Table I) to a suitable concentration, e.g., in a range of about 3.9x10 to about 4.1xl0 6 cells/mm 3 , and more preferably about 4.0xl0 6 cells/mm 3 .
  • a fixing agent e.g., a suitable aldehyde, such as glutaraldehyde
  • glutaraldehyde it is added so that a final concentration (after final dilution) of about 0.08 g/1 to about 0.48 g/1, and more preferably about 0.24 g/1 glutaraldehyde, is attained.
  • the cells are again washed with the diluent and suspended at a concentration of about 3.9xl0 6 to about 4.1xl0 6 cells/mm 3 , and more preferably about 4.0x10 6 cells/mm 3 .
  • the diluent includes about 0.3% to about 1.1% by weight of a sodium citrate solution and may be comprised of one or more constituents which enhance or maintain cell surface structure, characteristics, morphology, or stability, or act as chelating agents, buffers, osmotic stabilizers, biological salts, or anti-microbial agents.
  • the cells are heated, such as by placing them in bottles in a water bath at elevated temperature, (e.g., several degrees greater than room temperature, preferably greater than about 15° C higher than room temperature, more preferably in the range of about 48 to about 51°C, and more preferably about 49 to about 50°C). Heating is continued for a sufficient time to achieve desired stability.
  • the heating preferably is maintained to result in the formation of stabilized cells of a predetermined shape (e.g., discs) in at least about 90% of the cells, more preferably at least about 95% of the cells, and still more preferably about 99% of the cells.
  • the heating preferably is done for sufficient time and at sufficient temperature to denature at least a portion of the cell surface proteins.
  • the heating step is preferably done at about 48° to about 51° C (and more preferably about
  • temperature conditions advantageously can be varied to selectively adjust desired product shelf-life.
  • the bottles are combined into two pools.
  • a suitable agent for aggregating the cells preferably a macromolecule having suitable charge characteristics (e.g., methylcellulose).
  • a preferred methylcellulose has a viscosity of about 25 cps and is added between about 0.1 wght/vol % for a low aggregation level and about 0.5% methylcellulose for the high aggregation level.
  • the agent for aggregating the cells is dissolved in solution in the diluent, so that the resulting product only contains two components, the diluent and the blood cells.
  • a stock solution of aggregating agent is prepared.
  • 2% stock of methyl cellulose (25 cps) is made by heating about 800 ml of distilled water to just below the water's boiling point, and more preferably to a temperature of about 90-96°C.
  • methylcellulose is added slowly to the heated water with constant stirring.
  • the resulting slurry mixture of wetted aggregating agent is continuously mixed for a suitable period, e.g., about one hour.
  • About 200 ml cold water e.g., near freezing, and preferably about 1-6°C is added to the slurry and mixed by stirring for about 30 minutes.
  • the stock solution is cooled (e.g., to about 0°C) and continuously mixed until the solubility temperature of the aggregation agent solution is reached (in this illustration about 0 to 4°C).
  • the stock solution can be stored at a suitable temperature (e.g., about 6°C to room temperature for a methyl cellulose solution).
  • Illustrative examples of diluent prepared with dissolved methylcellulose are shown below for two different levels. The solutions are admixed and filtered before preparing the final product.
  • An alternative method to obtain generally uniform cell shape is also used when the RBC do not initially have a disc shape. If they are significantly crenated, they may be first treated (e.g., by treating the cells with a suitable drug) to induce shape changes in the RBC membrane. After addition of the drug, the cells are fixed (e.g., with glutaraldehyde at about .24 g/1 and then heated to about 48°-50° C.
  • drugs which may be used are amphipathic drugs, such as phenothiazine drugs, and particularly chlorpromazine, promethazine or a combination. See Fujil, T. Shape Changes of Human Erythrocytes Induced by Various Amphipathic Drugs Acting on the Membrane of the Intact Cells.
  • additives may be incorporated into the final control to obtain desired characteristics. Examples include those addressed in Example 5. Likewise, as seen from the Example and elsewhere herein, various additives may be used to help prepare the blood cells, prior to incorporation into the diluent.
  • the systems of the present invention contemplate the use of a control of the present invention with erythrocyte sedimentation measurement instruments, including manual, semiautomated and automated instruments. Examples include the classical Westergren, Modified Westergren, Wintrobe, ESR-8 (available through Streck Laboratories (Omaha, Iowa)), Ves-Matic ®, and Mini-Ves ®. When used, the system of the present invention satisfies CLIA-88 requirements.
  • Controls may be provided at different sedimentation levels (e.g., less than 20 mm hr and greater than 30 m hr or as otherwise desired). Controls may be supplied as part of a kit for use with the instruments. For instance, a plurality of suitable vials or reservoirs having a predetermining volume (e.g., about 9 ml), preferably having pierceable cap, may be provided. Any suitable rack having leveling indicators and adjustability may be used to hold the vials.
  • the control of the present invention advantageously can exhibit 95-day closed vial, 31 -day open- vial stability or both.
  • the system includes a suitable computer for receiving, storing, or transmitting data about specimen(s) tested.
  • Bar code reader devices can be used to identify specimens and transmit information.
  • Printers and other peripheral devices can be incorporated into the system to help manage data.
  • Modified Westergren tests are done using Ulster Medical Products Dispette®- 2 tubes. These tubes come with a prefilled reservoir (containing sodium chloride) and a pierceable cap. The above discussed preferred control (having a citrate diluent) is added to the reservoir to the fill line, the cap is replaced and the solution is mixed by inversion 8 - 10 times. The marked pipette tube is then pushed through the pierceable cap and the resulting system is placed in a rack that has been leveled. Tests are run for 60 minutes before reading the results.
  • Tests are run in a room whose temperature is between 19°-22° C. Controls are allowed to equilibrate to room temperature for 20 minutes before being mixed thoroughly and test sample withdrawn.
  • ESR 8 tests are done by adding the control of Example 1 to the fill line of the prefilled (sodium citrate) vacuum tube for this automated system and the stopper top replaced. The tubes are then inverted end-to-end ten to twelve times and placed in the ESR 8 instrument for the test run. Tests are done using the Quick mode setting (30 minute run time).
  • Tests are run in a room whose temperature is between 19° - 22° C. Controls are allowed to equilibrate to room temperature for 20 minutes before being mixed thoroughly and test samples withdrawn. This test system takes 2 ml of sample for each tube.
  • Mini Ves tests are done by adding the control of Example 1 to the fill line of the prefilled (sodium citrate) vacuum tube for this automated system and the stopper top is replaced. The tubes are then inverted end-to-end ten to twelve times and placed in the Mini Ves instrument for the test run. This test is done in 20 minutes.
  • Tests are run in a room whose temperature is between 19° - 22° C. Controls were allowed to equilibrate to room temperature for 20 minutes before being mixed thoroughly and test samples withdrawn. This test system takes 1 ml of sample for each tube.
  • Figures 1 and 2 show the results of Lot 9011 A of Example 1.
  • Figures 3 and 4 show the results of Lot 9011 A of Example 2.
  • Figures 5 and 6 show the results of Lot 9011 A of Example 3. For each control, high and low levels are gleaned from the results.
  • the sedimentation of the red cells by methylcellulose is markedly decreased by heating.
  • the sedimentation rate is lowered, but the rate is stable. If cells are not heated or heated at a lesser temperature, the sedimentation is initially higher but within ten to fourteen days, the rate may drop. Data describing this finding is in the following Table HI.
  • Example 4 Samples are prepared and tested in accordance with the above disclosed subject matter. However, the heating step for stabilizing cells is varied to illustrate the relative effects of temperature. The results are in Table HI.
  • Example 5 An RBC control is prepared as follows and when used as a control, yields substantially identical results as the controls of Examples 1-3.
  • Incoming RBCs are diluted in a saline solution of approximately the following composition:
  • citrate solution of approximately the following composition (preferably with about 0.01 %> phenergan): Citrate Solution
  • Methyl cellulose - 25 cps (1.2 g/1 level 1, 3.0 -5.0 % g/1 level 2)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A control and system for blood testing, including a control having morphologically fixed and stabilized blood cells that have been added to a diluent. The control and system can be used advantageously for indirect acute protein plasma measurement, including erythrocyte sedimentation rate testing.

Description

BLOOD CONTROL AND SYSTEM FOR ERYTHROCYTE SEDIMENTATION MEASUREMENT
BACKGROUND OF THE INVENTION
This application is a continuation-in-part of commonly owned copending U.S. Patent Application, Serial No. 09/303,719 filed April 30, 1999, and having the same title as this application, the contents of which are hereby expressly incorporated by reference herein.
Technical Field of the Invention
The present invention relates to blood controls and more particularly to controls for use in indirect acute phase protein measurement tests. Background
There are various methods that have been described which result in the indirect measurement of the acute-phase (inflammatory response) proteins, including the erythrocyte sedimentation rate (ESR) test, the Zeta Sedimentation Ratio Test, and Plasma Viscosity Test. See Bull, B., Brailsford, D. The Zeta Sedimentation Ratio. Blood. 1972; 40: 550-559. Harkness, J. A New Instrument for the Measurement of Plasma Viscosity. Lancet. 1963; 280-281.
By way of the history, possibly the first detailed method for indirectly measuring (by erythrocyte sedimentation) acute-phase proteins was described by Fahraeus in 1921. Fahraeus, Robin. Acta Medica Scandinavica. 1921; 55:1-228. The test was later modified by Fahraeus and Westergren. Westergren, A. Studies of the Suspension Stability of the Blood in Pulmonary Tuberculosis. Acta Medica
Scandinavica. 1921 ;54:247-282. Although there have been many modifications of this manual test, the basic method has survived. The method involves diluting blood, filling a standardized tube, and measuring the distance the red cells settle in a specific time interval. The erythrocyte sedimentation rate test (ESR) measures the proteins of blood that are increased by inflammation. The presence of these proteins causes an increase in viscosity and also causes the red cells to sediment more rapidly. The mechanisms for the changes in these proteins are better understood today than when the test was introduced by Fahraeus in 1921. Fahraeus, Robin. Acta Medica Scandinavica. 1921 ; 55: 1 - 228 (page 121). However, he recognized the importance of fibrinogen and globulins which are the major proteins producing an increased ESR.
It is believed that the basis for the increased sedimentation is due to a group of proteins called acute phase proteins. These are macromolecules of the plasma such as fibrinogen and the globulins. The proteins are synthesized in the liver and their levels in the plasma rise with inflammation. Kushner, I. The Phenomenon of the Acute Phase Response. Ann N.Y. Acad. Sci. 1982; 389: 39-48. Han Moshage divides the acute phase proteins into two groups: (1) Type I proteins, which include serum amyloid, C-reactive protein, Complement C3, haptoglobin and αl-acid glycoprotein. These are induced by interleukin-1-like cytokines such as IL-lα, IL-1B, TNF-α, and TNF-B; and (2) Type II proteins, which are induced by IL-6 like cytokines which include IL-61, LIF, IL-H, OSM, CNTF, and CT-1. The IL-6 will synergize with IL-1 to induce the Type I proteins of the cytokines. IL-6 is believed to be the main cause of the induction of acute-phase proteins. Gabay, Cem et al. Acute-Phase Proteins and Other Systemic Responses to Inflammation. The New England Journal of Medicine. 448-454. Moshage, Han. Cytokines and the Hepatic Acute Phase Response. Journal of Pathology. 1997; 181:257-266.
Coulter Corporation has offered an instrument, the ZETAFUGE, for determining the zeta sedimentation ratio. Bull and Brailsford (Bull, B., Brailsford, D. The Zeta Sedimentation Ratio. Blood 1972; 40; 550-559) have described a method for making controls or "standards" for this system.
The plasma viscosity test is commonly employed for indirectly measuring acute phase proteins in the United Kingdom. One suitable instrument, the Viscometer, and controls for it are manufactured by Coulter Corporation. This technique was described by Cooke and Stuart in 1988. An earlier article describing this methodology was published in the J. Clinical Pathology in 1980 by Stuart and Kenny. Cooke, B.M. et al. Automated Measurement of Plasma Viscosity by Capillary Viscomenter. J. Clin Pathol. 1988; 41:1213-1216. Stuart, J., Kenny, M.W. Blood Rheology. J. Clin Path. 1980; 33:417-429.
Other automated instruments have appeared on the market. Examples include the Ves-Matic®, Mini-Ves®, Sed-Mat®, and ESR-8/Sedimatic 8™.
Methods for determining acute phase proteins can be influenced by numerous factors. Several of these relate to the type of tube used and other environmental conditions. For instance, bench-top vibration, temperature and tube angle may affect rates obtained. The need for using control preparations for these methods is well established. The ICSH Committee has addressed this issue in 1988 (International Committee for Standardization in Haematoloy (Expert panel on Blood Rheology). Guidelines on Selection of Laboratory Tests for Monitoring the Acute Phase Response. J. Clin Pathol. 1988; -41; 1203-1212) and 1993 (Thomas, Robert et al. Calibration and Validation for Erythrocyte Sedimentation Tests. Arch Pathol Lab Med. 1993; 117; 719-723). They describe the use of selected blood specimens for quality controlling the "routine" ESR method by comparison to the "reference" method. One control for use in a particular ESR test is that addressed in U.S. Patent Nos. 5,863,799 and 5,888,822. The Clinical Laboratory Improvement Act (CLIA-88) mandated that control preparations be used for all automated instruments. See, e.g.. 42 C.F.R., Part 493, Subpart K (12), incorporated by reference herein. Prior to CLIA- 88, the use of controls was not mandated.
From the above it is clear that the concept of using control preparations for monitoring all three methods has been well known. Unmodified human blood can provide controls which have limited stability. In those instances, the controls are used in applications where the stability that is desired is less than several months.
SUMMARY OF THE INVENTION
One preferred method for achieving long-term stability in a control includes the combination of using a citrate-based diluent, and heating the cells above room temperature and preferably below about 51°C. The cells are fixed morphologically, such as with a suitable aldehyde (e.g., glutaraldehyde). An aggregating agent also is preferably employed in solution to facilitate an appropriate predetermined sedimentation rate. Controls made according to the present invention are useful for acute phase protein measurement in systems using a manual, semiautomated or automated test apparatus. The controls are stable over long-term and short-term intervals.
Preparation of a long-term stable (i.e., capable of achieving up to several months of stability or shelf-life) control desirably avoids reliance on the use of unmodified fibrinogen and normal RBC. Accordingly, the present control and system of the present invention provides an improved approach to indirect acute phase protein measurement. They afford the ability to have stable controls with relatively long shelf- lives, and with relative ease of manufacture.
DESCRIPTION OF DRAWINGS FIGS. 1-6 are some of the many examples of test results obtainable by use of the control and system of the present invention. Detailed Description of the Preferred Embodiment
To prepare a preferred control of the present invention, a predetermined amount of a cell source (e.g., blood) is provided. The cell source is washed to remove undesired constituents, and provides a source of washed cells. The washed cells are fixed morphologically. The cells are stabilized and combined with an aggregating agent.
More specifically, when a blood source for providing red blood cells (RBC) is used, the starting blood is washed substantially free of plasma, platelets, and leukocytes preferably with a saline solution, such as one containing 1.5% polyethylene glycol-(20)(PEG-20K). This causes the red cells to aggregate and settle. After settling, the supernatant is removed. This is repeated multiple times (e.g., three times) to obtain washed red cells substantially free of contaminants. The starting blood may be from any suitable source and may be, for example, human or porcine blood. In an alternative embodiment, other surrogate RBC can be used, being prepared from any known method. The washed cells are suspended in a diluent (e.g., a citrate diluent as disclosed herein in Table I) to a suitable concentration, e.g., in a range of about 3.9x10 to about 4.1xl06 cells/mm3, and more preferably about 4.0xl06 cells/mm3. A fixing agent (e.g., a suitable aldehyde, such as glutaraldehyde) is added. Preferably, when using glutaraldehyde it is added so that a final concentration (after final dilution) of about 0.08 g/1 to about 0.48 g/1, and more preferably about 0.24 g/1 glutaraldehyde, is attained. After a suitable period of time (e.g., about 24 hours), the cells are again washed with the diluent and suspended at a concentration of about 3.9xl06 to about 4.1xl06 cells/mm3, and more preferably about 4.0x106cells/mm3.
Preferably, the diluent includes about 0.3% to about 1.1% by weight of a sodium citrate solution and may be comprised of one or more constituents which enhance or maintain cell surface structure, characteristics, morphology, or stability, or act as chelating agents, buffers, osmotic stabilizers, biological salts, or anti-microbial agents.
TABLE I
Citrate Solution Saline Solution 5.0 g/1 Polyethylene Glycol 20,000 8.0 g/1 NaCl
2.0 g/1 Ethylenediammetetra-acetic acid, Disodium Salt 15.0 g/1 Polyethylene Glycol 20,000
7.5 g/1 Magnesium Gluconate Plus antimicrobials
7.0 g/1 Sodium Citrate, trisodium dihydrate Plus antimicrobials
The cells are heated, such as by placing them in bottles in a water bath at elevated temperature, (e.g., several degrees greater than room temperature, preferably greater than about 15° C higher than room temperature, more preferably in the range of about 48 to about 51°C, and more preferably about 49 to about 50°C). Heating is continued for a sufficient time to achieve desired stability. The heating preferably is maintained to result in the formation of stabilized cells of a predetermined shape (e.g., discs) in at least about 90% of the cells, more preferably at least about 95% of the cells, and still more preferably about 99% of the cells.
Further, the heating preferably is done for sufficient time and at sufficient temperature to denature at least a portion of the cell surface proteins. For instance, the heating step is preferably done at about 48° to about 51° C (and more preferably about
49° to about 50° C) for a period of 60 to about 75 minutes or more. Less heat may be used (e.g., as little as about 2°C cooler), but it will produce a product with shorter shelf life. Moreover, at temperatures over about 51 °C the red cells may become permanently altered (thus affecting stability), as evidenced by the development of many small vesicles in the solution. Thus, temperature conditions advantageously can be varied to selectively adjust desired product shelf-life.
The bottles are combined into two pools. To each pool is added a suitable agent for aggregating the cells, preferably a macromolecule having suitable charge characteristics (e.g., methylcellulose). A preferred methylcellulose has a viscosity of about 25 cps and is added between about 0.1 wght/vol % for a low aggregation level and about 0.5% methylcellulose for the high aggregation level.
The agent for aggregating the cells is dissolved in solution in the diluent, so that the resulting product only contains two components, the diluent and the blood cells. To illustrate, a stock solution of aggregating agent is prepared. In one embodiment, for instance, 2% stock of methyl cellulose (25 cps) is made by heating about 800 ml of distilled water to just below the water's boiling point, and more preferably to a temperature of about 90-96°C.
About 20 mg of methylcellulose is added slowly to the heated water with constant stirring. The resulting slurry mixture of wetted aggregating agent is continuously mixed for a suitable period, e.g., about one hour. About 200 ml cold water (e.g., near freezing, and preferably about 1-6°C) is added to the slurry and mixed by stirring for about 30 minutes.
The stock solution is cooled (e.g., to about 0°C) and continuously mixed until the solubility temperature of the aggregation agent solution is reached (in this illustration about 0 to 4°C). Upon achieving a homogenous solution, the stock solution can be stored at a suitable temperature (e.g., about 6°C to room temperature for a methyl cellulose solution).
Illustrative examples of diluent prepared with dissolved methylcellulose are shown below for two different levels. The solutions are admixed and filtered before preparing the final product.
1. 50% 2x (double concentration) citrate solution (Table I) + 2% BSA (Bovine Serum Albumin)
6% 2% methyl cellulose stock 44%) distilled water
2. 50% citrate solution (Table I) + 20% BSA 20% 2% methylcellulose stock
30% distilled water While other agents might be used to cause erythrocyte aggregation and sedimentation (Table π), as can be seen, not all agents perform similarly.
TABLE II
OTHER AGENTS WITH CITRATE DILUENT ESR METHOD
Figure imgf000009_0001
*PVP - polyvinylpyrolidine
Cells were fixed in 0.24 g/1 glut in Citrate and heated in citrate at 50°C for 75 minutes. Aggregating agents were in citrate diluent.
The stability of this product is shown in the accompanying figures. In particular, results on one manual and two automatic instruments for three to four months are shown in Figs. 1-6 (discussed herein in the Examples).
An alternative method to obtain generally uniform cell shape is also used when the RBC do not initially have a disc shape. If they are significantly crenated, they may be first treated (e.g., by treating the cells with a suitable drug) to induce shape changes in the RBC membrane. After addition of the drug, the cells are fixed (e.g., with glutaraldehyde at about .24 g/1 and then heated to about 48°-50° C. Examples of drugs which may be used are amphipathic drugs, such as phenothiazine drugs, and particularly chlorpromazine, promethazine or a combination. See Fujil, T. Shape Changes of Human Erythrocytes Induced by Various Amphipathic Drugs Acting on the Membrane of the Intact Cells. Biochem J. Pharmacology. 1979;28:613-620. When added to red cells at concentrations of .001%) - .01%) w/v, the shape change ordinarily occurs within a few minutes. Then the cells may be processed according to known techniques to obtain substantially uniform shapes.
It should be appreciated that other additives may be incorporated into the final control to obtain desired characteristics. Examples include those addressed in Example 5. Likewise, as seen from the Example and elsewhere herein, various additives may be used to help prepare the blood cells, prior to incorporation into the diluent.
The systems of the present invention contemplate the use of a control of the present invention with erythrocyte sedimentation measurement instruments, including manual, semiautomated and automated instruments. Examples include the classical Westergren, Modified Westergren, Wintrobe, ESR-8 (available through Streck Laboratories (Omaha, Nebraska)), Ves-Matic ®, and Mini-Ves ®. When used, the system of the present invention satisfies CLIA-88 requirements.
Controls may be provided at different sedimentation levels (e.g., less than 20 mm hr and greater than 30 m hr or as otherwise desired). Controls may be supplied as part of a kit for use with the instruments. For instance, a plurality of suitable vials or reservoirs having a predetermining volume (e.g., about 9 ml), preferably having pierceable cap, may be provided. Any suitable rack having leveling indicators and adjustability may be used to hold the vials. The control of the present invention advantageously can exhibit 95-day closed vial, 31 -day open- vial stability or both.
In more fully automated systems, the system includes a suitable computer for receiving, storing, or transmitting data about specimen(s) tested. Bar code reader devices can be used to identify specimens and transmit information. Printers and other peripheral devices can be incorporated into the system to help manage data.
The following examples are by way of illustration only and are not intended as limiting. As the skilled artisan will appreciate various modifications can be made within the scope of the present invention.
EXAMPLES
For each of the Examples 1-3, one lot is run designated herein as Lot 901 IN
Example 1 - Manual-Modified Westergren Test
Modified Westergren tests are done using Ulster Medical Products Dispette®- 2 tubes. These tubes come with a prefilled reservoir (containing sodium chloride) and a pierceable cap. The above discussed preferred control (having a citrate diluent) is added to the reservoir to the fill line, the cap is replaced and the solution is mixed by inversion 8 - 10 times. The marked pipette tube is then pushed through the pierceable cap and the resulting system is placed in a rack that has been leveled. Tests are run for 60 minutes before reading the results.
Tests are run in a room whose temperature is between 19°-22° C. Controls are allowed to equilibrate to room temperature for 20 minutes before being mixed thoroughly and test sample withdrawn.
Example 2 - Automated-ESR-8 Test
ESR 8 tests are done by adding the control of Example 1 to the fill line of the prefilled (sodium citrate) vacuum tube for this automated system and the stopper top replaced. The tubes are then inverted end-to-end ten to twelve times and placed in the ESR 8 instrument for the test run. Tests are done using the Quick mode setting (30 minute run time).
Tests are run in a room whose temperature is between 19° - 22° C. Controls are allowed to equilibrate to room temperature for 20 minutes before being mixed thoroughly and test samples withdrawn. This test system takes 2 ml of sample for each tube.
Example 3 - Automated Mini Ves Test
Mini Ves tests are done by adding the control of Example 1 to the fill line of the prefilled (sodium citrate) vacuum tube for this automated system and the stopper top is replaced. The tubes are then inverted end-to-end ten to twelve times and placed in the Mini Ves instrument for the test run. This test is done in 20 minutes.
Tests are run in a room whose temperature is between 19° - 22° C. Controls were allowed to equilibrate to room temperature for 20 minutes before being mixed thoroughly and test samples withdrawn. This test system takes 1 ml of sample for each tube.
The results from the use of the controls run in Examples 1-3 in the different test systems are shown in the attached figures. Figures 1 and 2 show the results of Lot 9011 A of Example 1. Figures 3 and 4 show the results of Lot 9011 A of Example 2. Figures 5 and 6 show the results of Lot 9011 A of Example 3. For each control, high and low levels are gleaned from the results.
The sedimentation of the red cells by methylcellulose is markedly decreased by heating. When the cells are heated at about 49°-50° C, the sedimentation rate is lowered, but the rate is stable. If cells are not heated or heated at a lesser temperature, the sedimentation is initially higher but within ten to fourteen days, the rate may drop. Data describing this finding is in the following Table HI.
An additional finding is that phenothiazine drugs which affect the shape of the RBC can influence the sedimentation stability of the product. This effect is most pronounced when the cells are somewhat crenated.
Example 4 - Samples are prepared and tested in accordance with the above disclosed subject matter. However, the heating step for stabilizing cells is varied to illustrate the relative effects of temperature. The results are in Table HI.
All cells are placed in citrate diluent and fixed at 0.24 g/1 glut before heating. Heating is done for 75 minutes at the above designated temperatures. After heating, cells are washed into methyl cellulose-citrate solution with various concentrations of methyl cellulose to give similar sedimentation rate recovery values.
TABLE III
Figure imgf000013_0001
Example 5 - An RBC control is prepared as follows and when used as a control, yields substantially identical results as the controls of Examples 1-3. Incoming RBCs are diluted in a saline solution of approximately the following composition:
Saline Solution
8.0 g/1 NaCl
5.0 g/1 Polyethylene Glycol 20,000
Plus antimicrobials
and gravity settled overnight. The cells are then washed about two times in a saline solution.
The cells are filtered and washed in a citrate solution of approximately the following composition (preferably with about 0.01 %> phenergan): Citrate Solution
5.0 g/1 Polyethylene Glycol 20,000 2.0 g/1 Ethylenediammetetra-acetic acid, Disodium Salt 7.5 g/1 Magnesium Gluconate 7.0 g/1 Sodium Citrate, trisodium dihydrate Plus antimicrobials and then incubated overnight at approximately room temperature. The cells are then adjusted to a concentration of approximately 4.0 x 106 / mm3, with about 250 ml per treatment bottle, and heated at about 50 C for approximately 75 minutes. The cells are then fixed with glutaraldehyde in a citrate solution and washed into a citrate solution. The cells are then washed into a final ESR Chex diluent of approximately the following composition at about the indicated cell concentration:
Approximate Final Composition
Methyl cellulose - 25 cps (1.2 g/1 level 1, 3.0 -5.0 % g/1 level 2)
0.10 g/1 Phenergan
Treated and fixed cells at concentration of 2.2 - 2.5 x 10 / mm Citrate solution of approximately:
5.0 g/1 Polyethylene Glycol 20,000
2.0 g/1 Ethylenediammetetra-acetic acid, Disodium Salt
7.5 g/1 Magnesium Gluconate
7.0 g/1 Sodium Citrate, trisodium dihydrate Plus antimicrobials
Although the invention has been described with particular reference to certain preferred embodiments thereof, variations and modifications can be effected within the spirit and scope of the following claims.

Claims

CLAIMS What is claimed is:
1. A control for use in an acute phase protein measurement test, comprising: a) a plurality of substantially uniformly shaped fixed cells; b) methylcellulose; and c) a citrate diluent.
2. The control of claim 1, wherein said cells are comprised of red blood cell surrogates.
3. The control of claim 1, wherein said cells are comprised of red blood cells.
4. The control of claim 1, wherein said cells are comprised of human cells.
5. The control of claim 1, wherein said cells are comprised of porcine cells.
6. A method for making a control for an indirect acute phase protein measurement test, comprising the steps of: a) providing a source of cells; b) isolating cells from said source; c) fixing the morphology of said cells to produce a plurality of substantially uniformly shaped cells prior to introducing said cells into a diluent; d) stabilizing at least a portion of said cells by heating said cells above room temperature; e) providing a citrate diluent; and f) admixing said morphologically fixed and stabilized cells with said diluent.
7. The method of claim 6, wherein said cells are comprised of red blood cells.
8. The method of claim 6, wherein said cells are comprised of red blood cell surrogates.
9. The method of claim 6, wherein said cells are comprised of human cells.
10. The method of claim 6, wherein said cells are comprised of porcine cells.
11. The method of claim 6, wherein said step of fixing the morphology of said cells is comprised of fixing said cells with an aldehyde.
12. The method of claim 11, wherein said aldehyde is comprised of glutaraldehyde.
13. The method of claim 6, wherein said step of stabilizing at least a portion of said cells is comprised of heating said cells to about 48 to about 51°C.
14. The method of claim 6, wherein said step of stabilizing at least a portion of said cells is comprised of heating said cells to about 49 to about 50°C.
15. A method for measuring an erythrocyte sedimentation rate, comprising the steps of: a) providing an erythrocyte sedimentation rate test instrument; b) providing a control for use in said test instrument; said control having: a plurality of substantially uniformly shaped fixed cells; methylcellulose; and a citrate diluent; c) testing a blood specimen in said instrument; d) testing said control in said instrument; and e) comparing the results of said blood specimen test of step (c) with the results of said control test of step (d).
16. The method of claim 15, wherein said cells are comprised of red blood cells.
17. The method of claim 15, wherein said cells are comprised of red blood cell surrogates.
18. The method of claim 15, wherein said test instrument is an automated instrument.
19. The method of claim 15, wherein said test instrument is a manual instrument.
20. The method of claim 15, wherein said test instrument is a semiautomated instrument.
21. The method of claim 15, wherein said cells are comprised of human cells.
22. The method of claim 15, wherein said cells are comprised of porcine cells.
23. The method of claim 15, further comprising dissolving said methylcellulose is dissolved in solution.
24. The control of claim 1 , wherein said methylcellulose is dissolved in solution.
25. The control of claim 1, wherein said cells are fixed with an aldehyde.
26. A control system for use in an erythrocyte sedimentation rate test, comprising a first control consisting essentially of: a) a first phase including a plurality of substantially uniformly shaped fixed cells; b) a second phase including an agent for aggregating said cells dissolved in citrate diluent.
27. A control system according to claim 26, further comprising a second control having an agent for aggregating said cells for achieving a control for erythrocyte sedimentation rate determination that differs in sedimentation rate from said first control.
28. A method according to claim 6, further comprising: f) dissolving an agent for aggregating said cells in said diluent.
29. A method according to claim 6, further comprising: g) dissolving methylcellulose in said diluent.
30. A method according to claim 23, wherein said dissolving step includes: i) adding an aggregating agent to water for making a slurry; and ii) adjusting the temperature of said slurry to dissolve substantially all of said aggregating agent.
PCT/US2000/009739 1999-04-30 2000-04-12 Blood control and system for erythrocyte sedimentation measurement WO2000067036A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU43417/00A AU4341700A (en) 1999-04-30 2000-04-12 Blood control and system for erythrocyte sedimentation measurement

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US30371999A 1999-04-30 1999-04-30
US09/303,719 1999-04-30
US09/324,279 US6124089A (en) 1999-04-30 1999-06-02 Blood control and system for erythrocyte sedimentation measurement
US09/324,279 1999-06-02

Publications (1)

Publication Number Publication Date
WO2000067036A1 true WO2000067036A1 (en) 2000-11-09

Family

ID=26973615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/009739 WO2000067036A1 (en) 1999-04-30 2000-04-12 Blood control and system for erythrocyte sedimentation measurement

Country Status (3)

Country Link
US (2) US6124089A (en)
AU (1) AU4341700A (en)
WO (1) WO2000067036A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888822A (en) * 1995-10-04 1999-03-30 Hycor Biomedical Inc. Erythrocyte sedimentation rate control
US5895760A (en) * 1997-02-04 1999-04-20 Hycor Biomedical, Inc. Erythrocyte sedimentation rate control
US6124089A (en) * 1999-04-30 2000-09-26 Streck Laboratories, Inc. Blood control and system for erythrocyte sedimentation measurement
US6531321B1 (en) 2000-09-15 2003-03-11 Streck Laboratories, Inc. Blood control and system for erythrocyte sedimentation measurement
US7863012B2 (en) * 2004-02-17 2011-01-04 Veridex, Llc Analysis of circulating tumor cells, fragments, and debris
US20050181353A1 (en) * 2004-02-17 2005-08-18 Rao Galla C. Stabilization of cells and biological specimens for analysis
US7531357B2 (en) * 2005-04-04 2009-05-12 Bio-Rad Laboratories, Inc. Preparation of platelet analogs
WO2012018638A2 (en) 2010-07-26 2012-02-09 Biomatrica, Inc. Compositions for stabilizing dna, rna and proteins in blood and other biological samples during shipping and storage at ambient temperatures
US9845489B2 (en) 2010-07-26 2017-12-19 Biomatrica, Inc. Compositions for stabilizing DNA, RNA and proteins in saliva and other biological samples during shipping and storage at ambient temperatures
ES2786373T3 (en) 2014-06-10 2020-10-09 Biomatrica Inc Platelet stabilization at room temperatures
ES2946184T3 (en) 2015-12-08 2023-07-13 Biomatrica Inc Reduced erythrocyte sedimentation rate
CN109459349B (en) * 2018-12-13 2020-12-15 中国科学院烟台海岸带研究所 Method for measuring short-term deposition rate of constructed wetland

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997013146A1 (en) * 1995-10-04 1997-04-10 Hycor Biomedical, Inc. Blood control standard

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2102785A (en) * 1935-10-18 1937-12-21 Brooks Clyde Method of and apparatus for sedimentation testing of blood
US2929764A (en) * 1951-11-08 1960-03-22 Hultin Eskil Alexis Dextran glucosides, preparation thereof, and blood substitutes containing the same
US2727838A (en) * 1952-11-15 1955-12-20 Commercial Solvents Corp Process for hydrolyzing dextran
US2848368A (en) * 1953-08-20 1958-08-19 Witt Horst Method of measuring blood sedimentation rate
US2926764A (en) 1955-06-22 1960-03-01 Gen Motors Corp Magnetic particle coupling
US3660037A (en) * 1970-08-10 1972-05-02 Kurt Rudolf Sokol Device for measuring blood sedimentation rate
US3873467A (en) * 1974-02-01 1975-03-25 United Medical Lab Inc Hematologic reference control
US3962125A (en) * 1975-01-13 1976-06-08 Coulter Diagnostics, Inc. Multi-purpose diluent for use in blood analysis by electronic instrumentation of the coulter type
CA1055932A (en) * 1975-10-22 1979-06-05 Hematech Inc. Blood substitute based on hemoglobin
US4358394A (en) * 1979-05-07 1982-11-09 Coulter Electronics, Inc. Process for preparing whole blood reference controls having long term stability
US4264470A (en) * 1979-05-07 1981-04-28 Coulter Electronics, Inc. Selecting goat erythrocytes to simulate human platelets in hematologic reference controls
US4299726A (en) * 1979-05-07 1981-11-10 Coulter Electronics, Inc. Process for preparing whole blood reference controls having long term stability, preconditioning diluent and media therefor
US4324686A (en) * 1979-06-11 1982-04-13 R & D Systems, Inc. Hematology control composition and methods for its use
US4489162A (en) * 1981-12-21 1984-12-18 American Hospital Supply Corporation Fresh blood (unfixed) hematology control
US4436821A (en) * 1982-04-12 1984-03-13 Streck Laboratories, Inc. Simulated human platelets from red blood cells
DE3225408A1 (en) * 1982-07-07 1984-01-12 Biotest-Serum-Institut Gmbh, 6000 Frankfurt AQUEOUS SOLUTION FOR SUSPENDING AND STORING CELLS, ESPECIALLY ERYTHROCYTES
US4704364A (en) * 1984-05-18 1987-11-03 Coulter Electronics, Inc. Hematology control compositions for three populations of leukocytes; and methods for their preparation and use in whole blood control systems
US4777139A (en) * 1987-06-25 1988-10-11 Fisher Scientific Company Hematology control or calibrator with red cell components of enhanced stability
JPH01199158A (en) * 1987-10-20 1989-08-10 Seitetsu Kagaku Co Ltd Red corpuscle conservation liquid
US5328822A (en) * 1990-04-23 1994-07-12 Solid State Farms, Inc. Apparatus and method for sedimentation based blood analysis
DE4117583A1 (en) * 1991-05-29 1992-12-03 Helmut Prof Dr Orth Blood sinking measurement arrangement - compares stored position measurement values with reference curves and derives position of blood serum boundary
JP3359921B2 (en) * 1992-02-24 2002-12-24 クールター インターナショナル コーポレイション Suspension medium for blood composition and method of using the same
US5397479A (en) * 1993-04-26 1995-03-14 International Remote Imaging Systems, Inc. Composition and method for enrichment of white blood cells from whole human blood
US5763347A (en) * 1994-07-08 1998-06-09 Exxon Research And Engineering Company In-situ crystallized zeolite containing composition (LAI-ISC)
WO1996015628A1 (en) * 1994-11-11 1996-05-23 Siemens Aktiengesellschaft Method and system for transmitting facsimile-coded data between communications terminals with multimedia capability
US5895760A (en) 1997-02-04 1999-04-20 Hycor Biomedical, Inc. Erythrocyte sedimentation rate control
US6124089A (en) * 1999-04-30 2000-09-26 Streck Laboratories, Inc. Blood control and system for erythrocyte sedimentation measurement

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997013146A1 (en) * 1995-10-04 1997-04-10 Hycor Biomedical, Inc. Blood control standard

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THOMAS R.D. ET AL.: "Calibration and validation for erythrocyte sedimentation tests", ARCHIVES OF PATHOLOGY AND LABORATORY MEDICINE, vol. 117, no. 7, 1993, pages 719 - 723, XP000861867 *

Also Published As

Publication number Publication date
AU4341700A (en) 2000-11-17
US6265148B1 (en) 2001-07-24
US6124089A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
Mohandas et al. Analysis of factors regulating erythrocyte deformability.
US6124089A (en) Blood control and system for erythrocyte sedimentation measurement
Ts'o et al. Studies of ribosomes from reticulocytes
EP0096703B1 (en) Fresh blood (unfixed) hematology control
JPS6258470B2 (en)
Beale et al. Improved rapid methods for the determination of iron content and binding capacity of serum
CN107748267A (en) One kind measure activated partial thromboplastin time(APTT)Kit
EP0853761B1 (en) Blood control standard
Ham et al. Physical properties of red cells as related to effects in vivo. I. Increased rigidity of erythrocytes as measured by viscosity of cells altered by chemical fixation, sickling and hypertonicity
US6017764A (en) Erythrocyte sedimentation rate control
US6159682A (en) Blood control and system for erythrocyte sedimentation measurement
Hanss et al. Thermal transitions of red blood cell deformability. Correlation with membrane rheological properties
US6531321B1 (en) Blood control and system for erythrocyte sedimentation measurement
JP4283670B2 (en) Blood control product with improved closed vial stability
US20030040036A1 (en) Synovial fluid control
US6548646B1 (en) Reference control for high-sensitivity C-reactive protein testing
Singh et al. The influence of fractions of abnormal erythrocytes on aggregation
AU2002326403A1 (en) Reference control for high-sensitivity C-reactive protein testing
JP2008534957A (en) Manufacture of platelet analogs
Blattler et al. Effect of low fibrinogen concentrations on the rheology of human blood in vitro
CN110794131A (en) Interleukin-6 detection kit and preparation method thereof
JP4231721B2 (en) Complement value measuring reagent and method for stabilizing complement value measurement using the same
ALLEN THE SHEAR STRESSED NORMAL ERYTHROCYTE AS A MODEL DEFECT FOR DECREASED RED CELL DEFORMABILITY
Wurzinger et al. 5. SPECIES DIFFERENCES IN PLATELET AGGREGATION WITH SPECIAL
Knox Analytical study of electrophoretic characterization of kidney cells

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP