WO2000067893A1 - Chemical reactor - Google Patents

Chemical reactor Download PDF

Info

Publication number
WO2000067893A1
WO2000067893A1 PCT/JP2000/002999 JP0002999W WO0067893A1 WO 2000067893 A1 WO2000067893 A1 WO 2000067893A1 JP 0002999 W JP0002999 W JP 0002999W WO 0067893 A1 WO0067893 A1 WO 0067893A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical reaction
reaction
heat
reaction pool
buffer
Prior art date
Application number
PCT/JP2000/002999
Other languages
French (fr)
Japanese (ja)
Inventor
Michifumi Tanga
Kojiro Takahashi
Original Assignee
Toyo Kohan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co., Ltd. filed Critical Toyo Kohan Co., Ltd.
Priority to AU44306/00A priority Critical patent/AU4430600A/en
Publication of WO2000067893A1 publication Critical patent/WO2000067893A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange

Definitions

  • the present invention relates to a chemical reaction vessel for a general chemical reaction.
  • it relates to containers for microchemical reactions used for biochemical reactions, enzymatic reactions, etc., and particularly to containers for chemical reactions used for DNA amplification reactions.
  • PCR polymerase chain reaction
  • a reaction pool section 102 and flow paths 103 and 104 are formed on the upper surface of the substrate 101, and a transparent lid 105 is joined to the upper surface thereof.
  • the flow paths 103 and 104 have valves 106 and 104, respectively.
  • a heating element 108 is provided in contact with the back surface of the surface of the substrate 101 on which the reaction pool section 102 is formed, and a temperature sensor 109 is provided at the bottom of the reaction pool section 102. , 110 are buried.
  • the valve 106 and the valve 107 are opened, and a target nucleic acid, two or more types of primers, After introducing a buffer containing an enzyme and four types of deoxyribonucleoside triphosphates (dCTP, dGTP, dTTP, dATP) into the reaction pool section 102, the valves 106 and 107 are closed.
  • dCTP deoxyribonucleoside triphosphates
  • the heating element 108 is operated to heat the buffer in the reaction pool section 102. Cycles are added to amplify the target nucleic acid. Specifically, first, the heating element 108 is heated to heat the buffer 1 to a temperature (90 to 94 "C) at which the nucleic acid in the buffer is dissociated, and this temperature is maintained for a predetermined time. Next, the operation of the heating element 108 is stopped, and the buffer is cooled to a temperature (at about 54) at which the dissociated nucleic acid and the primer are bound. Then, the exothermic cooling body 108 is operated again, and the buffer is heated to a temperature (50 to 75) at which the activity of the thermostable DNA synthase is maximized and maintained for a predetermined time. Elongates and the nucleic acid is amplified.
  • the heating element 108 is operated again to heat the buffer 1 to a temperature at which the nucleic acid is dissociated, and the generated double-stranded nucleic acid is dissociated.
  • a nucleic acid amplification reaction is performed by repeating this cycle a required number of times.
  • the heat generated from the heating element 108 is transmitted to the buffer in the reaction pool section 102 to a certain degree of efficiency. I can increase the efficiency of heating and cooling.
  • the above-described DNA amplification apparatus still has the following problems to be solved.
  • the substrate 101 is mainly formed of a silicon wafer substrate or a glass substrate having low thermal conductivity, a sufficiently high reaction rate cannot be secured in practice, and the efficiency of the amplification reaction of the buffer is not increased. There were certain restrictions on raising
  • the present invention can solve the above-described problems as the DNA amplification device, and can improve the chemical reaction efficiency in the reaction pool by forming the reaction pool forming portion of the substrate from diamond. It is intended to provide a container for use.
  • An object of the present invention is to provide a container for chemical reaction that can increase the efficiency of biochemical reaction and enzyme reaction. Disclosure of the invention
  • a chemical reaction vessel comprises: a substrate having a reaction pool formed on a surface thereof; and a diamond heat transfer layer forming at least a bottom surface of the reaction pool. It is characterized by comprising a heat-generating cooling body attached to the back surface of the heat transfer layer, and a temperature adjusting means for periodically changing the temperature of the buffer in the reaction pool by the heat-generating cooling body.
  • the chemical reaction vessel according to the second invention is composed of a plurality of chemical reaction vessels arranged in series, and each of the plurality of chemical reaction vessels reacts on the surface.
  • a substrate formed with a pool portion, a heat transfer layer made of diamond forming at least a bottom surface of the reaction pool portion, and an exothermic cooling body attached to the back surface of the heat transfer layer. It is characterized in that the temperatures of the buffers in the reaction pool by the respective heat-generating cooling bodies are different from each other.
  • the chemical reaction vessel according to the third invention is composed of a plurality of chemical reaction vessels connected in series, and each of the plurality of chemical reaction vessels is internally provided with a reaction pool section.
  • a diamond-made cylinder having: a heat-generating cooling element attached to the outer periphery of the cylinder; and a power supply connected to the heat-generating cooling element. It is characterized in that the temperatures of the buffers in the pool are different from each other.
  • FIG. 1 is a cross-sectional view of the chemical reaction vessel according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view of the same.
  • FIG. 3 is a graph showing a change in one temperature of a buffer using the chemical reaction vessel according to the first embodiment of the present invention.
  • FIG. 4 shows the second embodiment of the present invention. It is a cross-sectional view of the container for chemical reactions which concerns on embodiment.
  • FIG. 5 is a cross-sectional view of a chemical reaction vessel according to a modification of the second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a chemical reaction vessel according to a modification of the second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a chemical reaction vessel according to a modification of the second embodiment of the present invention.
  • FIG. 8 is a perspective view of a chemical reaction container according to the third embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a container for chemical reaction according to the fourth embodiment of the present invention.
  • FIG. 10 is an explanatory diagram of a manufacturing procedure of the chemical reaction container according to the fourth embodiment of the present invention.
  • FIG. 11 is a plan view of a conventional chemical reaction vessel.
  • FIG. 12 is a cross-sectional view taken along the line I-I of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • a substrate 10 composed of a silicon wafer substrate forming the main body of the chemical reaction vessel A is a rectangular plate having a width and a length of several cm each and a thickness of sub / zm to several hundreds // m. Consists of A reaction pool 11 is formed on one surface of the substrate 10.
  • a heat transfer layer 12 made of diamond is formed on the bottom surface of the reaction pool section 11, and a substrate 10, which forms the back side of the heat transfer layer 12, has a pel, which is an example of a heat-generating cooling body.
  • the Che element 13 is buried.
  • a power supply 14 is connected to the Peltier element 13, and a temperature adjustment device 15, which is an example of temperature adjustment means, is connected to the power supply 14. Note that, as the heat-generating cooling body, one other than the Peltier element 13, for example, a heat transfer heater can be used.
  • a transparent lid 16 is joined, and a temperature detection sensor 17 for detecting the temperature of the buffer in the reaction pool 11 is embedded on one side thereof.
  • the diamond heat transfer layer 12 is formed only on the bottom surface of the reaction pool 11, but may it be formed over the entire surface of the reaction pool 11? it can.
  • the temperature adjusting device 15 is provided with a timer, and by changing the power supply voltage every time a predetermined time elapses, the temperature of the buffer 1 in the reaction pool section 11 is controlled in several steps as described later. Can be adjusted.
  • the target nucleic acid using a delivery means (not shown), the target nucleic acid, two or more types of primers, a thermostable DNA synthase, and four types of deoxyribonucleoside triphosphates (dCTP, dGTP, dTTP, dATP) Is introduced into the reaction pool part 11.
  • dCTP deoxyribonucleoside triphosphate
  • dGTP dGTP
  • dTTP dTTP
  • dATP deoxyribonucleoside triphosphates
  • a predetermined voltage is applied to the Peltier element 13 by the power supply 14 to operate the Peltier element 13, and a heat cycle is applied to the buffer in the reaction pool section 11 to remove the nucleic acid of interest.
  • Amplify Specifically, as shown in FIG. 3, first, the Peltier element 13 is heated to heat the buffer to a temperature (94) at which the nucleic acid in the buffer is dissociated, and this temperature is maintained for a predetermined time. Next, the operation of the Peltier element 13 is stopped, and the buffer is cooled to a temperature (at about 54) at which the dissociated nucleic acid and the primer bind.
  • the Peltier element 13 is activated again, and the buffer is heated to a temperature (74 T :) at which the activity of the heat-resistant DNA synthase is maximized and maintained for a predetermined time. . This extends the primer and amplifies the nucleic acid.
  • the buffer is heated to the temperature (at 94) at which the nucleic acid dissociates by operating the Peltier element 13 again to dissociate the generated double-stranded nucleic acid.
  • nucleic acid amplification reaction is performed by repeating this cycle a required number of times.
  • the heat transfer layer 12 formed on the bottom surface of the reaction pool 11 is made of diamond having extremely high thermal conductivity, the heat generated by the Peltier element 13 is instantaneously passed through the heat transfer layer 5 12 to the reaction pool.
  • the heat is transferred to the buffer in (11) and the buffer is rapidly heated or cooled, so that the efficiency of DNA amplification by the chemical reaction container (2) can be increased.
  • FIG. 4 shows the configuration of the chemical reaction vessel A1 according to the present embodiment.
  • the chemical reaction vessel A1 is composed of a plurality of chemical reaction vessels 20, 21, 22 arranged in series in the horizontal direction.
  • each of the containers 20, 21, and 22 has substantially the same configuration as the chemical reaction container A according to the first embodiment. That is, each of the containers 20, 21, and 22 includes a substrate 10 having a reaction pool portion 11 formed on the surface thereof, a diamond heat transfer layer 12 forming at least a bottom surface of the reaction pool portion 11 ", and a heat transfer layer. It has a Peltier device 13 which is an example of a heat-generating cooling body attached to the back surface of the layer 12. A power source 14 is connected to the Bertier device 13 and a temperature adjusting device 15 is connected to the power source 14. .
  • the temperature controller 15 of each of the containers 20, 21, and 22 adjusts the buffer in each of the reaction pool sections 11 to different heating temperatures (for example, 94T :, 54 :, 74t). Heat with :).
  • the target nucleic acid, two or more primers, thermostable DNA synthase, and four types of deoxyribonucleoside triphosphates are contained using a delivery means (not shown). Buffer to be placed in the first container 20 It is introduced into the reaction pool section 11.
  • a predetermined voltage is applied to the Peltier element 13 by the power source 14 to operate the Peltier element 13, and the temperature at which the nucleic acid in the buffer 1 in the reaction pool 11 is dissociated (at 94) The temperature of the buffer is maintained for a predetermined time.
  • the buffer 5 is removed from the reaction pool section 11 and introduced into the reaction pool section 11 of the second container 21.
  • the temperature at which the dissociated nucleic acid binds to the primer about 54: Cool the buffer until).
  • the buffer is removed from the reaction pool section 11 and introduced into the reaction pool section 11 of the third container 22.
  • the buffer is heated to a temperature (74 :) at which the activity of the DNA synthase is highest, and maintained for a predetermined time. As a result, the primer is extended, and the nucleic acid is amplified.
  • the buffer is again taken out of the reaction pool section 11 and introduced into the reaction pool section 11 of the first container 20, and at the same time, the Peltier element 13 is activated to remove the nucleic acid. Heat the buffer to the dissociation temperature (at 94) to dissociate the generated double-stranded nucleic acids.
  • a nucleic acid amplification reaction is performed by repeating this cycle a required number of times.
  • the heat transfer layer 12 formed on the bottom surface of the reaction pool section 11 is made of extremely high thermal conductivity diamond, the heat generated by the Peltier element 13 is It is transmitted to the buffer in the reaction pool section 11 through 2 and quickly heats or cools the buffer, thereby increasing the efficiency of DNA amplification by the chemical reaction vessel A.
  • 5 to 7 show the configurations of the chemical reaction vessels A2 to A4 according to the modified examples of the above-described second embodiment.
  • the chemical reaction vessel A3 according to the modified example shown in FIG. 5 is configured by integrating the first to third vessels 20 to 22 in the chemical reaction vessel A1 according to the second embodiment into one.
  • the first to third containers 20 to 22 are partitioned by partition walls 24, 25. It is characterized by forming by forming.
  • reaction pool portions 11 of the first to third vessels 20 to 22 are mutually connected by communication grooves 26 and 27 formed in partition walls 24 and 25, respectively.
  • 26 and 27 are provided with on-off valves 28 and 29, respectively.
  • the chemical reaction vessel A4 according to the modification shown in FIG. 6 is different from the first to third vessels 20 to 22 in the chemical reaction vessel A1 according to the second embodiment in that the first to third vessels 20 to 22 are arranged vertically instead of horizontally.
  • the reaction pools 11 of the first to third vessels 20 to 22 are connected to each other by vertical communication holes 30 and 31, and the vertical communication holes 30 and 31 Are provided with on-off valves 32 and 33, respectively.
  • the chemical reaction vessel A 4 according to the modification shown in FIG. 7 is a reaction pool part 1 1 of the first to third vessels 20 to 22 in the chemical reaction vessel A 1 according to the embodiment of FIG. Is divided into a plurality of divided reaction pool sections 10b by partition walls 10a, respectively, and as shown in FIG. 7, the divided reaction pool section 10b used once is not used again. It is characterized in that the buffer is circulated a plurality of times to carry out a chemical reaction.
  • the heat transfer layer 12 formed on the bottom surface of the reaction pool portion 11 is made of diamond having extremely high thermal conductivity, so that the heat generated by the Peltier element 13 is To the buffer in the reaction pool section 11 and quickly heat or cool the buffer to increase the reaction efficiency of the chemical reaction vessel A.
  • FIG. 8 shows the configuration of the chemical reaction container A5 according to the present embodiment.
  • the chemical reaction vessel A5 is composed of first to third vessels 40 to 42 connected in series.
  • Each of the vessels 40, 41, and 42 has a diamond cylindrical body 43 having a reaction pool therein, and a heat-generating cooling body attached to the outer periphery of the cylindrical body 43.
  • Line 4 4 and Heater Line 4 4 The power supply 45 is connected.
  • the containers 40, 41, and 42 are connected to each other by communication pipes 46, 47.
  • the cylinder 43 itself forming the reaction pool portion itself is made of diamond having a very high thermal conductivity, the heat generated by the heater wire 44 passes through the reaction pool through the cylinder 43.
  • the reaction is transferred to the buffer inside the unit, and the buffer is quickly heated or cooled, so that the reaction efficiency of the chemical reaction vessel A can be increased.
  • FIG. 9 shows the configuration of the chemical reaction container A6 according to the present embodiment.
  • the chemical reaction vessel A 6 according to the present embodiment has substantially the same configuration as the chemical reaction vessel A according to the first embodiment except for the following points. Therefore, the same components are denoted by the same reference numerals.
  • the heat transfer layer 12 is formed not only on the bottom surface of the reaction pool 11 but also on the entire surface of the substrate 10 including the entire surface of the reaction pool 11.
  • the Peltier element 13 is attached to the outer peripheral surface of the substrate 10.
  • the heat transfer layer 12 formed on the entire surface of the reaction pool section 11 is made of extremely high thermal conductivity diamond, the heat generated by the Peltier element 13 is The reaction is transferred to the buffer in the reaction pool 11 through 2 and the buffer can be quickly heated or cooled to increase the reaction rate. Therefore, the efficiency of DNA amplification by the chemical reaction container A can be increased.
  • the reaction pool section 11 can be formed and processed by melting using a diamond laser or the like.
  • the chemical reaction pool portion 11 having a clean cross section can be formed by the method of transferring the chemical reaction pool onto the zero. Note that this method is for the case of forming the reaction pool section 11 according to the fourth embodiment.
  • the silicon oxide film 51 is formed on the surface of the silicon 50. Grow. As shown in FIG. 10B, patterning is performed using a photoresist 50a. After that, isotropic etching using hydrofluoric acid (HF) is performed to remove the silicon oxide film 51. As shown in FIG. 10 (c), silicon 50 is anisotropically etched using a tetramethylammonium hydroxide ((CH 3 ) 4 NOH) solution.
  • HF hydrofluoric acid
  • the trapezoidal silicon substrate 52 obtained is shaped into a triangle, and diamond 53 is grown by hot filament CVD. After the growth of the diamond 53, a conductive epoxy 53a is applied to the growth surface and baked and fixed on a platinum 54 plate.
  • the ID plate 52 is removed to form a chemical reaction pool 11.
  • the heat transfer layer formed on the bottom surface of the reaction pool portion or the substrate itself on which the reaction pool portion is formed is made of diamond having extremely high thermal conductivity, it corresponds to the reaction pool portion.
  • a heat-generating cooling body such as a Peltier element at the location where the chemical reaction occurs, the chemical reaction rate can be increased.

Abstract

The invention provides a chemical reactor capable of increasing the rate of reaction within a reaction pool. The reactor comprises a substrate (10) with a reaction pool (11) formed in its surface, a high-thermal-conductivity diamond layer (12) forming at least the bottom of the reaction pool (11), a Peltier device (13) attached on the back of the diamond layer (12), and temperature control means (15) for controlling the Peltier device (13) to periodically changing the temperature of the buffer in the reaction pool (11).

Description

明 細 書 化学反応用容器 ζ 技術分野  Description Chemical reaction vessel ζ Technical field
本発明は、 一般化学反応用のための化学反応用容器に関する。 特に、 生化学反 応、 酵素反応などに用いるマイクロ化学反応用容器、 中でも DNAの増幅反応に 用いる化学反応用容器に関する。  The present invention relates to a chemical reaction vessel for a general chemical reaction. In particular, it relates to containers for microchemical reactions used for biochemical reactions, enzymatic reactions, etc., and particularly to containers for chemical reactions used for DNA amplification reactions.
10 背景技術 10 Background technology
近年、 微量の DNAを増幅する手段としてポリメラーゼ連鎖反応 (以下、 PC Rとする。 ) が広く用いられており、 そのために用いられる DNA増幅装置の一 例が特開平 9— 94086号公報に提示されている。  In recent years, the polymerase chain reaction (hereinafter referred to as PCR) has been widely used as a means for amplifying a small amount of DNA, and an example of a DNA amplification apparatus used for that purpose is disclosed in Japanese Patent Application Laid-Open No. 9-94086. ing.
この DNA増幅装置の構成について、 図 1 1及び図 12を参照して説明すると The configuration of this DNA amplification device will be described with reference to FIGS. 11 and 12.
15" 、 基板 10 1の上面に反応プール部 102及び流路 103、 104が形成されて おり、 その上面には透明蓋 105が接合されている。 流路 103、 104には、 それぞれ弁 106、 107が取り付けられている。 基板 101の反応プール部 1 02が形成された面の裏面に接して発熱体 108が設けられている。 また、 反応 プール部 102の底部をなす箇所には温度センサ 109、 1 10が埋設されてい Ρ る。 15 ", a reaction pool section 102 and flow paths 103 and 104 are formed on the upper surface of the substrate 101, and a transparent lid 105 is joined to the upper surface thereof. The flow paths 103 and 104 have valves 106 and 104, respectively. A heating element 108 is provided in contact with the back surface of the surface of the substrate 101 on which the reaction pool section 102 is formed, and a temperature sensor 109 is provided at the bottom of the reaction pool section 102. , 110 are buried.
この DNA増幅装置を用いた DNA増幅の手順について説明すると、 まず、 弁 106及び弁 107を開放し、 図示しない送出手段を用いて、 目的の核酸、 2種 類以上のプライマ一、 耐熱性 DNA合成酵素及び 4種類のデォキシリボヌクレオ シド三リン酸 (dCTP、 dGTP、 dTTP、 d ATP) を含有するバッファ ^ —を反応プール部 102に導入した後、 弁 106及び弁 107を閉弁する。  The procedure of DNA amplification using this DNA amplification apparatus will be described. First, the valve 106 and the valve 107 are opened, and a target nucleic acid, two or more types of primers, After introducing a buffer containing an enzyme and four types of deoxyribonucleoside triphosphates (dCTP, dGTP, dTTP, dATP) into the reaction pool section 102, the valves 106 and 107 are closed.
次に、 発熱体 108を作動させて、 反応プール部 102中のバッファーに熱サ イクルを加えて目的の核酸を増幅させる。 具体的には、 まず、 発熱体 1 0 8を発 熱させてバッファ一中の核酸が解離する温度 (9 0〜9 4 "C) にバッファ一を加 熱し、 この温度を所定時間維持する。 次に、 発熱体 1 0 8の動作を停止させ、 解 離した核酸とプライマ一とが結合する温度 (約 5 4で) までバッファ一を冷却す ζ る。 解離した核酸とプライマーが結合した後、 再び、 発熱冷却体 1 0 8を作動さ せ、 耐熱性 D N A合成酵素の活性が最も高まる温度 (5 0〜7 5 ) までバッフ ァーを加熱して所定の時間維持する。 これにより、 プライマーが伸長し、 核酸が 増幅される。 Next, the heating element 108 is operated to heat the buffer in the reaction pool section 102. Cycles are added to amplify the target nucleic acid. Specifically, first, the heating element 108 is heated to heat the buffer 1 to a temperature (90 to 94 "C) at which the nucleic acid in the buffer is dissociated, and this temperature is maintained for a predetermined time. Next, the operation of the heating element 108 is stopped, and the buffer is cooled to a temperature (at about 54) at which the dissociated nucleic acid and the primer are bound. Then, the exothermic cooling body 108 is operated again, and the buffer is heated to a temperature (50 to 75) at which the activity of the thermostable DNA synthase is maximized and maintained for a predetermined time. Elongates and the nucleic acid is amplified.
プライマーの伸長が終了した後、 再度発熱体 1 0 8を作動させて核酸が解離す る温度までバッファ一を加熱し、 生成した二本鎖核酸を解離させる。 以下、 この サイクルを所要回数繰り返すことによつて核酸の増幅反応を行う。  After the extension of the primer is completed, the heating element 108 is operated again to heat the buffer 1 to a temperature at which the nucleic acid is dissociated, and the generated double-stranded nucleic acid is dissociated. Hereinafter, a nucleic acid amplification reaction is performed by repeating this cycle a required number of times.
ここで、 上記した D N A増幅装置は、 反応プール部 1 0 2の形状がプレーナ一 上であるため、 発熱体 1 0 8から生じた熱を反応プール部 1 0 2中のバッファー にある程度効率よく伝えることができ、 加熱及び冷却の効率を高めることができ I るとされている。  Here, in the DNA amplification apparatus described above, since the shape of the reaction pool section 102 is on the planar surface, the heat generated from the heating element 108 is transmitted to the buffer in the reaction pool section 102 to a certain degree of efficiency. I can increase the efficiency of heating and cooling.
しかし、 上記した D N A増幅装置は、 未だ、 以下の解決すべき課題を有してい た。 即ち、 基板 1 0 1として、 専ら、 熱伝導率が低いシリコンウェハ基板ゃガラ ス基板から形成さているため、 実際には十分な速さの反応速度を確保できず、 バ ッファーの増幅反応の効率を高めることに一定の制約があった。  However, the above-described DNA amplification apparatus still has the following problems to be solved. In other words, since the substrate 101 is mainly formed of a silicon wafer substrate or a glass substrate having low thermal conductivity, a sufficiently high reaction rate cannot be secured in practice, and the efficiency of the amplification reaction of the buffer is not increased. There were certain restrictions on raising
20 本発明は、 上記した D NA増幅装置としての課題を解決することができ、 基板 の反応プール部形成部分をダイャモンドより形成することによって、 反応プール 部における化学反応効率を高めることができる化学反応用容器を提供することを 目的とする。 20 The present invention can solve the above-described problems as the DNA amplification device, and can improve the chemical reaction efficiency in the reaction pool by forming the reaction pool forming portion of the substrate from diamond. It is intended to provide a container for use.
さらに本発明は、 上記した D N A増幅装置としての課題だけでなく、 一般的な XT 生化学や酵素反応装置としての課題を解決することを目的とし、 基板の反応プ一 ル部形成部分をダイャモンドより形成することによって、 反応プール部における 生化学反応や酵素反応効率を高めることができる化学反応用容器を提供すること を目的とする。 発明の開示 Further, the present invention aims to solve not only the above-described problems as a DNA amplification device but also problems as general XT biochemistry and enzyme reaction devices. By forming, in the reaction pool part An object of the present invention is to provide a container for chemical reaction that can increase the efficiency of biochemical reaction and enzyme reaction. Disclosure of the invention
上記目的を達成するため、 第 1の発明に係る化学反応用容器は、 表面に反応プ 一ル部を形成した基板と、 少なくとも反応プール部の底面を形成するダイヤモン ド製の伝熱層と、 伝熱層の裏面に取り付けられる発熱冷却体と、 発熱冷却体によ る反応プール部中のバッファーの温度を周期的に変化させる温度調整手段とを具 備することを特徴とする。  In order to achieve the above object, a chemical reaction vessel according to the first invention comprises: a substrate having a reaction pool formed on a surface thereof; and a diamond heat transfer layer forming at least a bottom surface of the reaction pool. It is characterized by comprising a heat-generating cooling body attached to the back surface of the heat transfer layer, and a temperature adjusting means for periodically changing the temperature of the buffer in the reaction pool by the heat-generating cooling body.
!0 上記目的を達成するため、 第 2の発明に係る化学反応用容器は、 直列に配列さ れた複数の化学反応用容器から構成され、 複数の化学反応用容器は、 それぞれ、 表面に反応プール部を形成した基板と、 少なくとも反応プール部の底面を形成す るダイヤモンド製の伝熱層と、 伝熱層の裏面に取り付けられる発熱冷却体とを具 備し、 複数の化学反応用容器のそれぞれの発熱冷却体による反応プール部中のバ ッファーの温度を相互に異ならせたことを特徴とする。  ! 0 In order to achieve the above object, the chemical reaction vessel according to the second invention is composed of a plurality of chemical reaction vessels arranged in series, and each of the plurality of chemical reaction vessels reacts on the surface. A substrate formed with a pool portion, a heat transfer layer made of diamond forming at least a bottom surface of the reaction pool portion, and an exothermic cooling body attached to the back surface of the heat transfer layer. It is characterized in that the temperatures of the buffers in the reaction pool by the respective heat-generating cooling bodies are different from each other.
上記目的を達成するため、 第 3の発明に係る化学反応用容器は、 直列に接続さ れた複数の化学反応用容器から構成され、 複数の化学反応用容器は、 それぞれ、 内部に反応プール部を有するダイヤモンド製の筒体と、 筒体の外周に取り付けら れる発熱冷却体と、 発熱冷却体に接続される電源を具備し、 複数の化学反応用容 20 器のそれぞれの発熱冷却体による反応プール部中のバッファ一の温度を相互に異 ならせたことを特徴とする。 図面の簡単な説明  In order to achieve the above object, the chemical reaction vessel according to the third invention is composed of a plurality of chemical reaction vessels connected in series, and each of the plurality of chemical reaction vessels is internally provided with a reaction pool section. A diamond-made cylinder having: a heat-generating cooling element attached to the outer periphery of the cylinder; and a power supply connected to the heat-generating cooling element. It is characterized in that the temperatures of the buffers in the pool are different from each other. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施の形態に係る化学反応用容器の横断面図である。 ュ Γ 図 2は、 同斜視図である。 図 3は、 本発明の第 1の実施の形態に係る化学反応用 容器を用いたバッファ一温度の変化を示すグラフである。 図 4は、 本発明の第 2 の実施の形態に係る化学反応用容器の横断面図である。 図 5は、 本発明の第 2の 実施の形態の変形例に係る化学反応用容器の横断面図である。 図 6は、 本発明の 第 2の実施の形態の変形例に係る化学反応用容器の横断面図である。 図 7は、 本 発明の第 2の実施の形態の変形例に係る化学反応用容器の横断面図である。 図 8 は、 本発明の第 3の実施の形態に係る化学反応用容器の斜視図である。 図 9は、 本発明の第 4の実施の形態に係る化学反応用容器の横断面図である。 図 1 0は、 本発明の第 4の実施の形態に係る化学反応用容器の製造手順説明図である。 図 1 1は、 従来の化学反応用容器の平面図である。 図 1 2は、 図 1 1の I一 I線によ る横断面図である。 発明を実施するための最良の形態 FIG. 1 is a cross-sectional view of the chemical reaction vessel according to the first embodiment of the present invention. FIG. 2 is a perspective view of the same. FIG. 3 is a graph showing a change in one temperature of a buffer using the chemical reaction vessel according to the first embodiment of the present invention. FIG. 4 shows the second embodiment of the present invention. It is a cross-sectional view of the container for chemical reactions which concerns on embodiment. FIG. 5 is a cross-sectional view of a chemical reaction vessel according to a modification of the second embodiment of the present invention. FIG. 6 is a cross-sectional view of a chemical reaction vessel according to a modification of the second embodiment of the present invention. FIG. 7 is a cross-sectional view of a chemical reaction vessel according to a modification of the second embodiment of the present invention. FIG. 8 is a perspective view of a chemical reaction container according to the third embodiment of the present invention. FIG. 9 is a cross-sectional view of a container for chemical reaction according to the fourth embodiment of the present invention. FIG. 10 is an explanatory diagram of a manufacturing procedure of the chemical reaction container according to the fourth embodiment of the present invention. FIG. 11 is a plan view of a conventional chemical reaction vessel. FIG. 12 is a cross-sectional view taken along the line I-I of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図に示す一実施の形態を参照して、 本発明を具体的に説明する。 (第 1の実施の形態)  Hereinafter, the present invention will be specifically described with reference to an embodiment shown in the accompanying drawings. (First Embodiment)
まず、 図 1及び図 2を参照して、 本発明の第 1の実施の形態に係る化学反応用 容器 Aの全体構成について説明する。  First, the overall configuration of a chemical reaction vessel A according to a first embodiment of the present invention will be described with reference to FIGS.
図示するように、 化学反応用容器 Aの本体を形成するシリコンウェハ基板から なる基板 1 0は、 幅と長さがそれぞれ数 c mで、 厚みがサブ/ z m〜数百// mの矩 形板からなる。 そして、 基板 1 0の一側表面には反応プール部 1 1が形成されて いる。  As shown in the figure, a substrate 10 composed of a silicon wafer substrate forming the main body of the chemical reaction vessel A is a rectangular plate having a width and a length of several cm each and a thickness of sub / zm to several hundreds // m. Consists of A reaction pool 11 is formed on one surface of the substrate 10.
反応プール部 1 1の底面には、 ダイヤモンド製の伝熱層 1 2が形成されており 、 伝熱層 1 2の裏面側をなす基板 1 0の部分には、 発熱冷却体の一例であるペル チェ素子 1 3が埋設されている。 そして、 ペルチェ素子 1 3には電源 1 4が接続 されており、 電源 1 4には、 温度調整手段の一例である温度調整装置 1 5が接続 されている。 なお、 発熱冷却体としては、 ペルチェ素子 1 3以外のもの、 例えば 、 伝熱ヒーターを用いることもできる。  A heat transfer layer 12 made of diamond is formed on the bottom surface of the reaction pool section 11, and a substrate 10, which forms the back side of the heat transfer layer 12, has a pel, which is an example of a heat-generating cooling body. The Che element 13 is buried. A power supply 14 is connected to the Peltier element 13, and a temperature adjustment device 15, which is an example of temperature adjustment means, is connected to the power supply 14. Note that, as the heat-generating cooling body, one other than the Peltier element 13, for example, a heat transfer heater can be used.
また、 図 1及び図 2に示すように、 本実施の形態において、 基板 1 0の上面に は透明蓋 1 6が接合されており、 その一側部には、 反応プール部 1 1内のバッフ ァ一の温度を検出する温度検出センサ 1 7が埋設されている。 Also, as shown in FIGS. 1 and 2, in the present embodiment, A transparent lid 16 is joined, and a temperature detection sensor 17 for detecting the temperature of the buffer in the reaction pool 11 is embedded on one side thereof.
上記した構成において、 ダイヤモンド製の伝熱層 1 2は反応プール部 1 1の底 面のみに形成されているが、 反応プール部 1 1の全面にわたって形成することも ? できる。  In the above configuration, the diamond heat transfer layer 12 is formed only on the bottom surface of the reaction pool 11, but may it be formed over the entire surface of the reaction pool 11? it can.
また、 温度調製装置 1 5は夕イマ一を具備しており、 所定時間経過毎に電源電 圧を変化することによって、 反応プール部 1 1内のバッファ一の温度を後述する ように数段階にわたって調整することができる。  Further, the temperature adjusting device 15 is provided with a timer, and by changing the power supply voltage every time a predetermined time elapses, the temperature of the buffer 1 in the reaction pool section 11 is controlled in several steps as described later. Can be adjusted.
次に、 上記した構成を有する化学反応用容器 Aを用いた D N A増幅方法につい て説明する。  Next, a DNA amplification method using the chemical reaction vessel A having the above configuration will be described.
まず、 図示しない送出手段を用いて、 目的の核酸、 2種類以上のプライマー、 耐熱性 D N A合成酵素及び 4種類のデォキシリボヌクレオシド三リン酸 ( d C T P、 d G T P、 d T T P、 d A T P ) を含有するバッファーを反応プール部 1 1 に導入する。  First, using a delivery means (not shown), the target nucleic acid, two or more types of primers, a thermostable DNA synthase, and four types of deoxyribonucleoside triphosphates (dCTP, dGTP, dTTP, dATP) Is introduced into the reaction pool part 11.
I 次に、 電源 1 4によって所定の電圧をペルチェ素子 1 3に印加してペルチェ素 子 1 3を作動させて、 反応プール部 1 1中のバッファ一に熱サイクルを加えて目 的の核酸を増幅させる。 具体的には、 図 3に示すように、 まず、 ペルチェ素子 1 3を発熱させてバッファ一中の核酸が解離する温度 (9 4 ) にバッファーを加 熱し、 この温度を所定時間維持する。 次に、 ペルチェ素子 1 3の動作を停止させJJ 、 解離した核酸とプライマーとが結合する温度 (約 5 4で) までバッファーを冷 却する。 解離した核酸とプライマーが結合した後、 再び、 ペルチェ素子 1 3を作 動させ、 耐熱性 D N A合成酵素の活性が最も高まる温度 (7 4 T:) までバッファ 一を加熱して所定の時間維持する。 これにより、 プライマーが伸長し、 核酸が増 幅される。  I Next, a predetermined voltage is applied to the Peltier element 13 by the power supply 14 to operate the Peltier element 13, and a heat cycle is applied to the buffer in the reaction pool section 11 to remove the nucleic acid of interest. Amplify. Specifically, as shown in FIG. 3, first, the Peltier element 13 is heated to heat the buffer to a temperature (94) at which the nucleic acid in the buffer is dissociated, and this temperature is maintained for a predetermined time. Next, the operation of the Peltier element 13 is stopped, and the buffer is cooled to a temperature (at about 54) at which the dissociated nucleic acid and the primer bind. After the dissociated nucleic acid binds to the primer, the Peltier element 13 is activated again, and the buffer is heated to a temperature (74 T :) at which the activity of the heat-resistant DNA synthase is maximized and maintained for a predetermined time. . This extends the primer and amplifies the nucleic acid.
プライマーの伸長が終了した後、 再度、 ペルチェ素子 1 3を作動させて核酸が 解離する温度 (9 4で) までバッファーを加熱し、 生成した二本鎖核酸を解離さ 0 After the primer extension is completed, the buffer is heated to the temperature (at 94) at which the nucleic acid dissociates by operating the Peltier element 13 again to dissociate the generated double-stranded nucleic acid. 0
せる。 以下、 このサイクルを所要回数繰り返すことによって核酸の増幅反応を行 ラ。  Let Hereinafter, the nucleic acid amplification reaction is performed by repeating this cycle a required number of times.
この際、 反応プール部 1 1の底面に形成した伝熱層 12は極めて熱伝導性の高 いダイヤモンドからなるので、 ペルチェ素子 13によって発生した熱は、 伝熱層 5 12を通して瞬時に反応プール部 1 1内のバッファーに伝達され、 バッファ一を 迅速に加熱又は冷却して、 化学反応用容器 Αによる DNAの増幅効率を高めるこ とができる。  At this time, since the heat transfer layer 12 formed on the bottom surface of the reaction pool 11 is made of diamond having extremely high thermal conductivity, the heat generated by the Peltier element 13 is instantaneously passed through the heat transfer layer 5 12 to the reaction pool. The heat is transferred to the buffer in (11) and the buffer is rapidly heated or cooled, so that the efficiency of DNA amplification by the chemical reaction container (2) can be increased.
(第 2の実施の形態)  (Second embodiment)
図 4に本実施の形態に係る化学反応用容器 A 1の構成を示す。  FIG. 4 shows the configuration of the chemical reaction vessel A1 according to the present embodiment.
Ιϋ 図示するように、 化学反応用容器 A 1は、 水平方向に直列に配列された複数の 化学反応用容器 20、 21、 22から構成されている。 As shown in the figure, the chemical reaction vessel A1 is composed of a plurality of chemical reaction vessels 20, 21, 22 arranged in series in the horizontal direction.
そして、 各容器 20、 21、 22は、 実質的に、 第 1の実施の形態に係る化学 反応用容器 Aと同一の構成を有する。 即ち、 容器 20、 21、 22は、 それぞれ 、 表面に反応プール部 1 1を形成した基板 10と、 少なくとも反応プール部 1 1 IS" の底面を形成するダイヤモンド製の伝熱層 12と、 伝熱層 12の裏面に取り付け られる発熱冷却体の一例であるペルチェ素子 13とを具備する。 そして、 ベルチ ェ素子 1 3には電源 14が接続され、 電源 14には温度調整装置 15が接続され ている。  Each of the containers 20, 21, and 22 has substantially the same configuration as the chemical reaction container A according to the first embodiment. That is, each of the containers 20, 21, and 22 includes a substrate 10 having a reaction pool portion 11 formed on the surface thereof, a diamond heat transfer layer 12 forming at least a bottom surface of the reaction pool portion 11 ", and a heat transfer layer. It has a Peltier device 13 which is an example of a heat-generating cooling body attached to the back surface of the layer 12. A power source 14 is connected to the Bertier device 13 and a temperature adjusting device 15 is connected to the power source 14. .
しかし、 本実施の形態では、 それぞれの容器 20、 21、 22の温度調整装置 1 5は、 それぞれの反応プール部 1 1内のバッファーを相互に異なった加熱温度 (例えば 94T:、 54 :、 74t:) で加熱する。  However, in the present embodiment, the temperature controller 15 of each of the containers 20, 21, and 22 adjusts the buffer in each of the reaction pool sections 11 to different heating temperatures (for example, 94T :, 54 :, 74t). Heat with :).
次に、 上記した構成を有する化学反応用容器 A 1を用いた DNA増幅方法につ いて説明する。  Next, a DNA amplification method using the chemical reaction container A1 having the above configuration will be described.
まず、 図示しない送出手段を用いて、 目的の核酸、 2種類以上のプライマー、 耐熱性 DNA合成酵素及び 4種類のデォキシリボヌクレオシド三リン酸 (dCT P、 dGTP、 dTTP、 d ATP) を含有するバッファ一を第 1の容器 20の 反応プール部 1 1に導入する。 First, the target nucleic acid, two or more primers, thermostable DNA synthase, and four types of deoxyribonucleoside triphosphates (dCTP, dGTP, dTTP, dATP) are contained using a delivery means (not shown). Buffer to be placed in the first container 20 It is introduced into the reaction pool section 11.
次に、 電源 1 4によって所定の電圧をペルチェ素子 1 3に印加してペルチェ素 子 1 3を作動させて、 反応プール部 1 1内のバッファ一中の核酸が解離する温度 ( 9 4で) にバッファーを加熱し、 この温度を所定時間維持する。 次に、 バッフ 5 ァーを反応プール部 1 1から取り出し、 第 2の容器 2 1の反応プール部 1 1内に 導入すると共に、 解離した核酸とプライマ一とが結合する温度 (約 5 4 :) まで バッファ一を冷却する。 解離した核酸とプライマーが結合した後、 バッファ一を 反応プール部 1 1から取り出し、 第 3の容器 2 2の反応プール部 1 1内に導入す ると共に、 ペルチェ素子 1 3を作動させ、 耐熱性 D N A合成酵素の活性が最も高 \ ^ まる温度 (7 4 :) までバッファーを加熱して所定の時間維持する。 これにより 、 プライマーが伸長し、 核酸が増幅される。  Next, a predetermined voltage is applied to the Peltier element 13 by the power source 14 to operate the Peltier element 13, and the temperature at which the nucleic acid in the buffer 1 in the reaction pool 11 is dissociated (at 94) The temperature of the buffer is maintained for a predetermined time. Next, the buffer 5 is removed from the reaction pool section 11 and introduced into the reaction pool section 11 of the second container 21. At the same time, the temperature at which the dissociated nucleic acid binds to the primer (about 54: Cool the buffer until). After the dissociated nucleic acid binds to the primer, the buffer is removed from the reaction pool section 11 and introduced into the reaction pool section 11 of the third container 22. The buffer is heated to a temperature (74 :) at which the activity of the DNA synthase is highest, and maintained for a predetermined time. As a result, the primer is extended, and the nucleic acid is amplified.
プライマーの伸長が終了した後、 再度、 バッファーを反応プール部 1 1から取 り出し、 第 1の容器 2 0の反応プール部 1 1内に導入すると共に、 ペルチェ素子 1 3を作動させて核酸が解離する温度 (9 4で) までバッファーを加熱し、 生成 した二本鎖核酸を解離させる。 以下、 このサイクルを所要回数繰り返すことによ つて核酸の増幅反応を行う。  After the extension of the primer is completed, the buffer is again taken out of the reaction pool section 11 and introduced into the reaction pool section 11 of the first container 20, and at the same time, the Peltier element 13 is activated to remove the nucleic acid. Heat the buffer to the dissociation temperature (at 94) to dissociate the generated double-stranded nucleic acids. Hereinafter, a nucleic acid amplification reaction is performed by repeating this cycle a required number of times.
本実施の形態においても、 反応プール部 1 1の底面に形成した伝熱層 1 2は極 めて熱伝導性の高いダイヤモンドからなるので、 ペルチェ素子 1 3によって発生 した熱は、 伝熱層 1 2を通して反応プール部 1 1内のバッファ一に伝達され、 ノ ID ッファーを迅速に加熱又は冷却して、 化学反応用容器 Aによる D N Aの増幅効率 を高めることができる。  Also in the present embodiment, since the heat transfer layer 12 formed on the bottom surface of the reaction pool section 11 is made of extremely high thermal conductivity diamond, the heat generated by the Peltier element 13 is It is transmitted to the buffer in the reaction pool section 11 through 2 and quickly heats or cools the buffer, thereby increasing the efficiency of DNA amplification by the chemical reaction vessel A.
図 5〜図 7に上記した第 2の実施の形態の変形例に係る化学反応用容器 A 2〜 A 4の構成を示す。  5 to 7 show the configurations of the chemical reaction vessels A2 to A4 according to the modified examples of the above-described second embodiment.
図 5に示す変形例に係る化学反応用容器 A 3は、 第 2の実施の形態に係る化学 2Γ 反応用容器 A 1における第 1〜第 3の容器 2 0〜2 2を一体化して一つの基板 2 3とすると共に、 第 1〜第 3の容器 2 0〜 2 2を仕切壁 2 4、 2 5によって仕切 ることによって形成するようにしたことを特徴とする。 また、 本変形例においてThe chemical reaction vessel A3 according to the modified example shown in FIG. 5 is configured by integrating the first to third vessels 20 to 22 in the chemical reaction vessel A1 according to the second embodiment into one. In addition to the substrate 23, the first to third containers 20 to 22 are partitioned by partition walls 24, 25. It is characterized by forming by forming. In this modification,
、 第 1〜第 3の容器 2 0〜 2 2の反応プール部 1 1同士は仕切壁 2 4、 2 5に形 成された連通溝 2 6、 2 7によって相互に連通されており、 連通溝 2 6、 2 7に はそれぞれ開閉弁 2 8、 2 9が設けられている。 The reaction pool portions 11 of the first to third vessels 20 to 22 are mutually connected by communication grooves 26 and 27 formed in partition walls 24 and 25, respectively. 26 and 27 are provided with on-off valves 28 and 29, respectively.
図 6に示す変形例に係る化学反応用容器 A 4は、 第 2の実施の形態に係る化学 反応用容器 A 1における第 1〜第 3の容器 2 0〜 2 2を、 水平方向ではなく垂直 方向に積層すると共に、 第 1〜第 3の容器 2 0〜 2 2の反応プール部 1 1同士は 垂直連通孔 3 0、 3 1によって相互に連通されており、 垂直連通孔 3 0、 3 1に はそれぞれ開閉弁 3 2、 3 3が設けられている。  The chemical reaction vessel A4 according to the modification shown in FIG. 6 is different from the first to third vessels 20 to 22 in the chemical reaction vessel A1 according to the second embodiment in that the first to third vessels 20 to 22 are arranged vertically instead of horizontally. The reaction pools 11 of the first to third vessels 20 to 22 are connected to each other by vertical communication holes 30 and 31, and the vertical communication holes 30 and 31 Are provided with on-off valves 32 and 33, respectively.
1 図 7に示す変形例に係る化学反応用容器 A 4は、 図 2の実施の形態に係る化学 反応用容器 A 1における第 1〜第 3の容器 2 0〜 2 2の反応プール部 1 1を、 そ れぞれ、 仕切壁 1 0 aによって複数の分割反応プール部 1 0 bに分割すると共に 、 図 7に示すように、 一度用いた分割反応プール部 1 0 bは二度と使わない形態 で、 バッファ一を複数回にわたって循環させ、 化学反応を行わせるようにしたこ とを特徴とする。  1 The chemical reaction vessel A 4 according to the modification shown in FIG. 7 is a reaction pool part 1 1 of the first to third vessels 20 to 22 in the chemical reaction vessel A 1 according to the embodiment of FIG. Is divided into a plurality of divided reaction pool sections 10b by partition walls 10a, respectively, and as shown in FIG. 7, the divided reaction pool section 10b used once is not used again. It is characterized in that the buffer is circulated a plurality of times to carry out a chemical reaction.
上記した変形例においても、 反応プール部 1 1の底面に形成した伝熱層 1 2は 極めて熱伝導性の高いダイヤモンドからなるので、 ペルチェ素子 1 3によって発 生した熱は、 伝熱層 1 2を通して反応プール部 1 1内のバッファーに伝達され、 バッファーを迅速に加熱又は冷却して、 化学反応用容器 Aによる反応効率を高め Also in the above-described modification, the heat transfer layer 12 formed on the bottom surface of the reaction pool portion 11 is made of diamond having extremely high thermal conductivity, so that the heat generated by the Peltier element 13 is To the buffer in the reaction pool section 11 and quickly heat or cool the buffer to increase the reaction efficiency of the chemical reaction vessel A.
20 ることができる。 20
(第 3の実施の形態)  (Third embodiment)
図 8に、 本実施の形態に係る化学反応用容器 A 5の構成を示す。  FIG. 8 shows the configuration of the chemical reaction container A5 according to the present embodiment.
図示するように、 化学反応用容器 A 5は、 直列に接続された第 1〜第 3の容器 4 0〜4 2から構成されている。 そして、 各容器 4 0、 4 1、 4 2は、 それぞれ 、 内部に反応プール部を有するダイヤモンド製の筒体 4 3と、 筒体 4 3の外周に 取り付けられる発熱冷却体の一例であるヒー夕一線 4 4と、 ヒー夕一線 4 4に接 続される電源 4 5を具備する。 また、 容器 4 0、 4 1 、 4 2同士は連通管 4 6、 4 7によって連通連結されている。 As shown in the figure, the chemical reaction vessel A5 is composed of first to third vessels 40 to 42 connected in series. Each of the vessels 40, 41, and 42 has a diamond cylindrical body 43 having a reaction pool therein, and a heat-generating cooling body attached to the outer periphery of the cylindrical body 43. Line 4 4 and Heater Line 4 4 The power supply 45 is connected. The containers 40, 41, and 42 are connected to each other by communication pipes 46, 47.
本実施の形態においては、 反応プール部を内部に形成する筒体 4 3自体が熱伝 導性の極めて高いダイヤモンドからなるので、 ヒーター線 4 4によって発生した 熱は、 筒体 4 3を通して反応プール部内のバッファーに伝達され、 バッファ一を 迅速に加熱又は冷却して、 化学反応用容器 Aによる反応効率を高めることができ る。  In the present embodiment, since the cylinder 43 itself forming the reaction pool portion itself is made of diamond having a very high thermal conductivity, the heat generated by the heater wire 44 passes through the reaction pool through the cylinder 43. The reaction is transferred to the buffer inside the unit, and the buffer is quickly heated or cooled, so that the reaction efficiency of the chemical reaction vessel A can be increased.
(第 4の実施の形態)  (Fourth embodiment)
図 9に、 本実施の形態に係る化学反応用容器 A 6の構成を示す。  FIG. 9 shows the configuration of the chemical reaction container A6 according to the present embodiment.
図示するように、 本実施の形態に係る化学反応用容器 A 6は、 第 1の実施の形 態に係る化学反応用容器 Aと、 以下の点を除いて、 実質的に同一の構成を有する ので、 同一の構成要素は同一の符号で示す。  As shown, the chemical reaction vessel A 6 according to the present embodiment has substantially the same configuration as the chemical reaction vessel A according to the first embodiment except for the following points. Therefore, the same components are denoted by the same reference numerals.
即ち、 本実施の形態では、 伝熱層 1 2は、 反応プール部 1 1の底面のみでなく 、 反応プール部 1 1の全面を含めた基板 1 0の表面全体に形成されており、 また 、 ペルチェ素子 1 3は基板 1 0の外周面に取り付けられている。  That is, in the present embodiment, the heat transfer layer 12 is formed not only on the bottom surface of the reaction pool 11 but also on the entire surface of the substrate 10 including the entire surface of the reaction pool 11. The Peltier element 13 is attached to the outer peripheral surface of the substrate 10.
本実施の形態においても、 反応プール部 1 1の全面に形成した伝熱層 1 2は極 めて熱伝導性の高いダイヤモンドからなるので、 ペルチェ素子 1 3によって発生 した熱は、 伝熱層 1 2を通して反応プール部 1 1内のバッファ一に伝達され、 ノ ッファーを迅速に加熱又は冷却して反応速度を高めることができる。 従って、 化 学反応用容器 Aによる D N Aの増幅効率を高めることができる。  Also in the present embodiment, since the heat transfer layer 12 formed on the entire surface of the reaction pool section 11 is made of extremely high thermal conductivity diamond, the heat generated by the Peltier element 13 is The reaction is transferred to the buffer in the reaction pool 11 through 2 and the buffer can be quickly heated or cooled to increase the reaction rate. Therefore, the efficiency of DNA amplification by the chemical reaction container A can be increased.
上記した実施の形態において、 反応プール部 1 1は、 ダイヤモンドレーザ一等 を用いて溶融除去によって形成加工することも可能であるが、 図 1 0を参照して 以下に説明するように、 シリコン 5 0上に転写する方法によってきれいな断面を 有する化学反応プール部 1 1を形成することができる。 なお、 この方法は、 第 4 の実施の形態に係る反応プール部 1 1を形成する場合である。  In the above-described embodiment, the reaction pool section 11 can be formed and processed by melting using a diamond laser or the like. However, as described below with reference to FIG. The chemical reaction pool portion 11 having a clean cross section can be formed by the method of transferring the chemical reaction pool onto the zero. Note that this method is for the case of forming the reaction pool section 11 according to the fourth embodiment.
即ち、 図 1 0 ( a ) に示すように、 シリコン 5 0の表面にシリコン酸化膜 5 1 を成長させる。 図 10 (b) に示すようにフォトレジスト 50 aを用いてパター ニングを行う。 その後、 ふつ酸 (HF) を用いた等方性エッチングを行い、 シリ コン酸化膜 5 1を除去する。 図 10 (c) に示すように、 テトラメチルアンモニ ゥムヒドロキシド ( (CH3)4NOH) 溶液を用いて、 シリコン 50を異方性ェ ンチングする。 That is, as shown in FIG. 10A, the silicon oxide film 51 is formed on the surface of the silicon 50. Grow. As shown in FIG. 10B, patterning is performed using a photoresist 50a. After that, isotropic etching using hydrofluoric acid (HF) is performed to remove the silicon oxide film 51. As shown in FIG. 10 (c), silicon 50 is anisotropically etched using a tetramethylammonium hydroxide ((CH 3 ) 4 NOH) solution.
図 10 (d) に示すように、 得られた台形状シリコン基板 52を铸型とし、 熱 フィラメント CVD法によりダイヤモンド 53を成長させる。 ダイヤモンド 53 の成長後、 導電性エポキシ 53 aを成長面に塗布し、 白金 54の板に焼き固め固 定する。 図 10 (e) に示すように、 ふつ硝酸 (HF+HN〇3) 中でシリコン基As shown in FIG. 10 (d), the trapezoidal silicon substrate 52 obtained is shaped into a triangle, and diamond 53 is grown by hot filament CVD. After the growth of the diamond 53, a conductive epoxy 53a is applied to the growth surface and baked and fixed on a platinum 54 plate. As shown in FIG. 10 (e), a silicon group in France nitrate (HF + HN_〇 3)
ID 板 52を除去し、 化学反応用用プール部 1 1を形成する。 The ID plate 52 is removed to form a chemical reaction pool 11.
なお、 铸型となる台形状シリコン基板 52を形成する方法には、 シリコン基板 上に前記図 10 (a) の説明においてしたシリコン 50の表面にシリコン酸化膜 51を成長させる代わりに、 フォトレジストを用いてパターニングする方法もあ る。 さらに、 前記図 10 (b) の説明においてしたふつ酸 (HF) を用いたエツ チングに代えて、 六フッ化硫黄をエッチングガスとして R I E法 (リアクティブ •イオン ·エッチング法 Reactive Ion Etching)によりシリコン表面をエツチン グする方法もある。 そして、 その後、 前記図 10 (d) に示すように、 熱フイラ メント CVD法によりダイヤモンド 53を成長させる工程につなげる。  In addition, instead of growing the silicon oxide film 51 on the surface of the silicon 50 described in FIG. 10A on the silicon substrate, There is also a method of patterning using such a method. Further, instead of etching using hydrofluoric acid (HF) in the explanation of FIG. 10B, silicon hexafluoride is used as an etching gas by RIE (Reactive Ion Etching). There is also a method of etching the surface. Then, as shown in FIG. 10 (d), the process leads to a step of growing diamond 53 by thermal filament CVD.
^> 産業上の利用可能性 ^> Industrial applicability
以上説明してきたように、 本発明では、 反応プール部の底面に形成した伝熱層 又は反応プール部を形成した基板自体を、 極めて熱伝導性の高いダイヤモンドか らなるので、 反応プール部と対応する個所にペルチェ素子等の発熱冷却体を取り 付けることによって化学反応速度を高めることができる。  As described above, in the present invention, since the heat transfer layer formed on the bottom surface of the reaction pool portion or the substrate itself on which the reaction pool portion is formed is made of diamond having extremely high thermal conductivity, it corresponds to the reaction pool portion. By attaching a heat-generating cooling body such as a Peltier element at the location where the chemical reaction occurs, the chemical reaction rate can be increased.

Claims

請 求 の 範 囲 The scope of the claims
1 . 表面に反応プール部を形成した基板と、 少なくとも前記反応プール部の底 面を形成するダイヤモンド製の伝熱層と、 該伝熱層の裏面に取り付けられる発熱1. A substrate having a reaction pool portion formed on the surface thereof, a heat transfer layer made of diamond forming at least a bottom surface of the reaction pool portion, and heat generation attached to the back surface of the heat transfer layer.
5 冷却体と、 該発熱冷却体による前記反応プール部中のバッファ一の温度を周期的 に変化させる温度調整手段とを具備することを特徴とする化学反応用容器。5 A chemical reaction container comprising: a cooling body; and a temperature adjusting means for periodically changing a temperature of a buffer in the reaction pool by the heat-generating cooling body.
2 . 直列に接続された複数の化学反応用容器から構成され、 該複数の化学反応 用容器は、 それぞれ、 表面に反応プール部を形成した基板と、 少なくとも前記反 応プール部の底面を形成するダイヤモンド製の伝熱層と、 該伝熱層の裏面に取り2. Consisting of a plurality of chemical reaction vessels connected in series, each of the plurality of chemical reaction vessels forming a substrate having a reaction pool on the surface thereof and at least a bottom surface of the reaction pool. A heat transfer layer made of diamond and a backside of the heat transfer layer
(0 付けられる発熱冷却体とを具備し、 前記複数の化学反応用容器のそれぞれの前記 発熱冷却体による前記反応プール部中のバッファーの温度を相互に異ならせたこ とを特徴とする化学反応用容器。 (A heat-generating cooling body attached to the plurality of chemical reaction vessels, wherein the temperature of the buffer in the reaction pool by the heat-generating cooling bodies of the plurality of chemical reaction vessels is different from each other. Container.
3 . 直列に接続された複数の化学反応用容器から構成され、 該複数の化学反応 用容器は、 それぞれ、 内部に反応プール部を有するダイヤモンド製の筒体と、 該 筒体の外周に取り付けられる発熱冷却体と、 該発熱冷却体に接続される電源を具 備し、 前記複数の化学反応用容器のそれぞれの発熱冷却体による反応プール部中 のバッファ一の温度を相互に異ならせたことを特徴とする化学反応用容器。  3. Consisting of a plurality of chemical reaction vessels connected in series, each of the plurality of chemical reaction vessels being attached to a diamond cylinder having a reaction pool therein, and an outer periphery of the cylinder. A heat-generating cooling body; and a power supply connected to the heat-generating cooling body, wherein the temperatures of the buffers in the reaction pool part by the respective heat-generating coolers of the plurality of chemical reaction vessels are different from each other. Characteristic vessel for chemical reaction.
PCT/JP2000/002999 1999-05-10 2000-05-10 Chemical reactor WO2000067893A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU44306/00A AU4430600A (en) 1999-05-10 2000-05-10 Chemical reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP12924899 1999-05-10
JP11/129248 1999-05-10

Publications (1)

Publication Number Publication Date
WO2000067893A1 true WO2000067893A1 (en) 2000-11-16

Family

ID=15004879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002999 WO2000067893A1 (en) 1999-05-10 2000-05-10 Chemical reactor

Country Status (2)

Country Link
AU (1) AU4430600A (en)
WO (1) WO2000067893A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004535200A (en) * 2001-07-16 2004-11-25 アイダホ テクノロジー インコーポレーテッド Thermal cycle system and method of using the same
WO2006038643A1 (en) * 2004-10-06 2006-04-13 Universal Bio Research Co., Ltd. Reaction container and reaction controller
US7329535B2 (en) 2001-11-10 2008-02-12 Samsung Electronics Co., Ltd. Apparatus for circulating carrier fluid
US8133454B2 (en) 2004-12-10 2012-03-13 Universal Bio Research Co., Ltd. Biological material fixed region enclosing tip, biological material fixed region treatment apparatus, and treatment method thereof
US8263390B2 (en) 2004-12-10 2012-09-11 Universal Bio Research Co., Ltd. Biological material fixed carrier enclosing tip, biological material fixed carrier treatment apparatus, and treatment method thereof
US8518347B2 (en) 2005-01-07 2013-08-27 Universal Bio Research Co., Ltd. Carrier enclosing tip, carrier treating apparatus and method of carrier treatment
US8828331B2 (en) 2005-09-05 2014-09-09 Universal Bio Research Co., Ltd. Various-substance holder, various-substance holder treating apparatus, and various-substance holder treating method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630776A (en) * 1992-07-13 1994-02-08 Rikagaku Kenkyusho Method for amplifying dna and device for amplifying dna
WO1996015269A2 (en) * 1994-11-14 1996-05-23 Trustees Of The University Of Pennsylvania Mesoscale polynucleotide amplification devices
JPH0994086A (en) * 1995-09-29 1997-04-08 Olympus Optical Co Ltd Dna amplifier
JPH09262084A (en) * 1996-03-27 1997-10-07 Technol Res Assoc Of Medical & Welfare Apparatus Dna amplifying apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630776A (en) * 1992-07-13 1994-02-08 Rikagaku Kenkyusho Method for amplifying dna and device for amplifying dna
WO1996015269A2 (en) * 1994-11-14 1996-05-23 Trustees Of The University Of Pennsylvania Mesoscale polynucleotide amplification devices
JPH0994086A (en) * 1995-09-29 1997-04-08 Olympus Optical Co Ltd Dna amplifier
JPH09262084A (en) * 1996-03-27 1997-10-07 Technol Res Assoc Of Medical & Welfare Apparatus Dna amplifying apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004535200A (en) * 2001-07-16 2004-11-25 アイダホ テクノロジー インコーポレーテッド Thermal cycle system and method of using the same
JP4679818B2 (en) * 2001-07-16 2011-05-11 アイダホ テクノロジー インコーポレーテッド Thermal cycle system and method of use thereof
US7329535B2 (en) 2001-11-10 2008-02-12 Samsung Electronics Co., Ltd. Apparatus for circulating carrier fluid
WO2006038643A1 (en) * 2004-10-06 2006-04-13 Universal Bio Research Co., Ltd. Reaction container and reaction controller
JPWO2006038643A1 (en) * 2004-10-06 2008-08-07 ユニバーサル・バイオ・リサーチ株式会社 Reaction container and reaction control device
JP2011250803A (en) * 2004-10-06 2011-12-15 Universal Bio Research Co Ltd Reaction vessel and reaction controller
US8445265B2 (en) 2004-10-06 2013-05-21 Universal Bio Research Co., Ltd. Reaction vessel and reaction controller
US8425860B2 (en) 2004-12-10 2013-04-23 Universal Bio Research Co., Ltd. Biological material fixed region enclosing tip, biological material fixed region treatment apparatus, and treatment method thereof
US8263390B2 (en) 2004-12-10 2012-09-11 Universal Bio Research Co., Ltd. Biological material fixed carrier enclosing tip, biological material fixed carrier treatment apparatus, and treatment method thereof
US8133454B2 (en) 2004-12-10 2012-03-13 Universal Bio Research Co., Ltd. Biological material fixed region enclosing tip, biological material fixed region treatment apparatus, and treatment method thereof
US8921095B2 (en) 2004-12-10 2014-12-30 Universal Bio Research Co., Ltd. Biological material fixed carrier enclosing tip, biological material fixed carrier treatment apparatus, and treatment method thereof
US8518347B2 (en) 2005-01-07 2013-08-27 Universal Bio Research Co., Ltd. Carrier enclosing tip, carrier treating apparatus and method of carrier treatment
US9101921B2 (en) 2005-01-07 2015-08-11 Universal Bio Research Co., Ltd. Carrier enclosing tip, carrier treating apparatus and method of carrier treatment
US8828331B2 (en) 2005-09-05 2014-09-09 Universal Bio Research Co., Ltd. Various-substance holder, various-substance holder treating apparatus, and various-substance holder treating method
US8852525B2 (en) 2005-09-05 2014-10-07 Universal Bio Research Co., Ltd. Various-substance holder, various-substance holder treating apparatus, and various-substance holder treating method
US9260744B2 (en) 2005-09-05 2016-02-16 Universal Bio Research Co., Ltd. Various-substance holder, various-substance holder treating apparatus, and various-substance holder treating method

Also Published As

Publication number Publication date
AU4430600A (en) 2000-11-21

Similar Documents

Publication Publication Date Title
US6586233B2 (en) Convectively driven PCR thermal-cycling
US9939170B2 (en) Methods and compositions for rapid thermal cycling
JP4357962B2 (en) Nucleic acid sequence amplification method and apparatus using thermal convection
US8603783B2 (en) Temperature control device with a flexible temperature control surface
KR100938374B1 (en) Thermocycling of a block comprising multiple sample
EP2061866B1 (en) Rapid thermocycler
JP4863146B2 (en) Low-mass sample block that responds quickly to temperature changes
US20080050781A1 (en) Systems and Methods for Cooling in a Thermal Cycler
JP2003511221A (en) Chemical or biological reactor
WO2003076661A1 (en) Apparatus and method for amplifying a polynucleotide
JP2002010777A (en) Reaction vessel, reactor and method for controlling temperature of reaction liquid
EP2585581B1 (en) Cell disruption
WO2008117194A1 (en) Integrated microfluidic device with sensing and control circuits
WO2000067893A1 (en) Chemical reactor
JP3851672B2 (en) DNA amplification equipment
US20060216725A1 (en) Polymer chain reaction apparatus using marangoni convection and polymer chain reaction method using the same
US11273448B2 (en) Thermocycling system, composition, and microfabrication method
WO2008117209A1 (en) Integrated microfluidic device with integrated circuit
US20080247916A1 (en) Reaction apparatus and reaction chip
JPH09322755A (en) Incubator for trace specimen
US20100210006A1 (en) Thermal Array
JP4482684B2 (en) Microfluidic device temperature controller
WO2008117210A1 (en) Integrated microfluidic device with local temperature control
JP2018029514A (en) Substance amplification device
JP2003174863A (en) Dna-amplifying device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 616912

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase