WO2001004046A1 - Method for electric power generation using fuel cell and electric power generation system using fuel cell - Google Patents

Method for electric power generation using fuel cell and electric power generation system using fuel cell Download PDF

Info

Publication number
WO2001004046A1
WO2001004046A1 PCT/JP2000/004700 JP0004700W WO0104046A1 WO 2001004046 A1 WO2001004046 A1 WO 2001004046A1 JP 0004700 W JP0004700 W JP 0004700W WO 0104046 A1 WO0104046 A1 WO 0104046A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
hydrogen
fuel cell
power generation
carbon dioxide
Prior art date
Application number
PCT/JP2000/004700
Other languages
French (fr)
Japanese (ja)
Inventor
Qingquan Su
Kazuo Kinoshita
Noboru Makita
Masao Murai
Masato Nishiwaki
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to AU58535/00A priority Critical patent/AU5853500A/en
Publication of WO2001004046A1 publication Critical patent/WO2001004046A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/52Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/586Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being a methanation reaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/0445Selective methanation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a technology for recovering the chemical energy of an organic substance in the form of hydrogen gas, and to an energy conversion technique for converting the energy into electric energy with high efficiency.
  • a system for producing hydrogen gas or hydrogen-containing gas from the digested gas obtained by methane fermentation of first-class organic waste, and supplying the produced hydrogen gas or hydrogen-containing gas to a fuel tank to generate electricity It relates to a power generation system.
  • the organic waste includes wastewater from food production, livestock wastewater, and excess sludge generated in sewage treatment plants.
  • the fuel cell system has a low hydrogen content, so that the fuel cell system is complicated and the efficiency is low. Has a problem such as low power generation utilization rate of hydrogen. Disclosure of the invention
  • the present invention provides a fuel cell from a digestion gas generated by methane fermentation of an organic matter, and particularly, a hydrogen gas or a hydrogen-containing gas suitable for a polymer electrolyte fuel cell to produce a fuel cell. It is an object of the present invention to provide a fuel cell power generation method and a fuel cell power generation system which supply the fuel cell with high efficiency and low environmental load.
  • FIGS. 1 and 2 A hydrogen production system that efficiently produces high-quality hydrogen gas or hydrogen-containing gas suitable for fuel cells using digestive gas generated by tan fermentation, and a fuel cell that uses the produced hydrogen gas or hydrogen-containing gas.
  • the present invention has been completed, which provides a fuel cell power generation method and a fuel cell power generation system that generate power. That is, the first embodiment of the present invention shown in FIG. 1 and FIG.
  • the gas treatment step includes a gas pretreatment step, a reforming step, a metamorphosis step, a carbon dioxide water absorption step and / or a carbon dioxide amine absorption step, and a meshing step.
  • the digestive gas obtained in the methane fermentation step is adsorbed and / or absorbed and removed in a gas pretreatment step in the presence of acidic gases such as hydrogen sulfide and trace amounts of hydrogen chloride.
  • methane in the pretreated gas is reformed into hydrogen and carbon monoxide by a catalytic reaction with steam.
  • the digestive gas or The fuel burns in the combustor using a part of the pre-processed gas as fuel, and the reforming heat is supplied and the reaction temperature is maintained by the obtained combustion heat.
  • carbon monoxide in the reformed gas is converted into hydrogen gas and carbon dioxide by a catalytic reaction with steam.
  • the carbon dioxide in the converted gas is brought into contact with water or an alkaline solution to be absorbed and separated.
  • the remaining carbon dioxide is brought into contact with an amine absorbing solution in the carbon dioxide amine absorbing step to be absorbed and separated.
  • the carbon dioxide water absorption step can be omitted, and carbon dioxide can be absorbed and separated only by the carbon dioxide amine absorption step.
  • the decarbonated gas obtained in the carbon dioxide amine absorption step is led to a metalation step, and carbon monoxide and carbon dioxide remaining in the gas are removed by a methanation reaction with hydrogen. .
  • the post-meta- nization gas is supplied as fuel gas, and the oxygen-containing gas is supplied as oxidant gas to the anode and power source of the fuel cell stack in the fuel cell power generation process to generate power.
  • the anodic off-gas discharged from the fuel cell process is returned to the reforming process to circulate the hydrogen in the anodic off-gas and reform methane gas again for power generation.
  • the power source off-gas discharged from the fuel cell sock can be sent to a reforming step and used as a combustion aid.
  • the second embodiment of the present invention shown in FIGS. 3 and 4 and FIGS. 5 and 6 includes a methane fermentation step of methane fermenting organic matter, and reforming a digestion gas generated in the methane fermentation step.
  • This is a method for producing hydrogen by the methane fermentation of organic materials, which comprises a gas treatment step of producing hydrogen gas by using methane.
  • the gas treatment step includes a gas pretreatment step, a reforming step, a metamorphosis step, a carbon dioxide water absorption step and / or a carbon dioxide amine absorption step, a meta- nation step, and a hydrogen purification step.
  • the digestive gas obtained in the main fermentation step is subjected to a gas pretreatment step to adsorb and / or absorb acidic gases such as hydrogen sulfide and a trace amount of hydrogen chloride.
  • a gas pretreatment step methane in the pretreated gas is reformed into hydrogen and carbon monoxide by a catalytic reaction with steam.
  • methane in the pretreated gas is reformed into hydrogen and carbon monoxide by a catalytic reaction with steam.
  • a part of the digestion gas or the gas after desulfurization is burned in a combustor as a fuel, and reforming reaction heat is supplied and the reaction temperature is maintained by the obtained combustion heat.
  • carbon monoxide in the reformed gas is converted to hydrogen gas and carbon dioxide by a catalytic reaction with steam.
  • the carbon dioxide in the converted gas is brought into contact with water or an alkaline solution to absorb and separate.
  • the residual carbon dioxide is brought into contact with the amine absorbing solution in the carbon dioxide amine absorbing step to be absorbed and separated.
  • the carbon dioxide water absorption step may be omitted, and carbon dioxide may be absorbed and separated only by the carbon dioxide amine absorption step.
  • the decarbonated gas obtained in the carbon dioxide amine absorption step is led to a metanalysis step, and carbon monoxide and carbon dioxide remaining in the gas are removed by a methanation reaction with hydrogen. Then, the gas after the metanation is led to a hydrogen purification step.
  • a hydrogen purification method using a hydrogen storage alloy is used in the hydrogen purification step. That is, in the hydrogen refining process using a hydrogen storage alloy, the water in the gas after desorption is dehumidified, then the methane and nitrogen in the gas are separated, and the hydrogen gas is purified and pressurized. In addition, a part of the hydrogen purification offgas discharged from the hydrogen purification process is discharged outside the system, and the rest is returned to the reforming process for re-reforming. ( Also, the hydrogen purification offgas discharged outside the system is burned.
  • the heat of combustion can be used as the heat of reforming in the reforming process or the heat of regeneration of the absorbent in the carbon dioxide amine absorption process.
  • the water purified and pressurized in the hydrogen purification step was used.
  • Fuel gas is used as fuel gas
  • oxygen-containing gas is used as oxidant gas to supply electricity to the anode and power source of the fuel cell stack in the fuel cell power generation process.
  • anodic off-gas discharged from the fuel cell power generation process will be supplied to the anode and recycled.
  • a third embodiment of the present invention shown in FIGS. 10 and 11 includes a methane fermentation step of methane fermenting an organic substance, and producing hydrogen gas by reforming digestive gas generated in the methane fermentation step.
  • This is a method for producing hydrogen by methane fermentation of organic matter comprising a gas treatment step.
  • the gas treatment step includes a gas pretreatment step, a reforming step, a metamorphosis step, a carbon dioxide amine absorption step, and a hydrogen purification step.
  • the digestive gas obtained in the main fermentation step is subjected to a gas pretreatment step to adsorb and / or absorb acidic gases such as hydrogen sulfide and a trace amount of hydrogen chloride.
  • a gas pretreatment step methane in the pretreated gas is reformed into hydrogen and carbon monoxide by a catalytic reaction with steam.
  • methane in the pretreated gas is reformed into hydrogen and carbon monoxide by a catalytic reaction with steam.
  • a part of the digestion gas or the gas after desulfurization is burned in a combustor as a fuel, and reforming reaction heat is supplied and the reaction temperature is maintained by the obtained combustion heat.
  • carbon monoxide in the reformed gas is converted to hydrogen gas and carbon dioxide by a catalytic reaction with steam.
  • a hydrogen purification method using a pressure swing adsorption method is used in the hydrogen purification step. That is, the carbon dioxide, carbon monoxide, methane, and nitrogen remaining in the gas after the absorption of carbon dioxide amine are adsorbed and separated by the adsorbent, and the hydrogen gas is purified. A part of the hydrogen purification offgas discharged from the hydrogen purification step is discharged outside the system, and the rest is reformed. To be reformed again. Further, the hydrogen purification offgas discharged to the outside of the system is burned, and the combustion heat can be used as the reforming heat in the reforming step or the absorbent regenerating heat in the carbon dioxide amine absorption step.
  • PSA method pressure swing adsorption method
  • the hydrogen gas purified in the hydrogen purification step is used as a fuel gas, and the oxygen-containing gas is used as an oxidant gas. Power is supplied to a power source to generate power. Also, anodic off-gas discharged from the fuel cell power generation process will be supplied to the anode and recycled.
  • a solid polymer fuel cell or a phosphoric acid fuel cell is suitable for the fuel cell used in the fuel cell power generation step.
  • the digestion gas obtained by methane fermentation of organic matter varies depending on the type of organic matter ⁇ main fermentation conditions, but in general, the main components are 60 to 70% methane, 30 to 40% carbon dioxide, and 0% hydrogen. 22%, nitrogen 0 02%, and hydrogen sulfide and hydrogen chloride as trace components in the range of tens to hundreds of ppm.
  • the hydrogen gas supplied to the fuel cell required to have a high hydrogen concentration, but also a carbon monoxide concentration as low as possible.
  • 100 ppm of carbon monoxide is required.
  • acidic gases, particularly hydrogen sulfide and hydrogen chloride poison the following various gas absorbents, adsorbents, and various catalysts in addition to the electrode catalyst of the fuel cell, the acid gas is 1 ppm or less, preferably 0.1 ppm or less. It is necessary to remove it to below ppm.
  • a gas pretreatment is performed for acidic gases such as hydrogen sulfide and hydrogen chloride.
  • a process is provided to remove by absorption and / or adsorption.
  • an adsorption tower can be provided in the preceding stage of the reforming reactor in the next step to further remove by adsorption.
  • a conversion step and a metamorphosis step or a hydrogen purification step are provided.
  • C 0 is catalyzed with steam in the conversion step to convert hydrogen and carbon dioxide to hydrogen, and the remaining C 0 is further removed in a metanalysis step or a hydrogen purification step.
  • Carbon dioxide is removed in a carbon dioxide water absorption step and / or a carbon dioxide amine absorption step and a methylation step or a hydrogen purification step. Since methane fermentation usually constitutes a system with other water treatments, such as sewage treatment, large volumes of treated water are typically discharged from the system. Since the treated water has a constant C 0 2 absorption capacity, the present invention utilizes the treated water as an absorbing solution of carbon dioxide in the gas after conversion, and more than 60% of the carbon dioxide, preferably Absorb 90% or more. The remaining carbon dioxide is absorbed and separated by the amine absorption solution in the amine absorption step. Here, the carbon dioxide water absorption step can be omitted, and carbon dioxide can be absorbed and separated only by the carbon dioxide amine absorption step.
  • the sensible heat of the high-temperature reformed gas is used for the heat of regeneration of the amide absorption liquid. Further, the exhaust heat from the heat and the cathode off-gas in the fuel cell power generation process described later can be used for the regeneration of the amine-absorbed liquid. Then, the remaining CO 2 is further removed in a metanalysis process or a hydrogen purification process.
  • the initial concentration of nitrogen in the hydrogen gas or hydrogen-containing gas supplied to the fuel cell power generation process will be about 0 to several thousand ppm, although it depends on the type of organic matter to be treated. Unless a process for separating nitrogen gas is provided, nitrogen gas will accumulate in the system and must be discharged.
  • hydrogen gas or hydrogen-containing gas to be supplied to the fuel cell power generation process is produced by constantly discharging about 10% of the anode off gas or hydrogen purification off gas in which nitrogen gas is most concentrated to the outside of the system. Maintain the nitrogen concentration within 5%.
  • the anodic off-gas or the hydrogen-purified off-gas discharged to the outside of the system is burned, and the combustion heat can be used as the reforming heat in the reforming process or the absorbent regenerating heat in the carbon dioxide amine absorption process.
  • the hydrogen consumption rate of the hydrogen-containing gas ie, the value obtained by dividing the amount of hydrogen in the anode off-gas by the amount of hydrogen in the hydrogen-containing gas
  • the hydrogen consumption rate of the hydrogen-containing gas is set to about 70%.
  • the ratio of the amount of hydrogen in the exhaust gas to the amount of hydrogen in the hydrogen-containing gas is only about 3%. Therefore, in the present invention, the utilization rate of the produced hydrogen gas in power generation reaches 95% or more.
  • water Motoga scan or hydrogen gas according to the present invention is the hydrogen concentration is very high, since the C 0 2 concentration and C 0 concentration is low extremely fuel cell has a long life, High power generation efficiency.
  • a part of the digestion gas or the pretreated gas is branched and supplied to the reforming process as a fuel gas, so that the amount of the reforming feed gas sent to the reforming process is 20 to 3 as compared with the conventional technology. 0% less.
  • the reforming feed gas is pressurized and reformed, the boosting power can be reduced by 20 to 30%. Further, since the amount of methane to be reformed is small, the reforming heat to be supplied to the reformer can be reduced by 20 to 30%.
  • the cathode off-gas can be used as an auxiliary combustion agent by a normal combustor.
  • thermal efficiency can be improved without developing a special combustor.
  • an anodic off-gas with a considerably low calorific value is used as fuel, so that acid A special burner had to be developed in order to use a power source off-gas whose elemental concentration was only about half that of air.
  • the present invention thus increases the energy efficiency of the fuel cell power generation system based on organic fermentation of organic matter, and improves the economic efficiency.
  • methane fermentation is performed on organic matter, particularly waste liquid for food production, and organic waste such as surplus sludge generated in biological treatment processes such as livestock wastewater and sewage, and hydrogen gas or hydrogen-containing gas is obtained from the obtained digestion gas. It is manufactured and supplied to the fuel cell to generate electricity, and at the same time, waste heat generated in the fuel cell power generation process is used as a heating source in the main fermentation process.
  • the conditions of the main fermentation step are not particularly limited, but medium-temperature fermentation at a temperature of 30 to 35 ° C is preferable in terms of residence time and efficiency.
  • the exhaust heat from the fuel cell power generation process is used as the heat source for heating and maintaining the temperature of the fermentation liquor.
  • a gas pretreatment step is provided for the purpose of removing hydrogen sulfide and hydrogen chloride gas to 1 Ppm or less, preferably to 0.1 ppm or less.
  • the pretreatment step is constituted by a scrubber and a dry desulfurizer. .
  • Treated water, clean water or water is used as the washing water for the scrubber.
  • an alkaline solution to which 0.05% to 5% of sodium hydroxide is added is still more suitable.
  • a vigorous soda solution is used as the washing makeup water, the acidic gas is absorbed and removed by the following neutralization reaction.
  • a small amount of hydrogen sulfide may remain in the gas after the scrubber.
  • a dry desulfurizer that adsorbs and removes hydrogen sulfide will be installed as advanced desulfurization means.
  • the desulfurizer used in the present invention is obtained by filling a container with a desulfurizing agent.
  • the shape and material of the container to be used are not particularly limited, but the shape is preferably cylindrical, and the material is preferably stainless steel.
  • oxides such as iron oxide and zinc oxide, or activated carbon, particularly activated carbon having an alkaline agent carried on the surface are suitable.
  • the desulfurizing agent is preferably in the form of granules, pellets or honeycombs. The desulfurization reaction using iron oxide is described below.
  • the absorption desulfurization step using the wet scrubber can be omitted, and the digestion gas can be desulfurized only by the adsorption desulfurization step using the dry desulfurizer.
  • a reforming step is provided, and the following steam reforming reaction (also referred to as steam reforming reaction) is performed in a reforming reactor filled with a shift catalyst.
  • the steam required for the reaction steam generated by a steam boiler using the sensible heat of the reformed gas as a heat source is added.
  • the amount of steam to be added it is preferable that the molar ratio of steam to the main stream (ie, the S / C ratio) is in the range of 2.5 to 3.5. the above Since the metamorphic reaction is an endothermic reaction, raising the reaction temperature lowers the equilibrium concentration of the main body and increases the reaction rate.However, the thermal efficiency decreases, but the reaction temperature is in the range of 700 to 800 ° C. Is desirable.
  • the reaction heat was supplied and the reaction temperature was maintained by burning a part of the digested gas or pretreated gas as fuel, and using the power source off-gas of the fuel cell power generation process as a combustion aid in the combustor. Performed by combustion heat.
  • the type and shape of the catalyst are not limited as long as it promotes the reforming reaction.Nii-, Ru-, Pt-, and Ni_Ru catalysts suitable for the above-mentioned temperature range are available. System, Ru_Pt system or a composite steam reforming catalyst thereof.
  • the reforming temperature can be improved by lowering the general reforming temperature from 700 to 800 ° C to 600 to 700 ° C. It can improve the thermal efficiency of the quality equipment and, consequently, the fuel cell power generation system as a whole, and reduce manufacturing costs.
  • a shift process is provided, and the shift reaction described below (also called a shift reaction) is performed in a shift reactor filled with a shift catalyst.
  • the steam component in the reformed gas is used as steam required for the reaction. Since the above transformation reaction is an exothermic reaction, lowering the reaction temperature lowers the equilibrium concentration of carbon monoxide, but conversely lowers the reaction rate. A range of 0 to 250 ° C is desirable.
  • the type and shape of the catalyst are not limited as long as it promotes the shift reaction. Examples of the catalyst suitable for the above temperature range include a Cu—Zn shift catalyst.
  • a carbon dioxide water absorption process is provided to remove 60% or more, preferably 90% or more, of carbon dioxide in the gas after selective oxidation using treated water discharged from the main fermentation system or sewage treatment system.
  • the absorption of carbon dioxide by water consists of two steps: the dissolution of carbon dioxide in water and the transfer of dissolved carbon dioxide to the carbonate group. The absorption reaction involved is described below.
  • the temperature of the treated water in order to increase the carbon dioxide absorption capacity, can be lowered by cooling, and the pH can be increased by adding an alkali agent.
  • a carbon dioxide amine absorption step is provided, and the hydrogen-containing gas obtained in the previous step or the anodic gas discharged in the next fuel cell power generation step is led to an absorption tower to be brought into contact with the absorption liquid, thereby obtaining C 2. 0 2 absorption separation.
  • a thermocarbonated realm absorbing solution or an alcohol-absorbing solution is suitable, but in the present invention, an alkanolamine absorbing solution having a strong absorption capacity is still more preferable.
  • the absorbent include monoethanolamine (MEA), jetanolamine (DEA), and methylgenoaluminamine (MDEA). The adsorption reaction with the alkanolamine absorption solution is shown below.
  • the absorbent liquid is absorbed saturated absorption solution was subjected to regeneration at a temperature of the transfer to 1 0 0 ⁇ 1 5 0 ° C to the regenerator, as well as recovering C_ ⁇ 2 gas
  • the absorbing solution after regeneration Return to absorption tower.
  • the steam collected in the steam boiler in the reforming process is used as a heat source necessary to heat the absorbent during regeneration.
  • the exhaust heat and cathode off-gas of the fuel cell soak in the fuel cell power generation process can be used for the regeneration of the amide absorption liquid.
  • a metanation step is provided for the purpose of reducing the carbon monoxide in the gas after the shift to 10 ppm or less, preferably 1 ppm or less. That is, the following methanation reaction (also referred to as metanation reaction) is performed in a methanation reactor filled with a methanation catalyst.
  • the reaction temperature is preferably in the range of 200 to 400 ° C. .
  • the catalyst promotes the metamorphic reaction, both the type and the shape are limited.
  • nickel, iron and ruthenium methanation catalysts are suitable.
  • a hydrogen purification method using a hydrogen storage alloy or a hydrogen purification method using a pressure-casing adsorption method is used.
  • H 2 S and HC 1 are each 10 ppm or less, preferably 1 ppm or less, more preferably 0.1 ppm or less, and C 0 is 10 ppm or less, preferably 1 ppm. below, C 0 2, H 2 0, respectively 1 0 0 ppm or less, preferably to Metaneshiyon after gas has been divided, respectively below 1 0 ppm, provided a higher hydrogen purification E by hydrogen occlusion metal base, the gas Into the vessel containing the hydrogen-absorbing alloy, occludes the hydrogen while cooling it into the hydrogen-absorbing alloy, and separates N 2 and the main body from the hydrogen.
  • the hydrogen gas After purging the gas, methane gas and residual hydrogen gas as hydrogen purification off-gas, and then heating the hydrogen storage alloy to release hydrogen, the hydrogen gas is pressurized and stored in the hydrogen tank, or the hydrogen tank is Via fuel cell Supplied to the process. Nitrogen and mains in the released and purified hydrogen gas are respectively reduced to less than 100 ppm, and the hydrogen concentration reaches 99.9% or more. Any hydrogen storage alloy may be used as long as it has a large hydrogen storage capacity.However, a low-level exhaust heat of about 70 ° C generated from a phosphoric acid fuel cell or a polymer electrolyte fuel cell during hydrogen release is used.
  • a hydrogen storage alloy having a storage / release characteristic of 1 to 10 atm, preferably 3 to 7 atm at a hydrogen release pressure of 70 ° C is desirable so that it can be used as a heat source for heating.
  • the alloy include a LaNi5 alloy and a TiFe alloy. The hydrogen storage / release reaction by the La Ni 5 alloy is described below.
  • Hydrogen storage reaction La Ni 5 + 3 H 2 ⁇ La Ni 5 H 6 + heat release (13)
  • Hydrogen release reaction La Ni 5 H 6 ⁇ La Ni 5 + 3 H 2 + heat absorption (1 4)
  • the hydrogen storage reaction is a heat release reaction, so when the hydrogen partial pressure is constant, especially when the hydrogen partial pressure is low, the hydrogen storage alloy is cooled during hydrogen storage to store the hydrogen. Need to be kept low. The lower the hydrogen storage temperature is, the more advantageous it is. However, a temperature of 12 to 32 ° C, which can be easily maintained by cooling water, is preferable.
  • the hydrogen release reaction is an endothermic reaction as shown in the above equation (14), in order to increase the pressure of the released hydrogen, it is necessary to heat the hydrogen storage alloy at the time of releasing hydrogen to raise the release temperature.
  • the cooling water around 70 ° C. of the fuel cell pack is used, and in the embodiment in which the fuel cell power generation step is not provided.
  • the hydrogen storage alloy is housed in a heat exchanger type container provided with a heat exchange means such as a jacket tube for heat exchange, and the hydrogen storage alloy is used for continuously absorbing and releasing hydrogen. At least two storage containers are provided and switched by a solenoid valve.
  • carbon dioxide to ⁇ Mi emission absorption after gas provided the hydrogen purification step by pressure a swing adsorption method, the residual in the gas C0 2, C_ ⁇ , methane and nitrogen The gas is adsorbed and removed by the adsorbent to purify hydrogen. That, C0 2 in the gas leads to the gas in the gas adsorption tower, C_ ⁇ adsorbs separated methane and nitrogen is contacted with the adsorbent.
  • zeolite molecular sieves or carbon molecular sieves or activated carbon or activated alumina is suitable.
  • Low adsorption temperature Although very advantageous, a temperature range of 12 to 40 ° C, where temperature control is relatively easy, is preferred. Needless to say, the higher the gas pressure is, the more advantageous it is. However, in the present invention, a low pressure range of 10 atm or less is sufficient.
  • the adsorbent When the adsorbent is saturated by adsorption, desorption is performed under normal pressure or by a vacuum pump, and the desorbed gas is discharged from the adsorption tower as a hydrogen purification off-gas, and the adsorbent is regenerated. As the desorption pressure is reduced by the vacuum pump, the pressure difference between the adsorption pressure and the desorption pressure increases, thereby improving the processing capacity of the adsorption tower. On the other hand, the power consumption of the vacuum pump increases, so the desorption pressure becomes 1 The range of 330 to 130 Pa (100 to LOT orr) is desirable.
  • a packed bed of an adsorbent such as activated alumina or silica gel suitable for adsorbing the water vapor may be provided at a stage preceding the adsorption tower.
  • the shift process and the carbon dioxide ⁇ Mi emission absorption step is provided between the hydrogen purification step by pressure a swing adsorption method, 6 0 C_ ⁇ 2 included in the shift after gas % or more, preferably after absorption separation over 90% in the Amin absorption step, residual ⁇ 0 2 and 00, by removing the methane and nitrogen in the hydrogen purification process by the pressure sweep rate ranging adsorption, hydrogen Increase recovery rate.
  • the modified after gas directly to the absorption load of C 0 2 is large, there is a problem that the hydrogen recovery rate in hydrogen purification step is greatly reduced.
  • a part of the hydrogen purification offgas discharged from the hydrogen purification step is discharged to the outside of the system, and the rest is returned to the reforming step to perform reforming.
  • the offgas is burned and the heat of combustion can be used as the heat of reforming in the reforming process or the heat of regeneration of the absorbent in the carbon dioxide amine absorption process.
  • the temperature of the hydrogen gas or hydrogen-containing gas produced in the gas treatment step is relatively low, the hydrogen concentration is high, and the content of carbon monoxide is low, so that the fuel cell used is relatively low.
  • a phosphoric acid fuel cell operating at a temperature, particularly a polymer electrolyte fuel cell, is suitable. The cell reactions in the case of a phosphoric acid or solid polymer fuel cell are described below.
  • the energy efficiency of the entire system can be improved by using the hot water of the stack cooling as a heating source for the main fermentation liquid.
  • 100% of the hydrogen gas sent to the anode electrode room in the gas tank was consumed instead of 100%. It is common practice to leave about a% and discharge it from the stack as anode off-gas.
  • the anodic off-gas can be recycled to the fuel cell stack as it is or after reforming methane again in the reforming step, there are features such as high hydrogen use efficiency and high fuel cell power generation efficiency.
  • FIG. 1 is an explanatory diagram of a fuel cell power generation system according to a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of the fuel cell power generation system according to the first embodiment of the present invention.
  • FIG. 3 is an explanatory diagram of a hydrogen production system according to a second embodiment of the present invention.
  • FIG. 4 is an explanatory diagram of the hydrogen production system according to the second embodiment of the present invention.
  • FIG. 5 is an explanatory diagram of a fuel cell power generation system according to a second embodiment of the present invention.
  • FIG. 6 is an explanatory diagram of a fuel cell power generation system according to a second embodiment of the present invention.
  • FIG. 7 is a basic configuration diagram of the fuel cell power generation system according to the first embodiment of the present invention.
  • FIG. 8 is a basic configuration diagram of a hydrogen production system according to a second embodiment of the present invention.
  • FIG. 9 is a basic configuration diagram of a fuel cell power generation system according to a third embodiment of the present invention.
  • FIG. 10 is an explanatory diagram of a hydrogen production system according to a third embodiment of the present invention.
  • FIG. 11 is an explanatory diagram of a fuel cell power generation system according to a third embodiment of the present invention.
  • FIG. 12 is a basic configuration diagram of a hydrogen production system according to a fourth embodiment of the present invention.
  • FIG. 13 is a basic configuration diagram of a fuel cell power generation system according to a fifth embodiment of the present invention.
  • FIGS. 1 to 13 An embodiment will be described with reference to FIGS.
  • the same or corresponding steps or members are denoted by the same reference numerals, and redundant description will be omitted.
  • FIG. 1 is a schematic diagram showing a fuel cell power generation system according to a first embodiment of the present invention.
  • the organic matter a is fermented in the methane fermentation step A, and the obtained digested gas b is processed in the gas treatment step B to produce the hydrogen-containing gas c. Then, it is supplied to the fuel cell power generation process C to generate power.
  • the gas treatment step B comprises: a gas pretreatment step 1 for adsorbing and / or absorbing and removing acidic gases such as hydrogen sulfide and hydrogen chloride in the digested gas obtained in the main fermentation step; A reforming step 2 in which the gas is reformed into hydrogen and carbon monoxide by a catalytic reaction with steam, and carbon monoxide in the reformed gas is converted into hydrogen gas and carbon dioxide by a catalytic reaction with steam.
  • a gas pretreatment step 1 for adsorbing and / or absorbing and removing acidic gases such as hydrogen sulfide and hydrogen chloride in the digested gas obtained in the main fermentation step
  • a reforming step 2 in which the gas is reformed into hydrogen and carbon monoxide by a catalytic reaction with steam, and carbon monoxide in the reformed gas is converted into hydrogen gas and carbon dioxide by a catalytic reaction with steam.
  • Metamorphosis step 3 for metamorphosis carbon dioxide water absorption step 4 for bringing carbon dioxide in the gas after conversion into contact with water or an alkaline solution to absorb and separate it, and contacting residual carbon dioxide with the amine absorption liquid And carbon dioxide remaining in the decarbonated gas obtained in the carbon dioxide amine absorption step 5 and the carbon dioxide are subjected to a methanation reaction with hydrogen.
  • Removing meta-metallization step 6 There.
  • the gas after the reforming step 2 is sent to the shift step 3 through the boiler 11.
  • FIG. 2 is a schematic diagram showing the fuel cell power generation system according to the first embodiment of the present invention in which the carbon dioxide water absorption step 4 is omitted.
  • the hydrogen-containing gas c is supplied to the anode, and the oxygen-containing gas (05) is supplied to the cathode. Then, a part of the anode off-gas (04) is supplied to the reforming step 2 to be circulated and used, and the rest is exhaust gas (04). 8) is discharged as.
  • the power source off-gas (06) is discharged from the fuel cell power generation process C and then sent to the reforming process 2 to be used as a combustion aid.
  • the waste heat of the fuel cell (07) when the fuel cell is cooled is sent to the methane fermentation process A, where it is used as a heating source for the main fermented liquid.
  • FIG. 3 is a basic configuration diagram of the hydrogen production system according to the second embodiment of the present invention.
  • an organic substance a is fermented in a methane fermentation step A, and an obtained digestion gas b is processed in a gas treatment step B to produce a hydrogen-containing gas c.
  • the gas treatment step B comprises: a gas pretreatment step 1 for adsorbing and / or absorbing and removing acidic gases such as hydrogen sulfide and hydrogen chloride in the digested gas obtained in the main fermentation step; A reforming step 2 in which the gas is reformed into hydrogen and carbon monoxide by a catalytic reaction with steam, and hydrogen gas and carbon dioxide by a catalytic reaction of carbon monoxide in the reformed gas with steam.
  • Metamorphosis step 3 for converting to carbon
  • carbon dioxide water absorption step 4 for bringing carbon dioxide in the gas after conversion into contact with water or an alkaline solution to absorb and separate, and residual carbon dioxide as an amine absorption liquid.
  • the method includes a hydrogen purification step 7 using a hydrogen-absorbing alloy in which methane and nitrogen in the gas after separation are separated from methane and nitrogen in the gas after purification, and hydrogen gas is purified and pressurized.
  • the gas after the reforming step 2 is sent to the shift step 3 through the boiler 11. Part of the off-gas (09) in the hydrogen purification step 7 is returned to the reforming step 2, and the rest is discharged as exhaust gas (08).
  • FIG. 4 shows a hydrogen production system according to a second embodiment of the present invention in which the carbon dioxide water absorption step 4 is omitted.
  • FIG. 4 shows a hydrogen production system according to a second embodiment of the present invention in which the carbon dioxide water absorption step 4 is omitted.
  • FIG. 5 is a schematic diagram showing a fuel cell power generation system according to the second embodiment of the present invention.
  • the organic matter a is fermented in the methane fermentation step A, and the obtained digested gas b is processed in the gas treatment step B to produce hydrogen gas c.
  • Power is supplied to fuel cell power generation process C to generate electricity.
  • the gas treatment step B is the same as the gas treatment step shown in FIG.
  • the hydrogen gas c purified and pressurized in the hydrogen purification step 7 is used as fuel, and the oxygen-containing gas is supplied as oxidant gas to the anode and power source of the fuel cell battery in the fuel cell power generation step C to generate electricity. I do.
  • FIG. 6 is a schematic diagram showing a fuel cell power generation system according to a second embodiment of the present invention in which the carbon dioxide water absorption step 4 is omitted.
  • FIG. 10 is a basic configuration diagram of the hydrogen production system according to the third embodiment of the present invention.
  • an organic substance a is fermented in a methane fermentation step A, and the obtained digested gas b is processed in a gas treatment step B to produce a hydrogen-containing gas c.
  • the gas treatment step B comprises: a gas pretreatment step 1 for adsorbing and / or absorbing and removing acidic gases such as hydrogen sulfide and hydrogen chloride in the digested gas obtained in the main fermentation step; A reforming step 2 in which the main component is reformed into hydrogen and carbon monoxide by a catalytic reaction with water vapor, and carbon monoxide in the reformed gas Metamorphosis process that converts to hydrogen gas and carbon dioxide by catalytic reaction with steam
  • carbon dioxide amine absorption step 5 in which carbon dioxide in the gas after conversion is brought into contact with the amine absorption liquid to absorb and separate it, and remaining in the decarbonated gas obtained in the carbon dioxide amine absorption step 5.
  • a hydrogen purification step 7 in which carbon monoxide, carbon dioxide, methane, and nitrogen are adsorbed and separated by an adsorbent.
  • the gas after the reforming step 2 is sent to the shift step 3 through the boiler 11.
  • a part of the off-gas (09) of the hydrogen purification step 7 is returned to the reforming step 2, and the rest is discharged as an exhaust gas (08).
  • FIG. 11 is a schematic diagram showing a fuel cell power generation system according to a third embodiment of the present invention.
  • the organic substance a is fermented in the main fermentation step A, and the obtained digested gas b is processed in the gas processing step B to produce hydrogen gas c. Then, it is supplied to the fuel cell power generation process C to generate power.
  • the gas treatment step B is the same as the gas treatment step shown in FIG.
  • the hydrogen gas c purified in the hydrogen purification step 7 is used as fuel, and the oxygen-containing gas is supplied as an oxidant gas to the anode and cathode of the fuel cell unit in the fuel cell power generation step C, respectively.
  • the oxygen-containing gas is supplied as an oxidant gas to the anode and cathode of the fuel cell unit in the fuel cell power generation step C, respectively.
  • the anode off-gas (04) discharged from the fuel cell power generation process C is supplied to the anode and recycled.
  • the power source off-gas (06) is discharged from the fuel cell power generation process C and then sent to the reforming process 2 where it is used as a combustion aid.
  • the waste heat (07) of the fuel cell when the smoke is cooled is sent to the main fermentation step A, where it is used as a heating source for the methane fermentation liquor.
  • the stack waste heat (07) is also sent to the hydrogen purification step 7, where it is effectively used.
  • FIG. 7 is a basic configuration diagram of the fuel cell system according to the first embodiment of the present invention.
  • Organic matter a is fermented in methane fermentation step A to produce digestive gas b, Store in digestive gas holder 101.
  • the digestive gas b is sent to the scrano 11 in the pretreatment step 1 by the digestive gas processor 102, where the digestive gas b is brought into contact with the washing water 13 to remove the hydrogen sulfide and hydrogen chloride in the digestive gas.
  • other acid gases should be removed below 10 ppm, preferably below 1 ppm.
  • the washing water 13 is circulated to the scrano ⁇ ; 1 1 by the circulation pump 1 2, but a part of the washing water 13 is constantly withdrawn as the washing waste liquid 14, and at the same time, the same amount of new washing makeup water 15 Replenish.
  • 0.05 to 5% of viscous soda is added to the supplied cleaning and replenishing water 15.
  • the cleaning gas 16 that has exited the scrubber 11 is branched, and the reformed feed gas 17 is sent to the dry desulfurizer 19.
  • the fuel gas 18 is sent to the burner 23 b of the reforming step 2.
  • H 2 S is reduced to 0.1 ppm or less, preferably to 0.01 ppm or less in the dry desulfurizer 19, and the reformed feed gas is pressurized to a pressure of 10 atm or less by the compressor 21.
  • the reforming process 2 After being sent to the reforming process 2 and preheated by the combustion exhaust gas 25 b in the heat exchanger 22, it is combined with the reforming steam 27 generated in the steam boiler 26 to form the reformer 23. It enters the reforming catalyst packed bed 23a.
  • methane is reformed into hydrogen and carbon monoxide by a reforming reaction with steam. Since the reforming reaction is an endothermic reaction at 700 to 800 ° C.
  • the fuel gas 18 and the oxygen-containing gas 25 a are burned by the parner 23 b. And supplying the reaction heat.
  • the reformed high-temperature gas 24a is introduced into the steam boiler 26 to generate the reforming steam 27 and the absorbing liquid regeneration steam 28a in the subsequent carbon dioxide amine absorption step.
  • the reformed gas 24 b cooled to 150 to 200 ° C. is led to the shift reactor 31 of the shift step 3, and carbon monoxide and water vapor are turned to 200 to 250 ° C. Is converted to carbon dioxide and hydrogen by the catalytic reaction in step, and the concentration of carbon monoxide is reduced to 1% or less, preferably 0.5% or less.
  • a heat exchanger may be provided to exchange heat between the post-transformation gas 32 and the condensate 28b to cool the post-transformation gas 32 and preheat the condensate 28b.
  • C 0 2 absorption raw water 4 3 sent by the absorption column 4 1 transformer after gas 3 2 and the liquid feed pump 4 4 to contacting Therefore, the C 0 2 gas 3 2 6 0% or more, preferably Absorb 90% or more, then discharge out of the system together with water 55 (carbonated water) after absorption.
  • the post-regeneration gas is brought into contact with the post-regeneration absorbent 53a to reduce carbon dioxide to 0.5% or less, preferably 0.1% or less, more preferably 0.1% or less. 0 Remove to 1% or less.
  • acidic gases such as hydrogen sulphate and hydrogen chloride are further removed in this step.
  • the absorbed liquid 53b after absorption is led to the regeneration tower 51b via the heat exchanger 54a, and heated to 100 to 150 ° C by the steam 28a in the heat exchanger 54c. Then regenerate the absorbing solution and collect carbon dioxide 57.
  • the condensate 28 b is returned from the heat exchanger 54 c to the steam boiler 26.
  • the absorbent 53a is sent to the absorption tower 51a again by the liquid sending pump 55 via the heat exchanger 54a and the gas cooler 54b.
  • Reference numeral 56b denotes an absorption replenisher.
  • the fuel gas is supplied to the anode electrode room of the fuel cell stack 81 of the fuel cell power generation process C as fuel gas 85a through the airflow 67, and the air 82 is supplied to the cathode 81 of the stack 81 by the air blower 83. Power is supplied to the room to generate electricity.
  • Reference numeral 8 8 is a generated power output.
  • the power source gas 84 discharged from the power source chamber of the stack 81 can be used as the combustion aid 25a in the reforming step 2.
  • About 10% of the anode off-gas 86 discharged from the anode electrode chamber of the stack 81 is discharged to the system as exhaust gas (08), and the remaining 90% is discharged to the reforming process 2
  • the methane is returned to the suction port of compressor 21 and reformed again by methane generated by the meta-ion and methane that could not be reformed by the reforming reaction.
  • the cooling water outlet 87a of the stack 81 is circulated to the methane fermentation tank A1 of the methane fermentation step A and the hydrogen purification step 7, and heat from the waste heat is effectively used by heat exchange. Then, the stack cooling water after the heat exchange returns to the cooling water inlet 87 b of the stack 81.
  • FIG. 8 is a basic configuration diagram of a hydrogen production system according to a second embodiment of the present invention.
  • the gas 63 after exiting the metalation reactor 62 described in the first embodiment passes through the heat exchanger 61, and passes through the gas cooler 64, the gas-water separator 65, and the dehumidifier 66. After the water in the gas is removed to 100 ppm or less, preferably 100 ppm or less, it is sent to the hydrogen purification step 7.
  • the dehumidifier used here is preferably one filled with a moisture adsorbent, for example, one filled with activated alumina or silica gel.
  • the hydrogen refining process 7 includes at least two series of hydrogen storage alloy containers 7 1 a and 7 lb, and at least one series of hydrogen tanks 72.
  • the two series of hydrogen storage alloy containers perform hydrogen storage and release, respectively.
  • the switching between hydrogen storage and release is performed by the crude hydrogen inlet solenoid valves 74a and 74b, the purified hydrogen outlet solenoid valves 75a and 75b, methane, nitrogen outlet solenoid valves 76a, 76b.
  • the alloy container 71a performs the hydrogen releasing operation
  • the alloy container 7lb performs the hydrogen absorbing operation will be described.
  • the solenoid valve 74b is opened, and the gas 63 after the metanalysis is introduced into the alloy container 71b to absorb hydrogen at a temperature of 12 to 35 ° C. Cooling water 78a is introduced into the jacket of the alloy container 71b to cool and remove the heat generated when storing hydrogen. After saturation storage, close solenoid valve 74 b and open solenoid valve 76 b to store methane, nitrogen, residual hydrogen, and hydrogen containing trace amounts of impurity gas in the voids in the alloy packed bed of alloy container 71 b The purification process off-gas 73 is discharged.
  • the solenoid valves 74a and 76a are closed and the solenoid valve 75a is open.
  • the steam 79a of 120 ° C or higher is applied to the jacket of the alloy container 71a.
  • the hydrogen absorbed by the hydrogen storage alloy is introduced and released, and the released purified hydrogen 77a is supplied to a demand destination such as a fuel cell via a hydrogen tank 72.
  • the purity and pressure of the purified hydrogen gas 77a and 77b reach 99.9% or more and 2 atm or more, respectively.
  • FIG. 9 is a basic configuration diagram of a fuel cell power generation system according to a third embodiment of the present invention.
  • the purified hydrogen gas 77 b described in the second embodiment is supplied to the anode electrode room of the fuel cell battery 81 of the fuel cell power generation step C to generate power.
  • the anode off-gas 86 flowing out of the anode electrode chamber of the stack 81 is circulated to the anode chamber of the stack 81 via the ejector 85.
  • the cooling water 87a of the stack 81 is introduced into the jacket of the alloy container # 1a in the hydrogen purification step 7, and the hydrogen storage alloy that has absorbed the hydrogen is heated to release purified hydrogen 77a.
  • the stack cooling water 87 b exiting the jacket of the alloy container 7 la is circulated to the stack 81 in order to cool the stack 81 again.
  • the cooling water 87 a (outlet), ie, the hydrogen storage alloy container, that exited the fuel cell battery 81 was prepared.
  • the temperature of the hot water at the jacket inlet of 71 a is 75 and the temperature of the stack cooling water 87 b (inlet), that is, the temperature of the hot water at the jacket outlet of the hydrogen storage alloy container 71 a is 70 ° C. It may be.
  • FIG. 12 is a basic configuration diagram of a hydrogen production system according to a fourth embodiment of the present invention.
  • the post-amin absorption gas 52 exiting the amine absorption tower 51 a described in the first embodiment is sent to the hydrogen purification step 7.
  • the hydrogen purification step 7 comprises at least two lines of adsorption towers and at least one line of hydrogen tanks 72.
  • Adsorption tower sequentially gas components other than hydrogen in the 3 series in this embodiment, i.e., C 0 2, CO, adsorption and desorption of such as methane and nitrogen performed.
  • Purified hydrogen 77 coming out of the adsorption tower 71 is supplied to a demand destination such as a fuel cell via a hydrogen tank 72.
  • the hydrogen concentration of the purified hydrogen gas 77 reaches 99% or more, preferably 99.9% or more, and the C0 concentration drops to 10 ppm or less, preferably 1 ppm or less.
  • FIG. 13 is a basic configuration diagram of a fuel cell power generation system according to a fifth embodiment of the present invention.
  • the purified hydrogen gas 77 described in Example 4 was used for fuel cell power generation.
  • Power is supplied to the anode room of the fuel cell stack 81 in step C to generate electricity.
  • the anode off-gas 86 that has flowed out of the anode electrode room of the storage 81 is circulated to the anode room of the stack 81 via the ejector 85.
  • a blower or a compressor can be used in place of the ejector 85, and the cooling water 87a of the stack 81 is circulated to the methane fermentation tank A1 of the methane fermentation step A to exchange heat. This heats the methane fermentation liquor to effectively use the stack waste heat.
  • the stack cooling water after the heat exchange returns to the cooling water inlet 87 b of the stack 81.
  • a high-quality hydrogen gas or a hydrogen-containing gas suitable for fuel cell power generation is produced by subjecting organic matter to methane fermentation and reforming the generated digestive gas to produce a fuel cell. Power generation can be performed efficiently.
  • the present invention relates to an energy conversion technique for converting chemical energy of combustibles into electric energy with high efficiency.
  • INDUSTRIAL APPLICABILITY The present invention can be used for a system for producing methane gas or hydrogen-containing gas from obtained digestion gas by methane fermentation of organic waste such as organic waste liquid or organic slurry having a relatively high concentration, and It can also be used in power generation systems that generate electricity by using the produced hydrogen gas or hydrogen-containing gas as fuel gas for fuel cells.

Abstract

A process for producing hydrogen from a treated gas which is obtained by subjecting a combustible material to methane fermentation to generate a gas, and treating the gas in a reforming step (2) and a modifying step (3), characterized in that the gas treated in a reforming step (2) and a modifying step (3) is subjected to a step (5) of absorbing carbon dioxide and an amine, and then a methanation step (6), or in that the gas treated in steps (2) and (3) is subjected to, in place of the methanation step (6), a hydrogen purification step of separating carbon monoxide, carbon dioxide, methane and nitrogen by adsorption. The hydrogen produced by the above process can be suitably used for a fuel cell, in particular, a solid polymer type fuel cell.

Description

明 細 書 燃料電池発電方法及び燃料電池発電システム 技術分野  Description Fuel cell power generation method and fuel cell power generation system Technical field
本発明は、 有機物のもつ化学エネルギーを水素ガスの形で回収する技 術、 さらには高効率で電気エネルギーに変換する、 エネルギー変換技術 に係り、 特に比較的高濃度の有機性廃液や有機物スラ リ一等の有機性廃 棄物をメタン発酵し、 得られた消化ガスから水素ガス又は含水素ガスを 製造するシステム、 さらには製造した水素ガス又は含水素ガスを燃料^ 池に供給して発電する発電システムに関するものである。 ここで、 有機 性廃棄物には食品製造廃液、 畜産排水や下水処理場等で発生する余剰汚 泥などが含まれる。 - 背景技術  The present invention relates to a technology for recovering the chemical energy of an organic substance in the form of hydrogen gas, and to an energy conversion technique for converting the energy into electric energy with high efficiency. A system for producing hydrogen gas or hydrogen-containing gas from the digested gas obtained by methane fermentation of first-class organic waste, and supplying the produced hydrogen gas or hydrogen-containing gas to a fuel tank to generate electricity It relates to a power generation system. Here, the organic waste includes wastewater from food production, livestock wastewater, and excess sludge generated in sewage treatment plants. -Background technology
近年、 環境保護の意識が高まる中、 有機性廃棄物のメタン発酵処理等 で得られた消化ガス又はバイォガスを含水素ガスに改質して燃料電池 を用いて発電する試みがなされている。 例えば、 消化ガスを改質して水 素含有率が 7 0〜 8 0 %の含水素ガスを製造し、 これを燃料ガスとして 燃料電池のアノードに、 そして、 空気を酸化剤ガスとして燃料電池の力 ソー ドにそれぞれ供給して発電する技術が知られている。 ここでは、 改 質工程の加熱源はァノー ドオフガスと、 力ソー ドオフガス又は空気を燃 焼器で燃焼した燃焼熱によってまかなわれている。  In recent years, with increasing awareness of environmental protection, attempts have been made to convert digestive gas or biogas obtained by methane fermentation of organic waste into hydrogen-containing gas to generate electricity using a fuel cell. For example, a digestive gas is reformed to produce a hydrogen-containing gas having a hydrogen content of 70 to 80%, and this is used as a fuel gas at the anode of the fuel cell, and air is used as an oxidant gas at the fuel cell. There is known a technology for generating electricity by supplying power to each power source. Here, the heat source for the reforming process is provided by the anode off gas and the combustion heat generated by burning the power source off gas or air in the combustor.
しかしながら、 前記従来技術では、 燃料ガスの水素含有率が低いため に燃料電池システムは複雑になり効率が低い問題や、 発電に有効利用さ れる水素の発電利用率が低い等の問題を抱えている。 発明の開示 However, in the above-mentioned conventional technology, the fuel cell system has a low hydrogen content, so that the fuel cell system is complicated and the efficiency is low. Has a problem such as low power generation utilization rate of hydrogen. Disclosure of the invention
上述の事情に鑑み、 本発明は、 有機物をメタン発酵して発生した消化 ガスから燃料電池、 と りわけ固体高分子型燃料電池に適した水素ガス又 は含水素ガスを製造して燃料電池に供給し、 高効率でしかも環境負荷の 少ない燃料電池発電方法及び燃料電池発電システムを提供するこ とを 課題とする。  In view of the above-mentioned circumstances, the present invention provides a fuel cell from a digestion gas generated by methane fermentation of an organic matter, and particularly, a hydrogen gas or a hydrogen-containing gas suitable for a polymer electrolyte fuel cell to produce a fuel cell. It is an object of the present invention to provide a fuel cell power generation method and a fuel cell power generation system which supply the fuel cell with high efficiency and low environmental load.
前記課題を解決すベく本発明者らは鋭意研究を重ねた結果、 図 1 と図 2、 図 3 と図 4、 図 5 と図 6、 及び図 1 0 と図 1 1 に示す有機物のメ タ ン発酵によって発生した消化ガスを燃料電池に適した高品質の水素ガ ス又は含水素ガスを効率よく製造する水素製造システムと、 製造した水 素ガス又は含水素ガスを用いて燃料電池を用いて発電する、 燃料電池発 電方法及び燃料電池発電システムを提供する本発明の完成に至った。 即ち、 図 1 と図 2に示す本発明の第 1の態様は、 有機物をメタン発酵 させるメタン発酵工程と、 該メタン発酵工程にて生成した消化ガスを改 質して水素ガスを製造するガス処理工程と、 燃料電池発電工程とからな る有機物のメ夕ン発酵による燃料電池発電方法である。 前記ガス処理ェ 程は、 ガス前処理工程と、 改質工程と、 変成工程と、 二酸化炭素水吸収 工程及び/又は二酸化炭素ァミ ン吸収工程と、 メ夕ネ一シヨン工程とか らなる。  In order to solve the above-mentioned problems, the present inventors have conducted intensive studies and as a result, have found that organic materials shown in FIGS. 1 and 2, FIGS. 3 and 4, FIGS. 5 and 6, and FIGS. 10 and 11. A hydrogen production system that efficiently produces high-quality hydrogen gas or hydrogen-containing gas suitable for fuel cells using digestive gas generated by tan fermentation, and a fuel cell that uses the produced hydrogen gas or hydrogen-containing gas. The present invention has been completed, which provides a fuel cell power generation method and a fuel cell power generation system that generate power. That is, the first embodiment of the present invention shown in FIG. 1 and FIG. 2 includes a methane fermentation step in which organic matter is methane fermented, and a gas treatment in which the digestion gas generated in the methane fermentation step is reformed to produce hydrogen gas. This is a fuel cell power generation method based on main fermentation of organic matter, comprising a process and a fuel cell power generation process. The gas treatment step includes a gas pretreatment step, a reforming step, a metamorphosis step, a carbon dioxide water absorption step and / or a carbon dioxide amine absorption step, and a meshing step.
詳しくは、 前記メタン発酵工程で得られた消化ガスをガス前処理工程 にて硫化水素及び微量の塩化水素等の酸性ガスを吸着及び/又は吸収 除去する。 次いで、 改質工程にて前処理後ガス中のメタンを水蒸気との 触媒反応により水素と一酸化炭素に改質する。 ここで、 前記消化ガス又 は前処理後ガスの一部を燃料として燃焼器で燃焼し、 得られた燃焼熱に よって改質反応熱の供給と反応温度の維持を行う。 そして、 変成工程に て改質後ガス中の一酸化炭素を水蒸気との触媒反応によ り水素ガスと 二酸化炭素に変成する。 次いで、 二酸化炭素水吸収工程にて変成後ガス 中の二酸化炭素を水又はアル力 リ性溶液と接触させて吸収分離する。 次 いで、 二酸化炭素ァミ ン吸収工程にて残留の二酸化炭素をアミ ン吸収液 と接触させて吸収分離する。 ここで、 前記二酸化炭素水吸収工程を省略 し、 二酸化炭素を二酸化炭素アミ ン吸収工程だけで吸収分離することも 出来る。 次いで、 前記二酸化炭素ァミ ン吸収工程で得られた脱炭酸後ガ スをメタネ一シヨ ン工程に導きガス中残留の一酸化炭素と二酸化炭素 を水素とメタン化反応させることによ り除去する。 そして、 メタネーシ ヨン後ガスを燃料ガスとして、 また、 含酸素ガスを酸化剤ガスとしてそ れぞれ燃料電池発電工程燃料電池スタ ックのアノー ドと力ソー ドに供 給して発電する。 また、 燃料電池工程から排出されるアノー ドオフガス を改質工程に返送し、 アノー ドオフガス中の水素を循環すると共に、 メ タンガスを再度改質して発電に供する。 More specifically, the digestive gas obtained in the methane fermentation step is adsorbed and / or absorbed and removed in a gas pretreatment step in the presence of acidic gases such as hydrogen sulfide and trace amounts of hydrogen chloride. Next, in the reforming step, methane in the pretreated gas is reformed into hydrogen and carbon monoxide by a catalytic reaction with steam. Where the digestive gas or The fuel burns in the combustor using a part of the pre-processed gas as fuel, and the reforming heat is supplied and the reaction temperature is maintained by the obtained combustion heat. Then, in the shift process, carbon monoxide in the reformed gas is converted into hydrogen gas and carbon dioxide by a catalytic reaction with steam. Next, in the carbon dioxide water absorption step, the carbon dioxide in the converted gas is brought into contact with water or an alkaline solution to be absorbed and separated. Next, the remaining carbon dioxide is brought into contact with an amine absorbing solution in the carbon dioxide amine absorbing step to be absorbed and separated. Here, the carbon dioxide water absorption step can be omitted, and carbon dioxide can be absorbed and separated only by the carbon dioxide amine absorption step. Next, the decarbonated gas obtained in the carbon dioxide amine absorption step is led to a metalation step, and carbon monoxide and carbon dioxide remaining in the gas are removed by a methanation reaction with hydrogen. . Then, the post-meta- nization gas is supplied as fuel gas, and the oxygen-containing gas is supplied as oxidant gas to the anode and power source of the fuel cell stack in the fuel cell power generation process to generate power. In addition, the anodic off-gas discharged from the fuel cell process is returned to the reforming process to circulate the hydrogen in the anodic off-gas and reform methane gas again for power generation.
また、 前記燃料電池ス夕ックより排出される力ソードオフガスを改質 工程に送り助燃剤として利用することができる。  Further, the power source off-gas discharged from the fuel cell sock can be sent to a reforming step and used as a combustion aid.
また、 図 3 と図 4及び図 5 と図 6に示す本発明の第 2の態様は、 有機 物をメタン発酵させるメタン発酵工程と、 該メタン発酵工程にて生成し た消化ガスを改質して水素ガスを製造するガス処理工程とからなる有 機物のメタン発酵による水素製造方法である。 前記ガス処理工程はガス 前処理工程と、 改質工程と、 変成工程と、 二酸化炭素水吸収工程及び/ 又は二酸化炭素ァミ ン吸収工程と、 メタネーシヨン工程と、 水素精製ェ 程とからなる。 即ち、 前記メ夕ン発酵工程で得られた消化ガスをガス前処理工程にて 硫化水素及び微量の塩化水素等の酸性ガスを吸着及び/又は吸収除去 する。 次いで、 改質工程にて前処理後ガス中のメタンを水蒸気との触媒 反応により水素と一酸化炭素に改質する。 ここで、 前記消化ガス又は脱 硫後ガスの一部を燃料として燃焼器で燃焼し、 得られた燃焼熱によって 改質反応熱の供給と反応温度の維持を行う。 そして、 変成工程にて改質 後ガス中の一酸化炭素を水蒸気との触媒反応によ り水素ガスと二酸化 炭素に変成する。 次いで、 二酸化炭素水吸収工程にて変成後ガス中の二 酸化炭素を水又はアルカ リ性溶液と接触させて吸収分離する。 次いで、 二酸化炭素ァミ ン吸収工程にて残留の二酸化炭素をアミ ン吸収液と接 触させて吸収分離する。 ここで、 前記二酸化炭素水吸収工程を省略し、 二酸化炭素を二酸化炭素ァミ ン吸収工程だけで吸収分離することも出 来る。 次いで、 前記二酸化炭素ァミ ン吸収工程で得られた脱炭酸後ガス をメタネーシヨ ン工程に導きガス中残留の一酸化炭素と二酸化炭素を 水素とメタン化反応させることによ り除去する。 そして、 前記メタネー ション後ガスを水素精製工程に導く。 本発明の第 2の態様では水素精製 工程において水素吸蔵合金による水素精製方法を用いる。 即ち、 水素吸 蔵合金を用いた水素精製工程にてメ夕ネーシヨ ン後ガス中の水分を脱 湿後にメタネ一シヨン後ガス中のメタンと窒素を分離し、 水素ガスを精 製、 昇圧する。 なお、 水素精製工程から排出される水素精製オフガスの 一部を系外へ排出すると共に、 残りを改質工程に返送して再改質を行う ( また、 系外へ排出する水素精製オフガスを燃焼し燃焼熱を改質工程の改 質熱または二酸化炭素ァミ ン吸収工程の吸収液再生熱として利用する ことができる。 In addition, the second embodiment of the present invention shown in FIGS. 3 and 4 and FIGS. 5 and 6 includes a methane fermentation step of methane fermenting organic matter, and reforming a digestion gas generated in the methane fermentation step. This is a method for producing hydrogen by the methane fermentation of organic materials, which comprises a gas treatment step of producing hydrogen gas by using methane. The gas treatment step includes a gas pretreatment step, a reforming step, a metamorphosis step, a carbon dioxide water absorption step and / or a carbon dioxide amine absorption step, a meta- nation step, and a hydrogen purification step. That is, the digestive gas obtained in the main fermentation step is subjected to a gas pretreatment step to adsorb and / or absorb acidic gases such as hydrogen sulfide and a trace amount of hydrogen chloride. Next, in the reforming step, methane in the pretreated gas is reformed into hydrogen and carbon monoxide by a catalytic reaction with steam. Here, a part of the digestion gas or the gas after desulfurization is burned in a combustor as a fuel, and reforming reaction heat is supplied and the reaction temperature is maintained by the obtained combustion heat. Then, in the shift process, carbon monoxide in the reformed gas is converted to hydrogen gas and carbon dioxide by a catalytic reaction with steam. Next, in the carbon dioxide water absorption step, the carbon dioxide in the converted gas is brought into contact with water or an alkaline solution to absorb and separate. Next, the residual carbon dioxide is brought into contact with the amine absorbing solution in the carbon dioxide amine absorbing step to be absorbed and separated. Here, the carbon dioxide water absorption step may be omitted, and carbon dioxide may be absorbed and separated only by the carbon dioxide amine absorption step. Next, the decarbonated gas obtained in the carbon dioxide amine absorption step is led to a metanalysis step, and carbon monoxide and carbon dioxide remaining in the gas are removed by a methanation reaction with hydrogen. Then, the gas after the metanation is led to a hydrogen purification step. In the second embodiment of the present invention, a hydrogen purification method using a hydrogen storage alloy is used in the hydrogen purification step. That is, in the hydrogen refining process using a hydrogen storage alloy, the water in the gas after desorption is dehumidified, then the methane and nitrogen in the gas are separated, and the hydrogen gas is purified and pressurized. In addition, a part of the hydrogen purification offgas discharged from the hydrogen purification process is discharged outside the system, and the rest is returned to the reforming process for re-reforming. ( Also, the hydrogen purification offgas discharged outside the system is burned. The heat of combustion can be used as the heat of reforming in the reforming process or the heat of regeneration of the absorbent in the carbon dioxide amine absorption process.
また、 図 5 と図 6に示すように前記水素精製工程で精製、 昇圧した水 素ガスを燃料ガスとして、 また、 含酸素ガスを酸化剤ガスとしてそれぞ れ燃料電池発電工程燃料電池スタ ックのアノー ドと力ソー ドに供給し て発電する。 また、 燃料電池発電工程から排出されるアノー ドオフガス をァノー ドに供給し循環利用する。 In addition, as shown in FIGS. 5 and 6, the water purified and pressurized in the hydrogen purification step was used. Fuel gas is used as fuel gas, and oxygen-containing gas is used as oxidant gas to supply electricity to the anode and power source of the fuel cell stack in the fuel cell power generation process. Also, anodic off-gas discharged from the fuel cell power generation process will be supplied to the anode and recycled.
また、 図 1 0 と図 1 1 に示す本発明の第 3の態様は、 有機物をメタン 発酵させるメタン発酵工程と、 該メタン発酵工程にて生成した消化ガス を改質して水素ガスを製造するガス処理工程とからなる有機物のメタ ン発酵による水素製造方法である。 前記ガス処理工程はガス前処理工程 と、 改質工程と、 変成工程と、 二酸化炭素ァミ ン吸収工程と、 水素精製 工程とからなる。  Further, a third embodiment of the present invention shown in FIGS. 10 and 11 includes a methane fermentation step of methane fermenting an organic substance, and producing hydrogen gas by reforming digestive gas generated in the methane fermentation step. This is a method for producing hydrogen by methane fermentation of organic matter comprising a gas treatment step. The gas treatment step includes a gas pretreatment step, a reforming step, a metamorphosis step, a carbon dioxide amine absorption step, and a hydrogen purification step.
即ち、 前記メ夕ン発酵工程で得られた消化ガスをガス前処理工程にて 硫化水素及び微量の塩化水素等の酸性ガスを吸着及び/又は吸収除去 する。 次いで、 改質工程にて前処理後ガス中のメタンを水蒸気との触媒 反応によ り水素と一酸化炭素に改質する。 ここで、 前記消化ガス又は脱 硫後ガスの一部を燃料として燃焼器で燃焼し、 得られた燃焼熱によって 改質反応熱の供給と反応温度の維持を行う。 そして、 変成工程にて改質 後ガス中の一酸化炭素を水蒸気との触媒反応によ り水素ガスと二酸化 炭素に変成する。 次いで、 二酸化炭素ァミ ン吸収工程にて変成後ガス中 の二酸化炭素をァミ ン吸収液と接触させて吸収分離する。 次いで、 前記 二酸化炭素ァミ ン吸収工程で得られた脱炭酸後ガスを水素精製工程に 導く。 本発明の第 3の態様では水素精製工程において圧力スィ ング吸着 法 ( P S A法) による水素精製方法を用いる。 即ち、 二酸化炭素ァミ ン 吸収後ガス中残留の二酸化炭素と一酸化炭素とメタンと窒素を吸着材 に吸着分離し、 水素ガスを精製する。 なお、 前記水素精製工程から排出 される水素精製オフガスの一部を系外へ排出すると共に、 残りを改質ェ 程に返送して再改質を行う。 また、 系外へ排出する水素精製オフガスを 燃焼し燃焼熱を改質工程の改質熱または二酸化炭素ァミ ン吸収工程の 吸収液再生熱として利用することができる。 That is, the digestive gas obtained in the main fermentation step is subjected to a gas pretreatment step to adsorb and / or absorb acidic gases such as hydrogen sulfide and a trace amount of hydrogen chloride. Next, in the reforming step, methane in the pretreated gas is reformed into hydrogen and carbon monoxide by a catalytic reaction with steam. Here, a part of the digestion gas or the gas after desulfurization is burned in a combustor as a fuel, and reforming reaction heat is supplied and the reaction temperature is maintained by the obtained combustion heat. Then, in the shift process, carbon monoxide in the reformed gas is converted to hydrogen gas and carbon dioxide by a catalytic reaction with steam. Next, in the carbon dioxide amide absorption step, the carbon dioxide in the gas after conversion is brought into contact with the amide absorption liquid to be absorbed and separated. Next, the decarbonated gas obtained in the carbon dioxide amine absorption step is led to a hydrogen purification step. In the third embodiment of the present invention, a hydrogen purification method using a pressure swing adsorption method (PSA method) is used in the hydrogen purification step. That is, the carbon dioxide, carbon monoxide, methane, and nitrogen remaining in the gas after the absorption of carbon dioxide amine are adsorbed and separated by the adsorbent, and the hydrogen gas is purified. A part of the hydrogen purification offgas discharged from the hydrogen purification step is discharged outside the system, and the rest is reformed. To be reformed again. Further, the hydrogen purification offgas discharged to the outside of the system is burned, and the combustion heat can be used as the reforming heat in the reforming step or the absorbent regenerating heat in the carbon dioxide amine absorption step.
また、 図 1 1 に示すように、 前記水素精製工程で精製した水素ガスを 燃料ガスとして、 また、 含酸素ガスを酸化剤ガスとしてそれぞれ燃料電 池発電工程燃料電池ス夕 ックのアノー ドと力ソー ドに供給して発電す る。 また、 燃料電池発電工程から排出されるアノー ドオフガスをァノー ドに供給し循環利用する。  Further, as shown in FIG. 11, the hydrogen gas purified in the hydrogen purification step is used as a fuel gas, and the oxygen-containing gas is used as an oxidant gas. Power is supplied to a power source to generate power. Also, anodic off-gas discharged from the fuel cell power generation process will be supplied to the anode and recycled.
なお、 本発明では、 燃料電池発電工程で用いる燃料電池は、 固体高分 子型燃料電池又は燐酸型燃料電池が好適である。  In the present invention, a solid polymer fuel cell or a phosphoric acid fuel cell is suitable for the fuel cell used in the fuel cell power generation step.
有機物のメタ ン発酵によって得られる消化ガスは有機物の種類ゃメ 夕ン発酵条件によって異なるが、 一般に主成分としてメタンが 6 0〜 7 0 %、 二酸化炭素が 3 0〜 4 0 %、 水素が 0〜 2 %、 窒素が 0〜 2 %含 まれ、 また、 微量成分として硫化水素及び塩化水素が数十〜数百 p p m の範囲において含まれている。  The digestion gas obtained by methane fermentation of organic matter varies depending on the type of organic matter ゃ main fermentation conditions, but in general, the main components are 60 to 70% methane, 30 to 40% carbon dioxide, and 0% hydrogen. 22%, nitrogen 0 02%, and hydrogen sulfide and hydrogen chloride as trace components in the range of tens to hundreds of ppm.
ところが、 燃料電池に供給する水素ガスとして高い水素濃度は勿論の こと、 できるだけ低い一酸化炭素濃度が要求され、 と りわけ固体高分子 型燃料電池の場合には、 一酸化炭素を 1 0 0 p p m以下、 好ましくは 1 O p p m以下、 さらに好ましくは 1 p p m以下にする必要がある。 また、 酸性ガス、 特に硫化水素と塩化水素は燃料電池の電極触媒の他に、 次ェ 程の各種ガス吸収剤、 吸着剤及び各種触媒を被毒するので、 l p p m以 下、 好ましくは 0 . 1 p p m以下に取除く ことが必要である。 また、 水 素濃度をできるだけ高めるために二酸化炭素等のガス成分をも分離す ることが必要である。  However, not only is the hydrogen gas supplied to the fuel cell required to have a high hydrogen concentration, but also a carbon monoxide concentration as low as possible. In particular, in the case of a polymer electrolyte fuel cell, 100 ppm of carbon monoxide is required. Below, it is necessary to be preferably 1 O ppm or less, more preferably 1 ppm or less. In addition, since acidic gases, particularly hydrogen sulfide and hydrogen chloride, poison the following various gas absorbents, adsorbents, and various catalysts in addition to the electrode catalyst of the fuel cell, the acid gas is 1 ppm or less, preferably 0.1 ppm or less. It is necessary to remove it to below ppm. In addition, it is necessary to separate gas components such as carbon dioxide in order to increase the hydrogen concentration as much as possible.
本発明では、 硫化水素や塩化水素等の酸性ガスに対しては、 ガス前処 理工程を設けて吸収及び/又は吸着により除去する。 さらに、 硫化水素 が許容濃度以上に残留する場合は次工程の改質反応器の前段に吸着塔 を設けてさらに吸着除去することもできる。 In the present invention, a gas pretreatment is performed for acidic gases such as hydrogen sulfide and hydrogen chloride. A process is provided to remove by absorption and / or adsorption. Further, when hydrogen sulfide remains at an allowable concentration or more, an adsorption tower can be provided in the preceding stage of the reforming reactor in the next step to further remove by adsorption.
一酸化炭素に対しては変成工程とメ タネ一ショ ン工程又は水素精製 工程を設け、 まず C 0を変成工程で水蒸気と触媒反応させて水素と二酸 化炭素に変成し、 そして残留の C 0をさらにメタネーシヨ ン工程又は水 素精製工程で除去する。  For carbon monoxide, a conversion step and a metamorphosis step or a hydrogen purification step are provided.First, C 0 is catalyzed with steam in the conversion step to convert hydrogen and carbon dioxide to hydrogen, and the remaining C 0 is further removed in a metanalysis step or a hydrogen purification step.
二酸化炭素に対しては二酸化炭素水吸収工程及び/又は二酸化炭素 ァミ ン吸収工程とメ夕ネーション工程又は水素精製工程で除去する。 通 常、 メタン発酵処理が他の水処理、 例えば下水処理とシステムを構成す るので、 大量の処理水が該システムから排出されるのが一般的である。 該処理水が一定の C 0 2吸収能力を有することから、 本発明では前記処 理水を変成後ガス中の二酸化炭素の吸収液として利用し、 前記二酸化炭 素の 6 0 %以上、 望ましくは 9 0 %以上吸収除去する。 残りの二酸化炭 素はアミ ン吸収工程にてァミ ン吸収液によつて吸収分離する。 ここで、 前記二酸化炭素水吸収工程を省略し、 二酸化炭素を二酸化炭素アミ ン吸 収工程だけで吸収分離することも出来る。 なお、 ァミ ン吸収液の再生熱 には高温改質ガスのもつ顕熱を利用する。 又、 後述の燃料電池発電工程 のス夕 ック排熱及びカソー ドオフガスをアミ ン吸収液の再生に利用す ることもできる。 そして、 残留の C O 2をさらにメタネーシヨ ン工程又 は水素精製工程で除去する。 Carbon dioxide is removed in a carbon dioxide water absorption step and / or a carbon dioxide amine absorption step and a methylation step or a hydrogen purification step. Since methane fermentation usually constitutes a system with other water treatments, such as sewage treatment, large volumes of treated water are typically discharged from the system. Since the treated water has a constant C 0 2 absorption capacity, the present invention utilizes the treated water as an absorbing solution of carbon dioxide in the gas after conversion, and more than 60% of the carbon dioxide, preferably Absorb 90% or more. The remaining carbon dioxide is absorbed and separated by the amine absorption solution in the amine absorption step. Here, the carbon dioxide water absorption step can be omitted, and carbon dioxide can be absorbed and separated only by the carbon dioxide amine absorption step. The sensible heat of the high-temperature reformed gas is used for the heat of regeneration of the amide absorption liquid. Further, the exhaust heat from the heat and the cathode off-gas in the fuel cell power generation process described later can be used for the regeneration of the amine-absorbed liquid. Then, the remaining CO 2 is further removed in a metanalysis process or a hydrogen purification process.
また、 窒素については処理する有機物の種類によって異なるが、 燃料 電池発電工程に供給する水素ガス又は含水素ガス中の窒素の初期濃度 が 0〜数千 p p m程度になる。 窒素ガスを分離する工程を特に設けない 場合には窒素ガスが系内に蓄積することになるので、 排出することが必 g The initial concentration of nitrogen in the hydrogen gas or hydrogen-containing gas supplied to the fuel cell power generation process will be about 0 to several thousand ppm, although it depends on the type of organic matter to be treated. Unless a process for separating nitrogen gas is provided, nitrogen gas will accumulate in the system and must be discharged. g
要である。 本発明では窒素ガスが最も濃縮されているァノ一ドオフガス 又は水素精製オフガスの 1 0 %程度を常に系外へ排出することによつ て、 燃料電池発電工程に供給する水素ガス又は含水素ガス中の窒素濃度 を 5 %以下に保つ。 なお、 系外へ排出したアノー ドオフガスまたは水素 精製オフガスを燃焼し燃焼熱を改質工程の改質熱または二酸化炭素ァ ミ ン吸収工程の吸収液再生熱として利用することができる。 It is important. In the present invention, hydrogen gas or hydrogen-containing gas to be supplied to the fuel cell power generation process is produced by constantly discharging about 10% of the anode off gas or hydrogen purification off gas in which nitrogen gas is most concentrated to the outside of the system. Maintain the nitrogen concentration within 5%. The anodic off-gas or the hydrogen-purified off-gas discharged to the outside of the system is burned, and the combustion heat can be used as the reforming heat in the reforming process or the absorbent regenerating heat in the carbon dioxide amine absorption process.
本発明では燃料電池発電工程のス夕 ックにおける含水素ガスの水素消 費率 (即ちァノー ドオフガス中の水素量を含水素ガス中の水素量で割つ た値) を約 7 0 %に設定する場合、 前記含水素ガスの水素量に対する前 記排出ガス中の水素量の割合が約 3 %にとどまる。 よって、 本発明では 製造した水素ガスの発電における利用率が 9 5 %以上に達する。  In the present invention, the hydrogen consumption rate of the hydrogen-containing gas (ie, the value obtained by dividing the amount of hydrogen in the anode off-gas by the amount of hydrogen in the hydrogen-containing gas) in the fuel cell power generation process during the fuel cell power generation process is set to about 70%. In this case, the ratio of the amount of hydrogen in the exhaust gas to the amount of hydrogen in the hydrogen-containing gas is only about 3%. Therefore, in the present invention, the utilization rate of the produced hydrogen gas in power generation reaches 95% or more.
また、 従来技術による改質ガスに比較すると、 本発明による含水素ガ ス又は水素ガスは水素濃度が極めて高く、 C 0 2濃度と C 0濃度が極め て低いので、 燃料電池の寿命が長く、 発電効率が高い。 As compared to the prior art reformed gas, water Motoga scan or hydrogen gas according to the present invention is the hydrogen concentration is very high, since the C 0 2 concentration and C 0 concentration is low extremely fuel cell has a long life, High power generation efficiency.
また、 本発明では消化ガス又は前処理後ガスの一部を分岐し燃料ガス として改質工程に供給するので、 従来技術に比べて改質工程に送る改質 フィードガスの量が 2 0〜 3 0 %少ない。 前記改質フィー ドガスを昇圧 して改質する場合には昇圧動力が 2 0〜 3 0 %削減できる。 また、 改質 するメ タ ンの量が少ないので改質器に供給すべき改質熱を 2 0〜 3 0 %削減することもできる。  Further, in the present invention, a part of the digestion gas or the pretreated gas is branched and supplied to the reforming process as a fuel gas, so that the amount of the reforming feed gas sent to the reforming process is 20 to 3 as compared with the conventional technology. 0% less. When the reforming feed gas is pressurized and reformed, the boosting power can be reduced by 20 to 30%. Further, since the amount of methane to be reformed is small, the reforming heat to be supplied to the reformer can be reduced by 20 to 30%.
また、 本発明では改質工程に熱を供給するための燃料として発熱量が 比較的高い前記前処理後ガスを用いるので、 通常の燃焼器によってカソ 一ドオフガスを助燃剤に利用でき、 これによつて特殊な燃焼器を開発す ることなく熱効率を向上させることができる。 従来技術では発熱量がか なり低いアノー ドオフガスを燃料として使用するので、 助燃剤として酸 素濃度が空気の半分程度しかない力ソー ドオフガスを利用するために は特殊のバーナーを開発する必要があった。 Further, in the present invention, since the pretreated gas having a relatively high calorific value is used as a fuel for supplying heat to the reforming step, the cathode off-gas can be used as an auxiliary combustion agent by a normal combustor. Thus, thermal efficiency can be improved without developing a special combustor. In the conventional technology, an anodic off-gas with a considerably low calorific value is used as fuel, so that acid A special burner had to be developed in order to use a power source off-gas whose elemental concentration was only about half that of air.
本発明はかく して、 有機物のメ夕ン発酵による燃料電池発電システム のエネルギー効率を高め、 経済性を改善する。  The present invention thus increases the energy efficiency of the fuel cell power generation system based on organic fermentation of organic matter, and improves the economic efficiency.
以下、 各工程について詳しく説明する。  Hereinafter, each step will be described in detail.
A ) メタン発酵工程  A) Methane fermentation process
本発明では有機物、 と りわけ食品製造廃液、 畜産排水や下水等の生物 処理プロセスで発生する余剰汚泥などの有機性廃棄物をメタン発酵し、 得られた消化ガスから水素ガス又は含水素ガスを製造して燃料電池に 供給し発電すると同時に、 燃料電池発電工程で発生する排熱をメ夕ン発 酵工程の加熱源に利用するようにしている。  In the present invention, methane fermentation is performed on organic matter, particularly waste liquid for food production, and organic waste such as surplus sludge generated in biological treatment processes such as livestock wastewater and sewage, and hydrogen gas or hydrogen-containing gas is obtained from the obtained digestion gas. It is manufactured and supplied to the fuel cell to generate electricity, and at the same time, waste heat generated in the fuel cell power generation process is used as a heating source in the main fermentation process.
メ 夕ン発酵工程では嫌気条件下における微生物の消化作用によ り有 機物の約 5 0 %が 2 0〜 3 0 日間の滞留時間で下記反応式のように分 解され、 メタンガス及び炭酸ガスなどが発生する。  In the main fermentation process, about 50% of organic matter is decomposed by the digestion of microorganisms under anaerobic conditions with a residence time of 20 to 30 days as shown in the following reaction formula, and methane gas and carbon dioxide gas And so on.
有機物 ― 低級脂肪酸 → C H 4 + C 0 2 ( 1 ) Organic matter-lower fatty acid → CH 4 + C 0 2 (1)
メ夕ン発酵工程の条件については特に限定するものではないが、 滞留 時間と効率の点から温度が 3 0〜 3 5 °Cの中温発酵が好適である。 ここ で、 発酵液の加熱及び温度維持の熱源として燃料電池発電工程のス夕 ッ ク排熱を用いる。  The conditions of the main fermentation step are not particularly limited, but medium-temperature fermentation at a temperature of 30 to 35 ° C is preferable in terms of residence time and efficiency. Here, the exhaust heat from the fuel cell power generation process is used as the heat source for heating and maintaining the temperature of the fermentation liquor.
B ) ガス処理工程  B) Gas treatment process
1 ) ガス前処理工程  1) Gas pretreatment process
本発明においては、 硫化水素と塩化水素ガスをそれぞれ 1 P p m以下、 望ましくは 0 . 1 p p m以下に除去する目的でガス前処理工程を設ける < 前処理工程はスクラバと乾式脱硫器によって構成される。 スクラバに用 いる洗浄水としては処理水又は巿水またはェ水を用いるが、 洗浄補給水 には 0. 0 5〜 5 %の力性ソーダを添加したアル力 リ性溶液がなお好適 である。 洗浄補給水として力性ソ一ダ溶液を用いる場合、 酸性ガスが下 記の中和反応によって吸収除去される。 In the present invention, a gas pretreatment step is provided for the purpose of removing hydrogen sulfide and hydrogen chloride gas to 1 Ppm or less, preferably to 0.1 ppm or less. <The pretreatment step is constituted by a scrubber and a dry desulfurizer. . Treated water, clean water or water is used as the washing water for the scrubber. For this purpose, an alkaline solution to which 0.05% to 5% of sodium hydroxide is added is still more suitable. When a vigorous soda solution is used as the washing makeup water, the acidic gas is absorbed and removed by the following neutralization reaction.
H S + Na OH → NaH S + H 20 ( 2 ) HS + Na OH → NaH S + H 20 (2)
H C 1 + N a OH → N a C l + H 20 ( 3 ) HC 1 + N a OH → N a C l + H 2 0 (3)
前記スクラバの操作条件や運転管理によっては微量の硫化水素がス クラバ後のガスに残留する恐れがある。 硫化水素による改質工程の改質 触媒の被毒を防ぐために、 高度脱硫手段として硫化水素を吸着除去する 乾式脱硫器を設ける。 本発明で用いる脱硫器は容器に脱硫剤を充填して なる。 用いる容器の形状及び材質は特に限定されるものではないが、 形 状として円筒状が望ましく、 材質としてステンレス鋼が望ましい。 また. 用いる脱硫剤としては酸化鉄や酸化亜鉛等の酸化物、 又は活性炭、 特に アル力リ剤を表面に担持した活性炭等が好適である。 脱硫剤の形状とし て粒状、 ペレッ ト状ゃハニカム状が好ましい。 酸化鉄を用いる場合の脱 硫反応を下記に記す。  Depending on the operating conditions and operation management of the scrubber, a small amount of hydrogen sulfide may remain in the gas after the scrubber. In order to prevent poisoning of the reforming catalyst in the reforming process using hydrogen sulfide, a dry desulfurizer that adsorbs and removes hydrogen sulfide will be installed as advanced desulfurization means. The desulfurizer used in the present invention is obtained by filling a container with a desulfurizing agent. The shape and material of the container to be used are not particularly limited, but the shape is preferably cylindrical, and the material is preferably stainless steel. Further, as the desulfurizing agent to be used, oxides such as iron oxide and zinc oxide, or activated carbon, particularly activated carbon having an alkaline agent carried on the surface are suitable. The desulfurizing agent is preferably in the form of granules, pellets or honeycombs. The desulfurization reaction using iron oxide is described below.
F e 0 + 3 H S → F e S + 3 H 20 ( 4) F e 0 + 3 HS → F e S + 3 H 2 0 (4)
本発明では、 前記湿式スクラバによる吸収脱硫工程を省略し、 乾式脱 硫器による吸着脱硫工程だけで消化ガスを脱硫することも出来る。  In the present invention, the absorption desulfurization step using the wet scrubber can be omitted, and the digestion gas can be desulfurized only by the adsorption desulfurization step using the dry desulfurizer.
2 ) 改質工程  2) Reforming process
本発明では改質工程を設け、 変成触媒を充填した改質反応器にて下記 の水蒸気改質反応 (水蒸気リ フォーミ ング反応とも云う) を行う。  In the present invention, a reforming step is provided, and the following steam reforming reaction (also referred to as steam reforming reaction) is performed in a reforming reactor filled with a shift catalyst.
CH4 + H20 → CO + 3 H2 ( 5) CH 4 + H 2 0 → CO + 3 H 2 (5)
反応に必要な水蒸気として、 改質後ガスの顕熱を熱源とする蒸気ボイ ラで発生した水蒸気を添加する。 水蒸気添加量としては水蒸気対メ夕ン のモル比 (即ち S/C比) が 2. 5〜3. 5の範囲が好適である。 上記 変成反応は吸熱反応なので、 反応温度を高くすればメ夕ンの平衡濃度が 低くなるし反応速度も速くなるが、 逆に熱効率が下がるので反応温度と して 70 0〜 8 00 °Cの範囲が望ましい。 なお、 反応熱の供給と反応温 度の維持は消化ガス又は前処理後ガスの一部を燃料として、 燃料電池発 電工程の力ソー ドオフガスを助燃剤と して燃焼器で燃焼し得られた燃 焼熱によって行う。 触媒としては改質反応を促進するものであれば種類 と形状のいずれも限定されるものではないが、 前記温度範囲に適した触 媒として N i系、 Ru系、 P t系、 N i _Ru系や Ru_P t系又はこ れらの複合系水蒸気改質触媒が挙げられる。 As the steam required for the reaction, steam generated by a steam boiler using the sensible heat of the reformed gas as a heat source is added. As the amount of steam to be added, it is preferable that the molar ratio of steam to the main stream (ie, the S / C ratio) is in the range of 2.5 to 3.5. the above Since the metamorphic reaction is an endothermic reaction, raising the reaction temperature lowers the equilibrium concentration of the main body and increases the reaction rate.However, the thermal efficiency decreases, but the reaction temperature is in the range of 700 to 800 ° C. Is desirable. The reaction heat was supplied and the reaction temperature was maintained by burning a part of the digested gas or pretreated gas as fuel, and using the power source off-gas of the fuel cell power generation process as a combustion aid in the combustor. Performed by combustion heat. The type and shape of the catalyst are not limited as long as it promotes the reforming reaction.Nii-, Ru-, Pt-, and Ni_Ru catalysts suitable for the above-mentioned temperature range are available. System, Ru_Pt system or a composite steam reforming catalyst thereof.
なお、 本発明ではアノー ドオフガス又は水素精製ォフガスが改質工程 へ返送されるので、 一度改質工程で改質し残ったメ夕ンが ^び改質工程 に循環され改質を受ける。 改質温度が低くなるとメタンの平衡濃度が上 昇し、 即ちメタンの改質率が低下する問題点がある反面、 改質効率が改 善し、 改質装置の材料に安価な材料を適用できる利点がある。 本発明に よれば改質温度の低下による問題点が解消されるので、 改質温度を一般 的な 7 0 0〜 8 0 0 °Cから 6 0 0〜 7 0 0 °Cに引き下げることで改質 装置、 ひいては燃料電池発電システム全体の熱効率を向上させ、 製造コ ス トを低下させることができる。  In the present invention, since the anode off-gas or the hydrogen purification off-gas is returned to the reforming step, the main material that has been once reformed in the reforming step is circulated to the reforming step and undergoes reforming. When the reforming temperature is lowered, the equilibrium concentration of methane rises, that is, the reforming rate of methane decreases.On the other hand, the reforming efficiency improves, and inexpensive materials can be used for the reformer. There are advantages. According to the present invention, since the problem caused by the lowering of the reforming temperature is solved, the reforming temperature can be improved by lowering the general reforming temperature from 700 to 800 ° C to 600 to 700 ° C. It can improve the thermal efficiency of the quality equipment and, consequently, the fuel cell power generation system as a whole, and reduce manufacturing costs.
3 ) 変成工程  3) Metamorphosis process
本発明では変成工程を設け、 変成触媒を充填した変成反応器にて下記 の変成反応 (シフ ト反応とも云う) を行う。  In the present invention, a shift process is provided, and the shift reaction described below (also called a shift reaction) is performed in a shift reactor filled with a shift catalyst.
C O + H20 → C 02 + H 2 ( 6 ) CO + H 2 0 → C 0 2 + H 2 (6)
反応に必要な水蒸気として改質後ガス中の水蒸気成分を利用する。 上 記変成反応は発熱反応なので、 反応温度を低くすれば一酸化炭素の平衡 濃度が低くなるが、 逆に反応速度が遅くなるので、 反応温度として 20 0〜 2 50 °Cの範囲が望ましい。 触媒としては変成反応を促進するもの であれば種類と形状のいずれも限定されるものではないが、 前記温度範 囲に適した触媒として C u— Z n系変成触媒などが挙げられる。 The steam component in the reformed gas is used as steam required for the reaction. Since the above transformation reaction is an exothermic reaction, lowering the reaction temperature lowers the equilibrium concentration of carbon monoxide, but conversely lowers the reaction rate. A range of 0 to 250 ° C is desirable. The type and shape of the catalyst are not limited as long as it promotes the shift reaction. Examples of the catalyst suitable for the above temperature range include a Cu—Zn shift catalyst.
4 ) 二酸化炭素水吸収工程  4) Carbon dioxide water absorption process
二酸化炭素水吸収工程を設け、 メ夕ン発酵システムや下水処理システ ムから排出される処理水を利用して選択酸化後ガス中の二酸化炭素の 60 %以上、 好ましくは 9 0 %以上除去する。 用いる処理水の p Hが高 いほど、 また、 温度と溶存炭酸濃度及び溶存重炭酸イオン濃度が低いほ ど該処理水の炭酸ガスに対する吸収能力が高くなる。 水による二酸化炭 素の吸収は炭酸ガスの水への溶解と溶解した炭酸ガスの : 炭酸根ィォ ンへの移行という 2段階からなり、 かかわる吸収反応を下記に記す。  A carbon dioxide water absorption process is provided to remove 60% or more, preferably 90% or more, of carbon dioxide in the gas after selective oxidation using treated water discharged from the main fermentation system or sewage treatment system. The higher the pH of the treated water used, and the lower the temperature, the concentration of dissolved carbonic acid and the concentration of dissolved bicarbonate ions, the higher the ability of the treated water to absorb carbon dioxide. The absorption of carbon dioxide by water consists of two steps: the dissolution of carbon dioxide in water and the transfer of dissolved carbon dioxide to the carbonate group. The absorption reaction involved is described below.
H20 + C02 → H 2 C O 3 ( 8 ) H 2 0 + C0 2 → H 2 CO 3 (8)
H 2 C 03 + 0 H → H C〇 3- + H 20 ( 9 ) H 2 C 03 + 0 H → HC〇 3- + H 20 (9)
本発明では、 炭酸ガス吸収能力を上げるために、 前記処理水の温度を 冷却によって下げることと、 p Hをアルカリ剤の添加によって上げるこ とができる。  In the present invention, in order to increase the carbon dioxide absorption capacity, the temperature of the treated water can be lowered by cooling, and the pH can be increased by adding an alkali agent.
5 ) 二酸化炭素アミ ン吸収工程  5) Carbon dioxide amine absorption process
本発明においては二酸化炭素ァミ ン吸収工程を設け、 前工程で得られ た含水素ガス又は次工程の燃料電池発電工程で排出されたアノー ドォ フガスを吸収塔に導き吸収液と接触させて C 02を吸収分離する。 咴収 液としては熱炭酸力 リ ゥム吸収液またはアル力ノ一ルァミ ン吸収液が 好適であるが、 本発明では吸収能力が強いアルカノ一ルァミ ン吸収液が なお好適であり、具体的な吸収剤としてモノエタノールァミ ン(MEA)、 ジェタノ一ルァミ ン ( D E A)、 メチルジェ夕ノールァミ ン (MD E A) などが挙げられる。 アルカノールァミン吸収液による吸着反応を下記に 3 In the present invention, a carbon dioxide amine absorption step is provided, and the hydrogen-containing gas obtained in the previous step or the anodic gas discharged in the next fuel cell power generation step is led to an absorption tower to be brought into contact with the absorption liquid, thereby obtaining C 2. 0 2 absorption separation. As the liquid to be collected, a thermocarbonated realm absorbing solution or an alcohol-absorbing solution is suitable, but in the present invention, an alkanolamine absorbing solution having a strong absorption capacity is still more preferable. Examples of the absorbent include monoethanolamine (MEA), jetanolamine (DEA), and methylgenoaluminamine (MDEA). The adsorption reaction with the alkanolamine absorption solution is shown below. Three
記す。 Write.
R - N H 2 + H 20 + C 02 → R - N H 3 H C 03 ( 1 0 ) 前記反応は放熱反応なので吸収温度が低い程有利であるが、 温度制御 が比較的容易な 1 2〜 4 0 °Cの範囲が好適である。 ガス圧力はいうまで もなく高いほど有利であるが、 本発明においては、 前記強力な吸収液を 用いて、 常圧〜 1 0気圧程度の圧力範囲において C 02を 0. 5 %以下、 望ましくは l O O O p p m以下、 さらに望ましくは 1 0 0以下に吸収分 離する。 また、 前記吸収液が吸収飽和したら、 吸収液を再生塔に移送し 1 0 0〜 1 5 0 °Cの温度にて再生を行い、 C〇 2ガスを回収すると共に、 再生後の吸収液を吸収塔に返送する。 再生時吸収液を加熱するのに必要 な熱源として、 改質工程の蒸気ボイラで回収される蒸気を用いる。 又、 燃料電池発電工程の燃料電池ス夕 ック排熱及びカソー ドオフガスをァ ミ ン吸収液の再生に利用することもできる。 R - NH 2 + H 20 + C 02 → R - NH 3 HC 03 (1 0) wherein the reaction is advantageously lower the absorption temperature so exothermic reaction, temperature control is relatively easy 1. 2 to 4 0 ° The range of C is preferred. Although the gas pressure is advantageously higher Needless to say, in the present invention, the use a strong absorbing solution, the C 0 2 0. 5% or less at a pressure range of about atmospheric pressure to 1 0 atm, preferably Is absorbed and separated at l OOO ppm or less, more preferably at 100 or less. Also, when the absorbent liquid is absorbed saturated absorption solution was subjected to regeneration at a temperature of the transfer to 1 0 0~ 1 5 0 ° C to the regenerator, as well as recovering C_〇 2 gas, the absorbing solution after regeneration Return to absorption tower. The steam collected in the steam boiler in the reforming process is used as a heat source necessary to heat the absorbent during regeneration. Also, the exhaust heat and cathode off-gas of the fuel cell soak in the fuel cell power generation process can be used for the regeneration of the amide absorption liquid.
6 ) メ夕ネ一ション工程  6) Installation process
本発明においては、 変成後ガス中の一酸化炭素を 1 0 p pm以下、 好 ましくは 1 p p m以下に下げる目的で、 メタネーシヨン工程を設ける。 即ち、 メタン化触媒を充填したメ夕ネーション反応器にて下記のメ夕ン 化反応 (メタネーシヨン反応とも云う) を行う。  In the present invention, a metanation step is provided for the purpose of reducing the carbon monoxide in the gas after the shift to 10 ppm or less, preferably 1 ppm or less. That is, the following methanation reaction (also referred to as metanation reaction) is performed in a methanation reactor filled with a methanation catalyst.
C O + 3 H2 → C H 4 + H20 ( 1 1 )CO + 3 H 2 → CH 4 + H 2 0 (1 1)
Figure imgf000015_0001
Figure imgf000015_0001
反応に必要な水素として同伴水素、 即ち二酸化炭素アミ ン吸収後ガス 中の水素を利用する。 上記メタネーシヨン反応は発熱反応なので、 反応 温度を低くすれば一酸化炭素の平衡濃度が低くなるが、 逆に反応速度が 遅くなるので、 反応温度として 2 0 0〜4 0 0 °Cの範囲が望ましい。 触 媒としては変成反応を促進するものであれば種類と形状のいずれも限 定されるものではないが、 ニッケル系、 鉄系やルテニウム系メタン化触 媒などが好適である。 Hydrogen in the gas after absorption of carbon dioxide amine is used as hydrogen required for the reaction. Since the metanalysis reaction is an exothermic reaction, lowering the reaction temperature lowers the equilibrium concentration of carbon monoxide, but conversely lowers the reaction rate. Therefore, the reaction temperature is preferably in the range of 200 to 400 ° C. . As long as the catalyst promotes the metamorphic reaction, both the type and the shape are limited. Although not specified, nickel, iron and ruthenium methanation catalysts are suitable.
7 ) 水素精製工程  7) Hydrogen purification process
本発明では水素精製工程において、 水素吸蔵合金による水素精製方法 又は圧カスイ ング吸着法による水素精製方法を用いる。  In the present invention, in the hydrogen purification step, a hydrogen purification method using a hydrogen storage alloy or a hydrogen purification method using a pressure-casing adsorption method is used.
本発明の第 2の態様においては、 H 2 S と H C 1がそれそれ 1 0 p p m以下、 望ましくは l p p m以下、 さらに望ましくは 0 . l p p m以下 に、 C 0が 1 0 p p m以下、 好ましくは 1 p p m以下に、 C 0 2、 H 2 0 がそれぞれ 1 0 0 p p m以下、 好ましくは 1 0 p p m以下にそれぞれ除 去されたメタネーシヨン後ガスに対し、 水素吸蔵台金による水素精製ェ 程を設け、 前記ガスを水素吸蔵合金を収容する容器に導き、 水素を水素 吸蔵合金に冷却しながら吸蔵して水素から N 2とメ 夕ンを分離し、 次い で水素吸蔵合金の水素吸蔵飽和後に合金容器から窒素ガスとメタンガ ス及び残留の水素ガスを水素精製ォフガスとしてパージしてから、 水素 吸蔵合金を加熱して水素を放出することによって、 水素ガスを昇圧して 水素タンクに貯蔵するか、 又は水素タンクを経由して燃料電池発電工程 に供給する。 前記放出精製された水素ガス中の窒素及びメ夕ンがそれぞ れ l O O p p m以下に除去され、 水素濃度が 9 9 . 9 %以上に達する。 用いる水素吸蔵合金と しては水素吸蔵容量が大きいものであれば何で もよいが、 燐酸型燃料電池または固体高分子型燃料電池から発生する 7 0 °Cぐ らいの低位排熱を水素放出時の加熱熱源と して利用できるよう に、 水素放出圧が 7 0 °Cで 1〜 1 0気圧、 好ま しくは 3〜 7気圧の吸 蔵 ·放出特性を有する水素吸蔵合金が望ましく、 具体的な合金例として は L a N i 5合金や T i F e合金が挙げられる。 L a N i 5合金による水 素吸蔵 ·放出反応を下記に記す。 水素吸蔵反応: L aN i 5+ 3 H2 → L a N i 5 H 6 +放熱 ( 1 3 ) 水素放出反応: L aN i 5H6 → L a N i 5 + 3 H 2 +吸熱 ( 1 4) 上記 ( 1 3) 式に示すように水素吸蔵反応は放熱反応のため、 水素分 圧が一定の場合、 特に水素分圧が低い場合では水素吸蔵時において水素 吸蔵合金を冷却して吸蔵温度を低く保つ必要がある。 水素吸蔵温度が低 いほど有利であるが、 冷却水によって容易に保持できる 1 2〜 3 2 °Cが 好ましい。 また、 上記 ( 14) 式に示すように水素放出反応が吸熱反応 なので放出水素の圧力を高くするには、 水素放出時に水素吸蔵合金を加 熱して放出温度を上げる必要がある。 本発明においては、 加熱熱源とし て、 燃料電池発電工程を設けている実施形態においては燃料電池ス夕 ッ クの 7 0°C前後の冷却水を、 燃料電池発電工程を設けていない実施形態 においては改質工程での回収蒸気又は温水を用いる。 また、 前記水素吸 蔵合金を、 熱交換のためのジャケッ トゃチューブ等熱交換手段を設けた 熱交換器形容器に収納し、 水素の吸蔵と放出を連続的に行うために前記 水素吸蔵合金収納容器を少なく とも 2系列設け、 電磁弁によって切替え る。 In the second embodiment of the present invention, H 2 S and HC 1 are each 10 ppm or less, preferably 1 ppm or less, more preferably 0.1 ppm or less, and C 0 is 10 ppm or less, preferably 1 ppm. below, C 0 2, H 2 0, respectively 1 0 0 ppm or less, preferably to Metaneshiyon after gas has been divided, respectively below 1 0 ppm, provided a higher hydrogen purification E by hydrogen occlusion metal base, the gas Into the vessel containing the hydrogen-absorbing alloy, occludes the hydrogen while cooling it into the hydrogen-absorbing alloy, and separates N 2 and the main body from the hydrogen. After purging the gas, methane gas and residual hydrogen gas as hydrogen purification off-gas, and then heating the hydrogen storage alloy to release hydrogen, the hydrogen gas is pressurized and stored in the hydrogen tank, or the hydrogen tank is Via fuel cell Supplied to the process. Nitrogen and mains in the released and purified hydrogen gas are respectively reduced to less than 100 ppm, and the hydrogen concentration reaches 99.9% or more. Any hydrogen storage alloy may be used as long as it has a large hydrogen storage capacity.However, a low-level exhaust heat of about 70 ° C generated from a phosphoric acid fuel cell or a polymer electrolyte fuel cell during hydrogen release is used. A hydrogen storage alloy having a storage / release characteristic of 1 to 10 atm, preferably 3 to 7 atm at a hydrogen release pressure of 70 ° C is desirable so that it can be used as a heat source for heating. Examples of the alloy include a LaNi5 alloy and a TiFe alloy. The hydrogen storage / release reaction by the La Ni 5 alloy is described below. Hydrogen storage reaction: La Ni 5 + 3 H 2 → La Ni 5 H 6 + heat release (13) Hydrogen release reaction: La Ni 5 H 6 → La Ni 5 + 3 H 2 + heat absorption (1 4) As shown in the above equation (13), the hydrogen storage reaction is a heat release reaction, so when the hydrogen partial pressure is constant, especially when the hydrogen partial pressure is low, the hydrogen storage alloy is cooled during hydrogen storage to store the hydrogen. Need to be kept low. The lower the hydrogen storage temperature is, the more advantageous it is. However, a temperature of 12 to 32 ° C, which can be easily maintained by cooling water, is preferable. In addition, since the hydrogen release reaction is an endothermic reaction as shown in the above equation (14), in order to increase the pressure of the released hydrogen, it is necessary to heat the hydrogen storage alloy at the time of releasing hydrogen to raise the release temperature. In the present invention, in the embodiment in which the fuel cell power generation step is provided as the heating heat source, the cooling water around 70 ° C. of the fuel cell pack is used, and in the embodiment in which the fuel cell power generation step is not provided. Uses recovered steam or hot water in the reforming step. Further, the hydrogen storage alloy is housed in a heat exchanger type container provided with a heat exchange means such as a jacket tube for heat exchange, and the hydrogen storage alloy is used for continuously absorbing and releasing hydrogen. At least two storage containers are provided and switched by a solenoid valve.
また、 本発明の第 3の態様においては、 二酸化炭素ァミ ン吸収後ガス に対し、 圧力スイ ング吸着法による水素精製工程を設け、 前記ガス中に 残留の C02、 C〇、 メタン及び窒素ガスを吸着剤に吸着除去し、 水素 を精製する。 即ち、 ガス吸着塔に前記ガスを導きガス中の C02、 C〇、 メタン及び窒素を吸着剤と接触させて吸着分離する。 C02、 C O、 メ 夕ン及び窒素に対する吸着塔の吸着能力を最大に発揮するために、 これ らのガスに対して選択吸着性を示す吸着剤を吸着塔に充填するのが望 ましく、 例えばゼォライ トモレキュラーシ一ブス又はカーボンモレキュ ラーシーブス又は活性炭又は活性アルミナが好適である。 吸着温度は低 いほど有利であるが、 温度制御が比較的容易な 1 2〜4 0 °Cの範囲が好 適である。 ガス圧力はいうまでもなく高いほど有利であるが、 本発明に おいては 1 0気圧以下の低圧領域で十分である。 また、 前記吸着剤が吸 着飽和したら、 常圧脱着又は真空ポンプによる減圧脱着を行い、 脱着ガ スを水素精製オフガスと して吸着塔から排出すると共に吸着剤を再生 する。 真空ポンプによって脱着圧力を下げていくにつれて、 吸着圧と脱 着圧との圧力差が拡大するので吸着塔の処理能力が向上する反面、 真空 ポンプの電力消費が増大することから、 脱着圧力は 1 3 3 0 0〜 1 3 3 0 P a ( 1 0 0〜 : L O T o r r ) の範囲が望ましい。 なお、 水蒸気を分 別吸着するために、 前記吸着塔の前段に、 水蒸気を吸着するのに適した 活性アルミナまたはシリカゲルなどの吸着剤の充填層を設けるとよい。 本発明の第 3の態様では、 前記変成工程と圧力スイ ング吸着法による 水素精製工程との間に二酸化炭素ァミ ン吸収工程を設け、 前記変成後ガ スに含まれる C〇 2の 6 0 %以上、 好ましく は 9 0 %以上を前記アミ ン 吸収工程で吸収分離した後に、 残留の〇 02と 00、 メタン及び窒素を 圧力スィ ング吸着法による水素精製工程で除去することにより、 水素の 回収率を高める。 変成後ガスを直接に前記水素精製工程に導入する場合 は C 02の吸収負荷が大きいために、 水素精製工程における水素回収率 が大幅に低下する問題がある。 Further, in the third aspect of the present invention, carbon dioxide to § Mi emission absorption after gas, provided the hydrogen purification step by pressure a swing adsorption method, the residual in the gas C0 2, C_〇, methane and nitrogen The gas is adsorbed and removed by the adsorbent to purify hydrogen. That, C0 2 in the gas leads to the gas in the gas adsorption tower, C_〇 adsorbs separated methane and nitrogen is contacted with the adsorbent. C0 2, CO, main Yun and to exert the maximum adsorption capacity of the adsorption tower to nitrogen, these are Nozomu Mashiku to fill the adsorbent in the adsorption tower showing a selective adsorptivity with respect to the gas, For example, zeolite molecular sieves or carbon molecular sieves or activated carbon or activated alumina is suitable. Low adsorption temperature Although very advantageous, a temperature range of 12 to 40 ° C, where temperature control is relatively easy, is preferred. Needless to say, the higher the gas pressure is, the more advantageous it is. However, in the present invention, a low pressure range of 10 atm or less is sufficient. When the adsorbent is saturated by adsorption, desorption is performed under normal pressure or by a vacuum pump, and the desorbed gas is discharged from the adsorption tower as a hydrogen purification off-gas, and the adsorbent is regenerated. As the desorption pressure is reduced by the vacuum pump, the pressure difference between the adsorption pressure and the desorption pressure increases, thereby improving the processing capacity of the adsorption tower. On the other hand, the power consumption of the vacuum pump increases, so the desorption pressure becomes 1 The range of 330 to 130 Pa (100 to LOT orr) is desirable. In order to separate and adsorb the water vapor, a packed bed of an adsorbent such as activated alumina or silica gel suitable for adsorbing the water vapor may be provided at a stage preceding the adsorption tower. In a third aspect of the present invention, the shift process and the carbon dioxide § Mi emission absorption step is provided between the hydrogen purification step by pressure a swing adsorption method, 6 0 C_〇 2 included in the shift after gas % or more, preferably after absorption separation over 90% in the Amin absorption step, residual 〇 0 2 and 00, by removing the methane and nitrogen in the hydrogen purification process by the pressure sweep rate ranging adsorption, hydrogen Increase recovery rate. When introduced into the hydrogen purification step the modified after gas directly to the absorption load of C 0 2 is large, there is a problem that the hydrogen recovery rate in hydrogen purification step is greatly reduced.
なお、 本発明では、 水素精製工程から排出される水素精製オフガスの 一部を系外へ排出すると共に、 残りを改質工程に返送して再改質を行う また、 系外へ排出する水素精製オフガスを燃焼し燃焼熱を改質工程の改 質熱または二酸化炭素ァミ ン吸収工程の吸収液再生熱として利用する ことができる。  In the present invention, a part of the hydrogen purification offgas discharged from the hydrogen purification step is discharged to the outside of the system, and the rest is returned to the reforming step to perform reforming. The offgas is burned and the heat of combustion can be used as the heat of reforming in the reforming process or the heat of regeneration of the absorbent in the carbon dioxide amine absorption process.
8 ) 燃料電池発電工程 本発明においては、 ガス処理工程で製造された水素ガス又は含水素ガ スの温度が比較的低く、 水素濃度が高く しかも一酸化炭素の含有率が低 いことから、 用いる燃料電池として比較的低い温度で作動する燐酸型燃 料電池、 と りわけ固体高分子型燃料電池が好適である。 燐酸型又は固体 高分子型燃料電池の場合における電池反応を下記に記す。 8) Fuel cell power generation process In the present invention, the temperature of the hydrogen gas or hydrogen-containing gas produced in the gas treatment step is relatively low, the hydrogen concentration is high, and the content of carbon monoxide is low, so that the fuel cell used is relatively low. A phosphoric acid fuel cell operating at a temperature, particularly a polymer electrolyte fuel cell, is suitable. The cell reactions in the case of a phosphoric acid or solid polymer fuel cell are described below.
アノー ド反応 : H 2 → 2 + 2 e - ( 1 5 ) 力ソード反応 : 1 / 2 0 2 + 2 lT + 2 e → H 2 0 ( 1 6 ) 即ち、 水素ガス又は含水素ガスを燃料電池スタ ックのアノー ド極室に、 含酸素ガスを力ソー ド極室にそれぞれ供給し上記電池反応によ り発電 する。 燐酸型燃料電池と固体高分子型燃料電池の作動温度がそれぞれ 2 0 0 °C前後と 8 0 °C前後であるが、 前記電池反応が発熱を伴うので、 前 記作動温度を保っためにはス夕 ックを冷却する必要がある。 本発明にお いては、 スタ ック冷却温水をメ夕ン発酵液の加熱源として用いることに よりシステム全体のエネルギー効率を高めることが出来る。 また、 燃料 電池発電において発電効率とス夕ックの耐久性を確保するために、 ス夕 ックのァノ一ド極室に送った水素ガスは 1 0 0 %消費せずに、 3 0 %程 度を残しアノー ドオフガスと してスタ ックよ り排出するようにしてい るのが一般的である。 本発明においては、 アノー ドオフガスをそのまま 又は改質工程にてメタンを再度改質した後に燃料電池スタ ックに循環 利用できるので、 水素利用効率ひいては燃料電池発電効率が高い等の特 徴がある。 図面の簡単な説明 Anode reaction: H 2 → 2 + 2 e-(15) Force sword reaction: 1/20 2 + 2 lT + 2 e → H 20 (16) That is, hydrogen gas or hydrogen-containing gas is used as a fuel cell Oxygen-containing gas is supplied to the anode electrode room of the stack to the power source electrode room, respectively, and power is generated by the battery reaction described above. The operating temperatures of the phosphoric acid fuel cell and the polymer electrolyte fuel cell are around 200 ° C and around 80 ° C, respectively.However, since the cell reaction involves heat generation, it is necessary to maintain the operating temperature. The sink needs to be cooled. In the present invention, the energy efficiency of the entire system can be improved by using the hot water of the stack cooling as a heating source for the main fermentation liquid. In order to ensure power generation efficiency and durability of the fuel cell in fuel cell power generation, 100% of the hydrogen gas sent to the anode electrode room in the gas tank was consumed instead of 100%. It is common practice to leave about a% and discharge it from the stack as anode off-gas. In the present invention, since the anodic off-gas can be recycled to the fuel cell stack as it is or after reforming methane again in the reforming step, there are features such as high hydrogen use efficiency and high fuel cell power generation efficiency. BRIEF DESCRIPTION OF THE FIGURES
図 1 は本発明による第 1の態様の燃料電池発電システムの説明図で ある。 図 2は本発明による第 1 の態様の燃料電池発電システムの説明図で ある。 FIG. 1 is an explanatory diagram of a fuel cell power generation system according to a first embodiment of the present invention. FIG. 2 is an explanatory diagram of the fuel cell power generation system according to the first embodiment of the present invention.
図 3は本発明による第 2の態様の水素製造システムの説明図である。 図 4は本発明による第 2の態様の水素製造システムの説明図である。 図 5は本発明による第 2の態様の燃料電池発電システムの説明図で ある。  FIG. 3 is an explanatory diagram of a hydrogen production system according to a second embodiment of the present invention. FIG. 4 is an explanatory diagram of the hydrogen production system according to the second embodiment of the present invention. FIG. 5 is an explanatory diagram of a fuel cell power generation system according to a second embodiment of the present invention.
図 6は本発明による第 2の態様の燃料電池発電システムの説明図で める。  FIG. 6 is an explanatory diagram of a fuel cell power generation system according to a second embodiment of the present invention.
図 7は本発明の第 1実施例である燃料電池発電システムの基本構成 図である。  FIG. 7 is a basic configuration diagram of the fuel cell power generation system according to the first embodiment of the present invention.
図 8は本発明の第 2実施例である水素製造システムの基本構成図で ある。  FIG. 8 is a basic configuration diagram of a hydrogen production system according to a second embodiment of the present invention.
図 9は本発明の第 3実施例である燃料電池発電システムの基本構成 図である。  FIG. 9 is a basic configuration diagram of a fuel cell power generation system according to a third embodiment of the present invention.
図 1 0は本発明による第 3の態様の水素製造システムの説明図であ る。  FIG. 10 is an explanatory diagram of a hydrogen production system according to a third embodiment of the present invention.
図 1 1 は本発明による第 3の態様の燃料電池発電システムの説明図 である。  FIG. 11 is an explanatory diagram of a fuel cell power generation system according to a third embodiment of the present invention.
図 1 2は本発明の第 4実施例である水素製造システムの基本構成図 である。  FIG. 12 is a basic configuration diagram of a hydrogen production system according to a fourth embodiment of the present invention.
図 1 3は本発明の第 5実施例である燃料電池発電システムの基本構 成図である。 発明を実施するための最良の形態  FIG. 13 is a basic configuration diagram of a fuel cell power generation system according to a fifth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係る有機物メタン発酵による燃料電池発電システムの j Hereinafter, the fuel cell power generation system by organic matter methane fermentation according to the present invention j
実施形態を図 1乃至図 1 3を参照して説明する。 図 1乃至図 1 3におい て、 同一又は対応する工程又は部材は、 同一の符号を付し、 重複する説 明が省略される。 An embodiment will be described with reference to FIGS. In FIGS. 1 to 13, the same or corresponding steps or members are denoted by the same reference numerals, and redundant description will be omitted.
図 1 は本発明の第 1の態様の燃料電池発電システムを示す概略図で ある。 図示するように、 本発明の燃料電池発電システムにおいては、 有 機物 aをメタン発酵工程 Aで発酵させ、 得られた消化ガス bをガス処理 工程 Bで処理して含水素ガス cを製造し、 燃料電池発電工程 Cに供給し て発電する。  FIG. 1 is a schematic diagram showing a fuel cell power generation system according to a first embodiment of the present invention. As shown in the figure, in the fuel cell power generation system of the present invention, the organic matter a is fermented in the methane fermentation step A, and the obtained digested gas b is processed in the gas treatment step B to produce the hydrogen-containing gas c. Then, it is supplied to the fuel cell power generation process C to generate power.
前記ガス処理工程 Bは、 メ夕ン発酵工程で得られた消化ガス中の硫化 水素及び塩化水素等の酸性ガスを吸着及び/又は吸収除去するガス前 処理工程 1 と、 前処理後ガス中のメ夕ンを水蒸気との触媒反応により水 素と一酸化炭素に改質する改質工程 2 と、 改質後ガス中の一酸化炭素を 水蒸気との触媒反応によ り水素ガスと二酸化炭素に変成する変成工程 3 と、 変成後ガス中の二酸化炭素を水又はアル力 リ性溶液と接触させて 吸収分離する二酸化炭素水吸収工程 4 と、 残留の二酸化炭素をアミ ン吸 収液と接触させて吸収分離する二酸化炭素アミ ン吸収工程 5 と、 二酸化 炭素アミ ン吸収工程 5で得られた脱炭酸後ガス中に残留する一酸化炭 素と二酸化炭素を水素とメタン化反応させることによ り除去するメタ ネ一シヨン工程 6 とを含んでいる。 なお改質工程 2の後のガスは、 ボイ ラ 1 1 を通って変成工程 3に送られる。 また、 図 2は前記二酸化炭素水 吸収工程 4 を省略した場合の本発明の第 1の態様の燃料電池発電シス テムを示す概略図である。  The gas treatment step B comprises: a gas pretreatment step 1 for adsorbing and / or absorbing and removing acidic gases such as hydrogen sulfide and hydrogen chloride in the digested gas obtained in the main fermentation step; A reforming step 2 in which the gas is reformed into hydrogen and carbon monoxide by a catalytic reaction with steam, and carbon monoxide in the reformed gas is converted into hydrogen gas and carbon dioxide by a catalytic reaction with steam. Metamorphosis step 3 for metamorphosis, carbon dioxide water absorption step 4 for bringing carbon dioxide in the gas after conversion into contact with water or an alkaline solution to absorb and separate it, and contacting residual carbon dioxide with the amine absorption liquid And carbon dioxide remaining in the decarbonated gas obtained in the carbon dioxide amine absorption step 5 and the carbon dioxide are subjected to a methanation reaction with hydrogen. Removing meta-metallization step 6 There. The gas after the reforming step 2 is sent to the shift step 3 through the boiler 11. FIG. 2 is a schematic diagram showing the fuel cell power generation system according to the first embodiment of the present invention in which the carbon dioxide water absorption step 4 is omitted.
燃料電池発電工程 Cではァノ一ドに含水素ガス cが供給され、 カソー ドに酸素含有ガス ( 0 5 ) が供給される。 そして、 アノー ドオフガス ( 0 4 )の一部は改質工程 2に供給されて循環利用され、残りは排出ガス( 0 8 ) として排出される。 力ソードオフガス ( 0 6 ) は燃料電池発電工程 Cから排出された後に改質工程 2に送られ助燃剤として利用される。 燃 料電池のス夕ックを冷却した際のス夕ック排熱 ( 0 7 ) は、 メタン発酵 工程 Aに送られ、 メ夕ン発酵液の加熱源として用いられる。 In the fuel cell power generation process C, the hydrogen-containing gas c is supplied to the anode, and the oxygen-containing gas (05) is supplied to the cathode. Then, a part of the anode off-gas (04) is supplied to the reforming step 2 to be circulated and used, and the rest is exhaust gas (04). 8) is discharged as. The power source off-gas (06) is discharged from the fuel cell power generation process C and then sent to the reforming process 2 to be used as a combustion aid. The waste heat of the fuel cell (07) when the fuel cell is cooled is sent to the methane fermentation process A, where it is used as a heating source for the main fermented liquid.
図 3は本発明の第 2の態様の水素製造システムの基本構成図である。 図示するように、 本発明の水素製造システムにおいては、 有機物 aをメ タン発酵工程 Aで発酵させ、 得られた消化ガス bをガス処理工程 Bで処 理して含水素ガス cを製造する。  FIG. 3 is a basic configuration diagram of the hydrogen production system according to the second embodiment of the present invention. As shown in the figure, in the hydrogen production system of the present invention, an organic substance a is fermented in a methane fermentation step A, and an obtained digestion gas b is processed in a gas treatment step B to produce a hydrogen-containing gas c.
前記ガス処理工程 Bは、 メ夕ン発酵工程で得られた消化ガス中の硫化 水素及び塩化水素等の酸性ガスを吸着及び/又は吸収除去するガス前 処理工程 1 と、 前処理後ガス中のメ夕ンを水蒸気との触媒反応によ り水 素と一酸化炭素に改質する改質工程 2 と、 改質後ガス中の一酸化炭素を 水蒸気との触媒反応によ り水素ガスと二酸化炭素に変成する変成工程 3 と、 変成後ガス中の二酸化炭素を水又はアル力 リ性溶液と接触させて 吸収分離する二酸化炭素水吸収工程 4 と、 残留の二酸化炭素をアミ ン吸 収液と接触させて吸収分離する二酸化炭素アミ ン吸収工程 5 と、 二酸化 炭素アミ ン吸収工程 5で得られた脱炭酸後ガス中に残留する一酸化炭 素と二酸化炭素を水素とメタン化反応させることによ り除去するメタ ネーシヨン工程 6 と、 メタネーシヨン後ガス中の水分を脱湿後にメ夕ネ —シヨン後ガス中のメタンと窒素を分離し、 水素ガスを精製、 昇圧する 水素吸蔵合金を用いた水素精製工程 7 とを含んでいる。 なお改質工程 2 の後のガスは、 ボイラ 1 1 を通って変成工程 3に送られる。 前記水素精 製工程 7のオフガス ( 0 9 ) の一部は改質工程 2に返送され、 残りは排 出ガス ( 0 8 ) として排出される。 また、 図 4は前記二酸化炭素水吸収 工程 4を省略した場合の本発明の第 2の態様の水素製造システムを示 す概略図である。 The gas treatment step B comprises: a gas pretreatment step 1 for adsorbing and / or absorbing and removing acidic gases such as hydrogen sulfide and hydrogen chloride in the digested gas obtained in the main fermentation step; A reforming step 2 in which the gas is reformed into hydrogen and carbon monoxide by a catalytic reaction with steam, and hydrogen gas and carbon dioxide by a catalytic reaction of carbon monoxide in the reformed gas with steam. Metamorphosis step 3 for converting to carbon, carbon dioxide water absorption step 4 for bringing carbon dioxide in the gas after conversion into contact with water or an alkaline solution to absorb and separate, and residual carbon dioxide as an amine absorption liquid. The carbon dioxide amine absorption step 5 for contact absorption and separation, and the carbon monoxide and carbon dioxide remaining in the decarbonated gas obtained in the carbon dioxide amine absorption step 5 undergo a methanation reaction with hydrogen. Meta removal step 6 to remove more The method includes a hydrogen purification step 7 using a hydrogen-absorbing alloy in which methane and nitrogen in the gas after separation are separated from methane and nitrogen in the gas after purification, and hydrogen gas is purified and pressurized. The gas after the reforming step 2 is sent to the shift step 3 through the boiler 11. Part of the off-gas (09) in the hydrogen purification step 7 is returned to the reforming step 2, and the rest is discharged as exhaust gas (08). FIG. 4 shows a hydrogen production system according to a second embodiment of the present invention in which the carbon dioxide water absorption step 4 is omitted. FIG.
図 5は本発明の第 2の態様の燃料電池発電システムを示す概略図であ る。 図示するように、 本発明の燃料電池発電システムにおいては、 有機 物 aをメタン発酵工程 Aで発酵させ、 得られた消化ガス bをガス処理ェ 程 Bで処理して水素ガス cを製造し、 燃料電池発電工程 Cに供給して発 電する。 前記ガス処理工程 Bは、 図 3に示すガス処理工程と同様の工程 からなる。 そして、 水素精製工程 7で精製、 昇圧した水素ガス cを燃料 として、 含酸素ガスを酸化剤ガスとしてそれぞれ燃料電池発電工程 Cに おける燃料電池ス夕 ックのアノードと力ソードに供給して発電する。 ま た、 燃料電池発電工程 Cから排出されるアノー ドオフガス ( 0 4 ) をァ ノー ドに供給して循環利用する。 力ソー ドオフガス ( 0 6 ) は燃料電池 発電工程 Cから排出された後に改質工程 2に送られ助燃剤と して利用 される。 燃料電池のス夕 ックを冷却した際のス夕 ック排熱 ( 0 7 ) は、 メ夕ン発酵工程 Aに送られ、 メ夕ン発酵液の加熱源として用いられる。 またス夕 ック排熱 ( 0 7 ) は水素精製工程 7にも送られ、 該工程にて有 効利用される。 また、 図 6は前記二酸化炭素水吸収工程 4を省略した場 合の本発明の第 2の態様の燃料電池発電システムを示す概略図である。  FIG. 5 is a schematic diagram showing a fuel cell power generation system according to the second embodiment of the present invention. As shown in the figure, in the fuel cell power generation system of the present invention, the organic matter a is fermented in the methane fermentation step A, and the obtained digested gas b is processed in the gas treatment step B to produce hydrogen gas c. Power is supplied to fuel cell power generation process C to generate electricity. The gas treatment step B is the same as the gas treatment step shown in FIG. Then, the hydrogen gas c purified and pressurized in the hydrogen purification step 7 is used as fuel, and the oxygen-containing gas is supplied as oxidant gas to the anode and power source of the fuel cell battery in the fuel cell power generation step C to generate electricity. I do. Also, the anodic off-gas (04) discharged from the fuel cell power generation process C is supplied to the anode and recycled. The power source off-gas (06) is discharged from the fuel cell power generation process C and then sent to the reforming process 2 where it is used as a combustion aid. The exhaust heat of the fuel cell (07) when the fuel cell is cooled is sent to the main fermentation step A and used as a heating source for the main fermented liquid. In addition, the screen exhaust heat (07) is also sent to the hydrogen purification step 7, where it is effectively used. FIG. 6 is a schematic diagram showing a fuel cell power generation system according to a second embodiment of the present invention in which the carbon dioxide water absorption step 4 is omitted.
図 1 0は本発明の第 3の態様の水素製造システムの基本構成図であ る。 図示するように、 本発明の水素製造システムにおいては、 有機物 a をメタン発酵工程 Aで発酵させ、 得られた消化ガス bをガス処理工程 B で処理して含水素ガス cを製造する。  FIG. 10 is a basic configuration diagram of the hydrogen production system according to the third embodiment of the present invention. As shown in the figure, in the hydrogen production system of the present invention, an organic substance a is fermented in a methane fermentation step A, and the obtained digested gas b is processed in a gas treatment step B to produce a hydrogen-containing gas c.
前記ガス処理工程 Bは、 メ夕ン発酵工程で得られた消化ガス中の硫化 水素及び塩化水素等の酸性ガスを吸着及び/又は吸収除去するガス前 処理工程 1 と、 前処理後ガス中のメ夕ンを水蒸気との触媒反応により水 素と一酸化炭素に改質する改質工程 2 と、 改質後ガス中の一酸化炭素を 水蒸気との触媒反応によ り水素ガスと二酸化炭素に変成する変成工程The gas treatment step B comprises: a gas pretreatment step 1 for adsorbing and / or absorbing and removing acidic gases such as hydrogen sulfide and hydrogen chloride in the digested gas obtained in the main fermentation step; A reforming step 2 in which the main component is reformed into hydrogen and carbon monoxide by a catalytic reaction with water vapor, and carbon monoxide in the reformed gas Metamorphosis process that converts to hydrogen gas and carbon dioxide by catalytic reaction with steam
3 と、 変成後ガス中の二酸化炭素をァミ ン吸収液と接触させて吸収分離 する二酸化炭素アミ ン吸収工程 5 と、 二酸化炭素アミ ン吸収工程 5で得 られた脱炭酸後ガス中に残留する一酸化炭素と二酸化炭素とメタンと 窒素を吸着材に吸着分離する水素精製工程 7 とを含んでいる。 なお改質 工程 2の後のガスは、 ボイラ 1 1 を通って変成工程 3に送られる。 前記 水素精製工程 7のオフガス ( 0 9 ) の一部は改質工程 2 に返送され、 残 りは排出ガス ( 0 8 ) として排出される。 3, carbon dioxide amine absorption step 5 in which carbon dioxide in the gas after conversion is brought into contact with the amine absorption liquid to absorb and separate it, and remaining in the decarbonated gas obtained in the carbon dioxide amine absorption step 5. And a hydrogen purification step 7 in which carbon monoxide, carbon dioxide, methane, and nitrogen are adsorbed and separated by an adsorbent. The gas after the reforming step 2 is sent to the shift step 3 through the boiler 11. A part of the off-gas (09) of the hydrogen purification step 7 is returned to the reforming step 2, and the rest is discharged as an exhaust gas (08).
図 1 1は本発明の第 3の態様の燃料電池発電システムを示す概略図で ある。 図示するように、 本発明の燃料電池発電システムにおいては、 有 機物 aをメ夕ン発酵工程 Aで発酵させ、 得られた消化ガス bをガス処理 工程 Bで処理して水素ガス cを製造し、 燃料電池発電工程 Cに供給して 発電する。 前記ガス処理工程 Bは、 図 1 0に示すガス処理工程と同様の 工程からなる。 そして、 水素精製工程 7で精製した水素ガス cを燃料と して、 含酸素ガスを酸化剤ガスとしてそれぞれ燃料電池発電工程 Cにお ける燃料電池ス夕ックのアノー ドとカソー ドに供給して発電する。 また、 燃料電池発電工程 Cから排出されるアノー ドオフガス ( 0 4 ) をァノ一 ドに供給して循環利用する。 力ソー ドオフガス ( 0 6 ) は燃料電池発電 工程 Cから排出された後に改質工程 2に送られ助燃剤と して利用され る。 燃料電池のス夕ヅクを冷却した際のス夕ック排熱 ( 0 7 ) は、 メ夕 ン発酵工程 Aに送られ、 メタン発酵液の加熱源として用いられる。 また スタ ック排熱 ( 0 7 ) は水素精製工程 7にも送られ、 該工程にて有効利 用される。  FIG. 11 is a schematic diagram showing a fuel cell power generation system according to a third embodiment of the present invention. As shown in the figure, in the fuel cell power generation system of the present invention, the organic substance a is fermented in the main fermentation step A, and the obtained digested gas b is processed in the gas processing step B to produce hydrogen gas c. Then, it is supplied to the fuel cell power generation process C to generate power. The gas treatment step B is the same as the gas treatment step shown in FIG. Then, the hydrogen gas c purified in the hydrogen purification step 7 is used as fuel, and the oxygen-containing gas is supplied as an oxidant gas to the anode and cathode of the fuel cell unit in the fuel cell power generation step C, respectively. To generate electricity. In addition, the anode off-gas (04) discharged from the fuel cell power generation process C is supplied to the anode and recycled. The power source off-gas (06) is discharged from the fuel cell power generation process C and then sent to the reforming process 2 where it is used as a combustion aid. The waste heat (07) of the fuel cell when the smoke is cooled is sent to the main fermentation step A, where it is used as a heating source for the methane fermentation liquor. The stack waste heat (07) is also sent to the hydrogen purification step 7, where it is effectively used.
図 7は本発明の第 1実施例である燃料電池システムの基本構成図で ある。 有機物 aをメタン発酵工程 Aで発酵させ、 消化ガス bを生成し、 消化ガスホルダー 1 0 1に貯める。 そして、 消化ガス bを消化ガスプロ ヮ 1 0 2によつて前処理工程 1のスクラノ 1 1 に送り、 ここで消化ガス bを洗浄水 1 3 と接触させて、 消化ガス中の硫化水素や塩化水素等の酸 性ガスを 1 0 p p m以下、 望ましくは 1 p p m以下に除去する。 洗浄水 1 3を循環ポンプ 1 2によってスクラノ^; 1 1 に循環させるが、 洗浄水 1 3の一部を洗浄廃液 1 4 として常時引抜く と同時に、 同じ量の新しい洗 浄補給水 1 5を補給する。 ここで、 供給する洗浄補給水 1 5には 0 . 0 5〜 5 %の力性ソ一ダを添加する。 次いで、 スクラバ 1 1 を出た洗浄ガ ス 1 6を分岐し、 改質フィー ドガス 1 7を乾式脱硫器 1 9へ送る。 一方 で燃料ガス 1 8を改質工程 2のバ一ナ 2 3 bへ送る。 FIG. 7 is a basic configuration diagram of the fuel cell system according to the first embodiment of the present invention. Organic matter a is fermented in methane fermentation step A to produce digestive gas b, Store in digestive gas holder 101. Then, the digestive gas b is sent to the scrano 11 in the pretreatment step 1 by the digestive gas processor 102, where the digestive gas b is brought into contact with the washing water 13 to remove the hydrogen sulfide and hydrogen chloride in the digestive gas. And other acid gases should be removed below 10 ppm, preferably below 1 ppm. The washing water 13 is circulated to the scrano ^; 1 1 by the circulation pump 1 2, but a part of the washing water 13 is constantly withdrawn as the washing waste liquid 14, and at the same time, the same amount of new washing makeup water 15 Replenish. Here, 0.05 to 5% of viscous soda is added to the supplied cleaning and replenishing water 15. Next, the cleaning gas 16 that has exited the scrubber 11 is branched, and the reformed feed gas 17 is sent to the dry desulfurizer 19. On the other hand, the fuel gas 18 is sent to the burner 23 b of the reforming step 2.
乾式脱硫器 1 9にて H 2 Sが 0 . 1 p p m以下、 好ま しくは 0 . 0 1 p p m以下に除去された改質フ ィー ドガスが圧縮機 2 1 によって 1 0 気圧以下の圧力に昇圧されて改質工程 2へ送られ、 熱交換器 2 2で燃焼 排ガス 2 5 bによって予熱された後、 蒸気ボイラ 2 6で発生した改質用 蒸気 2 7 と合流して改質器 2 3の改質触媒充填層 2 3 aに入る。 触媒充 填層 2 3 aでメ タンが水蒸気との改質反応によって水素と一酸化炭素 に改質される。 改質反応は 7 0 0〜 8 0 0 °C又は 6 0 0〜 7 0 0 °Cにお ける吸熱反応なので、 前記燃料ガス 1 8 と含酸素ガス 2 5 aとをパーナ 2 3 bによって燃焼させ、 前記反応熱を供給する。 改質後高温ガス 2 4 aを蒸気ボイ ラ 2 6に導入し改質用蒸気 2 7及び後段の二酸化炭素ァ ミ ン吸収工程の吸収液再生用蒸気 2 8 aを発生する。 次いで、 1 5 0〜 2 0 0 °Cに冷却された改質後ガス 2 4 bを変成工程 3の変成反応器 3 1に導き、 一酸化炭素と水蒸気を 2 0 0〜 2 5 0 °Cでの触媒反応によつ て二酸化炭素と水素とに変成させ、 一酸化炭素の濃度を 1 %以下、 好ま しくは 0 . 5 %以下に下げる。 次いで、 変成後ガス 3 2をガスクーラ 3 3で熱回収、 冷却した後、 C 02水吸収工程 4の吸収塔 4 1 に送る。 ここで、 熱交換器を設けて変成 後ガス 3 2 と復水 2 8 bとを熱交換させて変成後ガス 3 2を冷却し、 復 水 2 8 bを予熱することもできる。 吸収塔 4 1で変成後ガス 3 2 と送液 ポンプ 4 4によって送られる C 02吸収原水 4 3 とを接触させることに よって、 ガス 3 2中の C 02を 6 0 %以上、 好ましくは 9 0 %以上吸収 し、 吸収後水 5 5 (炭酸吸収水) と共に系外へ排出する。 一方、 C 02 水吸収後ガス 4 2を次工程の C 02ァミ ン吸収工程 5の吸収塔 5 1 aに 送る。 H 2 S is reduced to 0.1 ppm or less, preferably to 0.01 ppm or less in the dry desulfurizer 19, and the reformed feed gas is pressurized to a pressure of 10 atm or less by the compressor 21. After being sent to the reforming process 2 and preheated by the combustion exhaust gas 25 b in the heat exchanger 22, it is combined with the reforming steam 27 generated in the steam boiler 26 to form the reformer 23. It enters the reforming catalyst packed bed 23a. In the catalyst packed bed 23a, methane is reformed into hydrogen and carbon monoxide by a reforming reaction with steam. Since the reforming reaction is an endothermic reaction at 700 to 800 ° C. or 600 to 700 ° C., the fuel gas 18 and the oxygen-containing gas 25 a are burned by the parner 23 b. And supplying the reaction heat. The reformed high-temperature gas 24a is introduced into the steam boiler 26 to generate the reforming steam 27 and the absorbing liquid regeneration steam 28a in the subsequent carbon dioxide amine absorption step. Next, the reformed gas 24 b cooled to 150 to 200 ° C. is led to the shift reactor 31 of the shift step 3, and carbon monoxide and water vapor are turned to 200 to 250 ° C. Is converted to carbon dioxide and hydrogen by the catalytic reaction in step, and the concentration of carbon monoxide is reduced to 1% or less, preferably 0.5% or less. Then, send the modified gas after 3 2 heat recovery at the gas cooler 3 3, after cooling, to the absorber 4 1 C 0 2 Water absorption step 4. Here, a heat exchanger may be provided to exchange heat between the post-transformation gas 32 and the condensate 28b to cool the post-transformation gas 32 and preheat the condensate 28b. And C 0 2 absorption raw water 4 3 sent by the absorption column 4 1 transformer after gas 3 2 and the liquid feed pump 4 4 to contacting Therefore, the C 0 2 gas 3 2 6 0% or more, preferably Absorb 90% or more, then discharge out of the system together with water 55 (carbonated water) after absorption. On the other hand, sends a C 0 2 Water absorption after gas 4 2 to the absorber 5 1 a of C 0 2 § Mi emission absorption step 5 in the next step.
二酸化炭素ァミ ン吸収工程 5では、 前記変成後ガスと再生後吸収液 5 3 aとを接触させて二酸化炭素を 0. 5 %以下、 望ましくは 0. 1 %以 下、 さらに望ましくは 0. 0 1 %以下に除去する。 同時に、 該工程で硫 化水素や塩化水素等の酸性ガスがさらに除去される。 一方、 吸収後吸収 液 5 3 bを熱交換器 5 4 aを経て再生塔 5 1 bに導き、 熱交換器 5 4 c にて蒸気 2 8 aによって 1 0 0〜 1 5 0 °Cに加熱し吸収液を再生する と共に炭酸ガス 5 7を回収する。 また、 熱交換器 5 4 cから復水 2 8 b を蒸気ボイラ 2 6に返送する。 再生後吸収液 5 3 aを送液ポンプ 5 5に よって、 熱交換器 54 a及びガスクーラ 5 4 bを経て再び吸収塔 5 1 a に送る。 なお、 符号 5 6 bは吸収補給液である。  In the carbon dioxide amine absorption step 5, the post-regeneration gas is brought into contact with the post-regeneration absorbent 53a to reduce carbon dioxide to 0.5% or less, preferably 0.1% or less, more preferably 0.1% or less. 0 Remove to 1% or less. At the same time, acidic gases such as hydrogen sulphate and hydrogen chloride are further removed in this step. On the other hand, the absorbed liquid 53b after absorption is led to the regeneration tower 51b via the heat exchanger 54a, and heated to 100 to 150 ° C by the steam 28a in the heat exchanger 54c. Then regenerate the absorbing solution and collect carbon dioxide 57. The condensate 28 b is returned from the heat exchanger 54 c to the steam boiler 26. After regeneration, the absorbent 53a is sent to the absorption tower 51a again by the liquid sending pump 55 via the heat exchanger 54a and the gas cooler 54b. Reference numeral 56b denotes an absorption replenisher.
次いで、 二酸化炭素ァミ ン吸収工程 5を出た C 02吸収後ガス 5 2を メ夕ネ一シヨ ン工程 6の熱交換器 6 1を経てメタネーシヨ ン反応器 6 2に送る。 メ夕ネ一ション反応器 6 2ではガス中の C〇 2及び C 0が H 2 とのメタン化反応によってそれぞれ 1 0 O p p m以下と 1 O p p m以 下、 好ましくは 1 p pm以下に除去される。 メ夕ネ一ション反応器 6 2 を出たメ夕ネ一シヨ ン後ガス 6 3が熱交換器 6 1及び含水素ガスホル ダ一 6 7を経て、 燃料ガス 8 5 aとして燃料電池発電工程 Cの燃料電池 スタック 8 1のアノー ド極室に供給し、 そして、 空気 8 2 を空気ブロワ 8 3によってスタック 8 1のカソー ド室に供給して発電する。 符号 8 8 は発電電力出力である。 Then, send the Metaneshiyo down reactor 6 2 C 0 2 absorption after gas 5 2 exiting the carbon dioxide § Mi emission absorption step 5 through the heat exchanger 61 of the main Yuneichi to down step 6. Main evening Ne one Deployment reactor 6 each C_〇 2 and C 0 in the gas in 2 the methanation reaction with H 2 1 0 O ppm or less and 1 O ppm hereinafter, is preferably removed following 1 p pm You. The gas 63 coming out of the message reactor 62 exits the heat exchanger 61 and the hydrogen-containing gas holder. The fuel gas is supplied to the anode electrode room of the fuel cell stack 81 of the fuel cell power generation process C as fuel gas 85a through the airflow 67, and the air 82 is supplied to the cathode 81 of the stack 81 by the air blower 83. Power is supplied to the room to generate electricity. Reference numeral 8 8 is a generated power output.
本実施例では、 スタ ック 8 1の力ソー ド室よ り排出される力ソー ドォ フガス 8 4を改質工程 2の助燃剤 2 5 aとして利用することができる。 また、 スタ ック 8 1のアノー ド極室から排出されるアノー ドオフガス 8 6の 1 0 %程度を排出ガス ( 0 8 ) として系外に排出すると共に、 残り の 9 0 %を改質工程 2の圧縮機 2 1の吸引口に返送し、 メタネーシヨ ン によって生成したメタンと、 改質反応で改質できなかったメタンを再度 改質する。 また、 スタ ック 8 1の冷却水出口 8 7 aをメタン発酵工程 A のメタン発酵槽 A 1及び水素精製工程 7に循環し、 熱交換によってス夕 ック排熱を有効利用する。 そして、 熱交換後のスタ ック冷却水はス夕 ッ ク 8 1の冷却水入口 8 7 bに戻る。  In the present embodiment, the power source gas 84 discharged from the power source chamber of the stack 81 can be used as the combustion aid 25a in the reforming step 2. About 10% of the anode off-gas 86 discharged from the anode electrode chamber of the stack 81 is discharged to the system as exhaust gas (08), and the remaining 90% is discharged to the reforming process 2 The methane is returned to the suction port of compressor 21 and reformed again by methane generated by the meta-ion and methane that could not be reformed by the reforming reaction. In addition, the cooling water outlet 87a of the stack 81 is circulated to the methane fermentation tank A1 of the methane fermentation step A and the hydrogen purification step 7, and heat from the waste heat is effectively used by heat exchange. Then, the stack cooling water after the heat exchange returns to the cooling water inlet 87 b of the stack 81.
図 8は本発明の第 2実施例である水素製造システムの基本構成図で ある。 前記第 1実施例に記載のメタネ一ション反応器 6 2を出たメ夕ネ ーシヨン後ガス 6 3が熱交換器 6 1 を経てガスクーラ 6 4、 気水分離機 6 5及び除湿機 6 6で該ガス中の水分を 1 0 0 p p m以下、 好ましくは 1 0 p p m以下に除去された後、 水素精製工程 7に送られる。 ここで用 いる除湿機としては水分吸着剤を充填したもの、 例えば活性アルミナや シリカゲルを充填したものが好適である。  FIG. 8 is a basic configuration diagram of a hydrogen production system according to a second embodiment of the present invention. The gas 63 after exiting the metalation reactor 62 described in the first embodiment passes through the heat exchanger 61, and passes through the gas cooler 64, the gas-water separator 65, and the dehumidifier 66. After the water in the gas is removed to 100 ppm or less, preferably 100 ppm or less, it is sent to the hydrogen purification step 7. The dehumidifier used here is preferably one filled with a moisture adsorbent, for example, one filled with activated alumina or silica gel.
水素精製工程 7では少なく とも 2系列の水素吸蔵合金容器 7 1 a , 7 l bと、 少なく とも 1系列の水素タンク 7 2からなる。 2系列の水素吸 蔵合金容器がそれぞれ水素吸蔵と水素放出を行い、 水素吸蔵と放出の切 替えは粗水素入口電磁弁 7 4 a , 7 4 b , 精製水素出口電磁弁 7 5 a , 7 5 b , メタン, 窒素出口電磁弁 7 6 a, 7 6 bによって行われる。 こ こでは、 合金容器 7 1 aが水素放出操作を、 合金容器 7 l bが水素吸蔵 操作を行う場合について説明する。 The hydrogen refining process 7 includes at least two series of hydrogen storage alloy containers 7 1 a and 7 lb, and at least one series of hydrogen tanks 72. The two series of hydrogen storage alloy containers perform hydrogen storage and release, respectively.The switching between hydrogen storage and release is performed by the crude hydrogen inlet solenoid valves 74a and 74b, the purified hydrogen outlet solenoid valves 75a and 75b, methane, nitrogen outlet solenoid valves 76a, 76b. Here, a case where the alloy container 71a performs the hydrogen releasing operation and the alloy container 7lb performs the hydrogen absorbing operation will be described.
この場合、 電磁弁 7 4 bを開いてメタネーシヨ ン後ガス 6 3を合金容 器 7 1 bに導入し 1 2〜 3 5 °Cの温度で水素を吸蔵する。 冷却水 7 8 a を合金容器 7 1 bのジャケッ トに導入して水素吸蔵時発熱を冷却除去 する。 飽和吸蔵後に電磁弁 7 4 bを閉め電磁弁 7 6 bを開いて、 合金容 器 7 1 bの合金充填層の空隙にたまったメタン、 窒素、 残留の水素及び その他の微量不純物ガスを含む水素精製工程オフガス 7 3を排出する。 一方、 電磁弁 7 4 a及び 7 6 aが閉に、 電磁弁 7 5 aが開になっている 合金容器 7 1 aのジャケッ トに、 1 2 0 °C又はそれ以上の蒸気 7 9 aを 導入して水素吸蔵合金に吸蔵された水素を放出させ、 放出した精製水素 7 7 aを水素タンク 7 2 を経由して、 燃料電池等の需要先に供給する。 精製水素ガス 7 7 a及び 7 7 bの純度と圧力はそれぞれ 9 9 . 9 %以上 及び 2気圧以上に達する。  In this case, the solenoid valve 74b is opened, and the gas 63 after the metanalysis is introduced into the alloy container 71b to absorb hydrogen at a temperature of 12 to 35 ° C. Cooling water 78a is introduced into the jacket of the alloy container 71b to cool and remove the heat generated when storing hydrogen. After saturation storage, close solenoid valve 74 b and open solenoid valve 76 b to store methane, nitrogen, residual hydrogen, and hydrogen containing trace amounts of impurity gas in the voids in the alloy packed bed of alloy container 71 b The purification process off-gas 73 is discharged. On the other hand, the solenoid valves 74a and 76a are closed and the solenoid valve 75a is open.The steam 79a of 120 ° C or higher is applied to the jacket of the alloy container 71a. The hydrogen absorbed by the hydrogen storage alloy is introduced and released, and the released purified hydrogen 77a is supplied to a demand destination such as a fuel cell via a hydrogen tank 72. The purity and pressure of the purified hydrogen gas 77a and 77b reach 99.9% or more and 2 atm or more, respectively.
次いで、 排出された水素精製オフガス 7 3の 1 0 %程度を排出ガス ( 0 8 ) として系外に排出すると共に、 残りの 9 0 %を改質工程 2の圧 縮機 2 1の吸引口に返送し、 メ夕ネ一シヨンによって生成したメタンと、 改質反応で改質できなかったメタンを再度改質する。  Next, about 10% of the discharged hydrogen purification off-gas 73 is discharged out of the system as exhaust gas (08), and the remaining 90% is supplied to the suction port of the compressor 21 in the reforming step 2. It is returned and reforms the methane generated by the process and the methane that could not be reformed by the reforming reaction.
図 9 は本発明の第 3実施例である燃料電池発電システムの基本構成 図である。 前記実施例 2で説明した精製水素ガス 7 7 bを燃料電池発電 工程 Cの燃料電池ス夕ック 8 1のァノード極室に供給して発電する。 本 実施例では、 スタック 8 1のァノー ド極室から出たァノー ドオフガス 8 6をェジェクタ 8 5を介してスタック 8 1のアノード室に循環する。 こ こで、 ェジェクタ 8 5に代わって送風機や圧縮機を用いることもできる c また、 スタ ック 8 1の冷却水 8 7 aを水素精製工程 7の合金容器 Ί 1 a のジャケッ トに導入して水素吸蔵後の水素吸蔵合金を加熱し精製水素 7 7 aを放出させる。 一方、 合金容器 7 l aのジャケッ トを出たスタ ツ ク冷却水 8 7 bを、 再びスタ ック 8 1 を冷却するためにスタ ック 8 1 に 循環する。 ス夕 'ソクの冷却温度と水素吸蔵合金の水素放出温度の一例と して、 前記燃料電池ス夕 ック 8 1 を出たス夕 ック冷却水 8 7 a (出口) 即ち水素吸蔵合金容器 7 1 aのジャケ ッ ト入口温水の温度が 7 5 で あり、 スタ ック冷却水 8 7 b (入口) 、 即ち水素吸蔵合金容器 7 1 aの ジャケ ヅ ト出口温水の温度が 7 0 °Cであってよい。 FIG. 9 is a basic configuration diagram of a fuel cell power generation system according to a third embodiment of the present invention. The purified hydrogen gas 77 b described in the second embodiment is supplied to the anode electrode room of the fuel cell battery 81 of the fuel cell power generation step C to generate power. In this embodiment, the anode off-gas 86 flowing out of the anode electrode chamber of the stack 81 is circulated to the anode chamber of the stack 81 via the ejector 85. Here, a blower or a compressor can be used instead of the ejector 85 c In addition, the cooling water 87a of the stack 81 is introduced into the jacket of the alloy container # 1a in the hydrogen purification step 7, and the hydrogen storage alloy that has absorbed the hydrogen is heated to release purified hydrogen 77a. On the other hand, the stack cooling water 87 b exiting the jacket of the alloy container 7 la is circulated to the stack 81 in order to cool the stack 81 again. As an example of the cooling temperature of the hydrogen storage alloy and the hydrogen release temperature of the hydrogen storage alloy, the cooling water 87 a (outlet), ie, the hydrogen storage alloy container, that exited the fuel cell battery 81 was prepared. The temperature of the hot water at the jacket inlet of 71 a is 75 and the temperature of the stack cooling water 87 b (inlet), that is, the temperature of the hot water at the jacket outlet of the hydrogen storage alloy container 71 a is 70 ° C. It may be.
図 1 2は本発明の第 4実施例である水素製造システムの基本構成図 である。 前記第 1実施例に記載のァミ ン吸収塔 5 1 aを出たアミ ン吸収 後ガス 5 2が水素精製工程 7に送られる。 水素精製工程 7では少なく と も 2系列の吸着塔と、 少なく とも 1系列の水素タンク 7 2からなる。 本 実施例では 3系列の吸着塔が順次に水素以外のガス成分、 即ち C 0 2、 C O、 メタン及び窒素等の吸着と脱着を行う。 FIG. 12 is a basic configuration diagram of a hydrogen production system according to a fourth embodiment of the present invention. The post-amin absorption gas 52 exiting the amine absorption tower 51 a described in the first embodiment is sent to the hydrogen purification step 7. The hydrogen purification step 7 comprises at least two lines of adsorption towers and at least one line of hydrogen tanks 72. Adsorption tower sequentially gas components other than hydrogen in the 3 series in this embodiment, i.e., C 0 2, CO, adsorption and desorption of such as methane and nitrogen performed.
吸着塔 7 1 を出た精製水素 7 7を水素タンク 7 2を経由して、 燃料電 池等の需要先に供給する。 精製水素ガス 7 7の水素濃度が 9 9 %以上、 好ましくは 9 9 . 9 %以上に達し、 C 0濃度が 1 0 p p m以下、 好まし くは 1 P p m以下に低下する。  Purified hydrogen 77 coming out of the adsorption tower 71 is supplied to a demand destination such as a fuel cell via a hydrogen tank 72. The hydrogen concentration of the purified hydrogen gas 77 reaches 99% or more, preferably 99.9% or more, and the C0 concentration drops to 10 ppm or less, preferably 1 ppm or less.
一方、 真空ポンプ 7 4から排出された水素精製オフガス 7 3の 1 0 % 程度を排出ガス ( 0 8 ) として系外に排出すると共に、 残りの 9 0 %を 改質工程 2の圧縮機 2 1の吸引口に返送し、 改質反応で改質できなかつ たメタンを再度改質する。  On the other hand, about 10% of the hydrogen purification off-gas 73 discharged from the vacuum pump 74 is discharged out of the system as an exhaust gas (08), and the remaining 90% is discharged to the compressor 2 1 of the reforming process 2. The methane that cannot be reformed by the reforming reaction is reformed again.
図 1 3 は本発明の第 5実施例である燃料電池発電システムの基本構 成図である。 前記実施例 4で説明した精製水素ガス 7 7を燃料電池発電 工程 Cの燃料電池スタ ック 8 1のアノード極室に供給して発電する。 本 実施例では、 ス夕ヅク 8 1のアノー ド極室から出たアノー ドオフガス 8 6をェジェクタ 8 5を介してスタ ック 8 1のアノー ド室に循環する。 こ こで、 ェジェクタ 8 5に代わって送風機や圧縮機を用いることもできる, また、 スタ ック 8 1の冷却水 8 7 aをメタン発酵工程 Aのメタン発酵槽 A 1に循環し、 熱交換によってメタン発酵液を加熱しスタ ック排熱を有 効利用する。 そして、 熱交換後のスタ ック冷却水はスタ ック 8 1の冷却 水入口 8 7 bに戻る。 FIG. 13 is a basic configuration diagram of a fuel cell power generation system according to a fifth embodiment of the present invention. The purified hydrogen gas 77 described in Example 4 was used for fuel cell power generation. Power is supplied to the anode room of the fuel cell stack 81 in step C to generate electricity. In this embodiment, the anode off-gas 86 that has flowed out of the anode electrode room of the storage 81 is circulated to the anode room of the stack 81 via the ejector 85. Here, a blower or a compressor can be used in place of the ejector 85, and the cooling water 87a of the stack 81 is circulated to the methane fermentation tank A1 of the methane fermentation step A to exchange heat. This heats the methane fermentation liquor to effectively use the stack waste heat. Then, the stack cooling water after the heat exchange returns to the cooling water inlet 87 b of the stack 81.
以上に説明したように、 本発明によれば、 有機物をメタン発酵し、 生 成した消化ガスを改質して燃料電池発電に適した高品質の水素ガス又 は含水素ガスを製造し燃料電池発電を効率よく行うことができる。 産業上の利用の可能性  As described above, according to the present invention, a high-quality hydrogen gas or a hydrogen-containing gas suitable for fuel cell power generation is produced by subjecting organic matter to methane fermentation and reforming the generated digestive gas to produce a fuel cell. Power generation can be performed efficiently. Industrial applicability
本発明は、 可燃物のもつ化学エネルギーを高効率で電気エネルギーに 変換する、 エネルギー変換技術に関する。 本発明は、 比較的高濃度の有 機性廃液や有機物スラ リー等の有機性廃棄物をメタン発酵し、 得られた 消化ガスから水素ガス又は含水素ガスを製造するシステムに利用可能 であり、 また製造された水素ガス又は含水素ガスを燃料電池の燃料ガス として利用し発電する発電システムに利用可能である。  The present invention relates to an energy conversion technique for converting chemical energy of combustibles into electric energy with high efficiency. INDUSTRIAL APPLICABILITY The present invention can be used for a system for producing methane gas or hydrogen-containing gas from obtained digestion gas by methane fermentation of organic waste such as organic waste liquid or organic slurry having a relatively high concentration, and It can also be used in power generation systems that generate electricity by using the produced hydrogen gas or hydrogen-containing gas as fuel gas for fuel cells.

Claims

請求の範囲 The scope of the claims
1 . 可燃物をメタン醃酵させ、 改質工程と変成工程とで処理されたガス から水素ガスを製造する方法であって、 1. A method for producing hydrogen gas from a gas processed in a reforming step and a metamorphosis step by subjecting combustibles to methane fermentation,
前記改質工程と変成工程とで処理されたガスは、 二酸化炭素アミ ン吸 収工程と、 その後のメ夕ネ一ション工程とを経ることを特徴とする水素 ガスの製造方法。  A method for producing hydrogen gas, comprising subjecting a gas treated in the reforming step and the shift step to a carbon dioxide amine absorption step and a subsequent mes- sage step.
2 . 前記改質工程と変成工程とで処理されたガスは、 前記二酸化炭素ァ ミ ン吸収工程の前段と して二酸化炭素水吸収工程を経るこ とを特徴と する請求項 1記載の水素ガスの製造方法。 2. The hydrogen gas according to claim 1, wherein the gas processed in the reforming step and the shift step undergoes a carbon dioxide water absorption step as a preceding stage of the carbon dioxide amine absorption step. Manufacturing method.
3 . 有機物をメタン発酵させるメタン発酵工程と、 該メタン発酵工程に て生成した消化ガスを改質して含水素ガスを製造するガス処理工程と、 燃料電池発電工程とからなる有機物のメタン発酵による燃料電池発電 方法であって、 3. Methane fermentation of organic matter, comprising a methane fermentation step of methane fermentation of organic matter, a gas treatment step of reforming digestive gas generated in the methane fermentation step to produce hydrogen-containing gas, and a fuel cell power generation step. A fuel cell power generation method,
前記ガス処理工程は、 メ夕ン発酵工程で得られた消化ガス中の硫化水 素及び塩化水素等の酸性ガスを吸着及び/又は吸収除去するガス前処 理工程と、 前処理後ガス中のメ夕ンを水蒸気との触媒反応によ り水素と 一酸化炭素に改質する改質工程と、 改質後ガス中の一酸化炭素を水蒸気 との触媒反応により水素ガスと二酸化炭素に変成する変成工程と、 変成 後ガス中の二酸化炭素を水又はアルカ リ性溶液と接触させて吸収分離 する二酸化炭素水吸収工程及び/又はァミ ン吸収液と接触させて吸収 分離する二酸化炭素アミ ン吸収工程と、 前記二酸化炭素アミ ン吸収工程 で得られた脱炭酸後ガス中に残留する一酸化炭素と二酸化炭素を水素 とメタン化反応させるこ とによ り除去するメタネ一ショ ン工程とを含 み、 The gas treatment step includes a gas pretreatment step of adsorbing and / or absorbing and removing acidic gases such as hydrogen sulfide and hydrogen chloride in the digested gas obtained in the main fermentation step; A reforming step of reforming the main gas into hydrogen and carbon monoxide by a catalytic reaction with steam, and a conversion of carbon monoxide in the reformed gas into hydrogen gas and carbon dioxide by a catalytic reaction with steam Metamorphosis process, carbon dioxide water absorption process in which carbon dioxide in the gas after the modification is brought into contact with water or an alkaline solution to absorb and separate, and / or carbon dioxide amine absorption in which it is brought into contact with an amide absorption solution to absorb and separate And carbon monoxide and carbon dioxide remaining in the decarbonated gas obtained in the carbon dioxide amine absorption step. And a metalation step for removing by a methanation reaction,
前記燃料電池発電工程は、 前記メタネ一ショ ン工程で得られた含水素 ガスを燃料ガスとし、 含酸素ガスを酸化剤ガスとしてそれぞれ燃料電池 スタ ックのアノー ドと力ソー ドに供給して発電することを特徴とする 有機物のメタン発酵による燃料電池発電方法。  In the fuel cell power generation step, the hydrogen-containing gas obtained in the metalation step is used as a fuel gas, and the oxygen-containing gas is supplied as an oxidant gas to an anode and a power source of a fuel cell stack. A fuel cell power generation method by methane fermentation of organic matter, characterized by generating power.
4 . 前記消化ガス又は前記ガス前処理工程後における脱硫後ガスの一部 を燃料として燃焼器で燃焼し、 得られた燃焼熱によって前記改質工程に おける改質反応熱の供給と反応温度の維持を行う ことを特徴とする言 求項 3記載の有機物のメタン発酵による燃料電池発電方法。 4. Combustion of a portion of the digested gas or the gas after desulfurization after the gas pretreatment step as a fuel in a combustor, and the supply of reforming reaction heat and the reaction temperature in the reforming step is performed by the obtained combustion heat. Item 3. The fuel cell power generation method according to Item 3, wherein the organic matter is subjected to methane fermentation.
5 . 前記燃料電池発電工程から排出されるァノードオフガスの一部を前 記改質工程に返送するこ とを特徴とする請求項 3記載の有機物のメ夕 ン発酵による燃料電池発電方法。 5. The fuel cell power generation method according to claim 3, wherein part of the anode offgas discharged from the fuel cell power generation step is returned to the reforming step.
6 . 前記燃料電池スタックより排出される力ソードオフガスを請求項 3 に記載の改質工程に送り助燃剤として利用することを特徴とする有機 物のメタン発酵による燃料電池発電方法。 6. A fuel cell power generation method by methane fermentation of organic matter, wherein the power source off-gas discharged from the fuel cell stack is sent to the reforming step according to claim 3 and used as a combustion aid.
7 . 前記燃料電池は、 固体高分子型燃料電池又は燐酸型燃料電池である ことを特徴とする請求項 3乃至 6のいずれか 1項に記載の有機物のメ 夕ン発酵による燃料電池発電方法。 7. The fuel cell power generation method according to any one of claims 3 to 6, wherein the fuel cell is a polymer electrolyte fuel cell or a phosphoric acid fuel cell.
8 . 有機物をメタン発酵させるメタン発酵工程と、 該メタン発酵工程に て生成した消化ガスを改質して含水素ガスを製造するガス処理工程と からなる有機物のメタン発酵による水素製造方法であって、 8. A method for producing hydrogen by methane fermentation of organic matter, comprising: a methane fermentation step of methane fermenting organic matter; and a gas treatment step of reforming digestive gas produced in the methane fermentation step to produce hydrogen-containing gas. ,
前記ガス処理工程は、 メ夕ン発酵工程で得られた消化ガス中の硫化水 素及び塩化水素等の酸性ガスを吸着及び/又は吸収除去するガス前処 理工程と、 前処理後ガス中のメ夕ンを水蒸気との触媒反応によ り水素と 一酸化炭素に改質する改質工程と、 改質後ガス中の一酸化炭素を水蒸気 との触媒反応により水素ガスと二酸化炭素に変成する変成工程と、 変成 後ガス中の二酸化炭素を水又はアルカ リ性溶液と接触させて吸収分離 する二酸化炭素水吸収工程及び/又はァミ ン吸収液と接触させて吸収 分離する二酸化炭素アミ ン吸収工程と、 前記二酸化炭素ァ ミ ン吸収工程 で得られた脱炭酸後ガス中に残留する一酸化炭素と二酸化炭素を水素 とメタン化反応させることにより除去するメタネ一シヨン工程と、 メタ ネーショ ン後ガス中の水分を脱湿後にメタネーショ ン後ガス中のメタ ンと窒素を分離し、 水素ガスを精製、 昇圧する水素吸蔵合金を用いた水 素精製工程とを含むことを特徴とするメタン発酵による水素製造方法。  The gas treatment step includes a gas pretreatment step of adsorbing and / or absorbing and removing acidic gases such as hydrogen sulfide and hydrogen chloride in the digested gas obtained in the main fermentation step; A reforming step of reforming the main gas into hydrogen and carbon monoxide by a catalytic reaction with steam, and a conversion of carbon monoxide in the reformed gas into hydrogen gas and carbon dioxide by a catalytic reaction with steam Metamorphosis process, carbon dioxide water absorption process in which carbon dioxide in the gas after the modification is brought into contact with water or an alkaline solution to absorb and separate, and / or carbon dioxide amine absorption in which it is brought into contact with an amide absorption solution to absorb and separate A step of removing carbon monoxide and carbon dioxide remaining in the decarbonated gas obtained in the carbon dioxide amine absorption step by reacting with hydrogen with methanation; and Moisture in gas A method for producing hydrogen by methane fermentation, comprising the steps of: separating methane and nitrogen in gas after dehumidification, separating methane and nitrogen in gas, purifying hydrogen gas, and increasing the pressure by using a hydrogen storage alloy.
9 . 前記消化ガス又は前記ガス前処理工程後における脱硫後ガスの一部 を燃料として燃焼器で燃焼し、 得られた燃焼熱によって前記改質工程に おける改質反応熱の供給と反応温度の維持を行う ことを特徴とする請 求項 8記載の有機物のメタン発酵による水素製造方法。 9. Combustion of a portion of the digested gas or the gas after desulfurization after the gas pretreatment step in a combustor as fuel, and the supply of reforming reaction heat and the reaction temperature in the reforming step by the obtained combustion heat. 9. The method for producing hydrogen by methane fermentation of organic matter according to claim 8, wherein the hydrogen is maintained.
1 0 . 前記水素精製工程から排出される水素精製オフガスの一部を前記 改質工程に返送することを特徴とする請求項 8記載の有機物のメタン 発酵による水素精製方法。 10. The hydrogen purification method according to claim 8, wherein a part of the hydrogen purification offgas discharged from the hydrogen purification step is returned to the reforming step.
1 1 . 請求項 8における水素精製工程で精製した水素ガスを燃料ガスと して、 含酸素ガスを酸化剤ガスとしてそれそれ燃料電池発電工程におけ る燃料電池ス夕 ックのアノー ドと力ソー ドに供給して発電し、 燃料電池 発電工程から排出されるアノー ドオフガスをァノー ドに供給し循環利 用することを特徴とする有機物のメタン発酵による燃料電池発電方法。 11. The hydrogen gas purified in the hydrogen purification step of claim 8 is used as fuel gas, and the oxygen-containing gas is used as oxidant gas. Fuel cell power generation method by methane fermentation of organic matter, characterized in that anodic off-gas discharged from the power generation process is supplied to the anode and supplied to the anode for recycling.
1 2 . 請求項 1 1における燃料電池ス夕 ックより排出される力ソー ドォ フガスを請求項 8に記載の改質工程に送り助燃剤と して利用すること を特徴とする有機物のメタン発酵による燃料電池発電方法。 12. The methane fermentation of organic matter, wherein the power source gas discharged from the fuel cell sock according to claim 11 is sent to the reforming step according to claim 8 and used as a combustion aid. Fuel cell power generation method.
1 3 . 前記燃料電池は、 固体高分子型燃料電池又は燐酸型燃料 ¾池であ ることを特徴とする請求項 1 1又は 1 2に記載の有機物のメタン発酵 による燃料電池発電方法。 13. The fuel cell power generation method according to claim 11 or 12, wherein the fuel cell is a polymer electrolyte fuel cell or a phosphoric acid fuel cell.
1 4 . 有機物をメタン発酵させるメタン発酵工程と、 該メタン発酵工程 にて生成した消化ガスを改質して含水素ガスを製造するガス処理工程 とからなる有機物のメ夕ン発酵による水素製造方法であって、 14. A hydrogen production method by main fermentation of organic matter, comprising: a methane fermentation step of methane fermentation of organic matter, and a gas treatment step of reforming digestive gas produced in the methane fermentation step to produce hydrogen-containing gas. And
前記ガス処理工程は、 メ夕ン発酵工程で得られた消化ガス中の硫化水 素及び塩化水素等の酸性ガスを吸着及び/又は吸収除去するガス前処 理工程と、 前処理後ガス中のメ夕ンを水蒸気との触媒反応により水素と 一酸化炭素に改質する改質工程と、 改質後ガス中の一酸化炭素を水蒸気 との触媒反応により水素ガスと二酸化炭素に変成する変成工程と、 変成 後ガス中の二酸化炭素をァミ ン吸収液と接触させて吸収分離する二酸 化炭素アミ ン吸収工程と、 前記二酸化炭素アミ ン吸収工程で得られた脱 炭酸後ガス中に残留する一酸化炭素と二酸化炭素とメタンと窒素を吸 着材に吸着分離し水素を精製する水素精製工程とを含むことを特徴と するメタン発酵による水素製造方法。 The gas treatment step includes a gas pretreatment step of adsorbing and / or absorbing and removing acidic gases such as hydrogen sulfide and hydrogen chloride in the digested gas obtained in the main fermentation step; A reforming process for reforming the main gas to hydrogen and carbon monoxide by a catalytic reaction with steam, and a reforming process for transforming carbon monoxide in the reformed gas into hydrogen gas and carbon dioxide by a catalytic reaction with steam A carbon dioxide amine absorption step of bringing carbon dioxide in the gas after the conversion into contact with the amine absorption liquid to absorb and separate the carbon dioxide from the gas, and a desorption step obtained in the carbon dioxide amine absorption step. A method for producing hydrogen by methane fermentation, comprising: a hydrogen refining step of purifying hydrogen by adsorbing and separating carbon monoxide, carbon dioxide, methane, and nitrogen remaining in gas after carbon dioxide onto an adsorbent.
1 5 . 前記消化ガス又は前記ガス前処理工程後における脱硫後ガスの一 部を燃料として燃焼器で燃焼し、 得られた燃焼熱によって前記改質工程 における改質反応熱の供給と反応温度の維持を行う ことを特徴とする 請求項 1 4記載の有機物のメ夕ン発酵による水素製造方法。 15. Combustion of a portion of the digested gas or the gas after desulfurization after the gas pretreatment step as a fuel in a combustor, and the supply of reforming reaction heat and the reaction temperature in the reforming step are performed by the obtained combustion heat. 15. The method for producing hydrogen by main fermentation of organic matter according to claim 14, wherein the hydrogen is maintained.
1 6 . 前記水素精製工程から排出される水素精製オフガスの一部を前記 改質工程に返送することを特徴とする請求項 1 4記載の有機物のメタ ン発酵による水素精製方法。 16. The hydrogen purification method according to claim 14, wherein a part of the hydrogen purification offgas discharged from the hydrogen purification step is returned to the reforming step.
1 7 . 請求項 1 4における水素精製工程で精製した水素ガスを燃料ガス として、 含酸素ガスを酸化剤ガスとしてそれぞれ燃料電池発電工程にお ける燃料電池スタックのアノー ドと力ソー ドに供給して発電し、 燃料電 池発電工程から排出されるアノー ドオフガスをアノー ドに供給し循環 利用することを特徴とする有機物のメタン発酵による燃料電池発電方 法。 17. The hydrogen gas purified in the hydrogen purification step in claim 14 is supplied as fuel gas, and the oxygen-containing gas is supplied as oxidant gas to the anode and power source of the fuel cell stack in the fuel cell power generation step. A fuel cell power generation method using methane fermentation of organic matter, characterized in that anodic off-gas discharged from the fuel cell power generation process is supplied to the anode and recycled.
1 8 . 請求項 1 7における燃料電池ス夕ックよ り排出される力ソー ドォ フガスを請求項 1 4に記載の改質工程に送り助燃剤と して利用するこ とを特徴とする有機物のメタン発酵による燃料電池発電方法。 18. An organic substance characterized in that the power source gas discharged from the fuel cell battery in claim 17 is sent to the reforming step according to claim 14 and used as a combustion aid. Fuel cell power generation method by methane fermentation.
1 9 . 前記燃料電池は、 固体高分子型燃料電池又は燐酸型燃料電池であ ることを特徴とする請求項 1 7又は 1 8に記載の有機物のメ タン発酵 による燃料電池発電方法。 19. The fuel cell power generation method according to claim 17 or 18, wherein the fuel cell is a polymer electrolyte fuel cell or a phosphoric acid fuel cell.
2 0 . 有機物をメタン発酵させるメタン発酵槽と、 該メタン発酵槽にて 生成した消化ガスを改質して含水素ガスを製造するガス処理装置と、 燃 料電池とからなる有機物のメタン発酵による燃料電池発電システムで あって、 20. A methane fermentation tank for performing methane fermentation of organic matter, a gas treatment apparatus for producing hydrogen-containing gas by reforming digestive gas generated in the methane fermentation tank, and a fuel cell A fuel cell power generation system,
前記ガス処理装置は、 メタン発酵槽で得られた消化ガス中の硫化水素 及び塩化水素等の酸性ガスを吸着及び/又は吸収除去するスクラバ及 び/又は乾式脱硫器と、 前処理後ガス中のメ夕ンを水蒸気との触媒反応 により水素と一酸化炭素に改質する改質器と、 改質後ガス中の一酸化炭 素を水蒸気との触媒反応によ り水素ガスと二酸化炭素に変成する変成 反応器と、 変成後ガス中の二酸化炭素を水又はアル力 リ性溶液と接触さ せて吸収分離する第 1吸収塔及び/又はァミ ン吸収液と接触させて吸 収分離する第 2吸収塔と、 前記第 2吸収塔で得られた脱炭酸後ガス中に 残留する一酸化炭素と二酸化炭素を水素とメタン化反応させることに より除去するメタン化触媒を充填したメ夕ネーション反応器とを含み、 前記燃料電池は、 前記メ夕ン化触媒を充填したメ夕ネーション反応器 で得られた含水素ガスを燃料ガスとし、 含酸素ガスを酸化剤ガスとして それぞれ燃料電池スタ ックのアノー ドと力ソー ドに供給して発電する ことを特徴とする有機物のメタン発酵による燃料電池発電システム。  The gas treatment device includes a scrubber and / or a dry desulfurizer that adsorbs and / or absorbs and / or removes acidic gases such as hydrogen sulfide and hydrogen chloride in the digested gas obtained in the methane fermentation tank; and A reformer that reforms the main gas to hydrogen and carbon monoxide by a catalytic reaction with water vapor, and converts carbon monoxide in the reformed gas into hydrogen gas and carbon dioxide by a catalytic reaction with water vapor The first absorption tower, which absorbs and separates carbon dioxide in the gas after conversion by contacting it with water or an alkaline solution, and / or the first absorber that absorbs and separates by contacting with an amide absorption liquid (2) a methylation reaction packed with an absorption tower and a methanation catalyst that removes carbon monoxide and carbon dioxide remaining in the decarbonated gas obtained in the second absorption tower by hydrogenation with hydrogen. A fuel cell, wherein the fuel cell comprises: The hydrogen-containing gas obtained in the medium-filled reactor is used as fuel gas, and the oxygen-containing gas is supplied as oxidant gas to the anode and power source of the fuel cell stack to generate power. Characteristic fuel cell power generation system by methane fermentation of organic matter.
2 1 . 前記消化ガス又は前記スクラバから排出された脱硫後ガスの一部 を燃料として燃焼器で燃焼し、 得られた燃焼熱によって前記改質器にお ける改質反応熱の供給と反応温度の維持を行う ことを特徴とする請求 項 2 0記載の有機物のメ夕ン発酵による燃料電池発電システム。 21. A part of the digested gas or the desulfurized gas discharged from the scrubber is burned as a fuel in a combustor, and the obtained combustion heat is applied to the reformer. 20. The fuel cell power generation system according to claim 20, wherein heat of the reforming reaction is supplied and the reaction temperature is maintained.
2 2 . 前記燃料電池ス夕 ツクより排出されるアノードオフガスを前記改 質器に返送することを特徴とする請求項 2 0記載の有機物のメタン発 酵による燃料電池発電システム。 22. The fuel cell power generation system according to claim 20, wherein the anode off-gas discharged from the fuel cell battery is returned to the reformer.
2 3 . 前記燃料電池スタ ックよ り排出される力ソー ドオフガスを前記改 質器に送り助燃剤と して利用することを特徴とする有機物のメタン発 酵による燃料電池発電システム。 23. A fuel cell power generation system based on organic methane fermentation, wherein power source off-gas discharged from the fuel cell stack is sent to the reformer and used as a combustion aid.
2 4 . 前記燃料電池は、 固体高分子型燃料電池又は燐酸型燃料電池であ ることを特徴とする請求項 2 0乃至 2 3のいずれか 1項に記載の有機 物のメタン発酵による燃料電池発電システム。 24. The fuel cell according to any one of claims 20 to 23, wherein the fuel cell is a polymer electrolyte fuel cell or a phosphoric acid fuel cell. Power generation system.
2 5 . 有機物をメタン発酵させるメタン発酵槽と、 該メタン発酵槽にて 生成した消化ガスを改質して含水素ガスを製造するガス処理装置とか らなる有機物のメタン発酵による水素製造システムであって、 25. A hydrogen production system based on methane fermentation of organic matter, comprising a methane fermentation tank for methane fermentation of organic matter and a gas treatment device for reforming digestive gas generated in the methane fermentation tank to produce hydrogen-containing gas. hand,
前記ガス処理装置は、 メ夕ン発酵槽で得られた消化ガス中の硫化水素 及び塩化水素等の酸性ガスを吸着及び/又は吸収除去するスクラバ及 び/又は乾式脱硫器と、 前処理後ガス中のメ夕ンを水蒸気との触媒反応 により水素と一酸化炭素に改質する改質器と、 改質後ガス中の一酸化炭 素を水蒸気との触媒反応によ り水素ガスと二酸化炭素に変成する変成 反応器と、 変成後ガス中の二酸化炭素を水又はアル力リ性溶液と接触さ せて吸収分離する第 1吸収塔及び/又はアミ ン吸収液と接触させて吸 収分離する第 2吸収塔と、 前記第 2吸収塔で得られた脱炭酸後ガス中に 残留する一酸化炭素と二酸化炭素を水素とメタ ン化反応させることに より除去するメタン化触媒を充填したメ夕ネ一シヨン反応器と、 メ夕ネ ーショ ン後ガス中の水分を脱湿後にメタネーショ ン後ガス中のメタン と窒素を分離し、 水素ガスを精製、 昇圧する水素吸蔵合金を充填した合 金収納容器とを含むことを特徴とする有機物のメタン発酵による水素 製造システム。 The gas treatment device includes a scrubber and / or a dry desulfurizer for adsorbing and / or absorbing and removing acidic gases such as hydrogen sulfide and hydrogen chloride in digested gas obtained in the main fermenter; A reformer that reforms the gas in the catalyst into hydrogen and carbon monoxide by a catalytic reaction with steam, and a hydrogen gas and carbon dioxide by a catalytic reaction of carbon monoxide in the reformed gas with steam The first absorption tower and / or the amine absorption liquid that absorbs and separates the carbon dioxide in the gas after conversion by contacting it with water or an alkaline solution. Filled with a second absorption tower to be separated and separated, and a methanation catalyst that removes carbon monoxide and carbon dioxide remaining in the decarbonized gas obtained in the second absorption tower by hydrogenation with hydrogen. After the desorption of moisture in the gas after the gasification, the methane and nitrogen in the gas after the metanation were separated, the hydrogen gas was purified, and the hydrogen storage alloy was charged to increase the pressure. A hydrogen production system based on methane fermentation of organic matter, comprising a metal storage container.
2 6 . 前記消化ガス又は前記スクラバから排出された脱硫後ガスの一部 を燃料として燃焼器で燃焼し、 得られた燃焼熱によって前記改質器にお ける改質反応熱の供給と反応温度の維持を行う ことを特徴とする請求 項 2 5記載の有機物のメタン発酵による水素製造システム。 26. Combustion of a part of the digested gas or the desulfurized gas discharged from the scrubber as a fuel in a combustor, and supply of the reaction heat and the reaction temperature in the reformer by the obtained combustion heat The hydrogen production system according to claim 25, wherein methane fermentation of organic matter is performed.
2 7 . 前記水素吸蔵合金収納容器から排出された水素精製オフガスの一 部を前記改質器に返送し水素精製オフガス中のメタンを再度改質する ことを特徴とする請求項 2 5記載の有機物のメタン発酵による水素製 造システム。 27. The organic matter according to claim 25, wherein a part of the hydrogen purification offgas discharged from the hydrogen storage alloy storage container is returned to the reformer to reform methane in the hydrogen purification offgas again. Hydrogen production system using methane fermentation.
2 8 . 請求項 2 5における合金収納容器で精製した水素ガスを燃料ガス として、 含酸素ガスを酸化剤ガスとしてそれぞれ燃料電池ス夕ックのァ ノードと力ソードに供給して発電し、 燃料電池ス夕ックから排出される アノー ドオフガスをアノー ドに供給し循環利用することを特徴とする 有機物のメタン発酵による燃料電池発電システム。 28. The hydrogen gas purified by the alloy container in claim 25 is used as fuel gas, and the oxygen-containing gas is supplied as oxidant gas to the anode and power sword of the fuel cell battery, respectively, to generate electricity. A fuel cell power generation system based on methane fermentation of organic matter, characterized in that anodic off-gas discharged from a battery pack is supplied to the anode and recycled.
2 9 . 請求項 2 8における燃料電池スタックよ り排出される力ソー ドォ フガスを請求項 2 5に記載の改質器に送り助燃剤と して利用すること を特徴とする有機物のメタン発酵による燃料電池発電システム。 29. The methane fermentation of organic matter, wherein the power source gas discharged from the fuel cell stack according to claim 28 is sent to the reformer according to claim 25 and used as a combustion aid. Fuel cell power generation system.
3 0 . 前記燃料電池は、 固体高分子型燃料電池又は燐酸型燃料電池であ ることを特徴とする請求項 2 8又は 2 9 に記載の有機物のメタン発酵 による燃料電池発電システム。 30. The fuel cell power generation system according to claim 28 or claim 29, wherein the fuel cell is a polymer electrolyte fuel cell or a phosphoric acid fuel cell.
3 1 . 有機物をメタン発酵させるメタン発酵槽と、 該メタン発酵槽にて 生成した消化ガスを改質して含水素ガスを製造するガス処理装置とか らなる有機物のメタン発酵による水素製造システムであって、 3 1. A hydrogen production system based on methane fermentation of organic matter, comprising a methane fermentation tank for methane fermentation of organic matter and a gas treatment device for reforming digestive gas generated in the methane fermentation tank to produce hydrogen-containing gas. hand,
前記ガス処理装置は、 メ夕ン発酵槽で得られた消化ガス中の硫化水素 及び塩化水素等の酸性ガスを吸着及び/又は吸収除去するスクラバ及 び/又は乾式脱硫器と、 前処理後ガス中のメ夕ンを水蒸気との触媒反応 により水素と一酸化炭素に改質する改質器と、 改質後ガス中の一酸化炭 素を水蒸気との触媒反応によ り水素ガスと二酸化炭素に変成する変成 反応器と、 変成後ガス中の二酸化炭素をアミ ン吸収液と接触させて吸収 分離する吸収塔と、 前記吸収塔で得られた脱炭酸後ガス中に残留する一 酸化炭素と二酸化炭素とメタンと窒素を吸着分離する吸着材を充填し た吸着塔とを含むことを特徴とする有機物のメタン発酵による水素製 造システム。  The gas treatment device includes a scrubber and / or a dry desulfurizer for adsorbing and / or absorbing and removing acidic gases such as hydrogen sulfide and hydrogen chloride in digested gas obtained in the main fermenter; A reformer that reforms the gas in the catalyst into hydrogen and carbon monoxide by a catalytic reaction with steam, and a hydrogen gas and carbon dioxide by a catalytic reaction of carbon monoxide in the reformed gas with steam A metamorphic reactor, a carbon monoxide remaining in the gas after the decarbonation obtained in the absorption tower, A hydrogen production system by methane fermentation of organic matter, comprising an adsorption tower filled with an adsorbent for adsorbing and separating carbon dioxide, methane and nitrogen.
3 2 . 前記消化ガス又は前記スクラバから排出された脱硫後ガスの一部 を燃料として燃焼器で燃焼し、 得られた燃焼熱によって前記改質器にお ける改質反応熱の供給と反応温度の維持を行う ことを特徴とする請求 項 3 1記載の有機物のメタン発酵による水素製造システム。 32. Combustion of a portion of the digested gas or the desulfurized gas discharged from the scrubber in a combustor as fuel, and the supply of reforming reaction heat and the reaction temperature in the reformer by the obtained combustion heat Claims that maintain Item 31. A hydrogen production system by methane fermentation of organic matter according to Item 31.
3 3 . 前記吸着塔から排出された水素精製オフガスの一部を前記改質器 に返送し水素精製オフガス中のメ タンを再度改質するこ とを特徴とす る請求項 3 1記載の有機物のメタン発酵による水素製造システム。 33. The organic substance according to claim 31, wherein a part of the hydrogen purification offgas discharged from the adsorption tower is returned to the reformer to reform methane in the hydrogen purification offgas again. Hydrogen production system by methane fermentation.
3 4 . 請求項 3 1 における吸着塔で精製した水素ガスを燃料ガスとして、 含酸素ガスを酸化剤ガス と してそれぞれ燃料電池ス夕 ツクのアノー ド と力ソー ドに供給して発電し、 燃料電池スタ ックから排出されるァノー ドオフガスをアノー ドに供給し循環利用するこ とを特徴とする有機物 のメタン発酵による燃料電池発電システム。 34. The hydrogen gas purified by the adsorption tower according to claim 31 as a fuel gas and the oxygen-containing gas as an oxidant gas are supplied to an anode and a power source of a fuel cell unit, respectively, to generate power. A fuel cell power generation system based on methane fermentation of organic matter, characterized in that anode off-gas discharged from the fuel cell stack is supplied to the anode and recycled.
3 5 . 請求項 3 4における燃料電池ス夕ックよ り排出される力ソー ドォ フガスを請求項 3 1 に記載の改質器に送り助燃剤として利用すること を特徴とする有機物のメ夕ン発酵による燃料電池発電システム。 35. An organic material, characterized in that the power source gas discharged from the fuel cell battery in claim 34 is sent to the reformer according to claim 31 and used as a combustion aid. A fuel cell power generation system using fermentation.
3 6 . 前記燃料電池は、 固体高分子型燃料電池又は燐酸型燃料電池であ ることを特徴とする請求項 3 4又は 3 5に記載の有機物のメタン発酵 による燃料電池発電システム。 36. The fuel cell power generation system according to claim 34 or 35, wherein the fuel cell is a polymer electrolyte fuel cell or a phosphoric acid fuel cell.
PCT/JP2000/004700 1999-07-13 2000-07-13 Method for electric power generation using fuel cell and electric power generation system using fuel cell WO2001004046A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU58535/00A AU5853500A (en) 1999-07-13 2000-07-13 Method for electric power generation using fuel cell and electric power generation system using fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19945499 1999-07-13
JP11/199454 1999-07-13

Publications (1)

Publication Number Publication Date
WO2001004046A1 true WO2001004046A1 (en) 2001-01-18

Family

ID=16408091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004700 WO2001004046A1 (en) 1999-07-13 2000-07-13 Method for electric power generation using fuel cell and electric power generation system using fuel cell

Country Status (2)

Country Link
AU (1) AU5853500A (en)
WO (1) WO2001004046A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001065621A1 (en) * 2000-03-02 2001-09-07 Ebara Corporation Fuel cell power generation method and system
EP1264895A1 (en) * 2000-02-01 2002-12-11 Japan Science and Technology Corporation Process for producing vitamin b 12 from hydrogen-metabolizing methane bacterium
JP2007500115A (en) * 2003-07-28 2007-01-11 ウーデ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Process for producing hydrogen from methane-containing gas, in particular natural gas, and system for carrying out the process
JP2007031255A (en) * 2005-07-29 2007-02-08 Toshiba Corp Low quality waste heat recovery system
JP2013045535A (en) * 2011-08-23 2013-03-04 Tokyo Gas Co Ltd Carbonic acid gas recovery type fuel cell system
WO2015019608A1 (en) * 2013-08-06 2015-02-12 千代田化工建設株式会社 Hydrogen supply system and hydrogen supply method
JP2015030652A (en) * 2013-08-06 2015-02-16 千代田化工建設株式会社 Hydrogen supply system
JP2016160104A (en) * 2015-02-26 2016-09-05 株式会社神戸製鋼所 Hydrogen production apparatus and hydrogen production method
CN107915206A (en) * 2017-11-20 2018-04-17 宁波申江科技股份有限公司 Hydrogen purification apparatus applied to methanol fuel cell, reformat fuel cell
WO2019175850A1 (en) * 2018-03-16 2019-09-19 Fuelcell Energy, Inc. System and method for producing hydrogen using high temperature fuel cells
US10797332B2 (en) 2018-08-31 2020-10-06 Fuelcell Energy, Inc. Low pressure carbon dioxide removal from the anode exhaust of a fuel cell
CN114988364A (en) * 2022-06-13 2022-09-02 重庆科技学院 Power generation system based on natural gas hydrogen production and fuel cell technology

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149301A (en) * 1980-03-21 1981-11-19 Haldor Topsoe As Method of converting coal and/or heavy petroleum fraction to hydrogen or ammonia synthetic gas
JPS6035730U (en) * 1983-08-19 1985-03-12 三菱重工業株式会社 Hydrogen gas remover
JPS62170171A (en) * 1986-01-22 1987-07-27 Hitachi Ltd Fuel cell system
JPS62278769A (en) * 1986-05-27 1987-12-03 Nippon Kokan Kk <Nkk> Recovering method of co2 and h2 from converter gas
JPH03228802A (en) * 1990-02-05 1991-10-09 Jgc Corp Production of hydrogen and carbon monoxide
JPH06283189A (en) * 1993-03-30 1994-10-07 Toshiba Corp Fuel cell power generation system
JPH07169495A (en) * 1993-12-15 1995-07-04 Toshiba Corp Chemical power generating system utilizing waste fermentation gas
JPH08250144A (en) * 1995-03-08 1996-09-27 Toshiba Corp Fuel cell generating system
US5612012A (en) * 1994-06-08 1997-03-18 Ngk Insulators, Ltd. Method for removing carbon monoxide from reformed gas
JPH1135503A (en) * 1997-07-16 1999-02-09 Mitsubishi Kakoki Kaisha Ltd Production apparatus for methanol from digestion gas
JPH11126629A (en) * 1997-10-23 1999-05-11 Toshiba Corp Fuel cell power generating device
JPH11176462A (en) * 1997-12-11 1999-07-02 Tokyo Gas Co Ltd Peak cut type fuel cell system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149301A (en) * 1980-03-21 1981-11-19 Haldor Topsoe As Method of converting coal and/or heavy petroleum fraction to hydrogen or ammonia synthetic gas
JPS6035730U (en) * 1983-08-19 1985-03-12 三菱重工業株式会社 Hydrogen gas remover
JPS62170171A (en) * 1986-01-22 1987-07-27 Hitachi Ltd Fuel cell system
JPS62278769A (en) * 1986-05-27 1987-12-03 Nippon Kokan Kk <Nkk> Recovering method of co2 and h2 from converter gas
JPH03228802A (en) * 1990-02-05 1991-10-09 Jgc Corp Production of hydrogen and carbon monoxide
JPH06283189A (en) * 1993-03-30 1994-10-07 Toshiba Corp Fuel cell power generation system
JPH07169495A (en) * 1993-12-15 1995-07-04 Toshiba Corp Chemical power generating system utilizing waste fermentation gas
US5612012A (en) * 1994-06-08 1997-03-18 Ngk Insulators, Ltd. Method for removing carbon monoxide from reformed gas
JPH08250144A (en) * 1995-03-08 1996-09-27 Toshiba Corp Fuel cell generating system
JPH1135503A (en) * 1997-07-16 1999-02-09 Mitsubishi Kakoki Kaisha Ltd Production apparatus for methanol from digestion gas
JPH11126629A (en) * 1997-10-23 1999-05-11 Toshiba Corp Fuel cell power generating device
JPH11176462A (en) * 1997-12-11 1999-07-02 Tokyo Gas Co Ltd Peak cut type fuel cell system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1264895A1 (en) * 2000-02-01 2002-12-11 Japan Science and Technology Corporation Process for producing vitamin b 12 from hydrogen-metabolizing methane bacterium
EP1264895A4 (en) * 2000-02-01 2006-12-06 Japan Science & Tech Agency Process for producing vitamin b 12 from hydrogen-metabolizing methane bacterium
WO2001065621A1 (en) * 2000-03-02 2001-09-07 Ebara Corporation Fuel cell power generation method and system
JP2004525478A (en) * 2000-03-02 2004-08-19 株式会社荏原製作所 Fuel cell power generation method and fuel cell power generation system
US6969562B2 (en) 2000-03-02 2005-11-29 Ebara Corporation Fuel cell power generation method and system
JP2007500115A (en) * 2003-07-28 2007-01-11 ウーデ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Process for producing hydrogen from methane-containing gas, in particular natural gas, and system for carrying out the process
JP4707665B2 (en) * 2003-07-28 2011-06-22 ウーデ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Process for producing hydrogen from methane-containing gas, in particular natural gas, and system for carrying out the process
JP2007031255A (en) * 2005-07-29 2007-02-08 Toshiba Corp Low quality waste heat recovery system
JP4744971B2 (en) * 2005-07-29 2011-08-10 株式会社東芝 Low quality waste heat recovery system
JP2013045535A (en) * 2011-08-23 2013-03-04 Tokyo Gas Co Ltd Carbonic acid gas recovery type fuel cell system
WO2015019608A1 (en) * 2013-08-06 2015-02-12 千代田化工建設株式会社 Hydrogen supply system and hydrogen supply method
JP2015030652A (en) * 2013-08-06 2015-02-16 千代田化工建設株式会社 Hydrogen supply system
US10131593B2 (en) 2013-08-06 2018-11-20 Chiyoda Corporation Systems and methods for producing hydrogen from a hydrocarbon and using the produced hydrogen in a hydrogenation reaction
JP2016160104A (en) * 2015-02-26 2016-09-05 株式会社神戸製鋼所 Hydrogen production apparatus and hydrogen production method
CN107915206A (en) * 2017-11-20 2018-04-17 宁波申江科技股份有限公司 Hydrogen purification apparatus applied to methanol fuel cell, reformat fuel cell
WO2019175850A1 (en) * 2018-03-16 2019-09-19 Fuelcell Energy, Inc. System and method for producing hydrogen using high temperature fuel cells
US11444303B2 (en) 2018-03-16 2022-09-13 Fuelcell Energy, Inc. System and method for producing hydrogen using high temperature fuel cells
US10797332B2 (en) 2018-08-31 2020-10-06 Fuelcell Energy, Inc. Low pressure carbon dioxide removal from the anode exhaust of a fuel cell
US11424465B2 (en) 2018-08-31 2022-08-23 Fuelcell Energy, Inc. Low pressure carbon dioxide removal from the anode exhaust of a fuel cell
CN114988364A (en) * 2022-06-13 2022-09-02 重庆科技学院 Power generation system based on natural gas hydrogen production and fuel cell technology
CN114988364B (en) * 2022-06-13 2023-05-12 重庆科技学院 Power generation system based on natural gas hydrogen production and fuel cell technology

Also Published As

Publication number Publication date
AU5853500A (en) 2001-01-30

Similar Documents

Publication Publication Date Title
JP4010811B2 (en) Fuel cell power generation method and fuel cell power generation system
WO2001004045A1 (en) Process and apparatus for production of hydrogen by gasification of combustible material and method for electric power generation using fuel cell and electric power generation system using fuel cell
CA2479660C (en) Fuel cell power generation system and method for operating same
JP2002321905A (en) Fuel cell device equipped with carbon monoxide absorber to remove carbon monoxide
CA2516355A1 (en) Diesel steam reforming with co2 fixing
WO2001004046A1 (en) Method for electric power generation using fuel cell and electric power generation system using fuel cell
JP2006342014A (en) Method for producing high purity hydrogen
KR101602232B1 (en) Fuel cell, generation system and method using the same
KR102430685B1 (en) High concentration hydrogen sulfide removal device in solution bath type
JP2002275482A (en) Method for power generation by digested gas and power generation system
JP2002212575A (en) High-level treating apparatus for purified coke oven gas and utilization method
JP2009117054A (en) Power generation method and system by high temperature operating fuel cell
US20040179998A1 (en) Fuel processor module for hydrogen production for a fuel cell engine using pressure swing adsorption
JP2001023677A (en) Fuel cell power generating method and fuel cell power generating system
WO2000059825A1 (en) Method and apparatus for production of hydrogen by gasification of combusible material
AU2007250925B2 (en) Method for treatment of drain in hydrogen production and hydrogen production system
JP2001000949A (en) Digestion gas storing apparatus
JPH0757756A (en) Fuel cell power generation system
JPH06333589A (en) Method for utilizing exhaust gas of fuel cell
JP2006036616A (en) Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound
JPH07316571A (en) Energy recovery system
CA2453155A1 (en) Propane desulphurization
JPH07169495A (en) Chemical power generating system utilizing waste fermentation gas
JPH1027621A (en) Fuel cell power generating facility with suppressed generation of carbon dioxide
JP2001325981A (en) Processed gas reforming mechanism, solid polymer fuel cell system, and processed gas reforming method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase