WO2001005516A1 - Laborzentrifuge mit kühlaggregat - Google Patents

Laborzentrifuge mit kühlaggregat Download PDF

Info

Publication number
WO2001005516A1
WO2001005516A1 PCT/EP2000/005877 EP0005877W WO0105516A1 WO 2001005516 A1 WO2001005516 A1 WO 2001005516A1 EP 0005877 W EP0005877 W EP 0005877W WO 0105516 A1 WO0105516 A1 WO 0105516A1
Authority
WO
WIPO (PCT)
Prior art keywords
centrifuge
motor
cooling
frequency
laboratory
Prior art date
Application number
PCT/EP2000/005877
Other languages
English (en)
French (fr)
Inventor
Heiko Müller
Horst Kache
Original Assignee
Eppendorf Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eppendorf Ag filed Critical Eppendorf Ag
Priority to JP2001510592A priority Critical patent/JP4365062B2/ja
Priority to DE50001890T priority patent/DE50001890D1/de
Priority to US10/031,468 priority patent/US6866621B1/en
Priority to EP00942132A priority patent/EP1196247B1/de
Publication of WO2001005516A1 publication Critical patent/WO2001005516A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B15/00Other accessories for centrifuges
    • B04B15/02Other accessories for centrifuges for cooling, heating, or heat insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B9/00Drives specially designed for centrifuges; Arrangement or disposition of transmission gearing; Suspending or balancing rotary bowls
    • B04B9/10Control of the drive; Speed regulating

Definitions

  • the invention relates to a laboratory centrifuge with an electric centrifuge motor.
  • Laboratory centrifuges are also known with a cooling unit driven by an electric motor.
  • the cooling motors are continuously provided in a simple design with constant speed, the cooling power being controlled by switching the motor on and off.
  • the object of the present invention is to construct a laboratory tool with a speed-controlled centrifuge motor and cooling unit in a structurally simpler and more cost-effective manner.
  • the cooling motor is speed-controlled with a frequency control.
  • the existing frequency converter only has to be supplemented by another inverter. Additional switching and control devices for the cooling motor are not required. This results in a significant structural simplification for the engine control, which is reflected in the costs. This is of crucial importance for laboratory centrifuges, since they can only be successfully marketed as small and inexpensive table-top units.
  • the control device controlling the frequency converter can control both inverters with the same frequency. However, this would have the disadvantage that the rotor speed and cooling capacity are driven up and down together.
  • the features of claim 2 are therefore advantageously provided. This makes it possible to control the rotor speed and the cooling capacity separately as required.
  • the back braking power is - at least partially - destroyed in the cooling motor drawing current from the DC voltage source, which works as a braking resistor. Additional braking resistors can be greatly reduced or can be omitted entirely, which further reduces the cost of the centrifuge.
  • the centrifuge has a rotor 2 which has internal receptacles (not shown) for the conventional centrifuging vessels in the usual way.
  • the rotor 2 is operated via a shaft 4 by a centrifugal motor 5, which is designed as a three-phase induction motor.
  • the centrifuge motor 5 is supplied via three lines 6 by a centrifuge inverter 7 of a frequency converter 20.
  • the centrifuge inverter 7 is connected with input lines to the positive line and the negative line of a DC voltage source 10.
  • the DC voltage source 10 has a conventional charging capacitor 11 between the plus line and the minus line and is fed by a line rectifier 12 which is connected to line AC voltage via lines
  • the centrifuge inverter 7 is connected to a frequency controller 15 via control lines. This specifies the frequency and the voltage with which the centrifuge motor 5 is to be controlled to the centrifuge inverter 7.
  • a cooling unit 17 which, in the highly schematic illustration, cools the rotor 2 with a cooler 18 designed as a Roman coil cooler, and dissipates the heat outside the housing (not shown) with a heat exchanger 19 likewise designed as a coil cooler.
  • the cooling circuit is supplied by a compressor, not shown, which is driven by an electric cooling motor 22 via a shaft 21.
  • the cooling motor 22 is also designed as an induction motor and is supplied by a cooling inverter 24 via three lines 23. This is connected in the frequency converter 20 via input lines to the positive line and the negative line of the DC voltage source 10, that is to say in parallel to the centrifuge inverter 7. It is controlled via control lines by a frequency control 28 in a manner similar to that of the centrifuge inverter 7.
  • the cooling capacity of the cooling unit 17 and the speed of the rotor 2 can be set completely separately via corresponding specifications.
  • a control device 30 is used, which is connected to the frequency controls 15 and 28 via corresponding data lines in order to predefine the rotational speeds to be set.
  • the control device 30 can reduce the power to the cooling motor 22 by reducing the control frequency, or switch it off completely, in particular when the centrifuge motor 5 is at full load while the rotor 2 is operating. Overloading of the DC voltage source 10 is thus avoided and this can. e.g. with regard to the charging capacitor 11 and the line rectifier 2, as well as with respect to the size and the manufacturing costs.
  • the control device 30 can be designed such that when the centrifuge is switched on, the cooling unit 17 is first switched off and the rotor 2 rotates up to the range of its predetermined target speed. In addition, the power consumption of the centrifuge motor 5 drops and the power can now be increased to the cooling motor 22, which can reduce the power again via temperature sensors (not shown) connected to the control device 30 after the desired temperature has been reached. After completing the centrifugation process, rapid braking of the rotor 2 is desired in order to be able to quickly unload the stationary rotor 2. For this purpose, the control device 30 is designed such that it drives the frequency of the centrifuge inverter 7 to brake the centrifuge DC voltage source 10. With strong braking, the DC voltage source 10 can be overloaded while the voltage rises
  • the control device 30 ensures that when the centrifuge motor 5 is braked, the Kuhl grill ⁇ chtei 24 is driven at a defined frequency, so that the Kuhlmotoi 22 draws current from the DC voltage source 10.
  • the cooling motor 22 then acts as a braking resistor, so that additional braking resistors can be saved
  • the control unit 30 is also designed in such a way that it operates the cooling alternating egg 24 only above a minimum frequency, corresponding to a minimum drawing number of the cooling motor 22. In this way, the cooling compresses provided in the cow unit 17 are operated only above a minimum drawing number operated so that lubrication rangebioblems occurring at lower speeds are avoided

Abstract

Eine Laborzentrifuge mit einem von einem elektrischen Zentrifugenmotor (5) angetriebenen Rotor (2) und einem von einem elektrischen Kühlmotor (22) angetriebenen Kühlaggregat (17), wobei der Zentrifugenmotor als frequenzgesteuerter Induktionsmotor ausgebildet ist und von einem von einer Steuerungseinrichtung (30) gesteuerten Frequenzumrichter (20) versorgt ist, der einen den Zentrifugenmotor speisenden Zentrifugenwechselrichter (7) aufweist, welcher an eine von einem Netzgleichrichter (12) versorgte Gleichspannungsquelle (10) angeschlossen ist, ist dadurch gekennzeichnet, daß der Kühlmotor als frequenzgesteuerter Induktionsmotor ausgebildet ist und daß der Frequenzumrichter einen weiteren, parallel zum Zentrifugenwechselrichter an die Gleichspannungsquelle angeschlossenen Kühlwechselrichter (24) aufweist, der den Kühlmotor speist.

Description

LABORZEif^TRIFUGE MIT KÜHLAGGREGAT
Die Erfindung betrifft eine Laborzentrifuge mit elektrischem Zentrifugenmotor.
Bei gattungsgemaßen Laborzentrifugen ist es üblich, wie in DE 4136514 C2 beschrieben, den Zentrifugenmotor als Induktionsmotor mit frequenzgesteuerter Veisoigung über einen Frequenzumrichter auszubilden. Damit läßt sich die für den Zentπfugenbetπeb erforderliche Genauigkeit der Einstellung der Rotordrehzahl erreichen
Laborzentrifugen sind auch mit von einem Elektromotor angetriebenem Kühlaggregat bekannt Bei diesem sind jedoch nach dem Stand der Technik die Kuhlmotoren in einfacher Bauweise mit konstanter Drehzahl laufend vorgesehen, wobei die Steuemng der Kühlleistung über Ein- und Ausschalten des Motors erfolgt. Fui Klimaanlagen ist es aus der DE 3523818 C3 bekannt, den Motor frequenzgesteuert zu betreiben Die Aufgabe der vorliegenden Erfindung besteht darin, eine Laborzenüifuge mit drehzahlgesteueitem Zentrifugenmotor und Kühlaggregat konstruktiv einfacher und kostengünstiger auszubilden.
Diese Aufgabe wird mit den Merkmalen des Anspruches 1 gelöst.
Erfindungsgemäß wird nicht nur der Zentrifugenmotor, sondern auch der Kühlmotor mit einer Frequenzsteuerung drehzahlgesteuert. Dadurch ergibt sich zunächst die Möglichkeit zu besserer Kühlsteuerung, aber vor allem zu einer starken baulichen Vereinfachung der Konstruktion. Der ohnehin vorhandene Frequenzumrichter muß nur um einen weiteren Wechselrichter ergänzt werden. Zusätzliche Schalt- und Steuereinrichtungen für den Kühlmotor werden nicht benötigt. Es ergibt sich für die Motorensteuerung eine bedeutende bauliche Vereinfachung, die sich in den Kosten niederschlägt. Bei Laborzentrifugen ist dies von entscheidender Bedeutung, da diese im wesentlichen nur als möglichst kleine und kostengünstige Tischgeräte erfolgreich zu vermarkten sind.
Die den Frequenzurnrichter steuernde Steuemngseinrichtung kann beide Wechselrichter mit der gleichen Frequenz ansteuern. Dies hätte aber den Nachteil, daß Rotordrehzahl und Kühlleistung gemeinsam hoch und runter gefahren werden. Vorteilhaft sind daher die Merkmale des Anspruches 2 vorgesehen. Hiermit ist es möglich, die Rotordrehzahl und die Kühlleistung getrennt bedarfsweise zu steuern.
Bei Zentrifugen ist es erforderlich, nach Beendigung des Zentrifugiervorganges, den Rotor möglichst schnell bis zum Stillstand abzubremsen, um die zentrifu- gierten Proben wieder in kurzer Zeit entnehmen zu können. Wird die Steuerfrequenz für den Zentrifugenwechselrichter runtergefahren, so speist dieser einen hohen Bremsstrom in die Gleichspannungsquelle, so daß deren Spannung unzu- lässig hohe Werte annehmen kann. Nach dem Stand der Technik wird die zurückgeführte Bremsleistung in bedarfsweise zuschaltbaren Bremswiderständen vernichtet, die die Konstraktionskosten erhöhen. Vorteilhaft sind daher die Merkmale des Anspruches 3 vorgesehen. Auf diese Weise wird beim Bremsen des Zentrifugenrotors die rückgefühlte Bremsleistung - zumindest teilweise - in dem Strom aus der Gleichspannungsquelle ziehenden Kühlmotor vernichtet, der als Bremswiderstand arbeitet. Zusätzliche Bremswiderstände können stark verkleinert werden, oder können gänzlich entfallen, wodurch die Kosten der Zentrifuge weiter verringert werden.
Werden die Antriebsleistungen des Zennϊfugenmotors und des Kühlmotors völlig getrennt gesteuert, so kann es zu gleichzeitiger Vollast in beiden Motoren kommen, für die die Gleichspannungsquelle und der Netzgleichrichter ausgelegt werden müssen. Vorteilhaft sind daher die Merkmale des Anspruches 4 vorgesehen. Mit einer solchen Steuerangskopplung der beiden Motoren wird dafür gesorgt, daß beim Beschleunigen des Rotors, wenn der Zentrifugenmotor viel Leistung benötigt, der Kühlmotor mir verringerter Leistung betrieben wird. Die aus der Gleichspannungsquelle zu liefernde Maximalleistung wird dadurch reduziert, so daß Bauteile verkleinert werden können und somit wiederum die Kosten der Zentrifuge verringert werden können.
Vorteilhaft sind die Merkmale des Anspruches 5 vorgesehen. Auf diese Weise wird dafür gesorgt, daß der Kühlmotor unterhalb einer Minimaldrehzahl nur kurzfristig läuft. Dies ist von Vorteil bei Verwendung üblicher Kühlaggregate mit einem Kompressor, der aus Schmierangsgränden nur oberhalb einer minimalen Drehzahl betrieben werden darf.
In der Zeichnung ist die Erfindung beispielsweise und schematisch mit dem stark schematisierten Blockschaltbild einer Zentrifuge dargestellt. Die Zentrifuge weist einen Rotor 2 auf, der in üblicher Weise nicht dargestellte innen liegende Aufnahmen für die üblichen Zentrifugiergefäße aufweist. Der Rotor 2 wird über eine Welle 4 von einem Zenüifugenmotor 5 beti'ieben, der als dreiphasiger Induktionsmotor ausgebildet ist.
Der Zentrifugenmotor 5 wird über drei Leitungen 6 von einem Zentrifugenwech- selrichter 7 eines Frequenzumrichters 20 versorgt. In dem Frequenzumrichter 20 ist der Zentrifugenwechselrichter 7 mit Eingangsleitungen an die Plusleitung und die Minusleitung einer Gleichspannungsquelle 10 angeschlossen.
Die Gleichspannungsquelle 10 weist zwischen der Plusleitung und der Minusleitung einen üblichen Ladekondensator 11 auf und wird von einem Netzgleichrichter 12 gespeist, der über Leitungen an Netzwechselspannung angeschlossen
Der Zentrifugenwechselrichter 7 ist über Steuerleitungen an eine Frequenzsteuerung 15 angeschlossen. Diese gibt dem Zentrifugenwechselrichter 7 die Frequenz und die Spannung vor, mit der der Zentrifugenmotor 5 anzusteuern ist.
Es ist ein Kühlaggregat 17 vorgesehen, das in der stark schematisierten Darstellung mit einem als Romschlangenkühler ausgebildeten Kühler 18 den Rotor 2 kühlt, und mit einem ebenfalls als Schlangenkühler ausgebildeten Wärmetauscher 19 außerhalb des nicht dargestellten Gehäuses die Wärme abführt. Der Kühlkreislauf wird von einem nicht dargestellten Kompressor versorgt, der über eine Welle 21 von einem elektrischen Kühlmotor 22 getrieben wird. Der Kühlmotor 22 ist ebenfalls als Induktionsmotor ausgebildet und wird über drei Leitungen 23 von einem Kühlwechselrichter 24 versorgt. Dieser ist im Frequenzumrichter 20 über Eingangsleitungen an die Plusleitung und die Minusleitung der Gleichspannungsquelle 10, also parallel zum Zentrifugenwechselrichter 7 angeschlossen. Er wird über Steuerleitungen von einer FrequenzsteueiTing 28 in ähnlicher Weise wie der Zentrifugenwechselrichter 7 angesteuert.
Bei der dargestellten Zentrifuge lassen sich die Kühlleistung des Kühlaggregates 17 und die Drehzahl des Rotors 2 über entsprechende Vorgaben völlig getrennt einstellen. Dazu dient eine Steuereinrichtung 30, die über entsprechende Datenleitungen an die Frequenzsteuerungen 15 und 28 angeschlossen ist, um diesen die einzustellenden Drehzahlen vorzugeben.
Die Steuereimichtung 30 kann insbesondere bei Vollast des Zenti'ifugenmotors 5 während des Hochfahiens des Rotors 2, die Leistung zum Kühlmotor 22 durch Verringerung der Ansteuerfrequenz reduzieren, oder diesen ganz abschalten. Damit wird eine Überlastung der Gleichspannungsquelle 10 vermieden und diese kann. z.B. hinsichtlich des Ladekondensators 11 und des Netzgleichlichters 2, sowie hinsichtlich der Baugröße und der Herstellungskosten reduziert werden.
Die Steuereimichtung 30 kann so ausgebildet sein, daß bei Einschalten der Zentrifuge zunächst das Kühlaggregat 17 abgeschaltet ist und der Rotor 2 hochdreht bis in den Bereich seiner vorgegebenen Solldrehzahl. Darm sinkt die Leistungsaufnahme des Zentrifugenmotors 5 und es kann nun die Leistung zum Kühlmotor 22 hochgefahren werden, der über nicht dargestellte, an die Steuerangseinrichtung 30 angeschlossene Temperatursensoren - nach Erreichen der gewünschten Temperatur - die Leistung wieder reduzieren kann. Nach abgeschlossenem Zentπfugiervorgang ist em rasches Abbremsen des Rotors 2 ei wünscht, um schnell den stehenden Rotor 2 entladen zu können Dazu ist die Steueiungseimichtung 30 derart ausgebildet, daß sie zum Bremsen der Zentrifuge die Fiequenz des Zentrifugenwechselrichters 7 heranterfahrt Dieser liefert nun einen Bremsstiom zurack in die Gleichspannungsquelle 10. Bei starker Bremsung kann die Gleichspannungsquelle 10 unter Spannungsanstieg überlastet werden
Um die Veiwendung sonst üblicher Bremswiderstande zu vermeiden, sorgt die Steuerangseimichtung 30 dafür, daß beim Bremsen des Zentrifügenmotois 5 der Kuhlwechselπchtei 24 mit definierter Frequenz angesteuert wird, so daß der Kuhlmotoi 22 Strom aus dei Gleichspannungsquelle 10 zieht Der Kühlmotoi 22 wirkt dann als Biemswiderstand, so daß zusätzliche Bremswiderstande eingespart werden können
Die Steuerangseimichtung 30 ist zusätzlich auch so ausgelegt, daß sie den Kühl- wechsehichtei 24 nui oberhalb einer Mindestfrequenz, entsprechend einer Min- destdiehzahl des Kuhlmotors 22, betreibt Em im Kuhlaggregat 17 vorgesehener, nicht daigestelltei Kuhlkompressoi wird auf diese Weise nur oberhalb einer Min- destdiehzahl betrieben, so daß bei niedrigeren Drehzahlen auftretende Schmie- rangspiobleme vermieden werden

Claims

Laborzentrifuge mit KühlaggregatPATENTANSPRÜCHE
1. Laborzenüifuge mit einem von einem elektrischen Zentiifugemotor (5) angetriebenen Rotor (2) und einem von einem elektrischen Kühlmotor (22) angetriebenen Kühlaggregat (17), wobei der Zentrifügenmotor (5) als frequenzgesteuerter Induktionsmotor ausgebildet ist und von einem von einer Steuerangseimichtung (30) gesteuerten Frequenzumrichter (20) versorgt ist, der einen den Zentrifugenmotor (5) speisenden Zentrifügenwechsel- richter (7) aufweist, welcher an eine von einem Netzgleichrichter (12) versorgte Gleichspannungsquelle (10) angeschlossen ist, dadurch gekennzeichnet, daß der Kühlmotor (22) als frequenzgesteuerter Induktionsmotor ausgebildet ist und daß der Frequenzumrichter (20) einen weiteren, parallel zum Zentrifugenwechselrichter (7) an die Gleichspannungsquelle ( 10) angeschlossenen Kühlwechselrichter (24) aufweist, der den Kühlmotor (22) speist. Laboizentiifuge nach Ansprach 1, dadurch gekennzeichnet, daß die Steueieimichtung (30) die beiden Wechselrichter (7, 24) unabhängig steuert
Laboizentiifuge nach Ansprach 2, dadurch gekennzeichnet, daß die Steuerangseimichtung (30) bei starkei Veilangsamung dei Fiequenz des Zentiifugenwechselnchteis (7) den Kuhlwechselπchtei (24) mit defmiertei Fi equenz ansteuert
Laboizentiifuge nach Ansprach 2, dadurch gekennzeichnet, daß die Steueieimichtung (30) bei Beschleunigung des Zentrifugenmotors (5) die Fiequenz des Kuhlwechselnchteis (24) verringert
Laboizentiifuge nach Ansprach 2, dadurch gekennzeichnet, daß die Steueieimichtung (30) den Kuhlwechselnchtei (24) unterhalb einei Mini- malfi equenz abschaltet
PCT/EP2000/005877 1999-07-16 2000-06-26 Laborzentrifuge mit kühlaggregat WO2001005516A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001510592A JP4365062B2 (ja) 1999-07-16 2000-06-26 冷却ユニットを有する実験用遠心分離機
DE50001890T DE50001890D1 (de) 1999-07-16 2000-06-26 Laborzentrifuge mit kuehlaggregat
US10/031,468 US6866621B1 (en) 1999-07-16 2000-06-26 Laboratory centrifuge, comprising refrigeration unit
EP00942132A EP1196247B1 (de) 1999-07-16 2000-06-26 Laborzentrifuge mit kuehlaggregat

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19932721.1 1999-07-16
DE19932721A DE19932721C1 (de) 1999-07-16 1999-07-16 Laborzentrifuge mit Kühlaggregat

Publications (1)

Publication Number Publication Date
WO2001005516A1 true WO2001005516A1 (de) 2001-01-25

Family

ID=7914623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/005877 WO2001005516A1 (de) 1999-07-16 2000-06-26 Laborzentrifuge mit kühlaggregat

Country Status (5)

Country Link
US (1) US6866621B1 (de)
EP (1) EP1196247B1 (de)
JP (1) JP4365062B2 (de)
DE (2) DE19932721C1 (de)
WO (1) WO2001005516A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866621B1 (en) * 1999-07-16 2005-03-15 Eppendorf Ag Laboratory centrifuge, comprising refrigeration unit
US7023712B2 (en) 2002-10-17 2006-04-04 Vacon Oyj Cooling arrangement in frequency converter
US20140031191A1 (en) * 2011-04-15 2014-01-30 Hitachi Koki Co., Ltd. Centrifuge

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006027696B4 (de) * 2006-06-14 2009-07-02 Thermo Electron Led Gmbh Verfahren und Vorrichtung zum Positionieren eines Rotors einer Zentrifuge
US7555933B2 (en) * 2006-08-01 2009-07-07 Thermo Fisher Scientific Inc. Method and software for detecting vacuum concentrator ends-of-runs
JP4569778B2 (ja) * 2006-09-01 2010-10-27 日立工機株式会社 遠心機
EP2335830B2 (de) * 2009-12-17 2020-11-11 Eppendorf Ag Laborzentrifuge mit Kompressorkühlung
JP5541118B2 (ja) * 2010-11-26 2014-07-09 日立工機株式会社 遠心分離機
US9246432B2 (en) * 2011-02-14 2016-01-26 Beckman Coulter, Inc. Regenerative braking safety system and method of use
JP5861988B2 (ja) * 2011-04-15 2016-02-16 日立工機株式会社 遠心分離機
JP5854218B2 (ja) * 2012-01-24 2016-02-09 日立工機株式会社 遠心分離機
DE102012002593A1 (de) * 2012-02-13 2013-08-14 Eppendorf Ag Zentrifuge mit Kompressorkühleinrichtung und Verfahren zur Steuerung einer Kompressorkühleinrichtung einer Zentrifuge
DE202012001679U1 (de) * 2012-02-20 2012-04-04 Sigma Laborzentrifugen Gmbh Anlaufgerät für den Kompressor einer Kühlzentrifuge
CN103623942B (zh) * 2012-08-26 2015-09-16 上海市离心机械研究所有限公司 卧螺离心机的温度控制方法
JP6056383B2 (ja) * 2012-10-31 2017-01-11 日立工機株式会社 遠心機
DE102014107294B4 (de) * 2014-05-23 2017-02-09 Andreas Hettich Gmbh & Co. Kg Zentrifuge
DE102014110467A1 (de) * 2014-07-24 2016-01-28 Andreas Hettich Gmbh & Co. Kg Zentrifuge
JP6910855B2 (ja) * 2017-06-05 2021-07-28 荏原冷熱システム株式会社 ターボ冷凍機
DE102017130785A1 (de) * 2017-12-20 2019-06-27 Eppendorf Ag Temperierte Zentrifuge
CN111530644A (zh) * 2020-04-22 2020-08-14 珠海华硕医疗器械有限公司 用于医用离心机的风冷控温结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2150717A (en) * 1983-12-01 1985-07-03 Hermle Kg Berthold A cooling centrifuge with exchangeable rotors
DE3714627A1 (de) * 1986-05-14 1987-11-19 Nagema Veb K Leistungselektronischer antrieb fuer zentrifugalseparatoren
JPH0924302A (ja) * 1995-07-07 1997-01-28 Hitachi Koki Co Ltd 遠心機の予冷運転制御方法
EP0833138A1 (de) * 1996-09-27 1998-04-01 Jouan Vorrichtung zur Feststellung des Drehmomentwiderstands einer Ausrüstung in Rotation, Überwachungssystem eines elektrischen Motors und Parameterregulierung einer assozierten Zentrifuge

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3246688A (en) * 1962-06-28 1966-04-19 Beckman Instruments Inc Controlled temperature apparatus
GB1007479A (en) * 1963-01-15 1965-10-13 Mse Holdings Ltd Improvements in or relating to centrifuges
US3409212A (en) * 1966-07-14 1968-11-05 Beckman Instrumetns Inc Apparatus for controllling centrifuge rotor temperature
DE2824045C2 (de) * 1978-06-01 1983-03-24 Heraeus-Christ Gmbh, 3360 Osterode Schaltungsanordnung zum Bremsen einer Laborzentrifuge
JPH0683590B2 (ja) 1984-07-04 1994-10-19 株式会社東芝 空気調和機
DD243650A1 (de) * 1985-12-02 1987-03-11 Medizin Labortechnik Veb K Verfahren zur temperierung der rotoren von ultrazentrifugen
DE4136514C2 (de) * 1991-11-06 1994-08-18 Heraeus Sepatech Schaltungsanordnung zur Drehzahlsteuerung eines als Zentrifugenantrieb dienenden dreiphasigen Induktionsmotors
JP3687797B2 (ja) * 1994-03-09 2005-08-24 日立工機株式会社 遠心機用モータの制御装置
US5509881A (en) * 1994-07-07 1996-04-23 Beckman Instruments, Inc. Centrifuge rotor identification and refrigeration control system based on windage
US5431620A (en) * 1994-07-07 1995-07-11 Beckman Instruments, Inc. Method and system for adjusting centrifuge operation parameters based upon windage
JP3863285B2 (ja) * 1998-04-10 2006-12-27 株式会社久保田製作所 冷却遠心分離機
DE19932721C1 (de) * 1999-07-16 2001-01-18 Eppendorf Geraetebau Netheler Laborzentrifuge mit Kühlaggregat
JP3879360B2 (ja) * 2000-03-17 2007-02-14 日立工機株式会社 遠心機
US6635007B2 (en) * 2000-07-17 2003-10-21 Thermo Iec, Inc. Method and apparatus for detecting and controlling imbalance conditions in a centrifuge system
US20020092802A1 (en) * 2000-07-17 2002-07-18 Evana Robert R. Power factor correction for centrifuges
JP2004064945A (ja) * 2002-07-31 2004-02-26 Hitachi Koki Co Ltd 回転体駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2150717A (en) * 1983-12-01 1985-07-03 Hermle Kg Berthold A cooling centrifuge with exchangeable rotors
DE3714627A1 (de) * 1986-05-14 1987-11-19 Nagema Veb K Leistungselektronischer antrieb fuer zentrifugalseparatoren
JPH0924302A (ja) * 1995-07-07 1997-01-28 Hitachi Koki Co Ltd 遠心機の予冷運転制御方法
EP0833138A1 (de) * 1996-09-27 1998-04-01 Jouan Vorrichtung zur Feststellung des Drehmomentwiderstands einer Ausrüstung in Rotation, Überwachungssystem eines elektrischen Motors und Parameterregulierung einer assozierten Zentrifuge

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 5, no. 1997 30 May 1997 (1997-05-30) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866621B1 (en) * 1999-07-16 2005-03-15 Eppendorf Ag Laboratory centrifuge, comprising refrigeration unit
US7023712B2 (en) 2002-10-17 2006-04-04 Vacon Oyj Cooling arrangement in frequency converter
US20140031191A1 (en) * 2011-04-15 2014-01-30 Hitachi Koki Co., Ltd. Centrifuge
US9981274B2 (en) * 2011-04-15 2018-05-29 Hitachi Koki Co., Ltd. Centrifuge having a plurality of inverters

Also Published As

Publication number Publication date
DE19932721C1 (de) 2001-01-18
DE50001890D1 (de) 2003-05-28
JP4365062B2 (ja) 2009-11-18
US6866621B1 (en) 2005-03-15
EP1196247B1 (de) 2003-04-23
JP2003504197A (ja) 2003-02-04
EP1196247A1 (de) 2002-04-17

Similar Documents

Publication Publication Date Title
WO2001005516A1 (de) Laborzentrifuge mit kühlaggregat
EP1638692B1 (de) Zentrifugensteuersystem mit stromausfallüberbrückung
DE102005058922A1 (de) Elektrisches Antriebssystem und elektrisches Antriebsverfahren für ein Fahrzeug
DE3637092A1 (de) Leistungsausfallstoppschaltung fuer einen wandler
DE4010376C2 (de) Antrieb, insbesondere Einzelspindelantrieb für eine Arbeitsstelle einer Ringspinnmaschine
DD248968A1 (de) Leistungselektronischer antrieb fuer zentrifugalseparatoren
US5485066A (en) Variable speed centrifugal drive control for sugar refining machines and the like
DE19634559A1 (de) Scheibenwischvorrichtung
DE4128803A1 (de) Frequenzumrichter
DE69927759T2 (de) Drehzahlregelvorrichtung für einen elektrischen Motor und Vorrichtung zum Schleudern mit einer solchen Vorrichtung
DE3340198C2 (de)
WO2017118723A1 (de) Vakuumpumpenantrieb mit stern-dreieck-umschaltung
DE10032762B4 (de) "Gargerät mit Spannungs-,Phasen-und /oder Frequenzumwandler"
EP0583862A2 (de) Antrieb mit zwei Motoren für Dekanterzentrifuge
EP0759862B1 (de) Scheibenwischvorrichtung
DE2365111A1 (de) Verfahren zum hochfahren von wechselstrom- bzw. drehfeldmaschinen
RU2383098C2 (ru) Частотно-управляемый привод для центрифуги по разделению многокомпонентных смесей с выводом двух жидких и одной твердой фракций
DE3808020A1 (de) Luefterradantrieb bei drehzahlveraenderlichen antrieben, insbesondere bei schwungmasseantrieben
EP1766120A1 (de) Energetischer webmaschinenverbund
DE3113564A1 (de) Verfahren zum speisen einer als antriebsmotor eingesetzten asynchronmaschine
DE1763293C3 (de) Anordnung zur Drehzahlsteuerung oder -regelung eines Drehstrom-Asynchronmotors
WO2023110011A1 (de) Anordnung zur strom- bzw. spannungsversorgung eines elektrischen antriebes
FI71447C (fi) Anordning foer oevervakning av en asynkronmotor vid likstroemsbromsning
EP0330162A2 (de) Zentrifuge für Laborzwecke
WO2023110012A1 (de) Elektrischer antrieb eines fahrzeuges

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 510592

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000942132

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000942132

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10031468

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2000942132

Country of ref document: EP